1 /* 2 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * 4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 5 * 6 * Tasks that periodically executes their instances for less than their 7 * runtime won't miss any of their deadlines. 8 * Tasks that are not periodic or sporadic or that tries to execute more 9 * than their reserved bandwidth will be slowed down (and may potentially 10 * miss some of their deadlines), and won't affect any other task. 11 * 12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 13 * Juri Lelli <juri.lelli@gmail.com>, 14 * Michael Trimarchi <michael@amarulasolutions.com>, 15 * Fabio Checconi <fchecconi@gmail.com> 16 */ 17 #include "sched.h" 18 19 #include <linux/slab.h> 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 47 { 48 struct sched_dl_entity *dl_se = &p->dl; 49 50 return dl_rq->rb_leftmost == &dl_se->rb_node; 51 } 52 53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 54 { 55 raw_spin_lock_init(&dl_b->dl_runtime_lock); 56 dl_b->dl_period = period; 57 dl_b->dl_runtime = runtime; 58 } 59 60 void init_dl_bw(struct dl_bw *dl_b) 61 { 62 raw_spin_lock_init(&dl_b->lock); 63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 64 if (global_rt_runtime() == RUNTIME_INF) 65 dl_b->bw = -1; 66 else 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 69 dl_b->total_bw = 0; 70 } 71 72 void init_dl_rq(struct dl_rq *dl_rq) 73 { 74 dl_rq->rb_root = RB_ROOT; 75 76 #ifdef CONFIG_SMP 77 /* zero means no -deadline tasks */ 78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 79 80 dl_rq->dl_nr_migratory = 0; 81 dl_rq->overloaded = 0; 82 dl_rq->pushable_dl_tasks_root = RB_ROOT; 83 #else 84 init_dl_bw(&dl_rq->dl_bw); 85 #endif 86 } 87 88 #ifdef CONFIG_SMP 89 90 static inline int dl_overloaded(struct rq *rq) 91 { 92 return atomic_read(&rq->rd->dlo_count); 93 } 94 95 static inline void dl_set_overload(struct rq *rq) 96 { 97 if (!rq->online) 98 return; 99 100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 101 /* 102 * Must be visible before the overload count is 103 * set (as in sched_rt.c). 104 * 105 * Matched by the barrier in pull_dl_task(). 106 */ 107 smp_wmb(); 108 atomic_inc(&rq->rd->dlo_count); 109 } 110 111 static inline void dl_clear_overload(struct rq *rq) 112 { 113 if (!rq->online) 114 return; 115 116 atomic_dec(&rq->rd->dlo_count); 117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 118 } 119 120 static void update_dl_migration(struct dl_rq *dl_rq) 121 { 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 123 if (!dl_rq->overloaded) { 124 dl_set_overload(rq_of_dl_rq(dl_rq)); 125 dl_rq->overloaded = 1; 126 } 127 } else if (dl_rq->overloaded) { 128 dl_clear_overload(rq_of_dl_rq(dl_rq)); 129 dl_rq->overloaded = 0; 130 } 131 } 132 133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 134 { 135 struct task_struct *p = dl_task_of(dl_se); 136 137 if (p->nr_cpus_allowed > 1) 138 dl_rq->dl_nr_migratory++; 139 140 update_dl_migration(dl_rq); 141 } 142 143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 144 { 145 struct task_struct *p = dl_task_of(dl_se); 146 147 if (p->nr_cpus_allowed > 1) 148 dl_rq->dl_nr_migratory--; 149 150 update_dl_migration(dl_rq); 151 } 152 153 /* 154 * The list of pushable -deadline task is not a plist, like in 155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 156 */ 157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 158 { 159 struct dl_rq *dl_rq = &rq->dl; 160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; 161 struct rb_node *parent = NULL; 162 struct task_struct *entry; 163 int leftmost = 1; 164 165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 166 167 while (*link) { 168 parent = *link; 169 entry = rb_entry(parent, struct task_struct, 170 pushable_dl_tasks); 171 if (dl_entity_preempt(&p->dl, &entry->dl)) 172 link = &parent->rb_left; 173 else { 174 link = &parent->rb_right; 175 leftmost = 0; 176 } 177 } 178 179 if (leftmost) { 180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; 181 dl_rq->earliest_dl.next = p->dl.deadline; 182 } 183 184 rb_link_node(&p->pushable_dl_tasks, parent, link); 185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 186 } 187 188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 189 { 190 struct dl_rq *dl_rq = &rq->dl; 191 192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 193 return; 194 195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { 196 struct rb_node *next_node; 197 198 next_node = rb_next(&p->pushable_dl_tasks); 199 dl_rq->pushable_dl_tasks_leftmost = next_node; 200 if (next_node) { 201 dl_rq->earliest_dl.next = rb_entry(next_node, 202 struct task_struct, pushable_dl_tasks)->dl.deadline; 203 } 204 } 205 206 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 207 RB_CLEAR_NODE(&p->pushable_dl_tasks); 208 } 209 210 static inline int has_pushable_dl_tasks(struct rq *rq) 211 { 212 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); 213 } 214 215 static int push_dl_task(struct rq *rq); 216 217 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 218 { 219 return dl_task(prev); 220 } 221 222 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 223 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 224 225 static void push_dl_tasks(struct rq *); 226 static void pull_dl_task(struct rq *); 227 228 static inline void queue_push_tasks(struct rq *rq) 229 { 230 if (!has_pushable_dl_tasks(rq)) 231 return; 232 233 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 234 } 235 236 static inline void queue_pull_task(struct rq *rq) 237 { 238 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 239 } 240 241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 242 243 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 244 { 245 struct rq *later_rq = NULL; 246 247 later_rq = find_lock_later_rq(p, rq); 248 if (!later_rq) { 249 int cpu; 250 251 /* 252 * If we cannot preempt any rq, fall back to pick any 253 * online cpu. 254 */ 255 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); 256 if (cpu >= nr_cpu_ids) { 257 /* 258 * Fail to find any suitable cpu. 259 * The task will never come back! 260 */ 261 BUG_ON(dl_bandwidth_enabled()); 262 263 /* 264 * If admission control is disabled we 265 * try a little harder to let the task 266 * run. 267 */ 268 cpu = cpumask_any(cpu_active_mask); 269 } 270 later_rq = cpu_rq(cpu); 271 double_lock_balance(rq, later_rq); 272 } 273 274 set_task_cpu(p, later_rq->cpu); 275 double_unlock_balance(later_rq, rq); 276 277 return later_rq; 278 } 279 280 #else 281 282 static inline 283 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 284 { 285 } 286 287 static inline 288 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 289 { 290 } 291 292 static inline 293 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 294 { 295 } 296 297 static inline 298 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 299 { 300 } 301 302 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 303 { 304 return false; 305 } 306 307 static inline void pull_dl_task(struct rq *rq) 308 { 309 } 310 311 static inline void queue_push_tasks(struct rq *rq) 312 { 313 } 314 315 static inline void queue_pull_task(struct rq *rq) 316 { 317 } 318 #endif /* CONFIG_SMP */ 319 320 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 321 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 322 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 323 int flags); 324 325 /* 326 * We are being explicitly informed that a new instance is starting, 327 * and this means that: 328 * - the absolute deadline of the entity has to be placed at 329 * current time + relative deadline; 330 * - the runtime of the entity has to be set to the maximum value. 331 * 332 * The capability of specifying such event is useful whenever a -deadline 333 * entity wants to (try to!) synchronize its behaviour with the scheduler's 334 * one, and to (try to!) reconcile itself with its own scheduling 335 * parameters. 336 */ 337 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 338 { 339 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 340 struct rq *rq = rq_of_dl_rq(dl_rq); 341 342 WARN_ON(dl_se->dl_boosted); 343 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 344 345 /* 346 * We are racing with the deadline timer. So, do nothing because 347 * the deadline timer handler will take care of properly recharging 348 * the runtime and postponing the deadline 349 */ 350 if (dl_se->dl_throttled) 351 return; 352 353 /* 354 * We use the regular wall clock time to set deadlines in the 355 * future; in fact, we must consider execution overheads (time 356 * spent on hardirq context, etc.). 357 */ 358 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; 359 dl_se->runtime = dl_se->dl_runtime; 360 } 361 362 /* 363 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 364 * possibility of a entity lasting more than what it declared, and thus 365 * exhausting its runtime. 366 * 367 * Here we are interested in making runtime overrun possible, but we do 368 * not want a entity which is misbehaving to affect the scheduling of all 369 * other entities. 370 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 371 * is used, in order to confine each entity within its own bandwidth. 372 * 373 * This function deals exactly with that, and ensures that when the runtime 374 * of a entity is replenished, its deadline is also postponed. That ensures 375 * the overrunning entity can't interfere with other entity in the system and 376 * can't make them miss their deadlines. Reasons why this kind of overruns 377 * could happen are, typically, a entity voluntarily trying to overcome its 378 * runtime, or it just underestimated it during sched_setattr(). 379 */ 380 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 381 struct sched_dl_entity *pi_se) 382 { 383 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 384 struct rq *rq = rq_of_dl_rq(dl_rq); 385 386 BUG_ON(pi_se->dl_runtime <= 0); 387 388 /* 389 * This could be the case for a !-dl task that is boosted. 390 * Just go with full inherited parameters. 391 */ 392 if (dl_se->dl_deadline == 0) { 393 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 394 dl_se->runtime = pi_se->dl_runtime; 395 } 396 397 if (dl_se->dl_yielded && dl_se->runtime > 0) 398 dl_se->runtime = 0; 399 400 /* 401 * We keep moving the deadline away until we get some 402 * available runtime for the entity. This ensures correct 403 * handling of situations where the runtime overrun is 404 * arbitrary large. 405 */ 406 while (dl_se->runtime <= 0) { 407 dl_se->deadline += pi_se->dl_period; 408 dl_se->runtime += pi_se->dl_runtime; 409 } 410 411 /* 412 * At this point, the deadline really should be "in 413 * the future" with respect to rq->clock. If it's 414 * not, we are, for some reason, lagging too much! 415 * Anyway, after having warn userspace abut that, 416 * we still try to keep the things running by 417 * resetting the deadline and the budget of the 418 * entity. 419 */ 420 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 421 printk_deferred_once("sched: DL replenish lagged too much\n"); 422 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 423 dl_se->runtime = pi_se->dl_runtime; 424 } 425 426 if (dl_se->dl_yielded) 427 dl_se->dl_yielded = 0; 428 if (dl_se->dl_throttled) 429 dl_se->dl_throttled = 0; 430 } 431 432 /* 433 * Here we check if --at time t-- an entity (which is probably being 434 * [re]activated or, in general, enqueued) can use its remaining runtime 435 * and its current deadline _without_ exceeding the bandwidth it is 436 * assigned (function returns true if it can't). We are in fact applying 437 * one of the CBS rules: when a task wakes up, if the residual runtime 438 * over residual deadline fits within the allocated bandwidth, then we 439 * can keep the current (absolute) deadline and residual budget without 440 * disrupting the schedulability of the system. Otherwise, we should 441 * refill the runtime and set the deadline a period in the future, 442 * because keeping the current (absolute) deadline of the task would 443 * result in breaking guarantees promised to other tasks (refer to 444 * Documentation/scheduler/sched-deadline.txt for more informations). 445 * 446 * This function returns true if: 447 * 448 * runtime / (deadline - t) > dl_runtime / dl_period , 449 * 450 * IOW we can't recycle current parameters. 451 * 452 * Notice that the bandwidth check is done against the period. For 453 * task with deadline equal to period this is the same of using 454 * dl_deadline instead of dl_period in the equation above. 455 */ 456 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 457 struct sched_dl_entity *pi_se, u64 t) 458 { 459 u64 left, right; 460 461 /* 462 * left and right are the two sides of the equation above, 463 * after a bit of shuffling to use multiplications instead 464 * of divisions. 465 * 466 * Note that none of the time values involved in the two 467 * multiplications are absolute: dl_deadline and dl_runtime 468 * are the relative deadline and the maximum runtime of each 469 * instance, runtime is the runtime left for the last instance 470 * and (deadline - t), since t is rq->clock, is the time left 471 * to the (absolute) deadline. Even if overflowing the u64 type 472 * is very unlikely to occur in both cases, here we scale down 473 * as we want to avoid that risk at all. Scaling down by 10 474 * means that we reduce granularity to 1us. We are fine with it, 475 * since this is only a true/false check and, anyway, thinking 476 * of anything below microseconds resolution is actually fiction 477 * (but still we want to give the user that illusion >;). 478 */ 479 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 480 right = ((dl_se->deadline - t) >> DL_SCALE) * 481 (pi_se->dl_runtime >> DL_SCALE); 482 483 return dl_time_before(right, left); 484 } 485 486 /* 487 * When a -deadline entity is queued back on the runqueue, its runtime and 488 * deadline might need updating. 489 * 490 * The policy here is that we update the deadline of the entity only if: 491 * - the current deadline is in the past, 492 * - using the remaining runtime with the current deadline would make 493 * the entity exceed its bandwidth. 494 */ 495 static void update_dl_entity(struct sched_dl_entity *dl_se, 496 struct sched_dl_entity *pi_se) 497 { 498 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 499 struct rq *rq = rq_of_dl_rq(dl_rq); 500 501 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 502 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 503 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 504 dl_se->runtime = pi_se->dl_runtime; 505 } 506 } 507 508 /* 509 * If the entity depleted all its runtime, and if we want it to sleep 510 * while waiting for some new execution time to become available, we 511 * set the bandwidth enforcement timer to the replenishment instant 512 * and try to activate it. 513 * 514 * Notice that it is important for the caller to know if the timer 515 * actually started or not (i.e., the replenishment instant is in 516 * the future or in the past). 517 */ 518 static int start_dl_timer(struct task_struct *p) 519 { 520 struct sched_dl_entity *dl_se = &p->dl; 521 struct hrtimer *timer = &dl_se->dl_timer; 522 struct rq *rq = task_rq(p); 523 ktime_t now, act; 524 s64 delta; 525 526 lockdep_assert_held(&rq->lock); 527 528 /* 529 * We want the timer to fire at the deadline, but considering 530 * that it is actually coming from rq->clock and not from 531 * hrtimer's time base reading. 532 */ 533 act = ns_to_ktime(dl_se->deadline); 534 now = hrtimer_cb_get_time(timer); 535 delta = ktime_to_ns(now) - rq_clock(rq); 536 act = ktime_add_ns(act, delta); 537 538 /* 539 * If the expiry time already passed, e.g., because the value 540 * chosen as the deadline is too small, don't even try to 541 * start the timer in the past! 542 */ 543 if (ktime_us_delta(act, now) < 0) 544 return 0; 545 546 /* 547 * !enqueued will guarantee another callback; even if one is already in 548 * progress. This ensures a balanced {get,put}_task_struct(). 549 * 550 * The race against __run_timer() clearing the enqueued state is 551 * harmless because we're holding task_rq()->lock, therefore the timer 552 * expiring after we've done the check will wait on its task_rq_lock() 553 * and observe our state. 554 */ 555 if (!hrtimer_is_queued(timer)) { 556 get_task_struct(p); 557 hrtimer_start(timer, act, HRTIMER_MODE_ABS); 558 } 559 560 return 1; 561 } 562 563 /* 564 * This is the bandwidth enforcement timer callback. If here, we know 565 * a task is not on its dl_rq, since the fact that the timer was running 566 * means the task is throttled and needs a runtime replenishment. 567 * 568 * However, what we actually do depends on the fact the task is active, 569 * (it is on its rq) or has been removed from there by a call to 570 * dequeue_task_dl(). In the former case we must issue the runtime 571 * replenishment and add the task back to the dl_rq; in the latter, we just 572 * do nothing but clearing dl_throttled, so that runtime and deadline 573 * updating (and the queueing back to dl_rq) will be done by the 574 * next call to enqueue_task_dl(). 575 */ 576 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 577 { 578 struct sched_dl_entity *dl_se = container_of(timer, 579 struct sched_dl_entity, 580 dl_timer); 581 struct task_struct *p = dl_task_of(dl_se); 582 struct rq_flags rf; 583 struct rq *rq; 584 585 rq = task_rq_lock(p, &rf); 586 587 /* 588 * The task might have changed its scheduling policy to something 589 * different than SCHED_DEADLINE (through switched_from_dl()). 590 */ 591 if (!dl_task(p)) { 592 __dl_clear_params(p); 593 goto unlock; 594 } 595 596 /* 597 * The task might have been boosted by someone else and might be in the 598 * boosting/deboosting path, its not throttled. 599 */ 600 if (dl_se->dl_boosted) 601 goto unlock; 602 603 /* 604 * Spurious timer due to start_dl_timer() race; or we already received 605 * a replenishment from rt_mutex_setprio(). 606 */ 607 if (!dl_se->dl_throttled) 608 goto unlock; 609 610 sched_clock_tick(); 611 update_rq_clock(rq); 612 613 /* 614 * If the throttle happened during sched-out; like: 615 * 616 * schedule() 617 * deactivate_task() 618 * dequeue_task_dl() 619 * update_curr_dl() 620 * start_dl_timer() 621 * __dequeue_task_dl() 622 * prev->on_rq = 0; 623 * 624 * We can be both throttled and !queued. Replenish the counter 625 * but do not enqueue -- wait for our wakeup to do that. 626 */ 627 if (!task_on_rq_queued(p)) { 628 replenish_dl_entity(dl_se, dl_se); 629 goto unlock; 630 } 631 632 #ifdef CONFIG_SMP 633 if (unlikely(!rq->online)) { 634 /* 635 * If the runqueue is no longer available, migrate the 636 * task elsewhere. This necessarily changes rq. 637 */ 638 lockdep_unpin_lock(&rq->lock, rf.cookie); 639 rq = dl_task_offline_migration(rq, p); 640 rf.cookie = lockdep_pin_lock(&rq->lock); 641 642 /* 643 * Now that the task has been migrated to the new RQ and we 644 * have that locked, proceed as normal and enqueue the task 645 * there. 646 */ 647 } 648 #endif 649 650 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 651 if (dl_task(rq->curr)) 652 check_preempt_curr_dl(rq, p, 0); 653 else 654 resched_curr(rq); 655 656 #ifdef CONFIG_SMP 657 /* 658 * Queueing this task back might have overloaded rq, check if we need 659 * to kick someone away. 660 */ 661 if (has_pushable_dl_tasks(rq)) { 662 /* 663 * Nothing relies on rq->lock after this, so its safe to drop 664 * rq->lock. 665 */ 666 rq_unpin_lock(rq, &rf); 667 push_dl_task(rq); 668 rq_repin_lock(rq, &rf); 669 } 670 #endif 671 672 unlock: 673 task_rq_unlock(rq, p, &rf); 674 675 /* 676 * This can free the task_struct, including this hrtimer, do not touch 677 * anything related to that after this. 678 */ 679 put_task_struct(p); 680 681 return HRTIMER_NORESTART; 682 } 683 684 void init_dl_task_timer(struct sched_dl_entity *dl_se) 685 { 686 struct hrtimer *timer = &dl_se->dl_timer; 687 688 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 689 timer->function = dl_task_timer; 690 } 691 692 static 693 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 694 { 695 return (dl_se->runtime <= 0); 696 } 697 698 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 699 700 /* 701 * Update the current task's runtime statistics (provided it is still 702 * a -deadline task and has not been removed from the dl_rq). 703 */ 704 static void update_curr_dl(struct rq *rq) 705 { 706 struct task_struct *curr = rq->curr; 707 struct sched_dl_entity *dl_se = &curr->dl; 708 u64 delta_exec; 709 710 if (!dl_task(curr) || !on_dl_rq(dl_se)) 711 return; 712 713 /* 714 * Consumed budget is computed considering the time as 715 * observed by schedulable tasks (excluding time spent 716 * in hardirq context, etc.). Deadlines are instead 717 * computed using hard walltime. This seems to be the more 718 * natural solution, but the full ramifications of this 719 * approach need further study. 720 */ 721 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 722 if (unlikely((s64)delta_exec <= 0)) { 723 if (unlikely(dl_se->dl_yielded)) 724 goto throttle; 725 return; 726 } 727 728 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 729 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL); 730 731 schedstat_set(curr->se.statistics.exec_max, 732 max(curr->se.statistics.exec_max, delta_exec)); 733 734 curr->se.sum_exec_runtime += delta_exec; 735 account_group_exec_runtime(curr, delta_exec); 736 737 curr->se.exec_start = rq_clock_task(rq); 738 cpuacct_charge(curr, delta_exec); 739 740 sched_rt_avg_update(rq, delta_exec); 741 742 dl_se->runtime -= delta_exec; 743 744 throttle: 745 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 746 dl_se->dl_throttled = 1; 747 __dequeue_task_dl(rq, curr, 0); 748 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr))) 749 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 750 751 if (!is_leftmost(curr, &rq->dl)) 752 resched_curr(rq); 753 } 754 755 /* 756 * Because -- for now -- we share the rt bandwidth, we need to 757 * account our runtime there too, otherwise actual rt tasks 758 * would be able to exceed the shared quota. 759 * 760 * Account to the root rt group for now. 761 * 762 * The solution we're working towards is having the RT groups scheduled 763 * using deadline servers -- however there's a few nasties to figure 764 * out before that can happen. 765 */ 766 if (rt_bandwidth_enabled()) { 767 struct rt_rq *rt_rq = &rq->rt; 768 769 raw_spin_lock(&rt_rq->rt_runtime_lock); 770 /* 771 * We'll let actual RT tasks worry about the overflow here, we 772 * have our own CBS to keep us inline; only account when RT 773 * bandwidth is relevant. 774 */ 775 if (sched_rt_bandwidth_account(rt_rq)) 776 rt_rq->rt_time += delta_exec; 777 raw_spin_unlock(&rt_rq->rt_runtime_lock); 778 } 779 } 780 781 #ifdef CONFIG_SMP 782 783 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 784 { 785 struct rq *rq = rq_of_dl_rq(dl_rq); 786 787 if (dl_rq->earliest_dl.curr == 0 || 788 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 789 dl_rq->earliest_dl.curr = deadline; 790 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 791 } 792 } 793 794 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 795 { 796 struct rq *rq = rq_of_dl_rq(dl_rq); 797 798 /* 799 * Since we may have removed our earliest (and/or next earliest) 800 * task we must recompute them. 801 */ 802 if (!dl_rq->dl_nr_running) { 803 dl_rq->earliest_dl.curr = 0; 804 dl_rq->earliest_dl.next = 0; 805 cpudl_clear(&rq->rd->cpudl, rq->cpu); 806 } else { 807 struct rb_node *leftmost = dl_rq->rb_leftmost; 808 struct sched_dl_entity *entry; 809 810 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 811 dl_rq->earliest_dl.curr = entry->deadline; 812 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 813 } 814 } 815 816 #else 817 818 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 819 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 820 821 #endif /* CONFIG_SMP */ 822 823 static inline 824 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 825 { 826 int prio = dl_task_of(dl_se)->prio; 827 u64 deadline = dl_se->deadline; 828 829 WARN_ON(!dl_prio(prio)); 830 dl_rq->dl_nr_running++; 831 add_nr_running(rq_of_dl_rq(dl_rq), 1); 832 833 inc_dl_deadline(dl_rq, deadline); 834 inc_dl_migration(dl_se, dl_rq); 835 } 836 837 static inline 838 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 839 { 840 int prio = dl_task_of(dl_se)->prio; 841 842 WARN_ON(!dl_prio(prio)); 843 WARN_ON(!dl_rq->dl_nr_running); 844 dl_rq->dl_nr_running--; 845 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 846 847 dec_dl_deadline(dl_rq, dl_se->deadline); 848 dec_dl_migration(dl_se, dl_rq); 849 } 850 851 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 852 { 853 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 854 struct rb_node **link = &dl_rq->rb_root.rb_node; 855 struct rb_node *parent = NULL; 856 struct sched_dl_entity *entry; 857 int leftmost = 1; 858 859 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 860 861 while (*link) { 862 parent = *link; 863 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 864 if (dl_time_before(dl_se->deadline, entry->deadline)) 865 link = &parent->rb_left; 866 else { 867 link = &parent->rb_right; 868 leftmost = 0; 869 } 870 } 871 872 if (leftmost) 873 dl_rq->rb_leftmost = &dl_se->rb_node; 874 875 rb_link_node(&dl_se->rb_node, parent, link); 876 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); 877 878 inc_dl_tasks(dl_se, dl_rq); 879 } 880 881 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 882 { 883 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 884 885 if (RB_EMPTY_NODE(&dl_se->rb_node)) 886 return; 887 888 if (dl_rq->rb_leftmost == &dl_se->rb_node) { 889 struct rb_node *next_node; 890 891 next_node = rb_next(&dl_se->rb_node); 892 dl_rq->rb_leftmost = next_node; 893 } 894 895 rb_erase(&dl_se->rb_node, &dl_rq->rb_root); 896 RB_CLEAR_NODE(&dl_se->rb_node); 897 898 dec_dl_tasks(dl_se, dl_rq); 899 } 900 901 static void 902 enqueue_dl_entity(struct sched_dl_entity *dl_se, 903 struct sched_dl_entity *pi_se, int flags) 904 { 905 BUG_ON(on_dl_rq(dl_se)); 906 907 /* 908 * If this is a wakeup or a new instance, the scheduling 909 * parameters of the task might need updating. Otherwise, 910 * we want a replenishment of its runtime. 911 */ 912 if (flags & ENQUEUE_WAKEUP) 913 update_dl_entity(dl_se, pi_se); 914 else if (flags & ENQUEUE_REPLENISH) 915 replenish_dl_entity(dl_se, pi_se); 916 917 __enqueue_dl_entity(dl_se); 918 } 919 920 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 921 { 922 __dequeue_dl_entity(dl_se); 923 } 924 925 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 926 { 927 struct task_struct *pi_task = rt_mutex_get_top_task(p); 928 struct sched_dl_entity *pi_se = &p->dl; 929 930 /* 931 * Use the scheduling parameters of the top pi-waiter 932 * task if we have one and its (absolute) deadline is 933 * smaller than our one... OTW we keep our runtime and 934 * deadline. 935 */ 936 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) { 937 pi_se = &pi_task->dl; 938 } else if (!dl_prio(p->normal_prio)) { 939 /* 940 * Special case in which we have a !SCHED_DEADLINE task 941 * that is going to be deboosted, but exceedes its 942 * runtime while doing so. No point in replenishing 943 * it, as it's going to return back to its original 944 * scheduling class after this. 945 */ 946 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); 947 return; 948 } 949 950 /* 951 * If p is throttled, we do nothing. In fact, if it exhausted 952 * its budget it needs a replenishment and, since it now is on 953 * its rq, the bandwidth timer callback (which clearly has not 954 * run yet) will take care of this. 955 */ 956 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) 957 return; 958 959 enqueue_dl_entity(&p->dl, pi_se, flags); 960 961 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 962 enqueue_pushable_dl_task(rq, p); 963 } 964 965 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 966 { 967 dequeue_dl_entity(&p->dl); 968 dequeue_pushable_dl_task(rq, p); 969 } 970 971 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 972 { 973 update_curr_dl(rq); 974 __dequeue_task_dl(rq, p, flags); 975 } 976 977 /* 978 * Yield task semantic for -deadline tasks is: 979 * 980 * get off from the CPU until our next instance, with 981 * a new runtime. This is of little use now, since we 982 * don't have a bandwidth reclaiming mechanism. Anyway, 983 * bandwidth reclaiming is planned for the future, and 984 * yield_task_dl will indicate that some spare budget 985 * is available for other task instances to use it. 986 */ 987 static void yield_task_dl(struct rq *rq) 988 { 989 /* 990 * We make the task go to sleep until its current deadline by 991 * forcing its runtime to zero. This way, update_curr_dl() stops 992 * it and the bandwidth timer will wake it up and will give it 993 * new scheduling parameters (thanks to dl_yielded=1). 994 */ 995 rq->curr->dl.dl_yielded = 1; 996 997 update_rq_clock(rq); 998 update_curr_dl(rq); 999 /* 1000 * Tell update_rq_clock() that we've just updated, 1001 * so we don't do microscopic update in schedule() 1002 * and double the fastpath cost. 1003 */ 1004 rq_clock_skip_update(rq, true); 1005 } 1006 1007 #ifdef CONFIG_SMP 1008 1009 static int find_later_rq(struct task_struct *task); 1010 1011 static int 1012 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 1013 { 1014 struct task_struct *curr; 1015 struct rq *rq; 1016 1017 if (sd_flag != SD_BALANCE_WAKE) 1018 goto out; 1019 1020 rq = cpu_rq(cpu); 1021 1022 rcu_read_lock(); 1023 curr = READ_ONCE(rq->curr); /* unlocked access */ 1024 1025 /* 1026 * If we are dealing with a -deadline task, we must 1027 * decide where to wake it up. 1028 * If it has a later deadline and the current task 1029 * on this rq can't move (provided the waking task 1030 * can!) we prefer to send it somewhere else. On the 1031 * other hand, if it has a shorter deadline, we 1032 * try to make it stay here, it might be important. 1033 */ 1034 if (unlikely(dl_task(curr)) && 1035 (curr->nr_cpus_allowed < 2 || 1036 !dl_entity_preempt(&p->dl, &curr->dl)) && 1037 (p->nr_cpus_allowed > 1)) { 1038 int target = find_later_rq(p); 1039 1040 if (target != -1 && 1041 (dl_time_before(p->dl.deadline, 1042 cpu_rq(target)->dl.earliest_dl.curr) || 1043 (cpu_rq(target)->dl.dl_nr_running == 0))) 1044 cpu = target; 1045 } 1046 rcu_read_unlock(); 1047 1048 out: 1049 return cpu; 1050 } 1051 1052 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1053 { 1054 /* 1055 * Current can't be migrated, useless to reschedule, 1056 * let's hope p can move out. 1057 */ 1058 if (rq->curr->nr_cpus_allowed == 1 || 1059 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) 1060 return; 1061 1062 /* 1063 * p is migratable, so let's not schedule it and 1064 * see if it is pushed or pulled somewhere else. 1065 */ 1066 if (p->nr_cpus_allowed != 1 && 1067 cpudl_find(&rq->rd->cpudl, p, NULL) != -1) 1068 return; 1069 1070 resched_curr(rq); 1071 } 1072 1073 #endif /* CONFIG_SMP */ 1074 1075 /* 1076 * Only called when both the current and waking task are -deadline 1077 * tasks. 1078 */ 1079 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1080 int flags) 1081 { 1082 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1083 resched_curr(rq); 1084 return; 1085 } 1086 1087 #ifdef CONFIG_SMP 1088 /* 1089 * In the unlikely case current and p have the same deadline 1090 * let us try to decide what's the best thing to do... 1091 */ 1092 if ((p->dl.deadline == rq->curr->dl.deadline) && 1093 !test_tsk_need_resched(rq->curr)) 1094 check_preempt_equal_dl(rq, p); 1095 #endif /* CONFIG_SMP */ 1096 } 1097 1098 #ifdef CONFIG_SCHED_HRTICK 1099 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1100 { 1101 hrtick_start(rq, p->dl.runtime); 1102 } 1103 #else /* !CONFIG_SCHED_HRTICK */ 1104 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1105 { 1106 } 1107 #endif 1108 1109 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1110 struct dl_rq *dl_rq) 1111 { 1112 struct rb_node *left = dl_rq->rb_leftmost; 1113 1114 if (!left) 1115 return NULL; 1116 1117 return rb_entry(left, struct sched_dl_entity, rb_node); 1118 } 1119 1120 struct task_struct * 1121 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1122 { 1123 struct sched_dl_entity *dl_se; 1124 struct task_struct *p; 1125 struct dl_rq *dl_rq; 1126 1127 dl_rq = &rq->dl; 1128 1129 if (need_pull_dl_task(rq, prev)) { 1130 /* 1131 * This is OK, because current is on_cpu, which avoids it being 1132 * picked for load-balance and preemption/IRQs are still 1133 * disabled avoiding further scheduler activity on it and we're 1134 * being very careful to re-start the picking loop. 1135 */ 1136 rq_unpin_lock(rq, rf); 1137 pull_dl_task(rq); 1138 rq_repin_lock(rq, rf); 1139 /* 1140 * pull_dl_task() can drop (and re-acquire) rq->lock; this 1141 * means a stop task can slip in, in which case we need to 1142 * re-start task selection. 1143 */ 1144 if (rq->stop && task_on_rq_queued(rq->stop)) 1145 return RETRY_TASK; 1146 } 1147 1148 /* 1149 * When prev is DL, we may throttle it in put_prev_task(). 1150 * So, we update time before we check for dl_nr_running. 1151 */ 1152 if (prev->sched_class == &dl_sched_class) 1153 update_curr_dl(rq); 1154 1155 if (unlikely(!dl_rq->dl_nr_running)) 1156 return NULL; 1157 1158 put_prev_task(rq, prev); 1159 1160 dl_se = pick_next_dl_entity(rq, dl_rq); 1161 BUG_ON(!dl_se); 1162 1163 p = dl_task_of(dl_se); 1164 p->se.exec_start = rq_clock_task(rq); 1165 1166 /* Running task will never be pushed. */ 1167 dequeue_pushable_dl_task(rq, p); 1168 1169 if (hrtick_enabled(rq)) 1170 start_hrtick_dl(rq, p); 1171 1172 queue_push_tasks(rq); 1173 1174 return p; 1175 } 1176 1177 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1178 { 1179 update_curr_dl(rq); 1180 1181 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1182 enqueue_pushable_dl_task(rq, p); 1183 } 1184 1185 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1186 { 1187 update_curr_dl(rq); 1188 1189 /* 1190 * Even when we have runtime, update_curr_dl() might have resulted in us 1191 * not being the leftmost task anymore. In that case NEED_RESCHED will 1192 * be set and schedule() will start a new hrtick for the next task. 1193 */ 1194 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 1195 is_leftmost(p, &rq->dl)) 1196 start_hrtick_dl(rq, p); 1197 } 1198 1199 static void task_fork_dl(struct task_struct *p) 1200 { 1201 /* 1202 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1203 * sched_fork() 1204 */ 1205 } 1206 1207 static void task_dead_dl(struct task_struct *p) 1208 { 1209 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1210 1211 /* 1212 * Since we are TASK_DEAD we won't slip out of the domain! 1213 */ 1214 raw_spin_lock_irq(&dl_b->lock); 1215 /* XXX we should retain the bw until 0-lag */ 1216 dl_b->total_bw -= p->dl.dl_bw; 1217 raw_spin_unlock_irq(&dl_b->lock); 1218 } 1219 1220 static void set_curr_task_dl(struct rq *rq) 1221 { 1222 struct task_struct *p = rq->curr; 1223 1224 p->se.exec_start = rq_clock_task(rq); 1225 1226 /* You can't push away the running task */ 1227 dequeue_pushable_dl_task(rq, p); 1228 } 1229 1230 #ifdef CONFIG_SMP 1231 1232 /* Only try algorithms three times */ 1233 #define DL_MAX_TRIES 3 1234 1235 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1236 { 1237 if (!task_running(rq, p) && 1238 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1239 return 1; 1240 return 0; 1241 } 1242 1243 /* 1244 * Return the earliest pushable rq's task, which is suitable to be executed 1245 * on the CPU, NULL otherwise: 1246 */ 1247 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 1248 { 1249 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost; 1250 struct task_struct *p = NULL; 1251 1252 if (!has_pushable_dl_tasks(rq)) 1253 return NULL; 1254 1255 next_node: 1256 if (next_node) { 1257 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); 1258 1259 if (pick_dl_task(rq, p, cpu)) 1260 return p; 1261 1262 next_node = rb_next(next_node); 1263 goto next_node; 1264 } 1265 1266 return NULL; 1267 } 1268 1269 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1270 1271 static int find_later_rq(struct task_struct *task) 1272 { 1273 struct sched_domain *sd; 1274 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1275 int this_cpu = smp_processor_id(); 1276 int best_cpu, cpu = task_cpu(task); 1277 1278 /* Make sure the mask is initialized first */ 1279 if (unlikely(!later_mask)) 1280 return -1; 1281 1282 if (task->nr_cpus_allowed == 1) 1283 return -1; 1284 1285 /* 1286 * We have to consider system topology and task affinity 1287 * first, then we can look for a suitable cpu. 1288 */ 1289 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, 1290 task, later_mask); 1291 if (best_cpu == -1) 1292 return -1; 1293 1294 /* 1295 * If we are here, some target has been found, 1296 * the most suitable of which is cached in best_cpu. 1297 * This is, among the runqueues where the current tasks 1298 * have later deadlines than the task's one, the rq 1299 * with the latest possible one. 1300 * 1301 * Now we check how well this matches with task's 1302 * affinity and system topology. 1303 * 1304 * The last cpu where the task run is our first 1305 * guess, since it is most likely cache-hot there. 1306 */ 1307 if (cpumask_test_cpu(cpu, later_mask)) 1308 return cpu; 1309 /* 1310 * Check if this_cpu is to be skipped (i.e., it is 1311 * not in the mask) or not. 1312 */ 1313 if (!cpumask_test_cpu(this_cpu, later_mask)) 1314 this_cpu = -1; 1315 1316 rcu_read_lock(); 1317 for_each_domain(cpu, sd) { 1318 if (sd->flags & SD_WAKE_AFFINE) { 1319 1320 /* 1321 * If possible, preempting this_cpu is 1322 * cheaper than migrating. 1323 */ 1324 if (this_cpu != -1 && 1325 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1326 rcu_read_unlock(); 1327 return this_cpu; 1328 } 1329 1330 /* 1331 * Last chance: if best_cpu is valid and is 1332 * in the mask, that becomes our choice. 1333 */ 1334 if (best_cpu < nr_cpu_ids && 1335 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { 1336 rcu_read_unlock(); 1337 return best_cpu; 1338 } 1339 } 1340 } 1341 rcu_read_unlock(); 1342 1343 /* 1344 * At this point, all our guesses failed, we just return 1345 * 'something', and let the caller sort the things out. 1346 */ 1347 if (this_cpu != -1) 1348 return this_cpu; 1349 1350 cpu = cpumask_any(later_mask); 1351 if (cpu < nr_cpu_ids) 1352 return cpu; 1353 1354 return -1; 1355 } 1356 1357 /* Locks the rq it finds */ 1358 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1359 { 1360 struct rq *later_rq = NULL; 1361 int tries; 1362 int cpu; 1363 1364 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1365 cpu = find_later_rq(task); 1366 1367 if ((cpu == -1) || (cpu == rq->cpu)) 1368 break; 1369 1370 later_rq = cpu_rq(cpu); 1371 1372 if (later_rq->dl.dl_nr_running && 1373 !dl_time_before(task->dl.deadline, 1374 later_rq->dl.earliest_dl.curr)) { 1375 /* 1376 * Target rq has tasks of equal or earlier deadline, 1377 * retrying does not release any lock and is unlikely 1378 * to yield a different result. 1379 */ 1380 later_rq = NULL; 1381 break; 1382 } 1383 1384 /* Retry if something changed. */ 1385 if (double_lock_balance(rq, later_rq)) { 1386 if (unlikely(task_rq(task) != rq || 1387 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) || 1388 task_running(rq, task) || 1389 !dl_task(task) || 1390 !task_on_rq_queued(task))) { 1391 double_unlock_balance(rq, later_rq); 1392 later_rq = NULL; 1393 break; 1394 } 1395 } 1396 1397 /* 1398 * If the rq we found has no -deadline task, or 1399 * its earliest one has a later deadline than our 1400 * task, the rq is a good one. 1401 */ 1402 if (!later_rq->dl.dl_nr_running || 1403 dl_time_before(task->dl.deadline, 1404 later_rq->dl.earliest_dl.curr)) 1405 break; 1406 1407 /* Otherwise we try again. */ 1408 double_unlock_balance(rq, later_rq); 1409 later_rq = NULL; 1410 } 1411 1412 return later_rq; 1413 } 1414 1415 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 1416 { 1417 struct task_struct *p; 1418 1419 if (!has_pushable_dl_tasks(rq)) 1420 return NULL; 1421 1422 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, 1423 struct task_struct, pushable_dl_tasks); 1424 1425 BUG_ON(rq->cpu != task_cpu(p)); 1426 BUG_ON(task_current(rq, p)); 1427 BUG_ON(p->nr_cpus_allowed <= 1); 1428 1429 BUG_ON(!task_on_rq_queued(p)); 1430 BUG_ON(!dl_task(p)); 1431 1432 return p; 1433 } 1434 1435 /* 1436 * See if the non running -deadline tasks on this rq 1437 * can be sent to some other CPU where they can preempt 1438 * and start executing. 1439 */ 1440 static int push_dl_task(struct rq *rq) 1441 { 1442 struct task_struct *next_task; 1443 struct rq *later_rq; 1444 int ret = 0; 1445 1446 if (!rq->dl.overloaded) 1447 return 0; 1448 1449 next_task = pick_next_pushable_dl_task(rq); 1450 if (!next_task) 1451 return 0; 1452 1453 retry: 1454 if (unlikely(next_task == rq->curr)) { 1455 WARN_ON(1); 1456 return 0; 1457 } 1458 1459 /* 1460 * If next_task preempts rq->curr, and rq->curr 1461 * can move away, it makes sense to just reschedule 1462 * without going further in pushing next_task. 1463 */ 1464 if (dl_task(rq->curr) && 1465 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 1466 rq->curr->nr_cpus_allowed > 1) { 1467 resched_curr(rq); 1468 return 0; 1469 } 1470 1471 /* We might release rq lock */ 1472 get_task_struct(next_task); 1473 1474 /* Will lock the rq it'll find */ 1475 later_rq = find_lock_later_rq(next_task, rq); 1476 if (!later_rq) { 1477 struct task_struct *task; 1478 1479 /* 1480 * We must check all this again, since 1481 * find_lock_later_rq releases rq->lock and it is 1482 * then possible that next_task has migrated. 1483 */ 1484 task = pick_next_pushable_dl_task(rq); 1485 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1486 /* 1487 * The task is still there. We don't try 1488 * again, some other cpu will pull it when ready. 1489 */ 1490 goto out; 1491 } 1492 1493 if (!task) 1494 /* No more tasks */ 1495 goto out; 1496 1497 put_task_struct(next_task); 1498 next_task = task; 1499 goto retry; 1500 } 1501 1502 deactivate_task(rq, next_task, 0); 1503 set_task_cpu(next_task, later_rq->cpu); 1504 activate_task(later_rq, next_task, 0); 1505 ret = 1; 1506 1507 resched_curr(later_rq); 1508 1509 double_unlock_balance(rq, later_rq); 1510 1511 out: 1512 put_task_struct(next_task); 1513 1514 return ret; 1515 } 1516 1517 static void push_dl_tasks(struct rq *rq) 1518 { 1519 /* push_dl_task() will return true if it moved a -deadline task */ 1520 while (push_dl_task(rq)) 1521 ; 1522 } 1523 1524 static void pull_dl_task(struct rq *this_rq) 1525 { 1526 int this_cpu = this_rq->cpu, cpu; 1527 struct task_struct *p; 1528 bool resched = false; 1529 struct rq *src_rq; 1530 u64 dmin = LONG_MAX; 1531 1532 if (likely(!dl_overloaded(this_rq))) 1533 return; 1534 1535 /* 1536 * Match the barrier from dl_set_overloaded; this guarantees that if we 1537 * see overloaded we must also see the dlo_mask bit. 1538 */ 1539 smp_rmb(); 1540 1541 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 1542 if (this_cpu == cpu) 1543 continue; 1544 1545 src_rq = cpu_rq(cpu); 1546 1547 /* 1548 * It looks racy, abd it is! However, as in sched_rt.c, 1549 * we are fine with this. 1550 */ 1551 if (this_rq->dl.dl_nr_running && 1552 dl_time_before(this_rq->dl.earliest_dl.curr, 1553 src_rq->dl.earliest_dl.next)) 1554 continue; 1555 1556 /* Might drop this_rq->lock */ 1557 double_lock_balance(this_rq, src_rq); 1558 1559 /* 1560 * If there are no more pullable tasks on the 1561 * rq, we're done with it. 1562 */ 1563 if (src_rq->dl.dl_nr_running <= 1) 1564 goto skip; 1565 1566 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 1567 1568 /* 1569 * We found a task to be pulled if: 1570 * - it preempts our current (if there's one), 1571 * - it will preempt the last one we pulled (if any). 1572 */ 1573 if (p && dl_time_before(p->dl.deadline, dmin) && 1574 (!this_rq->dl.dl_nr_running || 1575 dl_time_before(p->dl.deadline, 1576 this_rq->dl.earliest_dl.curr))) { 1577 WARN_ON(p == src_rq->curr); 1578 WARN_ON(!task_on_rq_queued(p)); 1579 1580 /* 1581 * Then we pull iff p has actually an earlier 1582 * deadline than the current task of its runqueue. 1583 */ 1584 if (dl_time_before(p->dl.deadline, 1585 src_rq->curr->dl.deadline)) 1586 goto skip; 1587 1588 resched = true; 1589 1590 deactivate_task(src_rq, p, 0); 1591 set_task_cpu(p, this_cpu); 1592 activate_task(this_rq, p, 0); 1593 dmin = p->dl.deadline; 1594 1595 /* Is there any other task even earlier? */ 1596 } 1597 skip: 1598 double_unlock_balance(this_rq, src_rq); 1599 } 1600 1601 if (resched) 1602 resched_curr(this_rq); 1603 } 1604 1605 /* 1606 * Since the task is not running and a reschedule is not going to happen 1607 * anytime soon on its runqueue, we try pushing it away now. 1608 */ 1609 static void task_woken_dl(struct rq *rq, struct task_struct *p) 1610 { 1611 if (!task_running(rq, p) && 1612 !test_tsk_need_resched(rq->curr) && 1613 p->nr_cpus_allowed > 1 && 1614 dl_task(rq->curr) && 1615 (rq->curr->nr_cpus_allowed < 2 || 1616 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 1617 push_dl_tasks(rq); 1618 } 1619 } 1620 1621 static void set_cpus_allowed_dl(struct task_struct *p, 1622 const struct cpumask *new_mask) 1623 { 1624 struct root_domain *src_rd; 1625 struct rq *rq; 1626 1627 BUG_ON(!dl_task(p)); 1628 1629 rq = task_rq(p); 1630 src_rd = rq->rd; 1631 /* 1632 * Migrating a SCHED_DEADLINE task between exclusive 1633 * cpusets (different root_domains) entails a bandwidth 1634 * update. We already made space for us in the destination 1635 * domain (see cpuset_can_attach()). 1636 */ 1637 if (!cpumask_intersects(src_rd->span, new_mask)) { 1638 struct dl_bw *src_dl_b; 1639 1640 src_dl_b = dl_bw_of(cpu_of(rq)); 1641 /* 1642 * We now free resources of the root_domain we are migrating 1643 * off. In the worst case, sched_setattr() may temporary fail 1644 * until we complete the update. 1645 */ 1646 raw_spin_lock(&src_dl_b->lock); 1647 __dl_clear(src_dl_b, p->dl.dl_bw); 1648 raw_spin_unlock(&src_dl_b->lock); 1649 } 1650 1651 set_cpus_allowed_common(p, new_mask); 1652 } 1653 1654 /* Assumes rq->lock is held */ 1655 static void rq_online_dl(struct rq *rq) 1656 { 1657 if (rq->dl.overloaded) 1658 dl_set_overload(rq); 1659 1660 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 1661 if (rq->dl.dl_nr_running > 0) 1662 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 1663 } 1664 1665 /* Assumes rq->lock is held */ 1666 static void rq_offline_dl(struct rq *rq) 1667 { 1668 if (rq->dl.overloaded) 1669 dl_clear_overload(rq); 1670 1671 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1672 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 1673 } 1674 1675 void __init init_sched_dl_class(void) 1676 { 1677 unsigned int i; 1678 1679 for_each_possible_cpu(i) 1680 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 1681 GFP_KERNEL, cpu_to_node(i)); 1682 } 1683 1684 #endif /* CONFIG_SMP */ 1685 1686 static void switched_from_dl(struct rq *rq, struct task_struct *p) 1687 { 1688 /* 1689 * Start the deadline timer; if we switch back to dl before this we'll 1690 * continue consuming our current CBS slice. If we stay outside of 1691 * SCHED_DEADLINE until the deadline passes, the timer will reset the 1692 * task. 1693 */ 1694 if (!start_dl_timer(p)) 1695 __dl_clear_params(p); 1696 1697 /* 1698 * Since this might be the only -deadline task on the rq, 1699 * this is the right place to try to pull some other one 1700 * from an overloaded cpu, if any. 1701 */ 1702 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 1703 return; 1704 1705 queue_pull_task(rq); 1706 } 1707 1708 /* 1709 * When switching to -deadline, we may overload the rq, then 1710 * we try to push someone off, if possible. 1711 */ 1712 static void switched_to_dl(struct rq *rq, struct task_struct *p) 1713 { 1714 1715 /* If p is not queued we will update its parameters at next wakeup. */ 1716 if (!task_on_rq_queued(p)) 1717 return; 1718 1719 /* 1720 * If p is boosted we already updated its params in 1721 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH), 1722 * p's deadline being now already after rq_clock(rq). 1723 */ 1724 if (dl_time_before(p->dl.deadline, rq_clock(rq))) 1725 setup_new_dl_entity(&p->dl); 1726 1727 if (rq->curr != p) { 1728 #ifdef CONFIG_SMP 1729 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 1730 queue_push_tasks(rq); 1731 #endif 1732 if (dl_task(rq->curr)) 1733 check_preempt_curr_dl(rq, p, 0); 1734 else 1735 resched_curr(rq); 1736 } 1737 } 1738 1739 /* 1740 * If the scheduling parameters of a -deadline task changed, 1741 * a push or pull operation might be needed. 1742 */ 1743 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 1744 int oldprio) 1745 { 1746 if (task_on_rq_queued(p) || rq->curr == p) { 1747 #ifdef CONFIG_SMP 1748 /* 1749 * This might be too much, but unfortunately 1750 * we don't have the old deadline value, and 1751 * we can't argue if the task is increasing 1752 * or lowering its prio, so... 1753 */ 1754 if (!rq->dl.overloaded) 1755 queue_pull_task(rq); 1756 1757 /* 1758 * If we now have a earlier deadline task than p, 1759 * then reschedule, provided p is still on this 1760 * runqueue. 1761 */ 1762 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 1763 resched_curr(rq); 1764 #else 1765 /* 1766 * Again, we don't know if p has a earlier 1767 * or later deadline, so let's blindly set a 1768 * (maybe not needed) rescheduling point. 1769 */ 1770 resched_curr(rq); 1771 #endif /* CONFIG_SMP */ 1772 } 1773 } 1774 1775 const struct sched_class dl_sched_class = { 1776 .next = &rt_sched_class, 1777 .enqueue_task = enqueue_task_dl, 1778 .dequeue_task = dequeue_task_dl, 1779 .yield_task = yield_task_dl, 1780 1781 .check_preempt_curr = check_preempt_curr_dl, 1782 1783 .pick_next_task = pick_next_task_dl, 1784 .put_prev_task = put_prev_task_dl, 1785 1786 #ifdef CONFIG_SMP 1787 .select_task_rq = select_task_rq_dl, 1788 .set_cpus_allowed = set_cpus_allowed_dl, 1789 .rq_online = rq_online_dl, 1790 .rq_offline = rq_offline_dl, 1791 .task_woken = task_woken_dl, 1792 #endif 1793 1794 .set_curr_task = set_curr_task_dl, 1795 .task_tick = task_tick_dl, 1796 .task_fork = task_fork_dl, 1797 .task_dead = task_dead_dl, 1798 1799 .prio_changed = prio_changed_dl, 1800 .switched_from = switched_from_dl, 1801 .switched_to = switched_to_dl, 1802 1803 .update_curr = update_curr_dl, 1804 }; 1805 1806 #ifdef CONFIG_SCHED_DEBUG 1807 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 1808 1809 void print_dl_stats(struct seq_file *m, int cpu) 1810 { 1811 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 1812 } 1813 #endif /* CONFIG_SCHED_DEBUG */ 1814