xref: /openbmc/linux/kernel/sched/deadline.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
20 {
21 	return container_of(dl_se, struct task_struct, dl);
22 }
23 
24 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
25 {
26 	return container_of(dl_rq, struct rq, dl);
27 }
28 
29 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
30 {
31 	struct task_struct *p = dl_task_of(dl_se);
32 	struct rq *rq = task_rq(p);
33 
34 	return &rq->dl;
35 }
36 
37 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
38 {
39 	return !RB_EMPTY_NODE(&dl_se->rb_node);
40 }
41 
42 #ifdef CONFIG_RT_MUTEXES
43 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
44 {
45 	return dl_se->pi_se;
46 }
47 
48 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
49 {
50 	return pi_of(dl_se) != dl_se;
51 }
52 #else
53 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
54 {
55 	return dl_se;
56 }
57 
58 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
59 {
60 	return false;
61 }
62 #endif
63 
64 #ifdef CONFIG_SMP
65 static inline struct dl_bw *dl_bw_of(int i)
66 {
67 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
68 			 "sched RCU must be held");
69 	return &cpu_rq(i)->rd->dl_bw;
70 }
71 
72 static inline int dl_bw_cpus(int i)
73 {
74 	struct root_domain *rd = cpu_rq(i)->rd;
75 	int cpus;
76 
77 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
78 			 "sched RCU must be held");
79 
80 	if (cpumask_subset(rd->span, cpu_active_mask))
81 		return cpumask_weight(rd->span);
82 
83 	cpus = 0;
84 
85 	for_each_cpu_and(i, rd->span, cpu_active_mask)
86 		cpus++;
87 
88 	return cpus;
89 }
90 
91 static inline unsigned long __dl_bw_capacity(int i)
92 {
93 	struct root_domain *rd = cpu_rq(i)->rd;
94 	unsigned long cap = 0;
95 
96 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
97 			 "sched RCU must be held");
98 
99 	for_each_cpu_and(i, rd->span, cpu_active_mask)
100 		cap += capacity_orig_of(i);
101 
102 	return cap;
103 }
104 
105 /*
106  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
107  * of the CPU the task is running on rather rd's \Sum CPU capacity.
108  */
109 static inline unsigned long dl_bw_capacity(int i)
110 {
111 	if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
112 	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
113 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
114 	} else {
115 		return __dl_bw_capacity(i);
116 	}
117 }
118 
119 static inline bool dl_bw_visited(int cpu, u64 gen)
120 {
121 	struct root_domain *rd = cpu_rq(cpu)->rd;
122 
123 	if (rd->visit_gen == gen)
124 		return true;
125 
126 	rd->visit_gen = gen;
127 	return false;
128 }
129 
130 static inline
131 void __dl_update(struct dl_bw *dl_b, s64 bw)
132 {
133 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
134 	int i;
135 
136 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
137 			 "sched RCU must be held");
138 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
139 		struct rq *rq = cpu_rq(i);
140 
141 		rq->dl.extra_bw += bw;
142 	}
143 }
144 #else
145 static inline struct dl_bw *dl_bw_of(int i)
146 {
147 	return &cpu_rq(i)->dl.dl_bw;
148 }
149 
150 static inline int dl_bw_cpus(int i)
151 {
152 	return 1;
153 }
154 
155 static inline unsigned long dl_bw_capacity(int i)
156 {
157 	return SCHED_CAPACITY_SCALE;
158 }
159 
160 static inline bool dl_bw_visited(int cpu, u64 gen)
161 {
162 	return false;
163 }
164 
165 static inline
166 void __dl_update(struct dl_bw *dl_b, s64 bw)
167 {
168 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
169 
170 	dl->extra_bw += bw;
171 }
172 #endif
173 
174 static inline
175 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
176 {
177 	dl_b->total_bw -= tsk_bw;
178 	__dl_update(dl_b, (s32)tsk_bw / cpus);
179 }
180 
181 static inline
182 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
183 {
184 	dl_b->total_bw += tsk_bw;
185 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
186 }
187 
188 static inline bool
189 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
190 {
191 	return dl_b->bw != -1 &&
192 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
193 }
194 
195 static inline
196 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
197 {
198 	u64 old = dl_rq->running_bw;
199 
200 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
201 	dl_rq->running_bw += dl_bw;
202 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
203 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
204 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
205 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
206 }
207 
208 static inline
209 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
210 {
211 	u64 old = dl_rq->running_bw;
212 
213 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
214 	dl_rq->running_bw -= dl_bw;
215 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
216 	if (dl_rq->running_bw > old)
217 		dl_rq->running_bw = 0;
218 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
219 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
220 }
221 
222 static inline
223 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
224 {
225 	u64 old = dl_rq->this_bw;
226 
227 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
228 	dl_rq->this_bw += dl_bw;
229 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
230 }
231 
232 static inline
233 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
234 {
235 	u64 old = dl_rq->this_bw;
236 
237 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
238 	dl_rq->this_bw -= dl_bw;
239 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
240 	if (dl_rq->this_bw > old)
241 		dl_rq->this_bw = 0;
242 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
243 }
244 
245 static inline
246 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
247 {
248 	if (!dl_entity_is_special(dl_se))
249 		__add_rq_bw(dl_se->dl_bw, dl_rq);
250 }
251 
252 static inline
253 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
254 {
255 	if (!dl_entity_is_special(dl_se))
256 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
257 }
258 
259 static inline
260 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
261 {
262 	if (!dl_entity_is_special(dl_se))
263 		__add_running_bw(dl_se->dl_bw, dl_rq);
264 }
265 
266 static inline
267 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
268 {
269 	if (!dl_entity_is_special(dl_se))
270 		__sub_running_bw(dl_se->dl_bw, dl_rq);
271 }
272 
273 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
274 {
275 	struct rq *rq;
276 
277 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
278 
279 	if (task_on_rq_queued(p))
280 		return;
281 
282 	rq = task_rq(p);
283 	if (p->dl.dl_non_contending) {
284 		sub_running_bw(&p->dl, &rq->dl);
285 		p->dl.dl_non_contending = 0;
286 		/*
287 		 * If the timer handler is currently running and the
288 		 * timer cannot be canceled, inactive_task_timer()
289 		 * will see that dl_not_contending is not set, and
290 		 * will not touch the rq's active utilization,
291 		 * so we are still safe.
292 		 */
293 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
294 			put_task_struct(p);
295 	}
296 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
297 	__add_rq_bw(new_bw, &rq->dl);
298 }
299 
300 /*
301  * The utilization of a task cannot be immediately removed from
302  * the rq active utilization (running_bw) when the task blocks.
303  * Instead, we have to wait for the so called "0-lag time".
304  *
305  * If a task blocks before the "0-lag time", a timer (the inactive
306  * timer) is armed, and running_bw is decreased when the timer
307  * fires.
308  *
309  * If the task wakes up again before the inactive timer fires,
310  * the timer is canceled, whereas if the task wakes up after the
311  * inactive timer fired (and running_bw has been decreased) the
312  * task's utilization has to be added to running_bw again.
313  * A flag in the deadline scheduling entity (dl_non_contending)
314  * is used to avoid race conditions between the inactive timer handler
315  * and task wakeups.
316  *
317  * The following diagram shows how running_bw is updated. A task is
318  * "ACTIVE" when its utilization contributes to running_bw; an
319  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
320  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
321  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
322  * time already passed, which does not contribute to running_bw anymore.
323  *                              +------------------+
324  *             wakeup           |    ACTIVE        |
325  *          +------------------>+   contending     |
326  *          | add_running_bw    |                  |
327  *          |                   +----+------+------+
328  *          |                        |      ^
329  *          |                dequeue |      |
330  * +--------+-------+                |      |
331  * |                |   t >= 0-lag   |      | wakeup
332  * |    INACTIVE    |<---------------+      |
333  * |                | sub_running_bw |      |
334  * +--------+-------+                |      |
335  *          ^                        |      |
336  *          |              t < 0-lag |      |
337  *          |                        |      |
338  *          |                        V      |
339  *          |                   +----+------+------+
340  *          | sub_running_bw    |    ACTIVE        |
341  *          +-------------------+                  |
342  *            inactive timer    |  non contending  |
343  *            fired             +------------------+
344  *
345  * The task_non_contending() function is invoked when a task
346  * blocks, and checks if the 0-lag time already passed or
347  * not (in the first case, it directly updates running_bw;
348  * in the second case, it arms the inactive timer).
349  *
350  * The task_contending() function is invoked when a task wakes
351  * up, and checks if the task is still in the "ACTIVE non contending"
352  * state or not (in the second case, it updates running_bw).
353  */
354 static void task_non_contending(struct task_struct *p)
355 {
356 	struct sched_dl_entity *dl_se = &p->dl;
357 	struct hrtimer *timer = &dl_se->inactive_timer;
358 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
359 	struct rq *rq = rq_of_dl_rq(dl_rq);
360 	s64 zerolag_time;
361 
362 	/*
363 	 * If this is a non-deadline task that has been boosted,
364 	 * do nothing
365 	 */
366 	if (dl_se->dl_runtime == 0)
367 		return;
368 
369 	if (dl_entity_is_special(dl_se))
370 		return;
371 
372 	WARN_ON(dl_se->dl_non_contending);
373 
374 	zerolag_time = dl_se->deadline -
375 		 div64_long((dl_se->runtime * dl_se->dl_period),
376 			dl_se->dl_runtime);
377 
378 	/*
379 	 * Using relative times instead of the absolute "0-lag time"
380 	 * allows to simplify the code
381 	 */
382 	zerolag_time -= rq_clock(rq);
383 
384 	/*
385 	 * If the "0-lag time" already passed, decrease the active
386 	 * utilization now, instead of starting a timer
387 	 */
388 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
389 		if (dl_task(p))
390 			sub_running_bw(dl_se, dl_rq);
391 		if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
392 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
393 
394 			if (READ_ONCE(p->__state) == TASK_DEAD)
395 				sub_rq_bw(&p->dl, &rq->dl);
396 			raw_spin_lock(&dl_b->lock);
397 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
398 			__dl_clear_params(p);
399 			raw_spin_unlock(&dl_b->lock);
400 		}
401 
402 		return;
403 	}
404 
405 	dl_se->dl_non_contending = 1;
406 	get_task_struct(p);
407 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
408 }
409 
410 static void task_contending(struct sched_dl_entity *dl_se, int flags)
411 {
412 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
413 
414 	/*
415 	 * If this is a non-deadline task that has been boosted,
416 	 * do nothing
417 	 */
418 	if (dl_se->dl_runtime == 0)
419 		return;
420 
421 	if (flags & ENQUEUE_MIGRATED)
422 		add_rq_bw(dl_se, dl_rq);
423 
424 	if (dl_se->dl_non_contending) {
425 		dl_se->dl_non_contending = 0;
426 		/*
427 		 * If the timer handler is currently running and the
428 		 * timer cannot be canceled, inactive_task_timer()
429 		 * will see that dl_not_contending is not set, and
430 		 * will not touch the rq's active utilization,
431 		 * so we are still safe.
432 		 */
433 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
434 			put_task_struct(dl_task_of(dl_se));
435 	} else {
436 		/*
437 		 * Since "dl_non_contending" is not set, the
438 		 * task's utilization has already been removed from
439 		 * active utilization (either when the task blocked,
440 		 * when the "inactive timer" fired).
441 		 * So, add it back.
442 		 */
443 		add_running_bw(dl_se, dl_rq);
444 	}
445 }
446 
447 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
448 {
449 	struct sched_dl_entity *dl_se = &p->dl;
450 
451 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
452 }
453 
454 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
455 
456 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
457 {
458 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
459 	dl_b->dl_period = period;
460 	dl_b->dl_runtime = runtime;
461 }
462 
463 void init_dl_bw(struct dl_bw *dl_b)
464 {
465 	raw_spin_lock_init(&dl_b->lock);
466 	if (global_rt_runtime() == RUNTIME_INF)
467 		dl_b->bw = -1;
468 	else
469 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
470 	dl_b->total_bw = 0;
471 }
472 
473 void init_dl_rq(struct dl_rq *dl_rq)
474 {
475 	dl_rq->root = RB_ROOT_CACHED;
476 
477 #ifdef CONFIG_SMP
478 	/* zero means no -deadline tasks */
479 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
480 
481 	dl_rq->dl_nr_migratory = 0;
482 	dl_rq->overloaded = 0;
483 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
484 #else
485 	init_dl_bw(&dl_rq->dl_bw);
486 #endif
487 
488 	dl_rq->running_bw = 0;
489 	dl_rq->this_bw = 0;
490 	init_dl_rq_bw_ratio(dl_rq);
491 }
492 
493 #ifdef CONFIG_SMP
494 
495 static inline int dl_overloaded(struct rq *rq)
496 {
497 	return atomic_read(&rq->rd->dlo_count);
498 }
499 
500 static inline void dl_set_overload(struct rq *rq)
501 {
502 	if (!rq->online)
503 		return;
504 
505 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
506 	/*
507 	 * Must be visible before the overload count is
508 	 * set (as in sched_rt.c).
509 	 *
510 	 * Matched by the barrier in pull_dl_task().
511 	 */
512 	smp_wmb();
513 	atomic_inc(&rq->rd->dlo_count);
514 }
515 
516 static inline void dl_clear_overload(struct rq *rq)
517 {
518 	if (!rq->online)
519 		return;
520 
521 	atomic_dec(&rq->rd->dlo_count);
522 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
523 }
524 
525 static void update_dl_migration(struct dl_rq *dl_rq)
526 {
527 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
528 		if (!dl_rq->overloaded) {
529 			dl_set_overload(rq_of_dl_rq(dl_rq));
530 			dl_rq->overloaded = 1;
531 		}
532 	} else if (dl_rq->overloaded) {
533 		dl_clear_overload(rq_of_dl_rq(dl_rq));
534 		dl_rq->overloaded = 0;
535 	}
536 }
537 
538 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
539 {
540 	struct task_struct *p = dl_task_of(dl_se);
541 
542 	if (p->nr_cpus_allowed > 1)
543 		dl_rq->dl_nr_migratory++;
544 
545 	update_dl_migration(dl_rq);
546 }
547 
548 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
549 {
550 	struct task_struct *p = dl_task_of(dl_se);
551 
552 	if (p->nr_cpus_allowed > 1)
553 		dl_rq->dl_nr_migratory--;
554 
555 	update_dl_migration(dl_rq);
556 }
557 
558 #define __node_2_pdl(node) \
559 	rb_entry((node), struct task_struct, pushable_dl_tasks)
560 
561 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
562 {
563 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
564 }
565 
566 /*
567  * The list of pushable -deadline task is not a plist, like in
568  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
569  */
570 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
571 {
572 	struct rb_node *leftmost;
573 
574 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
575 
576 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
577 				 &rq->dl.pushable_dl_tasks_root,
578 				 __pushable_less);
579 	if (leftmost)
580 		rq->dl.earliest_dl.next = p->dl.deadline;
581 }
582 
583 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
584 {
585 	struct dl_rq *dl_rq = &rq->dl;
586 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
587 	struct rb_node *leftmost;
588 
589 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
590 		return;
591 
592 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
593 	if (leftmost)
594 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
595 
596 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
597 }
598 
599 static inline int has_pushable_dl_tasks(struct rq *rq)
600 {
601 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
602 }
603 
604 static int push_dl_task(struct rq *rq);
605 
606 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
607 {
608 	return rq->online && dl_task(prev);
609 }
610 
611 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
612 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
613 
614 static void push_dl_tasks(struct rq *);
615 static void pull_dl_task(struct rq *);
616 
617 static inline void deadline_queue_push_tasks(struct rq *rq)
618 {
619 	if (!has_pushable_dl_tasks(rq))
620 		return;
621 
622 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
623 }
624 
625 static inline void deadline_queue_pull_task(struct rq *rq)
626 {
627 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
628 }
629 
630 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
631 
632 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
633 {
634 	struct rq *later_rq = NULL;
635 	struct dl_bw *dl_b;
636 
637 	later_rq = find_lock_later_rq(p, rq);
638 	if (!later_rq) {
639 		int cpu;
640 
641 		/*
642 		 * If we cannot preempt any rq, fall back to pick any
643 		 * online CPU:
644 		 */
645 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
646 		if (cpu >= nr_cpu_ids) {
647 			/*
648 			 * Failed to find any suitable CPU.
649 			 * The task will never come back!
650 			 */
651 			BUG_ON(dl_bandwidth_enabled());
652 
653 			/*
654 			 * If admission control is disabled we
655 			 * try a little harder to let the task
656 			 * run.
657 			 */
658 			cpu = cpumask_any(cpu_active_mask);
659 		}
660 		later_rq = cpu_rq(cpu);
661 		double_lock_balance(rq, later_rq);
662 	}
663 
664 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
665 		/*
666 		 * Inactive timer is armed (or callback is running, but
667 		 * waiting for us to release rq locks). In any case, when it
668 		 * will fire (or continue), it will see running_bw of this
669 		 * task migrated to later_rq (and correctly handle it).
670 		 */
671 		sub_running_bw(&p->dl, &rq->dl);
672 		sub_rq_bw(&p->dl, &rq->dl);
673 
674 		add_rq_bw(&p->dl, &later_rq->dl);
675 		add_running_bw(&p->dl, &later_rq->dl);
676 	} else {
677 		sub_rq_bw(&p->dl, &rq->dl);
678 		add_rq_bw(&p->dl, &later_rq->dl);
679 	}
680 
681 	/*
682 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
683 	 * since p is still hanging out in the old (now moved to default) root
684 	 * domain.
685 	 */
686 	dl_b = &rq->rd->dl_bw;
687 	raw_spin_lock(&dl_b->lock);
688 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
689 	raw_spin_unlock(&dl_b->lock);
690 
691 	dl_b = &later_rq->rd->dl_bw;
692 	raw_spin_lock(&dl_b->lock);
693 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
694 	raw_spin_unlock(&dl_b->lock);
695 
696 	set_task_cpu(p, later_rq->cpu);
697 	double_unlock_balance(later_rq, rq);
698 
699 	return later_rq;
700 }
701 
702 #else
703 
704 static inline
705 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
706 {
707 }
708 
709 static inline
710 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
711 {
712 }
713 
714 static inline
715 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
716 {
717 }
718 
719 static inline
720 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
721 {
722 }
723 
724 static inline void deadline_queue_push_tasks(struct rq *rq)
725 {
726 }
727 
728 static inline void deadline_queue_pull_task(struct rq *rq)
729 {
730 }
731 #endif /* CONFIG_SMP */
732 
733 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
734 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
735 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
736 
737 /*
738  * We are being explicitly informed that a new instance is starting,
739  * and this means that:
740  *  - the absolute deadline of the entity has to be placed at
741  *    current time + relative deadline;
742  *  - the runtime of the entity has to be set to the maximum value.
743  *
744  * The capability of specifying such event is useful whenever a -deadline
745  * entity wants to (try to!) synchronize its behaviour with the scheduler's
746  * one, and to (try to!) reconcile itself with its own scheduling
747  * parameters.
748  */
749 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
750 {
751 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
752 	struct rq *rq = rq_of_dl_rq(dl_rq);
753 
754 	WARN_ON(is_dl_boosted(dl_se));
755 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
756 
757 	/*
758 	 * We are racing with the deadline timer. So, do nothing because
759 	 * the deadline timer handler will take care of properly recharging
760 	 * the runtime and postponing the deadline
761 	 */
762 	if (dl_se->dl_throttled)
763 		return;
764 
765 	/*
766 	 * We use the regular wall clock time to set deadlines in the
767 	 * future; in fact, we must consider execution overheads (time
768 	 * spent on hardirq context, etc.).
769 	 */
770 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
771 	dl_se->runtime = dl_se->dl_runtime;
772 }
773 
774 /*
775  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
776  * possibility of a entity lasting more than what it declared, and thus
777  * exhausting its runtime.
778  *
779  * Here we are interested in making runtime overrun possible, but we do
780  * not want a entity which is misbehaving to affect the scheduling of all
781  * other entities.
782  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
783  * is used, in order to confine each entity within its own bandwidth.
784  *
785  * This function deals exactly with that, and ensures that when the runtime
786  * of a entity is replenished, its deadline is also postponed. That ensures
787  * the overrunning entity can't interfere with other entity in the system and
788  * can't make them miss their deadlines. Reasons why this kind of overruns
789  * could happen are, typically, a entity voluntarily trying to overcome its
790  * runtime, or it just underestimated it during sched_setattr().
791  */
792 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
793 {
794 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
795 	struct rq *rq = rq_of_dl_rq(dl_rq);
796 
797 	BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
798 
799 	/*
800 	 * This could be the case for a !-dl task that is boosted.
801 	 * Just go with full inherited parameters.
802 	 */
803 	if (dl_se->dl_deadline == 0) {
804 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
805 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
806 	}
807 
808 	if (dl_se->dl_yielded && dl_se->runtime > 0)
809 		dl_se->runtime = 0;
810 
811 	/*
812 	 * We keep moving the deadline away until we get some
813 	 * available runtime for the entity. This ensures correct
814 	 * handling of situations where the runtime overrun is
815 	 * arbitrary large.
816 	 */
817 	while (dl_se->runtime <= 0) {
818 		dl_se->deadline += pi_of(dl_se)->dl_period;
819 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
820 	}
821 
822 	/*
823 	 * At this point, the deadline really should be "in
824 	 * the future" with respect to rq->clock. If it's
825 	 * not, we are, for some reason, lagging too much!
826 	 * Anyway, after having warn userspace abut that,
827 	 * we still try to keep the things running by
828 	 * resetting the deadline and the budget of the
829 	 * entity.
830 	 */
831 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
832 		printk_deferred_once("sched: DL replenish lagged too much\n");
833 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
834 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
835 	}
836 
837 	if (dl_se->dl_yielded)
838 		dl_se->dl_yielded = 0;
839 	if (dl_se->dl_throttled)
840 		dl_se->dl_throttled = 0;
841 }
842 
843 /*
844  * Here we check if --at time t-- an entity (which is probably being
845  * [re]activated or, in general, enqueued) can use its remaining runtime
846  * and its current deadline _without_ exceeding the bandwidth it is
847  * assigned (function returns true if it can't). We are in fact applying
848  * one of the CBS rules: when a task wakes up, if the residual runtime
849  * over residual deadline fits within the allocated bandwidth, then we
850  * can keep the current (absolute) deadline and residual budget without
851  * disrupting the schedulability of the system. Otherwise, we should
852  * refill the runtime and set the deadline a period in the future,
853  * because keeping the current (absolute) deadline of the task would
854  * result in breaking guarantees promised to other tasks (refer to
855  * Documentation/scheduler/sched-deadline.rst for more information).
856  *
857  * This function returns true if:
858  *
859  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
860  *
861  * IOW we can't recycle current parameters.
862  *
863  * Notice that the bandwidth check is done against the deadline. For
864  * task with deadline equal to period this is the same of using
865  * dl_period instead of dl_deadline in the equation above.
866  */
867 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
868 {
869 	u64 left, right;
870 
871 	/*
872 	 * left and right are the two sides of the equation above,
873 	 * after a bit of shuffling to use multiplications instead
874 	 * of divisions.
875 	 *
876 	 * Note that none of the time values involved in the two
877 	 * multiplications are absolute: dl_deadline and dl_runtime
878 	 * are the relative deadline and the maximum runtime of each
879 	 * instance, runtime is the runtime left for the last instance
880 	 * and (deadline - t), since t is rq->clock, is the time left
881 	 * to the (absolute) deadline. Even if overflowing the u64 type
882 	 * is very unlikely to occur in both cases, here we scale down
883 	 * as we want to avoid that risk at all. Scaling down by 10
884 	 * means that we reduce granularity to 1us. We are fine with it,
885 	 * since this is only a true/false check and, anyway, thinking
886 	 * of anything below microseconds resolution is actually fiction
887 	 * (but still we want to give the user that illusion >;).
888 	 */
889 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
890 	right = ((dl_se->deadline - t) >> DL_SCALE) *
891 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
892 
893 	return dl_time_before(right, left);
894 }
895 
896 /*
897  * Revised wakeup rule [1]: For self-suspending tasks, rather then
898  * re-initializing task's runtime and deadline, the revised wakeup
899  * rule adjusts the task's runtime to avoid the task to overrun its
900  * density.
901  *
902  * Reasoning: a task may overrun the density if:
903  *    runtime / (deadline - t) > dl_runtime / dl_deadline
904  *
905  * Therefore, runtime can be adjusted to:
906  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
907  *
908  * In such way that runtime will be equal to the maximum density
909  * the task can use without breaking any rule.
910  *
911  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
912  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
913  */
914 static void
915 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
916 {
917 	u64 laxity = dl_se->deadline - rq_clock(rq);
918 
919 	/*
920 	 * If the task has deadline < period, and the deadline is in the past,
921 	 * it should already be throttled before this check.
922 	 *
923 	 * See update_dl_entity() comments for further details.
924 	 */
925 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
926 
927 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
928 }
929 
930 /*
931  * Regarding the deadline, a task with implicit deadline has a relative
932  * deadline == relative period. A task with constrained deadline has a
933  * relative deadline <= relative period.
934  *
935  * We support constrained deadline tasks. However, there are some restrictions
936  * applied only for tasks which do not have an implicit deadline. See
937  * update_dl_entity() to know more about such restrictions.
938  *
939  * The dl_is_implicit() returns true if the task has an implicit deadline.
940  */
941 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
942 {
943 	return dl_se->dl_deadline == dl_se->dl_period;
944 }
945 
946 /*
947  * When a deadline entity is placed in the runqueue, its runtime and deadline
948  * might need to be updated. This is done by a CBS wake up rule. There are two
949  * different rules: 1) the original CBS; and 2) the Revisited CBS.
950  *
951  * When the task is starting a new period, the Original CBS is used. In this
952  * case, the runtime is replenished and a new absolute deadline is set.
953  *
954  * When a task is queued before the begin of the next period, using the
955  * remaining runtime and deadline could make the entity to overflow, see
956  * dl_entity_overflow() to find more about runtime overflow. When such case
957  * is detected, the runtime and deadline need to be updated.
958  *
959  * If the task has an implicit deadline, i.e., deadline == period, the Original
960  * CBS is applied. the runtime is replenished and a new absolute deadline is
961  * set, as in the previous cases.
962  *
963  * However, the Original CBS does not work properly for tasks with
964  * deadline < period, which are said to have a constrained deadline. By
965  * applying the Original CBS, a constrained deadline task would be able to run
966  * runtime/deadline in a period. With deadline < period, the task would
967  * overrun the runtime/period allowed bandwidth, breaking the admission test.
968  *
969  * In order to prevent this misbehave, the Revisited CBS is used for
970  * constrained deadline tasks when a runtime overflow is detected. In the
971  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
972  * the remaining runtime of the task is reduced to avoid runtime overflow.
973  * Please refer to the comments update_dl_revised_wakeup() function to find
974  * more about the Revised CBS rule.
975  */
976 static void update_dl_entity(struct sched_dl_entity *dl_se)
977 {
978 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
979 	struct rq *rq = rq_of_dl_rq(dl_rq);
980 
981 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
982 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
983 
984 		if (unlikely(!dl_is_implicit(dl_se) &&
985 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
986 			     !is_dl_boosted(dl_se))) {
987 			update_dl_revised_wakeup(dl_se, rq);
988 			return;
989 		}
990 
991 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
992 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
993 	}
994 }
995 
996 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
997 {
998 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
999 }
1000 
1001 /*
1002  * If the entity depleted all its runtime, and if we want it to sleep
1003  * while waiting for some new execution time to become available, we
1004  * set the bandwidth replenishment timer to the replenishment instant
1005  * and try to activate it.
1006  *
1007  * Notice that it is important for the caller to know if the timer
1008  * actually started or not (i.e., the replenishment instant is in
1009  * the future or in the past).
1010  */
1011 static int start_dl_timer(struct task_struct *p)
1012 {
1013 	struct sched_dl_entity *dl_se = &p->dl;
1014 	struct hrtimer *timer = &dl_se->dl_timer;
1015 	struct rq *rq = task_rq(p);
1016 	ktime_t now, act;
1017 	s64 delta;
1018 
1019 	lockdep_assert_rq_held(rq);
1020 
1021 	/*
1022 	 * We want the timer to fire at the deadline, but considering
1023 	 * that it is actually coming from rq->clock and not from
1024 	 * hrtimer's time base reading.
1025 	 */
1026 	act = ns_to_ktime(dl_next_period(dl_se));
1027 	now = hrtimer_cb_get_time(timer);
1028 	delta = ktime_to_ns(now) - rq_clock(rq);
1029 	act = ktime_add_ns(act, delta);
1030 
1031 	/*
1032 	 * If the expiry time already passed, e.g., because the value
1033 	 * chosen as the deadline is too small, don't even try to
1034 	 * start the timer in the past!
1035 	 */
1036 	if (ktime_us_delta(act, now) < 0)
1037 		return 0;
1038 
1039 	/*
1040 	 * !enqueued will guarantee another callback; even if one is already in
1041 	 * progress. This ensures a balanced {get,put}_task_struct().
1042 	 *
1043 	 * The race against __run_timer() clearing the enqueued state is
1044 	 * harmless because we're holding task_rq()->lock, therefore the timer
1045 	 * expiring after we've done the check will wait on its task_rq_lock()
1046 	 * and observe our state.
1047 	 */
1048 	if (!hrtimer_is_queued(timer)) {
1049 		get_task_struct(p);
1050 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1051 	}
1052 
1053 	return 1;
1054 }
1055 
1056 /*
1057  * This is the bandwidth enforcement timer callback. If here, we know
1058  * a task is not on its dl_rq, since the fact that the timer was running
1059  * means the task is throttled and needs a runtime replenishment.
1060  *
1061  * However, what we actually do depends on the fact the task is active,
1062  * (it is on its rq) or has been removed from there by a call to
1063  * dequeue_task_dl(). In the former case we must issue the runtime
1064  * replenishment and add the task back to the dl_rq; in the latter, we just
1065  * do nothing but clearing dl_throttled, so that runtime and deadline
1066  * updating (and the queueing back to dl_rq) will be done by the
1067  * next call to enqueue_task_dl().
1068  */
1069 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1070 {
1071 	struct sched_dl_entity *dl_se = container_of(timer,
1072 						     struct sched_dl_entity,
1073 						     dl_timer);
1074 	struct task_struct *p = dl_task_of(dl_se);
1075 	struct rq_flags rf;
1076 	struct rq *rq;
1077 
1078 	rq = task_rq_lock(p, &rf);
1079 
1080 	/*
1081 	 * The task might have changed its scheduling policy to something
1082 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1083 	 */
1084 	if (!dl_task(p))
1085 		goto unlock;
1086 
1087 	/*
1088 	 * The task might have been boosted by someone else and might be in the
1089 	 * boosting/deboosting path, its not throttled.
1090 	 */
1091 	if (is_dl_boosted(dl_se))
1092 		goto unlock;
1093 
1094 	/*
1095 	 * Spurious timer due to start_dl_timer() race; or we already received
1096 	 * a replenishment from rt_mutex_setprio().
1097 	 */
1098 	if (!dl_se->dl_throttled)
1099 		goto unlock;
1100 
1101 	sched_clock_tick();
1102 	update_rq_clock(rq);
1103 
1104 	/*
1105 	 * If the throttle happened during sched-out; like:
1106 	 *
1107 	 *   schedule()
1108 	 *     deactivate_task()
1109 	 *       dequeue_task_dl()
1110 	 *         update_curr_dl()
1111 	 *           start_dl_timer()
1112 	 *         __dequeue_task_dl()
1113 	 *     prev->on_rq = 0;
1114 	 *
1115 	 * We can be both throttled and !queued. Replenish the counter
1116 	 * but do not enqueue -- wait for our wakeup to do that.
1117 	 */
1118 	if (!task_on_rq_queued(p)) {
1119 		replenish_dl_entity(dl_se);
1120 		goto unlock;
1121 	}
1122 
1123 #ifdef CONFIG_SMP
1124 	if (unlikely(!rq->online)) {
1125 		/*
1126 		 * If the runqueue is no longer available, migrate the
1127 		 * task elsewhere. This necessarily changes rq.
1128 		 */
1129 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1130 		rq = dl_task_offline_migration(rq, p);
1131 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1132 		update_rq_clock(rq);
1133 
1134 		/*
1135 		 * Now that the task has been migrated to the new RQ and we
1136 		 * have that locked, proceed as normal and enqueue the task
1137 		 * there.
1138 		 */
1139 	}
1140 #endif
1141 
1142 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1143 	if (dl_task(rq->curr))
1144 		check_preempt_curr_dl(rq, p, 0);
1145 	else
1146 		resched_curr(rq);
1147 
1148 #ifdef CONFIG_SMP
1149 	/*
1150 	 * Queueing this task back might have overloaded rq, check if we need
1151 	 * to kick someone away.
1152 	 */
1153 	if (has_pushable_dl_tasks(rq)) {
1154 		/*
1155 		 * Nothing relies on rq->lock after this, so its safe to drop
1156 		 * rq->lock.
1157 		 */
1158 		rq_unpin_lock(rq, &rf);
1159 		push_dl_task(rq);
1160 		rq_repin_lock(rq, &rf);
1161 	}
1162 #endif
1163 
1164 unlock:
1165 	task_rq_unlock(rq, p, &rf);
1166 
1167 	/*
1168 	 * This can free the task_struct, including this hrtimer, do not touch
1169 	 * anything related to that after this.
1170 	 */
1171 	put_task_struct(p);
1172 
1173 	return HRTIMER_NORESTART;
1174 }
1175 
1176 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1177 {
1178 	struct hrtimer *timer = &dl_se->dl_timer;
1179 
1180 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1181 	timer->function = dl_task_timer;
1182 }
1183 
1184 /*
1185  * During the activation, CBS checks if it can reuse the current task's
1186  * runtime and period. If the deadline of the task is in the past, CBS
1187  * cannot use the runtime, and so it replenishes the task. This rule
1188  * works fine for implicit deadline tasks (deadline == period), and the
1189  * CBS was designed for implicit deadline tasks. However, a task with
1190  * constrained deadline (deadline < period) might be awakened after the
1191  * deadline, but before the next period. In this case, replenishing the
1192  * task would allow it to run for runtime / deadline. As in this case
1193  * deadline < period, CBS enables a task to run for more than the
1194  * runtime / period. In a very loaded system, this can cause a domino
1195  * effect, making other tasks miss their deadlines.
1196  *
1197  * To avoid this problem, in the activation of a constrained deadline
1198  * task after the deadline but before the next period, throttle the
1199  * task and set the replenishing timer to the begin of the next period,
1200  * unless it is boosted.
1201  */
1202 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1203 {
1204 	struct task_struct *p = dl_task_of(dl_se);
1205 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1206 
1207 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1208 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1209 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1210 			return;
1211 		dl_se->dl_throttled = 1;
1212 		if (dl_se->runtime > 0)
1213 			dl_se->runtime = 0;
1214 	}
1215 }
1216 
1217 static
1218 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1219 {
1220 	return (dl_se->runtime <= 0);
1221 }
1222 
1223 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1224 
1225 /*
1226  * This function implements the GRUB accounting rule:
1227  * according to the GRUB reclaiming algorithm, the runtime is
1228  * not decreased as "dq = -dt", but as
1229  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1230  * where u is the utilization of the task, Umax is the maximum reclaimable
1231  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1232  * as the difference between the "total runqueue utilization" and the
1233  * runqueue active utilization, and Uextra is the (per runqueue) extra
1234  * reclaimable utilization.
1235  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1236  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1237  * BW_SHIFT.
1238  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
1239  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1240  * Since delta is a 64 bit variable, to have an overflow its value
1241  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1242  * So, overflow is not an issue here.
1243  */
1244 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1245 {
1246 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1247 	u64 u_act;
1248 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1249 
1250 	/*
1251 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1252 	 * we compare u_inact + rq->dl.extra_bw with
1253 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1254 	 * u_inact + rq->dl.extra_bw can be larger than
1255 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1256 	 * leading to wrong results)
1257 	 */
1258 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1259 		u_act = u_act_min;
1260 	else
1261 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1262 
1263 	return (delta * u_act) >> BW_SHIFT;
1264 }
1265 
1266 /*
1267  * Update the current task's runtime statistics (provided it is still
1268  * a -deadline task and has not been removed from the dl_rq).
1269  */
1270 static void update_curr_dl(struct rq *rq)
1271 {
1272 	struct task_struct *curr = rq->curr;
1273 	struct sched_dl_entity *dl_se = &curr->dl;
1274 	u64 delta_exec, scaled_delta_exec;
1275 	int cpu = cpu_of(rq);
1276 	u64 now;
1277 
1278 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1279 		return;
1280 
1281 	/*
1282 	 * Consumed budget is computed considering the time as
1283 	 * observed by schedulable tasks (excluding time spent
1284 	 * in hardirq context, etc.). Deadlines are instead
1285 	 * computed using hard walltime. This seems to be the more
1286 	 * natural solution, but the full ramifications of this
1287 	 * approach need further study.
1288 	 */
1289 	now = rq_clock_task(rq);
1290 	delta_exec = now - curr->se.exec_start;
1291 	if (unlikely((s64)delta_exec <= 0)) {
1292 		if (unlikely(dl_se->dl_yielded))
1293 			goto throttle;
1294 		return;
1295 	}
1296 
1297 	schedstat_set(curr->stats.exec_max,
1298 		      max(curr->stats.exec_max, delta_exec));
1299 
1300 	trace_sched_stat_runtime(curr, delta_exec, 0);
1301 
1302 	curr->se.sum_exec_runtime += delta_exec;
1303 	account_group_exec_runtime(curr, delta_exec);
1304 
1305 	curr->se.exec_start = now;
1306 	cgroup_account_cputime(curr, delta_exec);
1307 
1308 	if (dl_entity_is_special(dl_se))
1309 		return;
1310 
1311 	/*
1312 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1313 	 * spare reclaimed bandwidth is used to clock down frequency.
1314 	 *
1315 	 * For the others, we still need to scale reservation parameters
1316 	 * according to current frequency and CPU maximum capacity.
1317 	 */
1318 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1319 		scaled_delta_exec = grub_reclaim(delta_exec,
1320 						 rq,
1321 						 &curr->dl);
1322 	} else {
1323 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1324 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1325 
1326 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1327 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1328 	}
1329 
1330 	dl_se->runtime -= scaled_delta_exec;
1331 
1332 throttle:
1333 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1334 		dl_se->dl_throttled = 1;
1335 
1336 		/* If requested, inform the user about runtime overruns. */
1337 		if (dl_runtime_exceeded(dl_se) &&
1338 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1339 			dl_se->dl_overrun = 1;
1340 
1341 		__dequeue_task_dl(rq, curr, 0);
1342 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1343 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1344 
1345 		if (!is_leftmost(curr, &rq->dl))
1346 			resched_curr(rq);
1347 	}
1348 
1349 	/*
1350 	 * Because -- for now -- we share the rt bandwidth, we need to
1351 	 * account our runtime there too, otherwise actual rt tasks
1352 	 * would be able to exceed the shared quota.
1353 	 *
1354 	 * Account to the root rt group for now.
1355 	 *
1356 	 * The solution we're working towards is having the RT groups scheduled
1357 	 * using deadline servers -- however there's a few nasties to figure
1358 	 * out before that can happen.
1359 	 */
1360 	if (rt_bandwidth_enabled()) {
1361 		struct rt_rq *rt_rq = &rq->rt;
1362 
1363 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1364 		/*
1365 		 * We'll let actual RT tasks worry about the overflow here, we
1366 		 * have our own CBS to keep us inline; only account when RT
1367 		 * bandwidth is relevant.
1368 		 */
1369 		if (sched_rt_bandwidth_account(rt_rq))
1370 			rt_rq->rt_time += delta_exec;
1371 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1372 	}
1373 }
1374 
1375 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1376 {
1377 	struct sched_dl_entity *dl_se = container_of(timer,
1378 						     struct sched_dl_entity,
1379 						     inactive_timer);
1380 	struct task_struct *p = dl_task_of(dl_se);
1381 	struct rq_flags rf;
1382 	struct rq *rq;
1383 
1384 	rq = task_rq_lock(p, &rf);
1385 
1386 	sched_clock_tick();
1387 	update_rq_clock(rq);
1388 
1389 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1390 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1391 
1392 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1393 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1394 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1395 			dl_se->dl_non_contending = 0;
1396 		}
1397 
1398 		raw_spin_lock(&dl_b->lock);
1399 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1400 		raw_spin_unlock(&dl_b->lock);
1401 		__dl_clear_params(p);
1402 
1403 		goto unlock;
1404 	}
1405 	if (dl_se->dl_non_contending == 0)
1406 		goto unlock;
1407 
1408 	sub_running_bw(dl_se, &rq->dl);
1409 	dl_se->dl_non_contending = 0;
1410 unlock:
1411 	task_rq_unlock(rq, p, &rf);
1412 	put_task_struct(p);
1413 
1414 	return HRTIMER_NORESTART;
1415 }
1416 
1417 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1418 {
1419 	struct hrtimer *timer = &dl_se->inactive_timer;
1420 
1421 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1422 	timer->function = inactive_task_timer;
1423 }
1424 
1425 #define __node_2_dle(node) \
1426 	rb_entry((node), struct sched_dl_entity, rb_node)
1427 
1428 #ifdef CONFIG_SMP
1429 
1430 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1431 {
1432 	struct rq *rq = rq_of_dl_rq(dl_rq);
1433 
1434 	if (dl_rq->earliest_dl.curr == 0 ||
1435 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1436 		if (dl_rq->earliest_dl.curr == 0)
1437 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1438 		dl_rq->earliest_dl.curr = deadline;
1439 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1440 	}
1441 }
1442 
1443 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1444 {
1445 	struct rq *rq = rq_of_dl_rq(dl_rq);
1446 
1447 	/*
1448 	 * Since we may have removed our earliest (and/or next earliest)
1449 	 * task we must recompute them.
1450 	 */
1451 	if (!dl_rq->dl_nr_running) {
1452 		dl_rq->earliest_dl.curr = 0;
1453 		dl_rq->earliest_dl.next = 0;
1454 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1455 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1456 	} else {
1457 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1458 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1459 
1460 		dl_rq->earliest_dl.curr = entry->deadline;
1461 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1462 	}
1463 }
1464 
1465 #else
1466 
1467 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1468 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1469 
1470 #endif /* CONFIG_SMP */
1471 
1472 static inline
1473 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1474 {
1475 	int prio = dl_task_of(dl_se)->prio;
1476 	u64 deadline = dl_se->deadline;
1477 
1478 	WARN_ON(!dl_prio(prio));
1479 	dl_rq->dl_nr_running++;
1480 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1481 
1482 	inc_dl_deadline(dl_rq, deadline);
1483 	inc_dl_migration(dl_se, dl_rq);
1484 }
1485 
1486 static inline
1487 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1488 {
1489 	int prio = dl_task_of(dl_se)->prio;
1490 
1491 	WARN_ON(!dl_prio(prio));
1492 	WARN_ON(!dl_rq->dl_nr_running);
1493 	dl_rq->dl_nr_running--;
1494 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1495 
1496 	dec_dl_deadline(dl_rq, dl_se->deadline);
1497 	dec_dl_migration(dl_se, dl_rq);
1498 }
1499 
1500 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1501 {
1502 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1503 }
1504 
1505 static inline struct sched_statistics *
1506 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1507 {
1508 	return &dl_task_of(dl_se)->stats;
1509 }
1510 
1511 static inline void
1512 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1513 {
1514 	struct sched_statistics *stats;
1515 
1516 	if (!schedstat_enabled())
1517 		return;
1518 
1519 	stats = __schedstats_from_dl_se(dl_se);
1520 	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1521 }
1522 
1523 static inline void
1524 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1525 {
1526 	struct sched_statistics *stats;
1527 
1528 	if (!schedstat_enabled())
1529 		return;
1530 
1531 	stats = __schedstats_from_dl_se(dl_se);
1532 	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1533 }
1534 
1535 static inline void
1536 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1537 {
1538 	struct sched_statistics *stats;
1539 
1540 	if (!schedstat_enabled())
1541 		return;
1542 
1543 	stats = __schedstats_from_dl_se(dl_se);
1544 	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1545 }
1546 
1547 static inline void
1548 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1549 			int flags)
1550 {
1551 	if (!schedstat_enabled())
1552 		return;
1553 
1554 	if (flags & ENQUEUE_WAKEUP)
1555 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1556 }
1557 
1558 static inline void
1559 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1560 			int flags)
1561 {
1562 	struct task_struct *p = dl_task_of(dl_se);
1563 
1564 	if (!schedstat_enabled())
1565 		return;
1566 
1567 	if ((flags & DEQUEUE_SLEEP)) {
1568 		unsigned int state;
1569 
1570 		state = READ_ONCE(p->__state);
1571 		if (state & TASK_INTERRUPTIBLE)
1572 			__schedstat_set(p->stats.sleep_start,
1573 					rq_clock(rq_of_dl_rq(dl_rq)));
1574 
1575 		if (state & TASK_UNINTERRUPTIBLE)
1576 			__schedstat_set(p->stats.block_start,
1577 					rq_clock(rq_of_dl_rq(dl_rq)));
1578 	}
1579 }
1580 
1581 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1582 {
1583 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1584 
1585 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1586 
1587 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1588 
1589 	inc_dl_tasks(dl_se, dl_rq);
1590 }
1591 
1592 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1593 {
1594 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1595 
1596 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1597 		return;
1598 
1599 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1600 
1601 	RB_CLEAR_NODE(&dl_se->rb_node);
1602 
1603 	dec_dl_tasks(dl_se, dl_rq);
1604 }
1605 
1606 static void
1607 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1608 {
1609 	BUG_ON(on_dl_rq(dl_se));
1610 
1611 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1612 
1613 	/*
1614 	 * If this is a wakeup or a new instance, the scheduling
1615 	 * parameters of the task might need updating. Otherwise,
1616 	 * we want a replenishment of its runtime.
1617 	 */
1618 	if (flags & ENQUEUE_WAKEUP) {
1619 		task_contending(dl_se, flags);
1620 		update_dl_entity(dl_se);
1621 	} else if (flags & ENQUEUE_REPLENISH) {
1622 		replenish_dl_entity(dl_se);
1623 	} else if ((flags & ENQUEUE_RESTORE) &&
1624 		  dl_time_before(dl_se->deadline,
1625 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1626 		setup_new_dl_entity(dl_se);
1627 	}
1628 
1629 	__enqueue_dl_entity(dl_se);
1630 }
1631 
1632 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1633 {
1634 	__dequeue_dl_entity(dl_se);
1635 }
1636 
1637 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1638 {
1639 	if (is_dl_boosted(&p->dl)) {
1640 		/*
1641 		 * Because of delays in the detection of the overrun of a
1642 		 * thread's runtime, it might be the case that a thread
1643 		 * goes to sleep in a rt mutex with negative runtime. As
1644 		 * a consequence, the thread will be throttled.
1645 		 *
1646 		 * While waiting for the mutex, this thread can also be
1647 		 * boosted via PI, resulting in a thread that is throttled
1648 		 * and boosted at the same time.
1649 		 *
1650 		 * In this case, the boost overrides the throttle.
1651 		 */
1652 		if (p->dl.dl_throttled) {
1653 			/*
1654 			 * The replenish timer needs to be canceled. No
1655 			 * problem if it fires concurrently: boosted threads
1656 			 * are ignored in dl_task_timer().
1657 			 */
1658 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1659 			p->dl.dl_throttled = 0;
1660 		}
1661 	} else if (!dl_prio(p->normal_prio)) {
1662 		/*
1663 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1664 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1665 		 * replenishing it, as it's going to return back to its original
1666 		 * scheduling class after this. If it has been throttled, we need to
1667 		 * clear the flag, otherwise the task may wake up as throttled after
1668 		 * being boosted again with no means to replenish the runtime and clear
1669 		 * the throttle.
1670 		 */
1671 		p->dl.dl_throttled = 0;
1672 		BUG_ON(!is_dl_boosted(&p->dl) || flags != ENQUEUE_REPLENISH);
1673 		return;
1674 	}
1675 
1676 	/*
1677 	 * Check if a constrained deadline task was activated
1678 	 * after the deadline but before the next period.
1679 	 * If that is the case, the task will be throttled and
1680 	 * the replenishment timer will be set to the next period.
1681 	 */
1682 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1683 		dl_check_constrained_dl(&p->dl);
1684 
1685 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1686 		add_rq_bw(&p->dl, &rq->dl);
1687 		add_running_bw(&p->dl, &rq->dl);
1688 	}
1689 
1690 	/*
1691 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1692 	 * its budget it needs a replenishment and, since it now is on
1693 	 * its rq, the bandwidth timer callback (which clearly has not
1694 	 * run yet) will take care of this.
1695 	 * However, the active utilization does not depend on the fact
1696 	 * that the task is on the runqueue or not (but depends on the
1697 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1698 	 * In other words, even if a task is throttled its utilization must
1699 	 * be counted in the active utilization; hence, we need to call
1700 	 * add_running_bw().
1701 	 */
1702 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1703 		if (flags & ENQUEUE_WAKEUP)
1704 			task_contending(&p->dl, flags);
1705 
1706 		return;
1707 	}
1708 
1709 	check_schedstat_required();
1710 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1711 
1712 	enqueue_dl_entity(&p->dl, flags);
1713 
1714 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1715 		enqueue_pushable_dl_task(rq, p);
1716 }
1717 
1718 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1719 {
1720 	update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1721 	dequeue_dl_entity(&p->dl);
1722 	dequeue_pushable_dl_task(rq, p);
1723 }
1724 
1725 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1726 {
1727 	update_curr_dl(rq);
1728 	__dequeue_task_dl(rq, p, flags);
1729 
1730 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1731 		sub_running_bw(&p->dl, &rq->dl);
1732 		sub_rq_bw(&p->dl, &rq->dl);
1733 	}
1734 
1735 	/*
1736 	 * This check allows to start the inactive timer (or to immediately
1737 	 * decrease the active utilization, if needed) in two cases:
1738 	 * when the task blocks and when it is terminating
1739 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1740 	 * way, because from GRUB's point of view the same thing is happening
1741 	 * (the task moves from "active contending" to "active non contending"
1742 	 * or "inactive")
1743 	 */
1744 	if (flags & DEQUEUE_SLEEP)
1745 		task_non_contending(p);
1746 }
1747 
1748 /*
1749  * Yield task semantic for -deadline tasks is:
1750  *
1751  *   get off from the CPU until our next instance, with
1752  *   a new runtime. This is of little use now, since we
1753  *   don't have a bandwidth reclaiming mechanism. Anyway,
1754  *   bandwidth reclaiming is planned for the future, and
1755  *   yield_task_dl will indicate that some spare budget
1756  *   is available for other task instances to use it.
1757  */
1758 static void yield_task_dl(struct rq *rq)
1759 {
1760 	/*
1761 	 * We make the task go to sleep until its current deadline by
1762 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1763 	 * it and the bandwidth timer will wake it up and will give it
1764 	 * new scheduling parameters (thanks to dl_yielded=1).
1765 	 */
1766 	rq->curr->dl.dl_yielded = 1;
1767 
1768 	update_rq_clock(rq);
1769 	update_curr_dl(rq);
1770 	/*
1771 	 * Tell update_rq_clock() that we've just updated,
1772 	 * so we don't do microscopic update in schedule()
1773 	 * and double the fastpath cost.
1774 	 */
1775 	rq_clock_skip_update(rq);
1776 }
1777 
1778 #ifdef CONFIG_SMP
1779 
1780 static int find_later_rq(struct task_struct *task);
1781 
1782 static int
1783 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1784 {
1785 	struct task_struct *curr;
1786 	bool select_rq;
1787 	struct rq *rq;
1788 
1789 	if (!(flags & WF_TTWU))
1790 		goto out;
1791 
1792 	rq = cpu_rq(cpu);
1793 
1794 	rcu_read_lock();
1795 	curr = READ_ONCE(rq->curr); /* unlocked access */
1796 
1797 	/*
1798 	 * If we are dealing with a -deadline task, we must
1799 	 * decide where to wake it up.
1800 	 * If it has a later deadline and the current task
1801 	 * on this rq can't move (provided the waking task
1802 	 * can!) we prefer to send it somewhere else. On the
1803 	 * other hand, if it has a shorter deadline, we
1804 	 * try to make it stay here, it might be important.
1805 	 */
1806 	select_rq = unlikely(dl_task(curr)) &&
1807 		    (curr->nr_cpus_allowed < 2 ||
1808 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1809 		    p->nr_cpus_allowed > 1;
1810 
1811 	/*
1812 	 * Take the capacity of the CPU into account to
1813 	 * ensure it fits the requirement of the task.
1814 	 */
1815 	if (static_branch_unlikely(&sched_asym_cpucapacity))
1816 		select_rq |= !dl_task_fits_capacity(p, cpu);
1817 
1818 	if (select_rq) {
1819 		int target = find_later_rq(p);
1820 
1821 		if (target != -1 &&
1822 				(dl_time_before(p->dl.deadline,
1823 					cpu_rq(target)->dl.earliest_dl.curr) ||
1824 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1825 			cpu = target;
1826 	}
1827 	rcu_read_unlock();
1828 
1829 out:
1830 	return cpu;
1831 }
1832 
1833 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1834 {
1835 	struct rq *rq;
1836 
1837 	if (READ_ONCE(p->__state) != TASK_WAKING)
1838 		return;
1839 
1840 	rq = task_rq(p);
1841 	/*
1842 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1843 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1844 	 * rq->lock is not... So, lock it
1845 	 */
1846 	raw_spin_rq_lock(rq);
1847 	if (p->dl.dl_non_contending) {
1848 		update_rq_clock(rq);
1849 		sub_running_bw(&p->dl, &rq->dl);
1850 		p->dl.dl_non_contending = 0;
1851 		/*
1852 		 * If the timer handler is currently running and the
1853 		 * timer cannot be canceled, inactive_task_timer()
1854 		 * will see that dl_not_contending is not set, and
1855 		 * will not touch the rq's active utilization,
1856 		 * so we are still safe.
1857 		 */
1858 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1859 			put_task_struct(p);
1860 	}
1861 	sub_rq_bw(&p->dl, &rq->dl);
1862 	raw_spin_rq_unlock(rq);
1863 }
1864 
1865 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1866 {
1867 	/*
1868 	 * Current can't be migrated, useless to reschedule,
1869 	 * let's hope p can move out.
1870 	 */
1871 	if (rq->curr->nr_cpus_allowed == 1 ||
1872 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1873 		return;
1874 
1875 	/*
1876 	 * p is migratable, so let's not schedule it and
1877 	 * see if it is pushed or pulled somewhere else.
1878 	 */
1879 	if (p->nr_cpus_allowed != 1 &&
1880 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1881 		return;
1882 
1883 	resched_curr(rq);
1884 }
1885 
1886 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1887 {
1888 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1889 		/*
1890 		 * This is OK, because current is on_cpu, which avoids it being
1891 		 * picked for load-balance and preemption/IRQs are still
1892 		 * disabled avoiding further scheduler activity on it and we've
1893 		 * not yet started the picking loop.
1894 		 */
1895 		rq_unpin_lock(rq, rf);
1896 		pull_dl_task(rq);
1897 		rq_repin_lock(rq, rf);
1898 	}
1899 
1900 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1901 }
1902 #endif /* CONFIG_SMP */
1903 
1904 /*
1905  * Only called when both the current and waking task are -deadline
1906  * tasks.
1907  */
1908 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1909 				  int flags)
1910 {
1911 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1912 		resched_curr(rq);
1913 		return;
1914 	}
1915 
1916 #ifdef CONFIG_SMP
1917 	/*
1918 	 * In the unlikely case current and p have the same deadline
1919 	 * let us try to decide what's the best thing to do...
1920 	 */
1921 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1922 	    !test_tsk_need_resched(rq->curr))
1923 		check_preempt_equal_dl(rq, p);
1924 #endif /* CONFIG_SMP */
1925 }
1926 
1927 #ifdef CONFIG_SCHED_HRTICK
1928 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1929 {
1930 	hrtick_start(rq, p->dl.runtime);
1931 }
1932 #else /* !CONFIG_SCHED_HRTICK */
1933 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1934 {
1935 }
1936 #endif
1937 
1938 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1939 {
1940 	struct sched_dl_entity *dl_se = &p->dl;
1941 	struct dl_rq *dl_rq = &rq->dl;
1942 
1943 	p->se.exec_start = rq_clock_task(rq);
1944 	if (on_dl_rq(&p->dl))
1945 		update_stats_wait_end_dl(dl_rq, dl_se);
1946 
1947 	/* You can't push away the running task */
1948 	dequeue_pushable_dl_task(rq, p);
1949 
1950 	if (!first)
1951 		return;
1952 
1953 	if (hrtick_enabled_dl(rq))
1954 		start_hrtick_dl(rq, p);
1955 
1956 	if (rq->curr->sched_class != &dl_sched_class)
1957 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1958 
1959 	deadline_queue_push_tasks(rq);
1960 }
1961 
1962 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
1963 {
1964 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1965 
1966 	if (!left)
1967 		return NULL;
1968 
1969 	return __node_2_dle(left);
1970 }
1971 
1972 static struct task_struct *pick_task_dl(struct rq *rq)
1973 {
1974 	struct sched_dl_entity *dl_se;
1975 	struct dl_rq *dl_rq = &rq->dl;
1976 	struct task_struct *p;
1977 
1978 	if (!sched_dl_runnable(rq))
1979 		return NULL;
1980 
1981 	dl_se = pick_next_dl_entity(dl_rq);
1982 	BUG_ON(!dl_se);
1983 	p = dl_task_of(dl_se);
1984 
1985 	return p;
1986 }
1987 
1988 static struct task_struct *pick_next_task_dl(struct rq *rq)
1989 {
1990 	struct task_struct *p;
1991 
1992 	p = pick_task_dl(rq);
1993 	if (p)
1994 		set_next_task_dl(rq, p, true);
1995 
1996 	return p;
1997 }
1998 
1999 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2000 {
2001 	struct sched_dl_entity *dl_se = &p->dl;
2002 	struct dl_rq *dl_rq = &rq->dl;
2003 
2004 	if (on_dl_rq(&p->dl))
2005 		update_stats_wait_start_dl(dl_rq, dl_se);
2006 
2007 	update_curr_dl(rq);
2008 
2009 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2010 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2011 		enqueue_pushable_dl_task(rq, p);
2012 }
2013 
2014 /*
2015  * scheduler tick hitting a task of our scheduling class.
2016  *
2017  * NOTE: This function can be called remotely by the tick offload that
2018  * goes along full dynticks. Therefore no local assumption can be made
2019  * and everything must be accessed through the @rq and @curr passed in
2020  * parameters.
2021  */
2022 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2023 {
2024 	update_curr_dl(rq);
2025 
2026 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2027 	/*
2028 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2029 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2030 	 * be set and schedule() will start a new hrtick for the next task.
2031 	 */
2032 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2033 	    is_leftmost(p, &rq->dl))
2034 		start_hrtick_dl(rq, p);
2035 }
2036 
2037 static void task_fork_dl(struct task_struct *p)
2038 {
2039 	/*
2040 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2041 	 * sched_fork()
2042 	 */
2043 }
2044 
2045 #ifdef CONFIG_SMP
2046 
2047 /* Only try algorithms three times */
2048 #define DL_MAX_TRIES 3
2049 
2050 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2051 {
2052 	if (!task_running(rq, p) &&
2053 	    cpumask_test_cpu(cpu, &p->cpus_mask))
2054 		return 1;
2055 	return 0;
2056 }
2057 
2058 /*
2059  * Return the earliest pushable rq's task, which is suitable to be executed
2060  * on the CPU, NULL otherwise:
2061  */
2062 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2063 {
2064 	struct task_struct *p = NULL;
2065 	struct rb_node *next_node;
2066 
2067 	if (!has_pushable_dl_tasks(rq))
2068 		return NULL;
2069 
2070 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2071 
2072 next_node:
2073 	if (next_node) {
2074 		p = __node_2_pdl(next_node);
2075 
2076 		if (pick_dl_task(rq, p, cpu))
2077 			return p;
2078 
2079 		next_node = rb_next(next_node);
2080 		goto next_node;
2081 	}
2082 
2083 	return NULL;
2084 }
2085 
2086 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2087 
2088 static int find_later_rq(struct task_struct *task)
2089 {
2090 	struct sched_domain *sd;
2091 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2092 	int this_cpu = smp_processor_id();
2093 	int cpu = task_cpu(task);
2094 
2095 	/* Make sure the mask is initialized first */
2096 	if (unlikely(!later_mask))
2097 		return -1;
2098 
2099 	if (task->nr_cpus_allowed == 1)
2100 		return -1;
2101 
2102 	/*
2103 	 * We have to consider system topology and task affinity
2104 	 * first, then we can look for a suitable CPU.
2105 	 */
2106 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2107 		return -1;
2108 
2109 	/*
2110 	 * If we are here, some targets have been found, including
2111 	 * the most suitable which is, among the runqueues where the
2112 	 * current tasks have later deadlines than the task's one, the
2113 	 * rq with the latest possible one.
2114 	 *
2115 	 * Now we check how well this matches with task's
2116 	 * affinity and system topology.
2117 	 *
2118 	 * The last CPU where the task run is our first
2119 	 * guess, since it is most likely cache-hot there.
2120 	 */
2121 	if (cpumask_test_cpu(cpu, later_mask))
2122 		return cpu;
2123 	/*
2124 	 * Check if this_cpu is to be skipped (i.e., it is
2125 	 * not in the mask) or not.
2126 	 */
2127 	if (!cpumask_test_cpu(this_cpu, later_mask))
2128 		this_cpu = -1;
2129 
2130 	rcu_read_lock();
2131 	for_each_domain(cpu, sd) {
2132 		if (sd->flags & SD_WAKE_AFFINE) {
2133 			int best_cpu;
2134 
2135 			/*
2136 			 * If possible, preempting this_cpu is
2137 			 * cheaper than migrating.
2138 			 */
2139 			if (this_cpu != -1 &&
2140 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2141 				rcu_read_unlock();
2142 				return this_cpu;
2143 			}
2144 
2145 			best_cpu = cpumask_any_and_distribute(later_mask,
2146 							      sched_domain_span(sd));
2147 			/*
2148 			 * Last chance: if a CPU being in both later_mask
2149 			 * and current sd span is valid, that becomes our
2150 			 * choice. Of course, the latest possible CPU is
2151 			 * already under consideration through later_mask.
2152 			 */
2153 			if (best_cpu < nr_cpu_ids) {
2154 				rcu_read_unlock();
2155 				return best_cpu;
2156 			}
2157 		}
2158 	}
2159 	rcu_read_unlock();
2160 
2161 	/*
2162 	 * At this point, all our guesses failed, we just return
2163 	 * 'something', and let the caller sort the things out.
2164 	 */
2165 	if (this_cpu != -1)
2166 		return this_cpu;
2167 
2168 	cpu = cpumask_any_distribute(later_mask);
2169 	if (cpu < nr_cpu_ids)
2170 		return cpu;
2171 
2172 	return -1;
2173 }
2174 
2175 /* Locks the rq it finds */
2176 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2177 {
2178 	struct rq *later_rq = NULL;
2179 	int tries;
2180 	int cpu;
2181 
2182 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2183 		cpu = find_later_rq(task);
2184 
2185 		if ((cpu == -1) || (cpu == rq->cpu))
2186 			break;
2187 
2188 		later_rq = cpu_rq(cpu);
2189 
2190 		if (later_rq->dl.dl_nr_running &&
2191 		    !dl_time_before(task->dl.deadline,
2192 					later_rq->dl.earliest_dl.curr)) {
2193 			/*
2194 			 * Target rq has tasks of equal or earlier deadline,
2195 			 * retrying does not release any lock and is unlikely
2196 			 * to yield a different result.
2197 			 */
2198 			later_rq = NULL;
2199 			break;
2200 		}
2201 
2202 		/* Retry if something changed. */
2203 		if (double_lock_balance(rq, later_rq)) {
2204 			if (unlikely(task_rq(task) != rq ||
2205 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2206 				     task_running(rq, task) ||
2207 				     !dl_task(task) ||
2208 				     !task_on_rq_queued(task))) {
2209 				double_unlock_balance(rq, later_rq);
2210 				later_rq = NULL;
2211 				break;
2212 			}
2213 		}
2214 
2215 		/*
2216 		 * If the rq we found has no -deadline task, or
2217 		 * its earliest one has a later deadline than our
2218 		 * task, the rq is a good one.
2219 		 */
2220 		if (!later_rq->dl.dl_nr_running ||
2221 		    dl_time_before(task->dl.deadline,
2222 				   later_rq->dl.earliest_dl.curr))
2223 			break;
2224 
2225 		/* Otherwise we try again. */
2226 		double_unlock_balance(rq, later_rq);
2227 		later_rq = NULL;
2228 	}
2229 
2230 	return later_rq;
2231 }
2232 
2233 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2234 {
2235 	struct task_struct *p;
2236 
2237 	if (!has_pushable_dl_tasks(rq))
2238 		return NULL;
2239 
2240 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2241 
2242 	BUG_ON(rq->cpu != task_cpu(p));
2243 	BUG_ON(task_current(rq, p));
2244 	BUG_ON(p->nr_cpus_allowed <= 1);
2245 
2246 	BUG_ON(!task_on_rq_queued(p));
2247 	BUG_ON(!dl_task(p));
2248 
2249 	return p;
2250 }
2251 
2252 /*
2253  * See if the non running -deadline tasks on this rq
2254  * can be sent to some other CPU where they can preempt
2255  * and start executing.
2256  */
2257 static int push_dl_task(struct rq *rq)
2258 {
2259 	struct task_struct *next_task;
2260 	struct rq *later_rq;
2261 	int ret = 0;
2262 
2263 	if (!rq->dl.overloaded)
2264 		return 0;
2265 
2266 	next_task = pick_next_pushable_dl_task(rq);
2267 	if (!next_task)
2268 		return 0;
2269 
2270 retry:
2271 	/*
2272 	 * If next_task preempts rq->curr, and rq->curr
2273 	 * can move away, it makes sense to just reschedule
2274 	 * without going further in pushing next_task.
2275 	 */
2276 	if (dl_task(rq->curr) &&
2277 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2278 	    rq->curr->nr_cpus_allowed > 1) {
2279 		resched_curr(rq);
2280 		return 0;
2281 	}
2282 
2283 	if (is_migration_disabled(next_task))
2284 		return 0;
2285 
2286 	if (WARN_ON(next_task == rq->curr))
2287 		return 0;
2288 
2289 	/* We might release rq lock */
2290 	get_task_struct(next_task);
2291 
2292 	/* Will lock the rq it'll find */
2293 	later_rq = find_lock_later_rq(next_task, rq);
2294 	if (!later_rq) {
2295 		struct task_struct *task;
2296 
2297 		/*
2298 		 * We must check all this again, since
2299 		 * find_lock_later_rq releases rq->lock and it is
2300 		 * then possible that next_task has migrated.
2301 		 */
2302 		task = pick_next_pushable_dl_task(rq);
2303 		if (task == next_task) {
2304 			/*
2305 			 * The task is still there. We don't try
2306 			 * again, some other CPU will pull it when ready.
2307 			 */
2308 			goto out;
2309 		}
2310 
2311 		if (!task)
2312 			/* No more tasks */
2313 			goto out;
2314 
2315 		put_task_struct(next_task);
2316 		next_task = task;
2317 		goto retry;
2318 	}
2319 
2320 	deactivate_task(rq, next_task, 0);
2321 	set_task_cpu(next_task, later_rq->cpu);
2322 
2323 	/*
2324 	 * Update the later_rq clock here, because the clock is used
2325 	 * by the cpufreq_update_util() inside __add_running_bw().
2326 	 */
2327 	update_rq_clock(later_rq);
2328 	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2329 	ret = 1;
2330 
2331 	resched_curr(later_rq);
2332 
2333 	double_unlock_balance(rq, later_rq);
2334 
2335 out:
2336 	put_task_struct(next_task);
2337 
2338 	return ret;
2339 }
2340 
2341 static void push_dl_tasks(struct rq *rq)
2342 {
2343 	/* push_dl_task() will return true if it moved a -deadline task */
2344 	while (push_dl_task(rq))
2345 		;
2346 }
2347 
2348 static void pull_dl_task(struct rq *this_rq)
2349 {
2350 	int this_cpu = this_rq->cpu, cpu;
2351 	struct task_struct *p, *push_task;
2352 	bool resched = false;
2353 	struct rq *src_rq;
2354 	u64 dmin = LONG_MAX;
2355 
2356 	if (likely(!dl_overloaded(this_rq)))
2357 		return;
2358 
2359 	/*
2360 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2361 	 * see overloaded we must also see the dlo_mask bit.
2362 	 */
2363 	smp_rmb();
2364 
2365 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2366 		if (this_cpu == cpu)
2367 			continue;
2368 
2369 		src_rq = cpu_rq(cpu);
2370 
2371 		/*
2372 		 * It looks racy, abd it is! However, as in sched_rt.c,
2373 		 * we are fine with this.
2374 		 */
2375 		if (this_rq->dl.dl_nr_running &&
2376 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2377 				   src_rq->dl.earliest_dl.next))
2378 			continue;
2379 
2380 		/* Might drop this_rq->lock */
2381 		push_task = NULL;
2382 		double_lock_balance(this_rq, src_rq);
2383 
2384 		/*
2385 		 * If there are no more pullable tasks on the
2386 		 * rq, we're done with it.
2387 		 */
2388 		if (src_rq->dl.dl_nr_running <= 1)
2389 			goto skip;
2390 
2391 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2392 
2393 		/*
2394 		 * We found a task to be pulled if:
2395 		 *  - it preempts our current (if there's one),
2396 		 *  - it will preempt the last one we pulled (if any).
2397 		 */
2398 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2399 		    (!this_rq->dl.dl_nr_running ||
2400 		     dl_time_before(p->dl.deadline,
2401 				    this_rq->dl.earliest_dl.curr))) {
2402 			WARN_ON(p == src_rq->curr);
2403 			WARN_ON(!task_on_rq_queued(p));
2404 
2405 			/*
2406 			 * Then we pull iff p has actually an earlier
2407 			 * deadline than the current task of its runqueue.
2408 			 */
2409 			if (dl_time_before(p->dl.deadline,
2410 					   src_rq->curr->dl.deadline))
2411 				goto skip;
2412 
2413 			if (is_migration_disabled(p)) {
2414 				push_task = get_push_task(src_rq);
2415 			} else {
2416 				deactivate_task(src_rq, p, 0);
2417 				set_task_cpu(p, this_cpu);
2418 				activate_task(this_rq, p, 0);
2419 				dmin = p->dl.deadline;
2420 				resched = true;
2421 			}
2422 
2423 			/* Is there any other task even earlier? */
2424 		}
2425 skip:
2426 		double_unlock_balance(this_rq, src_rq);
2427 
2428 		if (push_task) {
2429 			raw_spin_rq_unlock(this_rq);
2430 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2431 					    push_task, &src_rq->push_work);
2432 			raw_spin_rq_lock(this_rq);
2433 		}
2434 	}
2435 
2436 	if (resched)
2437 		resched_curr(this_rq);
2438 }
2439 
2440 /*
2441  * Since the task is not running and a reschedule is not going to happen
2442  * anytime soon on its runqueue, we try pushing it away now.
2443  */
2444 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2445 {
2446 	if (!task_running(rq, p) &&
2447 	    !test_tsk_need_resched(rq->curr) &&
2448 	    p->nr_cpus_allowed > 1 &&
2449 	    dl_task(rq->curr) &&
2450 	    (rq->curr->nr_cpus_allowed < 2 ||
2451 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2452 		push_dl_tasks(rq);
2453 	}
2454 }
2455 
2456 static void set_cpus_allowed_dl(struct task_struct *p,
2457 				const struct cpumask *new_mask,
2458 				u32 flags)
2459 {
2460 	struct root_domain *src_rd;
2461 	struct rq *rq;
2462 
2463 	BUG_ON(!dl_task(p));
2464 
2465 	rq = task_rq(p);
2466 	src_rd = rq->rd;
2467 	/*
2468 	 * Migrating a SCHED_DEADLINE task between exclusive
2469 	 * cpusets (different root_domains) entails a bandwidth
2470 	 * update. We already made space for us in the destination
2471 	 * domain (see cpuset_can_attach()).
2472 	 */
2473 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2474 		struct dl_bw *src_dl_b;
2475 
2476 		src_dl_b = dl_bw_of(cpu_of(rq));
2477 		/*
2478 		 * We now free resources of the root_domain we are migrating
2479 		 * off. In the worst case, sched_setattr() may temporary fail
2480 		 * until we complete the update.
2481 		 */
2482 		raw_spin_lock(&src_dl_b->lock);
2483 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2484 		raw_spin_unlock(&src_dl_b->lock);
2485 	}
2486 
2487 	set_cpus_allowed_common(p, new_mask, flags);
2488 }
2489 
2490 /* Assumes rq->lock is held */
2491 static void rq_online_dl(struct rq *rq)
2492 {
2493 	if (rq->dl.overloaded)
2494 		dl_set_overload(rq);
2495 
2496 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2497 	if (rq->dl.dl_nr_running > 0)
2498 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2499 }
2500 
2501 /* Assumes rq->lock is held */
2502 static void rq_offline_dl(struct rq *rq)
2503 {
2504 	if (rq->dl.overloaded)
2505 		dl_clear_overload(rq);
2506 
2507 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2508 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2509 }
2510 
2511 void __init init_sched_dl_class(void)
2512 {
2513 	unsigned int i;
2514 
2515 	for_each_possible_cpu(i)
2516 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2517 					GFP_KERNEL, cpu_to_node(i));
2518 }
2519 
2520 void dl_add_task_root_domain(struct task_struct *p)
2521 {
2522 	struct rq_flags rf;
2523 	struct rq *rq;
2524 	struct dl_bw *dl_b;
2525 
2526 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2527 	if (!dl_task(p)) {
2528 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2529 		return;
2530 	}
2531 
2532 	rq = __task_rq_lock(p, &rf);
2533 
2534 	dl_b = &rq->rd->dl_bw;
2535 	raw_spin_lock(&dl_b->lock);
2536 
2537 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2538 
2539 	raw_spin_unlock(&dl_b->lock);
2540 
2541 	task_rq_unlock(rq, p, &rf);
2542 }
2543 
2544 void dl_clear_root_domain(struct root_domain *rd)
2545 {
2546 	unsigned long flags;
2547 
2548 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2549 	rd->dl_bw.total_bw = 0;
2550 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2551 }
2552 
2553 #endif /* CONFIG_SMP */
2554 
2555 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2556 {
2557 	/*
2558 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2559 	 * time is in the future). If the task switches back to dl before
2560 	 * the "inactive timer" fires, it can continue to consume its current
2561 	 * runtime using its current deadline. If it stays outside of
2562 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2563 	 * will reset the task parameters.
2564 	 */
2565 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2566 		task_non_contending(p);
2567 
2568 	if (!task_on_rq_queued(p)) {
2569 		/*
2570 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2571 		 * might migrate away from this rq while continuing to run on
2572 		 * some other class. We need to remove its contribution from
2573 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2574 		 */
2575 		if (p->dl.dl_non_contending)
2576 			sub_running_bw(&p->dl, &rq->dl);
2577 		sub_rq_bw(&p->dl, &rq->dl);
2578 	}
2579 
2580 	/*
2581 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2582 	 * at the 0-lag time, because the task could have been migrated
2583 	 * while SCHED_OTHER in the meanwhile.
2584 	 */
2585 	if (p->dl.dl_non_contending)
2586 		p->dl.dl_non_contending = 0;
2587 
2588 	/*
2589 	 * Since this might be the only -deadline task on the rq,
2590 	 * this is the right place to try to pull some other one
2591 	 * from an overloaded CPU, if any.
2592 	 */
2593 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2594 		return;
2595 
2596 	deadline_queue_pull_task(rq);
2597 }
2598 
2599 /*
2600  * When switching to -deadline, we may overload the rq, then
2601  * we try to push someone off, if possible.
2602  */
2603 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2604 {
2605 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2606 		put_task_struct(p);
2607 
2608 	/* If p is not queued we will update its parameters at next wakeup. */
2609 	if (!task_on_rq_queued(p)) {
2610 		add_rq_bw(&p->dl, &rq->dl);
2611 
2612 		return;
2613 	}
2614 
2615 	if (rq->curr != p) {
2616 #ifdef CONFIG_SMP
2617 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2618 			deadline_queue_push_tasks(rq);
2619 #endif
2620 		if (dl_task(rq->curr))
2621 			check_preempt_curr_dl(rq, p, 0);
2622 		else
2623 			resched_curr(rq);
2624 	} else {
2625 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2626 	}
2627 }
2628 
2629 /*
2630  * If the scheduling parameters of a -deadline task changed,
2631  * a push or pull operation might be needed.
2632  */
2633 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2634 			    int oldprio)
2635 {
2636 	if (task_on_rq_queued(p) || task_current(rq, p)) {
2637 #ifdef CONFIG_SMP
2638 		/*
2639 		 * This might be too much, but unfortunately
2640 		 * we don't have the old deadline value, and
2641 		 * we can't argue if the task is increasing
2642 		 * or lowering its prio, so...
2643 		 */
2644 		if (!rq->dl.overloaded)
2645 			deadline_queue_pull_task(rq);
2646 
2647 		/*
2648 		 * If we now have a earlier deadline task than p,
2649 		 * then reschedule, provided p is still on this
2650 		 * runqueue.
2651 		 */
2652 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2653 			resched_curr(rq);
2654 #else
2655 		/*
2656 		 * Again, we don't know if p has a earlier
2657 		 * or later deadline, so let's blindly set a
2658 		 * (maybe not needed) rescheduling point.
2659 		 */
2660 		resched_curr(rq);
2661 #endif /* CONFIG_SMP */
2662 	}
2663 }
2664 
2665 DEFINE_SCHED_CLASS(dl) = {
2666 
2667 	.enqueue_task		= enqueue_task_dl,
2668 	.dequeue_task		= dequeue_task_dl,
2669 	.yield_task		= yield_task_dl,
2670 
2671 	.check_preempt_curr	= check_preempt_curr_dl,
2672 
2673 	.pick_next_task		= pick_next_task_dl,
2674 	.put_prev_task		= put_prev_task_dl,
2675 	.set_next_task		= set_next_task_dl,
2676 
2677 #ifdef CONFIG_SMP
2678 	.balance		= balance_dl,
2679 	.pick_task		= pick_task_dl,
2680 	.select_task_rq		= select_task_rq_dl,
2681 	.migrate_task_rq	= migrate_task_rq_dl,
2682 	.set_cpus_allowed       = set_cpus_allowed_dl,
2683 	.rq_online              = rq_online_dl,
2684 	.rq_offline             = rq_offline_dl,
2685 	.task_woken		= task_woken_dl,
2686 	.find_lock_rq		= find_lock_later_rq,
2687 #endif
2688 
2689 	.task_tick		= task_tick_dl,
2690 	.task_fork              = task_fork_dl,
2691 
2692 	.prio_changed           = prio_changed_dl,
2693 	.switched_from		= switched_from_dl,
2694 	.switched_to		= switched_to_dl,
2695 
2696 	.update_curr		= update_curr_dl,
2697 };
2698 
2699 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2700 static u64 dl_generation;
2701 
2702 int sched_dl_global_validate(void)
2703 {
2704 	u64 runtime = global_rt_runtime();
2705 	u64 period = global_rt_period();
2706 	u64 new_bw = to_ratio(period, runtime);
2707 	u64 gen = ++dl_generation;
2708 	struct dl_bw *dl_b;
2709 	int cpu, cpus, ret = 0;
2710 	unsigned long flags;
2711 
2712 	/*
2713 	 * Here we want to check the bandwidth not being set to some
2714 	 * value smaller than the currently allocated bandwidth in
2715 	 * any of the root_domains.
2716 	 */
2717 	for_each_possible_cpu(cpu) {
2718 		rcu_read_lock_sched();
2719 
2720 		if (dl_bw_visited(cpu, gen))
2721 			goto next;
2722 
2723 		dl_b = dl_bw_of(cpu);
2724 		cpus = dl_bw_cpus(cpu);
2725 
2726 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2727 		if (new_bw * cpus < dl_b->total_bw)
2728 			ret = -EBUSY;
2729 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2730 
2731 next:
2732 		rcu_read_unlock_sched();
2733 
2734 		if (ret)
2735 			break;
2736 	}
2737 
2738 	return ret;
2739 }
2740 
2741 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2742 {
2743 	if (global_rt_runtime() == RUNTIME_INF) {
2744 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2745 		dl_rq->extra_bw = 1 << BW_SHIFT;
2746 	} else {
2747 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2748 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2749 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2750 						    global_rt_runtime());
2751 	}
2752 }
2753 
2754 void sched_dl_do_global(void)
2755 {
2756 	u64 new_bw = -1;
2757 	u64 gen = ++dl_generation;
2758 	struct dl_bw *dl_b;
2759 	int cpu;
2760 	unsigned long flags;
2761 
2762 	if (global_rt_runtime() != RUNTIME_INF)
2763 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2764 
2765 	for_each_possible_cpu(cpu) {
2766 		rcu_read_lock_sched();
2767 
2768 		if (dl_bw_visited(cpu, gen)) {
2769 			rcu_read_unlock_sched();
2770 			continue;
2771 		}
2772 
2773 		dl_b = dl_bw_of(cpu);
2774 
2775 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2776 		dl_b->bw = new_bw;
2777 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2778 
2779 		rcu_read_unlock_sched();
2780 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2781 	}
2782 }
2783 
2784 /*
2785  * We must be sure that accepting a new task (or allowing changing the
2786  * parameters of an existing one) is consistent with the bandwidth
2787  * constraints. If yes, this function also accordingly updates the currently
2788  * allocated bandwidth to reflect the new situation.
2789  *
2790  * This function is called while holding p's rq->lock.
2791  */
2792 int sched_dl_overflow(struct task_struct *p, int policy,
2793 		      const struct sched_attr *attr)
2794 {
2795 	u64 period = attr->sched_period ?: attr->sched_deadline;
2796 	u64 runtime = attr->sched_runtime;
2797 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2798 	int cpus, err = -1, cpu = task_cpu(p);
2799 	struct dl_bw *dl_b = dl_bw_of(cpu);
2800 	unsigned long cap;
2801 
2802 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2803 		return 0;
2804 
2805 	/* !deadline task may carry old deadline bandwidth */
2806 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2807 		return 0;
2808 
2809 	/*
2810 	 * Either if a task, enters, leave, or stays -deadline but changes
2811 	 * its parameters, we may need to update accordingly the total
2812 	 * allocated bandwidth of the container.
2813 	 */
2814 	raw_spin_lock(&dl_b->lock);
2815 	cpus = dl_bw_cpus(cpu);
2816 	cap = dl_bw_capacity(cpu);
2817 
2818 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2819 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2820 		if (hrtimer_active(&p->dl.inactive_timer))
2821 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2822 		__dl_add(dl_b, new_bw, cpus);
2823 		err = 0;
2824 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2825 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2826 		/*
2827 		 * XXX this is slightly incorrect: when the task
2828 		 * utilization decreases, we should delay the total
2829 		 * utilization change until the task's 0-lag point.
2830 		 * But this would require to set the task's "inactive
2831 		 * timer" when the task is not inactive.
2832 		 */
2833 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2834 		__dl_add(dl_b, new_bw, cpus);
2835 		dl_change_utilization(p, new_bw);
2836 		err = 0;
2837 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2838 		/*
2839 		 * Do not decrease the total deadline utilization here,
2840 		 * switched_from_dl() will take care to do it at the correct
2841 		 * (0-lag) time.
2842 		 */
2843 		err = 0;
2844 	}
2845 	raw_spin_unlock(&dl_b->lock);
2846 
2847 	return err;
2848 }
2849 
2850 /*
2851  * This function initializes the sched_dl_entity of a newly becoming
2852  * SCHED_DEADLINE task.
2853  *
2854  * Only the static values are considered here, the actual runtime and the
2855  * absolute deadline will be properly calculated when the task is enqueued
2856  * for the first time with its new policy.
2857  */
2858 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2859 {
2860 	struct sched_dl_entity *dl_se = &p->dl;
2861 
2862 	dl_se->dl_runtime = attr->sched_runtime;
2863 	dl_se->dl_deadline = attr->sched_deadline;
2864 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2865 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2866 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2867 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2868 }
2869 
2870 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2871 {
2872 	struct sched_dl_entity *dl_se = &p->dl;
2873 
2874 	attr->sched_priority = p->rt_priority;
2875 	attr->sched_runtime = dl_se->dl_runtime;
2876 	attr->sched_deadline = dl_se->dl_deadline;
2877 	attr->sched_period = dl_se->dl_period;
2878 	attr->sched_flags &= ~SCHED_DL_FLAGS;
2879 	attr->sched_flags |= dl_se->flags;
2880 }
2881 
2882 /*
2883  * Default limits for DL period; on the top end we guard against small util
2884  * tasks still getting ridiculously long effective runtimes, on the bottom end we
2885  * guard against timer DoS.
2886  */
2887 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2888 unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
2889 
2890 /*
2891  * This function validates the new parameters of a -deadline task.
2892  * We ask for the deadline not being zero, and greater or equal
2893  * than the runtime, as well as the period of being zero or
2894  * greater than deadline. Furthermore, we have to be sure that
2895  * user parameters are above the internal resolution of 1us (we
2896  * check sched_runtime only since it is always the smaller one) and
2897  * below 2^63 ns (we have to check both sched_deadline and
2898  * sched_period, as the latter can be zero).
2899  */
2900 bool __checkparam_dl(const struct sched_attr *attr)
2901 {
2902 	u64 period, max, min;
2903 
2904 	/* special dl tasks don't actually use any parameter */
2905 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2906 		return true;
2907 
2908 	/* deadline != 0 */
2909 	if (attr->sched_deadline == 0)
2910 		return false;
2911 
2912 	/*
2913 	 * Since we truncate DL_SCALE bits, make sure we're at least
2914 	 * that big.
2915 	 */
2916 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2917 		return false;
2918 
2919 	/*
2920 	 * Since we use the MSB for wrap-around and sign issues, make
2921 	 * sure it's not set (mind that period can be equal to zero).
2922 	 */
2923 	if (attr->sched_deadline & (1ULL << 63) ||
2924 	    attr->sched_period & (1ULL << 63))
2925 		return false;
2926 
2927 	period = attr->sched_period;
2928 	if (!period)
2929 		period = attr->sched_deadline;
2930 
2931 	/* runtime <= deadline <= period (if period != 0) */
2932 	if (period < attr->sched_deadline ||
2933 	    attr->sched_deadline < attr->sched_runtime)
2934 		return false;
2935 
2936 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2937 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2938 
2939 	if (period < min || period > max)
2940 		return false;
2941 
2942 	return true;
2943 }
2944 
2945 /*
2946  * This function clears the sched_dl_entity static params.
2947  */
2948 void __dl_clear_params(struct task_struct *p)
2949 {
2950 	struct sched_dl_entity *dl_se = &p->dl;
2951 
2952 	dl_se->dl_runtime		= 0;
2953 	dl_se->dl_deadline		= 0;
2954 	dl_se->dl_period		= 0;
2955 	dl_se->flags			= 0;
2956 	dl_se->dl_bw			= 0;
2957 	dl_se->dl_density		= 0;
2958 
2959 	dl_se->dl_throttled		= 0;
2960 	dl_se->dl_yielded		= 0;
2961 	dl_se->dl_non_contending	= 0;
2962 	dl_se->dl_overrun		= 0;
2963 
2964 #ifdef CONFIG_RT_MUTEXES
2965 	dl_se->pi_se			= dl_se;
2966 #endif
2967 }
2968 
2969 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2970 {
2971 	struct sched_dl_entity *dl_se = &p->dl;
2972 
2973 	if (dl_se->dl_runtime != attr->sched_runtime ||
2974 	    dl_se->dl_deadline != attr->sched_deadline ||
2975 	    dl_se->dl_period != attr->sched_period ||
2976 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2977 		return true;
2978 
2979 	return false;
2980 }
2981 
2982 #ifdef CONFIG_SMP
2983 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2984 				 const struct cpumask *trial)
2985 {
2986 	int ret = 1, trial_cpus;
2987 	struct dl_bw *cur_dl_b;
2988 	unsigned long flags;
2989 
2990 	rcu_read_lock_sched();
2991 	cur_dl_b = dl_bw_of(cpumask_any(cur));
2992 	trial_cpus = cpumask_weight(trial);
2993 
2994 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2995 	if (cur_dl_b->bw != -1 &&
2996 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2997 		ret = 0;
2998 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2999 	rcu_read_unlock_sched();
3000 
3001 	return ret;
3002 }
3003 
3004 int dl_cpu_busy(int cpu, struct task_struct *p)
3005 {
3006 	unsigned long flags, cap;
3007 	struct dl_bw *dl_b;
3008 	bool overflow;
3009 
3010 	rcu_read_lock_sched();
3011 	dl_b = dl_bw_of(cpu);
3012 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3013 	cap = dl_bw_capacity(cpu);
3014 	overflow = __dl_overflow(dl_b, cap, 0, p ? p->dl.dl_bw : 0);
3015 
3016 	if (!overflow && p) {
3017 		/*
3018 		 * We reserve space for this task in the destination
3019 		 * root_domain, as we can't fail after this point.
3020 		 * We will free resources in the source root_domain
3021 		 * later on (see set_cpus_allowed_dl()).
3022 		 */
3023 		__dl_add(dl_b, p->dl.dl_bw, dl_bw_cpus(cpu));
3024 	}
3025 
3026 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3027 	rcu_read_unlock_sched();
3028 
3029 	return overflow ? -EBUSY : 0;
3030 }
3031 #endif
3032 
3033 #ifdef CONFIG_SCHED_DEBUG
3034 void print_dl_stats(struct seq_file *m, int cpu)
3035 {
3036 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3037 }
3038 #endif /* CONFIG_SCHED_DEBUG */
3039