xref: /openbmc/linux/kernel/sched/deadline.c (revision 070ed82e)
1 /*
2  * Deadline Scheduling Class (SCHED_DEADLINE)
3  *
4  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5  *
6  * Tasks that periodically executes their instances for less than their
7  * runtime won't miss any of their deadlines.
8  * Tasks that are not periodic or sporadic or that tries to execute more
9  * than their reserved bandwidth will be slowed down (and may potentially
10  * miss some of their deadlines), and won't affect any other task.
11  *
12  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13  *                    Juri Lelli <juri.lelli@gmail.com>,
14  *                    Michael Trimarchi <michael@amarulasolutions.com>,
15  *                    Fabio Checconi <fchecconi@gmail.com>
16  */
17 #include "sched.h"
18 
19 #include <linux/slab.h>
20 #include <uapi/linux/sched/types.h>
21 
22 struct dl_bandwidth def_dl_bandwidth;
23 
24 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
25 {
26 	return container_of(dl_se, struct task_struct, dl);
27 }
28 
29 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
30 {
31 	return container_of(dl_rq, struct rq, dl);
32 }
33 
34 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
35 {
36 	struct task_struct *p = dl_task_of(dl_se);
37 	struct rq *rq = task_rq(p);
38 
39 	return &rq->dl;
40 }
41 
42 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
43 {
44 	return !RB_EMPTY_NODE(&dl_se->rb_node);
45 }
46 
47 #ifdef CONFIG_SMP
48 static inline struct dl_bw *dl_bw_of(int i)
49 {
50 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
51 			 "sched RCU must be held");
52 	return &cpu_rq(i)->rd->dl_bw;
53 }
54 
55 static inline int dl_bw_cpus(int i)
56 {
57 	struct root_domain *rd = cpu_rq(i)->rd;
58 	int cpus = 0;
59 
60 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
61 			 "sched RCU must be held");
62 	for_each_cpu_and(i, rd->span, cpu_active_mask)
63 		cpus++;
64 
65 	return cpus;
66 }
67 #else
68 static inline struct dl_bw *dl_bw_of(int i)
69 {
70 	return &cpu_rq(i)->dl.dl_bw;
71 }
72 
73 static inline int dl_bw_cpus(int i)
74 {
75 	return 1;
76 }
77 #endif
78 
79 static inline
80 void add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
81 {
82 	u64 old = dl_rq->running_bw;
83 
84 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
85 	dl_rq->running_bw += dl_bw;
86 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
87 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
88 }
89 
90 static inline
91 void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
92 {
93 	u64 old = dl_rq->running_bw;
94 
95 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
96 	dl_rq->running_bw -= dl_bw;
97 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
98 	if (dl_rq->running_bw > old)
99 		dl_rq->running_bw = 0;
100 }
101 
102 static inline
103 void add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
104 {
105 	u64 old = dl_rq->this_bw;
106 
107 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
108 	dl_rq->this_bw += dl_bw;
109 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
110 }
111 
112 static inline
113 void sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
114 {
115 	u64 old = dl_rq->this_bw;
116 
117 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
118 	dl_rq->this_bw -= dl_bw;
119 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
120 	if (dl_rq->this_bw > old)
121 		dl_rq->this_bw = 0;
122 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
123 }
124 
125 void dl_change_utilization(struct task_struct *p, u64 new_bw)
126 {
127 	struct rq *rq;
128 
129 	if (task_on_rq_queued(p))
130 		return;
131 
132 	rq = task_rq(p);
133 	if (p->dl.dl_non_contending) {
134 		sub_running_bw(p->dl.dl_bw, &rq->dl);
135 		p->dl.dl_non_contending = 0;
136 		/*
137 		 * If the timer handler is currently running and the
138 		 * timer cannot be cancelled, inactive_task_timer()
139 		 * will see that dl_not_contending is not set, and
140 		 * will not touch the rq's active utilization,
141 		 * so we are still safe.
142 		 */
143 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
144 			put_task_struct(p);
145 	}
146 	sub_rq_bw(p->dl.dl_bw, &rq->dl);
147 	add_rq_bw(new_bw, &rq->dl);
148 }
149 
150 /*
151  * The utilization of a task cannot be immediately removed from
152  * the rq active utilization (running_bw) when the task blocks.
153  * Instead, we have to wait for the so called "0-lag time".
154  *
155  * If a task blocks before the "0-lag time", a timer (the inactive
156  * timer) is armed, and running_bw is decreased when the timer
157  * fires.
158  *
159  * If the task wakes up again before the inactive timer fires,
160  * the timer is cancelled, whereas if the task wakes up after the
161  * inactive timer fired (and running_bw has been decreased) the
162  * task's utilization has to be added to running_bw again.
163  * A flag in the deadline scheduling entity (dl_non_contending)
164  * is used to avoid race conditions between the inactive timer handler
165  * and task wakeups.
166  *
167  * The following diagram shows how running_bw is updated. A task is
168  * "ACTIVE" when its utilization contributes to running_bw; an
169  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
170  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
171  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
172  * time already passed, which does not contribute to running_bw anymore.
173  *                              +------------------+
174  *             wakeup           |    ACTIVE        |
175  *          +------------------>+   contending     |
176  *          | add_running_bw    |                  |
177  *          |                   +----+------+------+
178  *          |                        |      ^
179  *          |                dequeue |      |
180  * +--------+-------+                |      |
181  * |                |   t >= 0-lag   |      | wakeup
182  * |    INACTIVE    |<---------------+      |
183  * |                | sub_running_bw |      |
184  * +--------+-------+                |      |
185  *          ^                        |      |
186  *          |              t < 0-lag |      |
187  *          |                        |      |
188  *          |                        V      |
189  *          |                   +----+------+------+
190  *          | sub_running_bw    |    ACTIVE        |
191  *          +-------------------+                  |
192  *            inactive timer    |  non contending  |
193  *            fired             +------------------+
194  *
195  * The task_non_contending() function is invoked when a task
196  * blocks, and checks if the 0-lag time already passed or
197  * not (in the first case, it directly updates running_bw;
198  * in the second case, it arms the inactive timer).
199  *
200  * The task_contending() function is invoked when a task wakes
201  * up, and checks if the task is still in the "ACTIVE non contending"
202  * state or not (in the second case, it updates running_bw).
203  */
204 static void task_non_contending(struct task_struct *p)
205 {
206 	struct sched_dl_entity *dl_se = &p->dl;
207 	struct hrtimer *timer = &dl_se->inactive_timer;
208 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
209 	struct rq *rq = rq_of_dl_rq(dl_rq);
210 	s64 zerolag_time;
211 
212 	/*
213 	 * If this is a non-deadline task that has been boosted,
214 	 * do nothing
215 	 */
216 	if (dl_se->dl_runtime == 0)
217 		return;
218 
219 	WARN_ON(hrtimer_active(&dl_se->inactive_timer));
220 	WARN_ON(dl_se->dl_non_contending);
221 
222 	zerolag_time = dl_se->deadline -
223 		 div64_long((dl_se->runtime * dl_se->dl_period),
224 			dl_se->dl_runtime);
225 
226 	/*
227 	 * Using relative times instead of the absolute "0-lag time"
228 	 * allows to simplify the code
229 	 */
230 	zerolag_time -= rq_clock(rq);
231 
232 	/*
233 	 * If the "0-lag time" already passed, decrease the active
234 	 * utilization now, instead of starting a timer
235 	 */
236 	if (zerolag_time < 0) {
237 		if (dl_task(p))
238 			sub_running_bw(dl_se->dl_bw, dl_rq);
239 		if (!dl_task(p) || p->state == TASK_DEAD) {
240 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
241 
242 			if (p->state == TASK_DEAD)
243 				sub_rq_bw(p->dl.dl_bw, &rq->dl);
244 			raw_spin_lock(&dl_b->lock);
245 			__dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
246 			__dl_clear_params(p);
247 			raw_spin_unlock(&dl_b->lock);
248 		}
249 
250 		return;
251 	}
252 
253 	dl_se->dl_non_contending = 1;
254 	get_task_struct(p);
255 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
256 }
257 
258 static void task_contending(struct sched_dl_entity *dl_se, int flags)
259 {
260 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
261 
262 	/*
263 	 * If this is a non-deadline task that has been boosted,
264 	 * do nothing
265 	 */
266 	if (dl_se->dl_runtime == 0)
267 		return;
268 
269 	if (flags & ENQUEUE_MIGRATED)
270 		add_rq_bw(dl_se->dl_bw, dl_rq);
271 
272 	if (dl_se->dl_non_contending) {
273 		dl_se->dl_non_contending = 0;
274 		/*
275 		 * If the timer handler is currently running and the
276 		 * timer cannot be cancelled, inactive_task_timer()
277 		 * will see that dl_not_contending is not set, and
278 		 * will not touch the rq's active utilization,
279 		 * so we are still safe.
280 		 */
281 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
282 			put_task_struct(dl_task_of(dl_se));
283 	} else {
284 		/*
285 		 * Since "dl_non_contending" is not set, the
286 		 * task's utilization has already been removed from
287 		 * active utilization (either when the task blocked,
288 		 * when the "inactive timer" fired).
289 		 * So, add it back.
290 		 */
291 		add_running_bw(dl_se->dl_bw, dl_rq);
292 	}
293 }
294 
295 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
296 {
297 	struct sched_dl_entity *dl_se = &p->dl;
298 
299 	return dl_rq->rb_leftmost == &dl_se->rb_node;
300 }
301 
302 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
303 {
304 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
305 	dl_b->dl_period = period;
306 	dl_b->dl_runtime = runtime;
307 }
308 
309 void init_dl_bw(struct dl_bw *dl_b)
310 {
311 	raw_spin_lock_init(&dl_b->lock);
312 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
313 	if (global_rt_runtime() == RUNTIME_INF)
314 		dl_b->bw = -1;
315 	else
316 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
317 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
318 	dl_b->total_bw = 0;
319 }
320 
321 void init_dl_rq(struct dl_rq *dl_rq)
322 {
323 	dl_rq->rb_root = RB_ROOT;
324 
325 #ifdef CONFIG_SMP
326 	/* zero means no -deadline tasks */
327 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
328 
329 	dl_rq->dl_nr_migratory = 0;
330 	dl_rq->overloaded = 0;
331 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
332 #else
333 	init_dl_bw(&dl_rq->dl_bw);
334 #endif
335 
336 	dl_rq->running_bw = 0;
337 	dl_rq->this_bw = 0;
338 	init_dl_rq_bw_ratio(dl_rq);
339 }
340 
341 #ifdef CONFIG_SMP
342 
343 static inline int dl_overloaded(struct rq *rq)
344 {
345 	return atomic_read(&rq->rd->dlo_count);
346 }
347 
348 static inline void dl_set_overload(struct rq *rq)
349 {
350 	if (!rq->online)
351 		return;
352 
353 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
354 	/*
355 	 * Must be visible before the overload count is
356 	 * set (as in sched_rt.c).
357 	 *
358 	 * Matched by the barrier in pull_dl_task().
359 	 */
360 	smp_wmb();
361 	atomic_inc(&rq->rd->dlo_count);
362 }
363 
364 static inline void dl_clear_overload(struct rq *rq)
365 {
366 	if (!rq->online)
367 		return;
368 
369 	atomic_dec(&rq->rd->dlo_count);
370 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
371 }
372 
373 static void update_dl_migration(struct dl_rq *dl_rq)
374 {
375 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
376 		if (!dl_rq->overloaded) {
377 			dl_set_overload(rq_of_dl_rq(dl_rq));
378 			dl_rq->overloaded = 1;
379 		}
380 	} else if (dl_rq->overloaded) {
381 		dl_clear_overload(rq_of_dl_rq(dl_rq));
382 		dl_rq->overloaded = 0;
383 	}
384 }
385 
386 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
387 {
388 	struct task_struct *p = dl_task_of(dl_se);
389 
390 	if (p->nr_cpus_allowed > 1)
391 		dl_rq->dl_nr_migratory++;
392 
393 	update_dl_migration(dl_rq);
394 }
395 
396 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
397 {
398 	struct task_struct *p = dl_task_of(dl_se);
399 
400 	if (p->nr_cpus_allowed > 1)
401 		dl_rq->dl_nr_migratory--;
402 
403 	update_dl_migration(dl_rq);
404 }
405 
406 /*
407  * The list of pushable -deadline task is not a plist, like in
408  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
409  */
410 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
411 {
412 	struct dl_rq *dl_rq = &rq->dl;
413 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
414 	struct rb_node *parent = NULL;
415 	struct task_struct *entry;
416 	int leftmost = 1;
417 
418 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
419 
420 	while (*link) {
421 		parent = *link;
422 		entry = rb_entry(parent, struct task_struct,
423 				 pushable_dl_tasks);
424 		if (dl_entity_preempt(&p->dl, &entry->dl))
425 			link = &parent->rb_left;
426 		else {
427 			link = &parent->rb_right;
428 			leftmost = 0;
429 		}
430 	}
431 
432 	if (leftmost) {
433 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
434 		dl_rq->earliest_dl.next = p->dl.deadline;
435 	}
436 
437 	rb_link_node(&p->pushable_dl_tasks, parent, link);
438 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
439 }
440 
441 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
442 {
443 	struct dl_rq *dl_rq = &rq->dl;
444 
445 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
446 		return;
447 
448 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
449 		struct rb_node *next_node;
450 
451 		next_node = rb_next(&p->pushable_dl_tasks);
452 		dl_rq->pushable_dl_tasks_leftmost = next_node;
453 		if (next_node) {
454 			dl_rq->earliest_dl.next = rb_entry(next_node,
455 				struct task_struct, pushable_dl_tasks)->dl.deadline;
456 		}
457 	}
458 
459 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
460 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
461 }
462 
463 static inline int has_pushable_dl_tasks(struct rq *rq)
464 {
465 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
466 }
467 
468 static int push_dl_task(struct rq *rq);
469 
470 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
471 {
472 	return dl_task(prev);
473 }
474 
475 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
476 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
477 
478 static void push_dl_tasks(struct rq *);
479 static void pull_dl_task(struct rq *);
480 
481 static inline void queue_push_tasks(struct rq *rq)
482 {
483 	if (!has_pushable_dl_tasks(rq))
484 		return;
485 
486 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
487 }
488 
489 static inline void queue_pull_task(struct rq *rq)
490 {
491 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
492 }
493 
494 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
495 
496 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
497 {
498 	struct rq *later_rq = NULL;
499 
500 	later_rq = find_lock_later_rq(p, rq);
501 	if (!later_rq) {
502 		int cpu;
503 
504 		/*
505 		 * If we cannot preempt any rq, fall back to pick any
506 		 * online cpu.
507 		 */
508 		cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
509 		if (cpu >= nr_cpu_ids) {
510 			/*
511 			 * Fail to find any suitable cpu.
512 			 * The task will never come back!
513 			 */
514 			BUG_ON(dl_bandwidth_enabled());
515 
516 			/*
517 			 * If admission control is disabled we
518 			 * try a little harder to let the task
519 			 * run.
520 			 */
521 			cpu = cpumask_any(cpu_active_mask);
522 		}
523 		later_rq = cpu_rq(cpu);
524 		double_lock_balance(rq, later_rq);
525 	}
526 
527 	set_task_cpu(p, later_rq->cpu);
528 	double_unlock_balance(later_rq, rq);
529 
530 	return later_rq;
531 }
532 
533 #else
534 
535 static inline
536 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
537 {
538 }
539 
540 static inline
541 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
542 {
543 }
544 
545 static inline
546 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
547 {
548 }
549 
550 static inline
551 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
552 {
553 }
554 
555 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
556 {
557 	return false;
558 }
559 
560 static inline void pull_dl_task(struct rq *rq)
561 {
562 }
563 
564 static inline void queue_push_tasks(struct rq *rq)
565 {
566 }
567 
568 static inline void queue_pull_task(struct rq *rq)
569 {
570 }
571 #endif /* CONFIG_SMP */
572 
573 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
574 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
575 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
576 				  int flags);
577 
578 /*
579  * We are being explicitly informed that a new instance is starting,
580  * and this means that:
581  *  - the absolute deadline of the entity has to be placed at
582  *    current time + relative deadline;
583  *  - the runtime of the entity has to be set to the maximum value.
584  *
585  * The capability of specifying such event is useful whenever a -deadline
586  * entity wants to (try to!) synchronize its behaviour with the scheduler's
587  * one, and to (try to!) reconcile itself with its own scheduling
588  * parameters.
589  */
590 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
591 {
592 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
593 	struct rq *rq = rq_of_dl_rq(dl_rq);
594 
595 	WARN_ON(dl_se->dl_boosted);
596 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
597 
598 	/*
599 	 * We are racing with the deadline timer. So, do nothing because
600 	 * the deadline timer handler will take care of properly recharging
601 	 * the runtime and postponing the deadline
602 	 */
603 	if (dl_se->dl_throttled)
604 		return;
605 
606 	/*
607 	 * We use the regular wall clock time to set deadlines in the
608 	 * future; in fact, we must consider execution overheads (time
609 	 * spent on hardirq context, etc.).
610 	 */
611 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
612 	dl_se->runtime = dl_se->dl_runtime;
613 }
614 
615 /*
616  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
617  * possibility of a entity lasting more than what it declared, and thus
618  * exhausting its runtime.
619  *
620  * Here we are interested in making runtime overrun possible, but we do
621  * not want a entity which is misbehaving to affect the scheduling of all
622  * other entities.
623  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
624  * is used, in order to confine each entity within its own bandwidth.
625  *
626  * This function deals exactly with that, and ensures that when the runtime
627  * of a entity is replenished, its deadline is also postponed. That ensures
628  * the overrunning entity can't interfere with other entity in the system and
629  * can't make them miss their deadlines. Reasons why this kind of overruns
630  * could happen are, typically, a entity voluntarily trying to overcome its
631  * runtime, or it just underestimated it during sched_setattr().
632  */
633 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
634 				struct sched_dl_entity *pi_se)
635 {
636 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
637 	struct rq *rq = rq_of_dl_rq(dl_rq);
638 
639 	BUG_ON(pi_se->dl_runtime <= 0);
640 
641 	/*
642 	 * This could be the case for a !-dl task that is boosted.
643 	 * Just go with full inherited parameters.
644 	 */
645 	if (dl_se->dl_deadline == 0) {
646 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
647 		dl_se->runtime = pi_se->dl_runtime;
648 	}
649 
650 	if (dl_se->dl_yielded && dl_se->runtime > 0)
651 		dl_se->runtime = 0;
652 
653 	/*
654 	 * We keep moving the deadline away until we get some
655 	 * available runtime for the entity. This ensures correct
656 	 * handling of situations where the runtime overrun is
657 	 * arbitrary large.
658 	 */
659 	while (dl_se->runtime <= 0) {
660 		dl_se->deadline += pi_se->dl_period;
661 		dl_se->runtime += pi_se->dl_runtime;
662 	}
663 
664 	/*
665 	 * At this point, the deadline really should be "in
666 	 * the future" with respect to rq->clock. If it's
667 	 * not, we are, for some reason, lagging too much!
668 	 * Anyway, after having warn userspace abut that,
669 	 * we still try to keep the things running by
670 	 * resetting the deadline and the budget of the
671 	 * entity.
672 	 */
673 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
674 		printk_deferred_once("sched: DL replenish lagged too much\n");
675 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
676 		dl_se->runtime = pi_se->dl_runtime;
677 	}
678 
679 	if (dl_se->dl_yielded)
680 		dl_se->dl_yielded = 0;
681 	if (dl_se->dl_throttled)
682 		dl_se->dl_throttled = 0;
683 }
684 
685 /*
686  * Here we check if --at time t-- an entity (which is probably being
687  * [re]activated or, in general, enqueued) can use its remaining runtime
688  * and its current deadline _without_ exceeding the bandwidth it is
689  * assigned (function returns true if it can't). We are in fact applying
690  * one of the CBS rules: when a task wakes up, if the residual runtime
691  * over residual deadline fits within the allocated bandwidth, then we
692  * can keep the current (absolute) deadline and residual budget without
693  * disrupting the schedulability of the system. Otherwise, we should
694  * refill the runtime and set the deadline a period in the future,
695  * because keeping the current (absolute) deadline of the task would
696  * result in breaking guarantees promised to other tasks (refer to
697  * Documentation/scheduler/sched-deadline.txt for more informations).
698  *
699  * This function returns true if:
700  *
701  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
702  *
703  * IOW we can't recycle current parameters.
704  *
705  * Notice that the bandwidth check is done against the deadline. For
706  * task with deadline equal to period this is the same of using
707  * dl_period instead of dl_deadline in the equation above.
708  */
709 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
710 			       struct sched_dl_entity *pi_se, u64 t)
711 {
712 	u64 left, right;
713 
714 	/*
715 	 * left and right are the two sides of the equation above,
716 	 * after a bit of shuffling to use multiplications instead
717 	 * of divisions.
718 	 *
719 	 * Note that none of the time values involved in the two
720 	 * multiplications are absolute: dl_deadline and dl_runtime
721 	 * are the relative deadline and the maximum runtime of each
722 	 * instance, runtime is the runtime left for the last instance
723 	 * and (deadline - t), since t is rq->clock, is the time left
724 	 * to the (absolute) deadline. Even if overflowing the u64 type
725 	 * is very unlikely to occur in both cases, here we scale down
726 	 * as we want to avoid that risk at all. Scaling down by 10
727 	 * means that we reduce granularity to 1us. We are fine with it,
728 	 * since this is only a true/false check and, anyway, thinking
729 	 * of anything below microseconds resolution is actually fiction
730 	 * (but still we want to give the user that illusion >;).
731 	 */
732 	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
733 	right = ((dl_se->deadline - t) >> DL_SCALE) *
734 		(pi_se->dl_runtime >> DL_SCALE);
735 
736 	return dl_time_before(right, left);
737 }
738 
739 /*
740  * Revised wakeup rule [1]: For self-suspending tasks, rather then
741  * re-initializing task's runtime and deadline, the revised wakeup
742  * rule adjusts the task's runtime to avoid the task to overrun its
743  * density.
744  *
745  * Reasoning: a task may overrun the density if:
746  *    runtime / (deadline - t) > dl_runtime / dl_deadline
747  *
748  * Therefore, runtime can be adjusted to:
749  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
750  *
751  * In such way that runtime will be equal to the maximum density
752  * the task can use without breaking any rule.
753  *
754  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
755  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
756  */
757 static void
758 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
759 {
760 	u64 laxity = dl_se->deadline - rq_clock(rq);
761 
762 	/*
763 	 * If the task has deadline < period, and the deadline is in the past,
764 	 * it should already be throttled before this check.
765 	 *
766 	 * See update_dl_entity() comments for further details.
767 	 */
768 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
769 
770 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
771 }
772 
773 /*
774  * Regarding the deadline, a task with implicit deadline has a relative
775  * deadline == relative period. A task with constrained deadline has a
776  * relative deadline <= relative period.
777  *
778  * We support constrained deadline tasks. However, there are some restrictions
779  * applied only for tasks which do not have an implicit deadline. See
780  * update_dl_entity() to know more about such restrictions.
781  *
782  * The dl_is_implicit() returns true if the task has an implicit deadline.
783  */
784 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
785 {
786 	return dl_se->dl_deadline == dl_se->dl_period;
787 }
788 
789 /*
790  * When a deadline entity is placed in the runqueue, its runtime and deadline
791  * might need to be updated. This is done by a CBS wake up rule. There are two
792  * different rules: 1) the original CBS; and 2) the Revisited CBS.
793  *
794  * When the task is starting a new period, the Original CBS is used. In this
795  * case, the runtime is replenished and a new absolute deadline is set.
796  *
797  * When a task is queued before the begin of the next period, using the
798  * remaining runtime and deadline could make the entity to overflow, see
799  * dl_entity_overflow() to find more about runtime overflow. When such case
800  * is detected, the runtime and deadline need to be updated.
801  *
802  * If the task has an implicit deadline, i.e., deadline == period, the Original
803  * CBS is applied. the runtime is replenished and a new absolute deadline is
804  * set, as in the previous cases.
805  *
806  * However, the Original CBS does not work properly for tasks with
807  * deadline < period, which are said to have a constrained deadline. By
808  * applying the Original CBS, a constrained deadline task would be able to run
809  * runtime/deadline in a period. With deadline < period, the task would
810  * overrun the runtime/period allowed bandwidth, breaking the admission test.
811  *
812  * In order to prevent this misbehave, the Revisited CBS is used for
813  * constrained deadline tasks when a runtime overflow is detected. In the
814  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
815  * the remaining runtime of the task is reduced to avoid runtime overflow.
816  * Please refer to the comments update_dl_revised_wakeup() function to find
817  * more about the Revised CBS rule.
818  */
819 static void update_dl_entity(struct sched_dl_entity *dl_se,
820 			     struct sched_dl_entity *pi_se)
821 {
822 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
823 	struct rq *rq = rq_of_dl_rq(dl_rq);
824 
825 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
826 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
827 
828 		if (unlikely(!dl_is_implicit(dl_se) &&
829 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
830 			     !dl_se->dl_boosted)){
831 			update_dl_revised_wakeup(dl_se, rq);
832 			return;
833 		}
834 
835 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
836 		dl_se->runtime = pi_se->dl_runtime;
837 	}
838 }
839 
840 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
841 {
842 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
843 }
844 
845 /*
846  * If the entity depleted all its runtime, and if we want it to sleep
847  * while waiting for some new execution time to become available, we
848  * set the bandwidth replenishment timer to the replenishment instant
849  * and try to activate it.
850  *
851  * Notice that it is important for the caller to know if the timer
852  * actually started or not (i.e., the replenishment instant is in
853  * the future or in the past).
854  */
855 static int start_dl_timer(struct task_struct *p)
856 {
857 	struct sched_dl_entity *dl_se = &p->dl;
858 	struct hrtimer *timer = &dl_se->dl_timer;
859 	struct rq *rq = task_rq(p);
860 	ktime_t now, act;
861 	s64 delta;
862 
863 	lockdep_assert_held(&rq->lock);
864 
865 	/*
866 	 * We want the timer to fire at the deadline, but considering
867 	 * that it is actually coming from rq->clock and not from
868 	 * hrtimer's time base reading.
869 	 */
870 	act = ns_to_ktime(dl_next_period(dl_se));
871 	now = hrtimer_cb_get_time(timer);
872 	delta = ktime_to_ns(now) - rq_clock(rq);
873 	act = ktime_add_ns(act, delta);
874 
875 	/*
876 	 * If the expiry time already passed, e.g., because the value
877 	 * chosen as the deadline is too small, don't even try to
878 	 * start the timer in the past!
879 	 */
880 	if (ktime_us_delta(act, now) < 0)
881 		return 0;
882 
883 	/*
884 	 * !enqueued will guarantee another callback; even if one is already in
885 	 * progress. This ensures a balanced {get,put}_task_struct().
886 	 *
887 	 * The race against __run_timer() clearing the enqueued state is
888 	 * harmless because we're holding task_rq()->lock, therefore the timer
889 	 * expiring after we've done the check will wait on its task_rq_lock()
890 	 * and observe our state.
891 	 */
892 	if (!hrtimer_is_queued(timer)) {
893 		get_task_struct(p);
894 		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
895 	}
896 
897 	return 1;
898 }
899 
900 /*
901  * This is the bandwidth enforcement timer callback. If here, we know
902  * a task is not on its dl_rq, since the fact that the timer was running
903  * means the task is throttled and needs a runtime replenishment.
904  *
905  * However, what we actually do depends on the fact the task is active,
906  * (it is on its rq) or has been removed from there by a call to
907  * dequeue_task_dl(). In the former case we must issue the runtime
908  * replenishment and add the task back to the dl_rq; in the latter, we just
909  * do nothing but clearing dl_throttled, so that runtime and deadline
910  * updating (and the queueing back to dl_rq) will be done by the
911  * next call to enqueue_task_dl().
912  */
913 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
914 {
915 	struct sched_dl_entity *dl_se = container_of(timer,
916 						     struct sched_dl_entity,
917 						     dl_timer);
918 	struct task_struct *p = dl_task_of(dl_se);
919 	struct rq_flags rf;
920 	struct rq *rq;
921 
922 	rq = task_rq_lock(p, &rf);
923 
924 	/*
925 	 * The task might have changed its scheduling policy to something
926 	 * different than SCHED_DEADLINE (through switched_from_dl()).
927 	 */
928 	if (!dl_task(p))
929 		goto unlock;
930 
931 	/*
932 	 * The task might have been boosted by someone else and might be in the
933 	 * boosting/deboosting path, its not throttled.
934 	 */
935 	if (dl_se->dl_boosted)
936 		goto unlock;
937 
938 	/*
939 	 * Spurious timer due to start_dl_timer() race; or we already received
940 	 * a replenishment from rt_mutex_setprio().
941 	 */
942 	if (!dl_se->dl_throttled)
943 		goto unlock;
944 
945 	sched_clock_tick();
946 	update_rq_clock(rq);
947 
948 	/*
949 	 * If the throttle happened during sched-out; like:
950 	 *
951 	 *   schedule()
952 	 *     deactivate_task()
953 	 *       dequeue_task_dl()
954 	 *         update_curr_dl()
955 	 *           start_dl_timer()
956 	 *         __dequeue_task_dl()
957 	 *     prev->on_rq = 0;
958 	 *
959 	 * We can be both throttled and !queued. Replenish the counter
960 	 * but do not enqueue -- wait for our wakeup to do that.
961 	 */
962 	if (!task_on_rq_queued(p)) {
963 		replenish_dl_entity(dl_se, dl_se);
964 		goto unlock;
965 	}
966 
967 #ifdef CONFIG_SMP
968 	if (unlikely(!rq->online)) {
969 		/*
970 		 * If the runqueue is no longer available, migrate the
971 		 * task elsewhere. This necessarily changes rq.
972 		 */
973 		lockdep_unpin_lock(&rq->lock, rf.cookie);
974 		rq = dl_task_offline_migration(rq, p);
975 		rf.cookie = lockdep_pin_lock(&rq->lock);
976 		update_rq_clock(rq);
977 
978 		/*
979 		 * Now that the task has been migrated to the new RQ and we
980 		 * have that locked, proceed as normal and enqueue the task
981 		 * there.
982 		 */
983 	}
984 #endif
985 
986 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
987 	if (dl_task(rq->curr))
988 		check_preempt_curr_dl(rq, p, 0);
989 	else
990 		resched_curr(rq);
991 
992 #ifdef CONFIG_SMP
993 	/*
994 	 * Queueing this task back might have overloaded rq, check if we need
995 	 * to kick someone away.
996 	 */
997 	if (has_pushable_dl_tasks(rq)) {
998 		/*
999 		 * Nothing relies on rq->lock after this, so its safe to drop
1000 		 * rq->lock.
1001 		 */
1002 		rq_unpin_lock(rq, &rf);
1003 		push_dl_task(rq);
1004 		rq_repin_lock(rq, &rf);
1005 	}
1006 #endif
1007 
1008 unlock:
1009 	task_rq_unlock(rq, p, &rf);
1010 
1011 	/*
1012 	 * This can free the task_struct, including this hrtimer, do not touch
1013 	 * anything related to that after this.
1014 	 */
1015 	put_task_struct(p);
1016 
1017 	return HRTIMER_NORESTART;
1018 }
1019 
1020 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1021 {
1022 	struct hrtimer *timer = &dl_se->dl_timer;
1023 
1024 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1025 	timer->function = dl_task_timer;
1026 }
1027 
1028 /*
1029  * During the activation, CBS checks if it can reuse the current task's
1030  * runtime and period. If the deadline of the task is in the past, CBS
1031  * cannot use the runtime, and so it replenishes the task. This rule
1032  * works fine for implicit deadline tasks (deadline == period), and the
1033  * CBS was designed for implicit deadline tasks. However, a task with
1034  * constrained deadline (deadine < period) might be awakened after the
1035  * deadline, but before the next period. In this case, replenishing the
1036  * task would allow it to run for runtime / deadline. As in this case
1037  * deadline < period, CBS enables a task to run for more than the
1038  * runtime / period. In a very loaded system, this can cause a domino
1039  * effect, making other tasks miss their deadlines.
1040  *
1041  * To avoid this problem, in the activation of a constrained deadline
1042  * task after the deadline but before the next period, throttle the
1043  * task and set the replenishing timer to the begin of the next period,
1044  * unless it is boosted.
1045  */
1046 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1047 {
1048 	struct task_struct *p = dl_task_of(dl_se);
1049 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1050 
1051 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1052 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1053 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1054 			return;
1055 		dl_se->dl_throttled = 1;
1056 		if (dl_se->runtime > 0)
1057 			dl_se->runtime = 0;
1058 	}
1059 }
1060 
1061 static
1062 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1063 {
1064 	return (dl_se->runtime <= 0);
1065 }
1066 
1067 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1068 
1069 /*
1070  * This function implements the GRUB accounting rule:
1071  * according to the GRUB reclaiming algorithm, the runtime is
1072  * not decreased as "dq = -dt", but as
1073  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1074  * where u is the utilization of the task, Umax is the maximum reclaimable
1075  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1076  * as the difference between the "total runqueue utilization" and the
1077  * runqueue active utilization, and Uextra is the (per runqueue) extra
1078  * reclaimable utilization.
1079  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1080  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1081  * BW_SHIFT.
1082  * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1083  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1084  * Since delta is a 64 bit variable, to have an overflow its value
1085  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1086  * So, overflow is not an issue here.
1087  */
1088 u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1089 {
1090 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1091 	u64 u_act;
1092 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1093 
1094 	/*
1095 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1096 	 * we compare u_inact + rq->dl.extra_bw with
1097 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1098 	 * u_inact + rq->dl.extra_bw can be larger than
1099 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1100 	 * leading to wrong results)
1101 	 */
1102 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1103 		u_act = u_act_min;
1104 	else
1105 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1106 
1107 	return (delta * u_act) >> BW_SHIFT;
1108 }
1109 
1110 /*
1111  * Update the current task's runtime statistics (provided it is still
1112  * a -deadline task and has not been removed from the dl_rq).
1113  */
1114 static void update_curr_dl(struct rq *rq)
1115 {
1116 	struct task_struct *curr = rq->curr;
1117 	struct sched_dl_entity *dl_se = &curr->dl;
1118 	u64 delta_exec;
1119 
1120 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1121 		return;
1122 
1123 	/*
1124 	 * Consumed budget is computed considering the time as
1125 	 * observed by schedulable tasks (excluding time spent
1126 	 * in hardirq context, etc.). Deadlines are instead
1127 	 * computed using hard walltime. This seems to be the more
1128 	 * natural solution, but the full ramifications of this
1129 	 * approach need further study.
1130 	 */
1131 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
1132 	if (unlikely((s64)delta_exec <= 0)) {
1133 		if (unlikely(dl_se->dl_yielded))
1134 			goto throttle;
1135 		return;
1136 	}
1137 
1138 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
1139 	cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL);
1140 
1141 	schedstat_set(curr->se.statistics.exec_max,
1142 		      max(curr->se.statistics.exec_max, delta_exec));
1143 
1144 	curr->se.sum_exec_runtime += delta_exec;
1145 	account_group_exec_runtime(curr, delta_exec);
1146 
1147 	curr->se.exec_start = rq_clock_task(rq);
1148 	cpuacct_charge(curr, delta_exec);
1149 
1150 	sched_rt_avg_update(rq, delta_exec);
1151 
1152 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM))
1153 		delta_exec = grub_reclaim(delta_exec, rq, &curr->dl);
1154 	dl_se->runtime -= delta_exec;
1155 
1156 throttle:
1157 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1158 		dl_se->dl_throttled = 1;
1159 		__dequeue_task_dl(rq, curr, 0);
1160 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1161 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1162 
1163 		if (!is_leftmost(curr, &rq->dl))
1164 			resched_curr(rq);
1165 	}
1166 
1167 	/*
1168 	 * Because -- for now -- we share the rt bandwidth, we need to
1169 	 * account our runtime there too, otherwise actual rt tasks
1170 	 * would be able to exceed the shared quota.
1171 	 *
1172 	 * Account to the root rt group for now.
1173 	 *
1174 	 * The solution we're working towards is having the RT groups scheduled
1175 	 * using deadline servers -- however there's a few nasties to figure
1176 	 * out before that can happen.
1177 	 */
1178 	if (rt_bandwidth_enabled()) {
1179 		struct rt_rq *rt_rq = &rq->rt;
1180 
1181 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1182 		/*
1183 		 * We'll let actual RT tasks worry about the overflow here, we
1184 		 * have our own CBS to keep us inline; only account when RT
1185 		 * bandwidth is relevant.
1186 		 */
1187 		if (sched_rt_bandwidth_account(rt_rq))
1188 			rt_rq->rt_time += delta_exec;
1189 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1190 	}
1191 }
1192 
1193 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1194 {
1195 	struct sched_dl_entity *dl_se = container_of(timer,
1196 						     struct sched_dl_entity,
1197 						     inactive_timer);
1198 	struct task_struct *p = dl_task_of(dl_se);
1199 	struct rq_flags rf;
1200 	struct rq *rq;
1201 
1202 	rq = task_rq_lock(p, &rf);
1203 
1204 	if (!dl_task(p) || p->state == TASK_DEAD) {
1205 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1206 
1207 		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1208 			sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
1209 			sub_rq_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
1210 			dl_se->dl_non_contending = 0;
1211 		}
1212 
1213 		raw_spin_lock(&dl_b->lock);
1214 		__dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1215 		raw_spin_unlock(&dl_b->lock);
1216 		__dl_clear_params(p);
1217 
1218 		goto unlock;
1219 	}
1220 	if (dl_se->dl_non_contending == 0)
1221 		goto unlock;
1222 
1223 	sched_clock_tick();
1224 	update_rq_clock(rq);
1225 
1226 	sub_running_bw(dl_se->dl_bw, &rq->dl);
1227 	dl_se->dl_non_contending = 0;
1228 unlock:
1229 	task_rq_unlock(rq, p, &rf);
1230 	put_task_struct(p);
1231 
1232 	return HRTIMER_NORESTART;
1233 }
1234 
1235 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1236 {
1237 	struct hrtimer *timer = &dl_se->inactive_timer;
1238 
1239 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1240 	timer->function = inactive_task_timer;
1241 }
1242 
1243 #ifdef CONFIG_SMP
1244 
1245 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1246 {
1247 	struct rq *rq = rq_of_dl_rq(dl_rq);
1248 
1249 	if (dl_rq->earliest_dl.curr == 0 ||
1250 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1251 		dl_rq->earliest_dl.curr = deadline;
1252 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1253 	}
1254 }
1255 
1256 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1257 {
1258 	struct rq *rq = rq_of_dl_rq(dl_rq);
1259 
1260 	/*
1261 	 * Since we may have removed our earliest (and/or next earliest)
1262 	 * task we must recompute them.
1263 	 */
1264 	if (!dl_rq->dl_nr_running) {
1265 		dl_rq->earliest_dl.curr = 0;
1266 		dl_rq->earliest_dl.next = 0;
1267 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1268 	} else {
1269 		struct rb_node *leftmost = dl_rq->rb_leftmost;
1270 		struct sched_dl_entity *entry;
1271 
1272 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1273 		dl_rq->earliest_dl.curr = entry->deadline;
1274 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1275 	}
1276 }
1277 
1278 #else
1279 
1280 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1281 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1282 
1283 #endif /* CONFIG_SMP */
1284 
1285 static inline
1286 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1287 {
1288 	int prio = dl_task_of(dl_se)->prio;
1289 	u64 deadline = dl_se->deadline;
1290 
1291 	WARN_ON(!dl_prio(prio));
1292 	dl_rq->dl_nr_running++;
1293 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1294 
1295 	inc_dl_deadline(dl_rq, deadline);
1296 	inc_dl_migration(dl_se, dl_rq);
1297 }
1298 
1299 static inline
1300 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1301 {
1302 	int prio = dl_task_of(dl_se)->prio;
1303 
1304 	WARN_ON(!dl_prio(prio));
1305 	WARN_ON(!dl_rq->dl_nr_running);
1306 	dl_rq->dl_nr_running--;
1307 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1308 
1309 	dec_dl_deadline(dl_rq, dl_se->deadline);
1310 	dec_dl_migration(dl_se, dl_rq);
1311 }
1312 
1313 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1314 {
1315 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1316 	struct rb_node **link = &dl_rq->rb_root.rb_node;
1317 	struct rb_node *parent = NULL;
1318 	struct sched_dl_entity *entry;
1319 	int leftmost = 1;
1320 
1321 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1322 
1323 	while (*link) {
1324 		parent = *link;
1325 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1326 		if (dl_time_before(dl_se->deadline, entry->deadline))
1327 			link = &parent->rb_left;
1328 		else {
1329 			link = &parent->rb_right;
1330 			leftmost = 0;
1331 		}
1332 	}
1333 
1334 	if (leftmost)
1335 		dl_rq->rb_leftmost = &dl_se->rb_node;
1336 
1337 	rb_link_node(&dl_se->rb_node, parent, link);
1338 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
1339 
1340 	inc_dl_tasks(dl_se, dl_rq);
1341 }
1342 
1343 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1344 {
1345 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1346 
1347 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1348 		return;
1349 
1350 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
1351 		struct rb_node *next_node;
1352 
1353 		next_node = rb_next(&dl_se->rb_node);
1354 		dl_rq->rb_leftmost = next_node;
1355 	}
1356 
1357 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
1358 	RB_CLEAR_NODE(&dl_se->rb_node);
1359 
1360 	dec_dl_tasks(dl_se, dl_rq);
1361 }
1362 
1363 static void
1364 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1365 		  struct sched_dl_entity *pi_se, int flags)
1366 {
1367 	BUG_ON(on_dl_rq(dl_se));
1368 
1369 	/*
1370 	 * If this is a wakeup or a new instance, the scheduling
1371 	 * parameters of the task might need updating. Otherwise,
1372 	 * we want a replenishment of its runtime.
1373 	 */
1374 	if (flags & ENQUEUE_WAKEUP) {
1375 		task_contending(dl_se, flags);
1376 		update_dl_entity(dl_se, pi_se);
1377 	} else if (flags & ENQUEUE_REPLENISH) {
1378 		replenish_dl_entity(dl_se, pi_se);
1379 	}
1380 
1381 	__enqueue_dl_entity(dl_se);
1382 }
1383 
1384 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1385 {
1386 	__dequeue_dl_entity(dl_se);
1387 }
1388 
1389 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1390 {
1391 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1392 	struct sched_dl_entity *pi_se = &p->dl;
1393 
1394 	/*
1395 	 * Use the scheduling parameters of the top pi-waiter task if:
1396 	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1397 	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1398 	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1399 	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1400 	 * Otherwise we keep our runtime and deadline.
1401 	 */
1402 	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1403 		pi_se = &pi_task->dl;
1404 	} else if (!dl_prio(p->normal_prio)) {
1405 		/*
1406 		 * Special case in which we have a !SCHED_DEADLINE task
1407 		 * that is going to be deboosted, but exceeds its
1408 		 * runtime while doing so. No point in replenishing
1409 		 * it, as it's going to return back to its original
1410 		 * scheduling class after this.
1411 		 */
1412 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1413 		return;
1414 	}
1415 
1416 	/*
1417 	 * Check if a constrained deadline task was activated
1418 	 * after the deadline but before the next period.
1419 	 * If that is the case, the task will be throttled and
1420 	 * the replenishment timer will be set to the next period.
1421 	 */
1422 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1423 		dl_check_constrained_dl(&p->dl);
1424 
1425 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1426 		add_rq_bw(p->dl.dl_bw, &rq->dl);
1427 		add_running_bw(p->dl.dl_bw, &rq->dl);
1428 	}
1429 
1430 	/*
1431 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1432 	 * its budget it needs a replenishment and, since it now is on
1433 	 * its rq, the bandwidth timer callback (which clearly has not
1434 	 * run yet) will take care of this.
1435 	 * However, the active utilization does not depend on the fact
1436 	 * that the task is on the runqueue or not (but depends on the
1437 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1438 	 * In other words, even if a task is throttled its utilization must
1439 	 * be counted in the active utilization; hence, we need to call
1440 	 * add_running_bw().
1441 	 */
1442 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1443 		if (flags & ENQUEUE_WAKEUP)
1444 			task_contending(&p->dl, flags);
1445 
1446 		return;
1447 	}
1448 
1449 	enqueue_dl_entity(&p->dl, pi_se, flags);
1450 
1451 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1452 		enqueue_pushable_dl_task(rq, p);
1453 }
1454 
1455 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1456 {
1457 	dequeue_dl_entity(&p->dl);
1458 	dequeue_pushable_dl_task(rq, p);
1459 }
1460 
1461 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1462 {
1463 	update_curr_dl(rq);
1464 	__dequeue_task_dl(rq, p, flags);
1465 
1466 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1467 		sub_running_bw(p->dl.dl_bw, &rq->dl);
1468 		sub_rq_bw(p->dl.dl_bw, &rq->dl);
1469 	}
1470 
1471 	/*
1472 	 * This check allows to start the inactive timer (or to immediately
1473 	 * decrease the active utilization, if needed) in two cases:
1474 	 * when the task blocks and when it is terminating
1475 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1476 	 * way, because from GRUB's point of view the same thing is happening
1477 	 * (the task moves from "active contending" to "active non contending"
1478 	 * or "inactive")
1479 	 */
1480 	if (flags & DEQUEUE_SLEEP)
1481 		task_non_contending(p);
1482 }
1483 
1484 /*
1485  * Yield task semantic for -deadline tasks is:
1486  *
1487  *   get off from the CPU until our next instance, with
1488  *   a new runtime. This is of little use now, since we
1489  *   don't have a bandwidth reclaiming mechanism. Anyway,
1490  *   bandwidth reclaiming is planned for the future, and
1491  *   yield_task_dl will indicate that some spare budget
1492  *   is available for other task instances to use it.
1493  */
1494 static void yield_task_dl(struct rq *rq)
1495 {
1496 	/*
1497 	 * We make the task go to sleep until its current deadline by
1498 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1499 	 * it and the bandwidth timer will wake it up and will give it
1500 	 * new scheduling parameters (thanks to dl_yielded=1).
1501 	 */
1502 	rq->curr->dl.dl_yielded = 1;
1503 
1504 	update_rq_clock(rq);
1505 	update_curr_dl(rq);
1506 	/*
1507 	 * Tell update_rq_clock() that we've just updated,
1508 	 * so we don't do microscopic update in schedule()
1509 	 * and double the fastpath cost.
1510 	 */
1511 	rq_clock_skip_update(rq, true);
1512 }
1513 
1514 #ifdef CONFIG_SMP
1515 
1516 static int find_later_rq(struct task_struct *task);
1517 
1518 static int
1519 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1520 {
1521 	struct task_struct *curr;
1522 	struct rq *rq;
1523 
1524 	if (sd_flag != SD_BALANCE_WAKE)
1525 		goto out;
1526 
1527 	rq = cpu_rq(cpu);
1528 
1529 	rcu_read_lock();
1530 	curr = READ_ONCE(rq->curr); /* unlocked access */
1531 
1532 	/*
1533 	 * If we are dealing with a -deadline task, we must
1534 	 * decide where to wake it up.
1535 	 * If it has a later deadline and the current task
1536 	 * on this rq can't move (provided the waking task
1537 	 * can!) we prefer to send it somewhere else. On the
1538 	 * other hand, if it has a shorter deadline, we
1539 	 * try to make it stay here, it might be important.
1540 	 */
1541 	if (unlikely(dl_task(curr)) &&
1542 	    (curr->nr_cpus_allowed < 2 ||
1543 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1544 	    (p->nr_cpus_allowed > 1)) {
1545 		int target = find_later_rq(p);
1546 
1547 		if (target != -1 &&
1548 				(dl_time_before(p->dl.deadline,
1549 					cpu_rq(target)->dl.earliest_dl.curr) ||
1550 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1551 			cpu = target;
1552 	}
1553 	rcu_read_unlock();
1554 
1555 out:
1556 	return cpu;
1557 }
1558 
1559 static void migrate_task_rq_dl(struct task_struct *p)
1560 {
1561 	struct rq *rq;
1562 
1563 	if (p->state != TASK_WAKING)
1564 		return;
1565 
1566 	rq = task_rq(p);
1567 	/*
1568 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1569 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1570 	 * rq->lock is not... So, lock it
1571 	 */
1572 	raw_spin_lock(&rq->lock);
1573 	if (p->dl.dl_non_contending) {
1574 		sub_running_bw(p->dl.dl_bw, &rq->dl);
1575 		p->dl.dl_non_contending = 0;
1576 		/*
1577 		 * If the timer handler is currently running and the
1578 		 * timer cannot be cancelled, inactive_task_timer()
1579 		 * will see that dl_not_contending is not set, and
1580 		 * will not touch the rq's active utilization,
1581 		 * so we are still safe.
1582 		 */
1583 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1584 			put_task_struct(p);
1585 	}
1586 	sub_rq_bw(p->dl.dl_bw, &rq->dl);
1587 	raw_spin_unlock(&rq->lock);
1588 }
1589 
1590 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1591 {
1592 	/*
1593 	 * Current can't be migrated, useless to reschedule,
1594 	 * let's hope p can move out.
1595 	 */
1596 	if (rq->curr->nr_cpus_allowed == 1 ||
1597 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1598 		return;
1599 
1600 	/*
1601 	 * p is migratable, so let's not schedule it and
1602 	 * see if it is pushed or pulled somewhere else.
1603 	 */
1604 	if (p->nr_cpus_allowed != 1 &&
1605 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1606 		return;
1607 
1608 	resched_curr(rq);
1609 }
1610 
1611 #endif /* CONFIG_SMP */
1612 
1613 /*
1614  * Only called when both the current and waking task are -deadline
1615  * tasks.
1616  */
1617 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1618 				  int flags)
1619 {
1620 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1621 		resched_curr(rq);
1622 		return;
1623 	}
1624 
1625 #ifdef CONFIG_SMP
1626 	/*
1627 	 * In the unlikely case current and p have the same deadline
1628 	 * let us try to decide what's the best thing to do...
1629 	 */
1630 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1631 	    !test_tsk_need_resched(rq->curr))
1632 		check_preempt_equal_dl(rq, p);
1633 #endif /* CONFIG_SMP */
1634 }
1635 
1636 #ifdef CONFIG_SCHED_HRTICK
1637 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1638 {
1639 	hrtick_start(rq, p->dl.runtime);
1640 }
1641 #else /* !CONFIG_SCHED_HRTICK */
1642 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1643 {
1644 }
1645 #endif
1646 
1647 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1648 						   struct dl_rq *dl_rq)
1649 {
1650 	struct rb_node *left = dl_rq->rb_leftmost;
1651 
1652 	if (!left)
1653 		return NULL;
1654 
1655 	return rb_entry(left, struct sched_dl_entity, rb_node);
1656 }
1657 
1658 struct task_struct *
1659 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1660 {
1661 	struct sched_dl_entity *dl_se;
1662 	struct task_struct *p;
1663 	struct dl_rq *dl_rq;
1664 
1665 	dl_rq = &rq->dl;
1666 
1667 	if (need_pull_dl_task(rq, prev)) {
1668 		/*
1669 		 * This is OK, because current is on_cpu, which avoids it being
1670 		 * picked for load-balance and preemption/IRQs are still
1671 		 * disabled avoiding further scheduler activity on it and we're
1672 		 * being very careful to re-start the picking loop.
1673 		 */
1674 		rq_unpin_lock(rq, rf);
1675 		pull_dl_task(rq);
1676 		rq_repin_lock(rq, rf);
1677 		/*
1678 		 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1679 		 * means a stop task can slip in, in which case we need to
1680 		 * re-start task selection.
1681 		 */
1682 		if (rq->stop && task_on_rq_queued(rq->stop))
1683 			return RETRY_TASK;
1684 	}
1685 
1686 	/*
1687 	 * When prev is DL, we may throttle it in put_prev_task().
1688 	 * So, we update time before we check for dl_nr_running.
1689 	 */
1690 	if (prev->sched_class == &dl_sched_class)
1691 		update_curr_dl(rq);
1692 
1693 	if (unlikely(!dl_rq->dl_nr_running))
1694 		return NULL;
1695 
1696 	put_prev_task(rq, prev);
1697 
1698 	dl_se = pick_next_dl_entity(rq, dl_rq);
1699 	BUG_ON(!dl_se);
1700 
1701 	p = dl_task_of(dl_se);
1702 	p->se.exec_start = rq_clock_task(rq);
1703 
1704 	/* Running task will never be pushed. */
1705        dequeue_pushable_dl_task(rq, p);
1706 
1707 	if (hrtick_enabled(rq))
1708 		start_hrtick_dl(rq, p);
1709 
1710 	queue_push_tasks(rq);
1711 
1712 	return p;
1713 }
1714 
1715 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1716 {
1717 	update_curr_dl(rq);
1718 
1719 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1720 		enqueue_pushable_dl_task(rq, p);
1721 }
1722 
1723 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1724 {
1725 	update_curr_dl(rq);
1726 
1727 	/*
1728 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1729 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1730 	 * be set and schedule() will start a new hrtick for the next task.
1731 	 */
1732 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1733 	    is_leftmost(p, &rq->dl))
1734 		start_hrtick_dl(rq, p);
1735 }
1736 
1737 static void task_fork_dl(struct task_struct *p)
1738 {
1739 	/*
1740 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1741 	 * sched_fork()
1742 	 */
1743 }
1744 
1745 static void set_curr_task_dl(struct rq *rq)
1746 {
1747 	struct task_struct *p = rq->curr;
1748 
1749 	p->se.exec_start = rq_clock_task(rq);
1750 
1751 	/* You can't push away the running task */
1752 	dequeue_pushable_dl_task(rq, p);
1753 }
1754 
1755 #ifdef CONFIG_SMP
1756 
1757 /* Only try algorithms three times */
1758 #define DL_MAX_TRIES 3
1759 
1760 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1761 {
1762 	if (!task_running(rq, p) &&
1763 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1764 		return 1;
1765 	return 0;
1766 }
1767 
1768 /*
1769  * Return the earliest pushable rq's task, which is suitable to be executed
1770  * on the CPU, NULL otherwise:
1771  */
1772 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1773 {
1774 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1775 	struct task_struct *p = NULL;
1776 
1777 	if (!has_pushable_dl_tasks(rq))
1778 		return NULL;
1779 
1780 next_node:
1781 	if (next_node) {
1782 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1783 
1784 		if (pick_dl_task(rq, p, cpu))
1785 			return p;
1786 
1787 		next_node = rb_next(next_node);
1788 		goto next_node;
1789 	}
1790 
1791 	return NULL;
1792 }
1793 
1794 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1795 
1796 static int find_later_rq(struct task_struct *task)
1797 {
1798 	struct sched_domain *sd;
1799 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1800 	int this_cpu = smp_processor_id();
1801 	int best_cpu, cpu = task_cpu(task);
1802 
1803 	/* Make sure the mask is initialized first */
1804 	if (unlikely(!later_mask))
1805 		return -1;
1806 
1807 	if (task->nr_cpus_allowed == 1)
1808 		return -1;
1809 
1810 	/*
1811 	 * We have to consider system topology and task affinity
1812 	 * first, then we can look for a suitable cpu.
1813 	 */
1814 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1815 			task, later_mask);
1816 	if (best_cpu == -1)
1817 		return -1;
1818 
1819 	/*
1820 	 * If we are here, some target has been found,
1821 	 * the most suitable of which is cached in best_cpu.
1822 	 * This is, among the runqueues where the current tasks
1823 	 * have later deadlines than the task's one, the rq
1824 	 * with the latest possible one.
1825 	 *
1826 	 * Now we check how well this matches with task's
1827 	 * affinity and system topology.
1828 	 *
1829 	 * The last cpu where the task run is our first
1830 	 * guess, since it is most likely cache-hot there.
1831 	 */
1832 	if (cpumask_test_cpu(cpu, later_mask))
1833 		return cpu;
1834 	/*
1835 	 * Check if this_cpu is to be skipped (i.e., it is
1836 	 * not in the mask) or not.
1837 	 */
1838 	if (!cpumask_test_cpu(this_cpu, later_mask))
1839 		this_cpu = -1;
1840 
1841 	rcu_read_lock();
1842 	for_each_domain(cpu, sd) {
1843 		if (sd->flags & SD_WAKE_AFFINE) {
1844 
1845 			/*
1846 			 * If possible, preempting this_cpu is
1847 			 * cheaper than migrating.
1848 			 */
1849 			if (this_cpu != -1 &&
1850 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1851 				rcu_read_unlock();
1852 				return this_cpu;
1853 			}
1854 
1855 			/*
1856 			 * Last chance: if best_cpu is valid and is
1857 			 * in the mask, that becomes our choice.
1858 			 */
1859 			if (best_cpu < nr_cpu_ids &&
1860 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1861 				rcu_read_unlock();
1862 				return best_cpu;
1863 			}
1864 		}
1865 	}
1866 	rcu_read_unlock();
1867 
1868 	/*
1869 	 * At this point, all our guesses failed, we just return
1870 	 * 'something', and let the caller sort the things out.
1871 	 */
1872 	if (this_cpu != -1)
1873 		return this_cpu;
1874 
1875 	cpu = cpumask_any(later_mask);
1876 	if (cpu < nr_cpu_ids)
1877 		return cpu;
1878 
1879 	return -1;
1880 }
1881 
1882 /* Locks the rq it finds */
1883 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1884 {
1885 	struct rq *later_rq = NULL;
1886 	int tries;
1887 	int cpu;
1888 
1889 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1890 		cpu = find_later_rq(task);
1891 
1892 		if ((cpu == -1) || (cpu == rq->cpu))
1893 			break;
1894 
1895 		later_rq = cpu_rq(cpu);
1896 
1897 		if (later_rq->dl.dl_nr_running &&
1898 		    !dl_time_before(task->dl.deadline,
1899 					later_rq->dl.earliest_dl.curr)) {
1900 			/*
1901 			 * Target rq has tasks of equal or earlier deadline,
1902 			 * retrying does not release any lock and is unlikely
1903 			 * to yield a different result.
1904 			 */
1905 			later_rq = NULL;
1906 			break;
1907 		}
1908 
1909 		/* Retry if something changed. */
1910 		if (double_lock_balance(rq, later_rq)) {
1911 			if (unlikely(task_rq(task) != rq ||
1912 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1913 				     task_running(rq, task) ||
1914 				     !dl_task(task) ||
1915 				     !task_on_rq_queued(task))) {
1916 				double_unlock_balance(rq, later_rq);
1917 				later_rq = NULL;
1918 				break;
1919 			}
1920 		}
1921 
1922 		/*
1923 		 * If the rq we found has no -deadline task, or
1924 		 * its earliest one has a later deadline than our
1925 		 * task, the rq is a good one.
1926 		 */
1927 		if (!later_rq->dl.dl_nr_running ||
1928 		    dl_time_before(task->dl.deadline,
1929 				   later_rq->dl.earliest_dl.curr))
1930 			break;
1931 
1932 		/* Otherwise we try again. */
1933 		double_unlock_balance(rq, later_rq);
1934 		later_rq = NULL;
1935 	}
1936 
1937 	return later_rq;
1938 }
1939 
1940 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1941 {
1942 	struct task_struct *p;
1943 
1944 	if (!has_pushable_dl_tasks(rq))
1945 		return NULL;
1946 
1947 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1948 		     struct task_struct, pushable_dl_tasks);
1949 
1950 	BUG_ON(rq->cpu != task_cpu(p));
1951 	BUG_ON(task_current(rq, p));
1952 	BUG_ON(p->nr_cpus_allowed <= 1);
1953 
1954 	BUG_ON(!task_on_rq_queued(p));
1955 	BUG_ON(!dl_task(p));
1956 
1957 	return p;
1958 }
1959 
1960 /*
1961  * See if the non running -deadline tasks on this rq
1962  * can be sent to some other CPU where they can preempt
1963  * and start executing.
1964  */
1965 static int push_dl_task(struct rq *rq)
1966 {
1967 	struct task_struct *next_task;
1968 	struct rq *later_rq;
1969 	int ret = 0;
1970 
1971 	if (!rq->dl.overloaded)
1972 		return 0;
1973 
1974 	next_task = pick_next_pushable_dl_task(rq);
1975 	if (!next_task)
1976 		return 0;
1977 
1978 retry:
1979 	if (unlikely(next_task == rq->curr)) {
1980 		WARN_ON(1);
1981 		return 0;
1982 	}
1983 
1984 	/*
1985 	 * If next_task preempts rq->curr, and rq->curr
1986 	 * can move away, it makes sense to just reschedule
1987 	 * without going further in pushing next_task.
1988 	 */
1989 	if (dl_task(rq->curr) &&
1990 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1991 	    rq->curr->nr_cpus_allowed > 1) {
1992 		resched_curr(rq);
1993 		return 0;
1994 	}
1995 
1996 	/* We might release rq lock */
1997 	get_task_struct(next_task);
1998 
1999 	/* Will lock the rq it'll find */
2000 	later_rq = find_lock_later_rq(next_task, rq);
2001 	if (!later_rq) {
2002 		struct task_struct *task;
2003 
2004 		/*
2005 		 * We must check all this again, since
2006 		 * find_lock_later_rq releases rq->lock and it is
2007 		 * then possible that next_task has migrated.
2008 		 */
2009 		task = pick_next_pushable_dl_task(rq);
2010 		if (task == next_task) {
2011 			/*
2012 			 * The task is still there. We don't try
2013 			 * again, some other cpu will pull it when ready.
2014 			 */
2015 			goto out;
2016 		}
2017 
2018 		if (!task)
2019 			/* No more tasks */
2020 			goto out;
2021 
2022 		put_task_struct(next_task);
2023 		next_task = task;
2024 		goto retry;
2025 	}
2026 
2027 	deactivate_task(rq, next_task, 0);
2028 	sub_running_bw(next_task->dl.dl_bw, &rq->dl);
2029 	sub_rq_bw(next_task->dl.dl_bw, &rq->dl);
2030 	set_task_cpu(next_task, later_rq->cpu);
2031 	add_rq_bw(next_task->dl.dl_bw, &later_rq->dl);
2032 	add_running_bw(next_task->dl.dl_bw, &later_rq->dl);
2033 	activate_task(later_rq, next_task, 0);
2034 	ret = 1;
2035 
2036 	resched_curr(later_rq);
2037 
2038 	double_unlock_balance(rq, later_rq);
2039 
2040 out:
2041 	put_task_struct(next_task);
2042 
2043 	return ret;
2044 }
2045 
2046 static void push_dl_tasks(struct rq *rq)
2047 {
2048 	/* push_dl_task() will return true if it moved a -deadline task */
2049 	while (push_dl_task(rq))
2050 		;
2051 }
2052 
2053 static void pull_dl_task(struct rq *this_rq)
2054 {
2055 	int this_cpu = this_rq->cpu, cpu;
2056 	struct task_struct *p;
2057 	bool resched = false;
2058 	struct rq *src_rq;
2059 	u64 dmin = LONG_MAX;
2060 
2061 	if (likely(!dl_overloaded(this_rq)))
2062 		return;
2063 
2064 	/*
2065 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2066 	 * see overloaded we must also see the dlo_mask bit.
2067 	 */
2068 	smp_rmb();
2069 
2070 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2071 		if (this_cpu == cpu)
2072 			continue;
2073 
2074 		src_rq = cpu_rq(cpu);
2075 
2076 		/*
2077 		 * It looks racy, abd it is! However, as in sched_rt.c,
2078 		 * we are fine with this.
2079 		 */
2080 		if (this_rq->dl.dl_nr_running &&
2081 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2082 				   src_rq->dl.earliest_dl.next))
2083 			continue;
2084 
2085 		/* Might drop this_rq->lock */
2086 		double_lock_balance(this_rq, src_rq);
2087 
2088 		/*
2089 		 * If there are no more pullable tasks on the
2090 		 * rq, we're done with it.
2091 		 */
2092 		if (src_rq->dl.dl_nr_running <= 1)
2093 			goto skip;
2094 
2095 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2096 
2097 		/*
2098 		 * We found a task to be pulled if:
2099 		 *  - it preempts our current (if there's one),
2100 		 *  - it will preempt the last one we pulled (if any).
2101 		 */
2102 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2103 		    (!this_rq->dl.dl_nr_running ||
2104 		     dl_time_before(p->dl.deadline,
2105 				    this_rq->dl.earliest_dl.curr))) {
2106 			WARN_ON(p == src_rq->curr);
2107 			WARN_ON(!task_on_rq_queued(p));
2108 
2109 			/*
2110 			 * Then we pull iff p has actually an earlier
2111 			 * deadline than the current task of its runqueue.
2112 			 */
2113 			if (dl_time_before(p->dl.deadline,
2114 					   src_rq->curr->dl.deadline))
2115 				goto skip;
2116 
2117 			resched = true;
2118 
2119 			deactivate_task(src_rq, p, 0);
2120 			sub_running_bw(p->dl.dl_bw, &src_rq->dl);
2121 			sub_rq_bw(p->dl.dl_bw, &src_rq->dl);
2122 			set_task_cpu(p, this_cpu);
2123 			add_rq_bw(p->dl.dl_bw, &this_rq->dl);
2124 			add_running_bw(p->dl.dl_bw, &this_rq->dl);
2125 			activate_task(this_rq, p, 0);
2126 			dmin = p->dl.deadline;
2127 
2128 			/* Is there any other task even earlier? */
2129 		}
2130 skip:
2131 		double_unlock_balance(this_rq, src_rq);
2132 	}
2133 
2134 	if (resched)
2135 		resched_curr(this_rq);
2136 }
2137 
2138 /*
2139  * Since the task is not running and a reschedule is not going to happen
2140  * anytime soon on its runqueue, we try pushing it away now.
2141  */
2142 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2143 {
2144 	if (!task_running(rq, p) &&
2145 	    !test_tsk_need_resched(rq->curr) &&
2146 	    p->nr_cpus_allowed > 1 &&
2147 	    dl_task(rq->curr) &&
2148 	    (rq->curr->nr_cpus_allowed < 2 ||
2149 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2150 		push_dl_tasks(rq);
2151 	}
2152 }
2153 
2154 static void set_cpus_allowed_dl(struct task_struct *p,
2155 				const struct cpumask *new_mask)
2156 {
2157 	struct root_domain *src_rd;
2158 	struct rq *rq;
2159 
2160 	BUG_ON(!dl_task(p));
2161 
2162 	rq = task_rq(p);
2163 	src_rd = rq->rd;
2164 	/*
2165 	 * Migrating a SCHED_DEADLINE task between exclusive
2166 	 * cpusets (different root_domains) entails a bandwidth
2167 	 * update. We already made space for us in the destination
2168 	 * domain (see cpuset_can_attach()).
2169 	 */
2170 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2171 		struct dl_bw *src_dl_b;
2172 
2173 		src_dl_b = dl_bw_of(cpu_of(rq));
2174 		/*
2175 		 * We now free resources of the root_domain we are migrating
2176 		 * off. In the worst case, sched_setattr() may temporary fail
2177 		 * until we complete the update.
2178 		 */
2179 		raw_spin_lock(&src_dl_b->lock);
2180 		__dl_clear(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2181 		raw_spin_unlock(&src_dl_b->lock);
2182 	}
2183 
2184 	set_cpus_allowed_common(p, new_mask);
2185 }
2186 
2187 /* Assumes rq->lock is held */
2188 static void rq_online_dl(struct rq *rq)
2189 {
2190 	if (rq->dl.overloaded)
2191 		dl_set_overload(rq);
2192 
2193 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2194 	if (rq->dl.dl_nr_running > 0)
2195 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2196 }
2197 
2198 /* Assumes rq->lock is held */
2199 static void rq_offline_dl(struct rq *rq)
2200 {
2201 	if (rq->dl.overloaded)
2202 		dl_clear_overload(rq);
2203 
2204 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2205 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2206 }
2207 
2208 void __init init_sched_dl_class(void)
2209 {
2210 	unsigned int i;
2211 
2212 	for_each_possible_cpu(i)
2213 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2214 					GFP_KERNEL, cpu_to_node(i));
2215 }
2216 
2217 #endif /* CONFIG_SMP */
2218 
2219 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2220 {
2221 	/*
2222 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2223 	 * time is in the future). If the task switches back to dl before
2224 	 * the "inactive timer" fires, it can continue to consume its current
2225 	 * runtime using its current deadline. If it stays outside of
2226 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2227 	 * will reset the task parameters.
2228 	 */
2229 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2230 		task_non_contending(p);
2231 
2232 	if (!task_on_rq_queued(p))
2233 		sub_rq_bw(p->dl.dl_bw, &rq->dl);
2234 
2235 	/*
2236 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2237 	 * at the 0-lag time, because the task could have been migrated
2238 	 * while SCHED_OTHER in the meanwhile.
2239 	 */
2240 	if (p->dl.dl_non_contending)
2241 		p->dl.dl_non_contending = 0;
2242 
2243 	/*
2244 	 * Since this might be the only -deadline task on the rq,
2245 	 * this is the right place to try to pull some other one
2246 	 * from an overloaded cpu, if any.
2247 	 */
2248 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2249 		return;
2250 
2251 	queue_pull_task(rq);
2252 }
2253 
2254 /*
2255  * When switching to -deadline, we may overload the rq, then
2256  * we try to push someone off, if possible.
2257  */
2258 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2259 {
2260 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2261 		put_task_struct(p);
2262 
2263 	/* If p is not queued we will update its parameters at next wakeup. */
2264 	if (!task_on_rq_queued(p)) {
2265 		add_rq_bw(p->dl.dl_bw, &rq->dl);
2266 
2267 		return;
2268 	}
2269 	/*
2270 	 * If p is boosted we already updated its params in
2271 	 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
2272 	 * p's deadline being now already after rq_clock(rq).
2273 	 */
2274 	if (dl_time_before(p->dl.deadline, rq_clock(rq)))
2275 		setup_new_dl_entity(&p->dl);
2276 
2277 	if (rq->curr != p) {
2278 #ifdef CONFIG_SMP
2279 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2280 			queue_push_tasks(rq);
2281 #endif
2282 		if (dl_task(rq->curr))
2283 			check_preempt_curr_dl(rq, p, 0);
2284 		else
2285 			resched_curr(rq);
2286 	}
2287 }
2288 
2289 /*
2290  * If the scheduling parameters of a -deadline task changed,
2291  * a push or pull operation might be needed.
2292  */
2293 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2294 			    int oldprio)
2295 {
2296 	if (task_on_rq_queued(p) || rq->curr == p) {
2297 #ifdef CONFIG_SMP
2298 		/*
2299 		 * This might be too much, but unfortunately
2300 		 * we don't have the old deadline value, and
2301 		 * we can't argue if the task is increasing
2302 		 * or lowering its prio, so...
2303 		 */
2304 		if (!rq->dl.overloaded)
2305 			queue_pull_task(rq);
2306 
2307 		/*
2308 		 * If we now have a earlier deadline task than p,
2309 		 * then reschedule, provided p is still on this
2310 		 * runqueue.
2311 		 */
2312 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2313 			resched_curr(rq);
2314 #else
2315 		/*
2316 		 * Again, we don't know if p has a earlier
2317 		 * or later deadline, so let's blindly set a
2318 		 * (maybe not needed) rescheduling point.
2319 		 */
2320 		resched_curr(rq);
2321 #endif /* CONFIG_SMP */
2322 	}
2323 }
2324 
2325 const struct sched_class dl_sched_class = {
2326 	.next			= &rt_sched_class,
2327 	.enqueue_task		= enqueue_task_dl,
2328 	.dequeue_task		= dequeue_task_dl,
2329 	.yield_task		= yield_task_dl,
2330 
2331 	.check_preempt_curr	= check_preempt_curr_dl,
2332 
2333 	.pick_next_task		= pick_next_task_dl,
2334 	.put_prev_task		= put_prev_task_dl,
2335 
2336 #ifdef CONFIG_SMP
2337 	.select_task_rq		= select_task_rq_dl,
2338 	.migrate_task_rq	= migrate_task_rq_dl,
2339 	.set_cpus_allowed       = set_cpus_allowed_dl,
2340 	.rq_online              = rq_online_dl,
2341 	.rq_offline             = rq_offline_dl,
2342 	.task_woken		= task_woken_dl,
2343 #endif
2344 
2345 	.set_curr_task		= set_curr_task_dl,
2346 	.task_tick		= task_tick_dl,
2347 	.task_fork              = task_fork_dl,
2348 
2349 	.prio_changed           = prio_changed_dl,
2350 	.switched_from		= switched_from_dl,
2351 	.switched_to		= switched_to_dl,
2352 
2353 	.update_curr		= update_curr_dl,
2354 };
2355 
2356 int sched_dl_global_validate(void)
2357 {
2358 	u64 runtime = global_rt_runtime();
2359 	u64 period = global_rt_period();
2360 	u64 new_bw = to_ratio(period, runtime);
2361 	struct dl_bw *dl_b;
2362 	int cpu, ret = 0;
2363 	unsigned long flags;
2364 
2365 	/*
2366 	 * Here we want to check the bandwidth not being set to some
2367 	 * value smaller than the currently allocated bandwidth in
2368 	 * any of the root_domains.
2369 	 *
2370 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2371 	 * cycling on root_domains... Discussion on different/better
2372 	 * solutions is welcome!
2373 	 */
2374 	for_each_possible_cpu(cpu) {
2375 		rcu_read_lock_sched();
2376 		dl_b = dl_bw_of(cpu);
2377 
2378 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2379 		if (new_bw < dl_b->total_bw)
2380 			ret = -EBUSY;
2381 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2382 
2383 		rcu_read_unlock_sched();
2384 
2385 		if (ret)
2386 			break;
2387 	}
2388 
2389 	return ret;
2390 }
2391 
2392 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2393 {
2394 	if (global_rt_runtime() == RUNTIME_INF) {
2395 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2396 		dl_rq->extra_bw = 1 << BW_SHIFT;
2397 	} else {
2398 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2399 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2400 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2401 						    global_rt_runtime());
2402 	}
2403 }
2404 
2405 void sched_dl_do_global(void)
2406 {
2407 	u64 new_bw = -1;
2408 	struct dl_bw *dl_b;
2409 	int cpu;
2410 	unsigned long flags;
2411 
2412 	def_dl_bandwidth.dl_period = global_rt_period();
2413 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2414 
2415 	if (global_rt_runtime() != RUNTIME_INF)
2416 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2417 
2418 	/*
2419 	 * FIXME: As above...
2420 	 */
2421 	for_each_possible_cpu(cpu) {
2422 		rcu_read_lock_sched();
2423 		dl_b = dl_bw_of(cpu);
2424 
2425 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2426 		dl_b->bw = new_bw;
2427 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2428 
2429 		rcu_read_unlock_sched();
2430 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2431 	}
2432 }
2433 
2434 /*
2435  * We must be sure that accepting a new task (or allowing changing the
2436  * parameters of an existing one) is consistent with the bandwidth
2437  * constraints. If yes, this function also accordingly updates the currently
2438  * allocated bandwidth to reflect the new situation.
2439  *
2440  * This function is called while holding p's rq->lock.
2441  */
2442 int sched_dl_overflow(struct task_struct *p, int policy,
2443 		      const struct sched_attr *attr)
2444 {
2445 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2446 	u64 period = attr->sched_period ?: attr->sched_deadline;
2447 	u64 runtime = attr->sched_runtime;
2448 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2449 	int cpus, err = -1;
2450 
2451 	/* !deadline task may carry old deadline bandwidth */
2452 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2453 		return 0;
2454 
2455 	/*
2456 	 * Either if a task, enters, leave, or stays -deadline but changes
2457 	 * its parameters, we may need to update accordingly the total
2458 	 * allocated bandwidth of the container.
2459 	 */
2460 	raw_spin_lock(&dl_b->lock);
2461 	cpus = dl_bw_cpus(task_cpu(p));
2462 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2463 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2464 		if (hrtimer_active(&p->dl.inactive_timer))
2465 			__dl_clear(dl_b, p->dl.dl_bw, cpus);
2466 		__dl_add(dl_b, new_bw, cpus);
2467 		err = 0;
2468 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2469 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2470 		/*
2471 		 * XXX this is slightly incorrect: when the task
2472 		 * utilization decreases, we should delay the total
2473 		 * utilization change until the task's 0-lag point.
2474 		 * But this would require to set the task's "inactive
2475 		 * timer" when the task is not inactive.
2476 		 */
2477 		__dl_clear(dl_b, p->dl.dl_bw, cpus);
2478 		__dl_add(dl_b, new_bw, cpus);
2479 		dl_change_utilization(p, new_bw);
2480 		err = 0;
2481 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2482 		/*
2483 		 * Do not decrease the total deadline utilization here,
2484 		 * switched_from_dl() will take care to do it at the correct
2485 		 * (0-lag) time.
2486 		 */
2487 		err = 0;
2488 	}
2489 	raw_spin_unlock(&dl_b->lock);
2490 
2491 	return err;
2492 }
2493 
2494 /*
2495  * This function initializes the sched_dl_entity of a newly becoming
2496  * SCHED_DEADLINE task.
2497  *
2498  * Only the static values are considered here, the actual runtime and the
2499  * absolute deadline will be properly calculated when the task is enqueued
2500  * for the first time with its new policy.
2501  */
2502 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2503 {
2504 	struct sched_dl_entity *dl_se = &p->dl;
2505 
2506 	dl_se->dl_runtime = attr->sched_runtime;
2507 	dl_se->dl_deadline = attr->sched_deadline;
2508 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2509 	dl_se->flags = attr->sched_flags;
2510 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2511 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2512 }
2513 
2514 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2515 {
2516 	struct sched_dl_entity *dl_se = &p->dl;
2517 
2518 	attr->sched_priority = p->rt_priority;
2519 	attr->sched_runtime = dl_se->dl_runtime;
2520 	attr->sched_deadline = dl_se->dl_deadline;
2521 	attr->sched_period = dl_se->dl_period;
2522 	attr->sched_flags = dl_se->flags;
2523 }
2524 
2525 /*
2526  * This function validates the new parameters of a -deadline task.
2527  * We ask for the deadline not being zero, and greater or equal
2528  * than the runtime, as well as the period of being zero or
2529  * greater than deadline. Furthermore, we have to be sure that
2530  * user parameters are above the internal resolution of 1us (we
2531  * check sched_runtime only since it is always the smaller one) and
2532  * below 2^63 ns (we have to check both sched_deadline and
2533  * sched_period, as the latter can be zero).
2534  */
2535 bool __checkparam_dl(const struct sched_attr *attr)
2536 {
2537 	/* deadline != 0 */
2538 	if (attr->sched_deadline == 0)
2539 		return false;
2540 
2541 	/*
2542 	 * Since we truncate DL_SCALE bits, make sure we're at least
2543 	 * that big.
2544 	 */
2545 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2546 		return false;
2547 
2548 	/*
2549 	 * Since we use the MSB for wrap-around and sign issues, make
2550 	 * sure it's not set (mind that period can be equal to zero).
2551 	 */
2552 	if (attr->sched_deadline & (1ULL << 63) ||
2553 	    attr->sched_period & (1ULL << 63))
2554 		return false;
2555 
2556 	/* runtime <= deadline <= period (if period != 0) */
2557 	if ((attr->sched_period != 0 &&
2558 	     attr->sched_period < attr->sched_deadline) ||
2559 	    attr->sched_deadline < attr->sched_runtime)
2560 		return false;
2561 
2562 	return true;
2563 }
2564 
2565 /*
2566  * This function clears the sched_dl_entity static params.
2567  */
2568 void __dl_clear_params(struct task_struct *p)
2569 {
2570 	struct sched_dl_entity *dl_se = &p->dl;
2571 
2572 	dl_se->dl_runtime = 0;
2573 	dl_se->dl_deadline = 0;
2574 	dl_se->dl_period = 0;
2575 	dl_se->flags = 0;
2576 	dl_se->dl_bw = 0;
2577 	dl_se->dl_density = 0;
2578 
2579 	dl_se->dl_throttled = 0;
2580 	dl_se->dl_yielded = 0;
2581 	dl_se->dl_non_contending = 0;
2582 }
2583 
2584 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2585 {
2586 	struct sched_dl_entity *dl_se = &p->dl;
2587 
2588 	if (dl_se->dl_runtime != attr->sched_runtime ||
2589 	    dl_se->dl_deadline != attr->sched_deadline ||
2590 	    dl_se->dl_period != attr->sched_period ||
2591 	    dl_se->flags != attr->sched_flags)
2592 		return true;
2593 
2594 	return false;
2595 }
2596 
2597 #ifdef CONFIG_SMP
2598 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2599 {
2600 	unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
2601 							cs_cpus_allowed);
2602 	struct dl_bw *dl_b;
2603 	bool overflow;
2604 	int cpus, ret;
2605 	unsigned long flags;
2606 
2607 	rcu_read_lock_sched();
2608 	dl_b = dl_bw_of(dest_cpu);
2609 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2610 	cpus = dl_bw_cpus(dest_cpu);
2611 	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2612 	if (overflow)
2613 		ret = -EBUSY;
2614 	else {
2615 		/*
2616 		 * We reserve space for this task in the destination
2617 		 * root_domain, as we can't fail after this point.
2618 		 * We will free resources in the source root_domain
2619 		 * later on (see set_cpus_allowed_dl()).
2620 		 */
2621 		__dl_add(dl_b, p->dl.dl_bw, cpus);
2622 		ret = 0;
2623 	}
2624 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2625 	rcu_read_unlock_sched();
2626 	return ret;
2627 }
2628 
2629 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2630 				 const struct cpumask *trial)
2631 {
2632 	int ret = 1, trial_cpus;
2633 	struct dl_bw *cur_dl_b;
2634 	unsigned long flags;
2635 
2636 	rcu_read_lock_sched();
2637 	cur_dl_b = dl_bw_of(cpumask_any(cur));
2638 	trial_cpus = cpumask_weight(trial);
2639 
2640 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2641 	if (cur_dl_b->bw != -1 &&
2642 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2643 		ret = 0;
2644 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2645 	rcu_read_unlock_sched();
2646 	return ret;
2647 }
2648 
2649 bool dl_cpu_busy(unsigned int cpu)
2650 {
2651 	unsigned long flags;
2652 	struct dl_bw *dl_b;
2653 	bool overflow;
2654 	int cpus;
2655 
2656 	rcu_read_lock_sched();
2657 	dl_b = dl_bw_of(cpu);
2658 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2659 	cpus = dl_bw_cpus(cpu);
2660 	overflow = __dl_overflow(dl_b, cpus, 0, 0);
2661 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2662 	rcu_read_unlock_sched();
2663 	return overflow;
2664 }
2665 #endif
2666 
2667 #ifdef CONFIG_SCHED_DEBUG
2668 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2669 
2670 void print_dl_stats(struct seq_file *m, int cpu)
2671 {
2672 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2673 }
2674 #endif /* CONFIG_SCHED_DEBUG */
2675