1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 19 #include <linux/cpuset.h> 20 21 /* 22 * Default limits for DL period; on the top end we guard against small util 23 * tasks still getting ridiculously long effective runtimes, on the bottom end we 24 * guard against timer DoS. 25 */ 26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 27 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 28 #ifdef CONFIG_SYSCTL 29 static struct ctl_table sched_dl_sysctls[] = { 30 { 31 .procname = "sched_deadline_period_max_us", 32 .data = &sysctl_sched_dl_period_max, 33 .maxlen = sizeof(unsigned int), 34 .mode = 0644, 35 .proc_handler = proc_douintvec_minmax, 36 .extra1 = (void *)&sysctl_sched_dl_period_min, 37 }, 38 { 39 .procname = "sched_deadline_period_min_us", 40 .data = &sysctl_sched_dl_period_min, 41 .maxlen = sizeof(unsigned int), 42 .mode = 0644, 43 .proc_handler = proc_douintvec_minmax, 44 .extra2 = (void *)&sysctl_sched_dl_period_max, 45 }, 46 {} 47 }; 48 49 static int __init sched_dl_sysctl_init(void) 50 { 51 register_sysctl_init("kernel", sched_dl_sysctls); 52 return 0; 53 } 54 late_initcall(sched_dl_sysctl_init); 55 #endif 56 57 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 58 { 59 return container_of(dl_se, struct task_struct, dl); 60 } 61 62 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 63 { 64 return container_of(dl_rq, struct rq, dl); 65 } 66 67 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 68 { 69 struct task_struct *p = dl_task_of(dl_se); 70 struct rq *rq = task_rq(p); 71 72 return &rq->dl; 73 } 74 75 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 76 { 77 return !RB_EMPTY_NODE(&dl_se->rb_node); 78 } 79 80 #ifdef CONFIG_RT_MUTEXES 81 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 82 { 83 return dl_se->pi_se; 84 } 85 86 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 87 { 88 return pi_of(dl_se) != dl_se; 89 } 90 #else 91 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 92 { 93 return dl_se; 94 } 95 96 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 97 { 98 return false; 99 } 100 #endif 101 102 #ifdef CONFIG_SMP 103 static inline struct dl_bw *dl_bw_of(int i) 104 { 105 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 106 "sched RCU must be held"); 107 return &cpu_rq(i)->rd->dl_bw; 108 } 109 110 static inline int dl_bw_cpus(int i) 111 { 112 struct root_domain *rd = cpu_rq(i)->rd; 113 int cpus; 114 115 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 116 "sched RCU must be held"); 117 118 if (cpumask_subset(rd->span, cpu_active_mask)) 119 return cpumask_weight(rd->span); 120 121 cpus = 0; 122 123 for_each_cpu_and(i, rd->span, cpu_active_mask) 124 cpus++; 125 126 return cpus; 127 } 128 129 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) 130 { 131 unsigned long cap = 0; 132 int i; 133 134 for_each_cpu_and(i, mask, cpu_active_mask) 135 cap += capacity_orig_of(i); 136 137 return cap; 138 } 139 140 /* 141 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 142 * of the CPU the task is running on rather rd's \Sum CPU capacity. 143 */ 144 static inline unsigned long dl_bw_capacity(int i) 145 { 146 if (!sched_asym_cpucap_active() && 147 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) { 148 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 149 } else { 150 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 151 "sched RCU must be held"); 152 153 return __dl_bw_capacity(cpu_rq(i)->rd->span); 154 } 155 } 156 157 static inline bool dl_bw_visited(int cpu, u64 gen) 158 { 159 struct root_domain *rd = cpu_rq(cpu)->rd; 160 161 if (rd->visit_gen == gen) 162 return true; 163 164 rd->visit_gen = gen; 165 return false; 166 } 167 168 static inline 169 void __dl_update(struct dl_bw *dl_b, s64 bw) 170 { 171 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 172 int i; 173 174 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 175 "sched RCU must be held"); 176 for_each_cpu_and(i, rd->span, cpu_active_mask) { 177 struct rq *rq = cpu_rq(i); 178 179 rq->dl.extra_bw += bw; 180 } 181 } 182 #else 183 static inline struct dl_bw *dl_bw_of(int i) 184 { 185 return &cpu_rq(i)->dl.dl_bw; 186 } 187 188 static inline int dl_bw_cpus(int i) 189 { 190 return 1; 191 } 192 193 static inline unsigned long dl_bw_capacity(int i) 194 { 195 return SCHED_CAPACITY_SCALE; 196 } 197 198 static inline bool dl_bw_visited(int cpu, u64 gen) 199 { 200 return false; 201 } 202 203 static inline 204 void __dl_update(struct dl_bw *dl_b, s64 bw) 205 { 206 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 207 208 dl->extra_bw += bw; 209 } 210 #endif 211 212 static inline 213 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 214 { 215 dl_b->total_bw -= tsk_bw; 216 __dl_update(dl_b, (s32)tsk_bw / cpus); 217 } 218 219 static inline 220 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 221 { 222 dl_b->total_bw += tsk_bw; 223 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 224 } 225 226 static inline bool 227 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 228 { 229 return dl_b->bw != -1 && 230 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 231 } 232 233 static inline 234 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 235 { 236 u64 old = dl_rq->running_bw; 237 238 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 239 dl_rq->running_bw += dl_bw; 240 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 241 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 242 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 243 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 244 } 245 246 static inline 247 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 248 { 249 u64 old = dl_rq->running_bw; 250 251 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 252 dl_rq->running_bw -= dl_bw; 253 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 254 if (dl_rq->running_bw > old) 255 dl_rq->running_bw = 0; 256 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 257 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 258 } 259 260 static inline 261 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 262 { 263 u64 old = dl_rq->this_bw; 264 265 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 266 dl_rq->this_bw += dl_bw; 267 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 268 } 269 270 static inline 271 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 272 { 273 u64 old = dl_rq->this_bw; 274 275 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 276 dl_rq->this_bw -= dl_bw; 277 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 278 if (dl_rq->this_bw > old) 279 dl_rq->this_bw = 0; 280 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 281 } 282 283 static inline 284 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 285 { 286 if (!dl_entity_is_special(dl_se)) 287 __add_rq_bw(dl_se->dl_bw, dl_rq); 288 } 289 290 static inline 291 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 292 { 293 if (!dl_entity_is_special(dl_se)) 294 __sub_rq_bw(dl_se->dl_bw, dl_rq); 295 } 296 297 static inline 298 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 299 { 300 if (!dl_entity_is_special(dl_se)) 301 __add_running_bw(dl_se->dl_bw, dl_rq); 302 } 303 304 static inline 305 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 306 { 307 if (!dl_entity_is_special(dl_se)) 308 __sub_running_bw(dl_se->dl_bw, dl_rq); 309 } 310 311 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 312 { 313 struct rq *rq; 314 315 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); 316 317 if (task_on_rq_queued(p)) 318 return; 319 320 rq = task_rq(p); 321 if (p->dl.dl_non_contending) { 322 sub_running_bw(&p->dl, &rq->dl); 323 p->dl.dl_non_contending = 0; 324 /* 325 * If the timer handler is currently running and the 326 * timer cannot be canceled, inactive_task_timer() 327 * will see that dl_not_contending is not set, and 328 * will not touch the rq's active utilization, 329 * so we are still safe. 330 */ 331 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 332 put_task_struct(p); 333 } 334 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 335 __add_rq_bw(new_bw, &rq->dl); 336 } 337 338 static void __dl_clear_params(struct sched_dl_entity *dl_se); 339 340 /* 341 * The utilization of a task cannot be immediately removed from 342 * the rq active utilization (running_bw) when the task blocks. 343 * Instead, we have to wait for the so called "0-lag time". 344 * 345 * If a task blocks before the "0-lag time", a timer (the inactive 346 * timer) is armed, and running_bw is decreased when the timer 347 * fires. 348 * 349 * If the task wakes up again before the inactive timer fires, 350 * the timer is canceled, whereas if the task wakes up after the 351 * inactive timer fired (and running_bw has been decreased) the 352 * task's utilization has to be added to running_bw again. 353 * A flag in the deadline scheduling entity (dl_non_contending) 354 * is used to avoid race conditions between the inactive timer handler 355 * and task wakeups. 356 * 357 * The following diagram shows how running_bw is updated. A task is 358 * "ACTIVE" when its utilization contributes to running_bw; an 359 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 360 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 361 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 362 * time already passed, which does not contribute to running_bw anymore. 363 * +------------------+ 364 * wakeup | ACTIVE | 365 * +------------------>+ contending | 366 * | add_running_bw | | 367 * | +----+------+------+ 368 * | | ^ 369 * | dequeue | | 370 * +--------+-------+ | | 371 * | | t >= 0-lag | | wakeup 372 * | INACTIVE |<---------------+ | 373 * | | sub_running_bw | | 374 * +--------+-------+ | | 375 * ^ | | 376 * | t < 0-lag | | 377 * | | | 378 * | V | 379 * | +----+------+------+ 380 * | sub_running_bw | ACTIVE | 381 * +-------------------+ | 382 * inactive timer | non contending | 383 * fired +------------------+ 384 * 385 * The task_non_contending() function is invoked when a task 386 * blocks, and checks if the 0-lag time already passed or 387 * not (in the first case, it directly updates running_bw; 388 * in the second case, it arms the inactive timer). 389 * 390 * The task_contending() function is invoked when a task wakes 391 * up, and checks if the task is still in the "ACTIVE non contending" 392 * state or not (in the second case, it updates running_bw). 393 */ 394 static void task_non_contending(struct sched_dl_entity *dl_se) 395 { 396 struct hrtimer *timer = &dl_se->inactive_timer; 397 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 398 struct rq *rq = rq_of_dl_rq(dl_rq); 399 struct task_struct *p = dl_task_of(dl_se); 400 s64 zerolag_time; 401 402 /* 403 * If this is a non-deadline task that has been boosted, 404 * do nothing 405 */ 406 if (dl_se->dl_runtime == 0) 407 return; 408 409 if (dl_entity_is_special(dl_se)) 410 return; 411 412 WARN_ON(dl_se->dl_non_contending); 413 414 zerolag_time = dl_se->deadline - 415 div64_long((dl_se->runtime * dl_se->dl_period), 416 dl_se->dl_runtime); 417 418 /* 419 * Using relative times instead of the absolute "0-lag time" 420 * allows to simplify the code 421 */ 422 zerolag_time -= rq_clock(rq); 423 424 /* 425 * If the "0-lag time" already passed, decrease the active 426 * utilization now, instead of starting a timer 427 */ 428 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 429 if (dl_task(p)) 430 sub_running_bw(dl_se, dl_rq); 431 432 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 433 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 434 435 if (READ_ONCE(p->__state) == TASK_DEAD) 436 sub_rq_bw(dl_se, &rq->dl); 437 raw_spin_lock(&dl_b->lock); 438 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p))); 439 raw_spin_unlock(&dl_b->lock); 440 __dl_clear_params(dl_se); 441 } 442 443 return; 444 } 445 446 dl_se->dl_non_contending = 1; 447 get_task_struct(p); 448 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 449 } 450 451 static void task_contending(struct sched_dl_entity *dl_se, int flags) 452 { 453 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 454 455 /* 456 * If this is a non-deadline task that has been boosted, 457 * do nothing 458 */ 459 if (dl_se->dl_runtime == 0) 460 return; 461 462 if (flags & ENQUEUE_MIGRATED) 463 add_rq_bw(dl_se, dl_rq); 464 465 if (dl_se->dl_non_contending) { 466 dl_se->dl_non_contending = 0; 467 /* 468 * If the timer handler is currently running and the 469 * timer cannot be canceled, inactive_task_timer() 470 * will see that dl_not_contending is not set, and 471 * will not touch the rq's active utilization, 472 * so we are still safe. 473 */ 474 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 475 put_task_struct(dl_task_of(dl_se)); 476 } else { 477 /* 478 * Since "dl_non_contending" is not set, the 479 * task's utilization has already been removed from 480 * active utilization (either when the task blocked, 481 * when the "inactive timer" fired). 482 * So, add it back. 483 */ 484 add_running_bw(dl_se, dl_rq); 485 } 486 } 487 488 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 489 { 490 struct sched_dl_entity *dl_se = &p->dl; 491 492 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 493 } 494 495 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 496 497 void init_dl_bw(struct dl_bw *dl_b) 498 { 499 raw_spin_lock_init(&dl_b->lock); 500 if (global_rt_runtime() == RUNTIME_INF) 501 dl_b->bw = -1; 502 else 503 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 504 dl_b->total_bw = 0; 505 } 506 507 void init_dl_rq(struct dl_rq *dl_rq) 508 { 509 dl_rq->root = RB_ROOT_CACHED; 510 511 #ifdef CONFIG_SMP 512 /* zero means no -deadline tasks */ 513 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 514 515 dl_rq->dl_nr_migratory = 0; 516 dl_rq->overloaded = 0; 517 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 518 #else 519 init_dl_bw(&dl_rq->dl_bw); 520 #endif 521 522 dl_rq->running_bw = 0; 523 dl_rq->this_bw = 0; 524 init_dl_rq_bw_ratio(dl_rq); 525 } 526 527 #ifdef CONFIG_SMP 528 529 static inline int dl_overloaded(struct rq *rq) 530 { 531 return atomic_read(&rq->rd->dlo_count); 532 } 533 534 static inline void dl_set_overload(struct rq *rq) 535 { 536 if (!rq->online) 537 return; 538 539 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 540 /* 541 * Must be visible before the overload count is 542 * set (as in sched_rt.c). 543 * 544 * Matched by the barrier in pull_dl_task(). 545 */ 546 smp_wmb(); 547 atomic_inc(&rq->rd->dlo_count); 548 } 549 550 static inline void dl_clear_overload(struct rq *rq) 551 { 552 if (!rq->online) 553 return; 554 555 atomic_dec(&rq->rd->dlo_count); 556 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 557 } 558 559 static void update_dl_migration(struct dl_rq *dl_rq) 560 { 561 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 562 if (!dl_rq->overloaded) { 563 dl_set_overload(rq_of_dl_rq(dl_rq)); 564 dl_rq->overloaded = 1; 565 } 566 } else if (dl_rq->overloaded) { 567 dl_clear_overload(rq_of_dl_rq(dl_rq)); 568 dl_rq->overloaded = 0; 569 } 570 } 571 572 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 573 { 574 struct task_struct *p = dl_task_of(dl_se); 575 576 if (p->nr_cpus_allowed > 1) 577 dl_rq->dl_nr_migratory++; 578 579 update_dl_migration(dl_rq); 580 } 581 582 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 583 { 584 struct task_struct *p = dl_task_of(dl_se); 585 586 if (p->nr_cpus_allowed > 1) 587 dl_rq->dl_nr_migratory--; 588 589 update_dl_migration(dl_rq); 590 } 591 592 #define __node_2_pdl(node) \ 593 rb_entry((node), struct task_struct, pushable_dl_tasks) 594 595 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 596 { 597 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 598 } 599 600 /* 601 * The list of pushable -deadline task is not a plist, like in 602 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 603 */ 604 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 605 { 606 struct rb_node *leftmost; 607 608 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 609 610 leftmost = rb_add_cached(&p->pushable_dl_tasks, 611 &rq->dl.pushable_dl_tasks_root, 612 __pushable_less); 613 if (leftmost) 614 rq->dl.earliest_dl.next = p->dl.deadline; 615 } 616 617 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 618 { 619 struct dl_rq *dl_rq = &rq->dl; 620 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 621 struct rb_node *leftmost; 622 623 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 624 return; 625 626 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 627 if (leftmost) 628 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 629 630 RB_CLEAR_NODE(&p->pushable_dl_tasks); 631 } 632 633 static inline int has_pushable_dl_tasks(struct rq *rq) 634 { 635 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 636 } 637 638 static int push_dl_task(struct rq *rq); 639 640 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 641 { 642 return rq->online && dl_task(prev); 643 } 644 645 static DEFINE_PER_CPU(struct balance_callback, dl_push_head); 646 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); 647 648 static void push_dl_tasks(struct rq *); 649 static void pull_dl_task(struct rq *); 650 651 static inline void deadline_queue_push_tasks(struct rq *rq) 652 { 653 if (!has_pushable_dl_tasks(rq)) 654 return; 655 656 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 657 } 658 659 static inline void deadline_queue_pull_task(struct rq *rq) 660 { 661 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 662 } 663 664 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 665 666 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 667 { 668 struct rq *later_rq = NULL; 669 struct dl_bw *dl_b; 670 671 later_rq = find_lock_later_rq(p, rq); 672 if (!later_rq) { 673 int cpu; 674 675 /* 676 * If we cannot preempt any rq, fall back to pick any 677 * online CPU: 678 */ 679 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 680 if (cpu >= nr_cpu_ids) { 681 /* 682 * Failed to find any suitable CPU. 683 * The task will never come back! 684 */ 685 WARN_ON_ONCE(dl_bandwidth_enabled()); 686 687 /* 688 * If admission control is disabled we 689 * try a little harder to let the task 690 * run. 691 */ 692 cpu = cpumask_any(cpu_active_mask); 693 } 694 later_rq = cpu_rq(cpu); 695 double_lock_balance(rq, later_rq); 696 } 697 698 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 699 /* 700 * Inactive timer is armed (or callback is running, but 701 * waiting for us to release rq locks). In any case, when it 702 * will fire (or continue), it will see running_bw of this 703 * task migrated to later_rq (and correctly handle it). 704 */ 705 sub_running_bw(&p->dl, &rq->dl); 706 sub_rq_bw(&p->dl, &rq->dl); 707 708 add_rq_bw(&p->dl, &later_rq->dl); 709 add_running_bw(&p->dl, &later_rq->dl); 710 } else { 711 sub_rq_bw(&p->dl, &rq->dl); 712 add_rq_bw(&p->dl, &later_rq->dl); 713 } 714 715 /* 716 * And we finally need to fixup root_domain(s) bandwidth accounting, 717 * since p is still hanging out in the old (now moved to default) root 718 * domain. 719 */ 720 dl_b = &rq->rd->dl_bw; 721 raw_spin_lock(&dl_b->lock); 722 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 723 raw_spin_unlock(&dl_b->lock); 724 725 dl_b = &later_rq->rd->dl_bw; 726 raw_spin_lock(&dl_b->lock); 727 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 728 raw_spin_unlock(&dl_b->lock); 729 730 set_task_cpu(p, later_rq->cpu); 731 double_unlock_balance(later_rq, rq); 732 733 return later_rq; 734 } 735 736 #else 737 738 static inline 739 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 740 { 741 } 742 743 static inline 744 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 745 { 746 } 747 748 static inline 749 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 750 { 751 } 752 753 static inline 754 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 755 { 756 } 757 758 static inline void deadline_queue_push_tasks(struct rq *rq) 759 { 760 } 761 762 static inline void deadline_queue_pull_task(struct rq *rq) 763 { 764 } 765 #endif /* CONFIG_SMP */ 766 767 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 768 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 769 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags); 770 771 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, 772 struct rq *rq) 773 { 774 /* for non-boosted task, pi_of(dl_se) == dl_se */ 775 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 776 dl_se->runtime = pi_of(dl_se)->dl_runtime; 777 } 778 779 /* 780 * We are being explicitly informed that a new instance is starting, 781 * and this means that: 782 * - the absolute deadline of the entity has to be placed at 783 * current time + relative deadline; 784 * - the runtime of the entity has to be set to the maximum value. 785 * 786 * The capability of specifying such event is useful whenever a -deadline 787 * entity wants to (try to!) synchronize its behaviour with the scheduler's 788 * one, and to (try to!) reconcile itself with its own scheduling 789 * parameters. 790 */ 791 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 792 { 793 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 794 struct rq *rq = rq_of_dl_rq(dl_rq); 795 796 WARN_ON(is_dl_boosted(dl_se)); 797 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 798 799 /* 800 * We are racing with the deadline timer. So, do nothing because 801 * the deadline timer handler will take care of properly recharging 802 * the runtime and postponing the deadline 803 */ 804 if (dl_se->dl_throttled) 805 return; 806 807 /* 808 * We use the regular wall clock time to set deadlines in the 809 * future; in fact, we must consider execution overheads (time 810 * spent on hardirq context, etc.). 811 */ 812 replenish_dl_new_period(dl_se, rq); 813 } 814 815 /* 816 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 817 * possibility of a entity lasting more than what it declared, and thus 818 * exhausting its runtime. 819 * 820 * Here we are interested in making runtime overrun possible, but we do 821 * not want a entity which is misbehaving to affect the scheduling of all 822 * other entities. 823 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 824 * is used, in order to confine each entity within its own bandwidth. 825 * 826 * This function deals exactly with that, and ensures that when the runtime 827 * of a entity is replenished, its deadline is also postponed. That ensures 828 * the overrunning entity can't interfere with other entity in the system and 829 * can't make them miss their deadlines. Reasons why this kind of overruns 830 * could happen are, typically, a entity voluntarily trying to overcome its 831 * runtime, or it just underestimated it during sched_setattr(). 832 */ 833 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 834 { 835 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 836 struct rq *rq = rq_of_dl_rq(dl_rq); 837 838 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); 839 840 /* 841 * This could be the case for a !-dl task that is boosted. 842 * Just go with full inherited parameters. 843 */ 844 if (dl_se->dl_deadline == 0) 845 replenish_dl_new_period(dl_se, rq); 846 847 if (dl_se->dl_yielded && dl_se->runtime > 0) 848 dl_se->runtime = 0; 849 850 /* 851 * We keep moving the deadline away until we get some 852 * available runtime for the entity. This ensures correct 853 * handling of situations where the runtime overrun is 854 * arbitrary large. 855 */ 856 while (dl_se->runtime <= 0) { 857 dl_se->deadline += pi_of(dl_se)->dl_period; 858 dl_se->runtime += pi_of(dl_se)->dl_runtime; 859 } 860 861 /* 862 * At this point, the deadline really should be "in 863 * the future" with respect to rq->clock. If it's 864 * not, we are, for some reason, lagging too much! 865 * Anyway, after having warn userspace abut that, 866 * we still try to keep the things running by 867 * resetting the deadline and the budget of the 868 * entity. 869 */ 870 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 871 printk_deferred_once("sched: DL replenish lagged too much\n"); 872 replenish_dl_new_period(dl_se, rq); 873 } 874 875 if (dl_se->dl_yielded) 876 dl_se->dl_yielded = 0; 877 if (dl_se->dl_throttled) 878 dl_se->dl_throttled = 0; 879 } 880 881 /* 882 * Here we check if --at time t-- an entity (which is probably being 883 * [re]activated or, in general, enqueued) can use its remaining runtime 884 * and its current deadline _without_ exceeding the bandwidth it is 885 * assigned (function returns true if it can't). We are in fact applying 886 * one of the CBS rules: when a task wakes up, if the residual runtime 887 * over residual deadline fits within the allocated bandwidth, then we 888 * can keep the current (absolute) deadline and residual budget without 889 * disrupting the schedulability of the system. Otherwise, we should 890 * refill the runtime and set the deadline a period in the future, 891 * because keeping the current (absolute) deadline of the task would 892 * result in breaking guarantees promised to other tasks (refer to 893 * Documentation/scheduler/sched-deadline.rst for more information). 894 * 895 * This function returns true if: 896 * 897 * runtime / (deadline - t) > dl_runtime / dl_deadline , 898 * 899 * IOW we can't recycle current parameters. 900 * 901 * Notice that the bandwidth check is done against the deadline. For 902 * task with deadline equal to period this is the same of using 903 * dl_period instead of dl_deadline in the equation above. 904 */ 905 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 906 { 907 u64 left, right; 908 909 /* 910 * left and right are the two sides of the equation above, 911 * after a bit of shuffling to use multiplications instead 912 * of divisions. 913 * 914 * Note that none of the time values involved in the two 915 * multiplications are absolute: dl_deadline and dl_runtime 916 * are the relative deadline and the maximum runtime of each 917 * instance, runtime is the runtime left for the last instance 918 * and (deadline - t), since t is rq->clock, is the time left 919 * to the (absolute) deadline. Even if overflowing the u64 type 920 * is very unlikely to occur in both cases, here we scale down 921 * as we want to avoid that risk at all. Scaling down by 10 922 * means that we reduce granularity to 1us. We are fine with it, 923 * since this is only a true/false check and, anyway, thinking 924 * of anything below microseconds resolution is actually fiction 925 * (but still we want to give the user that illusion >;). 926 */ 927 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 928 right = ((dl_se->deadline - t) >> DL_SCALE) * 929 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 930 931 return dl_time_before(right, left); 932 } 933 934 /* 935 * Revised wakeup rule [1]: For self-suspending tasks, rather then 936 * re-initializing task's runtime and deadline, the revised wakeup 937 * rule adjusts the task's runtime to avoid the task to overrun its 938 * density. 939 * 940 * Reasoning: a task may overrun the density if: 941 * runtime / (deadline - t) > dl_runtime / dl_deadline 942 * 943 * Therefore, runtime can be adjusted to: 944 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 945 * 946 * In such way that runtime will be equal to the maximum density 947 * the task can use without breaking any rule. 948 * 949 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 950 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 951 */ 952 static void 953 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 954 { 955 u64 laxity = dl_se->deadline - rq_clock(rq); 956 957 /* 958 * If the task has deadline < period, and the deadline is in the past, 959 * it should already be throttled before this check. 960 * 961 * See update_dl_entity() comments for further details. 962 */ 963 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 964 965 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 966 } 967 968 /* 969 * Regarding the deadline, a task with implicit deadline has a relative 970 * deadline == relative period. A task with constrained deadline has a 971 * relative deadline <= relative period. 972 * 973 * We support constrained deadline tasks. However, there are some restrictions 974 * applied only for tasks which do not have an implicit deadline. See 975 * update_dl_entity() to know more about such restrictions. 976 * 977 * The dl_is_implicit() returns true if the task has an implicit deadline. 978 */ 979 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 980 { 981 return dl_se->dl_deadline == dl_se->dl_period; 982 } 983 984 /* 985 * When a deadline entity is placed in the runqueue, its runtime and deadline 986 * might need to be updated. This is done by a CBS wake up rule. There are two 987 * different rules: 1) the original CBS; and 2) the Revisited CBS. 988 * 989 * When the task is starting a new period, the Original CBS is used. In this 990 * case, the runtime is replenished and a new absolute deadline is set. 991 * 992 * When a task is queued before the begin of the next period, using the 993 * remaining runtime and deadline could make the entity to overflow, see 994 * dl_entity_overflow() to find more about runtime overflow. When such case 995 * is detected, the runtime and deadline need to be updated. 996 * 997 * If the task has an implicit deadline, i.e., deadline == period, the Original 998 * CBS is applied. the runtime is replenished and a new absolute deadline is 999 * set, as in the previous cases. 1000 * 1001 * However, the Original CBS does not work properly for tasks with 1002 * deadline < period, which are said to have a constrained deadline. By 1003 * applying the Original CBS, a constrained deadline task would be able to run 1004 * runtime/deadline in a period. With deadline < period, the task would 1005 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1006 * 1007 * In order to prevent this misbehave, the Revisited CBS is used for 1008 * constrained deadline tasks when a runtime overflow is detected. In the 1009 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1010 * the remaining runtime of the task is reduced to avoid runtime overflow. 1011 * Please refer to the comments update_dl_revised_wakeup() function to find 1012 * more about the Revised CBS rule. 1013 */ 1014 static void update_dl_entity(struct sched_dl_entity *dl_se) 1015 { 1016 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1017 struct rq *rq = rq_of_dl_rq(dl_rq); 1018 1019 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1020 dl_entity_overflow(dl_se, rq_clock(rq))) { 1021 1022 if (unlikely(!dl_is_implicit(dl_se) && 1023 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1024 !is_dl_boosted(dl_se))) { 1025 update_dl_revised_wakeup(dl_se, rq); 1026 return; 1027 } 1028 1029 replenish_dl_new_period(dl_se, rq); 1030 } 1031 } 1032 1033 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1034 { 1035 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1036 } 1037 1038 /* 1039 * If the entity depleted all its runtime, and if we want it to sleep 1040 * while waiting for some new execution time to become available, we 1041 * set the bandwidth replenishment timer to the replenishment instant 1042 * and try to activate it. 1043 * 1044 * Notice that it is important for the caller to know if the timer 1045 * actually started or not (i.e., the replenishment instant is in 1046 * the future or in the past). 1047 */ 1048 static int start_dl_timer(struct task_struct *p) 1049 { 1050 struct sched_dl_entity *dl_se = &p->dl; 1051 struct hrtimer *timer = &dl_se->dl_timer; 1052 struct rq *rq = task_rq(p); 1053 ktime_t now, act; 1054 s64 delta; 1055 1056 lockdep_assert_rq_held(rq); 1057 1058 /* 1059 * We want the timer to fire at the deadline, but considering 1060 * that it is actually coming from rq->clock and not from 1061 * hrtimer's time base reading. 1062 */ 1063 act = ns_to_ktime(dl_next_period(dl_se)); 1064 now = hrtimer_cb_get_time(timer); 1065 delta = ktime_to_ns(now) - rq_clock(rq); 1066 act = ktime_add_ns(act, delta); 1067 1068 /* 1069 * If the expiry time already passed, e.g., because the value 1070 * chosen as the deadline is too small, don't even try to 1071 * start the timer in the past! 1072 */ 1073 if (ktime_us_delta(act, now) < 0) 1074 return 0; 1075 1076 /* 1077 * !enqueued will guarantee another callback; even if one is already in 1078 * progress. This ensures a balanced {get,put}_task_struct(). 1079 * 1080 * The race against __run_timer() clearing the enqueued state is 1081 * harmless because we're holding task_rq()->lock, therefore the timer 1082 * expiring after we've done the check will wait on its task_rq_lock() 1083 * and observe our state. 1084 */ 1085 if (!hrtimer_is_queued(timer)) { 1086 get_task_struct(p); 1087 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1088 } 1089 1090 return 1; 1091 } 1092 1093 /* 1094 * This is the bandwidth enforcement timer callback. If here, we know 1095 * a task is not on its dl_rq, since the fact that the timer was running 1096 * means the task is throttled and needs a runtime replenishment. 1097 * 1098 * However, what we actually do depends on the fact the task is active, 1099 * (it is on its rq) or has been removed from there by a call to 1100 * dequeue_task_dl(). In the former case we must issue the runtime 1101 * replenishment and add the task back to the dl_rq; in the latter, we just 1102 * do nothing but clearing dl_throttled, so that runtime and deadline 1103 * updating (and the queueing back to dl_rq) will be done by the 1104 * next call to enqueue_task_dl(). 1105 */ 1106 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1107 { 1108 struct sched_dl_entity *dl_se = container_of(timer, 1109 struct sched_dl_entity, 1110 dl_timer); 1111 struct task_struct *p = dl_task_of(dl_se); 1112 struct rq_flags rf; 1113 struct rq *rq; 1114 1115 rq = task_rq_lock(p, &rf); 1116 1117 /* 1118 * The task might have changed its scheduling policy to something 1119 * different than SCHED_DEADLINE (through switched_from_dl()). 1120 */ 1121 if (!dl_task(p)) 1122 goto unlock; 1123 1124 /* 1125 * The task might have been boosted by someone else and might be in the 1126 * boosting/deboosting path, its not throttled. 1127 */ 1128 if (is_dl_boosted(dl_se)) 1129 goto unlock; 1130 1131 /* 1132 * Spurious timer due to start_dl_timer() race; or we already received 1133 * a replenishment from rt_mutex_setprio(). 1134 */ 1135 if (!dl_se->dl_throttled) 1136 goto unlock; 1137 1138 sched_clock_tick(); 1139 update_rq_clock(rq); 1140 1141 /* 1142 * If the throttle happened during sched-out; like: 1143 * 1144 * schedule() 1145 * deactivate_task() 1146 * dequeue_task_dl() 1147 * update_curr_dl() 1148 * start_dl_timer() 1149 * __dequeue_task_dl() 1150 * prev->on_rq = 0; 1151 * 1152 * We can be both throttled and !queued. Replenish the counter 1153 * but do not enqueue -- wait for our wakeup to do that. 1154 */ 1155 if (!task_on_rq_queued(p)) { 1156 replenish_dl_entity(dl_se); 1157 goto unlock; 1158 } 1159 1160 #ifdef CONFIG_SMP 1161 if (unlikely(!rq->online)) { 1162 /* 1163 * If the runqueue is no longer available, migrate the 1164 * task elsewhere. This necessarily changes rq. 1165 */ 1166 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1167 rq = dl_task_offline_migration(rq, p); 1168 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1169 update_rq_clock(rq); 1170 1171 /* 1172 * Now that the task has been migrated to the new RQ and we 1173 * have that locked, proceed as normal and enqueue the task 1174 * there. 1175 */ 1176 } 1177 #endif 1178 1179 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1180 if (dl_task(rq->curr)) 1181 wakeup_preempt_dl(rq, p, 0); 1182 else 1183 resched_curr(rq); 1184 1185 #ifdef CONFIG_SMP 1186 /* 1187 * Queueing this task back might have overloaded rq, check if we need 1188 * to kick someone away. 1189 */ 1190 if (has_pushable_dl_tasks(rq)) { 1191 /* 1192 * Nothing relies on rq->lock after this, so its safe to drop 1193 * rq->lock. 1194 */ 1195 rq_unpin_lock(rq, &rf); 1196 push_dl_task(rq); 1197 rq_repin_lock(rq, &rf); 1198 } 1199 #endif 1200 1201 unlock: 1202 task_rq_unlock(rq, p, &rf); 1203 1204 /* 1205 * This can free the task_struct, including this hrtimer, do not touch 1206 * anything related to that after this. 1207 */ 1208 put_task_struct(p); 1209 1210 return HRTIMER_NORESTART; 1211 } 1212 1213 static void init_dl_task_timer(struct sched_dl_entity *dl_se) 1214 { 1215 struct hrtimer *timer = &dl_se->dl_timer; 1216 1217 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1218 timer->function = dl_task_timer; 1219 } 1220 1221 /* 1222 * During the activation, CBS checks if it can reuse the current task's 1223 * runtime and period. If the deadline of the task is in the past, CBS 1224 * cannot use the runtime, and so it replenishes the task. This rule 1225 * works fine for implicit deadline tasks (deadline == period), and the 1226 * CBS was designed for implicit deadline tasks. However, a task with 1227 * constrained deadline (deadline < period) might be awakened after the 1228 * deadline, but before the next period. In this case, replenishing the 1229 * task would allow it to run for runtime / deadline. As in this case 1230 * deadline < period, CBS enables a task to run for more than the 1231 * runtime / period. In a very loaded system, this can cause a domino 1232 * effect, making other tasks miss their deadlines. 1233 * 1234 * To avoid this problem, in the activation of a constrained deadline 1235 * task after the deadline but before the next period, throttle the 1236 * task and set the replenishing timer to the begin of the next period, 1237 * unless it is boosted. 1238 */ 1239 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1240 { 1241 struct task_struct *p = dl_task_of(dl_se); 1242 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1243 1244 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1245 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1246 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p))) 1247 return; 1248 dl_se->dl_throttled = 1; 1249 if (dl_se->runtime > 0) 1250 dl_se->runtime = 0; 1251 } 1252 } 1253 1254 static 1255 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1256 { 1257 return (dl_se->runtime <= 0); 1258 } 1259 1260 /* 1261 * This function implements the GRUB accounting rule. According to the 1262 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt", 1263 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt", 1264 * where u is the utilization of the task, Umax is the maximum reclaimable 1265 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1266 * as the difference between the "total runqueue utilization" and the 1267 * "runqueue active utilization", and Uextra is the (per runqueue) extra 1268 * reclaimable utilization. 1269 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied 1270 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT. 1271 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw 1272 * is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1273 * Since delta is a 64 bit variable, to have an overflow its value should be 1274 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is 1275 * not an issue here. 1276 */ 1277 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1278 { 1279 u64 u_act; 1280 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1281 1282 /* 1283 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we 1284 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra 1285 * can be larger than u_max. So, u_max - u_inact - u_extra would be 1286 * negative leading to wrong results. 1287 */ 1288 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw) 1289 u_act = dl_se->dl_bw; 1290 else 1291 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw; 1292 1293 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT; 1294 return (delta * u_act) >> BW_SHIFT; 1295 } 1296 1297 /* 1298 * Update the current task's runtime statistics (provided it is still 1299 * a -deadline task and has not been removed from the dl_rq). 1300 */ 1301 static void update_curr_dl(struct rq *rq) 1302 { 1303 struct task_struct *curr = rq->curr; 1304 struct sched_dl_entity *dl_se = &curr->dl; 1305 s64 delta_exec, scaled_delta_exec; 1306 int cpu = cpu_of(rq); 1307 1308 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1309 return; 1310 1311 /* 1312 * Consumed budget is computed considering the time as 1313 * observed by schedulable tasks (excluding time spent 1314 * in hardirq context, etc.). Deadlines are instead 1315 * computed using hard walltime. This seems to be the more 1316 * natural solution, but the full ramifications of this 1317 * approach need further study. 1318 */ 1319 delta_exec = update_curr_common(rq); 1320 if (unlikely(delta_exec <= 0)) { 1321 if (unlikely(dl_se->dl_yielded)) 1322 goto throttle; 1323 return; 1324 } 1325 1326 if (dl_entity_is_special(dl_se)) 1327 return; 1328 1329 /* 1330 * For tasks that participate in GRUB, we implement GRUB-PA: the 1331 * spare reclaimed bandwidth is used to clock down frequency. 1332 * 1333 * For the others, we still need to scale reservation parameters 1334 * according to current frequency and CPU maximum capacity. 1335 */ 1336 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1337 scaled_delta_exec = grub_reclaim(delta_exec, 1338 rq, 1339 &curr->dl); 1340 } else { 1341 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1342 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1343 1344 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1345 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1346 } 1347 1348 dl_se->runtime -= scaled_delta_exec; 1349 1350 throttle: 1351 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1352 dl_se->dl_throttled = 1; 1353 1354 /* If requested, inform the user about runtime overruns. */ 1355 if (dl_runtime_exceeded(dl_se) && 1356 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1357 dl_se->dl_overrun = 1; 1358 1359 __dequeue_task_dl(rq, curr, 0); 1360 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr))) 1361 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1362 1363 if (!is_leftmost(curr, &rq->dl)) 1364 resched_curr(rq); 1365 } 1366 1367 /* 1368 * Because -- for now -- we share the rt bandwidth, we need to 1369 * account our runtime there too, otherwise actual rt tasks 1370 * would be able to exceed the shared quota. 1371 * 1372 * Account to the root rt group for now. 1373 * 1374 * The solution we're working towards is having the RT groups scheduled 1375 * using deadline servers -- however there's a few nasties to figure 1376 * out before that can happen. 1377 */ 1378 if (rt_bandwidth_enabled()) { 1379 struct rt_rq *rt_rq = &rq->rt; 1380 1381 raw_spin_lock(&rt_rq->rt_runtime_lock); 1382 /* 1383 * We'll let actual RT tasks worry about the overflow here, we 1384 * have our own CBS to keep us inline; only account when RT 1385 * bandwidth is relevant. 1386 */ 1387 if (sched_rt_bandwidth_account(rt_rq)) 1388 rt_rq->rt_time += delta_exec; 1389 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1390 } 1391 } 1392 1393 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1394 { 1395 struct sched_dl_entity *dl_se = container_of(timer, 1396 struct sched_dl_entity, 1397 inactive_timer); 1398 struct task_struct *p = dl_task_of(dl_se); 1399 struct rq_flags rf; 1400 struct rq *rq; 1401 1402 rq = task_rq_lock(p, &rf); 1403 1404 sched_clock_tick(); 1405 update_rq_clock(rq); 1406 1407 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1408 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1409 1410 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1411 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1412 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1413 dl_se->dl_non_contending = 0; 1414 } 1415 1416 raw_spin_lock(&dl_b->lock); 1417 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1418 raw_spin_unlock(&dl_b->lock); 1419 __dl_clear_params(dl_se); 1420 1421 goto unlock; 1422 } 1423 if (dl_se->dl_non_contending == 0) 1424 goto unlock; 1425 1426 sub_running_bw(dl_se, &rq->dl); 1427 dl_se->dl_non_contending = 0; 1428 unlock: 1429 task_rq_unlock(rq, p, &rf); 1430 put_task_struct(p); 1431 1432 return HRTIMER_NORESTART; 1433 } 1434 1435 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1436 { 1437 struct hrtimer *timer = &dl_se->inactive_timer; 1438 1439 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1440 timer->function = inactive_task_timer; 1441 } 1442 1443 #define __node_2_dle(node) \ 1444 rb_entry((node), struct sched_dl_entity, rb_node) 1445 1446 #ifdef CONFIG_SMP 1447 1448 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1449 { 1450 struct rq *rq = rq_of_dl_rq(dl_rq); 1451 1452 if (dl_rq->earliest_dl.curr == 0 || 1453 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1454 if (dl_rq->earliest_dl.curr == 0) 1455 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 1456 dl_rq->earliest_dl.curr = deadline; 1457 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1458 } 1459 } 1460 1461 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1462 { 1463 struct rq *rq = rq_of_dl_rq(dl_rq); 1464 1465 /* 1466 * Since we may have removed our earliest (and/or next earliest) 1467 * task we must recompute them. 1468 */ 1469 if (!dl_rq->dl_nr_running) { 1470 dl_rq->earliest_dl.curr = 0; 1471 dl_rq->earliest_dl.next = 0; 1472 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1473 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1474 } else { 1475 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 1476 struct sched_dl_entity *entry = __node_2_dle(leftmost); 1477 1478 dl_rq->earliest_dl.curr = entry->deadline; 1479 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1480 } 1481 } 1482 1483 #else 1484 1485 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1486 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1487 1488 #endif /* CONFIG_SMP */ 1489 1490 static inline 1491 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1492 { 1493 int prio = dl_task_of(dl_se)->prio; 1494 u64 deadline = dl_se->deadline; 1495 1496 WARN_ON(!dl_prio(prio)); 1497 dl_rq->dl_nr_running++; 1498 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1499 1500 inc_dl_deadline(dl_rq, deadline); 1501 inc_dl_migration(dl_se, dl_rq); 1502 } 1503 1504 static inline 1505 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1506 { 1507 int prio = dl_task_of(dl_se)->prio; 1508 1509 WARN_ON(!dl_prio(prio)); 1510 WARN_ON(!dl_rq->dl_nr_running); 1511 dl_rq->dl_nr_running--; 1512 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1513 1514 dec_dl_deadline(dl_rq, dl_se->deadline); 1515 dec_dl_migration(dl_se, dl_rq); 1516 } 1517 1518 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 1519 { 1520 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 1521 } 1522 1523 static inline struct sched_statistics * 1524 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 1525 { 1526 return &dl_task_of(dl_se)->stats; 1527 } 1528 1529 static inline void 1530 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1531 { 1532 struct sched_statistics *stats; 1533 1534 if (!schedstat_enabled()) 1535 return; 1536 1537 stats = __schedstats_from_dl_se(dl_se); 1538 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1539 } 1540 1541 static inline void 1542 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1543 { 1544 struct sched_statistics *stats; 1545 1546 if (!schedstat_enabled()) 1547 return; 1548 1549 stats = __schedstats_from_dl_se(dl_se); 1550 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1551 } 1552 1553 static inline void 1554 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1555 { 1556 struct sched_statistics *stats; 1557 1558 if (!schedstat_enabled()) 1559 return; 1560 1561 stats = __schedstats_from_dl_se(dl_se); 1562 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1563 } 1564 1565 static inline void 1566 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1567 int flags) 1568 { 1569 if (!schedstat_enabled()) 1570 return; 1571 1572 if (flags & ENQUEUE_WAKEUP) 1573 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 1574 } 1575 1576 static inline void 1577 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1578 int flags) 1579 { 1580 struct task_struct *p = dl_task_of(dl_se); 1581 1582 if (!schedstat_enabled()) 1583 return; 1584 1585 if ((flags & DEQUEUE_SLEEP)) { 1586 unsigned int state; 1587 1588 state = READ_ONCE(p->__state); 1589 if (state & TASK_INTERRUPTIBLE) 1590 __schedstat_set(p->stats.sleep_start, 1591 rq_clock(rq_of_dl_rq(dl_rq))); 1592 1593 if (state & TASK_UNINTERRUPTIBLE) 1594 __schedstat_set(p->stats.block_start, 1595 rq_clock(rq_of_dl_rq(dl_rq))); 1596 } 1597 } 1598 1599 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1600 { 1601 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1602 1603 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); 1604 1605 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 1606 1607 inc_dl_tasks(dl_se, dl_rq); 1608 } 1609 1610 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1611 { 1612 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1613 1614 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1615 return; 1616 1617 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1618 1619 RB_CLEAR_NODE(&dl_se->rb_node); 1620 1621 dec_dl_tasks(dl_se, dl_rq); 1622 } 1623 1624 static void 1625 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1626 { 1627 WARN_ON_ONCE(on_dl_rq(dl_se)); 1628 1629 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 1630 1631 /* 1632 * Check if a constrained deadline task was activated 1633 * after the deadline but before the next period. 1634 * If that is the case, the task will be throttled and 1635 * the replenishment timer will be set to the next period. 1636 */ 1637 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se)) 1638 dl_check_constrained_dl(dl_se); 1639 1640 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) { 1641 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1642 1643 add_rq_bw(dl_se, dl_rq); 1644 add_running_bw(dl_se, dl_rq); 1645 } 1646 1647 /* 1648 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1649 * its budget it needs a replenishment and, since it now is on 1650 * its rq, the bandwidth timer callback (which clearly has not 1651 * run yet) will take care of this. 1652 * However, the active utilization does not depend on the fact 1653 * that the task is on the runqueue or not (but depends on the 1654 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1655 * In other words, even if a task is throttled its utilization must 1656 * be counted in the active utilization; hence, we need to call 1657 * add_running_bw(). 1658 */ 1659 if (dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1660 if (flags & ENQUEUE_WAKEUP) 1661 task_contending(dl_se, flags); 1662 1663 return; 1664 } 1665 1666 /* 1667 * If this is a wakeup or a new instance, the scheduling 1668 * parameters of the task might need updating. Otherwise, 1669 * we want a replenishment of its runtime. 1670 */ 1671 if (flags & ENQUEUE_WAKEUP) { 1672 task_contending(dl_se, flags); 1673 update_dl_entity(dl_se); 1674 } else if (flags & ENQUEUE_REPLENISH) { 1675 replenish_dl_entity(dl_se); 1676 } else if ((flags & ENQUEUE_RESTORE) && 1677 !is_dl_boosted(dl_se) && 1678 dl_time_before(dl_se->deadline, 1679 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { 1680 setup_new_dl_entity(dl_se); 1681 } 1682 1683 __enqueue_dl_entity(dl_se); 1684 } 1685 1686 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1687 { 1688 __dequeue_dl_entity(dl_se); 1689 1690 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) { 1691 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1692 1693 sub_running_bw(dl_se, dl_rq); 1694 sub_rq_bw(dl_se, dl_rq); 1695 } 1696 1697 /* 1698 * This check allows to start the inactive timer (or to immediately 1699 * decrease the active utilization, if needed) in two cases: 1700 * when the task blocks and when it is terminating 1701 * (p->state == TASK_DEAD). We can handle the two cases in the same 1702 * way, because from GRUB's point of view the same thing is happening 1703 * (the task moves from "active contending" to "active non contending" 1704 * or "inactive") 1705 */ 1706 if (flags & DEQUEUE_SLEEP) 1707 task_non_contending(dl_se); 1708 } 1709 1710 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1711 { 1712 if (is_dl_boosted(&p->dl)) { 1713 /* 1714 * Because of delays in the detection of the overrun of a 1715 * thread's runtime, it might be the case that a thread 1716 * goes to sleep in a rt mutex with negative runtime. As 1717 * a consequence, the thread will be throttled. 1718 * 1719 * While waiting for the mutex, this thread can also be 1720 * boosted via PI, resulting in a thread that is throttled 1721 * and boosted at the same time. 1722 * 1723 * In this case, the boost overrides the throttle. 1724 */ 1725 if (p->dl.dl_throttled) { 1726 /* 1727 * The replenish timer needs to be canceled. No 1728 * problem if it fires concurrently: boosted threads 1729 * are ignored in dl_task_timer(). 1730 */ 1731 hrtimer_try_to_cancel(&p->dl.dl_timer); 1732 p->dl.dl_throttled = 0; 1733 } 1734 } else if (!dl_prio(p->normal_prio)) { 1735 /* 1736 * Special case in which we have a !SCHED_DEADLINE task that is going 1737 * to be deboosted, but exceeds its runtime while doing so. No point in 1738 * replenishing it, as it's going to return back to its original 1739 * scheduling class after this. If it has been throttled, we need to 1740 * clear the flag, otherwise the task may wake up as throttled after 1741 * being boosted again with no means to replenish the runtime and clear 1742 * the throttle. 1743 */ 1744 p->dl.dl_throttled = 0; 1745 if (!(flags & ENQUEUE_REPLENISH)) 1746 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 1747 task_pid_nr(p)); 1748 1749 return; 1750 } 1751 1752 check_schedstat_required(); 1753 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); 1754 1755 if (p->on_rq == TASK_ON_RQ_MIGRATING) 1756 flags |= ENQUEUE_MIGRATING; 1757 1758 enqueue_dl_entity(&p->dl, flags); 1759 1760 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1) 1761 enqueue_pushable_dl_task(rq, p); 1762 } 1763 1764 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1765 { 1766 update_stats_dequeue_dl(&rq->dl, &p->dl, flags); 1767 dequeue_dl_entity(&p->dl, flags); 1768 1769 if (!p->dl.dl_throttled) 1770 dequeue_pushable_dl_task(rq, p); 1771 } 1772 1773 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1774 { 1775 update_curr_dl(rq); 1776 1777 if (p->on_rq == TASK_ON_RQ_MIGRATING) 1778 flags |= DEQUEUE_MIGRATING; 1779 1780 __dequeue_task_dl(rq, p, flags); 1781 } 1782 1783 /* 1784 * Yield task semantic for -deadline tasks is: 1785 * 1786 * get off from the CPU until our next instance, with 1787 * a new runtime. This is of little use now, since we 1788 * don't have a bandwidth reclaiming mechanism. Anyway, 1789 * bandwidth reclaiming is planned for the future, and 1790 * yield_task_dl will indicate that some spare budget 1791 * is available for other task instances to use it. 1792 */ 1793 static void yield_task_dl(struct rq *rq) 1794 { 1795 /* 1796 * We make the task go to sleep until its current deadline by 1797 * forcing its runtime to zero. This way, update_curr_dl() stops 1798 * it and the bandwidth timer will wake it up and will give it 1799 * new scheduling parameters (thanks to dl_yielded=1). 1800 */ 1801 rq->curr->dl.dl_yielded = 1; 1802 1803 update_rq_clock(rq); 1804 update_curr_dl(rq); 1805 /* 1806 * Tell update_rq_clock() that we've just updated, 1807 * so we don't do microscopic update in schedule() 1808 * and double the fastpath cost. 1809 */ 1810 rq_clock_skip_update(rq); 1811 } 1812 1813 #ifdef CONFIG_SMP 1814 1815 static inline bool dl_task_is_earliest_deadline(struct task_struct *p, 1816 struct rq *rq) 1817 { 1818 return (!rq->dl.dl_nr_running || 1819 dl_time_before(p->dl.deadline, 1820 rq->dl.earliest_dl.curr)); 1821 } 1822 1823 static int find_later_rq(struct task_struct *task); 1824 1825 static int 1826 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 1827 { 1828 struct task_struct *curr; 1829 bool select_rq; 1830 struct rq *rq; 1831 1832 if (!(flags & WF_TTWU)) 1833 goto out; 1834 1835 rq = cpu_rq(cpu); 1836 1837 rcu_read_lock(); 1838 curr = READ_ONCE(rq->curr); /* unlocked access */ 1839 1840 /* 1841 * If we are dealing with a -deadline task, we must 1842 * decide where to wake it up. 1843 * If it has a later deadline and the current task 1844 * on this rq can't move (provided the waking task 1845 * can!) we prefer to send it somewhere else. On the 1846 * other hand, if it has a shorter deadline, we 1847 * try to make it stay here, it might be important. 1848 */ 1849 select_rq = unlikely(dl_task(curr)) && 1850 (curr->nr_cpus_allowed < 2 || 1851 !dl_entity_preempt(&p->dl, &curr->dl)) && 1852 p->nr_cpus_allowed > 1; 1853 1854 /* 1855 * Take the capacity of the CPU into account to 1856 * ensure it fits the requirement of the task. 1857 */ 1858 if (sched_asym_cpucap_active()) 1859 select_rq |= !dl_task_fits_capacity(p, cpu); 1860 1861 if (select_rq) { 1862 int target = find_later_rq(p); 1863 1864 if (target != -1 && 1865 dl_task_is_earliest_deadline(p, cpu_rq(target))) 1866 cpu = target; 1867 } 1868 rcu_read_unlock(); 1869 1870 out: 1871 return cpu; 1872 } 1873 1874 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 1875 { 1876 struct rq_flags rf; 1877 struct rq *rq; 1878 1879 if (READ_ONCE(p->__state) != TASK_WAKING) 1880 return; 1881 1882 rq = task_rq(p); 1883 /* 1884 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1885 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1886 * rq->lock is not... So, lock it 1887 */ 1888 rq_lock(rq, &rf); 1889 if (p->dl.dl_non_contending) { 1890 update_rq_clock(rq); 1891 sub_running_bw(&p->dl, &rq->dl); 1892 p->dl.dl_non_contending = 0; 1893 /* 1894 * If the timer handler is currently running and the 1895 * timer cannot be canceled, inactive_task_timer() 1896 * will see that dl_not_contending is not set, and 1897 * will not touch the rq's active utilization, 1898 * so we are still safe. 1899 */ 1900 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1901 put_task_struct(p); 1902 } 1903 sub_rq_bw(&p->dl, &rq->dl); 1904 rq_unlock(rq, &rf); 1905 } 1906 1907 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1908 { 1909 /* 1910 * Current can't be migrated, useless to reschedule, 1911 * let's hope p can move out. 1912 */ 1913 if (rq->curr->nr_cpus_allowed == 1 || 1914 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 1915 return; 1916 1917 /* 1918 * p is migratable, so let's not schedule it and 1919 * see if it is pushed or pulled somewhere else. 1920 */ 1921 if (p->nr_cpus_allowed != 1 && 1922 cpudl_find(&rq->rd->cpudl, p, NULL)) 1923 return; 1924 1925 resched_curr(rq); 1926 } 1927 1928 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1929 { 1930 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 1931 /* 1932 * This is OK, because current is on_cpu, which avoids it being 1933 * picked for load-balance and preemption/IRQs are still 1934 * disabled avoiding further scheduler activity on it and we've 1935 * not yet started the picking loop. 1936 */ 1937 rq_unpin_lock(rq, rf); 1938 pull_dl_task(rq); 1939 rq_repin_lock(rq, rf); 1940 } 1941 1942 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 1943 } 1944 #endif /* CONFIG_SMP */ 1945 1946 /* 1947 * Only called when both the current and waking task are -deadline 1948 * tasks. 1949 */ 1950 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, 1951 int flags) 1952 { 1953 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1954 resched_curr(rq); 1955 return; 1956 } 1957 1958 #ifdef CONFIG_SMP 1959 /* 1960 * In the unlikely case current and p have the same deadline 1961 * let us try to decide what's the best thing to do... 1962 */ 1963 if ((p->dl.deadline == rq->curr->dl.deadline) && 1964 !test_tsk_need_resched(rq->curr)) 1965 check_preempt_equal_dl(rq, p); 1966 #endif /* CONFIG_SMP */ 1967 } 1968 1969 #ifdef CONFIG_SCHED_HRTICK 1970 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1971 { 1972 hrtick_start(rq, p->dl.runtime); 1973 } 1974 #else /* !CONFIG_SCHED_HRTICK */ 1975 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1976 { 1977 } 1978 #endif 1979 1980 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 1981 { 1982 struct sched_dl_entity *dl_se = &p->dl; 1983 struct dl_rq *dl_rq = &rq->dl; 1984 1985 p->se.exec_start = rq_clock_task(rq); 1986 if (on_dl_rq(&p->dl)) 1987 update_stats_wait_end_dl(dl_rq, dl_se); 1988 1989 /* You can't push away the running task */ 1990 dequeue_pushable_dl_task(rq, p); 1991 1992 if (!first) 1993 return; 1994 1995 if (hrtick_enabled_dl(rq)) 1996 start_hrtick_dl(rq, p); 1997 1998 if (rq->curr->sched_class != &dl_sched_class) 1999 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2000 2001 deadline_queue_push_tasks(rq); 2002 } 2003 2004 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 2005 { 2006 struct rb_node *left = rb_first_cached(&dl_rq->root); 2007 2008 if (!left) 2009 return NULL; 2010 2011 return __node_2_dle(left); 2012 } 2013 2014 static struct task_struct *pick_task_dl(struct rq *rq) 2015 { 2016 struct sched_dl_entity *dl_se; 2017 struct dl_rq *dl_rq = &rq->dl; 2018 struct task_struct *p; 2019 2020 if (!sched_dl_runnable(rq)) 2021 return NULL; 2022 2023 dl_se = pick_next_dl_entity(dl_rq); 2024 WARN_ON_ONCE(!dl_se); 2025 p = dl_task_of(dl_se); 2026 2027 return p; 2028 } 2029 2030 static struct task_struct *pick_next_task_dl(struct rq *rq) 2031 { 2032 struct task_struct *p; 2033 2034 p = pick_task_dl(rq); 2035 if (p) 2036 set_next_task_dl(rq, p, true); 2037 2038 return p; 2039 } 2040 2041 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 2042 { 2043 struct sched_dl_entity *dl_se = &p->dl; 2044 struct dl_rq *dl_rq = &rq->dl; 2045 2046 if (on_dl_rq(&p->dl)) 2047 update_stats_wait_start_dl(dl_rq, dl_se); 2048 2049 update_curr_dl(rq); 2050 2051 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2052 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2053 enqueue_pushable_dl_task(rq, p); 2054 } 2055 2056 /* 2057 * scheduler tick hitting a task of our scheduling class. 2058 * 2059 * NOTE: This function can be called remotely by the tick offload that 2060 * goes along full dynticks. Therefore no local assumption can be made 2061 * and everything must be accessed through the @rq and @curr passed in 2062 * parameters. 2063 */ 2064 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2065 { 2066 update_curr_dl(rq); 2067 2068 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2069 /* 2070 * Even when we have runtime, update_curr_dl() might have resulted in us 2071 * not being the leftmost task anymore. In that case NEED_RESCHED will 2072 * be set and schedule() will start a new hrtick for the next task. 2073 */ 2074 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2075 is_leftmost(p, &rq->dl)) 2076 start_hrtick_dl(rq, p); 2077 } 2078 2079 static void task_fork_dl(struct task_struct *p) 2080 { 2081 /* 2082 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2083 * sched_fork() 2084 */ 2085 } 2086 2087 #ifdef CONFIG_SMP 2088 2089 /* Only try algorithms three times */ 2090 #define DL_MAX_TRIES 3 2091 2092 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 2093 { 2094 if (!task_on_cpu(rq, p) && 2095 cpumask_test_cpu(cpu, &p->cpus_mask)) 2096 return 1; 2097 return 0; 2098 } 2099 2100 /* 2101 * Return the earliest pushable rq's task, which is suitable to be executed 2102 * on the CPU, NULL otherwise: 2103 */ 2104 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2105 { 2106 struct task_struct *p = NULL; 2107 struct rb_node *next_node; 2108 2109 if (!has_pushable_dl_tasks(rq)) 2110 return NULL; 2111 2112 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2113 2114 next_node: 2115 if (next_node) { 2116 p = __node_2_pdl(next_node); 2117 2118 if (pick_dl_task(rq, p, cpu)) 2119 return p; 2120 2121 next_node = rb_next(next_node); 2122 goto next_node; 2123 } 2124 2125 return NULL; 2126 } 2127 2128 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2129 2130 static int find_later_rq(struct task_struct *task) 2131 { 2132 struct sched_domain *sd; 2133 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2134 int this_cpu = smp_processor_id(); 2135 int cpu = task_cpu(task); 2136 2137 /* Make sure the mask is initialized first */ 2138 if (unlikely(!later_mask)) 2139 return -1; 2140 2141 if (task->nr_cpus_allowed == 1) 2142 return -1; 2143 2144 /* 2145 * We have to consider system topology and task affinity 2146 * first, then we can look for a suitable CPU. 2147 */ 2148 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2149 return -1; 2150 2151 /* 2152 * If we are here, some targets have been found, including 2153 * the most suitable which is, among the runqueues where the 2154 * current tasks have later deadlines than the task's one, the 2155 * rq with the latest possible one. 2156 * 2157 * Now we check how well this matches with task's 2158 * affinity and system topology. 2159 * 2160 * The last CPU where the task run is our first 2161 * guess, since it is most likely cache-hot there. 2162 */ 2163 if (cpumask_test_cpu(cpu, later_mask)) 2164 return cpu; 2165 /* 2166 * Check if this_cpu is to be skipped (i.e., it is 2167 * not in the mask) or not. 2168 */ 2169 if (!cpumask_test_cpu(this_cpu, later_mask)) 2170 this_cpu = -1; 2171 2172 rcu_read_lock(); 2173 for_each_domain(cpu, sd) { 2174 if (sd->flags & SD_WAKE_AFFINE) { 2175 int best_cpu; 2176 2177 /* 2178 * If possible, preempting this_cpu is 2179 * cheaper than migrating. 2180 */ 2181 if (this_cpu != -1 && 2182 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2183 rcu_read_unlock(); 2184 return this_cpu; 2185 } 2186 2187 best_cpu = cpumask_any_and_distribute(later_mask, 2188 sched_domain_span(sd)); 2189 /* 2190 * Last chance: if a CPU being in both later_mask 2191 * and current sd span is valid, that becomes our 2192 * choice. Of course, the latest possible CPU is 2193 * already under consideration through later_mask. 2194 */ 2195 if (best_cpu < nr_cpu_ids) { 2196 rcu_read_unlock(); 2197 return best_cpu; 2198 } 2199 } 2200 } 2201 rcu_read_unlock(); 2202 2203 /* 2204 * At this point, all our guesses failed, we just return 2205 * 'something', and let the caller sort the things out. 2206 */ 2207 if (this_cpu != -1) 2208 return this_cpu; 2209 2210 cpu = cpumask_any_distribute(later_mask); 2211 if (cpu < nr_cpu_ids) 2212 return cpu; 2213 2214 return -1; 2215 } 2216 2217 /* Locks the rq it finds */ 2218 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2219 { 2220 struct rq *later_rq = NULL; 2221 int tries; 2222 int cpu; 2223 2224 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2225 cpu = find_later_rq(task); 2226 2227 if ((cpu == -1) || (cpu == rq->cpu)) 2228 break; 2229 2230 later_rq = cpu_rq(cpu); 2231 2232 if (!dl_task_is_earliest_deadline(task, later_rq)) { 2233 /* 2234 * Target rq has tasks of equal or earlier deadline, 2235 * retrying does not release any lock and is unlikely 2236 * to yield a different result. 2237 */ 2238 later_rq = NULL; 2239 break; 2240 } 2241 2242 /* Retry if something changed. */ 2243 if (double_lock_balance(rq, later_rq)) { 2244 if (unlikely(task_rq(task) != rq || 2245 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2246 task_on_cpu(rq, task) || 2247 !dl_task(task) || 2248 is_migration_disabled(task) || 2249 !task_on_rq_queued(task))) { 2250 double_unlock_balance(rq, later_rq); 2251 later_rq = NULL; 2252 break; 2253 } 2254 } 2255 2256 /* 2257 * If the rq we found has no -deadline task, or 2258 * its earliest one has a later deadline than our 2259 * task, the rq is a good one. 2260 */ 2261 if (dl_task_is_earliest_deadline(task, later_rq)) 2262 break; 2263 2264 /* Otherwise we try again. */ 2265 double_unlock_balance(rq, later_rq); 2266 later_rq = NULL; 2267 } 2268 2269 return later_rq; 2270 } 2271 2272 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2273 { 2274 struct task_struct *p; 2275 2276 if (!has_pushable_dl_tasks(rq)) 2277 return NULL; 2278 2279 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2280 2281 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2282 WARN_ON_ONCE(task_current(rq, p)); 2283 WARN_ON_ONCE(p->nr_cpus_allowed <= 1); 2284 2285 WARN_ON_ONCE(!task_on_rq_queued(p)); 2286 WARN_ON_ONCE(!dl_task(p)); 2287 2288 return p; 2289 } 2290 2291 /* 2292 * See if the non running -deadline tasks on this rq 2293 * can be sent to some other CPU where they can preempt 2294 * and start executing. 2295 */ 2296 static int push_dl_task(struct rq *rq) 2297 { 2298 struct task_struct *next_task; 2299 struct rq *later_rq; 2300 int ret = 0; 2301 2302 if (!rq->dl.overloaded) 2303 return 0; 2304 2305 next_task = pick_next_pushable_dl_task(rq); 2306 if (!next_task) 2307 return 0; 2308 2309 retry: 2310 /* 2311 * If next_task preempts rq->curr, and rq->curr 2312 * can move away, it makes sense to just reschedule 2313 * without going further in pushing next_task. 2314 */ 2315 if (dl_task(rq->curr) && 2316 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2317 rq->curr->nr_cpus_allowed > 1) { 2318 resched_curr(rq); 2319 return 0; 2320 } 2321 2322 if (is_migration_disabled(next_task)) 2323 return 0; 2324 2325 if (WARN_ON(next_task == rq->curr)) 2326 return 0; 2327 2328 /* We might release rq lock */ 2329 get_task_struct(next_task); 2330 2331 /* Will lock the rq it'll find */ 2332 later_rq = find_lock_later_rq(next_task, rq); 2333 if (!later_rq) { 2334 struct task_struct *task; 2335 2336 /* 2337 * We must check all this again, since 2338 * find_lock_later_rq releases rq->lock and it is 2339 * then possible that next_task has migrated. 2340 */ 2341 task = pick_next_pushable_dl_task(rq); 2342 if (task == next_task) { 2343 /* 2344 * The task is still there. We don't try 2345 * again, some other CPU will pull it when ready. 2346 */ 2347 goto out; 2348 } 2349 2350 if (!task) 2351 /* No more tasks */ 2352 goto out; 2353 2354 put_task_struct(next_task); 2355 next_task = task; 2356 goto retry; 2357 } 2358 2359 deactivate_task(rq, next_task, 0); 2360 set_task_cpu(next_task, later_rq->cpu); 2361 activate_task(later_rq, next_task, 0); 2362 ret = 1; 2363 2364 resched_curr(later_rq); 2365 2366 double_unlock_balance(rq, later_rq); 2367 2368 out: 2369 put_task_struct(next_task); 2370 2371 return ret; 2372 } 2373 2374 static void push_dl_tasks(struct rq *rq) 2375 { 2376 /* push_dl_task() will return true if it moved a -deadline task */ 2377 while (push_dl_task(rq)) 2378 ; 2379 } 2380 2381 static void pull_dl_task(struct rq *this_rq) 2382 { 2383 int this_cpu = this_rq->cpu, cpu; 2384 struct task_struct *p, *push_task; 2385 bool resched = false; 2386 struct rq *src_rq; 2387 u64 dmin = LONG_MAX; 2388 2389 if (likely(!dl_overloaded(this_rq))) 2390 return; 2391 2392 /* 2393 * Match the barrier from dl_set_overloaded; this guarantees that if we 2394 * see overloaded we must also see the dlo_mask bit. 2395 */ 2396 smp_rmb(); 2397 2398 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2399 if (this_cpu == cpu) 2400 continue; 2401 2402 src_rq = cpu_rq(cpu); 2403 2404 /* 2405 * It looks racy, abd it is! However, as in sched_rt.c, 2406 * we are fine with this. 2407 */ 2408 if (this_rq->dl.dl_nr_running && 2409 dl_time_before(this_rq->dl.earliest_dl.curr, 2410 src_rq->dl.earliest_dl.next)) 2411 continue; 2412 2413 /* Might drop this_rq->lock */ 2414 push_task = NULL; 2415 double_lock_balance(this_rq, src_rq); 2416 2417 /* 2418 * If there are no more pullable tasks on the 2419 * rq, we're done with it. 2420 */ 2421 if (src_rq->dl.dl_nr_running <= 1) 2422 goto skip; 2423 2424 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2425 2426 /* 2427 * We found a task to be pulled if: 2428 * - it preempts our current (if there's one), 2429 * - it will preempt the last one we pulled (if any). 2430 */ 2431 if (p && dl_time_before(p->dl.deadline, dmin) && 2432 dl_task_is_earliest_deadline(p, this_rq)) { 2433 WARN_ON(p == src_rq->curr); 2434 WARN_ON(!task_on_rq_queued(p)); 2435 2436 /* 2437 * Then we pull iff p has actually an earlier 2438 * deadline than the current task of its runqueue. 2439 */ 2440 if (dl_time_before(p->dl.deadline, 2441 src_rq->curr->dl.deadline)) 2442 goto skip; 2443 2444 if (is_migration_disabled(p)) { 2445 push_task = get_push_task(src_rq); 2446 } else { 2447 deactivate_task(src_rq, p, 0); 2448 set_task_cpu(p, this_cpu); 2449 activate_task(this_rq, p, 0); 2450 dmin = p->dl.deadline; 2451 resched = true; 2452 } 2453 2454 /* Is there any other task even earlier? */ 2455 } 2456 skip: 2457 double_unlock_balance(this_rq, src_rq); 2458 2459 if (push_task) { 2460 preempt_disable(); 2461 raw_spin_rq_unlock(this_rq); 2462 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2463 push_task, &src_rq->push_work); 2464 preempt_enable(); 2465 raw_spin_rq_lock(this_rq); 2466 } 2467 } 2468 2469 if (resched) 2470 resched_curr(this_rq); 2471 } 2472 2473 /* 2474 * Since the task is not running and a reschedule is not going to happen 2475 * anytime soon on its runqueue, we try pushing it away now. 2476 */ 2477 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2478 { 2479 if (!task_on_cpu(rq, p) && 2480 !test_tsk_need_resched(rq->curr) && 2481 p->nr_cpus_allowed > 1 && 2482 dl_task(rq->curr) && 2483 (rq->curr->nr_cpus_allowed < 2 || 2484 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2485 push_dl_tasks(rq); 2486 } 2487 } 2488 2489 static void set_cpus_allowed_dl(struct task_struct *p, 2490 struct affinity_context *ctx) 2491 { 2492 struct root_domain *src_rd; 2493 struct rq *rq; 2494 2495 WARN_ON_ONCE(!dl_task(p)); 2496 2497 rq = task_rq(p); 2498 src_rd = rq->rd; 2499 /* 2500 * Migrating a SCHED_DEADLINE task between exclusive 2501 * cpusets (different root_domains) entails a bandwidth 2502 * update. We already made space for us in the destination 2503 * domain (see cpuset_can_attach()). 2504 */ 2505 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) { 2506 struct dl_bw *src_dl_b; 2507 2508 src_dl_b = dl_bw_of(cpu_of(rq)); 2509 /* 2510 * We now free resources of the root_domain we are migrating 2511 * off. In the worst case, sched_setattr() may temporary fail 2512 * until we complete the update. 2513 */ 2514 raw_spin_lock(&src_dl_b->lock); 2515 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2516 raw_spin_unlock(&src_dl_b->lock); 2517 } 2518 2519 set_cpus_allowed_common(p, ctx); 2520 } 2521 2522 /* Assumes rq->lock is held */ 2523 static void rq_online_dl(struct rq *rq) 2524 { 2525 if (rq->dl.overloaded) 2526 dl_set_overload(rq); 2527 2528 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2529 if (rq->dl.dl_nr_running > 0) 2530 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2531 } 2532 2533 /* Assumes rq->lock is held */ 2534 static void rq_offline_dl(struct rq *rq) 2535 { 2536 if (rq->dl.overloaded) 2537 dl_clear_overload(rq); 2538 2539 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2540 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2541 } 2542 2543 void __init init_sched_dl_class(void) 2544 { 2545 unsigned int i; 2546 2547 for_each_possible_cpu(i) 2548 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2549 GFP_KERNEL, cpu_to_node(i)); 2550 } 2551 2552 void dl_add_task_root_domain(struct task_struct *p) 2553 { 2554 struct rq_flags rf; 2555 struct rq *rq; 2556 struct dl_bw *dl_b; 2557 2558 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2559 if (!dl_task(p)) { 2560 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2561 return; 2562 } 2563 2564 rq = __task_rq_lock(p, &rf); 2565 2566 dl_b = &rq->rd->dl_bw; 2567 raw_spin_lock(&dl_b->lock); 2568 2569 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2570 2571 raw_spin_unlock(&dl_b->lock); 2572 2573 task_rq_unlock(rq, p, &rf); 2574 } 2575 2576 void dl_clear_root_domain(struct root_domain *rd) 2577 { 2578 unsigned long flags; 2579 2580 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags); 2581 rd->dl_bw.total_bw = 0; 2582 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags); 2583 } 2584 2585 #endif /* CONFIG_SMP */ 2586 2587 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2588 { 2589 /* 2590 * task_non_contending() can start the "inactive timer" (if the 0-lag 2591 * time is in the future). If the task switches back to dl before 2592 * the "inactive timer" fires, it can continue to consume its current 2593 * runtime using its current deadline. If it stays outside of 2594 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2595 * will reset the task parameters. 2596 */ 2597 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2598 task_non_contending(&p->dl); 2599 2600 /* 2601 * In case a task is setscheduled out from SCHED_DEADLINE we need to 2602 * keep track of that on its cpuset (for correct bandwidth tracking). 2603 */ 2604 dec_dl_tasks_cs(p); 2605 2606 if (!task_on_rq_queued(p)) { 2607 /* 2608 * Inactive timer is armed. However, p is leaving DEADLINE and 2609 * might migrate away from this rq while continuing to run on 2610 * some other class. We need to remove its contribution from 2611 * this rq running_bw now, or sub_rq_bw (below) will complain. 2612 */ 2613 if (p->dl.dl_non_contending) 2614 sub_running_bw(&p->dl, &rq->dl); 2615 sub_rq_bw(&p->dl, &rq->dl); 2616 } 2617 2618 /* 2619 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2620 * at the 0-lag time, because the task could have been migrated 2621 * while SCHED_OTHER in the meanwhile. 2622 */ 2623 if (p->dl.dl_non_contending) 2624 p->dl.dl_non_contending = 0; 2625 2626 /* 2627 * Since this might be the only -deadline task on the rq, 2628 * this is the right place to try to pull some other one 2629 * from an overloaded CPU, if any. 2630 */ 2631 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2632 return; 2633 2634 deadline_queue_pull_task(rq); 2635 } 2636 2637 /* 2638 * When switching to -deadline, we may overload the rq, then 2639 * we try to push someone off, if possible. 2640 */ 2641 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2642 { 2643 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2644 put_task_struct(p); 2645 2646 /* 2647 * In case a task is setscheduled to SCHED_DEADLINE we need to keep 2648 * track of that on its cpuset (for correct bandwidth tracking). 2649 */ 2650 inc_dl_tasks_cs(p); 2651 2652 /* If p is not queued we will update its parameters at next wakeup. */ 2653 if (!task_on_rq_queued(p)) { 2654 add_rq_bw(&p->dl, &rq->dl); 2655 2656 return; 2657 } 2658 2659 if (rq->curr != p) { 2660 #ifdef CONFIG_SMP 2661 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2662 deadline_queue_push_tasks(rq); 2663 #endif 2664 if (dl_task(rq->curr)) 2665 wakeup_preempt_dl(rq, p, 0); 2666 else 2667 resched_curr(rq); 2668 } else { 2669 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2670 } 2671 } 2672 2673 /* 2674 * If the scheduling parameters of a -deadline task changed, 2675 * a push or pull operation might be needed. 2676 */ 2677 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2678 int oldprio) 2679 { 2680 if (!task_on_rq_queued(p)) 2681 return; 2682 2683 #ifdef CONFIG_SMP 2684 /* 2685 * This might be too much, but unfortunately 2686 * we don't have the old deadline value, and 2687 * we can't argue if the task is increasing 2688 * or lowering its prio, so... 2689 */ 2690 if (!rq->dl.overloaded) 2691 deadline_queue_pull_task(rq); 2692 2693 if (task_current(rq, p)) { 2694 /* 2695 * If we now have a earlier deadline task than p, 2696 * then reschedule, provided p is still on this 2697 * runqueue. 2698 */ 2699 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2700 resched_curr(rq); 2701 } else { 2702 /* 2703 * Current may not be deadline in case p was throttled but we 2704 * have just replenished it (e.g. rt_mutex_setprio()). 2705 * 2706 * Otherwise, if p was given an earlier deadline, reschedule. 2707 */ 2708 if (!dl_task(rq->curr) || 2709 dl_time_before(p->dl.deadline, rq->curr->dl.deadline)) 2710 resched_curr(rq); 2711 } 2712 #else 2713 /* 2714 * We don't know if p has a earlier or later deadline, so let's blindly 2715 * set a (maybe not needed) rescheduling point. 2716 */ 2717 resched_curr(rq); 2718 #endif 2719 } 2720 2721 #ifdef CONFIG_SCHED_CORE 2722 static int task_is_throttled_dl(struct task_struct *p, int cpu) 2723 { 2724 return p->dl.dl_throttled; 2725 } 2726 #endif 2727 2728 DEFINE_SCHED_CLASS(dl) = { 2729 2730 .enqueue_task = enqueue_task_dl, 2731 .dequeue_task = dequeue_task_dl, 2732 .yield_task = yield_task_dl, 2733 2734 .wakeup_preempt = wakeup_preempt_dl, 2735 2736 .pick_next_task = pick_next_task_dl, 2737 .put_prev_task = put_prev_task_dl, 2738 .set_next_task = set_next_task_dl, 2739 2740 #ifdef CONFIG_SMP 2741 .balance = balance_dl, 2742 .pick_task = pick_task_dl, 2743 .select_task_rq = select_task_rq_dl, 2744 .migrate_task_rq = migrate_task_rq_dl, 2745 .set_cpus_allowed = set_cpus_allowed_dl, 2746 .rq_online = rq_online_dl, 2747 .rq_offline = rq_offline_dl, 2748 .task_woken = task_woken_dl, 2749 .find_lock_rq = find_lock_later_rq, 2750 #endif 2751 2752 .task_tick = task_tick_dl, 2753 .task_fork = task_fork_dl, 2754 2755 .prio_changed = prio_changed_dl, 2756 .switched_from = switched_from_dl, 2757 .switched_to = switched_to_dl, 2758 2759 .update_curr = update_curr_dl, 2760 #ifdef CONFIG_SCHED_CORE 2761 .task_is_throttled = task_is_throttled_dl, 2762 #endif 2763 }; 2764 2765 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */ 2766 static u64 dl_generation; 2767 2768 int sched_dl_global_validate(void) 2769 { 2770 u64 runtime = global_rt_runtime(); 2771 u64 period = global_rt_period(); 2772 u64 new_bw = to_ratio(period, runtime); 2773 u64 gen = ++dl_generation; 2774 struct dl_bw *dl_b; 2775 int cpu, cpus, ret = 0; 2776 unsigned long flags; 2777 2778 /* 2779 * Here we want to check the bandwidth not being set to some 2780 * value smaller than the currently allocated bandwidth in 2781 * any of the root_domains. 2782 */ 2783 for_each_possible_cpu(cpu) { 2784 rcu_read_lock_sched(); 2785 2786 if (dl_bw_visited(cpu, gen)) 2787 goto next; 2788 2789 dl_b = dl_bw_of(cpu); 2790 cpus = dl_bw_cpus(cpu); 2791 2792 raw_spin_lock_irqsave(&dl_b->lock, flags); 2793 if (new_bw * cpus < dl_b->total_bw) 2794 ret = -EBUSY; 2795 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2796 2797 next: 2798 rcu_read_unlock_sched(); 2799 2800 if (ret) 2801 break; 2802 } 2803 2804 return ret; 2805 } 2806 2807 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2808 { 2809 if (global_rt_runtime() == RUNTIME_INF) { 2810 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2811 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT; 2812 } else { 2813 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2814 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2815 dl_rq->max_bw = dl_rq->extra_bw = 2816 to_ratio(global_rt_period(), global_rt_runtime()); 2817 } 2818 } 2819 2820 void sched_dl_do_global(void) 2821 { 2822 u64 new_bw = -1; 2823 u64 gen = ++dl_generation; 2824 struct dl_bw *dl_b; 2825 int cpu; 2826 unsigned long flags; 2827 2828 if (global_rt_runtime() != RUNTIME_INF) 2829 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2830 2831 for_each_possible_cpu(cpu) { 2832 rcu_read_lock_sched(); 2833 2834 if (dl_bw_visited(cpu, gen)) { 2835 rcu_read_unlock_sched(); 2836 continue; 2837 } 2838 2839 dl_b = dl_bw_of(cpu); 2840 2841 raw_spin_lock_irqsave(&dl_b->lock, flags); 2842 dl_b->bw = new_bw; 2843 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2844 2845 rcu_read_unlock_sched(); 2846 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2847 } 2848 } 2849 2850 /* 2851 * We must be sure that accepting a new task (or allowing changing the 2852 * parameters of an existing one) is consistent with the bandwidth 2853 * constraints. If yes, this function also accordingly updates the currently 2854 * allocated bandwidth to reflect the new situation. 2855 * 2856 * This function is called while holding p's rq->lock. 2857 */ 2858 int sched_dl_overflow(struct task_struct *p, int policy, 2859 const struct sched_attr *attr) 2860 { 2861 u64 period = attr->sched_period ?: attr->sched_deadline; 2862 u64 runtime = attr->sched_runtime; 2863 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2864 int cpus, err = -1, cpu = task_cpu(p); 2865 struct dl_bw *dl_b = dl_bw_of(cpu); 2866 unsigned long cap; 2867 2868 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2869 return 0; 2870 2871 /* !deadline task may carry old deadline bandwidth */ 2872 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2873 return 0; 2874 2875 /* 2876 * Either if a task, enters, leave, or stays -deadline but changes 2877 * its parameters, we may need to update accordingly the total 2878 * allocated bandwidth of the container. 2879 */ 2880 raw_spin_lock(&dl_b->lock); 2881 cpus = dl_bw_cpus(cpu); 2882 cap = dl_bw_capacity(cpu); 2883 2884 if (dl_policy(policy) && !task_has_dl_policy(p) && 2885 !__dl_overflow(dl_b, cap, 0, new_bw)) { 2886 if (hrtimer_active(&p->dl.inactive_timer)) 2887 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2888 __dl_add(dl_b, new_bw, cpus); 2889 err = 0; 2890 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2891 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 2892 /* 2893 * XXX this is slightly incorrect: when the task 2894 * utilization decreases, we should delay the total 2895 * utilization change until the task's 0-lag point. 2896 * But this would require to set the task's "inactive 2897 * timer" when the task is not inactive. 2898 */ 2899 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2900 __dl_add(dl_b, new_bw, cpus); 2901 dl_change_utilization(p, new_bw); 2902 err = 0; 2903 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2904 /* 2905 * Do not decrease the total deadline utilization here, 2906 * switched_from_dl() will take care to do it at the correct 2907 * (0-lag) time. 2908 */ 2909 err = 0; 2910 } 2911 raw_spin_unlock(&dl_b->lock); 2912 2913 return err; 2914 } 2915 2916 /* 2917 * This function initializes the sched_dl_entity of a newly becoming 2918 * SCHED_DEADLINE task. 2919 * 2920 * Only the static values are considered here, the actual runtime and the 2921 * absolute deadline will be properly calculated when the task is enqueued 2922 * for the first time with its new policy. 2923 */ 2924 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 2925 { 2926 struct sched_dl_entity *dl_se = &p->dl; 2927 2928 dl_se->dl_runtime = attr->sched_runtime; 2929 dl_se->dl_deadline = attr->sched_deadline; 2930 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 2931 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 2932 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 2933 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 2934 } 2935 2936 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 2937 { 2938 struct sched_dl_entity *dl_se = &p->dl; 2939 2940 attr->sched_priority = p->rt_priority; 2941 attr->sched_runtime = dl_se->dl_runtime; 2942 attr->sched_deadline = dl_se->dl_deadline; 2943 attr->sched_period = dl_se->dl_period; 2944 attr->sched_flags &= ~SCHED_DL_FLAGS; 2945 attr->sched_flags |= dl_se->flags; 2946 } 2947 2948 /* 2949 * This function validates the new parameters of a -deadline task. 2950 * We ask for the deadline not being zero, and greater or equal 2951 * than the runtime, as well as the period of being zero or 2952 * greater than deadline. Furthermore, we have to be sure that 2953 * user parameters are above the internal resolution of 1us (we 2954 * check sched_runtime only since it is always the smaller one) and 2955 * below 2^63 ns (we have to check both sched_deadline and 2956 * sched_period, as the latter can be zero). 2957 */ 2958 bool __checkparam_dl(const struct sched_attr *attr) 2959 { 2960 u64 period, max, min; 2961 2962 /* special dl tasks don't actually use any parameter */ 2963 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2964 return true; 2965 2966 /* deadline != 0 */ 2967 if (attr->sched_deadline == 0) 2968 return false; 2969 2970 /* 2971 * Since we truncate DL_SCALE bits, make sure we're at least 2972 * that big. 2973 */ 2974 if (attr->sched_runtime < (1ULL << DL_SCALE)) 2975 return false; 2976 2977 /* 2978 * Since we use the MSB for wrap-around and sign issues, make 2979 * sure it's not set (mind that period can be equal to zero). 2980 */ 2981 if (attr->sched_deadline & (1ULL << 63) || 2982 attr->sched_period & (1ULL << 63)) 2983 return false; 2984 2985 period = attr->sched_period; 2986 if (!period) 2987 period = attr->sched_deadline; 2988 2989 /* runtime <= deadline <= period (if period != 0) */ 2990 if (period < attr->sched_deadline || 2991 attr->sched_deadline < attr->sched_runtime) 2992 return false; 2993 2994 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 2995 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 2996 2997 if (period < min || period > max) 2998 return false; 2999 3000 return true; 3001 } 3002 3003 /* 3004 * This function clears the sched_dl_entity static params. 3005 */ 3006 static void __dl_clear_params(struct sched_dl_entity *dl_se) 3007 { 3008 dl_se->dl_runtime = 0; 3009 dl_se->dl_deadline = 0; 3010 dl_se->dl_period = 0; 3011 dl_se->flags = 0; 3012 dl_se->dl_bw = 0; 3013 dl_se->dl_density = 0; 3014 3015 dl_se->dl_throttled = 0; 3016 dl_se->dl_yielded = 0; 3017 dl_se->dl_non_contending = 0; 3018 dl_se->dl_overrun = 0; 3019 3020 #ifdef CONFIG_RT_MUTEXES 3021 dl_se->pi_se = dl_se; 3022 #endif 3023 } 3024 3025 void init_dl_entity(struct sched_dl_entity *dl_se) 3026 { 3027 RB_CLEAR_NODE(&dl_se->rb_node); 3028 init_dl_task_timer(dl_se); 3029 init_dl_inactive_task_timer(dl_se); 3030 __dl_clear_params(dl_se); 3031 } 3032 3033 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 3034 { 3035 struct sched_dl_entity *dl_se = &p->dl; 3036 3037 if (dl_se->dl_runtime != attr->sched_runtime || 3038 dl_se->dl_deadline != attr->sched_deadline || 3039 dl_se->dl_period != attr->sched_period || 3040 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 3041 return true; 3042 3043 return false; 3044 } 3045 3046 #ifdef CONFIG_SMP 3047 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3048 const struct cpumask *trial) 3049 { 3050 unsigned long flags, cap; 3051 struct dl_bw *cur_dl_b; 3052 int ret = 1; 3053 3054 rcu_read_lock_sched(); 3055 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3056 cap = __dl_bw_capacity(trial); 3057 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3058 if (__dl_overflow(cur_dl_b, cap, 0, 0)) 3059 ret = 0; 3060 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3061 rcu_read_unlock_sched(); 3062 3063 return ret; 3064 } 3065 3066 enum dl_bw_request { 3067 dl_bw_req_check_overflow = 0, 3068 dl_bw_req_alloc, 3069 dl_bw_req_free 3070 }; 3071 3072 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw) 3073 { 3074 unsigned long flags; 3075 struct dl_bw *dl_b; 3076 bool overflow = 0; 3077 3078 rcu_read_lock_sched(); 3079 dl_b = dl_bw_of(cpu); 3080 raw_spin_lock_irqsave(&dl_b->lock, flags); 3081 3082 if (req == dl_bw_req_free) { 3083 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu)); 3084 } else { 3085 unsigned long cap = dl_bw_capacity(cpu); 3086 3087 overflow = __dl_overflow(dl_b, cap, 0, dl_bw); 3088 3089 if (req == dl_bw_req_alloc && !overflow) { 3090 /* 3091 * We reserve space in the destination 3092 * root_domain, as we can't fail after this point. 3093 * We will free resources in the source root_domain 3094 * later on (see set_cpus_allowed_dl()). 3095 */ 3096 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu)); 3097 } 3098 } 3099 3100 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3101 rcu_read_unlock_sched(); 3102 3103 return overflow ? -EBUSY : 0; 3104 } 3105 3106 int dl_bw_check_overflow(int cpu) 3107 { 3108 return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0); 3109 } 3110 3111 int dl_bw_alloc(int cpu, u64 dl_bw) 3112 { 3113 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw); 3114 } 3115 3116 void dl_bw_free(int cpu, u64 dl_bw) 3117 { 3118 dl_bw_manage(dl_bw_req_free, cpu, dl_bw); 3119 } 3120 #endif 3121 3122 #ifdef CONFIG_SCHED_DEBUG 3123 void print_dl_stats(struct seq_file *m, int cpu) 3124 { 3125 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3126 } 3127 #endif /* CONFIG_SCHED_DEBUG */ 3128