xref: /openbmc/linux/kernel/sched/cputime.c (revision f35e839a)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 
9 
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11 
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's irq time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of irq time to wrong
20  * task when irq is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each irq in account_system_time.
22  */
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
25 
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
28 
29 void enable_sched_clock_irqtime(void)
30 {
31 	sched_clock_irqtime = 1;
32 }
33 
34 void disable_sched_clock_irqtime(void)
35 {
36 	sched_clock_irqtime = 0;
37 }
38 
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
42 
43 /*
44  * Called before incrementing preempt_count on {soft,}irq_enter
45  * and before decrementing preempt_count on {soft,}irq_exit.
46  */
47 void irqtime_account_irq(struct task_struct *curr)
48 {
49 	unsigned long flags;
50 	s64 delta;
51 	int cpu;
52 
53 	if (!sched_clock_irqtime)
54 		return;
55 
56 	local_irq_save(flags);
57 
58 	cpu = smp_processor_id();
59 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 	__this_cpu_add(irq_start_time, delta);
61 
62 	irq_time_write_begin();
63 	/*
64 	 * We do not account for softirq time from ksoftirqd here.
65 	 * We want to continue accounting softirq time to ksoftirqd thread
66 	 * in that case, so as not to confuse scheduler with a special task
67 	 * that do not consume any time, but still wants to run.
68 	 */
69 	if (hardirq_count())
70 		__this_cpu_add(cpu_hardirq_time, delta);
71 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 		__this_cpu_add(cpu_softirq_time, delta);
73 
74 	irq_time_write_end();
75 	local_irq_restore(flags);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78 
79 static int irqtime_account_hi_update(void)
80 {
81 	u64 *cpustat = kcpustat_this_cpu->cpustat;
82 	unsigned long flags;
83 	u64 latest_ns;
84 	int ret = 0;
85 
86 	local_irq_save(flags);
87 	latest_ns = this_cpu_read(cpu_hardirq_time);
88 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 		ret = 1;
90 	local_irq_restore(flags);
91 	return ret;
92 }
93 
94 static int irqtime_account_si_update(void)
95 {
96 	u64 *cpustat = kcpustat_this_cpu->cpustat;
97 	unsigned long flags;
98 	u64 latest_ns;
99 	int ret = 0;
100 
101 	local_irq_save(flags);
102 	latest_ns = this_cpu_read(cpu_softirq_time);
103 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 		ret = 1;
105 	local_irq_restore(flags);
106 	return ret;
107 }
108 
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
110 
111 #define sched_clock_irqtime	(0)
112 
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114 
115 static inline void task_group_account_field(struct task_struct *p, int index,
116 					    u64 tmp)
117 {
118 	/*
119 	 * Since all updates are sure to touch the root cgroup, we
120 	 * get ourselves ahead and touch it first. If the root cgroup
121 	 * is the only cgroup, then nothing else should be necessary.
122 	 *
123 	 */
124 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
125 
126 	cpuacct_account_field(p, index, tmp);
127 }
128 
129 /*
130  * Account user cpu time to a process.
131  * @p: the process that the cpu time gets accounted to
132  * @cputime: the cpu time spent in user space since the last update
133  * @cputime_scaled: cputime scaled by cpu frequency
134  */
135 void account_user_time(struct task_struct *p, cputime_t cputime,
136 		       cputime_t cputime_scaled)
137 {
138 	int index;
139 
140 	/* Add user time to process. */
141 	p->utime += cputime;
142 	p->utimescaled += cputime_scaled;
143 	account_group_user_time(p, cputime);
144 
145 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146 
147 	/* Add user time to cpustat. */
148 	task_group_account_field(p, index, (__force u64) cputime);
149 
150 	/* Account for user time used */
151 	acct_account_cputime(p);
152 }
153 
154 /*
155  * Account guest cpu time to a process.
156  * @p: the process that the cpu time gets accounted to
157  * @cputime: the cpu time spent in virtual machine since the last update
158  * @cputime_scaled: cputime scaled by cpu frequency
159  */
160 static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 			       cputime_t cputime_scaled)
162 {
163 	u64 *cpustat = kcpustat_this_cpu->cpustat;
164 
165 	/* Add guest time to process. */
166 	p->utime += cputime;
167 	p->utimescaled += cputime_scaled;
168 	account_group_user_time(p, cputime);
169 	p->gtime += cputime;
170 
171 	/* Add guest time to cpustat. */
172 	if (TASK_NICE(p) > 0) {
173 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 	} else {
176 		cpustat[CPUTIME_USER] += (__force u64) cputime;
177 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 	}
179 }
180 
181 /*
182  * Account system cpu time to a process and desired cpustat field
183  * @p: the process that the cpu time gets accounted to
184  * @cputime: the cpu time spent in kernel space since the last update
185  * @cputime_scaled: cputime scaled by cpu frequency
186  * @target_cputime64: pointer to cpustat field that has to be updated
187  */
188 static inline
189 void __account_system_time(struct task_struct *p, cputime_t cputime,
190 			cputime_t cputime_scaled, int index)
191 {
192 	/* Add system time to process. */
193 	p->stime += cputime;
194 	p->stimescaled += cputime_scaled;
195 	account_group_system_time(p, cputime);
196 
197 	/* Add system time to cpustat. */
198 	task_group_account_field(p, index, (__force u64) cputime);
199 
200 	/* Account for system time used */
201 	acct_account_cputime(p);
202 }
203 
204 /*
205  * Account system cpu time to a process.
206  * @p: the process that the cpu time gets accounted to
207  * @hardirq_offset: the offset to subtract from hardirq_count()
208  * @cputime: the cpu time spent in kernel space since the last update
209  * @cputime_scaled: cputime scaled by cpu frequency
210  */
211 void account_system_time(struct task_struct *p, int hardirq_offset,
212 			 cputime_t cputime, cputime_t cputime_scaled)
213 {
214 	int index;
215 
216 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 		account_guest_time(p, cputime, cputime_scaled);
218 		return;
219 	}
220 
221 	if (hardirq_count() - hardirq_offset)
222 		index = CPUTIME_IRQ;
223 	else if (in_serving_softirq())
224 		index = CPUTIME_SOFTIRQ;
225 	else
226 		index = CPUTIME_SYSTEM;
227 
228 	__account_system_time(p, cputime, cputime_scaled, index);
229 }
230 
231 /*
232  * Account for involuntary wait time.
233  * @cputime: the cpu time spent in involuntary wait
234  */
235 void account_steal_time(cputime_t cputime)
236 {
237 	u64 *cpustat = kcpustat_this_cpu->cpustat;
238 
239 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240 }
241 
242 /*
243  * Account for idle time.
244  * @cputime: the cpu time spent in idle wait
245  */
246 void account_idle_time(cputime_t cputime)
247 {
248 	u64 *cpustat = kcpustat_this_cpu->cpustat;
249 	struct rq *rq = this_rq();
250 
251 	if (atomic_read(&rq->nr_iowait) > 0)
252 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 	else
254 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255 }
256 
257 static __always_inline bool steal_account_process_tick(void)
258 {
259 #ifdef CONFIG_PARAVIRT
260 	if (static_key_false(&paravirt_steal_enabled)) {
261 		u64 steal, st = 0;
262 
263 		steal = paravirt_steal_clock(smp_processor_id());
264 		steal -= this_rq()->prev_steal_time;
265 
266 		st = steal_ticks(steal);
267 		this_rq()->prev_steal_time += st * TICK_NSEC;
268 
269 		account_steal_time(st);
270 		return st;
271 	}
272 #endif
273 	return false;
274 }
275 
276 /*
277  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
278  * tasks (sum on group iteration) belonging to @tsk's group.
279  */
280 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
281 {
282 	struct signal_struct *sig = tsk->signal;
283 	cputime_t utime, stime;
284 	struct task_struct *t;
285 
286 	times->utime = sig->utime;
287 	times->stime = sig->stime;
288 	times->sum_exec_runtime = sig->sum_sched_runtime;
289 
290 	rcu_read_lock();
291 	/* make sure we can trust tsk->thread_group list */
292 	if (!likely(pid_alive(tsk)))
293 		goto out;
294 
295 	t = tsk;
296 	do {
297 		task_cputime(t, &utime, &stime);
298 		times->utime += utime;
299 		times->stime += stime;
300 		times->sum_exec_runtime += task_sched_runtime(t);
301 	} while_each_thread(tsk, t);
302 out:
303 	rcu_read_unlock();
304 }
305 
306 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
307 /*
308  * Account a tick to a process and cpustat
309  * @p: the process that the cpu time gets accounted to
310  * @user_tick: is the tick from userspace
311  * @rq: the pointer to rq
312  *
313  * Tick demultiplexing follows the order
314  * - pending hardirq update
315  * - pending softirq update
316  * - user_time
317  * - idle_time
318  * - system time
319  *   - check for guest_time
320  *   - else account as system_time
321  *
322  * Check for hardirq is done both for system and user time as there is
323  * no timer going off while we are on hardirq and hence we may never get an
324  * opportunity to update it solely in system time.
325  * p->stime and friends are only updated on system time and not on irq
326  * softirq as those do not count in task exec_runtime any more.
327  */
328 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
329 						struct rq *rq)
330 {
331 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
332 	u64 *cpustat = kcpustat_this_cpu->cpustat;
333 
334 	if (steal_account_process_tick())
335 		return;
336 
337 	if (irqtime_account_hi_update()) {
338 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
339 	} else if (irqtime_account_si_update()) {
340 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
341 	} else if (this_cpu_ksoftirqd() == p) {
342 		/*
343 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
344 		 * So, we have to handle it separately here.
345 		 * Also, p->stime needs to be updated for ksoftirqd.
346 		 */
347 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
348 					CPUTIME_SOFTIRQ);
349 	} else if (user_tick) {
350 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
351 	} else if (p == rq->idle) {
352 		account_idle_time(cputime_one_jiffy);
353 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
354 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
355 	} else {
356 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
357 					CPUTIME_SYSTEM);
358 	}
359 }
360 
361 static void irqtime_account_idle_ticks(int ticks)
362 {
363 	int i;
364 	struct rq *rq = this_rq();
365 
366 	for (i = 0; i < ticks; i++)
367 		irqtime_account_process_tick(current, 0, rq);
368 }
369 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
370 static inline void irqtime_account_idle_ticks(int ticks) {}
371 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
372 						struct rq *rq) {}
373 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
374 
375 /*
376  * Use precise platform statistics if available:
377  */
378 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
379 
380 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
381 void vtime_task_switch(struct task_struct *prev)
382 {
383 	if (!vtime_accounting_enabled())
384 		return;
385 
386 	if (is_idle_task(prev))
387 		vtime_account_idle(prev);
388 	else
389 		vtime_account_system(prev);
390 
391 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
392 	vtime_account_user(prev);
393 #endif
394 	arch_vtime_task_switch(prev);
395 }
396 #endif
397 
398 /*
399  * Archs that account the whole time spent in the idle task
400  * (outside irq) as idle time can rely on this and just implement
401  * vtime_account_system() and vtime_account_idle(). Archs that
402  * have other meaning of the idle time (s390 only includes the
403  * time spent by the CPU when it's in low power mode) must override
404  * vtime_account().
405  */
406 #ifndef __ARCH_HAS_VTIME_ACCOUNT
407 void vtime_account_irq_enter(struct task_struct *tsk)
408 {
409 	if (!vtime_accounting_enabled())
410 		return;
411 
412 	if (!in_interrupt()) {
413 		/*
414 		 * If we interrupted user, context_tracking_in_user()
415 		 * is 1 because the context tracking don't hook
416 		 * on irq entry/exit. This way we know if
417 		 * we need to flush user time on kernel entry.
418 		 */
419 		if (context_tracking_in_user()) {
420 			vtime_account_user(tsk);
421 			return;
422 		}
423 
424 		if (is_idle_task(tsk)) {
425 			vtime_account_idle(tsk);
426 			return;
427 		}
428 	}
429 	vtime_account_system(tsk);
430 }
431 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
432 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
433 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
434 
435 
436 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
437 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
438 {
439 	*ut = p->utime;
440 	*st = p->stime;
441 }
442 
443 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
444 {
445 	struct task_cputime cputime;
446 
447 	thread_group_cputime(p, &cputime);
448 
449 	*ut = cputime.utime;
450 	*st = cputime.stime;
451 }
452 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
453 /*
454  * Account a single tick of cpu time.
455  * @p: the process that the cpu time gets accounted to
456  * @user_tick: indicates if the tick is a user or a system tick
457  */
458 void account_process_tick(struct task_struct *p, int user_tick)
459 {
460 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
461 	struct rq *rq = this_rq();
462 
463 	if (vtime_accounting_enabled())
464 		return;
465 
466 	if (sched_clock_irqtime) {
467 		irqtime_account_process_tick(p, user_tick, rq);
468 		return;
469 	}
470 
471 	if (steal_account_process_tick())
472 		return;
473 
474 	if (user_tick)
475 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
476 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
477 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
478 				    one_jiffy_scaled);
479 	else
480 		account_idle_time(cputime_one_jiffy);
481 }
482 
483 /*
484  * Account multiple ticks of steal time.
485  * @p: the process from which the cpu time has been stolen
486  * @ticks: number of stolen ticks
487  */
488 void account_steal_ticks(unsigned long ticks)
489 {
490 	account_steal_time(jiffies_to_cputime(ticks));
491 }
492 
493 /*
494  * Account multiple ticks of idle time.
495  * @ticks: number of stolen ticks
496  */
497 void account_idle_ticks(unsigned long ticks)
498 {
499 
500 	if (sched_clock_irqtime) {
501 		irqtime_account_idle_ticks(ticks);
502 		return;
503 	}
504 
505 	account_idle_time(jiffies_to_cputime(ticks));
506 }
507 
508 /*
509  * Perform (stime * rtime) / total, but avoid multiplication overflow by
510  * loosing precision when the numbers are big.
511  */
512 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
513 {
514 	u64 scaled;
515 
516 	for (;;) {
517 		/* Make sure "rtime" is the bigger of stime/rtime */
518 		if (stime > rtime) {
519 			u64 tmp = rtime; rtime = stime; stime = tmp;
520 		}
521 
522 		/* Make sure 'total' fits in 32 bits */
523 		if (total >> 32)
524 			goto drop_precision;
525 
526 		/* Does rtime (and thus stime) fit in 32 bits? */
527 		if (!(rtime >> 32))
528 			break;
529 
530 		/* Can we just balance rtime/stime rather than dropping bits? */
531 		if (stime >> 31)
532 			goto drop_precision;
533 
534 		/* We can grow stime and shrink rtime and try to make them both fit */
535 		stime <<= 1;
536 		rtime >>= 1;
537 		continue;
538 
539 drop_precision:
540 		/* We drop from rtime, it has more bits than stime */
541 		rtime >>= 1;
542 		total >>= 1;
543 	}
544 
545 	/*
546 	 * Make sure gcc understands that this is a 32x32->64 multiply,
547 	 * followed by a 64/32->64 divide.
548 	 */
549 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
550 	return (__force cputime_t) scaled;
551 }
552 
553 /*
554  * Adjust tick based cputime random precision against scheduler
555  * runtime accounting.
556  */
557 static void cputime_adjust(struct task_cputime *curr,
558 			   struct cputime *prev,
559 			   cputime_t *ut, cputime_t *st)
560 {
561 	cputime_t rtime, stime, utime, total;
562 
563 	if (vtime_accounting_enabled()) {
564 		*ut = curr->utime;
565 		*st = curr->stime;
566 		return;
567 	}
568 
569 	stime = curr->stime;
570 	total = stime + curr->utime;
571 
572 	/*
573 	 * Tick based cputime accounting depend on random scheduling
574 	 * timeslices of a task to be interrupted or not by the timer.
575 	 * Depending on these circumstances, the number of these interrupts
576 	 * may be over or under-optimistic, matching the real user and system
577 	 * cputime with a variable precision.
578 	 *
579 	 * Fix this by scaling these tick based values against the total
580 	 * runtime accounted by the CFS scheduler.
581 	 */
582 	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
583 
584 	/*
585 	 * Update userspace visible utime/stime values only if actual execution
586 	 * time is bigger than already exported. Note that can happen, that we
587 	 * provided bigger values due to scaling inaccuracy on big numbers.
588 	 */
589 	if (prev->stime + prev->utime >= rtime)
590 		goto out;
591 
592 	if (total) {
593 		stime = scale_stime((__force u64)stime,
594 				    (__force u64)rtime, (__force u64)total);
595 		utime = rtime - stime;
596 	} else {
597 		stime = rtime;
598 		utime = 0;
599 	}
600 
601 	/*
602 	 * If the tick based count grows faster than the scheduler one,
603 	 * the result of the scaling may go backward.
604 	 * Let's enforce monotonicity.
605 	 */
606 	prev->stime = max(prev->stime, stime);
607 	prev->utime = max(prev->utime, utime);
608 
609 out:
610 	*ut = prev->utime;
611 	*st = prev->stime;
612 }
613 
614 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
615 {
616 	struct task_cputime cputime = {
617 		.sum_exec_runtime = p->se.sum_exec_runtime,
618 	};
619 
620 	task_cputime(p, &cputime.utime, &cputime.stime);
621 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
622 }
623 
624 /*
625  * Must be called with siglock held.
626  */
627 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
628 {
629 	struct task_cputime cputime;
630 
631 	thread_group_cputime(p, &cputime);
632 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
633 }
634 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
635 
636 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
637 static unsigned long long vtime_delta(struct task_struct *tsk)
638 {
639 	unsigned long long clock;
640 
641 	clock = local_clock();
642 	if (clock < tsk->vtime_snap)
643 		return 0;
644 
645 	return clock - tsk->vtime_snap;
646 }
647 
648 static cputime_t get_vtime_delta(struct task_struct *tsk)
649 {
650 	unsigned long long delta = vtime_delta(tsk);
651 
652 	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
653 	tsk->vtime_snap += delta;
654 
655 	/* CHECKME: always safe to convert nsecs to cputime? */
656 	return nsecs_to_cputime(delta);
657 }
658 
659 static void __vtime_account_system(struct task_struct *tsk)
660 {
661 	cputime_t delta_cpu = get_vtime_delta(tsk);
662 
663 	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
664 }
665 
666 void vtime_account_system(struct task_struct *tsk)
667 {
668 	if (!vtime_accounting_enabled())
669 		return;
670 
671 	write_seqlock(&tsk->vtime_seqlock);
672 	__vtime_account_system(tsk);
673 	write_sequnlock(&tsk->vtime_seqlock);
674 }
675 
676 void vtime_account_irq_exit(struct task_struct *tsk)
677 {
678 	if (!vtime_accounting_enabled())
679 		return;
680 
681 	write_seqlock(&tsk->vtime_seqlock);
682 	if (context_tracking_in_user())
683 		tsk->vtime_snap_whence = VTIME_USER;
684 	__vtime_account_system(tsk);
685 	write_sequnlock(&tsk->vtime_seqlock);
686 }
687 
688 void vtime_account_user(struct task_struct *tsk)
689 {
690 	cputime_t delta_cpu;
691 
692 	if (!vtime_accounting_enabled())
693 		return;
694 
695 	delta_cpu = get_vtime_delta(tsk);
696 
697 	write_seqlock(&tsk->vtime_seqlock);
698 	tsk->vtime_snap_whence = VTIME_SYS;
699 	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
700 	write_sequnlock(&tsk->vtime_seqlock);
701 }
702 
703 void vtime_user_enter(struct task_struct *tsk)
704 {
705 	if (!vtime_accounting_enabled())
706 		return;
707 
708 	write_seqlock(&tsk->vtime_seqlock);
709 	tsk->vtime_snap_whence = VTIME_USER;
710 	__vtime_account_system(tsk);
711 	write_sequnlock(&tsk->vtime_seqlock);
712 }
713 
714 void vtime_guest_enter(struct task_struct *tsk)
715 {
716 	write_seqlock(&tsk->vtime_seqlock);
717 	__vtime_account_system(tsk);
718 	current->flags |= PF_VCPU;
719 	write_sequnlock(&tsk->vtime_seqlock);
720 }
721 
722 void vtime_guest_exit(struct task_struct *tsk)
723 {
724 	write_seqlock(&tsk->vtime_seqlock);
725 	__vtime_account_system(tsk);
726 	current->flags &= ~PF_VCPU;
727 	write_sequnlock(&tsk->vtime_seqlock);
728 }
729 
730 void vtime_account_idle(struct task_struct *tsk)
731 {
732 	cputime_t delta_cpu = get_vtime_delta(tsk);
733 
734 	account_idle_time(delta_cpu);
735 }
736 
737 bool vtime_accounting_enabled(void)
738 {
739 	return context_tracking_active();
740 }
741 
742 void arch_vtime_task_switch(struct task_struct *prev)
743 {
744 	write_seqlock(&prev->vtime_seqlock);
745 	prev->vtime_snap_whence = VTIME_SLEEPING;
746 	write_sequnlock(&prev->vtime_seqlock);
747 
748 	write_seqlock(&current->vtime_seqlock);
749 	current->vtime_snap_whence = VTIME_SYS;
750 	current->vtime_snap = sched_clock();
751 	write_sequnlock(&current->vtime_seqlock);
752 }
753 
754 void vtime_init_idle(struct task_struct *t)
755 {
756 	unsigned long flags;
757 
758 	write_seqlock_irqsave(&t->vtime_seqlock, flags);
759 	t->vtime_snap_whence = VTIME_SYS;
760 	t->vtime_snap = sched_clock();
761 	write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
762 }
763 
764 cputime_t task_gtime(struct task_struct *t)
765 {
766 	unsigned int seq;
767 	cputime_t gtime;
768 
769 	do {
770 		seq = read_seqbegin(&t->vtime_seqlock);
771 
772 		gtime = t->gtime;
773 		if (t->flags & PF_VCPU)
774 			gtime += vtime_delta(t);
775 
776 	} while (read_seqretry(&t->vtime_seqlock, seq));
777 
778 	return gtime;
779 }
780 
781 /*
782  * Fetch cputime raw values from fields of task_struct and
783  * add up the pending nohz execution time since the last
784  * cputime snapshot.
785  */
786 static void
787 fetch_task_cputime(struct task_struct *t,
788 		   cputime_t *u_dst, cputime_t *s_dst,
789 		   cputime_t *u_src, cputime_t *s_src,
790 		   cputime_t *udelta, cputime_t *sdelta)
791 {
792 	unsigned int seq;
793 	unsigned long long delta;
794 
795 	do {
796 		*udelta = 0;
797 		*sdelta = 0;
798 
799 		seq = read_seqbegin(&t->vtime_seqlock);
800 
801 		if (u_dst)
802 			*u_dst = *u_src;
803 		if (s_dst)
804 			*s_dst = *s_src;
805 
806 		/* Task is sleeping, nothing to add */
807 		if (t->vtime_snap_whence == VTIME_SLEEPING ||
808 		    is_idle_task(t))
809 			continue;
810 
811 		delta = vtime_delta(t);
812 
813 		/*
814 		 * Task runs either in user or kernel space, add pending nohz time to
815 		 * the right place.
816 		 */
817 		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
818 			*udelta = delta;
819 		} else {
820 			if (t->vtime_snap_whence == VTIME_SYS)
821 				*sdelta = delta;
822 		}
823 	} while (read_seqretry(&t->vtime_seqlock, seq));
824 }
825 
826 
827 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
828 {
829 	cputime_t udelta, sdelta;
830 
831 	fetch_task_cputime(t, utime, stime, &t->utime,
832 			   &t->stime, &udelta, &sdelta);
833 	if (utime)
834 		*utime += udelta;
835 	if (stime)
836 		*stime += sdelta;
837 }
838 
839 void task_cputime_scaled(struct task_struct *t,
840 			 cputime_t *utimescaled, cputime_t *stimescaled)
841 {
842 	cputime_t udelta, sdelta;
843 
844 	fetch_task_cputime(t, utimescaled, stimescaled,
845 			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
846 	if (utimescaled)
847 		*utimescaled += cputime_to_scaled(udelta);
848 	if (stimescaled)
849 		*stimescaled += cputime_to_scaled(sdelta);
850 }
851 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
852