1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include <linux/context_tracking.h> 7 #include "sched.h" 8 9 10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 11 12 /* 13 * There are no locks covering percpu hardirq/softirq time. 14 * They are only modified in vtime_account, on corresponding CPU 15 * with interrupts disabled. So, writes are safe. 16 * They are read and saved off onto struct rq in update_rq_clock(). 17 * This may result in other CPU reading this CPU's irq time and can 18 * race with irq/vtime_account on this CPU. We would either get old 19 * or new value with a side effect of accounting a slice of irq time to wrong 20 * task when irq is in progress while we read rq->clock. That is a worthy 21 * compromise in place of having locks on each irq in account_system_time. 22 */ 23 DEFINE_PER_CPU(u64, cpu_hardirq_time); 24 DEFINE_PER_CPU(u64, cpu_softirq_time); 25 26 static DEFINE_PER_CPU(u64, irq_start_time); 27 static int sched_clock_irqtime; 28 29 void enable_sched_clock_irqtime(void) 30 { 31 sched_clock_irqtime = 1; 32 } 33 34 void disable_sched_clock_irqtime(void) 35 { 36 sched_clock_irqtime = 0; 37 } 38 39 #ifndef CONFIG_64BIT 40 DEFINE_PER_CPU(seqcount_t, irq_time_seq); 41 #endif /* CONFIG_64BIT */ 42 43 /* 44 * Called before incrementing preempt_count on {soft,}irq_enter 45 * and before decrementing preempt_count on {soft,}irq_exit. 46 */ 47 void irqtime_account_irq(struct task_struct *curr) 48 { 49 unsigned long flags; 50 s64 delta; 51 int cpu; 52 53 if (!sched_clock_irqtime) 54 return; 55 56 local_irq_save(flags); 57 58 cpu = smp_processor_id(); 59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 60 __this_cpu_add(irq_start_time, delta); 61 62 irq_time_write_begin(); 63 /* 64 * We do not account for softirq time from ksoftirqd here. 65 * We want to continue accounting softirq time to ksoftirqd thread 66 * in that case, so as not to confuse scheduler with a special task 67 * that do not consume any time, but still wants to run. 68 */ 69 if (hardirq_count()) 70 __this_cpu_add(cpu_hardirq_time, delta); 71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 72 __this_cpu_add(cpu_softirq_time, delta); 73 74 irq_time_write_end(); 75 local_irq_restore(flags); 76 } 77 EXPORT_SYMBOL_GPL(irqtime_account_irq); 78 79 static int irqtime_account_hi_update(void) 80 { 81 u64 *cpustat = kcpustat_this_cpu->cpustat; 82 unsigned long flags; 83 u64 latest_ns; 84 int ret = 0; 85 86 local_irq_save(flags); 87 latest_ns = this_cpu_read(cpu_hardirq_time); 88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 89 ret = 1; 90 local_irq_restore(flags); 91 return ret; 92 } 93 94 static int irqtime_account_si_update(void) 95 { 96 u64 *cpustat = kcpustat_this_cpu->cpustat; 97 unsigned long flags; 98 u64 latest_ns; 99 int ret = 0; 100 101 local_irq_save(flags); 102 latest_ns = this_cpu_read(cpu_softirq_time); 103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 104 ret = 1; 105 local_irq_restore(flags); 106 return ret; 107 } 108 109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 110 111 #define sched_clock_irqtime (0) 112 113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 114 115 static inline void task_group_account_field(struct task_struct *p, int index, 116 u64 tmp) 117 { 118 /* 119 * Since all updates are sure to touch the root cgroup, we 120 * get ourselves ahead and touch it first. If the root cgroup 121 * is the only cgroup, then nothing else should be necessary. 122 * 123 */ 124 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; 125 126 cpuacct_account_field(p, index, tmp); 127 } 128 129 /* 130 * Account user cpu time to a process. 131 * @p: the process that the cpu time gets accounted to 132 * @cputime: the cpu time spent in user space since the last update 133 * @cputime_scaled: cputime scaled by cpu frequency 134 */ 135 void account_user_time(struct task_struct *p, cputime_t cputime, 136 cputime_t cputime_scaled) 137 { 138 int index; 139 140 /* Add user time to process. */ 141 p->utime += cputime; 142 p->utimescaled += cputime_scaled; 143 account_group_user_time(p, cputime); 144 145 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 146 147 /* Add user time to cpustat. */ 148 task_group_account_field(p, index, (__force u64) cputime); 149 150 /* Account for user time used */ 151 acct_account_cputime(p); 152 } 153 154 /* 155 * Account guest cpu time to a process. 156 * @p: the process that the cpu time gets accounted to 157 * @cputime: the cpu time spent in virtual machine since the last update 158 * @cputime_scaled: cputime scaled by cpu frequency 159 */ 160 static void account_guest_time(struct task_struct *p, cputime_t cputime, 161 cputime_t cputime_scaled) 162 { 163 u64 *cpustat = kcpustat_this_cpu->cpustat; 164 165 /* Add guest time to process. */ 166 p->utime += cputime; 167 p->utimescaled += cputime_scaled; 168 account_group_user_time(p, cputime); 169 p->gtime += cputime; 170 171 /* Add guest time to cpustat. */ 172 if (TASK_NICE(p) > 0) { 173 cpustat[CPUTIME_NICE] += (__force u64) cputime; 174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 175 } else { 176 cpustat[CPUTIME_USER] += (__force u64) cputime; 177 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 178 } 179 } 180 181 /* 182 * Account system cpu time to a process and desired cpustat field 183 * @p: the process that the cpu time gets accounted to 184 * @cputime: the cpu time spent in kernel space since the last update 185 * @cputime_scaled: cputime scaled by cpu frequency 186 * @target_cputime64: pointer to cpustat field that has to be updated 187 */ 188 static inline 189 void __account_system_time(struct task_struct *p, cputime_t cputime, 190 cputime_t cputime_scaled, int index) 191 { 192 /* Add system time to process. */ 193 p->stime += cputime; 194 p->stimescaled += cputime_scaled; 195 account_group_system_time(p, cputime); 196 197 /* Add system time to cpustat. */ 198 task_group_account_field(p, index, (__force u64) cputime); 199 200 /* Account for system time used */ 201 acct_account_cputime(p); 202 } 203 204 /* 205 * Account system cpu time to a process. 206 * @p: the process that the cpu time gets accounted to 207 * @hardirq_offset: the offset to subtract from hardirq_count() 208 * @cputime: the cpu time spent in kernel space since the last update 209 * @cputime_scaled: cputime scaled by cpu frequency 210 */ 211 void account_system_time(struct task_struct *p, int hardirq_offset, 212 cputime_t cputime, cputime_t cputime_scaled) 213 { 214 int index; 215 216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 217 account_guest_time(p, cputime, cputime_scaled); 218 return; 219 } 220 221 if (hardirq_count() - hardirq_offset) 222 index = CPUTIME_IRQ; 223 else if (in_serving_softirq()) 224 index = CPUTIME_SOFTIRQ; 225 else 226 index = CPUTIME_SYSTEM; 227 228 __account_system_time(p, cputime, cputime_scaled, index); 229 } 230 231 /* 232 * Account for involuntary wait time. 233 * @cputime: the cpu time spent in involuntary wait 234 */ 235 void account_steal_time(cputime_t cputime) 236 { 237 u64 *cpustat = kcpustat_this_cpu->cpustat; 238 239 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 240 } 241 242 /* 243 * Account for idle time. 244 * @cputime: the cpu time spent in idle wait 245 */ 246 void account_idle_time(cputime_t cputime) 247 { 248 u64 *cpustat = kcpustat_this_cpu->cpustat; 249 struct rq *rq = this_rq(); 250 251 if (atomic_read(&rq->nr_iowait) > 0) 252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 253 else 254 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 255 } 256 257 static __always_inline bool steal_account_process_tick(void) 258 { 259 #ifdef CONFIG_PARAVIRT 260 if (static_key_false(¶virt_steal_enabled)) { 261 u64 steal, st = 0; 262 263 steal = paravirt_steal_clock(smp_processor_id()); 264 steal -= this_rq()->prev_steal_time; 265 266 st = steal_ticks(steal); 267 this_rq()->prev_steal_time += st * TICK_NSEC; 268 269 account_steal_time(st); 270 return st; 271 } 272 #endif 273 return false; 274 } 275 276 /* 277 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 278 * tasks (sum on group iteration) belonging to @tsk's group. 279 */ 280 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 281 { 282 struct signal_struct *sig = tsk->signal; 283 cputime_t utime, stime; 284 struct task_struct *t; 285 286 times->utime = sig->utime; 287 times->stime = sig->stime; 288 times->sum_exec_runtime = sig->sum_sched_runtime; 289 290 rcu_read_lock(); 291 /* make sure we can trust tsk->thread_group list */ 292 if (!likely(pid_alive(tsk))) 293 goto out; 294 295 t = tsk; 296 do { 297 task_cputime(t, &utime, &stime); 298 times->utime += utime; 299 times->stime += stime; 300 times->sum_exec_runtime += task_sched_runtime(t); 301 } while_each_thread(tsk, t); 302 out: 303 rcu_read_unlock(); 304 } 305 306 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 307 /* 308 * Account a tick to a process and cpustat 309 * @p: the process that the cpu time gets accounted to 310 * @user_tick: is the tick from userspace 311 * @rq: the pointer to rq 312 * 313 * Tick demultiplexing follows the order 314 * - pending hardirq update 315 * - pending softirq update 316 * - user_time 317 * - idle_time 318 * - system time 319 * - check for guest_time 320 * - else account as system_time 321 * 322 * Check for hardirq is done both for system and user time as there is 323 * no timer going off while we are on hardirq and hence we may never get an 324 * opportunity to update it solely in system time. 325 * p->stime and friends are only updated on system time and not on irq 326 * softirq as those do not count in task exec_runtime any more. 327 */ 328 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 329 struct rq *rq) 330 { 331 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 332 u64 *cpustat = kcpustat_this_cpu->cpustat; 333 334 if (steal_account_process_tick()) 335 return; 336 337 if (irqtime_account_hi_update()) { 338 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; 339 } else if (irqtime_account_si_update()) { 340 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; 341 } else if (this_cpu_ksoftirqd() == p) { 342 /* 343 * ksoftirqd time do not get accounted in cpu_softirq_time. 344 * So, we have to handle it separately here. 345 * Also, p->stime needs to be updated for ksoftirqd. 346 */ 347 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 348 CPUTIME_SOFTIRQ); 349 } else if (user_tick) { 350 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 351 } else if (p == rq->idle) { 352 account_idle_time(cputime_one_jiffy); 353 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 354 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); 355 } else { 356 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 357 CPUTIME_SYSTEM); 358 } 359 } 360 361 static void irqtime_account_idle_ticks(int ticks) 362 { 363 int i; 364 struct rq *rq = this_rq(); 365 366 for (i = 0; i < ticks; i++) 367 irqtime_account_process_tick(current, 0, rq); 368 } 369 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 370 static inline void irqtime_account_idle_ticks(int ticks) {} 371 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 372 struct rq *rq) {} 373 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 374 375 /* 376 * Use precise platform statistics if available: 377 */ 378 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 379 380 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH 381 void vtime_task_switch(struct task_struct *prev) 382 { 383 if (!vtime_accounting_enabled()) 384 return; 385 386 if (is_idle_task(prev)) 387 vtime_account_idle(prev); 388 else 389 vtime_account_system(prev); 390 391 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 392 vtime_account_user(prev); 393 #endif 394 arch_vtime_task_switch(prev); 395 } 396 #endif 397 398 /* 399 * Archs that account the whole time spent in the idle task 400 * (outside irq) as idle time can rely on this and just implement 401 * vtime_account_system() and vtime_account_idle(). Archs that 402 * have other meaning of the idle time (s390 only includes the 403 * time spent by the CPU when it's in low power mode) must override 404 * vtime_account(). 405 */ 406 #ifndef __ARCH_HAS_VTIME_ACCOUNT 407 void vtime_account_irq_enter(struct task_struct *tsk) 408 { 409 if (!vtime_accounting_enabled()) 410 return; 411 412 if (!in_interrupt()) { 413 /* 414 * If we interrupted user, context_tracking_in_user() 415 * is 1 because the context tracking don't hook 416 * on irq entry/exit. This way we know if 417 * we need to flush user time on kernel entry. 418 */ 419 if (context_tracking_in_user()) { 420 vtime_account_user(tsk); 421 return; 422 } 423 424 if (is_idle_task(tsk)) { 425 vtime_account_idle(tsk); 426 return; 427 } 428 } 429 vtime_account_system(tsk); 430 } 431 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 432 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 433 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 434 435 436 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 437 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 438 { 439 *ut = p->utime; 440 *st = p->stime; 441 } 442 443 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 444 { 445 struct task_cputime cputime; 446 447 thread_group_cputime(p, &cputime); 448 449 *ut = cputime.utime; 450 *st = cputime.stime; 451 } 452 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 453 /* 454 * Account a single tick of cpu time. 455 * @p: the process that the cpu time gets accounted to 456 * @user_tick: indicates if the tick is a user or a system tick 457 */ 458 void account_process_tick(struct task_struct *p, int user_tick) 459 { 460 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 461 struct rq *rq = this_rq(); 462 463 if (vtime_accounting_enabled()) 464 return; 465 466 if (sched_clock_irqtime) { 467 irqtime_account_process_tick(p, user_tick, rq); 468 return; 469 } 470 471 if (steal_account_process_tick()) 472 return; 473 474 if (user_tick) 475 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 476 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 477 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 478 one_jiffy_scaled); 479 else 480 account_idle_time(cputime_one_jiffy); 481 } 482 483 /* 484 * Account multiple ticks of steal time. 485 * @p: the process from which the cpu time has been stolen 486 * @ticks: number of stolen ticks 487 */ 488 void account_steal_ticks(unsigned long ticks) 489 { 490 account_steal_time(jiffies_to_cputime(ticks)); 491 } 492 493 /* 494 * Account multiple ticks of idle time. 495 * @ticks: number of stolen ticks 496 */ 497 void account_idle_ticks(unsigned long ticks) 498 { 499 500 if (sched_clock_irqtime) { 501 irqtime_account_idle_ticks(ticks); 502 return; 503 } 504 505 account_idle_time(jiffies_to_cputime(ticks)); 506 } 507 508 /* 509 * Perform (stime * rtime) / total, but avoid multiplication overflow by 510 * loosing precision when the numbers are big. 511 */ 512 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total) 513 { 514 u64 scaled; 515 516 for (;;) { 517 /* Make sure "rtime" is the bigger of stime/rtime */ 518 if (stime > rtime) { 519 u64 tmp = rtime; rtime = stime; stime = tmp; 520 } 521 522 /* Make sure 'total' fits in 32 bits */ 523 if (total >> 32) 524 goto drop_precision; 525 526 /* Does rtime (and thus stime) fit in 32 bits? */ 527 if (!(rtime >> 32)) 528 break; 529 530 /* Can we just balance rtime/stime rather than dropping bits? */ 531 if (stime >> 31) 532 goto drop_precision; 533 534 /* We can grow stime and shrink rtime and try to make them both fit */ 535 stime <<= 1; 536 rtime >>= 1; 537 continue; 538 539 drop_precision: 540 /* We drop from rtime, it has more bits than stime */ 541 rtime >>= 1; 542 total >>= 1; 543 } 544 545 /* 546 * Make sure gcc understands that this is a 32x32->64 multiply, 547 * followed by a 64/32->64 divide. 548 */ 549 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 550 return (__force cputime_t) scaled; 551 } 552 553 /* 554 * Adjust tick based cputime random precision against scheduler 555 * runtime accounting. 556 */ 557 static void cputime_adjust(struct task_cputime *curr, 558 struct cputime *prev, 559 cputime_t *ut, cputime_t *st) 560 { 561 cputime_t rtime, stime, utime, total; 562 563 if (vtime_accounting_enabled()) { 564 *ut = curr->utime; 565 *st = curr->stime; 566 return; 567 } 568 569 stime = curr->stime; 570 total = stime + curr->utime; 571 572 /* 573 * Tick based cputime accounting depend on random scheduling 574 * timeslices of a task to be interrupted or not by the timer. 575 * Depending on these circumstances, the number of these interrupts 576 * may be over or under-optimistic, matching the real user and system 577 * cputime with a variable precision. 578 * 579 * Fix this by scaling these tick based values against the total 580 * runtime accounted by the CFS scheduler. 581 */ 582 rtime = nsecs_to_cputime(curr->sum_exec_runtime); 583 584 /* 585 * Update userspace visible utime/stime values only if actual execution 586 * time is bigger than already exported. Note that can happen, that we 587 * provided bigger values due to scaling inaccuracy on big numbers. 588 */ 589 if (prev->stime + prev->utime >= rtime) 590 goto out; 591 592 if (total) { 593 stime = scale_stime((__force u64)stime, 594 (__force u64)rtime, (__force u64)total); 595 utime = rtime - stime; 596 } else { 597 stime = rtime; 598 utime = 0; 599 } 600 601 /* 602 * If the tick based count grows faster than the scheduler one, 603 * the result of the scaling may go backward. 604 * Let's enforce monotonicity. 605 */ 606 prev->stime = max(prev->stime, stime); 607 prev->utime = max(prev->utime, utime); 608 609 out: 610 *ut = prev->utime; 611 *st = prev->stime; 612 } 613 614 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 615 { 616 struct task_cputime cputime = { 617 .sum_exec_runtime = p->se.sum_exec_runtime, 618 }; 619 620 task_cputime(p, &cputime.utime, &cputime.stime); 621 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 622 } 623 624 /* 625 * Must be called with siglock held. 626 */ 627 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 628 { 629 struct task_cputime cputime; 630 631 thread_group_cputime(p, &cputime); 632 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 633 } 634 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 635 636 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 637 static unsigned long long vtime_delta(struct task_struct *tsk) 638 { 639 unsigned long long clock; 640 641 clock = local_clock(); 642 if (clock < tsk->vtime_snap) 643 return 0; 644 645 return clock - tsk->vtime_snap; 646 } 647 648 static cputime_t get_vtime_delta(struct task_struct *tsk) 649 { 650 unsigned long long delta = vtime_delta(tsk); 651 652 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING); 653 tsk->vtime_snap += delta; 654 655 /* CHECKME: always safe to convert nsecs to cputime? */ 656 return nsecs_to_cputime(delta); 657 } 658 659 static void __vtime_account_system(struct task_struct *tsk) 660 { 661 cputime_t delta_cpu = get_vtime_delta(tsk); 662 663 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu)); 664 } 665 666 void vtime_account_system(struct task_struct *tsk) 667 { 668 if (!vtime_accounting_enabled()) 669 return; 670 671 write_seqlock(&tsk->vtime_seqlock); 672 __vtime_account_system(tsk); 673 write_sequnlock(&tsk->vtime_seqlock); 674 } 675 676 void vtime_account_irq_exit(struct task_struct *tsk) 677 { 678 if (!vtime_accounting_enabled()) 679 return; 680 681 write_seqlock(&tsk->vtime_seqlock); 682 if (context_tracking_in_user()) 683 tsk->vtime_snap_whence = VTIME_USER; 684 __vtime_account_system(tsk); 685 write_sequnlock(&tsk->vtime_seqlock); 686 } 687 688 void vtime_account_user(struct task_struct *tsk) 689 { 690 cputime_t delta_cpu; 691 692 if (!vtime_accounting_enabled()) 693 return; 694 695 delta_cpu = get_vtime_delta(tsk); 696 697 write_seqlock(&tsk->vtime_seqlock); 698 tsk->vtime_snap_whence = VTIME_SYS; 699 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu)); 700 write_sequnlock(&tsk->vtime_seqlock); 701 } 702 703 void vtime_user_enter(struct task_struct *tsk) 704 { 705 if (!vtime_accounting_enabled()) 706 return; 707 708 write_seqlock(&tsk->vtime_seqlock); 709 tsk->vtime_snap_whence = VTIME_USER; 710 __vtime_account_system(tsk); 711 write_sequnlock(&tsk->vtime_seqlock); 712 } 713 714 void vtime_guest_enter(struct task_struct *tsk) 715 { 716 write_seqlock(&tsk->vtime_seqlock); 717 __vtime_account_system(tsk); 718 current->flags |= PF_VCPU; 719 write_sequnlock(&tsk->vtime_seqlock); 720 } 721 722 void vtime_guest_exit(struct task_struct *tsk) 723 { 724 write_seqlock(&tsk->vtime_seqlock); 725 __vtime_account_system(tsk); 726 current->flags &= ~PF_VCPU; 727 write_sequnlock(&tsk->vtime_seqlock); 728 } 729 730 void vtime_account_idle(struct task_struct *tsk) 731 { 732 cputime_t delta_cpu = get_vtime_delta(tsk); 733 734 account_idle_time(delta_cpu); 735 } 736 737 bool vtime_accounting_enabled(void) 738 { 739 return context_tracking_active(); 740 } 741 742 void arch_vtime_task_switch(struct task_struct *prev) 743 { 744 write_seqlock(&prev->vtime_seqlock); 745 prev->vtime_snap_whence = VTIME_SLEEPING; 746 write_sequnlock(&prev->vtime_seqlock); 747 748 write_seqlock(¤t->vtime_seqlock); 749 current->vtime_snap_whence = VTIME_SYS; 750 current->vtime_snap = sched_clock(); 751 write_sequnlock(¤t->vtime_seqlock); 752 } 753 754 void vtime_init_idle(struct task_struct *t) 755 { 756 unsigned long flags; 757 758 write_seqlock_irqsave(&t->vtime_seqlock, flags); 759 t->vtime_snap_whence = VTIME_SYS; 760 t->vtime_snap = sched_clock(); 761 write_sequnlock_irqrestore(&t->vtime_seqlock, flags); 762 } 763 764 cputime_t task_gtime(struct task_struct *t) 765 { 766 unsigned int seq; 767 cputime_t gtime; 768 769 do { 770 seq = read_seqbegin(&t->vtime_seqlock); 771 772 gtime = t->gtime; 773 if (t->flags & PF_VCPU) 774 gtime += vtime_delta(t); 775 776 } while (read_seqretry(&t->vtime_seqlock, seq)); 777 778 return gtime; 779 } 780 781 /* 782 * Fetch cputime raw values from fields of task_struct and 783 * add up the pending nohz execution time since the last 784 * cputime snapshot. 785 */ 786 static void 787 fetch_task_cputime(struct task_struct *t, 788 cputime_t *u_dst, cputime_t *s_dst, 789 cputime_t *u_src, cputime_t *s_src, 790 cputime_t *udelta, cputime_t *sdelta) 791 { 792 unsigned int seq; 793 unsigned long long delta; 794 795 do { 796 *udelta = 0; 797 *sdelta = 0; 798 799 seq = read_seqbegin(&t->vtime_seqlock); 800 801 if (u_dst) 802 *u_dst = *u_src; 803 if (s_dst) 804 *s_dst = *s_src; 805 806 /* Task is sleeping, nothing to add */ 807 if (t->vtime_snap_whence == VTIME_SLEEPING || 808 is_idle_task(t)) 809 continue; 810 811 delta = vtime_delta(t); 812 813 /* 814 * Task runs either in user or kernel space, add pending nohz time to 815 * the right place. 816 */ 817 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) { 818 *udelta = delta; 819 } else { 820 if (t->vtime_snap_whence == VTIME_SYS) 821 *sdelta = delta; 822 } 823 } while (read_seqretry(&t->vtime_seqlock, seq)); 824 } 825 826 827 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime) 828 { 829 cputime_t udelta, sdelta; 830 831 fetch_task_cputime(t, utime, stime, &t->utime, 832 &t->stime, &udelta, &sdelta); 833 if (utime) 834 *utime += udelta; 835 if (stime) 836 *stime += sdelta; 837 } 838 839 void task_cputime_scaled(struct task_struct *t, 840 cputime_t *utimescaled, cputime_t *stimescaled) 841 { 842 cputime_t udelta, sdelta; 843 844 fetch_task_cputime(t, utimescaled, stimescaled, 845 &t->utimescaled, &t->stimescaled, &udelta, &sdelta); 846 if (utimescaled) 847 *utimescaled += cputime_to_scaled(udelta); 848 if (stimescaled) 849 *stimescaled += cputime_to_scaled(sdelta); 850 } 851 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 852