xref: /openbmc/linux/kernel/sched/cputime.c (revision cd1e565a5b7fa60c349ca8a16db1e61715fe8230)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple CPU accounting cgroup controller
4  */
5 
6 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
7  #include <asm/cputime.h>
8 #endif
9 
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11 
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's irq time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of irq time to wrong
20  * task when irq is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each irq in account_system_time.
22  */
23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
24 
25 static int sched_clock_irqtime;
26 
27 void enable_sched_clock_irqtime(void)
28 {
29 	sched_clock_irqtime = 1;
30 }
31 
32 void disable_sched_clock_irqtime(void)
33 {
34 	sched_clock_irqtime = 0;
35 }
36 
37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 				  enum cpu_usage_stat idx)
39 {
40 	u64 *cpustat = kcpustat_this_cpu->cpustat;
41 
42 	u64_stats_update_begin(&irqtime->sync);
43 	cpustat[idx] += delta;
44 	irqtime->total += delta;
45 	irqtime->tick_delta += delta;
46 	u64_stats_update_end(&irqtime->sync);
47 }
48 
49 /*
50  * Called after incrementing preempt_count on {soft,}irq_enter
51  * and before decrementing preempt_count on {soft,}irq_exit.
52  */
53 void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
54 {
55 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 	unsigned int pc;
57 	s64 delta;
58 	int cpu;
59 
60 	if (!sched_clock_irqtime)
61 		return;
62 
63 	cpu = smp_processor_id();
64 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
65 	irqtime->irq_start_time += delta;
66 	pc = irq_count() - offset;
67 
68 	/*
69 	 * We do not account for softirq time from ksoftirqd here.
70 	 * We want to continue accounting softirq time to ksoftirqd thread
71 	 * in that case, so as not to confuse scheduler with a special task
72 	 * that do not consume any time, but still wants to run.
73 	 */
74 	if (pc & HARDIRQ_MASK)
75 		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
76 	else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
77 		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
78 }
79 
80 static u64 irqtime_tick_accounted(u64 maxtime)
81 {
82 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
83 	u64 delta;
84 
85 	delta = min(irqtime->tick_delta, maxtime);
86 	irqtime->tick_delta -= delta;
87 
88 	return delta;
89 }
90 
91 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
92 
93 #define sched_clock_irqtime	(0)
94 
95 static u64 irqtime_tick_accounted(u64 dummy)
96 {
97 	return 0;
98 }
99 
100 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
101 
102 static inline void task_group_account_field(struct task_struct *p, int index,
103 					    u64 tmp)
104 {
105 	/*
106 	 * Since all updates are sure to touch the root cgroup, we
107 	 * get ourselves ahead and touch it first. If the root cgroup
108 	 * is the only cgroup, then nothing else should be necessary.
109 	 *
110 	 */
111 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
112 
113 	cgroup_account_cputime_field(p, index, tmp);
114 }
115 
116 /*
117  * Account user CPU time to a process.
118  * @p: the process that the CPU time gets accounted to
119  * @cputime: the CPU time spent in user space since the last update
120  */
121 void account_user_time(struct task_struct *p, u64 cputime)
122 {
123 	int index;
124 
125 	/* Add user time to process. */
126 	p->utime += cputime;
127 	account_group_user_time(p, cputime);
128 
129 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
130 
131 	/* Add user time to cpustat. */
132 	task_group_account_field(p, index, cputime);
133 
134 	/* Account for user time used */
135 	acct_account_cputime(p);
136 }
137 
138 /*
139  * Account guest CPU time to a process.
140  * @p: the process that the CPU time gets accounted to
141  * @cputime: the CPU time spent in virtual machine since the last update
142  */
143 void account_guest_time(struct task_struct *p, u64 cputime)
144 {
145 	u64 *cpustat = kcpustat_this_cpu->cpustat;
146 
147 	/* Add guest time to process. */
148 	p->utime += cputime;
149 	account_group_user_time(p, cputime);
150 	p->gtime += cputime;
151 
152 	/* Add guest time to cpustat. */
153 	if (task_nice(p) > 0) {
154 		task_group_account_field(p, CPUTIME_NICE, cputime);
155 		cpustat[CPUTIME_GUEST_NICE] += cputime;
156 	} else {
157 		task_group_account_field(p, CPUTIME_USER, cputime);
158 		cpustat[CPUTIME_GUEST] += cputime;
159 	}
160 }
161 
162 /*
163  * Account system CPU time to a process and desired cpustat field
164  * @p: the process that the CPU time gets accounted to
165  * @cputime: the CPU time spent in kernel space since the last update
166  * @index: pointer to cpustat field that has to be updated
167  */
168 void account_system_index_time(struct task_struct *p,
169 			       u64 cputime, enum cpu_usage_stat index)
170 {
171 	/* Add system time to process. */
172 	p->stime += cputime;
173 	account_group_system_time(p, cputime);
174 
175 	/* Add system time to cpustat. */
176 	task_group_account_field(p, index, cputime);
177 
178 	/* Account for system time used */
179 	acct_account_cputime(p);
180 }
181 
182 /*
183  * Account system CPU time to a process.
184  * @p: the process that the CPU time gets accounted to
185  * @hardirq_offset: the offset to subtract from hardirq_count()
186  * @cputime: the CPU time spent in kernel space since the last update
187  */
188 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
189 {
190 	int index;
191 
192 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
193 		account_guest_time(p, cputime);
194 		return;
195 	}
196 
197 	if (hardirq_count() - hardirq_offset)
198 		index = CPUTIME_IRQ;
199 	else if (in_serving_softirq())
200 		index = CPUTIME_SOFTIRQ;
201 	else
202 		index = CPUTIME_SYSTEM;
203 
204 	account_system_index_time(p, cputime, index);
205 }
206 
207 /*
208  * Account for involuntary wait time.
209  * @cputime: the CPU time spent in involuntary wait
210  */
211 void account_steal_time(u64 cputime)
212 {
213 	u64 *cpustat = kcpustat_this_cpu->cpustat;
214 
215 	cpustat[CPUTIME_STEAL] += cputime;
216 }
217 
218 /*
219  * Account for idle time.
220  * @cputime: the CPU time spent in idle wait
221  */
222 void account_idle_time(u64 cputime)
223 {
224 	u64 *cpustat = kcpustat_this_cpu->cpustat;
225 	struct rq *rq = this_rq();
226 
227 	if (atomic_read(&rq->nr_iowait) > 0)
228 		cpustat[CPUTIME_IOWAIT] += cputime;
229 	else
230 		cpustat[CPUTIME_IDLE] += cputime;
231 }
232 
233 
234 #ifdef CONFIG_SCHED_CORE
235 /*
236  * Account for forceidle time due to core scheduling.
237  *
238  * REQUIRES: schedstat is enabled.
239  */
240 void __account_forceidle_time(struct task_struct *p, u64 delta)
241 {
242 	__schedstat_add(p->stats.core_forceidle_sum, delta);
243 
244 	task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
245 }
246 #endif
247 
248 /*
249  * When a guest is interrupted for a longer amount of time, missed clock
250  * ticks are not redelivered later. Due to that, this function may on
251  * occasion account more time than the calling functions think elapsed.
252  */
253 static __always_inline u64 steal_account_process_time(u64 maxtime)
254 {
255 #ifdef CONFIG_PARAVIRT
256 	if (static_key_false(&paravirt_steal_enabled)) {
257 		u64 steal;
258 
259 		steal = paravirt_steal_clock(smp_processor_id());
260 		steal -= this_rq()->prev_steal_time;
261 		steal = min(steal, maxtime);
262 		account_steal_time(steal);
263 		this_rq()->prev_steal_time += steal;
264 
265 		return steal;
266 	}
267 #endif
268 	return 0;
269 }
270 
271 /*
272  * Account how much elapsed time was spent in steal, irq, or softirq time.
273  */
274 static inline u64 account_other_time(u64 max)
275 {
276 	u64 accounted;
277 
278 	lockdep_assert_irqs_disabled();
279 
280 	accounted = steal_account_process_time(max);
281 
282 	if (accounted < max)
283 		accounted += irqtime_tick_accounted(max - accounted);
284 
285 	return accounted;
286 }
287 
288 #ifdef CONFIG_64BIT
289 static inline u64 read_sum_exec_runtime(struct task_struct *t)
290 {
291 	return t->se.sum_exec_runtime;
292 }
293 #else
294 static u64 read_sum_exec_runtime(struct task_struct *t)
295 {
296 	u64 ns;
297 	struct rq_flags rf;
298 	struct rq *rq;
299 
300 	rq = task_rq_lock(t, &rf);
301 	ns = t->se.sum_exec_runtime;
302 	task_rq_unlock(rq, t, &rf);
303 
304 	return ns;
305 }
306 #endif
307 
308 /*
309  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
310  * tasks (sum on group iteration) belonging to @tsk's group.
311  */
312 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
313 {
314 	struct signal_struct *sig = tsk->signal;
315 	u64 utime, stime;
316 	struct task_struct *t;
317 	unsigned int seq, nextseq;
318 	unsigned long flags;
319 
320 	/*
321 	 * Update current task runtime to account pending time since last
322 	 * scheduler action or thread_group_cputime() call. This thread group
323 	 * might have other running tasks on different CPUs, but updating
324 	 * their runtime can affect syscall performance, so we skip account
325 	 * those pending times and rely only on values updated on tick or
326 	 * other scheduler action.
327 	 */
328 	if (same_thread_group(current, tsk))
329 		(void) task_sched_runtime(current);
330 
331 	rcu_read_lock();
332 	/* Attempt a lockless read on the first round. */
333 	nextseq = 0;
334 	do {
335 		seq = nextseq;
336 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
337 		times->utime = sig->utime;
338 		times->stime = sig->stime;
339 		times->sum_exec_runtime = sig->sum_sched_runtime;
340 
341 		for_each_thread(tsk, t) {
342 			task_cputime(t, &utime, &stime);
343 			times->utime += utime;
344 			times->stime += stime;
345 			times->sum_exec_runtime += read_sum_exec_runtime(t);
346 		}
347 		/* If lockless access failed, take the lock. */
348 		nextseq = 1;
349 	} while (need_seqretry(&sig->stats_lock, seq));
350 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
351 	rcu_read_unlock();
352 }
353 
354 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
355 /*
356  * Account a tick to a process and cpustat
357  * @p: the process that the CPU time gets accounted to
358  * @user_tick: is the tick from userspace
359  * @rq: the pointer to rq
360  *
361  * Tick demultiplexing follows the order
362  * - pending hardirq update
363  * - pending softirq update
364  * - user_time
365  * - idle_time
366  * - system time
367  *   - check for guest_time
368  *   - else account as system_time
369  *
370  * Check for hardirq is done both for system and user time as there is
371  * no timer going off while we are on hardirq and hence we may never get an
372  * opportunity to update it solely in system time.
373  * p->stime and friends are only updated on system time and not on irq
374  * softirq as those do not count in task exec_runtime any more.
375  */
376 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
377 					 int ticks)
378 {
379 	u64 other, cputime = TICK_NSEC * ticks;
380 
381 	/*
382 	 * When returning from idle, many ticks can get accounted at
383 	 * once, including some ticks of steal, irq, and softirq time.
384 	 * Subtract those ticks from the amount of time accounted to
385 	 * idle, or potentially user or system time. Due to rounding,
386 	 * other time can exceed ticks occasionally.
387 	 */
388 	other = account_other_time(ULONG_MAX);
389 	if (other >= cputime)
390 		return;
391 
392 	cputime -= other;
393 
394 	if (this_cpu_ksoftirqd() == p) {
395 		/*
396 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
397 		 * So, we have to handle it separately here.
398 		 * Also, p->stime needs to be updated for ksoftirqd.
399 		 */
400 		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
401 	} else if (user_tick) {
402 		account_user_time(p, cputime);
403 	} else if (p == this_rq()->idle) {
404 		account_idle_time(cputime);
405 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
406 		account_guest_time(p, cputime);
407 	} else {
408 		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
409 	}
410 }
411 
412 static void irqtime_account_idle_ticks(int ticks)
413 {
414 	irqtime_account_process_tick(current, 0, ticks);
415 }
416 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
417 static inline void irqtime_account_idle_ticks(int ticks) { }
418 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
419 						int nr_ticks) { }
420 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
421 
422 /*
423  * Use precise platform statistics if available:
424  */
425 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
426 
427 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
428 void vtime_task_switch(struct task_struct *prev)
429 {
430 	if (is_idle_task(prev))
431 		vtime_account_idle(prev);
432 	else
433 		vtime_account_kernel(prev);
434 
435 	vtime_flush(prev);
436 	arch_vtime_task_switch(prev);
437 }
438 # endif
439 
440 void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
441 {
442 	unsigned int pc = irq_count() - offset;
443 
444 	if (pc & HARDIRQ_OFFSET) {
445 		vtime_account_hardirq(tsk);
446 	} else if (pc & SOFTIRQ_OFFSET) {
447 		vtime_account_softirq(tsk);
448 	} else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
449 		   is_idle_task(tsk)) {
450 		vtime_account_idle(tsk);
451 	} else {
452 		vtime_account_kernel(tsk);
453 	}
454 }
455 
456 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
457 		    u64 *ut, u64 *st)
458 {
459 	*ut = curr->utime;
460 	*st = curr->stime;
461 }
462 
463 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
464 {
465 	*ut = p->utime;
466 	*st = p->stime;
467 }
468 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
469 
470 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
471 {
472 	struct task_cputime cputime;
473 
474 	thread_group_cputime(p, &cputime);
475 
476 	*ut = cputime.utime;
477 	*st = cputime.stime;
478 }
479 
480 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
481 
482 /*
483  * Account a single tick of CPU time.
484  * @p: the process that the CPU time gets accounted to
485  * @user_tick: indicates if the tick is a user or a system tick
486  */
487 void account_process_tick(struct task_struct *p, int user_tick)
488 {
489 	u64 cputime, steal;
490 
491 	if (vtime_accounting_enabled_this_cpu())
492 		return;
493 
494 	if (sched_clock_irqtime) {
495 		irqtime_account_process_tick(p, user_tick, 1);
496 		return;
497 	}
498 
499 	cputime = TICK_NSEC;
500 	steal = steal_account_process_time(ULONG_MAX);
501 
502 	if (steal >= cputime)
503 		return;
504 
505 	cputime -= steal;
506 
507 	if (user_tick)
508 		account_user_time(p, cputime);
509 	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
510 		account_system_time(p, HARDIRQ_OFFSET, cputime);
511 	else
512 		account_idle_time(cputime);
513 }
514 
515 /*
516  * Account multiple ticks of idle time.
517  * @ticks: number of stolen ticks
518  */
519 void account_idle_ticks(unsigned long ticks)
520 {
521 	u64 cputime, steal;
522 
523 	if (sched_clock_irqtime) {
524 		irqtime_account_idle_ticks(ticks);
525 		return;
526 	}
527 
528 	cputime = ticks * TICK_NSEC;
529 	steal = steal_account_process_time(ULONG_MAX);
530 
531 	if (steal >= cputime)
532 		return;
533 
534 	cputime -= steal;
535 	account_idle_time(cputime);
536 }
537 
538 /*
539  * Adjust tick based cputime random precision against scheduler runtime
540  * accounting.
541  *
542  * Tick based cputime accounting depend on random scheduling timeslices of a
543  * task to be interrupted or not by the timer.  Depending on these
544  * circumstances, the number of these interrupts may be over or
545  * under-optimistic, matching the real user and system cputime with a variable
546  * precision.
547  *
548  * Fix this by scaling these tick based values against the total runtime
549  * accounted by the CFS scheduler.
550  *
551  * This code provides the following guarantees:
552  *
553  *   stime + utime == rtime
554  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
555  *
556  * Assuming that rtime_i+1 >= rtime_i.
557  */
558 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
559 		    u64 *ut, u64 *st)
560 {
561 	u64 rtime, stime, utime;
562 	unsigned long flags;
563 
564 	/* Serialize concurrent callers such that we can honour our guarantees */
565 	raw_spin_lock_irqsave(&prev->lock, flags);
566 	rtime = curr->sum_exec_runtime;
567 
568 	/*
569 	 * This is possible under two circumstances:
570 	 *  - rtime isn't monotonic after all (a bug);
571 	 *  - we got reordered by the lock.
572 	 *
573 	 * In both cases this acts as a filter such that the rest of the code
574 	 * can assume it is monotonic regardless of anything else.
575 	 */
576 	if (prev->stime + prev->utime >= rtime)
577 		goto out;
578 
579 	stime = curr->stime;
580 	utime = curr->utime;
581 
582 	/*
583 	 * If either stime or utime are 0, assume all runtime is userspace.
584 	 * Once a task gets some ticks, the monotonicity code at 'update:'
585 	 * will ensure things converge to the observed ratio.
586 	 */
587 	if (stime == 0) {
588 		utime = rtime;
589 		goto update;
590 	}
591 
592 	if (utime == 0) {
593 		stime = rtime;
594 		goto update;
595 	}
596 
597 	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
598 	/*
599 	 * Because mul_u64_u64_div_u64() can approximate on some
600 	 * achitectures; enforce the constraint that: a*b/(b+c) <= a.
601 	 */
602 	if (unlikely(stime > rtime))
603 		stime = rtime;
604 
605 update:
606 	/*
607 	 * Make sure stime doesn't go backwards; this preserves monotonicity
608 	 * for utime because rtime is monotonic.
609 	 *
610 	 *  utime_i+1 = rtime_i+1 - stime_i
611 	 *            = rtime_i+1 - (rtime_i - utime_i)
612 	 *            = (rtime_i+1 - rtime_i) + utime_i
613 	 *            >= utime_i
614 	 */
615 	if (stime < prev->stime)
616 		stime = prev->stime;
617 	utime = rtime - stime;
618 
619 	/*
620 	 * Make sure utime doesn't go backwards; this still preserves
621 	 * monotonicity for stime, analogous argument to above.
622 	 */
623 	if (utime < prev->utime) {
624 		utime = prev->utime;
625 		stime = rtime - utime;
626 	}
627 
628 	prev->stime = stime;
629 	prev->utime = utime;
630 out:
631 	*ut = prev->utime;
632 	*st = prev->stime;
633 	raw_spin_unlock_irqrestore(&prev->lock, flags);
634 }
635 
636 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
637 {
638 	struct task_cputime cputime = {
639 		.sum_exec_runtime = p->se.sum_exec_runtime,
640 	};
641 
642 	if (task_cputime(p, &cputime.utime, &cputime.stime))
643 		cputime.sum_exec_runtime = task_sched_runtime(p);
644 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
645 }
646 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
647 
648 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
649 {
650 	struct task_cputime cputime;
651 
652 	thread_group_cputime(p, &cputime);
653 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
654 }
655 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
656 
657 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
658 static u64 vtime_delta(struct vtime *vtime)
659 {
660 	unsigned long long clock;
661 
662 	clock = sched_clock();
663 	if (clock < vtime->starttime)
664 		return 0;
665 
666 	return clock - vtime->starttime;
667 }
668 
669 static u64 get_vtime_delta(struct vtime *vtime)
670 {
671 	u64 delta = vtime_delta(vtime);
672 	u64 other;
673 
674 	/*
675 	 * Unlike tick based timing, vtime based timing never has lost
676 	 * ticks, and no need for steal time accounting to make up for
677 	 * lost ticks. Vtime accounts a rounded version of actual
678 	 * elapsed time. Limit account_other_time to prevent rounding
679 	 * errors from causing elapsed vtime to go negative.
680 	 */
681 	other = account_other_time(delta);
682 	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
683 	vtime->starttime += delta;
684 
685 	return delta - other;
686 }
687 
688 static void vtime_account_system(struct task_struct *tsk,
689 				 struct vtime *vtime)
690 {
691 	vtime->stime += get_vtime_delta(vtime);
692 	if (vtime->stime >= TICK_NSEC) {
693 		account_system_time(tsk, irq_count(), vtime->stime);
694 		vtime->stime = 0;
695 	}
696 }
697 
698 static void vtime_account_guest(struct task_struct *tsk,
699 				struct vtime *vtime)
700 {
701 	vtime->gtime += get_vtime_delta(vtime);
702 	if (vtime->gtime >= TICK_NSEC) {
703 		account_guest_time(tsk, vtime->gtime);
704 		vtime->gtime = 0;
705 	}
706 }
707 
708 static void __vtime_account_kernel(struct task_struct *tsk,
709 				   struct vtime *vtime)
710 {
711 	/* We might have scheduled out from guest path */
712 	if (vtime->state == VTIME_GUEST)
713 		vtime_account_guest(tsk, vtime);
714 	else
715 		vtime_account_system(tsk, vtime);
716 }
717 
718 void vtime_account_kernel(struct task_struct *tsk)
719 {
720 	struct vtime *vtime = &tsk->vtime;
721 
722 	if (!vtime_delta(vtime))
723 		return;
724 
725 	write_seqcount_begin(&vtime->seqcount);
726 	__vtime_account_kernel(tsk, vtime);
727 	write_seqcount_end(&vtime->seqcount);
728 }
729 
730 void vtime_user_enter(struct task_struct *tsk)
731 {
732 	struct vtime *vtime = &tsk->vtime;
733 
734 	write_seqcount_begin(&vtime->seqcount);
735 	vtime_account_system(tsk, vtime);
736 	vtime->state = VTIME_USER;
737 	write_seqcount_end(&vtime->seqcount);
738 }
739 
740 void vtime_user_exit(struct task_struct *tsk)
741 {
742 	struct vtime *vtime = &tsk->vtime;
743 
744 	write_seqcount_begin(&vtime->seqcount);
745 	vtime->utime += get_vtime_delta(vtime);
746 	if (vtime->utime >= TICK_NSEC) {
747 		account_user_time(tsk, vtime->utime);
748 		vtime->utime = 0;
749 	}
750 	vtime->state = VTIME_SYS;
751 	write_seqcount_end(&vtime->seqcount);
752 }
753 
754 void vtime_guest_enter(struct task_struct *tsk)
755 {
756 	struct vtime *vtime = &tsk->vtime;
757 	/*
758 	 * The flags must be updated under the lock with
759 	 * the vtime_starttime flush and update.
760 	 * That enforces a right ordering and update sequence
761 	 * synchronization against the reader (task_gtime())
762 	 * that can thus safely catch up with a tickless delta.
763 	 */
764 	write_seqcount_begin(&vtime->seqcount);
765 	vtime_account_system(tsk, vtime);
766 	tsk->flags |= PF_VCPU;
767 	vtime->state = VTIME_GUEST;
768 	write_seqcount_end(&vtime->seqcount);
769 }
770 EXPORT_SYMBOL_GPL(vtime_guest_enter);
771 
772 void vtime_guest_exit(struct task_struct *tsk)
773 {
774 	struct vtime *vtime = &tsk->vtime;
775 
776 	write_seqcount_begin(&vtime->seqcount);
777 	vtime_account_guest(tsk, vtime);
778 	tsk->flags &= ~PF_VCPU;
779 	vtime->state = VTIME_SYS;
780 	write_seqcount_end(&vtime->seqcount);
781 }
782 EXPORT_SYMBOL_GPL(vtime_guest_exit);
783 
784 void vtime_account_idle(struct task_struct *tsk)
785 {
786 	account_idle_time(get_vtime_delta(&tsk->vtime));
787 }
788 
789 void vtime_task_switch_generic(struct task_struct *prev)
790 {
791 	struct vtime *vtime = &prev->vtime;
792 
793 	write_seqcount_begin(&vtime->seqcount);
794 	if (vtime->state == VTIME_IDLE)
795 		vtime_account_idle(prev);
796 	else
797 		__vtime_account_kernel(prev, vtime);
798 	vtime->state = VTIME_INACTIVE;
799 	vtime->cpu = -1;
800 	write_seqcount_end(&vtime->seqcount);
801 
802 	vtime = &current->vtime;
803 
804 	write_seqcount_begin(&vtime->seqcount);
805 	if (is_idle_task(current))
806 		vtime->state = VTIME_IDLE;
807 	else if (current->flags & PF_VCPU)
808 		vtime->state = VTIME_GUEST;
809 	else
810 		vtime->state = VTIME_SYS;
811 	vtime->starttime = sched_clock();
812 	vtime->cpu = smp_processor_id();
813 	write_seqcount_end(&vtime->seqcount);
814 }
815 
816 void vtime_init_idle(struct task_struct *t, int cpu)
817 {
818 	struct vtime *vtime = &t->vtime;
819 	unsigned long flags;
820 
821 	local_irq_save(flags);
822 	write_seqcount_begin(&vtime->seqcount);
823 	vtime->state = VTIME_IDLE;
824 	vtime->starttime = sched_clock();
825 	vtime->cpu = cpu;
826 	write_seqcount_end(&vtime->seqcount);
827 	local_irq_restore(flags);
828 }
829 
830 u64 task_gtime(struct task_struct *t)
831 {
832 	struct vtime *vtime = &t->vtime;
833 	unsigned int seq;
834 	u64 gtime;
835 
836 	if (!vtime_accounting_enabled())
837 		return t->gtime;
838 
839 	do {
840 		seq = read_seqcount_begin(&vtime->seqcount);
841 
842 		gtime = t->gtime;
843 		if (vtime->state == VTIME_GUEST)
844 			gtime += vtime->gtime + vtime_delta(vtime);
845 
846 	} while (read_seqcount_retry(&vtime->seqcount, seq));
847 
848 	return gtime;
849 }
850 
851 /*
852  * Fetch cputime raw values from fields of task_struct and
853  * add up the pending nohz execution time since the last
854  * cputime snapshot.
855  */
856 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
857 {
858 	struct vtime *vtime = &t->vtime;
859 	unsigned int seq;
860 	u64 delta;
861 	int ret;
862 
863 	if (!vtime_accounting_enabled()) {
864 		*utime = t->utime;
865 		*stime = t->stime;
866 		return false;
867 	}
868 
869 	do {
870 		ret = false;
871 		seq = read_seqcount_begin(&vtime->seqcount);
872 
873 		*utime = t->utime;
874 		*stime = t->stime;
875 
876 		/* Task is sleeping or idle, nothing to add */
877 		if (vtime->state < VTIME_SYS)
878 			continue;
879 
880 		ret = true;
881 		delta = vtime_delta(vtime);
882 
883 		/*
884 		 * Task runs either in user (including guest) or kernel space,
885 		 * add pending nohz time to the right place.
886 		 */
887 		if (vtime->state == VTIME_SYS)
888 			*stime += vtime->stime + delta;
889 		else
890 			*utime += vtime->utime + delta;
891 	} while (read_seqcount_retry(&vtime->seqcount, seq));
892 
893 	return ret;
894 }
895 
896 static int vtime_state_fetch(struct vtime *vtime, int cpu)
897 {
898 	int state = READ_ONCE(vtime->state);
899 
900 	/*
901 	 * We raced against a context switch, fetch the
902 	 * kcpustat task again.
903 	 */
904 	if (vtime->cpu != cpu && vtime->cpu != -1)
905 		return -EAGAIN;
906 
907 	/*
908 	 * Two possible things here:
909 	 * 1) We are seeing the scheduling out task (prev) or any past one.
910 	 * 2) We are seeing the scheduling in task (next) but it hasn't
911 	 *    passed though vtime_task_switch() yet so the pending
912 	 *    cputime of the prev task may not be flushed yet.
913 	 *
914 	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
915 	 */
916 	if (state == VTIME_INACTIVE)
917 		return -EAGAIN;
918 
919 	return state;
920 }
921 
922 static u64 kcpustat_user_vtime(struct vtime *vtime)
923 {
924 	if (vtime->state == VTIME_USER)
925 		return vtime->utime + vtime_delta(vtime);
926 	else if (vtime->state == VTIME_GUEST)
927 		return vtime->gtime + vtime_delta(vtime);
928 	return 0;
929 }
930 
931 static int kcpustat_field_vtime(u64 *cpustat,
932 				struct task_struct *tsk,
933 				enum cpu_usage_stat usage,
934 				int cpu, u64 *val)
935 {
936 	struct vtime *vtime = &tsk->vtime;
937 	unsigned int seq;
938 
939 	do {
940 		int state;
941 
942 		seq = read_seqcount_begin(&vtime->seqcount);
943 
944 		state = vtime_state_fetch(vtime, cpu);
945 		if (state < 0)
946 			return state;
947 
948 		*val = cpustat[usage];
949 
950 		/*
951 		 * Nice VS unnice cputime accounting may be inaccurate if
952 		 * the nice value has changed since the last vtime update.
953 		 * But proper fix would involve interrupting target on nice
954 		 * updates which is a no go on nohz_full (although the scheduler
955 		 * may still interrupt the target if rescheduling is needed...)
956 		 */
957 		switch (usage) {
958 		case CPUTIME_SYSTEM:
959 			if (state == VTIME_SYS)
960 				*val += vtime->stime + vtime_delta(vtime);
961 			break;
962 		case CPUTIME_USER:
963 			if (task_nice(tsk) <= 0)
964 				*val += kcpustat_user_vtime(vtime);
965 			break;
966 		case CPUTIME_NICE:
967 			if (task_nice(tsk) > 0)
968 				*val += kcpustat_user_vtime(vtime);
969 			break;
970 		case CPUTIME_GUEST:
971 			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
972 				*val += vtime->gtime + vtime_delta(vtime);
973 			break;
974 		case CPUTIME_GUEST_NICE:
975 			if (state == VTIME_GUEST && task_nice(tsk) > 0)
976 				*val += vtime->gtime + vtime_delta(vtime);
977 			break;
978 		default:
979 			break;
980 		}
981 	} while (read_seqcount_retry(&vtime->seqcount, seq));
982 
983 	return 0;
984 }
985 
986 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
987 		   enum cpu_usage_stat usage, int cpu)
988 {
989 	u64 *cpustat = kcpustat->cpustat;
990 	u64 val = cpustat[usage];
991 	struct rq *rq;
992 	int err;
993 
994 	if (!vtime_accounting_enabled_cpu(cpu))
995 		return val;
996 
997 	rq = cpu_rq(cpu);
998 
999 	for (;;) {
1000 		struct task_struct *curr;
1001 
1002 		rcu_read_lock();
1003 		curr = rcu_dereference(rq->curr);
1004 		if (WARN_ON_ONCE(!curr)) {
1005 			rcu_read_unlock();
1006 			return cpustat[usage];
1007 		}
1008 
1009 		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
1010 		rcu_read_unlock();
1011 
1012 		if (!err)
1013 			return val;
1014 
1015 		cpu_relax();
1016 	}
1017 }
1018 EXPORT_SYMBOL_GPL(kcpustat_field);
1019 
1020 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1021 				    const struct kernel_cpustat *src,
1022 				    struct task_struct *tsk, int cpu)
1023 {
1024 	struct vtime *vtime = &tsk->vtime;
1025 	unsigned int seq;
1026 
1027 	do {
1028 		u64 *cpustat;
1029 		u64 delta;
1030 		int state;
1031 
1032 		seq = read_seqcount_begin(&vtime->seqcount);
1033 
1034 		state = vtime_state_fetch(vtime, cpu);
1035 		if (state < 0)
1036 			return state;
1037 
1038 		*dst = *src;
1039 		cpustat = dst->cpustat;
1040 
1041 		/* Task is sleeping, dead or idle, nothing to add */
1042 		if (state < VTIME_SYS)
1043 			continue;
1044 
1045 		delta = vtime_delta(vtime);
1046 
1047 		/*
1048 		 * Task runs either in user (including guest) or kernel space,
1049 		 * add pending nohz time to the right place.
1050 		 */
1051 		if (state == VTIME_SYS) {
1052 			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1053 		} else if (state == VTIME_USER) {
1054 			if (task_nice(tsk) > 0)
1055 				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1056 			else
1057 				cpustat[CPUTIME_USER] += vtime->utime + delta;
1058 		} else {
1059 			WARN_ON_ONCE(state != VTIME_GUEST);
1060 			if (task_nice(tsk) > 0) {
1061 				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1062 				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1063 			} else {
1064 				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1065 				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1066 			}
1067 		}
1068 	} while (read_seqcount_retry(&vtime->seqcount, seq));
1069 
1070 	return 0;
1071 }
1072 
1073 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1074 {
1075 	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1076 	struct rq *rq;
1077 	int err;
1078 
1079 	if (!vtime_accounting_enabled_cpu(cpu)) {
1080 		*dst = *src;
1081 		return;
1082 	}
1083 
1084 	rq = cpu_rq(cpu);
1085 
1086 	for (;;) {
1087 		struct task_struct *curr;
1088 
1089 		rcu_read_lock();
1090 		curr = rcu_dereference(rq->curr);
1091 		if (WARN_ON_ONCE(!curr)) {
1092 			rcu_read_unlock();
1093 			*dst = *src;
1094 			return;
1095 		}
1096 
1097 		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1098 		rcu_read_unlock();
1099 
1100 		if (!err)
1101 			return;
1102 
1103 		cpu_relax();
1104 	}
1105 }
1106 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1107 
1108 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1109