xref: /openbmc/linux/kernel/sched/cputime.c (revision b9890054)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple CPU accounting cgroup controller
4  */
5 #include "sched.h"
6 
7 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
8 
9 /*
10  * There are no locks covering percpu hardirq/softirq time.
11  * They are only modified in vtime_account, on corresponding CPU
12  * with interrupts disabled. So, writes are safe.
13  * They are read and saved off onto struct rq in update_rq_clock().
14  * This may result in other CPU reading this CPU's irq time and can
15  * race with irq/vtime_account on this CPU. We would either get old
16  * or new value with a side effect of accounting a slice of irq time to wrong
17  * task when irq is in progress while we read rq->clock. That is a worthy
18  * compromise in place of having locks on each irq in account_system_time.
19  */
20 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
21 
22 static int sched_clock_irqtime;
23 
24 void enable_sched_clock_irqtime(void)
25 {
26 	sched_clock_irqtime = 1;
27 }
28 
29 void disable_sched_clock_irqtime(void)
30 {
31 	sched_clock_irqtime = 0;
32 }
33 
34 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
35 				  enum cpu_usage_stat idx)
36 {
37 	u64 *cpustat = kcpustat_this_cpu->cpustat;
38 
39 	u64_stats_update_begin(&irqtime->sync);
40 	cpustat[idx] += delta;
41 	irqtime->total += delta;
42 	irqtime->tick_delta += delta;
43 	u64_stats_update_end(&irqtime->sync);
44 }
45 
46 /*
47  * Called before incrementing preempt_count on {soft,}irq_enter
48  * and before decrementing preempt_count on {soft,}irq_exit.
49  */
50 void irqtime_account_irq(struct task_struct *curr)
51 {
52 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
53 	s64 delta;
54 	int cpu;
55 
56 	if (!sched_clock_irqtime)
57 		return;
58 
59 	cpu = smp_processor_id();
60 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
61 	irqtime->irq_start_time += delta;
62 
63 	/*
64 	 * We do not account for softirq time from ksoftirqd here.
65 	 * We want to continue accounting softirq time to ksoftirqd thread
66 	 * in that case, so as not to confuse scheduler with a special task
67 	 * that do not consume any time, but still wants to run.
68 	 */
69 	if (hardirq_count())
70 		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
71 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
73 }
74 EXPORT_SYMBOL_GPL(irqtime_account_irq);
75 
76 static u64 irqtime_tick_accounted(u64 maxtime)
77 {
78 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
79 	u64 delta;
80 
81 	delta = min(irqtime->tick_delta, maxtime);
82 	irqtime->tick_delta -= delta;
83 
84 	return delta;
85 }
86 
87 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
88 
89 #define sched_clock_irqtime	(0)
90 
91 static u64 irqtime_tick_accounted(u64 dummy)
92 {
93 	return 0;
94 }
95 
96 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
97 
98 static inline void task_group_account_field(struct task_struct *p, int index,
99 					    u64 tmp)
100 {
101 	/*
102 	 * Since all updates are sure to touch the root cgroup, we
103 	 * get ourselves ahead and touch it first. If the root cgroup
104 	 * is the only cgroup, then nothing else should be necessary.
105 	 *
106 	 */
107 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
108 
109 	cgroup_account_cputime_field(p, index, tmp);
110 }
111 
112 /*
113  * Account user CPU time to a process.
114  * @p: the process that the CPU time gets accounted to
115  * @cputime: the CPU time spent in user space since the last update
116  */
117 void account_user_time(struct task_struct *p, u64 cputime)
118 {
119 	int index;
120 
121 	/* Add user time to process. */
122 	p->utime += cputime;
123 	account_group_user_time(p, cputime);
124 
125 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
126 
127 	/* Add user time to cpustat. */
128 	task_group_account_field(p, index, cputime);
129 
130 	/* Account for user time used */
131 	acct_account_cputime(p);
132 }
133 
134 /*
135  * Account guest CPU time to a process.
136  * @p: the process that the CPU time gets accounted to
137  * @cputime: the CPU time spent in virtual machine since the last update
138  */
139 void account_guest_time(struct task_struct *p, u64 cputime)
140 {
141 	u64 *cpustat = kcpustat_this_cpu->cpustat;
142 
143 	/* Add guest time to process. */
144 	p->utime += cputime;
145 	account_group_user_time(p, cputime);
146 	p->gtime += cputime;
147 
148 	/* Add guest time to cpustat. */
149 	if (task_nice(p) > 0) {
150 		cpustat[CPUTIME_NICE] += cputime;
151 		cpustat[CPUTIME_GUEST_NICE] += cputime;
152 	} else {
153 		cpustat[CPUTIME_USER] += cputime;
154 		cpustat[CPUTIME_GUEST] += cputime;
155 	}
156 }
157 
158 /*
159  * Account system CPU time to a process and desired cpustat field
160  * @p: the process that the CPU time gets accounted to
161  * @cputime: the CPU time spent in kernel space since the last update
162  * @index: pointer to cpustat field that has to be updated
163  */
164 void account_system_index_time(struct task_struct *p,
165 			       u64 cputime, enum cpu_usage_stat index)
166 {
167 	/* Add system time to process. */
168 	p->stime += cputime;
169 	account_group_system_time(p, cputime);
170 
171 	/* Add system time to cpustat. */
172 	task_group_account_field(p, index, cputime);
173 
174 	/* Account for system time used */
175 	acct_account_cputime(p);
176 }
177 
178 /*
179  * Account system CPU time to a process.
180  * @p: the process that the CPU time gets accounted to
181  * @hardirq_offset: the offset to subtract from hardirq_count()
182  * @cputime: the CPU time spent in kernel space since the last update
183  */
184 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
185 {
186 	int index;
187 
188 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
189 		account_guest_time(p, cputime);
190 		return;
191 	}
192 
193 	if (hardirq_count() - hardirq_offset)
194 		index = CPUTIME_IRQ;
195 	else if (in_serving_softirq())
196 		index = CPUTIME_SOFTIRQ;
197 	else
198 		index = CPUTIME_SYSTEM;
199 
200 	account_system_index_time(p, cputime, index);
201 }
202 
203 /*
204  * Account for involuntary wait time.
205  * @cputime: the CPU time spent in involuntary wait
206  */
207 void account_steal_time(u64 cputime)
208 {
209 	u64 *cpustat = kcpustat_this_cpu->cpustat;
210 
211 	cpustat[CPUTIME_STEAL] += cputime;
212 }
213 
214 /*
215  * Account for idle time.
216  * @cputime: the CPU time spent in idle wait
217  */
218 void account_idle_time(u64 cputime)
219 {
220 	u64 *cpustat = kcpustat_this_cpu->cpustat;
221 	struct rq *rq = this_rq();
222 
223 	if (atomic_read(&rq->nr_iowait) > 0)
224 		cpustat[CPUTIME_IOWAIT] += cputime;
225 	else
226 		cpustat[CPUTIME_IDLE] += cputime;
227 }
228 
229 /*
230  * When a guest is interrupted for a longer amount of time, missed clock
231  * ticks are not redelivered later. Due to that, this function may on
232  * occasion account more time than the calling functions think elapsed.
233  */
234 static __always_inline u64 steal_account_process_time(u64 maxtime)
235 {
236 #ifdef CONFIG_PARAVIRT
237 	if (static_key_false(&paravirt_steal_enabled)) {
238 		u64 steal;
239 
240 		steal = paravirt_steal_clock(smp_processor_id());
241 		steal -= this_rq()->prev_steal_time;
242 		steal = min(steal, maxtime);
243 		account_steal_time(steal);
244 		this_rq()->prev_steal_time += steal;
245 
246 		return steal;
247 	}
248 #endif
249 	return 0;
250 }
251 
252 /*
253  * Account how much elapsed time was spent in steal, irq, or softirq time.
254  */
255 static inline u64 account_other_time(u64 max)
256 {
257 	u64 accounted;
258 
259 	lockdep_assert_irqs_disabled();
260 
261 	accounted = steal_account_process_time(max);
262 
263 	if (accounted < max)
264 		accounted += irqtime_tick_accounted(max - accounted);
265 
266 	return accounted;
267 }
268 
269 #ifdef CONFIG_64BIT
270 static inline u64 read_sum_exec_runtime(struct task_struct *t)
271 {
272 	return t->se.sum_exec_runtime;
273 }
274 #else
275 static u64 read_sum_exec_runtime(struct task_struct *t)
276 {
277 	u64 ns;
278 	struct rq_flags rf;
279 	struct rq *rq;
280 
281 	rq = task_rq_lock(t, &rf);
282 	ns = t->se.sum_exec_runtime;
283 	task_rq_unlock(rq, t, &rf);
284 
285 	return ns;
286 }
287 #endif
288 
289 /*
290  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
291  * tasks (sum on group iteration) belonging to @tsk's group.
292  */
293 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
294 {
295 	struct signal_struct *sig = tsk->signal;
296 	u64 utime, stime;
297 	struct task_struct *t;
298 	unsigned int seq, nextseq;
299 	unsigned long flags;
300 
301 	/*
302 	 * Update current task runtime to account pending time since last
303 	 * scheduler action or thread_group_cputime() call. This thread group
304 	 * might have other running tasks on different CPUs, but updating
305 	 * their runtime can affect syscall performance, so we skip account
306 	 * those pending times and rely only on values updated on tick or
307 	 * other scheduler action.
308 	 */
309 	if (same_thread_group(current, tsk))
310 		(void) task_sched_runtime(current);
311 
312 	rcu_read_lock();
313 	/* Attempt a lockless read on the first round. */
314 	nextseq = 0;
315 	do {
316 		seq = nextseq;
317 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
318 		times->utime = sig->utime;
319 		times->stime = sig->stime;
320 		times->sum_exec_runtime = sig->sum_sched_runtime;
321 
322 		for_each_thread(tsk, t) {
323 			task_cputime(t, &utime, &stime);
324 			times->utime += utime;
325 			times->stime += stime;
326 			times->sum_exec_runtime += read_sum_exec_runtime(t);
327 		}
328 		/* If lockless access failed, take the lock. */
329 		nextseq = 1;
330 	} while (need_seqretry(&sig->stats_lock, seq));
331 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
332 	rcu_read_unlock();
333 }
334 
335 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
336 /*
337  * Account a tick to a process and cpustat
338  * @p: the process that the CPU time gets accounted to
339  * @user_tick: is the tick from userspace
340  * @rq: the pointer to rq
341  *
342  * Tick demultiplexing follows the order
343  * - pending hardirq update
344  * - pending softirq update
345  * - user_time
346  * - idle_time
347  * - system time
348  *   - check for guest_time
349  *   - else account as system_time
350  *
351  * Check for hardirq is done both for system and user time as there is
352  * no timer going off while we are on hardirq and hence we may never get an
353  * opportunity to update it solely in system time.
354  * p->stime and friends are only updated on system time and not on irq
355  * softirq as those do not count in task exec_runtime any more.
356  */
357 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
358 					 struct rq *rq, int ticks)
359 {
360 	u64 other, cputime = TICK_NSEC * ticks;
361 
362 	/*
363 	 * When returning from idle, many ticks can get accounted at
364 	 * once, including some ticks of steal, irq, and softirq time.
365 	 * Subtract those ticks from the amount of time accounted to
366 	 * idle, or potentially user or system time. Due to rounding,
367 	 * other time can exceed ticks occasionally.
368 	 */
369 	other = account_other_time(ULONG_MAX);
370 	if (other >= cputime)
371 		return;
372 
373 	cputime -= other;
374 
375 	if (this_cpu_ksoftirqd() == p) {
376 		/*
377 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
378 		 * So, we have to handle it separately here.
379 		 * Also, p->stime needs to be updated for ksoftirqd.
380 		 */
381 		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
382 	} else if (user_tick) {
383 		account_user_time(p, cputime);
384 	} else if (p == rq->idle) {
385 		account_idle_time(cputime);
386 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
387 		account_guest_time(p, cputime);
388 	} else {
389 		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
390 	}
391 }
392 
393 static void irqtime_account_idle_ticks(int ticks)
394 {
395 	struct rq *rq = this_rq();
396 
397 	irqtime_account_process_tick(current, 0, rq, ticks);
398 }
399 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
400 static inline void irqtime_account_idle_ticks(int ticks) { }
401 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
402 						struct rq *rq, int nr_ticks) { }
403 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
404 
405 /*
406  * Use precise platform statistics if available:
407  */
408 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
409 
410 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
411 void vtime_task_switch(struct task_struct *prev)
412 {
413 	if (is_idle_task(prev))
414 		vtime_account_idle(prev);
415 	else
416 		vtime_account_kernel(prev);
417 
418 	vtime_flush(prev);
419 	arch_vtime_task_switch(prev);
420 }
421 # endif
422 
423 /*
424  * Archs that account the whole time spent in the idle task
425  * (outside irq) as idle time can rely on this and just implement
426  * vtime_account_kernel() and vtime_account_idle(). Archs that
427  * have other meaning of the idle time (s390 only includes the
428  * time spent by the CPU when it's in low power mode) must override
429  * vtime_account().
430  */
431 #ifndef __ARCH_HAS_VTIME_ACCOUNT
432 void vtime_account_irq_enter(struct task_struct *tsk)
433 {
434 	if (!in_interrupt() && is_idle_task(tsk))
435 		vtime_account_idle(tsk);
436 	else
437 		vtime_account_kernel(tsk);
438 }
439 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
440 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
441 
442 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
443 		    u64 *ut, u64 *st)
444 {
445 	*ut = curr->utime;
446 	*st = curr->stime;
447 }
448 
449 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
450 {
451 	*ut = p->utime;
452 	*st = p->stime;
453 }
454 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
455 
456 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
457 {
458 	struct task_cputime cputime;
459 
460 	thread_group_cputime(p, &cputime);
461 
462 	*ut = cputime.utime;
463 	*st = cputime.stime;
464 }
465 
466 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
467 
468 /*
469  * Account a single tick of CPU time.
470  * @p: the process that the CPU time gets accounted to
471  * @user_tick: indicates if the tick is a user or a system tick
472  */
473 void account_process_tick(struct task_struct *p, int user_tick)
474 {
475 	u64 cputime, steal;
476 	struct rq *rq = this_rq();
477 
478 	if (vtime_accounting_enabled_this_cpu())
479 		return;
480 
481 	if (sched_clock_irqtime) {
482 		irqtime_account_process_tick(p, user_tick, rq, 1);
483 		return;
484 	}
485 
486 	cputime = TICK_NSEC;
487 	steal = steal_account_process_time(ULONG_MAX);
488 
489 	if (steal >= cputime)
490 		return;
491 
492 	cputime -= steal;
493 
494 	if (user_tick)
495 		account_user_time(p, cputime);
496 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
497 		account_system_time(p, HARDIRQ_OFFSET, cputime);
498 	else
499 		account_idle_time(cputime);
500 }
501 
502 /*
503  * Account multiple ticks of idle time.
504  * @ticks: number of stolen ticks
505  */
506 void account_idle_ticks(unsigned long ticks)
507 {
508 	u64 cputime, steal;
509 
510 	if (sched_clock_irqtime) {
511 		irqtime_account_idle_ticks(ticks);
512 		return;
513 	}
514 
515 	cputime = ticks * TICK_NSEC;
516 	steal = steal_account_process_time(ULONG_MAX);
517 
518 	if (steal >= cputime)
519 		return;
520 
521 	cputime -= steal;
522 	account_idle_time(cputime);
523 }
524 
525 /*
526  * Perform (stime * rtime) / total, but avoid multiplication overflow by
527  * losing precision when the numbers are big.
528  */
529 static u64 scale_stime(u64 stime, u64 rtime, u64 total)
530 {
531 	u64 scaled;
532 
533 	for (;;) {
534 		/* Make sure "rtime" is the bigger of stime/rtime */
535 		if (stime > rtime)
536 			swap(rtime, stime);
537 
538 		/* Make sure 'total' fits in 32 bits */
539 		if (total >> 32)
540 			goto drop_precision;
541 
542 		/* Does rtime (and thus stime) fit in 32 bits? */
543 		if (!(rtime >> 32))
544 			break;
545 
546 		/* Can we just balance rtime/stime rather than dropping bits? */
547 		if (stime >> 31)
548 			goto drop_precision;
549 
550 		/* We can grow stime and shrink rtime and try to make them both fit */
551 		stime <<= 1;
552 		rtime >>= 1;
553 		continue;
554 
555 drop_precision:
556 		/* We drop from rtime, it has more bits than stime */
557 		rtime >>= 1;
558 		total >>= 1;
559 	}
560 
561 	/*
562 	 * Make sure gcc understands that this is a 32x32->64 multiply,
563 	 * followed by a 64/32->64 divide.
564 	 */
565 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
566 	return scaled;
567 }
568 
569 /*
570  * Adjust tick based cputime random precision against scheduler runtime
571  * accounting.
572  *
573  * Tick based cputime accounting depend on random scheduling timeslices of a
574  * task to be interrupted or not by the timer.  Depending on these
575  * circumstances, the number of these interrupts may be over or
576  * under-optimistic, matching the real user and system cputime with a variable
577  * precision.
578  *
579  * Fix this by scaling these tick based values against the total runtime
580  * accounted by the CFS scheduler.
581  *
582  * This code provides the following guarantees:
583  *
584  *   stime + utime == rtime
585  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
586  *
587  * Assuming that rtime_i+1 >= rtime_i.
588  */
589 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
590 		    u64 *ut, u64 *st)
591 {
592 	u64 rtime, stime, utime;
593 	unsigned long flags;
594 
595 	/* Serialize concurrent callers such that we can honour our guarantees */
596 	raw_spin_lock_irqsave(&prev->lock, flags);
597 	rtime = curr->sum_exec_runtime;
598 
599 	/*
600 	 * This is possible under two circumstances:
601 	 *  - rtime isn't monotonic after all (a bug);
602 	 *  - we got reordered by the lock.
603 	 *
604 	 * In both cases this acts as a filter such that the rest of the code
605 	 * can assume it is monotonic regardless of anything else.
606 	 */
607 	if (prev->stime + prev->utime >= rtime)
608 		goto out;
609 
610 	stime = curr->stime;
611 	utime = curr->utime;
612 
613 	/*
614 	 * If either stime or utime are 0, assume all runtime is userspace.
615 	 * Once a task gets some ticks, the monotonicy code at 'update:'
616 	 * will ensure things converge to the observed ratio.
617 	 */
618 	if (stime == 0) {
619 		utime = rtime;
620 		goto update;
621 	}
622 
623 	if (utime == 0) {
624 		stime = rtime;
625 		goto update;
626 	}
627 
628 	stime = scale_stime(stime, rtime, stime + utime);
629 
630 update:
631 	/*
632 	 * Make sure stime doesn't go backwards; this preserves monotonicity
633 	 * for utime because rtime is monotonic.
634 	 *
635 	 *  utime_i+1 = rtime_i+1 - stime_i
636 	 *            = rtime_i+1 - (rtime_i - utime_i)
637 	 *            = (rtime_i+1 - rtime_i) + utime_i
638 	 *            >= utime_i
639 	 */
640 	if (stime < prev->stime)
641 		stime = prev->stime;
642 	utime = rtime - stime;
643 
644 	/*
645 	 * Make sure utime doesn't go backwards; this still preserves
646 	 * monotonicity for stime, analogous argument to above.
647 	 */
648 	if (utime < prev->utime) {
649 		utime = prev->utime;
650 		stime = rtime - utime;
651 	}
652 
653 	prev->stime = stime;
654 	prev->utime = utime;
655 out:
656 	*ut = prev->utime;
657 	*st = prev->stime;
658 	raw_spin_unlock_irqrestore(&prev->lock, flags);
659 }
660 
661 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
662 {
663 	struct task_cputime cputime = {
664 		.sum_exec_runtime = p->se.sum_exec_runtime,
665 	};
666 
667 	task_cputime(p, &cputime.utime, &cputime.stime);
668 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
669 }
670 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
671 
672 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
673 {
674 	struct task_cputime cputime;
675 
676 	thread_group_cputime(p, &cputime);
677 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
678 }
679 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
680 
681 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
682 static u64 vtime_delta(struct vtime *vtime)
683 {
684 	unsigned long long clock;
685 
686 	clock = sched_clock();
687 	if (clock < vtime->starttime)
688 		return 0;
689 
690 	return clock - vtime->starttime;
691 }
692 
693 static u64 get_vtime_delta(struct vtime *vtime)
694 {
695 	u64 delta = vtime_delta(vtime);
696 	u64 other;
697 
698 	/*
699 	 * Unlike tick based timing, vtime based timing never has lost
700 	 * ticks, and no need for steal time accounting to make up for
701 	 * lost ticks. Vtime accounts a rounded version of actual
702 	 * elapsed time. Limit account_other_time to prevent rounding
703 	 * errors from causing elapsed vtime to go negative.
704 	 */
705 	other = account_other_time(delta);
706 	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
707 	vtime->starttime += delta;
708 
709 	return delta - other;
710 }
711 
712 static void vtime_account_system(struct task_struct *tsk,
713 				 struct vtime *vtime)
714 {
715 	vtime->stime += get_vtime_delta(vtime);
716 	if (vtime->stime >= TICK_NSEC) {
717 		account_system_time(tsk, irq_count(), vtime->stime);
718 		vtime->stime = 0;
719 	}
720 }
721 
722 static void vtime_account_guest(struct task_struct *tsk,
723 				struct vtime *vtime)
724 {
725 	vtime->gtime += get_vtime_delta(vtime);
726 	if (vtime->gtime >= TICK_NSEC) {
727 		account_guest_time(tsk, vtime->gtime);
728 		vtime->gtime = 0;
729 	}
730 }
731 
732 static void __vtime_account_kernel(struct task_struct *tsk,
733 				   struct vtime *vtime)
734 {
735 	/* We might have scheduled out from guest path */
736 	if (vtime->state == VTIME_GUEST)
737 		vtime_account_guest(tsk, vtime);
738 	else
739 		vtime_account_system(tsk, vtime);
740 }
741 
742 void vtime_account_kernel(struct task_struct *tsk)
743 {
744 	struct vtime *vtime = &tsk->vtime;
745 
746 	if (!vtime_delta(vtime))
747 		return;
748 
749 	write_seqcount_begin(&vtime->seqcount);
750 	__vtime_account_kernel(tsk, vtime);
751 	write_seqcount_end(&vtime->seqcount);
752 }
753 
754 void vtime_user_enter(struct task_struct *tsk)
755 {
756 	struct vtime *vtime = &tsk->vtime;
757 
758 	write_seqcount_begin(&vtime->seqcount);
759 	vtime_account_system(tsk, vtime);
760 	vtime->state = VTIME_USER;
761 	write_seqcount_end(&vtime->seqcount);
762 }
763 
764 void vtime_user_exit(struct task_struct *tsk)
765 {
766 	struct vtime *vtime = &tsk->vtime;
767 
768 	write_seqcount_begin(&vtime->seqcount);
769 	vtime->utime += get_vtime_delta(vtime);
770 	if (vtime->utime >= TICK_NSEC) {
771 		account_user_time(tsk, vtime->utime);
772 		vtime->utime = 0;
773 	}
774 	vtime->state = VTIME_SYS;
775 	write_seqcount_end(&vtime->seqcount);
776 }
777 
778 void vtime_guest_enter(struct task_struct *tsk)
779 {
780 	struct vtime *vtime = &tsk->vtime;
781 	/*
782 	 * The flags must be updated under the lock with
783 	 * the vtime_starttime flush and update.
784 	 * That enforces a right ordering and update sequence
785 	 * synchronization against the reader (task_gtime())
786 	 * that can thus safely catch up with a tickless delta.
787 	 */
788 	write_seqcount_begin(&vtime->seqcount);
789 	vtime_account_system(tsk, vtime);
790 	tsk->flags |= PF_VCPU;
791 	vtime->state = VTIME_GUEST;
792 	write_seqcount_end(&vtime->seqcount);
793 }
794 EXPORT_SYMBOL_GPL(vtime_guest_enter);
795 
796 void vtime_guest_exit(struct task_struct *tsk)
797 {
798 	struct vtime *vtime = &tsk->vtime;
799 
800 	write_seqcount_begin(&vtime->seqcount);
801 	vtime_account_guest(tsk, vtime);
802 	tsk->flags &= ~PF_VCPU;
803 	vtime->state = VTIME_SYS;
804 	write_seqcount_end(&vtime->seqcount);
805 }
806 EXPORT_SYMBOL_GPL(vtime_guest_exit);
807 
808 void vtime_account_idle(struct task_struct *tsk)
809 {
810 	account_idle_time(get_vtime_delta(&tsk->vtime));
811 }
812 
813 void vtime_task_switch_generic(struct task_struct *prev)
814 {
815 	struct vtime *vtime = &prev->vtime;
816 
817 	write_seqcount_begin(&vtime->seqcount);
818 	if (vtime->state == VTIME_IDLE)
819 		vtime_account_idle(prev);
820 	else
821 		__vtime_account_kernel(prev, vtime);
822 	vtime->state = VTIME_INACTIVE;
823 	vtime->cpu = -1;
824 	write_seqcount_end(&vtime->seqcount);
825 
826 	vtime = &current->vtime;
827 
828 	write_seqcount_begin(&vtime->seqcount);
829 	if (is_idle_task(current))
830 		vtime->state = VTIME_IDLE;
831 	else if (current->flags & PF_VCPU)
832 		vtime->state = VTIME_GUEST;
833 	else
834 		vtime->state = VTIME_SYS;
835 	vtime->starttime = sched_clock();
836 	vtime->cpu = smp_processor_id();
837 	write_seqcount_end(&vtime->seqcount);
838 }
839 
840 void vtime_init_idle(struct task_struct *t, int cpu)
841 {
842 	struct vtime *vtime = &t->vtime;
843 	unsigned long flags;
844 
845 	local_irq_save(flags);
846 	write_seqcount_begin(&vtime->seqcount);
847 	vtime->state = VTIME_IDLE;
848 	vtime->starttime = sched_clock();
849 	vtime->cpu = cpu;
850 	write_seqcount_end(&vtime->seqcount);
851 	local_irq_restore(flags);
852 }
853 
854 u64 task_gtime(struct task_struct *t)
855 {
856 	struct vtime *vtime = &t->vtime;
857 	unsigned int seq;
858 	u64 gtime;
859 
860 	if (!vtime_accounting_enabled())
861 		return t->gtime;
862 
863 	do {
864 		seq = read_seqcount_begin(&vtime->seqcount);
865 
866 		gtime = t->gtime;
867 		if (vtime->state == VTIME_GUEST)
868 			gtime += vtime->gtime + vtime_delta(vtime);
869 
870 	} while (read_seqcount_retry(&vtime->seqcount, seq));
871 
872 	return gtime;
873 }
874 
875 /*
876  * Fetch cputime raw values from fields of task_struct and
877  * add up the pending nohz execution time since the last
878  * cputime snapshot.
879  */
880 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
881 {
882 	struct vtime *vtime = &t->vtime;
883 	unsigned int seq;
884 	u64 delta;
885 
886 	if (!vtime_accounting_enabled()) {
887 		*utime = t->utime;
888 		*stime = t->stime;
889 		return;
890 	}
891 
892 	do {
893 		seq = read_seqcount_begin(&vtime->seqcount);
894 
895 		*utime = t->utime;
896 		*stime = t->stime;
897 
898 		/* Task is sleeping or idle, nothing to add */
899 		if (vtime->state < VTIME_SYS)
900 			continue;
901 
902 		delta = vtime_delta(vtime);
903 
904 		/*
905 		 * Task runs either in user (including guest) or kernel space,
906 		 * add pending nohz time to the right place.
907 		 */
908 		if (vtime->state == VTIME_SYS)
909 			*stime += vtime->stime + delta;
910 		else
911 			*utime += vtime->utime + delta;
912 	} while (read_seqcount_retry(&vtime->seqcount, seq));
913 }
914 
915 static int vtime_state_check(struct vtime *vtime, int cpu)
916 {
917 	/*
918 	 * We raced against a context switch, fetch the
919 	 * kcpustat task again.
920 	 */
921 	if (vtime->cpu != cpu && vtime->cpu != -1)
922 		return -EAGAIN;
923 
924 	/*
925 	 * Two possible things here:
926 	 * 1) We are seeing the scheduling out task (prev) or any past one.
927 	 * 2) We are seeing the scheduling in task (next) but it hasn't
928 	 *    passed though vtime_task_switch() yet so the pending
929 	 *    cputime of the prev task may not be flushed yet.
930 	 *
931 	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
932 	 */
933 	if (vtime->state == VTIME_INACTIVE)
934 		return -EAGAIN;
935 
936 	return 0;
937 }
938 
939 static u64 kcpustat_user_vtime(struct vtime *vtime)
940 {
941 	if (vtime->state == VTIME_USER)
942 		return vtime->utime + vtime_delta(vtime);
943 	else if (vtime->state == VTIME_GUEST)
944 		return vtime->gtime + vtime_delta(vtime);
945 	return 0;
946 }
947 
948 static int kcpustat_field_vtime(u64 *cpustat,
949 				struct task_struct *tsk,
950 				enum cpu_usage_stat usage,
951 				int cpu, u64 *val)
952 {
953 	struct vtime *vtime = &tsk->vtime;
954 	unsigned int seq;
955 	int err;
956 
957 	do {
958 		seq = read_seqcount_begin(&vtime->seqcount);
959 
960 		err = vtime_state_check(vtime, cpu);
961 		if (err < 0)
962 			return err;
963 
964 		*val = cpustat[usage];
965 
966 		/*
967 		 * Nice VS unnice cputime accounting may be inaccurate if
968 		 * the nice value has changed since the last vtime update.
969 		 * But proper fix would involve interrupting target on nice
970 		 * updates which is a no go on nohz_full (although the scheduler
971 		 * may still interrupt the target if rescheduling is needed...)
972 		 */
973 		switch (usage) {
974 		case CPUTIME_SYSTEM:
975 			if (vtime->state == VTIME_SYS)
976 				*val += vtime->stime + vtime_delta(vtime);
977 			break;
978 		case CPUTIME_USER:
979 			if (task_nice(tsk) <= 0)
980 				*val += kcpustat_user_vtime(vtime);
981 			break;
982 		case CPUTIME_NICE:
983 			if (task_nice(tsk) > 0)
984 				*val += kcpustat_user_vtime(vtime);
985 			break;
986 		case CPUTIME_GUEST:
987 			if (vtime->state == VTIME_GUEST && task_nice(tsk) <= 0)
988 				*val += vtime->gtime + vtime_delta(vtime);
989 			break;
990 		case CPUTIME_GUEST_NICE:
991 			if (vtime->state == VTIME_GUEST && task_nice(tsk) > 0)
992 				*val += vtime->gtime + vtime_delta(vtime);
993 			break;
994 		default:
995 			break;
996 		}
997 	} while (read_seqcount_retry(&vtime->seqcount, seq));
998 
999 	return 0;
1000 }
1001 
1002 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
1003 		   enum cpu_usage_stat usage, int cpu)
1004 {
1005 	u64 *cpustat = kcpustat->cpustat;
1006 	struct rq *rq;
1007 	u64 val;
1008 	int err;
1009 
1010 	if (!vtime_accounting_enabled_cpu(cpu))
1011 		return cpustat[usage];
1012 
1013 	rq = cpu_rq(cpu);
1014 
1015 	for (;;) {
1016 		struct task_struct *curr;
1017 
1018 		rcu_read_lock();
1019 		curr = rcu_dereference(rq->curr);
1020 		if (WARN_ON_ONCE(!curr)) {
1021 			rcu_read_unlock();
1022 			return cpustat[usage];
1023 		}
1024 
1025 		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
1026 		rcu_read_unlock();
1027 
1028 		if (!err)
1029 			return val;
1030 
1031 		cpu_relax();
1032 	}
1033 }
1034 EXPORT_SYMBOL_GPL(kcpustat_field);
1035 
1036 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1037 				    const struct kernel_cpustat *src,
1038 				    struct task_struct *tsk, int cpu)
1039 {
1040 	struct vtime *vtime = &tsk->vtime;
1041 	unsigned int seq;
1042 	int err;
1043 
1044 	do {
1045 		u64 *cpustat;
1046 		u64 delta;
1047 
1048 		seq = read_seqcount_begin(&vtime->seqcount);
1049 
1050 		err = vtime_state_check(vtime, cpu);
1051 		if (err < 0)
1052 			return err;
1053 
1054 		*dst = *src;
1055 		cpustat = dst->cpustat;
1056 
1057 		/* Task is sleeping, dead or idle, nothing to add */
1058 		if (vtime->state < VTIME_SYS)
1059 			continue;
1060 
1061 		delta = vtime_delta(vtime);
1062 
1063 		/*
1064 		 * Task runs either in user (including guest) or kernel space,
1065 		 * add pending nohz time to the right place.
1066 		 */
1067 		if (vtime->state == VTIME_SYS) {
1068 			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1069 		} else if (vtime->state == VTIME_USER) {
1070 			if (task_nice(tsk) > 0)
1071 				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1072 			else
1073 				cpustat[CPUTIME_USER] += vtime->utime + delta;
1074 		} else {
1075 			WARN_ON_ONCE(vtime->state != VTIME_GUEST);
1076 			if (task_nice(tsk) > 0) {
1077 				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1078 				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1079 			} else {
1080 				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1081 				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1082 			}
1083 		}
1084 	} while (read_seqcount_retry(&vtime->seqcount, seq));
1085 
1086 	return err;
1087 }
1088 
1089 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1090 {
1091 	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1092 	struct rq *rq;
1093 	int err;
1094 
1095 	if (!vtime_accounting_enabled_cpu(cpu)) {
1096 		*dst = *src;
1097 		return;
1098 	}
1099 
1100 	rq = cpu_rq(cpu);
1101 
1102 	for (;;) {
1103 		struct task_struct *curr;
1104 
1105 		rcu_read_lock();
1106 		curr = rcu_dereference(rq->curr);
1107 		if (WARN_ON_ONCE(!curr)) {
1108 			rcu_read_unlock();
1109 			*dst = *src;
1110 			return;
1111 		}
1112 
1113 		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1114 		rcu_read_unlock();
1115 
1116 		if (!err)
1117 			return;
1118 
1119 		cpu_relax();
1120 	}
1121 }
1122 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1123 
1124 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1125