1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple CPU accounting cgroup controller 4 */ 5 #include "sched.h" 6 7 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 8 9 /* 10 * There are no locks covering percpu hardirq/softirq time. 11 * They are only modified in vtime_account, on corresponding CPU 12 * with interrupts disabled. So, writes are safe. 13 * They are read and saved off onto struct rq in update_rq_clock(). 14 * This may result in other CPU reading this CPU's irq time and can 15 * race with irq/vtime_account on this CPU. We would either get old 16 * or new value with a side effect of accounting a slice of irq time to wrong 17 * task when irq is in progress while we read rq->clock. That is a worthy 18 * compromise in place of having locks on each irq in account_system_time. 19 */ 20 DEFINE_PER_CPU(struct irqtime, cpu_irqtime); 21 22 static int sched_clock_irqtime; 23 24 void enable_sched_clock_irqtime(void) 25 { 26 sched_clock_irqtime = 1; 27 } 28 29 void disable_sched_clock_irqtime(void) 30 { 31 sched_clock_irqtime = 0; 32 } 33 34 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, 35 enum cpu_usage_stat idx) 36 { 37 u64 *cpustat = kcpustat_this_cpu->cpustat; 38 39 u64_stats_update_begin(&irqtime->sync); 40 cpustat[idx] += delta; 41 irqtime->total += delta; 42 irqtime->tick_delta += delta; 43 u64_stats_update_end(&irqtime->sync); 44 } 45 46 /* 47 * Called after incrementing preempt_count on {soft,}irq_enter 48 * and before decrementing preempt_count on {soft,}irq_exit. 49 */ 50 void irqtime_account_irq(struct task_struct *curr, unsigned int offset) 51 { 52 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 53 unsigned int pc; 54 s64 delta; 55 int cpu; 56 57 if (!sched_clock_irqtime) 58 return; 59 60 cpu = smp_processor_id(); 61 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; 62 irqtime->irq_start_time += delta; 63 pc = preempt_count() - offset; 64 65 /* 66 * We do not account for softirq time from ksoftirqd here. 67 * We want to continue accounting softirq time to ksoftirqd thread 68 * in that case, so as not to confuse scheduler with a special task 69 * that do not consume any time, but still wants to run. 70 */ 71 if (pc & HARDIRQ_MASK) 72 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); 73 else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd()) 74 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); 75 } 76 77 static u64 irqtime_tick_accounted(u64 maxtime) 78 { 79 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 80 u64 delta; 81 82 delta = min(irqtime->tick_delta, maxtime); 83 irqtime->tick_delta -= delta; 84 85 return delta; 86 } 87 88 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 89 90 #define sched_clock_irqtime (0) 91 92 static u64 irqtime_tick_accounted(u64 dummy) 93 { 94 return 0; 95 } 96 97 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 98 99 static inline void task_group_account_field(struct task_struct *p, int index, 100 u64 tmp) 101 { 102 /* 103 * Since all updates are sure to touch the root cgroup, we 104 * get ourselves ahead and touch it first. If the root cgroup 105 * is the only cgroup, then nothing else should be necessary. 106 * 107 */ 108 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 109 110 cgroup_account_cputime_field(p, index, tmp); 111 } 112 113 /* 114 * Account user CPU time to a process. 115 * @p: the process that the CPU time gets accounted to 116 * @cputime: the CPU time spent in user space since the last update 117 */ 118 void account_user_time(struct task_struct *p, u64 cputime) 119 { 120 int index; 121 122 /* Add user time to process. */ 123 p->utime += cputime; 124 account_group_user_time(p, cputime); 125 126 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 127 128 /* Add user time to cpustat. */ 129 task_group_account_field(p, index, cputime); 130 131 /* Account for user time used */ 132 acct_account_cputime(p); 133 } 134 135 /* 136 * Account guest CPU time to a process. 137 * @p: the process that the CPU time gets accounted to 138 * @cputime: the CPU time spent in virtual machine since the last update 139 */ 140 void account_guest_time(struct task_struct *p, u64 cputime) 141 { 142 u64 *cpustat = kcpustat_this_cpu->cpustat; 143 144 /* Add guest time to process. */ 145 p->utime += cputime; 146 account_group_user_time(p, cputime); 147 p->gtime += cputime; 148 149 /* Add guest time to cpustat. */ 150 if (task_nice(p) > 0) { 151 cpustat[CPUTIME_NICE] += cputime; 152 cpustat[CPUTIME_GUEST_NICE] += cputime; 153 } else { 154 cpustat[CPUTIME_USER] += cputime; 155 cpustat[CPUTIME_GUEST] += cputime; 156 } 157 } 158 159 /* 160 * Account system CPU time to a process and desired cpustat field 161 * @p: the process that the CPU time gets accounted to 162 * @cputime: the CPU time spent in kernel space since the last update 163 * @index: pointer to cpustat field that has to be updated 164 */ 165 void account_system_index_time(struct task_struct *p, 166 u64 cputime, enum cpu_usage_stat index) 167 { 168 /* Add system time to process. */ 169 p->stime += cputime; 170 account_group_system_time(p, cputime); 171 172 /* Add system time to cpustat. */ 173 task_group_account_field(p, index, cputime); 174 175 /* Account for system time used */ 176 acct_account_cputime(p); 177 } 178 179 /* 180 * Account system CPU time to a process. 181 * @p: the process that the CPU time gets accounted to 182 * @hardirq_offset: the offset to subtract from hardirq_count() 183 * @cputime: the CPU time spent in kernel space since the last update 184 */ 185 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) 186 { 187 int index; 188 189 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 190 account_guest_time(p, cputime); 191 return; 192 } 193 194 if (hardirq_count() - hardirq_offset) 195 index = CPUTIME_IRQ; 196 else if (in_serving_softirq()) 197 index = CPUTIME_SOFTIRQ; 198 else 199 index = CPUTIME_SYSTEM; 200 201 account_system_index_time(p, cputime, index); 202 } 203 204 /* 205 * Account for involuntary wait time. 206 * @cputime: the CPU time spent in involuntary wait 207 */ 208 void account_steal_time(u64 cputime) 209 { 210 u64 *cpustat = kcpustat_this_cpu->cpustat; 211 212 cpustat[CPUTIME_STEAL] += cputime; 213 } 214 215 /* 216 * Account for idle time. 217 * @cputime: the CPU time spent in idle wait 218 */ 219 void account_idle_time(u64 cputime) 220 { 221 u64 *cpustat = kcpustat_this_cpu->cpustat; 222 struct rq *rq = this_rq(); 223 224 if (atomic_read(&rq->nr_iowait) > 0) 225 cpustat[CPUTIME_IOWAIT] += cputime; 226 else 227 cpustat[CPUTIME_IDLE] += cputime; 228 } 229 230 /* 231 * When a guest is interrupted for a longer amount of time, missed clock 232 * ticks are not redelivered later. Due to that, this function may on 233 * occasion account more time than the calling functions think elapsed. 234 */ 235 static __always_inline u64 steal_account_process_time(u64 maxtime) 236 { 237 #ifdef CONFIG_PARAVIRT 238 if (static_key_false(¶virt_steal_enabled)) { 239 u64 steal; 240 241 steal = paravirt_steal_clock(smp_processor_id()); 242 steal -= this_rq()->prev_steal_time; 243 steal = min(steal, maxtime); 244 account_steal_time(steal); 245 this_rq()->prev_steal_time += steal; 246 247 return steal; 248 } 249 #endif 250 return 0; 251 } 252 253 /* 254 * Account how much elapsed time was spent in steal, irq, or softirq time. 255 */ 256 static inline u64 account_other_time(u64 max) 257 { 258 u64 accounted; 259 260 lockdep_assert_irqs_disabled(); 261 262 accounted = steal_account_process_time(max); 263 264 if (accounted < max) 265 accounted += irqtime_tick_accounted(max - accounted); 266 267 return accounted; 268 } 269 270 #ifdef CONFIG_64BIT 271 static inline u64 read_sum_exec_runtime(struct task_struct *t) 272 { 273 return t->se.sum_exec_runtime; 274 } 275 #else 276 static u64 read_sum_exec_runtime(struct task_struct *t) 277 { 278 u64 ns; 279 struct rq_flags rf; 280 struct rq *rq; 281 282 rq = task_rq_lock(t, &rf); 283 ns = t->se.sum_exec_runtime; 284 task_rq_unlock(rq, t, &rf); 285 286 return ns; 287 } 288 #endif 289 290 /* 291 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 292 * tasks (sum on group iteration) belonging to @tsk's group. 293 */ 294 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 295 { 296 struct signal_struct *sig = tsk->signal; 297 u64 utime, stime; 298 struct task_struct *t; 299 unsigned int seq, nextseq; 300 unsigned long flags; 301 302 /* 303 * Update current task runtime to account pending time since last 304 * scheduler action or thread_group_cputime() call. This thread group 305 * might have other running tasks on different CPUs, but updating 306 * their runtime can affect syscall performance, so we skip account 307 * those pending times and rely only on values updated on tick or 308 * other scheduler action. 309 */ 310 if (same_thread_group(current, tsk)) 311 (void) task_sched_runtime(current); 312 313 rcu_read_lock(); 314 /* Attempt a lockless read on the first round. */ 315 nextseq = 0; 316 do { 317 seq = nextseq; 318 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 319 times->utime = sig->utime; 320 times->stime = sig->stime; 321 times->sum_exec_runtime = sig->sum_sched_runtime; 322 323 for_each_thread(tsk, t) { 324 task_cputime(t, &utime, &stime); 325 times->utime += utime; 326 times->stime += stime; 327 times->sum_exec_runtime += read_sum_exec_runtime(t); 328 } 329 /* If lockless access failed, take the lock. */ 330 nextseq = 1; 331 } while (need_seqretry(&sig->stats_lock, seq)); 332 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 333 rcu_read_unlock(); 334 } 335 336 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 337 /* 338 * Account a tick to a process and cpustat 339 * @p: the process that the CPU time gets accounted to 340 * @user_tick: is the tick from userspace 341 * @rq: the pointer to rq 342 * 343 * Tick demultiplexing follows the order 344 * - pending hardirq update 345 * - pending softirq update 346 * - user_time 347 * - idle_time 348 * - system time 349 * - check for guest_time 350 * - else account as system_time 351 * 352 * Check for hardirq is done both for system and user time as there is 353 * no timer going off while we are on hardirq and hence we may never get an 354 * opportunity to update it solely in system time. 355 * p->stime and friends are only updated on system time and not on irq 356 * softirq as those do not count in task exec_runtime any more. 357 */ 358 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 359 int ticks) 360 { 361 u64 other, cputime = TICK_NSEC * ticks; 362 363 /* 364 * When returning from idle, many ticks can get accounted at 365 * once, including some ticks of steal, irq, and softirq time. 366 * Subtract those ticks from the amount of time accounted to 367 * idle, or potentially user or system time. Due to rounding, 368 * other time can exceed ticks occasionally. 369 */ 370 other = account_other_time(ULONG_MAX); 371 if (other >= cputime) 372 return; 373 374 cputime -= other; 375 376 if (this_cpu_ksoftirqd() == p) { 377 /* 378 * ksoftirqd time do not get accounted in cpu_softirq_time. 379 * So, we have to handle it separately here. 380 * Also, p->stime needs to be updated for ksoftirqd. 381 */ 382 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); 383 } else if (user_tick) { 384 account_user_time(p, cputime); 385 } else if (p == this_rq()->idle) { 386 account_idle_time(cputime); 387 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 388 account_guest_time(p, cputime); 389 } else { 390 account_system_index_time(p, cputime, CPUTIME_SYSTEM); 391 } 392 } 393 394 static void irqtime_account_idle_ticks(int ticks) 395 { 396 irqtime_account_process_tick(current, 0, ticks); 397 } 398 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 399 static inline void irqtime_account_idle_ticks(int ticks) { } 400 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 401 int nr_ticks) { } 402 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 403 404 /* 405 * Use precise platform statistics if available: 406 */ 407 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 408 409 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH 410 void vtime_task_switch(struct task_struct *prev) 411 { 412 if (is_idle_task(prev)) 413 vtime_account_idle(prev); 414 else 415 vtime_account_kernel(prev); 416 417 vtime_flush(prev); 418 arch_vtime_task_switch(prev); 419 } 420 # endif 421 422 void vtime_account_irq(struct task_struct *tsk, unsigned int offset) 423 { 424 unsigned int pc = preempt_count() - offset; 425 426 if (pc & HARDIRQ_OFFSET) { 427 vtime_account_hardirq(tsk); 428 } else if (pc & SOFTIRQ_OFFSET) { 429 vtime_account_softirq(tsk); 430 } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) && 431 is_idle_task(tsk)) { 432 vtime_account_idle(tsk); 433 } else { 434 vtime_account_kernel(tsk); 435 } 436 } 437 438 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 439 u64 *ut, u64 *st) 440 { 441 *ut = curr->utime; 442 *st = curr->stime; 443 } 444 445 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 446 { 447 *ut = p->utime; 448 *st = p->stime; 449 } 450 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 451 452 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 453 { 454 struct task_cputime cputime; 455 456 thread_group_cputime(p, &cputime); 457 458 *ut = cputime.utime; 459 *st = cputime.stime; 460 } 461 462 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */ 463 464 /* 465 * Account a single tick of CPU time. 466 * @p: the process that the CPU time gets accounted to 467 * @user_tick: indicates if the tick is a user or a system tick 468 */ 469 void account_process_tick(struct task_struct *p, int user_tick) 470 { 471 u64 cputime, steal; 472 473 if (vtime_accounting_enabled_this_cpu()) 474 return; 475 476 if (sched_clock_irqtime) { 477 irqtime_account_process_tick(p, user_tick, 1); 478 return; 479 } 480 481 cputime = TICK_NSEC; 482 steal = steal_account_process_time(ULONG_MAX); 483 484 if (steal >= cputime) 485 return; 486 487 cputime -= steal; 488 489 if (user_tick) 490 account_user_time(p, cputime); 491 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET)) 492 account_system_time(p, HARDIRQ_OFFSET, cputime); 493 else 494 account_idle_time(cputime); 495 } 496 497 /* 498 * Account multiple ticks of idle time. 499 * @ticks: number of stolen ticks 500 */ 501 void account_idle_ticks(unsigned long ticks) 502 { 503 u64 cputime, steal; 504 505 if (sched_clock_irqtime) { 506 irqtime_account_idle_ticks(ticks); 507 return; 508 } 509 510 cputime = ticks * TICK_NSEC; 511 steal = steal_account_process_time(ULONG_MAX); 512 513 if (steal >= cputime) 514 return; 515 516 cputime -= steal; 517 account_idle_time(cputime); 518 } 519 520 /* 521 * Adjust tick based cputime random precision against scheduler runtime 522 * accounting. 523 * 524 * Tick based cputime accounting depend on random scheduling timeslices of a 525 * task to be interrupted or not by the timer. Depending on these 526 * circumstances, the number of these interrupts may be over or 527 * under-optimistic, matching the real user and system cputime with a variable 528 * precision. 529 * 530 * Fix this by scaling these tick based values against the total runtime 531 * accounted by the CFS scheduler. 532 * 533 * This code provides the following guarantees: 534 * 535 * stime + utime == rtime 536 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 537 * 538 * Assuming that rtime_i+1 >= rtime_i. 539 */ 540 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 541 u64 *ut, u64 *st) 542 { 543 u64 rtime, stime, utime; 544 unsigned long flags; 545 546 /* Serialize concurrent callers such that we can honour our guarantees */ 547 raw_spin_lock_irqsave(&prev->lock, flags); 548 rtime = curr->sum_exec_runtime; 549 550 /* 551 * This is possible under two circumstances: 552 * - rtime isn't monotonic after all (a bug); 553 * - we got reordered by the lock. 554 * 555 * In both cases this acts as a filter such that the rest of the code 556 * can assume it is monotonic regardless of anything else. 557 */ 558 if (prev->stime + prev->utime >= rtime) 559 goto out; 560 561 stime = curr->stime; 562 utime = curr->utime; 563 564 /* 565 * If either stime or utime are 0, assume all runtime is userspace. 566 * Once a task gets some ticks, the monotonicy code at 'update:' 567 * will ensure things converge to the observed ratio. 568 */ 569 if (stime == 0) { 570 utime = rtime; 571 goto update; 572 } 573 574 if (utime == 0) { 575 stime = rtime; 576 goto update; 577 } 578 579 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime); 580 581 update: 582 /* 583 * Make sure stime doesn't go backwards; this preserves monotonicity 584 * for utime because rtime is monotonic. 585 * 586 * utime_i+1 = rtime_i+1 - stime_i 587 * = rtime_i+1 - (rtime_i - utime_i) 588 * = (rtime_i+1 - rtime_i) + utime_i 589 * >= utime_i 590 */ 591 if (stime < prev->stime) 592 stime = prev->stime; 593 utime = rtime - stime; 594 595 /* 596 * Make sure utime doesn't go backwards; this still preserves 597 * monotonicity for stime, analogous argument to above. 598 */ 599 if (utime < prev->utime) { 600 utime = prev->utime; 601 stime = rtime - utime; 602 } 603 604 prev->stime = stime; 605 prev->utime = utime; 606 out: 607 *ut = prev->utime; 608 *st = prev->stime; 609 raw_spin_unlock_irqrestore(&prev->lock, flags); 610 } 611 612 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 613 { 614 struct task_cputime cputime = { 615 .sum_exec_runtime = p->se.sum_exec_runtime, 616 }; 617 618 task_cputime(p, &cputime.utime, &cputime.stime); 619 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 620 } 621 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 622 623 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 624 { 625 struct task_cputime cputime; 626 627 thread_group_cputime(p, &cputime); 628 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 629 } 630 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 631 632 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 633 static u64 vtime_delta(struct vtime *vtime) 634 { 635 unsigned long long clock; 636 637 clock = sched_clock(); 638 if (clock < vtime->starttime) 639 return 0; 640 641 return clock - vtime->starttime; 642 } 643 644 static u64 get_vtime_delta(struct vtime *vtime) 645 { 646 u64 delta = vtime_delta(vtime); 647 u64 other; 648 649 /* 650 * Unlike tick based timing, vtime based timing never has lost 651 * ticks, and no need for steal time accounting to make up for 652 * lost ticks. Vtime accounts a rounded version of actual 653 * elapsed time. Limit account_other_time to prevent rounding 654 * errors from causing elapsed vtime to go negative. 655 */ 656 other = account_other_time(delta); 657 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE); 658 vtime->starttime += delta; 659 660 return delta - other; 661 } 662 663 static void vtime_account_system(struct task_struct *tsk, 664 struct vtime *vtime) 665 { 666 vtime->stime += get_vtime_delta(vtime); 667 if (vtime->stime >= TICK_NSEC) { 668 account_system_time(tsk, irq_count(), vtime->stime); 669 vtime->stime = 0; 670 } 671 } 672 673 static void vtime_account_guest(struct task_struct *tsk, 674 struct vtime *vtime) 675 { 676 vtime->gtime += get_vtime_delta(vtime); 677 if (vtime->gtime >= TICK_NSEC) { 678 account_guest_time(tsk, vtime->gtime); 679 vtime->gtime = 0; 680 } 681 } 682 683 static void __vtime_account_kernel(struct task_struct *tsk, 684 struct vtime *vtime) 685 { 686 /* We might have scheduled out from guest path */ 687 if (vtime->state == VTIME_GUEST) 688 vtime_account_guest(tsk, vtime); 689 else 690 vtime_account_system(tsk, vtime); 691 } 692 693 void vtime_account_kernel(struct task_struct *tsk) 694 { 695 struct vtime *vtime = &tsk->vtime; 696 697 if (!vtime_delta(vtime)) 698 return; 699 700 write_seqcount_begin(&vtime->seqcount); 701 __vtime_account_kernel(tsk, vtime); 702 write_seqcount_end(&vtime->seqcount); 703 } 704 705 void vtime_user_enter(struct task_struct *tsk) 706 { 707 struct vtime *vtime = &tsk->vtime; 708 709 write_seqcount_begin(&vtime->seqcount); 710 vtime_account_system(tsk, vtime); 711 vtime->state = VTIME_USER; 712 write_seqcount_end(&vtime->seqcount); 713 } 714 715 void vtime_user_exit(struct task_struct *tsk) 716 { 717 struct vtime *vtime = &tsk->vtime; 718 719 write_seqcount_begin(&vtime->seqcount); 720 vtime->utime += get_vtime_delta(vtime); 721 if (vtime->utime >= TICK_NSEC) { 722 account_user_time(tsk, vtime->utime); 723 vtime->utime = 0; 724 } 725 vtime->state = VTIME_SYS; 726 write_seqcount_end(&vtime->seqcount); 727 } 728 729 void vtime_guest_enter(struct task_struct *tsk) 730 { 731 struct vtime *vtime = &tsk->vtime; 732 /* 733 * The flags must be updated under the lock with 734 * the vtime_starttime flush and update. 735 * That enforces a right ordering and update sequence 736 * synchronization against the reader (task_gtime()) 737 * that can thus safely catch up with a tickless delta. 738 */ 739 write_seqcount_begin(&vtime->seqcount); 740 vtime_account_system(tsk, vtime); 741 tsk->flags |= PF_VCPU; 742 vtime->state = VTIME_GUEST; 743 write_seqcount_end(&vtime->seqcount); 744 } 745 EXPORT_SYMBOL_GPL(vtime_guest_enter); 746 747 void vtime_guest_exit(struct task_struct *tsk) 748 { 749 struct vtime *vtime = &tsk->vtime; 750 751 write_seqcount_begin(&vtime->seqcount); 752 vtime_account_guest(tsk, vtime); 753 tsk->flags &= ~PF_VCPU; 754 vtime->state = VTIME_SYS; 755 write_seqcount_end(&vtime->seqcount); 756 } 757 EXPORT_SYMBOL_GPL(vtime_guest_exit); 758 759 void vtime_account_idle(struct task_struct *tsk) 760 { 761 account_idle_time(get_vtime_delta(&tsk->vtime)); 762 } 763 764 void vtime_task_switch_generic(struct task_struct *prev) 765 { 766 struct vtime *vtime = &prev->vtime; 767 768 write_seqcount_begin(&vtime->seqcount); 769 if (vtime->state == VTIME_IDLE) 770 vtime_account_idle(prev); 771 else 772 __vtime_account_kernel(prev, vtime); 773 vtime->state = VTIME_INACTIVE; 774 vtime->cpu = -1; 775 write_seqcount_end(&vtime->seqcount); 776 777 vtime = ¤t->vtime; 778 779 write_seqcount_begin(&vtime->seqcount); 780 if (is_idle_task(current)) 781 vtime->state = VTIME_IDLE; 782 else if (current->flags & PF_VCPU) 783 vtime->state = VTIME_GUEST; 784 else 785 vtime->state = VTIME_SYS; 786 vtime->starttime = sched_clock(); 787 vtime->cpu = smp_processor_id(); 788 write_seqcount_end(&vtime->seqcount); 789 } 790 791 void vtime_init_idle(struct task_struct *t, int cpu) 792 { 793 struct vtime *vtime = &t->vtime; 794 unsigned long flags; 795 796 local_irq_save(flags); 797 write_seqcount_begin(&vtime->seqcount); 798 vtime->state = VTIME_IDLE; 799 vtime->starttime = sched_clock(); 800 vtime->cpu = cpu; 801 write_seqcount_end(&vtime->seqcount); 802 local_irq_restore(flags); 803 } 804 805 u64 task_gtime(struct task_struct *t) 806 { 807 struct vtime *vtime = &t->vtime; 808 unsigned int seq; 809 u64 gtime; 810 811 if (!vtime_accounting_enabled()) 812 return t->gtime; 813 814 do { 815 seq = read_seqcount_begin(&vtime->seqcount); 816 817 gtime = t->gtime; 818 if (vtime->state == VTIME_GUEST) 819 gtime += vtime->gtime + vtime_delta(vtime); 820 821 } while (read_seqcount_retry(&vtime->seqcount, seq)); 822 823 return gtime; 824 } 825 826 /* 827 * Fetch cputime raw values from fields of task_struct and 828 * add up the pending nohz execution time since the last 829 * cputime snapshot. 830 */ 831 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) 832 { 833 struct vtime *vtime = &t->vtime; 834 unsigned int seq; 835 u64 delta; 836 837 if (!vtime_accounting_enabled()) { 838 *utime = t->utime; 839 *stime = t->stime; 840 return; 841 } 842 843 do { 844 seq = read_seqcount_begin(&vtime->seqcount); 845 846 *utime = t->utime; 847 *stime = t->stime; 848 849 /* Task is sleeping or idle, nothing to add */ 850 if (vtime->state < VTIME_SYS) 851 continue; 852 853 delta = vtime_delta(vtime); 854 855 /* 856 * Task runs either in user (including guest) or kernel space, 857 * add pending nohz time to the right place. 858 */ 859 if (vtime->state == VTIME_SYS) 860 *stime += vtime->stime + delta; 861 else 862 *utime += vtime->utime + delta; 863 } while (read_seqcount_retry(&vtime->seqcount, seq)); 864 } 865 866 static int vtime_state_fetch(struct vtime *vtime, int cpu) 867 { 868 int state = READ_ONCE(vtime->state); 869 870 /* 871 * We raced against a context switch, fetch the 872 * kcpustat task again. 873 */ 874 if (vtime->cpu != cpu && vtime->cpu != -1) 875 return -EAGAIN; 876 877 /* 878 * Two possible things here: 879 * 1) We are seeing the scheduling out task (prev) or any past one. 880 * 2) We are seeing the scheduling in task (next) but it hasn't 881 * passed though vtime_task_switch() yet so the pending 882 * cputime of the prev task may not be flushed yet. 883 * 884 * Case 1) is ok but 2) is not. So wait for a safe VTIME state. 885 */ 886 if (state == VTIME_INACTIVE) 887 return -EAGAIN; 888 889 return state; 890 } 891 892 static u64 kcpustat_user_vtime(struct vtime *vtime) 893 { 894 if (vtime->state == VTIME_USER) 895 return vtime->utime + vtime_delta(vtime); 896 else if (vtime->state == VTIME_GUEST) 897 return vtime->gtime + vtime_delta(vtime); 898 return 0; 899 } 900 901 static int kcpustat_field_vtime(u64 *cpustat, 902 struct task_struct *tsk, 903 enum cpu_usage_stat usage, 904 int cpu, u64 *val) 905 { 906 struct vtime *vtime = &tsk->vtime; 907 unsigned int seq; 908 909 do { 910 int state; 911 912 seq = read_seqcount_begin(&vtime->seqcount); 913 914 state = vtime_state_fetch(vtime, cpu); 915 if (state < 0) 916 return state; 917 918 *val = cpustat[usage]; 919 920 /* 921 * Nice VS unnice cputime accounting may be inaccurate if 922 * the nice value has changed since the last vtime update. 923 * But proper fix would involve interrupting target on nice 924 * updates which is a no go on nohz_full (although the scheduler 925 * may still interrupt the target if rescheduling is needed...) 926 */ 927 switch (usage) { 928 case CPUTIME_SYSTEM: 929 if (state == VTIME_SYS) 930 *val += vtime->stime + vtime_delta(vtime); 931 break; 932 case CPUTIME_USER: 933 if (task_nice(tsk) <= 0) 934 *val += kcpustat_user_vtime(vtime); 935 break; 936 case CPUTIME_NICE: 937 if (task_nice(tsk) > 0) 938 *val += kcpustat_user_vtime(vtime); 939 break; 940 case CPUTIME_GUEST: 941 if (state == VTIME_GUEST && task_nice(tsk) <= 0) 942 *val += vtime->gtime + vtime_delta(vtime); 943 break; 944 case CPUTIME_GUEST_NICE: 945 if (state == VTIME_GUEST && task_nice(tsk) > 0) 946 *val += vtime->gtime + vtime_delta(vtime); 947 break; 948 default: 949 break; 950 } 951 } while (read_seqcount_retry(&vtime->seqcount, seq)); 952 953 return 0; 954 } 955 956 u64 kcpustat_field(struct kernel_cpustat *kcpustat, 957 enum cpu_usage_stat usage, int cpu) 958 { 959 u64 *cpustat = kcpustat->cpustat; 960 u64 val = cpustat[usage]; 961 struct rq *rq; 962 int err; 963 964 if (!vtime_accounting_enabled_cpu(cpu)) 965 return val; 966 967 rq = cpu_rq(cpu); 968 969 for (;;) { 970 struct task_struct *curr; 971 972 rcu_read_lock(); 973 curr = rcu_dereference(rq->curr); 974 if (WARN_ON_ONCE(!curr)) { 975 rcu_read_unlock(); 976 return cpustat[usage]; 977 } 978 979 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val); 980 rcu_read_unlock(); 981 982 if (!err) 983 return val; 984 985 cpu_relax(); 986 } 987 } 988 EXPORT_SYMBOL_GPL(kcpustat_field); 989 990 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst, 991 const struct kernel_cpustat *src, 992 struct task_struct *tsk, int cpu) 993 { 994 struct vtime *vtime = &tsk->vtime; 995 unsigned int seq; 996 997 do { 998 u64 *cpustat; 999 u64 delta; 1000 int state; 1001 1002 seq = read_seqcount_begin(&vtime->seqcount); 1003 1004 state = vtime_state_fetch(vtime, cpu); 1005 if (state < 0) 1006 return state; 1007 1008 *dst = *src; 1009 cpustat = dst->cpustat; 1010 1011 /* Task is sleeping, dead or idle, nothing to add */ 1012 if (state < VTIME_SYS) 1013 continue; 1014 1015 delta = vtime_delta(vtime); 1016 1017 /* 1018 * Task runs either in user (including guest) or kernel space, 1019 * add pending nohz time to the right place. 1020 */ 1021 if (state == VTIME_SYS) { 1022 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta; 1023 } else if (state == VTIME_USER) { 1024 if (task_nice(tsk) > 0) 1025 cpustat[CPUTIME_NICE] += vtime->utime + delta; 1026 else 1027 cpustat[CPUTIME_USER] += vtime->utime + delta; 1028 } else { 1029 WARN_ON_ONCE(state != VTIME_GUEST); 1030 if (task_nice(tsk) > 0) { 1031 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta; 1032 cpustat[CPUTIME_NICE] += vtime->gtime + delta; 1033 } else { 1034 cpustat[CPUTIME_GUEST] += vtime->gtime + delta; 1035 cpustat[CPUTIME_USER] += vtime->gtime + delta; 1036 } 1037 } 1038 } while (read_seqcount_retry(&vtime->seqcount, seq)); 1039 1040 return 0; 1041 } 1042 1043 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) 1044 { 1045 const struct kernel_cpustat *src = &kcpustat_cpu(cpu); 1046 struct rq *rq; 1047 int err; 1048 1049 if (!vtime_accounting_enabled_cpu(cpu)) { 1050 *dst = *src; 1051 return; 1052 } 1053 1054 rq = cpu_rq(cpu); 1055 1056 for (;;) { 1057 struct task_struct *curr; 1058 1059 rcu_read_lock(); 1060 curr = rcu_dereference(rq->curr); 1061 if (WARN_ON_ONCE(!curr)) { 1062 rcu_read_unlock(); 1063 *dst = *src; 1064 return; 1065 } 1066 1067 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu); 1068 rcu_read_unlock(); 1069 1070 if (!err) 1071 return; 1072 1073 cpu_relax(); 1074 } 1075 } 1076 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch); 1077 1078 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 1079