xref: /openbmc/linux/kernel/sched/cputime.c (revision b34e08d5)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 
9 
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11 
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's irq time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of irq time to wrong
20  * task when irq is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each irq in account_system_time.
22  */
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
25 
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
28 
29 void enable_sched_clock_irqtime(void)
30 {
31 	sched_clock_irqtime = 1;
32 }
33 
34 void disable_sched_clock_irqtime(void)
35 {
36 	sched_clock_irqtime = 0;
37 }
38 
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
42 
43 /*
44  * Called before incrementing preempt_count on {soft,}irq_enter
45  * and before decrementing preempt_count on {soft,}irq_exit.
46  */
47 void irqtime_account_irq(struct task_struct *curr)
48 {
49 	unsigned long flags;
50 	s64 delta;
51 	int cpu;
52 
53 	if (!sched_clock_irqtime)
54 		return;
55 
56 	local_irq_save(flags);
57 
58 	cpu = smp_processor_id();
59 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 	__this_cpu_add(irq_start_time, delta);
61 
62 	irq_time_write_begin();
63 	/*
64 	 * We do not account for softirq time from ksoftirqd here.
65 	 * We want to continue accounting softirq time to ksoftirqd thread
66 	 * in that case, so as not to confuse scheduler with a special task
67 	 * that do not consume any time, but still wants to run.
68 	 */
69 	if (hardirq_count())
70 		__this_cpu_add(cpu_hardirq_time, delta);
71 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 		__this_cpu_add(cpu_softirq_time, delta);
73 
74 	irq_time_write_end();
75 	local_irq_restore(flags);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78 
79 static int irqtime_account_hi_update(void)
80 {
81 	u64 *cpustat = kcpustat_this_cpu->cpustat;
82 	unsigned long flags;
83 	u64 latest_ns;
84 	int ret = 0;
85 
86 	local_irq_save(flags);
87 	latest_ns = this_cpu_read(cpu_hardirq_time);
88 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 		ret = 1;
90 	local_irq_restore(flags);
91 	return ret;
92 }
93 
94 static int irqtime_account_si_update(void)
95 {
96 	u64 *cpustat = kcpustat_this_cpu->cpustat;
97 	unsigned long flags;
98 	u64 latest_ns;
99 	int ret = 0;
100 
101 	local_irq_save(flags);
102 	latest_ns = this_cpu_read(cpu_softirq_time);
103 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 		ret = 1;
105 	local_irq_restore(flags);
106 	return ret;
107 }
108 
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
110 
111 #define sched_clock_irqtime	(0)
112 
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114 
115 static inline void task_group_account_field(struct task_struct *p, int index,
116 					    u64 tmp)
117 {
118 	/*
119 	 * Since all updates are sure to touch the root cgroup, we
120 	 * get ourselves ahead and touch it first. If the root cgroup
121 	 * is the only cgroup, then nothing else should be necessary.
122 	 *
123 	 */
124 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
125 
126 	cpuacct_account_field(p, index, tmp);
127 }
128 
129 /*
130  * Account user cpu time to a process.
131  * @p: the process that the cpu time gets accounted to
132  * @cputime: the cpu time spent in user space since the last update
133  * @cputime_scaled: cputime scaled by cpu frequency
134  */
135 void account_user_time(struct task_struct *p, cputime_t cputime,
136 		       cputime_t cputime_scaled)
137 {
138 	int index;
139 
140 	/* Add user time to process. */
141 	p->utime += cputime;
142 	p->utimescaled += cputime_scaled;
143 	account_group_user_time(p, cputime);
144 
145 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146 
147 	/* Add user time to cpustat. */
148 	task_group_account_field(p, index, (__force u64) cputime);
149 
150 	/* Account for user time used */
151 	acct_account_cputime(p);
152 }
153 
154 /*
155  * Account guest cpu time to a process.
156  * @p: the process that the cpu time gets accounted to
157  * @cputime: the cpu time spent in virtual machine since the last update
158  * @cputime_scaled: cputime scaled by cpu frequency
159  */
160 static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 			       cputime_t cputime_scaled)
162 {
163 	u64 *cpustat = kcpustat_this_cpu->cpustat;
164 
165 	/* Add guest time to process. */
166 	p->utime += cputime;
167 	p->utimescaled += cputime_scaled;
168 	account_group_user_time(p, cputime);
169 	p->gtime += cputime;
170 
171 	/* Add guest time to cpustat. */
172 	if (task_nice(p) > 0) {
173 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 	} else {
176 		cpustat[CPUTIME_USER] += (__force u64) cputime;
177 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 	}
179 }
180 
181 /*
182  * Account system cpu time to a process and desired cpustat field
183  * @p: the process that the cpu time gets accounted to
184  * @cputime: the cpu time spent in kernel space since the last update
185  * @cputime_scaled: cputime scaled by cpu frequency
186  * @target_cputime64: pointer to cpustat field that has to be updated
187  */
188 static inline
189 void __account_system_time(struct task_struct *p, cputime_t cputime,
190 			cputime_t cputime_scaled, int index)
191 {
192 	/* Add system time to process. */
193 	p->stime += cputime;
194 	p->stimescaled += cputime_scaled;
195 	account_group_system_time(p, cputime);
196 
197 	/* Add system time to cpustat. */
198 	task_group_account_field(p, index, (__force u64) cputime);
199 
200 	/* Account for system time used */
201 	acct_account_cputime(p);
202 }
203 
204 /*
205  * Account system cpu time to a process.
206  * @p: the process that the cpu time gets accounted to
207  * @hardirq_offset: the offset to subtract from hardirq_count()
208  * @cputime: the cpu time spent in kernel space since the last update
209  * @cputime_scaled: cputime scaled by cpu frequency
210  */
211 void account_system_time(struct task_struct *p, int hardirq_offset,
212 			 cputime_t cputime, cputime_t cputime_scaled)
213 {
214 	int index;
215 
216 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 		account_guest_time(p, cputime, cputime_scaled);
218 		return;
219 	}
220 
221 	if (hardirq_count() - hardirq_offset)
222 		index = CPUTIME_IRQ;
223 	else if (in_serving_softirq())
224 		index = CPUTIME_SOFTIRQ;
225 	else
226 		index = CPUTIME_SYSTEM;
227 
228 	__account_system_time(p, cputime, cputime_scaled, index);
229 }
230 
231 /*
232  * Account for involuntary wait time.
233  * @cputime: the cpu time spent in involuntary wait
234  */
235 void account_steal_time(cputime_t cputime)
236 {
237 	u64 *cpustat = kcpustat_this_cpu->cpustat;
238 
239 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240 }
241 
242 /*
243  * Account for idle time.
244  * @cputime: the cpu time spent in idle wait
245  */
246 void account_idle_time(cputime_t cputime)
247 {
248 	u64 *cpustat = kcpustat_this_cpu->cpustat;
249 	struct rq *rq = this_rq();
250 
251 	if (atomic_read(&rq->nr_iowait) > 0)
252 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 	else
254 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255 }
256 
257 static __always_inline bool steal_account_process_tick(void)
258 {
259 #ifdef CONFIG_PARAVIRT
260 	if (static_key_false(&paravirt_steal_enabled)) {
261 		u64 steal;
262 		cputime_t steal_ct;
263 
264 		steal = paravirt_steal_clock(smp_processor_id());
265 		steal -= this_rq()->prev_steal_time;
266 
267 		/*
268 		 * cputime_t may be less precise than nsecs (eg: if it's
269 		 * based on jiffies). Lets cast the result to cputime
270 		 * granularity and account the rest on the next rounds.
271 		 */
272 		steal_ct = nsecs_to_cputime(steal);
273 		this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
274 
275 		account_steal_time(steal_ct);
276 		return steal_ct;
277 	}
278 #endif
279 	return false;
280 }
281 
282 /*
283  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284  * tasks (sum on group iteration) belonging to @tsk's group.
285  */
286 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287 {
288 	struct signal_struct *sig = tsk->signal;
289 	cputime_t utime, stime;
290 	struct task_struct *t;
291 
292 	times->utime = sig->utime;
293 	times->stime = sig->stime;
294 	times->sum_exec_runtime = sig->sum_sched_runtime;
295 
296 	rcu_read_lock();
297 	/* make sure we can trust tsk->thread_group list */
298 	if (!likely(pid_alive(tsk)))
299 		goto out;
300 
301 	t = tsk;
302 	do {
303 		task_cputime(t, &utime, &stime);
304 		times->utime += utime;
305 		times->stime += stime;
306 		times->sum_exec_runtime += task_sched_runtime(t);
307 	} while_each_thread(tsk, t);
308 out:
309 	rcu_read_unlock();
310 }
311 
312 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
313 /*
314  * Account a tick to a process and cpustat
315  * @p: the process that the cpu time gets accounted to
316  * @user_tick: is the tick from userspace
317  * @rq: the pointer to rq
318  *
319  * Tick demultiplexing follows the order
320  * - pending hardirq update
321  * - pending softirq update
322  * - user_time
323  * - idle_time
324  * - system time
325  *   - check for guest_time
326  *   - else account as system_time
327  *
328  * Check for hardirq is done both for system and user time as there is
329  * no timer going off while we are on hardirq and hence we may never get an
330  * opportunity to update it solely in system time.
331  * p->stime and friends are only updated on system time and not on irq
332  * softirq as those do not count in task exec_runtime any more.
333  */
334 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
335 						struct rq *rq)
336 {
337 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
338 	u64 *cpustat = kcpustat_this_cpu->cpustat;
339 
340 	if (steal_account_process_tick())
341 		return;
342 
343 	if (irqtime_account_hi_update()) {
344 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
345 	} else if (irqtime_account_si_update()) {
346 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
347 	} else if (this_cpu_ksoftirqd() == p) {
348 		/*
349 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
350 		 * So, we have to handle it separately here.
351 		 * Also, p->stime needs to be updated for ksoftirqd.
352 		 */
353 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
354 					CPUTIME_SOFTIRQ);
355 	} else if (user_tick) {
356 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
357 	} else if (p == rq->idle) {
358 		account_idle_time(cputime_one_jiffy);
359 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
360 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
361 	} else {
362 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
363 					CPUTIME_SYSTEM);
364 	}
365 }
366 
367 static void irqtime_account_idle_ticks(int ticks)
368 {
369 	int i;
370 	struct rq *rq = this_rq();
371 
372 	for (i = 0; i < ticks; i++)
373 		irqtime_account_process_tick(current, 0, rq);
374 }
375 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
376 static inline void irqtime_account_idle_ticks(int ticks) {}
377 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
378 						struct rq *rq) {}
379 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
380 
381 /*
382  * Use precise platform statistics if available:
383  */
384 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
385 
386 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
387 void vtime_common_task_switch(struct task_struct *prev)
388 {
389 	if (is_idle_task(prev))
390 		vtime_account_idle(prev);
391 	else
392 		vtime_account_system(prev);
393 
394 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
395 	vtime_account_user(prev);
396 #endif
397 	arch_vtime_task_switch(prev);
398 }
399 #endif
400 
401 /*
402  * Archs that account the whole time spent in the idle task
403  * (outside irq) as idle time can rely on this and just implement
404  * vtime_account_system() and vtime_account_idle(). Archs that
405  * have other meaning of the idle time (s390 only includes the
406  * time spent by the CPU when it's in low power mode) must override
407  * vtime_account().
408  */
409 #ifndef __ARCH_HAS_VTIME_ACCOUNT
410 void vtime_common_account_irq_enter(struct task_struct *tsk)
411 {
412 	if (!in_interrupt()) {
413 		/*
414 		 * If we interrupted user, context_tracking_in_user()
415 		 * is 1 because the context tracking don't hook
416 		 * on irq entry/exit. This way we know if
417 		 * we need to flush user time on kernel entry.
418 		 */
419 		if (context_tracking_in_user()) {
420 			vtime_account_user(tsk);
421 			return;
422 		}
423 
424 		if (is_idle_task(tsk)) {
425 			vtime_account_idle(tsk);
426 			return;
427 		}
428 	}
429 	vtime_account_system(tsk);
430 }
431 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
432 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
433 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
434 
435 
436 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
437 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
438 {
439 	*ut = p->utime;
440 	*st = p->stime;
441 }
442 
443 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
444 {
445 	struct task_cputime cputime;
446 
447 	thread_group_cputime(p, &cputime);
448 
449 	*ut = cputime.utime;
450 	*st = cputime.stime;
451 }
452 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
453 /*
454  * Account a single tick of cpu time.
455  * @p: the process that the cpu time gets accounted to
456  * @user_tick: indicates if the tick is a user or a system tick
457  */
458 void account_process_tick(struct task_struct *p, int user_tick)
459 {
460 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
461 	struct rq *rq = this_rq();
462 
463 	if (vtime_accounting_enabled())
464 		return;
465 
466 	if (sched_clock_irqtime) {
467 		irqtime_account_process_tick(p, user_tick, rq);
468 		return;
469 	}
470 
471 	if (steal_account_process_tick())
472 		return;
473 
474 	if (user_tick)
475 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
476 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
477 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
478 				    one_jiffy_scaled);
479 	else
480 		account_idle_time(cputime_one_jiffy);
481 }
482 
483 /*
484  * Account multiple ticks of steal time.
485  * @p: the process from which the cpu time has been stolen
486  * @ticks: number of stolen ticks
487  */
488 void account_steal_ticks(unsigned long ticks)
489 {
490 	account_steal_time(jiffies_to_cputime(ticks));
491 }
492 
493 /*
494  * Account multiple ticks of idle time.
495  * @ticks: number of stolen ticks
496  */
497 void account_idle_ticks(unsigned long ticks)
498 {
499 
500 	if (sched_clock_irqtime) {
501 		irqtime_account_idle_ticks(ticks);
502 		return;
503 	}
504 
505 	account_idle_time(jiffies_to_cputime(ticks));
506 }
507 
508 /*
509  * Perform (stime * rtime) / total, but avoid multiplication overflow by
510  * loosing precision when the numbers are big.
511  */
512 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
513 {
514 	u64 scaled;
515 
516 	for (;;) {
517 		/* Make sure "rtime" is the bigger of stime/rtime */
518 		if (stime > rtime)
519 			swap(rtime, stime);
520 
521 		/* Make sure 'total' fits in 32 bits */
522 		if (total >> 32)
523 			goto drop_precision;
524 
525 		/* Does rtime (and thus stime) fit in 32 bits? */
526 		if (!(rtime >> 32))
527 			break;
528 
529 		/* Can we just balance rtime/stime rather than dropping bits? */
530 		if (stime >> 31)
531 			goto drop_precision;
532 
533 		/* We can grow stime and shrink rtime and try to make them both fit */
534 		stime <<= 1;
535 		rtime >>= 1;
536 		continue;
537 
538 drop_precision:
539 		/* We drop from rtime, it has more bits than stime */
540 		rtime >>= 1;
541 		total >>= 1;
542 	}
543 
544 	/*
545 	 * Make sure gcc understands that this is a 32x32->64 multiply,
546 	 * followed by a 64/32->64 divide.
547 	 */
548 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
549 	return (__force cputime_t) scaled;
550 }
551 
552 /*
553  * Adjust tick based cputime random precision against scheduler
554  * runtime accounting.
555  */
556 static void cputime_adjust(struct task_cputime *curr,
557 			   struct cputime *prev,
558 			   cputime_t *ut, cputime_t *st)
559 {
560 	cputime_t rtime, stime, utime;
561 
562 	/*
563 	 * Tick based cputime accounting depend on random scheduling
564 	 * timeslices of a task to be interrupted or not by the timer.
565 	 * Depending on these circumstances, the number of these interrupts
566 	 * may be over or under-optimistic, matching the real user and system
567 	 * cputime with a variable precision.
568 	 *
569 	 * Fix this by scaling these tick based values against the total
570 	 * runtime accounted by the CFS scheduler.
571 	 */
572 	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
573 
574 	/*
575 	 * Update userspace visible utime/stime values only if actual execution
576 	 * time is bigger than already exported. Note that can happen, that we
577 	 * provided bigger values due to scaling inaccuracy on big numbers.
578 	 */
579 	if (prev->stime + prev->utime >= rtime)
580 		goto out;
581 
582 	stime = curr->stime;
583 	utime = curr->utime;
584 
585 	if (utime == 0) {
586 		stime = rtime;
587 	} else if (stime == 0) {
588 		utime = rtime;
589 	} else {
590 		cputime_t total = stime + utime;
591 
592 		stime = scale_stime((__force u64)stime,
593 				    (__force u64)rtime, (__force u64)total);
594 		utime = rtime - stime;
595 	}
596 
597 	/*
598 	 * If the tick based count grows faster than the scheduler one,
599 	 * the result of the scaling may go backward.
600 	 * Let's enforce monotonicity.
601 	 */
602 	prev->stime = max(prev->stime, stime);
603 	prev->utime = max(prev->utime, utime);
604 
605 out:
606 	*ut = prev->utime;
607 	*st = prev->stime;
608 }
609 
610 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
611 {
612 	struct task_cputime cputime = {
613 		.sum_exec_runtime = p->se.sum_exec_runtime,
614 	};
615 
616 	task_cputime(p, &cputime.utime, &cputime.stime);
617 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
618 }
619 
620 /*
621  * Must be called with siglock held.
622  */
623 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
624 {
625 	struct task_cputime cputime;
626 
627 	thread_group_cputime(p, &cputime);
628 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
629 }
630 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
631 
632 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
633 static unsigned long long vtime_delta(struct task_struct *tsk)
634 {
635 	unsigned long long clock;
636 
637 	clock = local_clock();
638 	if (clock < tsk->vtime_snap)
639 		return 0;
640 
641 	return clock - tsk->vtime_snap;
642 }
643 
644 static cputime_t get_vtime_delta(struct task_struct *tsk)
645 {
646 	unsigned long long delta = vtime_delta(tsk);
647 
648 	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
649 	tsk->vtime_snap += delta;
650 
651 	/* CHECKME: always safe to convert nsecs to cputime? */
652 	return nsecs_to_cputime(delta);
653 }
654 
655 static void __vtime_account_system(struct task_struct *tsk)
656 {
657 	cputime_t delta_cpu = get_vtime_delta(tsk);
658 
659 	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
660 }
661 
662 void vtime_account_system(struct task_struct *tsk)
663 {
664 	write_seqlock(&tsk->vtime_seqlock);
665 	__vtime_account_system(tsk);
666 	write_sequnlock(&tsk->vtime_seqlock);
667 }
668 
669 void vtime_gen_account_irq_exit(struct task_struct *tsk)
670 {
671 	write_seqlock(&tsk->vtime_seqlock);
672 	__vtime_account_system(tsk);
673 	if (context_tracking_in_user())
674 		tsk->vtime_snap_whence = VTIME_USER;
675 	write_sequnlock(&tsk->vtime_seqlock);
676 }
677 
678 void vtime_account_user(struct task_struct *tsk)
679 {
680 	cputime_t delta_cpu;
681 
682 	write_seqlock(&tsk->vtime_seqlock);
683 	delta_cpu = get_vtime_delta(tsk);
684 	tsk->vtime_snap_whence = VTIME_SYS;
685 	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
686 	write_sequnlock(&tsk->vtime_seqlock);
687 }
688 
689 void vtime_user_enter(struct task_struct *tsk)
690 {
691 	write_seqlock(&tsk->vtime_seqlock);
692 	__vtime_account_system(tsk);
693 	tsk->vtime_snap_whence = VTIME_USER;
694 	write_sequnlock(&tsk->vtime_seqlock);
695 }
696 
697 void vtime_guest_enter(struct task_struct *tsk)
698 {
699 	/*
700 	 * The flags must be updated under the lock with
701 	 * the vtime_snap flush and update.
702 	 * That enforces a right ordering and update sequence
703 	 * synchronization against the reader (task_gtime())
704 	 * that can thus safely catch up with a tickless delta.
705 	 */
706 	write_seqlock(&tsk->vtime_seqlock);
707 	__vtime_account_system(tsk);
708 	current->flags |= PF_VCPU;
709 	write_sequnlock(&tsk->vtime_seqlock);
710 }
711 EXPORT_SYMBOL_GPL(vtime_guest_enter);
712 
713 void vtime_guest_exit(struct task_struct *tsk)
714 {
715 	write_seqlock(&tsk->vtime_seqlock);
716 	__vtime_account_system(tsk);
717 	current->flags &= ~PF_VCPU;
718 	write_sequnlock(&tsk->vtime_seqlock);
719 }
720 EXPORT_SYMBOL_GPL(vtime_guest_exit);
721 
722 void vtime_account_idle(struct task_struct *tsk)
723 {
724 	cputime_t delta_cpu = get_vtime_delta(tsk);
725 
726 	account_idle_time(delta_cpu);
727 }
728 
729 void arch_vtime_task_switch(struct task_struct *prev)
730 {
731 	write_seqlock(&prev->vtime_seqlock);
732 	prev->vtime_snap_whence = VTIME_SLEEPING;
733 	write_sequnlock(&prev->vtime_seqlock);
734 
735 	write_seqlock(&current->vtime_seqlock);
736 	current->vtime_snap_whence = VTIME_SYS;
737 	current->vtime_snap = sched_clock_cpu(smp_processor_id());
738 	write_sequnlock(&current->vtime_seqlock);
739 }
740 
741 void vtime_init_idle(struct task_struct *t, int cpu)
742 {
743 	unsigned long flags;
744 
745 	write_seqlock_irqsave(&t->vtime_seqlock, flags);
746 	t->vtime_snap_whence = VTIME_SYS;
747 	t->vtime_snap = sched_clock_cpu(cpu);
748 	write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
749 }
750 
751 cputime_t task_gtime(struct task_struct *t)
752 {
753 	unsigned int seq;
754 	cputime_t gtime;
755 
756 	do {
757 		seq = read_seqbegin(&t->vtime_seqlock);
758 
759 		gtime = t->gtime;
760 		if (t->flags & PF_VCPU)
761 			gtime += vtime_delta(t);
762 
763 	} while (read_seqretry(&t->vtime_seqlock, seq));
764 
765 	return gtime;
766 }
767 
768 /*
769  * Fetch cputime raw values from fields of task_struct and
770  * add up the pending nohz execution time since the last
771  * cputime snapshot.
772  */
773 static void
774 fetch_task_cputime(struct task_struct *t,
775 		   cputime_t *u_dst, cputime_t *s_dst,
776 		   cputime_t *u_src, cputime_t *s_src,
777 		   cputime_t *udelta, cputime_t *sdelta)
778 {
779 	unsigned int seq;
780 	unsigned long long delta;
781 
782 	do {
783 		*udelta = 0;
784 		*sdelta = 0;
785 
786 		seq = read_seqbegin(&t->vtime_seqlock);
787 
788 		if (u_dst)
789 			*u_dst = *u_src;
790 		if (s_dst)
791 			*s_dst = *s_src;
792 
793 		/* Task is sleeping, nothing to add */
794 		if (t->vtime_snap_whence == VTIME_SLEEPING ||
795 		    is_idle_task(t))
796 			continue;
797 
798 		delta = vtime_delta(t);
799 
800 		/*
801 		 * Task runs either in user or kernel space, add pending nohz time to
802 		 * the right place.
803 		 */
804 		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
805 			*udelta = delta;
806 		} else {
807 			if (t->vtime_snap_whence == VTIME_SYS)
808 				*sdelta = delta;
809 		}
810 	} while (read_seqretry(&t->vtime_seqlock, seq));
811 }
812 
813 
814 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
815 {
816 	cputime_t udelta, sdelta;
817 
818 	fetch_task_cputime(t, utime, stime, &t->utime,
819 			   &t->stime, &udelta, &sdelta);
820 	if (utime)
821 		*utime += udelta;
822 	if (stime)
823 		*stime += sdelta;
824 }
825 
826 void task_cputime_scaled(struct task_struct *t,
827 			 cputime_t *utimescaled, cputime_t *stimescaled)
828 {
829 	cputime_t udelta, sdelta;
830 
831 	fetch_task_cputime(t, utimescaled, stimescaled,
832 			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
833 	if (utimescaled)
834 		*utimescaled += cputime_to_scaled(udelta);
835 	if (stimescaled)
836 		*stimescaled += cputime_to_scaled(sdelta);
837 }
838 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
839