1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple CPU accounting cgroup controller 4 */ 5 #include "sched.h" 6 7 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 8 9 /* 10 * There are no locks covering percpu hardirq/softirq time. 11 * They are only modified in vtime_account, on corresponding CPU 12 * with interrupts disabled. So, writes are safe. 13 * They are read and saved off onto struct rq in update_rq_clock(). 14 * This may result in other CPU reading this CPU's irq time and can 15 * race with irq/vtime_account on this CPU. We would either get old 16 * or new value with a side effect of accounting a slice of irq time to wrong 17 * task when irq is in progress while we read rq->clock. That is a worthy 18 * compromise in place of having locks on each irq in account_system_time. 19 */ 20 DEFINE_PER_CPU(struct irqtime, cpu_irqtime); 21 22 static int sched_clock_irqtime; 23 24 void enable_sched_clock_irqtime(void) 25 { 26 sched_clock_irqtime = 1; 27 } 28 29 void disable_sched_clock_irqtime(void) 30 { 31 sched_clock_irqtime = 0; 32 } 33 34 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, 35 enum cpu_usage_stat idx) 36 { 37 u64 *cpustat = kcpustat_this_cpu->cpustat; 38 39 u64_stats_update_begin(&irqtime->sync); 40 cpustat[idx] += delta; 41 irqtime->total += delta; 42 irqtime->tick_delta += delta; 43 u64_stats_update_end(&irqtime->sync); 44 } 45 46 /* 47 * Called before incrementing preempt_count on {soft,}irq_enter 48 * and before decrementing preempt_count on {soft,}irq_exit. 49 */ 50 void irqtime_account_irq(struct task_struct *curr) 51 { 52 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 53 s64 delta; 54 int cpu; 55 56 if (!sched_clock_irqtime) 57 return; 58 59 cpu = smp_processor_id(); 60 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; 61 irqtime->irq_start_time += delta; 62 63 /* 64 * We do not account for softirq time from ksoftirqd here. 65 * We want to continue accounting softirq time to ksoftirqd thread 66 * in that case, so as not to confuse scheduler with a special task 67 * that do not consume any time, but still wants to run. 68 */ 69 if (hardirq_count()) 70 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); 71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 72 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); 73 } 74 EXPORT_SYMBOL_GPL(irqtime_account_irq); 75 76 static u64 irqtime_tick_accounted(u64 maxtime) 77 { 78 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 79 u64 delta; 80 81 delta = min(irqtime->tick_delta, maxtime); 82 irqtime->tick_delta -= delta; 83 84 return delta; 85 } 86 87 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 88 89 #define sched_clock_irqtime (0) 90 91 static u64 irqtime_tick_accounted(u64 dummy) 92 { 93 return 0; 94 } 95 96 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 97 98 static inline void task_group_account_field(struct task_struct *p, int index, 99 u64 tmp) 100 { 101 /* 102 * Since all updates are sure to touch the root cgroup, we 103 * get ourselves ahead and touch it first. If the root cgroup 104 * is the only cgroup, then nothing else should be necessary. 105 * 106 */ 107 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 108 109 cgroup_account_cputime_field(p, index, tmp); 110 } 111 112 /* 113 * Account user CPU time to a process. 114 * @p: the process that the CPU time gets accounted to 115 * @cputime: the CPU time spent in user space since the last update 116 */ 117 void account_user_time(struct task_struct *p, u64 cputime) 118 { 119 int index; 120 121 /* Add user time to process. */ 122 p->utime += cputime; 123 account_group_user_time(p, cputime); 124 125 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 126 127 /* Add user time to cpustat. */ 128 task_group_account_field(p, index, cputime); 129 130 /* Account for user time used */ 131 acct_account_cputime(p); 132 } 133 134 /* 135 * Account guest CPU time to a process. 136 * @p: the process that the CPU time gets accounted to 137 * @cputime: the CPU time spent in virtual machine since the last update 138 */ 139 void account_guest_time(struct task_struct *p, u64 cputime) 140 { 141 u64 *cpustat = kcpustat_this_cpu->cpustat; 142 143 /* Add guest time to process. */ 144 p->utime += cputime; 145 account_group_user_time(p, cputime); 146 p->gtime += cputime; 147 148 /* Add guest time to cpustat. */ 149 if (task_nice(p) > 0) { 150 cpustat[CPUTIME_NICE] += cputime; 151 cpustat[CPUTIME_GUEST_NICE] += cputime; 152 } else { 153 cpustat[CPUTIME_USER] += cputime; 154 cpustat[CPUTIME_GUEST] += cputime; 155 } 156 } 157 158 /* 159 * Account system CPU time to a process and desired cpustat field 160 * @p: the process that the CPU time gets accounted to 161 * @cputime: the CPU time spent in kernel space since the last update 162 * @index: pointer to cpustat field that has to be updated 163 */ 164 void account_system_index_time(struct task_struct *p, 165 u64 cputime, enum cpu_usage_stat index) 166 { 167 /* Add system time to process. */ 168 p->stime += cputime; 169 account_group_system_time(p, cputime); 170 171 /* Add system time to cpustat. */ 172 task_group_account_field(p, index, cputime); 173 174 /* Account for system time used */ 175 acct_account_cputime(p); 176 } 177 178 /* 179 * Account system CPU time to a process. 180 * @p: the process that the CPU time gets accounted to 181 * @hardirq_offset: the offset to subtract from hardirq_count() 182 * @cputime: the CPU time spent in kernel space since the last update 183 */ 184 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) 185 { 186 int index; 187 188 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 189 account_guest_time(p, cputime); 190 return; 191 } 192 193 if (hardirq_count() - hardirq_offset) 194 index = CPUTIME_IRQ; 195 else if (in_serving_softirq()) 196 index = CPUTIME_SOFTIRQ; 197 else 198 index = CPUTIME_SYSTEM; 199 200 account_system_index_time(p, cputime, index); 201 } 202 203 /* 204 * Account for involuntary wait time. 205 * @cputime: the CPU time spent in involuntary wait 206 */ 207 void account_steal_time(u64 cputime) 208 { 209 u64 *cpustat = kcpustat_this_cpu->cpustat; 210 211 cpustat[CPUTIME_STEAL] += cputime; 212 } 213 214 /* 215 * Account for idle time. 216 * @cputime: the CPU time spent in idle wait 217 */ 218 void account_idle_time(u64 cputime) 219 { 220 u64 *cpustat = kcpustat_this_cpu->cpustat; 221 struct rq *rq = this_rq(); 222 223 if (atomic_read(&rq->nr_iowait) > 0) 224 cpustat[CPUTIME_IOWAIT] += cputime; 225 else 226 cpustat[CPUTIME_IDLE] += cputime; 227 } 228 229 /* 230 * When a guest is interrupted for a longer amount of time, missed clock 231 * ticks are not redelivered later. Due to that, this function may on 232 * occasion account more time than the calling functions think elapsed. 233 */ 234 static __always_inline u64 steal_account_process_time(u64 maxtime) 235 { 236 #ifdef CONFIG_PARAVIRT 237 if (static_key_false(¶virt_steal_enabled)) { 238 u64 steal; 239 240 steal = paravirt_steal_clock(smp_processor_id()); 241 steal -= this_rq()->prev_steal_time; 242 steal = min(steal, maxtime); 243 account_steal_time(steal); 244 this_rq()->prev_steal_time += steal; 245 246 return steal; 247 } 248 #endif 249 return 0; 250 } 251 252 /* 253 * Account how much elapsed time was spent in steal, irq, or softirq time. 254 */ 255 static inline u64 account_other_time(u64 max) 256 { 257 u64 accounted; 258 259 lockdep_assert_irqs_disabled(); 260 261 accounted = steal_account_process_time(max); 262 263 if (accounted < max) 264 accounted += irqtime_tick_accounted(max - accounted); 265 266 return accounted; 267 } 268 269 #ifdef CONFIG_64BIT 270 static inline u64 read_sum_exec_runtime(struct task_struct *t) 271 { 272 return t->se.sum_exec_runtime; 273 } 274 #else 275 static u64 read_sum_exec_runtime(struct task_struct *t) 276 { 277 u64 ns; 278 struct rq_flags rf; 279 struct rq *rq; 280 281 rq = task_rq_lock(t, &rf); 282 ns = t->se.sum_exec_runtime; 283 task_rq_unlock(rq, t, &rf); 284 285 return ns; 286 } 287 #endif 288 289 /* 290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 291 * tasks (sum on group iteration) belonging to @tsk's group. 292 */ 293 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 294 { 295 struct signal_struct *sig = tsk->signal; 296 u64 utime, stime; 297 struct task_struct *t; 298 unsigned int seq, nextseq; 299 unsigned long flags; 300 301 /* 302 * Update current task runtime to account pending time since last 303 * scheduler action or thread_group_cputime() call. This thread group 304 * might have other running tasks on different CPUs, but updating 305 * their runtime can affect syscall performance, so we skip account 306 * those pending times and rely only on values updated on tick or 307 * other scheduler action. 308 */ 309 if (same_thread_group(current, tsk)) 310 (void) task_sched_runtime(current); 311 312 rcu_read_lock(); 313 /* Attempt a lockless read on the first round. */ 314 nextseq = 0; 315 do { 316 seq = nextseq; 317 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 318 times->utime = sig->utime; 319 times->stime = sig->stime; 320 times->sum_exec_runtime = sig->sum_sched_runtime; 321 322 for_each_thread(tsk, t) { 323 task_cputime(t, &utime, &stime); 324 times->utime += utime; 325 times->stime += stime; 326 times->sum_exec_runtime += read_sum_exec_runtime(t); 327 } 328 /* If lockless access failed, take the lock. */ 329 nextseq = 1; 330 } while (need_seqretry(&sig->stats_lock, seq)); 331 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 332 rcu_read_unlock(); 333 } 334 335 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 336 /* 337 * Account a tick to a process and cpustat 338 * @p: the process that the CPU time gets accounted to 339 * @user_tick: is the tick from userspace 340 * @rq: the pointer to rq 341 * 342 * Tick demultiplexing follows the order 343 * - pending hardirq update 344 * - pending softirq update 345 * - user_time 346 * - idle_time 347 * - system time 348 * - check for guest_time 349 * - else account as system_time 350 * 351 * Check for hardirq is done both for system and user time as there is 352 * no timer going off while we are on hardirq and hence we may never get an 353 * opportunity to update it solely in system time. 354 * p->stime and friends are only updated on system time and not on irq 355 * softirq as those do not count in task exec_runtime any more. 356 */ 357 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 358 int ticks) 359 { 360 u64 other, cputime = TICK_NSEC * ticks; 361 362 /* 363 * When returning from idle, many ticks can get accounted at 364 * once, including some ticks of steal, irq, and softirq time. 365 * Subtract those ticks from the amount of time accounted to 366 * idle, or potentially user or system time. Due to rounding, 367 * other time can exceed ticks occasionally. 368 */ 369 other = account_other_time(ULONG_MAX); 370 if (other >= cputime) 371 return; 372 373 cputime -= other; 374 375 if (this_cpu_ksoftirqd() == p) { 376 /* 377 * ksoftirqd time do not get accounted in cpu_softirq_time. 378 * So, we have to handle it separately here. 379 * Also, p->stime needs to be updated for ksoftirqd. 380 */ 381 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); 382 } else if (user_tick) { 383 account_user_time(p, cputime); 384 } else if (p == this_rq()->idle) { 385 account_idle_time(cputime); 386 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 387 account_guest_time(p, cputime); 388 } else { 389 account_system_index_time(p, cputime, CPUTIME_SYSTEM); 390 } 391 } 392 393 static void irqtime_account_idle_ticks(int ticks) 394 { 395 irqtime_account_process_tick(current, 0, ticks); 396 } 397 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 398 static inline void irqtime_account_idle_ticks(int ticks) { } 399 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 400 int nr_ticks) { } 401 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 402 403 /* 404 * Use precise platform statistics if available: 405 */ 406 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 407 408 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH 409 void vtime_task_switch(struct task_struct *prev) 410 { 411 if (is_idle_task(prev)) 412 vtime_account_idle(prev); 413 else 414 vtime_account_kernel(prev); 415 416 vtime_flush(prev); 417 arch_vtime_task_switch(prev); 418 } 419 # endif 420 421 /* 422 * Archs that account the whole time spent in the idle task 423 * (outside irq) as idle time can rely on this and just implement 424 * vtime_account_kernel() and vtime_account_idle(). Archs that 425 * have other meaning of the idle time (s390 only includes the 426 * time spent by the CPU when it's in low power mode) must override 427 * vtime_account(). 428 */ 429 #ifndef __ARCH_HAS_VTIME_ACCOUNT 430 void vtime_account_irq_enter(struct task_struct *tsk) 431 { 432 if (!in_interrupt() && is_idle_task(tsk)) 433 vtime_account_idle(tsk); 434 else 435 vtime_account_kernel(tsk); 436 } 437 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 438 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 439 440 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 441 u64 *ut, u64 *st) 442 { 443 *ut = curr->utime; 444 *st = curr->stime; 445 } 446 447 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 448 { 449 *ut = p->utime; 450 *st = p->stime; 451 } 452 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 453 454 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 455 { 456 struct task_cputime cputime; 457 458 thread_group_cputime(p, &cputime); 459 460 *ut = cputime.utime; 461 *st = cputime.stime; 462 } 463 464 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */ 465 466 /* 467 * Account a single tick of CPU time. 468 * @p: the process that the CPU time gets accounted to 469 * @user_tick: indicates if the tick is a user or a system tick 470 */ 471 void account_process_tick(struct task_struct *p, int user_tick) 472 { 473 u64 cputime, steal; 474 475 if (vtime_accounting_enabled_this_cpu()) 476 return; 477 478 if (sched_clock_irqtime) { 479 irqtime_account_process_tick(p, user_tick, 1); 480 return; 481 } 482 483 cputime = TICK_NSEC; 484 steal = steal_account_process_time(ULONG_MAX); 485 486 if (steal >= cputime) 487 return; 488 489 cputime -= steal; 490 491 if (user_tick) 492 account_user_time(p, cputime); 493 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET)) 494 account_system_time(p, HARDIRQ_OFFSET, cputime); 495 else 496 account_idle_time(cputime); 497 } 498 499 /* 500 * Account multiple ticks of idle time. 501 * @ticks: number of stolen ticks 502 */ 503 void account_idle_ticks(unsigned long ticks) 504 { 505 u64 cputime, steal; 506 507 if (sched_clock_irqtime) { 508 irqtime_account_idle_ticks(ticks); 509 return; 510 } 511 512 cputime = ticks * TICK_NSEC; 513 steal = steal_account_process_time(ULONG_MAX); 514 515 if (steal >= cputime) 516 return; 517 518 cputime -= steal; 519 account_idle_time(cputime); 520 } 521 522 /* 523 * Adjust tick based cputime random precision against scheduler runtime 524 * accounting. 525 * 526 * Tick based cputime accounting depend on random scheduling timeslices of a 527 * task to be interrupted or not by the timer. Depending on these 528 * circumstances, the number of these interrupts may be over or 529 * under-optimistic, matching the real user and system cputime with a variable 530 * precision. 531 * 532 * Fix this by scaling these tick based values against the total runtime 533 * accounted by the CFS scheduler. 534 * 535 * This code provides the following guarantees: 536 * 537 * stime + utime == rtime 538 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 539 * 540 * Assuming that rtime_i+1 >= rtime_i. 541 */ 542 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 543 u64 *ut, u64 *st) 544 { 545 u64 rtime, stime, utime; 546 unsigned long flags; 547 548 /* Serialize concurrent callers such that we can honour our guarantees */ 549 raw_spin_lock_irqsave(&prev->lock, flags); 550 rtime = curr->sum_exec_runtime; 551 552 /* 553 * This is possible under two circumstances: 554 * - rtime isn't monotonic after all (a bug); 555 * - we got reordered by the lock. 556 * 557 * In both cases this acts as a filter such that the rest of the code 558 * can assume it is monotonic regardless of anything else. 559 */ 560 if (prev->stime + prev->utime >= rtime) 561 goto out; 562 563 stime = curr->stime; 564 utime = curr->utime; 565 566 /* 567 * If either stime or utime are 0, assume all runtime is userspace. 568 * Once a task gets some ticks, the monotonicy code at 'update:' 569 * will ensure things converge to the observed ratio. 570 */ 571 if (stime == 0) { 572 utime = rtime; 573 goto update; 574 } 575 576 if (utime == 0) { 577 stime = rtime; 578 goto update; 579 } 580 581 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime); 582 583 update: 584 /* 585 * Make sure stime doesn't go backwards; this preserves monotonicity 586 * for utime because rtime is monotonic. 587 * 588 * utime_i+1 = rtime_i+1 - stime_i 589 * = rtime_i+1 - (rtime_i - utime_i) 590 * = (rtime_i+1 - rtime_i) + utime_i 591 * >= utime_i 592 */ 593 if (stime < prev->stime) 594 stime = prev->stime; 595 utime = rtime - stime; 596 597 /* 598 * Make sure utime doesn't go backwards; this still preserves 599 * monotonicity for stime, analogous argument to above. 600 */ 601 if (utime < prev->utime) { 602 utime = prev->utime; 603 stime = rtime - utime; 604 } 605 606 prev->stime = stime; 607 prev->utime = utime; 608 out: 609 *ut = prev->utime; 610 *st = prev->stime; 611 raw_spin_unlock_irqrestore(&prev->lock, flags); 612 } 613 614 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 615 { 616 struct task_cputime cputime = { 617 .sum_exec_runtime = p->se.sum_exec_runtime, 618 }; 619 620 task_cputime(p, &cputime.utime, &cputime.stime); 621 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 622 } 623 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 624 625 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 626 { 627 struct task_cputime cputime; 628 629 thread_group_cputime(p, &cputime); 630 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 631 } 632 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 633 634 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 635 static u64 vtime_delta(struct vtime *vtime) 636 { 637 unsigned long long clock; 638 639 clock = sched_clock(); 640 if (clock < vtime->starttime) 641 return 0; 642 643 return clock - vtime->starttime; 644 } 645 646 static u64 get_vtime_delta(struct vtime *vtime) 647 { 648 u64 delta = vtime_delta(vtime); 649 u64 other; 650 651 /* 652 * Unlike tick based timing, vtime based timing never has lost 653 * ticks, and no need for steal time accounting to make up for 654 * lost ticks. Vtime accounts a rounded version of actual 655 * elapsed time. Limit account_other_time to prevent rounding 656 * errors from causing elapsed vtime to go negative. 657 */ 658 other = account_other_time(delta); 659 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE); 660 vtime->starttime += delta; 661 662 return delta - other; 663 } 664 665 static void vtime_account_system(struct task_struct *tsk, 666 struct vtime *vtime) 667 { 668 vtime->stime += get_vtime_delta(vtime); 669 if (vtime->stime >= TICK_NSEC) { 670 account_system_time(tsk, irq_count(), vtime->stime); 671 vtime->stime = 0; 672 } 673 } 674 675 static void vtime_account_guest(struct task_struct *tsk, 676 struct vtime *vtime) 677 { 678 vtime->gtime += get_vtime_delta(vtime); 679 if (vtime->gtime >= TICK_NSEC) { 680 account_guest_time(tsk, vtime->gtime); 681 vtime->gtime = 0; 682 } 683 } 684 685 static void __vtime_account_kernel(struct task_struct *tsk, 686 struct vtime *vtime) 687 { 688 /* We might have scheduled out from guest path */ 689 if (vtime->state == VTIME_GUEST) 690 vtime_account_guest(tsk, vtime); 691 else 692 vtime_account_system(tsk, vtime); 693 } 694 695 void vtime_account_kernel(struct task_struct *tsk) 696 { 697 struct vtime *vtime = &tsk->vtime; 698 699 if (!vtime_delta(vtime)) 700 return; 701 702 write_seqcount_begin(&vtime->seqcount); 703 __vtime_account_kernel(tsk, vtime); 704 write_seqcount_end(&vtime->seqcount); 705 } 706 707 void vtime_user_enter(struct task_struct *tsk) 708 { 709 struct vtime *vtime = &tsk->vtime; 710 711 write_seqcount_begin(&vtime->seqcount); 712 vtime_account_system(tsk, vtime); 713 vtime->state = VTIME_USER; 714 write_seqcount_end(&vtime->seqcount); 715 } 716 717 void vtime_user_exit(struct task_struct *tsk) 718 { 719 struct vtime *vtime = &tsk->vtime; 720 721 write_seqcount_begin(&vtime->seqcount); 722 vtime->utime += get_vtime_delta(vtime); 723 if (vtime->utime >= TICK_NSEC) { 724 account_user_time(tsk, vtime->utime); 725 vtime->utime = 0; 726 } 727 vtime->state = VTIME_SYS; 728 write_seqcount_end(&vtime->seqcount); 729 } 730 731 void vtime_guest_enter(struct task_struct *tsk) 732 { 733 struct vtime *vtime = &tsk->vtime; 734 /* 735 * The flags must be updated under the lock with 736 * the vtime_starttime flush and update. 737 * That enforces a right ordering and update sequence 738 * synchronization against the reader (task_gtime()) 739 * that can thus safely catch up with a tickless delta. 740 */ 741 write_seqcount_begin(&vtime->seqcount); 742 vtime_account_system(tsk, vtime); 743 tsk->flags |= PF_VCPU; 744 vtime->state = VTIME_GUEST; 745 write_seqcount_end(&vtime->seqcount); 746 } 747 EXPORT_SYMBOL_GPL(vtime_guest_enter); 748 749 void vtime_guest_exit(struct task_struct *tsk) 750 { 751 struct vtime *vtime = &tsk->vtime; 752 753 write_seqcount_begin(&vtime->seqcount); 754 vtime_account_guest(tsk, vtime); 755 tsk->flags &= ~PF_VCPU; 756 vtime->state = VTIME_SYS; 757 write_seqcount_end(&vtime->seqcount); 758 } 759 EXPORT_SYMBOL_GPL(vtime_guest_exit); 760 761 void vtime_account_idle(struct task_struct *tsk) 762 { 763 account_idle_time(get_vtime_delta(&tsk->vtime)); 764 } 765 766 void vtime_task_switch_generic(struct task_struct *prev) 767 { 768 struct vtime *vtime = &prev->vtime; 769 770 write_seqcount_begin(&vtime->seqcount); 771 if (vtime->state == VTIME_IDLE) 772 vtime_account_idle(prev); 773 else 774 __vtime_account_kernel(prev, vtime); 775 vtime->state = VTIME_INACTIVE; 776 vtime->cpu = -1; 777 write_seqcount_end(&vtime->seqcount); 778 779 vtime = ¤t->vtime; 780 781 write_seqcount_begin(&vtime->seqcount); 782 if (is_idle_task(current)) 783 vtime->state = VTIME_IDLE; 784 else if (current->flags & PF_VCPU) 785 vtime->state = VTIME_GUEST; 786 else 787 vtime->state = VTIME_SYS; 788 vtime->starttime = sched_clock(); 789 vtime->cpu = smp_processor_id(); 790 write_seqcount_end(&vtime->seqcount); 791 } 792 793 void vtime_init_idle(struct task_struct *t, int cpu) 794 { 795 struct vtime *vtime = &t->vtime; 796 unsigned long flags; 797 798 local_irq_save(flags); 799 write_seqcount_begin(&vtime->seqcount); 800 vtime->state = VTIME_IDLE; 801 vtime->starttime = sched_clock(); 802 vtime->cpu = cpu; 803 write_seqcount_end(&vtime->seqcount); 804 local_irq_restore(flags); 805 } 806 807 u64 task_gtime(struct task_struct *t) 808 { 809 struct vtime *vtime = &t->vtime; 810 unsigned int seq; 811 u64 gtime; 812 813 if (!vtime_accounting_enabled()) 814 return t->gtime; 815 816 do { 817 seq = read_seqcount_begin(&vtime->seqcount); 818 819 gtime = t->gtime; 820 if (vtime->state == VTIME_GUEST) 821 gtime += vtime->gtime + vtime_delta(vtime); 822 823 } while (read_seqcount_retry(&vtime->seqcount, seq)); 824 825 return gtime; 826 } 827 828 /* 829 * Fetch cputime raw values from fields of task_struct and 830 * add up the pending nohz execution time since the last 831 * cputime snapshot. 832 */ 833 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) 834 { 835 struct vtime *vtime = &t->vtime; 836 unsigned int seq; 837 u64 delta; 838 839 if (!vtime_accounting_enabled()) { 840 *utime = t->utime; 841 *stime = t->stime; 842 return; 843 } 844 845 do { 846 seq = read_seqcount_begin(&vtime->seqcount); 847 848 *utime = t->utime; 849 *stime = t->stime; 850 851 /* Task is sleeping or idle, nothing to add */ 852 if (vtime->state < VTIME_SYS) 853 continue; 854 855 delta = vtime_delta(vtime); 856 857 /* 858 * Task runs either in user (including guest) or kernel space, 859 * add pending nohz time to the right place. 860 */ 861 if (vtime->state == VTIME_SYS) 862 *stime += vtime->stime + delta; 863 else 864 *utime += vtime->utime + delta; 865 } while (read_seqcount_retry(&vtime->seqcount, seq)); 866 } 867 868 static int vtime_state_fetch(struct vtime *vtime, int cpu) 869 { 870 int state = READ_ONCE(vtime->state); 871 872 /* 873 * We raced against a context switch, fetch the 874 * kcpustat task again. 875 */ 876 if (vtime->cpu != cpu && vtime->cpu != -1) 877 return -EAGAIN; 878 879 /* 880 * Two possible things here: 881 * 1) We are seeing the scheduling out task (prev) or any past one. 882 * 2) We are seeing the scheduling in task (next) but it hasn't 883 * passed though vtime_task_switch() yet so the pending 884 * cputime of the prev task may not be flushed yet. 885 * 886 * Case 1) is ok but 2) is not. So wait for a safe VTIME state. 887 */ 888 if (state == VTIME_INACTIVE) 889 return -EAGAIN; 890 891 return state; 892 } 893 894 static u64 kcpustat_user_vtime(struct vtime *vtime) 895 { 896 if (vtime->state == VTIME_USER) 897 return vtime->utime + vtime_delta(vtime); 898 else if (vtime->state == VTIME_GUEST) 899 return vtime->gtime + vtime_delta(vtime); 900 return 0; 901 } 902 903 static int kcpustat_field_vtime(u64 *cpustat, 904 struct task_struct *tsk, 905 enum cpu_usage_stat usage, 906 int cpu, u64 *val) 907 { 908 struct vtime *vtime = &tsk->vtime; 909 unsigned int seq; 910 911 do { 912 int state; 913 914 seq = read_seqcount_begin(&vtime->seqcount); 915 916 state = vtime_state_fetch(vtime, cpu); 917 if (state < 0) 918 return state; 919 920 *val = cpustat[usage]; 921 922 /* 923 * Nice VS unnice cputime accounting may be inaccurate if 924 * the nice value has changed since the last vtime update. 925 * But proper fix would involve interrupting target on nice 926 * updates which is a no go on nohz_full (although the scheduler 927 * may still interrupt the target if rescheduling is needed...) 928 */ 929 switch (usage) { 930 case CPUTIME_SYSTEM: 931 if (state == VTIME_SYS) 932 *val += vtime->stime + vtime_delta(vtime); 933 break; 934 case CPUTIME_USER: 935 if (task_nice(tsk) <= 0) 936 *val += kcpustat_user_vtime(vtime); 937 break; 938 case CPUTIME_NICE: 939 if (task_nice(tsk) > 0) 940 *val += kcpustat_user_vtime(vtime); 941 break; 942 case CPUTIME_GUEST: 943 if (state == VTIME_GUEST && task_nice(tsk) <= 0) 944 *val += vtime->gtime + vtime_delta(vtime); 945 break; 946 case CPUTIME_GUEST_NICE: 947 if (state == VTIME_GUEST && task_nice(tsk) > 0) 948 *val += vtime->gtime + vtime_delta(vtime); 949 break; 950 default: 951 break; 952 } 953 } while (read_seqcount_retry(&vtime->seqcount, seq)); 954 955 return 0; 956 } 957 958 u64 kcpustat_field(struct kernel_cpustat *kcpustat, 959 enum cpu_usage_stat usage, int cpu) 960 { 961 u64 *cpustat = kcpustat->cpustat; 962 u64 val = cpustat[usage]; 963 struct rq *rq; 964 int err; 965 966 if (!vtime_accounting_enabled_cpu(cpu)) 967 return val; 968 969 rq = cpu_rq(cpu); 970 971 for (;;) { 972 struct task_struct *curr; 973 974 rcu_read_lock(); 975 curr = rcu_dereference(rq->curr); 976 if (WARN_ON_ONCE(!curr)) { 977 rcu_read_unlock(); 978 return cpustat[usage]; 979 } 980 981 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val); 982 rcu_read_unlock(); 983 984 if (!err) 985 return val; 986 987 cpu_relax(); 988 } 989 } 990 EXPORT_SYMBOL_GPL(kcpustat_field); 991 992 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst, 993 const struct kernel_cpustat *src, 994 struct task_struct *tsk, int cpu) 995 { 996 struct vtime *vtime = &tsk->vtime; 997 unsigned int seq; 998 999 do { 1000 u64 *cpustat; 1001 u64 delta; 1002 int state; 1003 1004 seq = read_seqcount_begin(&vtime->seqcount); 1005 1006 state = vtime_state_fetch(vtime, cpu); 1007 if (state < 0) 1008 return state; 1009 1010 *dst = *src; 1011 cpustat = dst->cpustat; 1012 1013 /* Task is sleeping, dead or idle, nothing to add */ 1014 if (state < VTIME_SYS) 1015 continue; 1016 1017 delta = vtime_delta(vtime); 1018 1019 /* 1020 * Task runs either in user (including guest) or kernel space, 1021 * add pending nohz time to the right place. 1022 */ 1023 if (state == VTIME_SYS) { 1024 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta; 1025 } else if (state == VTIME_USER) { 1026 if (task_nice(tsk) > 0) 1027 cpustat[CPUTIME_NICE] += vtime->utime + delta; 1028 else 1029 cpustat[CPUTIME_USER] += vtime->utime + delta; 1030 } else { 1031 WARN_ON_ONCE(state != VTIME_GUEST); 1032 if (task_nice(tsk) > 0) { 1033 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta; 1034 cpustat[CPUTIME_NICE] += vtime->gtime + delta; 1035 } else { 1036 cpustat[CPUTIME_GUEST] += vtime->gtime + delta; 1037 cpustat[CPUTIME_USER] += vtime->gtime + delta; 1038 } 1039 } 1040 } while (read_seqcount_retry(&vtime->seqcount, seq)); 1041 1042 return 0; 1043 } 1044 1045 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) 1046 { 1047 const struct kernel_cpustat *src = &kcpustat_cpu(cpu); 1048 struct rq *rq; 1049 int err; 1050 1051 if (!vtime_accounting_enabled_cpu(cpu)) { 1052 *dst = *src; 1053 return; 1054 } 1055 1056 rq = cpu_rq(cpu); 1057 1058 for (;;) { 1059 struct task_struct *curr; 1060 1061 rcu_read_lock(); 1062 curr = rcu_dereference(rq->curr); 1063 if (WARN_ON_ONCE(!curr)) { 1064 rcu_read_unlock(); 1065 *dst = *src; 1066 return; 1067 } 1068 1069 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu); 1070 rcu_read_unlock(); 1071 1072 if (!err) 1073 return; 1074 1075 cpu_relax(); 1076 } 1077 } 1078 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch); 1079 1080 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 1081