xref: /openbmc/linux/kernel/sched/cputime.c (revision a8fe58ce)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 #ifdef CONFIG_PARAVIRT
9 #include <asm/paravirt.h>
10 #endif
11 
12 
13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
14 
15 /*
16  * There are no locks covering percpu hardirq/softirq time.
17  * They are only modified in vtime_account, on corresponding CPU
18  * with interrupts disabled. So, writes are safe.
19  * They are read and saved off onto struct rq in update_rq_clock().
20  * This may result in other CPU reading this CPU's irq time and can
21  * race with irq/vtime_account on this CPU. We would either get old
22  * or new value with a side effect of accounting a slice of irq time to wrong
23  * task when irq is in progress while we read rq->clock. That is a worthy
24  * compromise in place of having locks on each irq in account_system_time.
25  */
26 DEFINE_PER_CPU(u64, cpu_hardirq_time);
27 DEFINE_PER_CPU(u64, cpu_softirq_time);
28 
29 static DEFINE_PER_CPU(u64, irq_start_time);
30 static int sched_clock_irqtime;
31 
32 void enable_sched_clock_irqtime(void)
33 {
34 	sched_clock_irqtime = 1;
35 }
36 
37 void disable_sched_clock_irqtime(void)
38 {
39 	sched_clock_irqtime = 0;
40 }
41 
42 #ifndef CONFIG_64BIT
43 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
44 #endif /* CONFIG_64BIT */
45 
46 /*
47  * Called before incrementing preempt_count on {soft,}irq_enter
48  * and before decrementing preempt_count on {soft,}irq_exit.
49  */
50 void irqtime_account_irq(struct task_struct *curr)
51 {
52 	unsigned long flags;
53 	s64 delta;
54 	int cpu;
55 
56 	if (!sched_clock_irqtime)
57 		return;
58 
59 	local_irq_save(flags);
60 
61 	cpu = smp_processor_id();
62 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
63 	__this_cpu_add(irq_start_time, delta);
64 
65 	irq_time_write_begin();
66 	/*
67 	 * We do not account for softirq time from ksoftirqd here.
68 	 * We want to continue accounting softirq time to ksoftirqd thread
69 	 * in that case, so as not to confuse scheduler with a special task
70 	 * that do not consume any time, but still wants to run.
71 	 */
72 	if (hardirq_count())
73 		__this_cpu_add(cpu_hardirq_time, delta);
74 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
75 		__this_cpu_add(cpu_softirq_time, delta);
76 
77 	irq_time_write_end();
78 	local_irq_restore(flags);
79 }
80 EXPORT_SYMBOL_GPL(irqtime_account_irq);
81 
82 static int irqtime_account_hi_update(void)
83 {
84 	u64 *cpustat = kcpustat_this_cpu->cpustat;
85 	unsigned long flags;
86 	u64 latest_ns;
87 	int ret = 0;
88 
89 	local_irq_save(flags);
90 	latest_ns = this_cpu_read(cpu_hardirq_time);
91 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
92 		ret = 1;
93 	local_irq_restore(flags);
94 	return ret;
95 }
96 
97 static int irqtime_account_si_update(void)
98 {
99 	u64 *cpustat = kcpustat_this_cpu->cpustat;
100 	unsigned long flags;
101 	u64 latest_ns;
102 	int ret = 0;
103 
104 	local_irq_save(flags);
105 	latest_ns = this_cpu_read(cpu_softirq_time);
106 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
107 		ret = 1;
108 	local_irq_restore(flags);
109 	return ret;
110 }
111 
112 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
113 
114 #define sched_clock_irqtime	(0)
115 
116 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
117 
118 static inline void task_group_account_field(struct task_struct *p, int index,
119 					    u64 tmp)
120 {
121 	/*
122 	 * Since all updates are sure to touch the root cgroup, we
123 	 * get ourselves ahead and touch it first. If the root cgroup
124 	 * is the only cgroup, then nothing else should be necessary.
125 	 *
126 	 */
127 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
128 
129 	cpuacct_account_field(p, index, tmp);
130 }
131 
132 /*
133  * Account user cpu time to a process.
134  * @p: the process that the cpu time gets accounted to
135  * @cputime: the cpu time spent in user space since the last update
136  * @cputime_scaled: cputime scaled by cpu frequency
137  */
138 void account_user_time(struct task_struct *p, cputime_t cputime,
139 		       cputime_t cputime_scaled)
140 {
141 	int index;
142 
143 	/* Add user time to process. */
144 	p->utime += cputime;
145 	p->utimescaled += cputime_scaled;
146 	account_group_user_time(p, cputime);
147 
148 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
149 
150 	/* Add user time to cpustat. */
151 	task_group_account_field(p, index, (__force u64) cputime);
152 
153 	/* Account for user time used */
154 	acct_account_cputime(p);
155 }
156 
157 /*
158  * Account guest cpu time to a process.
159  * @p: the process that the cpu time gets accounted to
160  * @cputime: the cpu time spent in virtual machine since the last update
161  * @cputime_scaled: cputime scaled by cpu frequency
162  */
163 static void account_guest_time(struct task_struct *p, cputime_t cputime,
164 			       cputime_t cputime_scaled)
165 {
166 	u64 *cpustat = kcpustat_this_cpu->cpustat;
167 
168 	/* Add guest time to process. */
169 	p->utime += cputime;
170 	p->utimescaled += cputime_scaled;
171 	account_group_user_time(p, cputime);
172 	p->gtime += cputime;
173 
174 	/* Add guest time to cpustat. */
175 	if (task_nice(p) > 0) {
176 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
177 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
178 	} else {
179 		cpustat[CPUTIME_USER] += (__force u64) cputime;
180 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
181 	}
182 }
183 
184 /*
185  * Account system cpu time to a process and desired cpustat field
186  * @p: the process that the cpu time gets accounted to
187  * @cputime: the cpu time spent in kernel space since the last update
188  * @cputime_scaled: cputime scaled by cpu frequency
189  * @target_cputime64: pointer to cpustat field that has to be updated
190  */
191 static inline
192 void __account_system_time(struct task_struct *p, cputime_t cputime,
193 			cputime_t cputime_scaled, int index)
194 {
195 	/* Add system time to process. */
196 	p->stime += cputime;
197 	p->stimescaled += cputime_scaled;
198 	account_group_system_time(p, cputime);
199 
200 	/* Add system time to cpustat. */
201 	task_group_account_field(p, index, (__force u64) cputime);
202 
203 	/* Account for system time used */
204 	acct_account_cputime(p);
205 }
206 
207 /*
208  * Account system cpu time to a process.
209  * @p: the process that the cpu time gets accounted to
210  * @hardirq_offset: the offset to subtract from hardirq_count()
211  * @cputime: the cpu time spent in kernel space since the last update
212  * @cputime_scaled: cputime scaled by cpu frequency
213  */
214 void account_system_time(struct task_struct *p, int hardirq_offset,
215 			 cputime_t cputime, cputime_t cputime_scaled)
216 {
217 	int index;
218 
219 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
220 		account_guest_time(p, cputime, cputime_scaled);
221 		return;
222 	}
223 
224 	if (hardirq_count() - hardirq_offset)
225 		index = CPUTIME_IRQ;
226 	else if (in_serving_softirq())
227 		index = CPUTIME_SOFTIRQ;
228 	else
229 		index = CPUTIME_SYSTEM;
230 
231 	__account_system_time(p, cputime, cputime_scaled, index);
232 }
233 
234 /*
235  * Account for involuntary wait time.
236  * @cputime: the cpu time spent in involuntary wait
237  */
238 void account_steal_time(cputime_t cputime)
239 {
240 	u64 *cpustat = kcpustat_this_cpu->cpustat;
241 
242 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
243 }
244 
245 /*
246  * Account for idle time.
247  * @cputime: the cpu time spent in idle wait
248  */
249 void account_idle_time(cputime_t cputime)
250 {
251 	u64 *cpustat = kcpustat_this_cpu->cpustat;
252 	struct rq *rq = this_rq();
253 
254 	if (atomic_read(&rq->nr_iowait) > 0)
255 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
256 	else
257 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
258 }
259 
260 static __always_inline bool steal_account_process_tick(void)
261 {
262 #ifdef CONFIG_PARAVIRT
263 	if (static_key_false(&paravirt_steal_enabled)) {
264 		u64 steal;
265 		cputime_t steal_ct;
266 
267 		steal = paravirt_steal_clock(smp_processor_id());
268 		steal -= this_rq()->prev_steal_time;
269 
270 		/*
271 		 * cputime_t may be less precise than nsecs (eg: if it's
272 		 * based on jiffies). Lets cast the result to cputime
273 		 * granularity and account the rest on the next rounds.
274 		 */
275 		steal_ct = nsecs_to_cputime(steal);
276 		this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
277 
278 		account_steal_time(steal_ct);
279 		return steal_ct;
280 	}
281 #endif
282 	return false;
283 }
284 
285 /*
286  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
287  * tasks (sum on group iteration) belonging to @tsk's group.
288  */
289 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
290 {
291 	struct signal_struct *sig = tsk->signal;
292 	cputime_t utime, stime;
293 	struct task_struct *t;
294 	unsigned int seq, nextseq;
295 	unsigned long flags;
296 
297 	rcu_read_lock();
298 	/* Attempt a lockless read on the first round. */
299 	nextseq = 0;
300 	do {
301 		seq = nextseq;
302 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
303 		times->utime = sig->utime;
304 		times->stime = sig->stime;
305 		times->sum_exec_runtime = sig->sum_sched_runtime;
306 
307 		for_each_thread(tsk, t) {
308 			task_cputime(t, &utime, &stime);
309 			times->utime += utime;
310 			times->stime += stime;
311 			times->sum_exec_runtime += task_sched_runtime(t);
312 		}
313 		/* If lockless access failed, take the lock. */
314 		nextseq = 1;
315 	} while (need_seqretry(&sig->stats_lock, seq));
316 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
317 	rcu_read_unlock();
318 }
319 
320 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
321 /*
322  * Account a tick to a process and cpustat
323  * @p: the process that the cpu time gets accounted to
324  * @user_tick: is the tick from userspace
325  * @rq: the pointer to rq
326  *
327  * Tick demultiplexing follows the order
328  * - pending hardirq update
329  * - pending softirq update
330  * - user_time
331  * - idle_time
332  * - system time
333  *   - check for guest_time
334  *   - else account as system_time
335  *
336  * Check for hardirq is done both for system and user time as there is
337  * no timer going off while we are on hardirq and hence we may never get an
338  * opportunity to update it solely in system time.
339  * p->stime and friends are only updated on system time and not on irq
340  * softirq as those do not count in task exec_runtime any more.
341  */
342 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
343 					 struct rq *rq, int ticks)
344 {
345 	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
346 	u64 cputime = (__force u64) cputime_one_jiffy;
347 	u64 *cpustat = kcpustat_this_cpu->cpustat;
348 
349 	if (steal_account_process_tick())
350 		return;
351 
352 	cputime *= ticks;
353 	scaled *= ticks;
354 
355 	if (irqtime_account_hi_update()) {
356 		cpustat[CPUTIME_IRQ] += cputime;
357 	} else if (irqtime_account_si_update()) {
358 		cpustat[CPUTIME_SOFTIRQ] += cputime;
359 	} else if (this_cpu_ksoftirqd() == p) {
360 		/*
361 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
362 		 * So, we have to handle it separately here.
363 		 * Also, p->stime needs to be updated for ksoftirqd.
364 		 */
365 		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
366 	} else if (user_tick) {
367 		account_user_time(p, cputime, scaled);
368 	} else if (p == rq->idle) {
369 		account_idle_time(cputime);
370 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
371 		account_guest_time(p, cputime, scaled);
372 	} else {
373 		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
374 	}
375 }
376 
377 static void irqtime_account_idle_ticks(int ticks)
378 {
379 	struct rq *rq = this_rq();
380 
381 	irqtime_account_process_tick(current, 0, rq, ticks);
382 }
383 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
384 static inline void irqtime_account_idle_ticks(int ticks) {}
385 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
386 						struct rq *rq, int nr_ticks) {}
387 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
388 
389 /*
390  * Use precise platform statistics if available:
391  */
392 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
393 
394 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
395 void vtime_common_task_switch(struct task_struct *prev)
396 {
397 	if (is_idle_task(prev))
398 		vtime_account_idle(prev);
399 	else
400 		vtime_account_system(prev);
401 
402 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
403 	vtime_account_user(prev);
404 #endif
405 	arch_vtime_task_switch(prev);
406 }
407 #endif
408 
409 /*
410  * Archs that account the whole time spent in the idle task
411  * (outside irq) as idle time can rely on this and just implement
412  * vtime_account_system() and vtime_account_idle(). Archs that
413  * have other meaning of the idle time (s390 only includes the
414  * time spent by the CPU when it's in low power mode) must override
415  * vtime_account().
416  */
417 #ifndef __ARCH_HAS_VTIME_ACCOUNT
418 void vtime_common_account_irq_enter(struct task_struct *tsk)
419 {
420 	if (!in_interrupt()) {
421 		/*
422 		 * If we interrupted user, context_tracking_in_user()
423 		 * is 1 because the context tracking don't hook
424 		 * on irq entry/exit. This way we know if
425 		 * we need to flush user time on kernel entry.
426 		 */
427 		if (context_tracking_in_user()) {
428 			vtime_account_user(tsk);
429 			return;
430 		}
431 
432 		if (is_idle_task(tsk)) {
433 			vtime_account_idle(tsk);
434 			return;
435 		}
436 	}
437 	vtime_account_system(tsk);
438 }
439 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
440 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
441 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
442 
443 
444 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
445 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
446 {
447 	*ut = p->utime;
448 	*st = p->stime;
449 }
450 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
451 
452 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
453 {
454 	struct task_cputime cputime;
455 
456 	thread_group_cputime(p, &cputime);
457 
458 	*ut = cputime.utime;
459 	*st = cputime.stime;
460 }
461 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
462 /*
463  * Account a single tick of cpu time.
464  * @p: the process that the cpu time gets accounted to
465  * @user_tick: indicates if the tick is a user or a system tick
466  */
467 void account_process_tick(struct task_struct *p, int user_tick)
468 {
469 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
470 	struct rq *rq = this_rq();
471 
472 	if (vtime_accounting_cpu_enabled())
473 		return;
474 
475 	if (sched_clock_irqtime) {
476 		irqtime_account_process_tick(p, user_tick, rq, 1);
477 		return;
478 	}
479 
480 	if (steal_account_process_tick())
481 		return;
482 
483 	if (user_tick)
484 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
485 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
486 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
487 				    one_jiffy_scaled);
488 	else
489 		account_idle_time(cputime_one_jiffy);
490 }
491 
492 /*
493  * Account multiple ticks of steal time.
494  * @p: the process from which the cpu time has been stolen
495  * @ticks: number of stolen ticks
496  */
497 void account_steal_ticks(unsigned long ticks)
498 {
499 	account_steal_time(jiffies_to_cputime(ticks));
500 }
501 
502 /*
503  * Account multiple ticks of idle time.
504  * @ticks: number of stolen ticks
505  */
506 void account_idle_ticks(unsigned long ticks)
507 {
508 
509 	if (sched_clock_irqtime) {
510 		irqtime_account_idle_ticks(ticks);
511 		return;
512 	}
513 
514 	account_idle_time(jiffies_to_cputime(ticks));
515 }
516 
517 /*
518  * Perform (stime * rtime) / total, but avoid multiplication overflow by
519  * loosing precision when the numbers are big.
520  */
521 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
522 {
523 	u64 scaled;
524 
525 	for (;;) {
526 		/* Make sure "rtime" is the bigger of stime/rtime */
527 		if (stime > rtime)
528 			swap(rtime, stime);
529 
530 		/* Make sure 'total' fits in 32 bits */
531 		if (total >> 32)
532 			goto drop_precision;
533 
534 		/* Does rtime (and thus stime) fit in 32 bits? */
535 		if (!(rtime >> 32))
536 			break;
537 
538 		/* Can we just balance rtime/stime rather than dropping bits? */
539 		if (stime >> 31)
540 			goto drop_precision;
541 
542 		/* We can grow stime and shrink rtime and try to make them both fit */
543 		stime <<= 1;
544 		rtime >>= 1;
545 		continue;
546 
547 drop_precision:
548 		/* We drop from rtime, it has more bits than stime */
549 		rtime >>= 1;
550 		total >>= 1;
551 	}
552 
553 	/*
554 	 * Make sure gcc understands that this is a 32x32->64 multiply,
555 	 * followed by a 64/32->64 divide.
556 	 */
557 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
558 	return (__force cputime_t) scaled;
559 }
560 
561 /*
562  * Adjust tick based cputime random precision against scheduler runtime
563  * accounting.
564  *
565  * Tick based cputime accounting depend on random scheduling timeslices of a
566  * task to be interrupted or not by the timer.  Depending on these
567  * circumstances, the number of these interrupts may be over or
568  * under-optimistic, matching the real user and system cputime with a variable
569  * precision.
570  *
571  * Fix this by scaling these tick based values against the total runtime
572  * accounted by the CFS scheduler.
573  *
574  * This code provides the following guarantees:
575  *
576  *   stime + utime == rtime
577  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
578  *
579  * Assuming that rtime_i+1 >= rtime_i.
580  */
581 static void cputime_adjust(struct task_cputime *curr,
582 			   struct prev_cputime *prev,
583 			   cputime_t *ut, cputime_t *st)
584 {
585 	cputime_t rtime, stime, utime;
586 	unsigned long flags;
587 
588 	/* Serialize concurrent callers such that we can honour our guarantees */
589 	raw_spin_lock_irqsave(&prev->lock, flags);
590 	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
591 
592 	/*
593 	 * This is possible under two circumstances:
594 	 *  - rtime isn't monotonic after all (a bug);
595 	 *  - we got reordered by the lock.
596 	 *
597 	 * In both cases this acts as a filter such that the rest of the code
598 	 * can assume it is monotonic regardless of anything else.
599 	 */
600 	if (prev->stime + prev->utime >= rtime)
601 		goto out;
602 
603 	stime = curr->stime;
604 	utime = curr->utime;
605 
606 	if (utime == 0) {
607 		stime = rtime;
608 		goto update;
609 	}
610 
611 	if (stime == 0) {
612 		utime = rtime;
613 		goto update;
614 	}
615 
616 	stime = scale_stime((__force u64)stime, (__force u64)rtime,
617 			    (__force u64)(stime + utime));
618 
619 	/*
620 	 * Make sure stime doesn't go backwards; this preserves monotonicity
621 	 * for utime because rtime is monotonic.
622 	 *
623 	 *  utime_i+1 = rtime_i+1 - stime_i
624 	 *            = rtime_i+1 - (rtime_i - utime_i)
625 	 *            = (rtime_i+1 - rtime_i) + utime_i
626 	 *            >= utime_i
627 	 */
628 	if (stime < prev->stime)
629 		stime = prev->stime;
630 	utime = rtime - stime;
631 
632 	/*
633 	 * Make sure utime doesn't go backwards; this still preserves
634 	 * monotonicity for stime, analogous argument to above.
635 	 */
636 	if (utime < prev->utime) {
637 		utime = prev->utime;
638 		stime = rtime - utime;
639 	}
640 
641 update:
642 	prev->stime = stime;
643 	prev->utime = utime;
644 out:
645 	*ut = prev->utime;
646 	*st = prev->stime;
647 	raw_spin_unlock_irqrestore(&prev->lock, flags);
648 }
649 
650 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
651 {
652 	struct task_cputime cputime = {
653 		.sum_exec_runtime = p->se.sum_exec_runtime,
654 	};
655 
656 	task_cputime(p, &cputime.utime, &cputime.stime);
657 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
658 }
659 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
660 
661 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
662 {
663 	struct task_cputime cputime;
664 
665 	thread_group_cputime(p, &cputime);
666 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
667 }
668 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
669 
670 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
671 static unsigned long long vtime_delta(struct task_struct *tsk)
672 {
673 	unsigned long long clock;
674 
675 	clock = local_clock();
676 	if (clock < tsk->vtime_snap)
677 		return 0;
678 
679 	return clock - tsk->vtime_snap;
680 }
681 
682 static cputime_t get_vtime_delta(struct task_struct *tsk)
683 {
684 	unsigned long long delta = vtime_delta(tsk);
685 
686 	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
687 	tsk->vtime_snap += delta;
688 
689 	/* CHECKME: always safe to convert nsecs to cputime? */
690 	return nsecs_to_cputime(delta);
691 }
692 
693 static void __vtime_account_system(struct task_struct *tsk)
694 {
695 	cputime_t delta_cpu = get_vtime_delta(tsk);
696 
697 	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
698 }
699 
700 void vtime_account_system(struct task_struct *tsk)
701 {
702 	write_seqcount_begin(&tsk->vtime_seqcount);
703 	__vtime_account_system(tsk);
704 	write_seqcount_end(&tsk->vtime_seqcount);
705 }
706 
707 void vtime_gen_account_irq_exit(struct task_struct *tsk)
708 {
709 	write_seqcount_begin(&tsk->vtime_seqcount);
710 	__vtime_account_system(tsk);
711 	if (context_tracking_in_user())
712 		tsk->vtime_snap_whence = VTIME_USER;
713 	write_seqcount_end(&tsk->vtime_seqcount);
714 }
715 
716 void vtime_account_user(struct task_struct *tsk)
717 {
718 	cputime_t delta_cpu;
719 
720 	write_seqcount_begin(&tsk->vtime_seqcount);
721 	delta_cpu = get_vtime_delta(tsk);
722 	tsk->vtime_snap_whence = VTIME_SYS;
723 	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
724 	write_seqcount_end(&tsk->vtime_seqcount);
725 }
726 
727 void vtime_user_enter(struct task_struct *tsk)
728 {
729 	write_seqcount_begin(&tsk->vtime_seqcount);
730 	__vtime_account_system(tsk);
731 	tsk->vtime_snap_whence = VTIME_USER;
732 	write_seqcount_end(&tsk->vtime_seqcount);
733 }
734 
735 void vtime_guest_enter(struct task_struct *tsk)
736 {
737 	/*
738 	 * The flags must be updated under the lock with
739 	 * the vtime_snap flush and update.
740 	 * That enforces a right ordering and update sequence
741 	 * synchronization against the reader (task_gtime())
742 	 * that can thus safely catch up with a tickless delta.
743 	 */
744 	write_seqcount_begin(&tsk->vtime_seqcount);
745 	__vtime_account_system(tsk);
746 	current->flags |= PF_VCPU;
747 	write_seqcount_end(&tsk->vtime_seqcount);
748 }
749 EXPORT_SYMBOL_GPL(vtime_guest_enter);
750 
751 void vtime_guest_exit(struct task_struct *tsk)
752 {
753 	write_seqcount_begin(&tsk->vtime_seqcount);
754 	__vtime_account_system(tsk);
755 	current->flags &= ~PF_VCPU;
756 	write_seqcount_end(&tsk->vtime_seqcount);
757 }
758 EXPORT_SYMBOL_GPL(vtime_guest_exit);
759 
760 void vtime_account_idle(struct task_struct *tsk)
761 {
762 	cputime_t delta_cpu = get_vtime_delta(tsk);
763 
764 	account_idle_time(delta_cpu);
765 }
766 
767 void arch_vtime_task_switch(struct task_struct *prev)
768 {
769 	write_seqcount_begin(&prev->vtime_seqcount);
770 	prev->vtime_snap_whence = VTIME_INACTIVE;
771 	write_seqcount_end(&prev->vtime_seqcount);
772 
773 	write_seqcount_begin(&current->vtime_seqcount);
774 	current->vtime_snap_whence = VTIME_SYS;
775 	current->vtime_snap = sched_clock_cpu(smp_processor_id());
776 	write_seqcount_end(&current->vtime_seqcount);
777 }
778 
779 void vtime_init_idle(struct task_struct *t, int cpu)
780 {
781 	unsigned long flags;
782 
783 	local_irq_save(flags);
784 	write_seqcount_begin(&t->vtime_seqcount);
785 	t->vtime_snap_whence = VTIME_SYS;
786 	t->vtime_snap = sched_clock_cpu(cpu);
787 	write_seqcount_end(&t->vtime_seqcount);
788 	local_irq_restore(flags);
789 }
790 
791 cputime_t task_gtime(struct task_struct *t)
792 {
793 	unsigned int seq;
794 	cputime_t gtime;
795 
796 	if (!vtime_accounting_enabled())
797 		return t->gtime;
798 
799 	do {
800 		seq = read_seqcount_begin(&t->vtime_seqcount);
801 
802 		gtime = t->gtime;
803 		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
804 			gtime += vtime_delta(t);
805 
806 	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
807 
808 	return gtime;
809 }
810 
811 /*
812  * Fetch cputime raw values from fields of task_struct and
813  * add up the pending nohz execution time since the last
814  * cputime snapshot.
815  */
816 static void
817 fetch_task_cputime(struct task_struct *t,
818 		   cputime_t *u_dst, cputime_t *s_dst,
819 		   cputime_t *u_src, cputime_t *s_src,
820 		   cputime_t *udelta, cputime_t *sdelta)
821 {
822 	unsigned int seq;
823 	unsigned long long delta;
824 
825 	do {
826 		*udelta = 0;
827 		*sdelta = 0;
828 
829 		seq = read_seqcount_begin(&t->vtime_seqcount);
830 
831 		if (u_dst)
832 			*u_dst = *u_src;
833 		if (s_dst)
834 			*s_dst = *s_src;
835 
836 		/* Task is sleeping, nothing to add */
837 		if (t->vtime_snap_whence == VTIME_INACTIVE ||
838 		    is_idle_task(t))
839 			continue;
840 
841 		delta = vtime_delta(t);
842 
843 		/*
844 		 * Task runs either in user or kernel space, add pending nohz time to
845 		 * the right place.
846 		 */
847 		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
848 			*udelta = delta;
849 		} else {
850 			if (t->vtime_snap_whence == VTIME_SYS)
851 				*sdelta = delta;
852 		}
853 	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
854 }
855 
856 
857 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
858 {
859 	cputime_t udelta, sdelta;
860 
861 	if (!vtime_accounting_enabled()) {
862 		if (utime)
863 			*utime = t->utime;
864 		if (stime)
865 			*stime = t->stime;
866 		return;
867 	}
868 
869 	fetch_task_cputime(t, utime, stime, &t->utime,
870 			   &t->stime, &udelta, &sdelta);
871 	if (utime)
872 		*utime += udelta;
873 	if (stime)
874 		*stime += sdelta;
875 }
876 
877 void task_cputime_scaled(struct task_struct *t,
878 			 cputime_t *utimescaled, cputime_t *stimescaled)
879 {
880 	cputime_t udelta, sdelta;
881 
882 	if (!vtime_accounting_enabled()) {
883 		if (utimescaled)
884 			*utimescaled = t->utimescaled;
885 		if (stimescaled)
886 			*stimescaled = t->stimescaled;
887 		return;
888 	}
889 
890 	fetch_task_cputime(t, utimescaled, stimescaled,
891 			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
892 	if (utimescaled)
893 		*utimescaled += cputime_to_scaled(udelta);
894 	if (stimescaled)
895 		*stimescaled += cputime_to_scaled(sdelta);
896 }
897 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
898