xref: /openbmc/linux/kernel/sched/cputime.c (revision a8da474e)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 
9 
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11 
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's irq time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of irq time to wrong
20  * task when irq is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each irq in account_system_time.
22  */
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
25 
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
28 
29 void enable_sched_clock_irqtime(void)
30 {
31 	sched_clock_irqtime = 1;
32 }
33 
34 void disable_sched_clock_irqtime(void)
35 {
36 	sched_clock_irqtime = 0;
37 }
38 
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
42 
43 /*
44  * Called before incrementing preempt_count on {soft,}irq_enter
45  * and before decrementing preempt_count on {soft,}irq_exit.
46  */
47 void irqtime_account_irq(struct task_struct *curr)
48 {
49 	unsigned long flags;
50 	s64 delta;
51 	int cpu;
52 
53 	if (!sched_clock_irqtime)
54 		return;
55 
56 	local_irq_save(flags);
57 
58 	cpu = smp_processor_id();
59 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 	__this_cpu_add(irq_start_time, delta);
61 
62 	irq_time_write_begin();
63 	/*
64 	 * We do not account for softirq time from ksoftirqd here.
65 	 * We want to continue accounting softirq time to ksoftirqd thread
66 	 * in that case, so as not to confuse scheduler with a special task
67 	 * that do not consume any time, but still wants to run.
68 	 */
69 	if (hardirq_count())
70 		__this_cpu_add(cpu_hardirq_time, delta);
71 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 		__this_cpu_add(cpu_softirq_time, delta);
73 
74 	irq_time_write_end();
75 	local_irq_restore(flags);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78 
79 static int irqtime_account_hi_update(void)
80 {
81 	u64 *cpustat = kcpustat_this_cpu->cpustat;
82 	unsigned long flags;
83 	u64 latest_ns;
84 	int ret = 0;
85 
86 	local_irq_save(flags);
87 	latest_ns = this_cpu_read(cpu_hardirq_time);
88 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 		ret = 1;
90 	local_irq_restore(flags);
91 	return ret;
92 }
93 
94 static int irqtime_account_si_update(void)
95 {
96 	u64 *cpustat = kcpustat_this_cpu->cpustat;
97 	unsigned long flags;
98 	u64 latest_ns;
99 	int ret = 0;
100 
101 	local_irq_save(flags);
102 	latest_ns = this_cpu_read(cpu_softirq_time);
103 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 		ret = 1;
105 	local_irq_restore(flags);
106 	return ret;
107 }
108 
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
110 
111 #define sched_clock_irqtime	(0)
112 
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114 
115 static inline void task_group_account_field(struct task_struct *p, int index,
116 					    u64 tmp)
117 {
118 	/*
119 	 * Since all updates are sure to touch the root cgroup, we
120 	 * get ourselves ahead and touch it first. If the root cgroup
121 	 * is the only cgroup, then nothing else should be necessary.
122 	 *
123 	 */
124 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
125 
126 	cpuacct_account_field(p, index, tmp);
127 }
128 
129 /*
130  * Account user cpu time to a process.
131  * @p: the process that the cpu time gets accounted to
132  * @cputime: the cpu time spent in user space since the last update
133  * @cputime_scaled: cputime scaled by cpu frequency
134  */
135 void account_user_time(struct task_struct *p, cputime_t cputime,
136 		       cputime_t cputime_scaled)
137 {
138 	int index;
139 
140 	/* Add user time to process. */
141 	p->utime += cputime;
142 	p->utimescaled += cputime_scaled;
143 	account_group_user_time(p, cputime);
144 
145 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146 
147 	/* Add user time to cpustat. */
148 	task_group_account_field(p, index, (__force u64) cputime);
149 
150 	/* Account for user time used */
151 	acct_account_cputime(p);
152 }
153 
154 /*
155  * Account guest cpu time to a process.
156  * @p: the process that the cpu time gets accounted to
157  * @cputime: the cpu time spent in virtual machine since the last update
158  * @cputime_scaled: cputime scaled by cpu frequency
159  */
160 static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 			       cputime_t cputime_scaled)
162 {
163 	u64 *cpustat = kcpustat_this_cpu->cpustat;
164 
165 	/* Add guest time to process. */
166 	p->utime += cputime;
167 	p->utimescaled += cputime_scaled;
168 	account_group_user_time(p, cputime);
169 	p->gtime += cputime;
170 
171 	/* Add guest time to cpustat. */
172 	if (task_nice(p) > 0) {
173 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 	} else {
176 		cpustat[CPUTIME_USER] += (__force u64) cputime;
177 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 	}
179 }
180 
181 /*
182  * Account system cpu time to a process and desired cpustat field
183  * @p: the process that the cpu time gets accounted to
184  * @cputime: the cpu time spent in kernel space since the last update
185  * @cputime_scaled: cputime scaled by cpu frequency
186  * @target_cputime64: pointer to cpustat field that has to be updated
187  */
188 static inline
189 void __account_system_time(struct task_struct *p, cputime_t cputime,
190 			cputime_t cputime_scaled, int index)
191 {
192 	/* Add system time to process. */
193 	p->stime += cputime;
194 	p->stimescaled += cputime_scaled;
195 	account_group_system_time(p, cputime);
196 
197 	/* Add system time to cpustat. */
198 	task_group_account_field(p, index, (__force u64) cputime);
199 
200 	/* Account for system time used */
201 	acct_account_cputime(p);
202 }
203 
204 /*
205  * Account system cpu time to a process.
206  * @p: the process that the cpu time gets accounted to
207  * @hardirq_offset: the offset to subtract from hardirq_count()
208  * @cputime: the cpu time spent in kernel space since the last update
209  * @cputime_scaled: cputime scaled by cpu frequency
210  */
211 void account_system_time(struct task_struct *p, int hardirq_offset,
212 			 cputime_t cputime, cputime_t cputime_scaled)
213 {
214 	int index;
215 
216 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 		account_guest_time(p, cputime, cputime_scaled);
218 		return;
219 	}
220 
221 	if (hardirq_count() - hardirq_offset)
222 		index = CPUTIME_IRQ;
223 	else if (in_serving_softirq())
224 		index = CPUTIME_SOFTIRQ;
225 	else
226 		index = CPUTIME_SYSTEM;
227 
228 	__account_system_time(p, cputime, cputime_scaled, index);
229 }
230 
231 /*
232  * Account for involuntary wait time.
233  * @cputime: the cpu time spent in involuntary wait
234  */
235 void account_steal_time(cputime_t cputime)
236 {
237 	u64 *cpustat = kcpustat_this_cpu->cpustat;
238 
239 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240 }
241 
242 /*
243  * Account for idle time.
244  * @cputime: the cpu time spent in idle wait
245  */
246 void account_idle_time(cputime_t cputime)
247 {
248 	u64 *cpustat = kcpustat_this_cpu->cpustat;
249 	struct rq *rq = this_rq();
250 
251 	if (atomic_read(&rq->nr_iowait) > 0)
252 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 	else
254 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255 }
256 
257 static __always_inline bool steal_account_process_tick(void)
258 {
259 #ifdef CONFIG_PARAVIRT
260 	if (static_key_false(&paravirt_steal_enabled)) {
261 		u64 steal;
262 		cputime_t steal_ct;
263 
264 		steal = paravirt_steal_clock(smp_processor_id());
265 		steal -= this_rq()->prev_steal_time;
266 
267 		/*
268 		 * cputime_t may be less precise than nsecs (eg: if it's
269 		 * based on jiffies). Lets cast the result to cputime
270 		 * granularity and account the rest on the next rounds.
271 		 */
272 		steal_ct = nsecs_to_cputime(steal);
273 		this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
274 
275 		account_steal_time(steal_ct);
276 		return steal_ct;
277 	}
278 #endif
279 	return false;
280 }
281 
282 /*
283  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284  * tasks (sum on group iteration) belonging to @tsk's group.
285  */
286 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287 {
288 	struct signal_struct *sig = tsk->signal;
289 	cputime_t utime, stime;
290 	struct task_struct *t;
291 	unsigned int seq, nextseq;
292 	unsigned long flags;
293 
294 	rcu_read_lock();
295 	/* Attempt a lockless read on the first round. */
296 	nextseq = 0;
297 	do {
298 		seq = nextseq;
299 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
300 		times->utime = sig->utime;
301 		times->stime = sig->stime;
302 		times->sum_exec_runtime = sig->sum_sched_runtime;
303 
304 		for_each_thread(tsk, t) {
305 			task_cputime(t, &utime, &stime);
306 			times->utime += utime;
307 			times->stime += stime;
308 			times->sum_exec_runtime += task_sched_runtime(t);
309 		}
310 		/* If lockless access failed, take the lock. */
311 		nextseq = 1;
312 	} while (need_seqretry(&sig->stats_lock, seq));
313 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
314 	rcu_read_unlock();
315 }
316 
317 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
318 /*
319  * Account a tick to a process and cpustat
320  * @p: the process that the cpu time gets accounted to
321  * @user_tick: is the tick from userspace
322  * @rq: the pointer to rq
323  *
324  * Tick demultiplexing follows the order
325  * - pending hardirq update
326  * - pending softirq update
327  * - user_time
328  * - idle_time
329  * - system time
330  *   - check for guest_time
331  *   - else account as system_time
332  *
333  * Check for hardirq is done both for system and user time as there is
334  * no timer going off while we are on hardirq and hence we may never get an
335  * opportunity to update it solely in system time.
336  * p->stime and friends are only updated on system time and not on irq
337  * softirq as those do not count in task exec_runtime any more.
338  */
339 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
340 					 struct rq *rq, int ticks)
341 {
342 	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
343 	u64 cputime = (__force u64) cputime_one_jiffy;
344 	u64 *cpustat = kcpustat_this_cpu->cpustat;
345 
346 	if (steal_account_process_tick())
347 		return;
348 
349 	cputime *= ticks;
350 	scaled *= ticks;
351 
352 	if (irqtime_account_hi_update()) {
353 		cpustat[CPUTIME_IRQ] += cputime;
354 	} else if (irqtime_account_si_update()) {
355 		cpustat[CPUTIME_SOFTIRQ] += cputime;
356 	} else if (this_cpu_ksoftirqd() == p) {
357 		/*
358 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
359 		 * So, we have to handle it separately here.
360 		 * Also, p->stime needs to be updated for ksoftirqd.
361 		 */
362 		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
363 	} else if (user_tick) {
364 		account_user_time(p, cputime, scaled);
365 	} else if (p == rq->idle) {
366 		account_idle_time(cputime);
367 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
368 		account_guest_time(p, cputime, scaled);
369 	} else {
370 		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
371 	}
372 }
373 
374 static void irqtime_account_idle_ticks(int ticks)
375 {
376 	struct rq *rq = this_rq();
377 
378 	irqtime_account_process_tick(current, 0, rq, ticks);
379 }
380 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
381 static inline void irqtime_account_idle_ticks(int ticks) {}
382 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
383 						struct rq *rq, int nr_ticks) {}
384 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
385 
386 /*
387  * Use precise platform statistics if available:
388  */
389 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
390 
391 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
392 void vtime_common_task_switch(struct task_struct *prev)
393 {
394 	if (is_idle_task(prev))
395 		vtime_account_idle(prev);
396 	else
397 		vtime_account_system(prev);
398 
399 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
400 	vtime_account_user(prev);
401 #endif
402 	arch_vtime_task_switch(prev);
403 }
404 #endif
405 
406 /*
407  * Archs that account the whole time spent in the idle task
408  * (outside irq) as idle time can rely on this and just implement
409  * vtime_account_system() and vtime_account_idle(). Archs that
410  * have other meaning of the idle time (s390 only includes the
411  * time spent by the CPU when it's in low power mode) must override
412  * vtime_account().
413  */
414 #ifndef __ARCH_HAS_VTIME_ACCOUNT
415 void vtime_common_account_irq_enter(struct task_struct *tsk)
416 {
417 	if (!in_interrupt()) {
418 		/*
419 		 * If we interrupted user, context_tracking_in_user()
420 		 * is 1 because the context tracking don't hook
421 		 * on irq entry/exit. This way we know if
422 		 * we need to flush user time on kernel entry.
423 		 */
424 		if (context_tracking_in_user()) {
425 			vtime_account_user(tsk);
426 			return;
427 		}
428 
429 		if (is_idle_task(tsk)) {
430 			vtime_account_idle(tsk);
431 			return;
432 		}
433 	}
434 	vtime_account_system(tsk);
435 }
436 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
437 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
438 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
439 
440 
441 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
442 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
443 {
444 	*ut = p->utime;
445 	*st = p->stime;
446 }
447 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
448 
449 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
450 {
451 	struct task_cputime cputime;
452 
453 	thread_group_cputime(p, &cputime);
454 
455 	*ut = cputime.utime;
456 	*st = cputime.stime;
457 }
458 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
459 /*
460  * Account a single tick of cpu time.
461  * @p: the process that the cpu time gets accounted to
462  * @user_tick: indicates if the tick is a user or a system tick
463  */
464 void account_process_tick(struct task_struct *p, int user_tick)
465 {
466 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
467 	struct rq *rq = this_rq();
468 
469 	if (vtime_accounting_enabled())
470 		return;
471 
472 	if (sched_clock_irqtime) {
473 		irqtime_account_process_tick(p, user_tick, rq, 1);
474 		return;
475 	}
476 
477 	if (steal_account_process_tick())
478 		return;
479 
480 	if (user_tick)
481 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
482 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
483 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
484 				    one_jiffy_scaled);
485 	else
486 		account_idle_time(cputime_one_jiffy);
487 }
488 
489 /*
490  * Account multiple ticks of steal time.
491  * @p: the process from which the cpu time has been stolen
492  * @ticks: number of stolen ticks
493  */
494 void account_steal_ticks(unsigned long ticks)
495 {
496 	account_steal_time(jiffies_to_cputime(ticks));
497 }
498 
499 /*
500  * Account multiple ticks of idle time.
501  * @ticks: number of stolen ticks
502  */
503 void account_idle_ticks(unsigned long ticks)
504 {
505 
506 	if (sched_clock_irqtime) {
507 		irqtime_account_idle_ticks(ticks);
508 		return;
509 	}
510 
511 	account_idle_time(jiffies_to_cputime(ticks));
512 }
513 
514 /*
515  * Perform (stime * rtime) / total, but avoid multiplication overflow by
516  * loosing precision when the numbers are big.
517  */
518 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
519 {
520 	u64 scaled;
521 
522 	for (;;) {
523 		/* Make sure "rtime" is the bigger of stime/rtime */
524 		if (stime > rtime)
525 			swap(rtime, stime);
526 
527 		/* Make sure 'total' fits in 32 bits */
528 		if (total >> 32)
529 			goto drop_precision;
530 
531 		/* Does rtime (and thus stime) fit in 32 bits? */
532 		if (!(rtime >> 32))
533 			break;
534 
535 		/* Can we just balance rtime/stime rather than dropping bits? */
536 		if (stime >> 31)
537 			goto drop_precision;
538 
539 		/* We can grow stime and shrink rtime and try to make them both fit */
540 		stime <<= 1;
541 		rtime >>= 1;
542 		continue;
543 
544 drop_precision:
545 		/* We drop from rtime, it has more bits than stime */
546 		rtime >>= 1;
547 		total >>= 1;
548 	}
549 
550 	/*
551 	 * Make sure gcc understands that this is a 32x32->64 multiply,
552 	 * followed by a 64/32->64 divide.
553 	 */
554 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
555 	return (__force cputime_t) scaled;
556 }
557 
558 /*
559  * Adjust tick based cputime random precision against scheduler runtime
560  * accounting.
561  *
562  * Tick based cputime accounting depend on random scheduling timeslices of a
563  * task to be interrupted or not by the timer.  Depending on these
564  * circumstances, the number of these interrupts may be over or
565  * under-optimistic, matching the real user and system cputime with a variable
566  * precision.
567  *
568  * Fix this by scaling these tick based values against the total runtime
569  * accounted by the CFS scheduler.
570  *
571  * This code provides the following guarantees:
572  *
573  *   stime + utime == rtime
574  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
575  *
576  * Assuming that rtime_i+1 >= rtime_i.
577  */
578 static void cputime_adjust(struct task_cputime *curr,
579 			   struct prev_cputime *prev,
580 			   cputime_t *ut, cputime_t *st)
581 {
582 	cputime_t rtime, stime, utime;
583 	unsigned long flags;
584 
585 	/* Serialize concurrent callers such that we can honour our guarantees */
586 	raw_spin_lock_irqsave(&prev->lock, flags);
587 	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
588 
589 	/*
590 	 * This is possible under two circumstances:
591 	 *  - rtime isn't monotonic after all (a bug);
592 	 *  - we got reordered by the lock.
593 	 *
594 	 * In both cases this acts as a filter such that the rest of the code
595 	 * can assume it is monotonic regardless of anything else.
596 	 */
597 	if (prev->stime + prev->utime >= rtime)
598 		goto out;
599 
600 	stime = curr->stime;
601 	utime = curr->utime;
602 
603 	if (utime == 0) {
604 		stime = rtime;
605 		goto update;
606 	}
607 
608 	if (stime == 0) {
609 		utime = rtime;
610 		goto update;
611 	}
612 
613 	stime = scale_stime((__force u64)stime, (__force u64)rtime,
614 			    (__force u64)(stime + utime));
615 
616 	/*
617 	 * Make sure stime doesn't go backwards; this preserves monotonicity
618 	 * for utime because rtime is monotonic.
619 	 *
620 	 *  utime_i+1 = rtime_i+1 - stime_i
621 	 *            = rtime_i+1 - (rtime_i - utime_i)
622 	 *            = (rtime_i+1 - rtime_i) + utime_i
623 	 *            >= utime_i
624 	 */
625 	if (stime < prev->stime)
626 		stime = prev->stime;
627 	utime = rtime - stime;
628 
629 	/*
630 	 * Make sure utime doesn't go backwards; this still preserves
631 	 * monotonicity for stime, analogous argument to above.
632 	 */
633 	if (utime < prev->utime) {
634 		utime = prev->utime;
635 		stime = rtime - utime;
636 	}
637 
638 update:
639 	prev->stime = stime;
640 	prev->utime = utime;
641 out:
642 	*ut = prev->utime;
643 	*st = prev->stime;
644 	raw_spin_unlock_irqrestore(&prev->lock, flags);
645 }
646 
647 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
648 {
649 	struct task_cputime cputime = {
650 		.sum_exec_runtime = p->se.sum_exec_runtime,
651 	};
652 
653 	task_cputime(p, &cputime.utime, &cputime.stime);
654 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
655 }
656 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
657 
658 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
659 {
660 	struct task_cputime cputime;
661 
662 	thread_group_cputime(p, &cputime);
663 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
664 }
665 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
666 
667 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
668 static unsigned long long vtime_delta(struct task_struct *tsk)
669 {
670 	unsigned long long clock;
671 
672 	clock = local_clock();
673 	if (clock < tsk->vtime_snap)
674 		return 0;
675 
676 	return clock - tsk->vtime_snap;
677 }
678 
679 static cputime_t get_vtime_delta(struct task_struct *tsk)
680 {
681 	unsigned long long delta = vtime_delta(tsk);
682 
683 	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
684 	tsk->vtime_snap += delta;
685 
686 	/* CHECKME: always safe to convert nsecs to cputime? */
687 	return nsecs_to_cputime(delta);
688 }
689 
690 static void __vtime_account_system(struct task_struct *tsk)
691 {
692 	cputime_t delta_cpu = get_vtime_delta(tsk);
693 
694 	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
695 }
696 
697 void vtime_account_system(struct task_struct *tsk)
698 {
699 	write_seqlock(&tsk->vtime_seqlock);
700 	__vtime_account_system(tsk);
701 	write_sequnlock(&tsk->vtime_seqlock);
702 }
703 
704 void vtime_gen_account_irq_exit(struct task_struct *tsk)
705 {
706 	write_seqlock(&tsk->vtime_seqlock);
707 	__vtime_account_system(tsk);
708 	if (context_tracking_in_user())
709 		tsk->vtime_snap_whence = VTIME_USER;
710 	write_sequnlock(&tsk->vtime_seqlock);
711 }
712 
713 void vtime_account_user(struct task_struct *tsk)
714 {
715 	cputime_t delta_cpu;
716 
717 	write_seqlock(&tsk->vtime_seqlock);
718 	delta_cpu = get_vtime_delta(tsk);
719 	tsk->vtime_snap_whence = VTIME_SYS;
720 	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
721 	write_sequnlock(&tsk->vtime_seqlock);
722 }
723 
724 void vtime_user_enter(struct task_struct *tsk)
725 {
726 	write_seqlock(&tsk->vtime_seqlock);
727 	__vtime_account_system(tsk);
728 	tsk->vtime_snap_whence = VTIME_USER;
729 	write_sequnlock(&tsk->vtime_seqlock);
730 }
731 
732 void vtime_guest_enter(struct task_struct *tsk)
733 {
734 	/*
735 	 * The flags must be updated under the lock with
736 	 * the vtime_snap flush and update.
737 	 * That enforces a right ordering and update sequence
738 	 * synchronization against the reader (task_gtime())
739 	 * that can thus safely catch up with a tickless delta.
740 	 */
741 	write_seqlock(&tsk->vtime_seqlock);
742 	__vtime_account_system(tsk);
743 	current->flags |= PF_VCPU;
744 	write_sequnlock(&tsk->vtime_seqlock);
745 }
746 EXPORT_SYMBOL_GPL(vtime_guest_enter);
747 
748 void vtime_guest_exit(struct task_struct *tsk)
749 {
750 	write_seqlock(&tsk->vtime_seqlock);
751 	__vtime_account_system(tsk);
752 	current->flags &= ~PF_VCPU;
753 	write_sequnlock(&tsk->vtime_seqlock);
754 }
755 EXPORT_SYMBOL_GPL(vtime_guest_exit);
756 
757 void vtime_account_idle(struct task_struct *tsk)
758 {
759 	cputime_t delta_cpu = get_vtime_delta(tsk);
760 
761 	account_idle_time(delta_cpu);
762 }
763 
764 void arch_vtime_task_switch(struct task_struct *prev)
765 {
766 	write_seqlock(&prev->vtime_seqlock);
767 	prev->vtime_snap_whence = VTIME_SLEEPING;
768 	write_sequnlock(&prev->vtime_seqlock);
769 
770 	write_seqlock(&current->vtime_seqlock);
771 	current->vtime_snap_whence = VTIME_SYS;
772 	current->vtime_snap = sched_clock_cpu(smp_processor_id());
773 	write_sequnlock(&current->vtime_seqlock);
774 }
775 
776 void vtime_init_idle(struct task_struct *t, int cpu)
777 {
778 	unsigned long flags;
779 
780 	write_seqlock_irqsave(&t->vtime_seqlock, flags);
781 	t->vtime_snap_whence = VTIME_SYS;
782 	t->vtime_snap = sched_clock_cpu(cpu);
783 	write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
784 }
785 
786 cputime_t task_gtime(struct task_struct *t)
787 {
788 	unsigned int seq;
789 	cputime_t gtime;
790 
791 	do {
792 		seq = read_seqbegin(&t->vtime_seqlock);
793 
794 		gtime = t->gtime;
795 		if (t->flags & PF_VCPU)
796 			gtime += vtime_delta(t);
797 
798 	} while (read_seqretry(&t->vtime_seqlock, seq));
799 
800 	return gtime;
801 }
802 
803 /*
804  * Fetch cputime raw values from fields of task_struct and
805  * add up the pending nohz execution time since the last
806  * cputime snapshot.
807  */
808 static void
809 fetch_task_cputime(struct task_struct *t,
810 		   cputime_t *u_dst, cputime_t *s_dst,
811 		   cputime_t *u_src, cputime_t *s_src,
812 		   cputime_t *udelta, cputime_t *sdelta)
813 {
814 	unsigned int seq;
815 	unsigned long long delta;
816 
817 	do {
818 		*udelta = 0;
819 		*sdelta = 0;
820 
821 		seq = read_seqbegin(&t->vtime_seqlock);
822 
823 		if (u_dst)
824 			*u_dst = *u_src;
825 		if (s_dst)
826 			*s_dst = *s_src;
827 
828 		/* Task is sleeping, nothing to add */
829 		if (t->vtime_snap_whence == VTIME_SLEEPING ||
830 		    is_idle_task(t))
831 			continue;
832 
833 		delta = vtime_delta(t);
834 
835 		/*
836 		 * Task runs either in user or kernel space, add pending nohz time to
837 		 * the right place.
838 		 */
839 		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
840 			*udelta = delta;
841 		} else {
842 			if (t->vtime_snap_whence == VTIME_SYS)
843 				*sdelta = delta;
844 		}
845 	} while (read_seqretry(&t->vtime_seqlock, seq));
846 }
847 
848 
849 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
850 {
851 	cputime_t udelta, sdelta;
852 
853 	fetch_task_cputime(t, utime, stime, &t->utime,
854 			   &t->stime, &udelta, &sdelta);
855 	if (utime)
856 		*utime += udelta;
857 	if (stime)
858 		*stime += sdelta;
859 }
860 
861 void task_cputime_scaled(struct task_struct *t,
862 			 cputime_t *utimescaled, cputime_t *stimescaled)
863 {
864 	cputime_t udelta, sdelta;
865 
866 	fetch_task_cputime(t, utimescaled, stimescaled,
867 			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
868 	if (utimescaled)
869 		*utimescaled += cputime_to_scaled(udelta);
870 	if (stimescaled)
871 		*stimescaled += cputime_to_scaled(sdelta);
872 }
873 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
874