1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include <linux/context_tracking.h> 7 #include "sched.h" 8 9 10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 11 12 /* 13 * There are no locks covering percpu hardirq/softirq time. 14 * They are only modified in vtime_account, on corresponding CPU 15 * with interrupts disabled. So, writes are safe. 16 * They are read and saved off onto struct rq in update_rq_clock(). 17 * This may result in other CPU reading this CPU's irq time and can 18 * race with irq/vtime_account on this CPU. We would either get old 19 * or new value with a side effect of accounting a slice of irq time to wrong 20 * task when irq is in progress while we read rq->clock. That is a worthy 21 * compromise in place of having locks on each irq in account_system_time. 22 */ 23 DEFINE_PER_CPU(u64, cpu_hardirq_time); 24 DEFINE_PER_CPU(u64, cpu_softirq_time); 25 26 static DEFINE_PER_CPU(u64, irq_start_time); 27 static int sched_clock_irqtime; 28 29 void enable_sched_clock_irqtime(void) 30 { 31 sched_clock_irqtime = 1; 32 } 33 34 void disable_sched_clock_irqtime(void) 35 { 36 sched_clock_irqtime = 0; 37 } 38 39 #ifndef CONFIG_64BIT 40 DEFINE_PER_CPU(seqcount_t, irq_time_seq); 41 #endif /* CONFIG_64BIT */ 42 43 /* 44 * Called before incrementing preempt_count on {soft,}irq_enter 45 * and before decrementing preempt_count on {soft,}irq_exit. 46 */ 47 void irqtime_account_irq(struct task_struct *curr) 48 { 49 unsigned long flags; 50 s64 delta; 51 int cpu; 52 53 if (!sched_clock_irqtime) 54 return; 55 56 local_irq_save(flags); 57 58 cpu = smp_processor_id(); 59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 60 __this_cpu_add(irq_start_time, delta); 61 62 irq_time_write_begin(); 63 /* 64 * We do not account for softirq time from ksoftirqd here. 65 * We want to continue accounting softirq time to ksoftirqd thread 66 * in that case, so as not to confuse scheduler with a special task 67 * that do not consume any time, but still wants to run. 68 */ 69 if (hardirq_count()) 70 __this_cpu_add(cpu_hardirq_time, delta); 71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 72 __this_cpu_add(cpu_softirq_time, delta); 73 74 irq_time_write_end(); 75 local_irq_restore(flags); 76 } 77 EXPORT_SYMBOL_GPL(irqtime_account_irq); 78 79 static int irqtime_account_hi_update(void) 80 { 81 u64 *cpustat = kcpustat_this_cpu->cpustat; 82 unsigned long flags; 83 u64 latest_ns; 84 int ret = 0; 85 86 local_irq_save(flags); 87 latest_ns = this_cpu_read(cpu_hardirq_time); 88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 89 ret = 1; 90 local_irq_restore(flags); 91 return ret; 92 } 93 94 static int irqtime_account_si_update(void) 95 { 96 u64 *cpustat = kcpustat_this_cpu->cpustat; 97 unsigned long flags; 98 u64 latest_ns; 99 int ret = 0; 100 101 local_irq_save(flags); 102 latest_ns = this_cpu_read(cpu_softirq_time); 103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 104 ret = 1; 105 local_irq_restore(flags); 106 return ret; 107 } 108 109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 110 111 #define sched_clock_irqtime (0) 112 113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 114 115 static inline void task_group_account_field(struct task_struct *p, int index, 116 u64 tmp) 117 { 118 /* 119 * Since all updates are sure to touch the root cgroup, we 120 * get ourselves ahead and touch it first. If the root cgroup 121 * is the only cgroup, then nothing else should be necessary. 122 * 123 */ 124 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 125 126 cpuacct_account_field(p, index, tmp); 127 } 128 129 /* 130 * Account user cpu time to a process. 131 * @p: the process that the cpu time gets accounted to 132 * @cputime: the cpu time spent in user space since the last update 133 * @cputime_scaled: cputime scaled by cpu frequency 134 */ 135 void account_user_time(struct task_struct *p, cputime_t cputime, 136 cputime_t cputime_scaled) 137 { 138 int index; 139 140 /* Add user time to process. */ 141 p->utime += cputime; 142 p->utimescaled += cputime_scaled; 143 account_group_user_time(p, cputime); 144 145 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 146 147 /* Add user time to cpustat. */ 148 task_group_account_field(p, index, (__force u64) cputime); 149 150 /* Account for user time used */ 151 acct_account_cputime(p); 152 } 153 154 /* 155 * Account guest cpu time to a process. 156 * @p: the process that the cpu time gets accounted to 157 * @cputime: the cpu time spent in virtual machine since the last update 158 * @cputime_scaled: cputime scaled by cpu frequency 159 */ 160 static void account_guest_time(struct task_struct *p, cputime_t cputime, 161 cputime_t cputime_scaled) 162 { 163 u64 *cpustat = kcpustat_this_cpu->cpustat; 164 165 /* Add guest time to process. */ 166 p->utime += cputime; 167 p->utimescaled += cputime_scaled; 168 account_group_user_time(p, cputime); 169 p->gtime += cputime; 170 171 /* Add guest time to cpustat. */ 172 if (task_nice(p) > 0) { 173 cpustat[CPUTIME_NICE] += (__force u64) cputime; 174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 175 } else { 176 cpustat[CPUTIME_USER] += (__force u64) cputime; 177 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 178 } 179 } 180 181 /* 182 * Account system cpu time to a process and desired cpustat field 183 * @p: the process that the cpu time gets accounted to 184 * @cputime: the cpu time spent in kernel space since the last update 185 * @cputime_scaled: cputime scaled by cpu frequency 186 * @target_cputime64: pointer to cpustat field that has to be updated 187 */ 188 static inline 189 void __account_system_time(struct task_struct *p, cputime_t cputime, 190 cputime_t cputime_scaled, int index) 191 { 192 /* Add system time to process. */ 193 p->stime += cputime; 194 p->stimescaled += cputime_scaled; 195 account_group_system_time(p, cputime); 196 197 /* Add system time to cpustat. */ 198 task_group_account_field(p, index, (__force u64) cputime); 199 200 /* Account for system time used */ 201 acct_account_cputime(p); 202 } 203 204 /* 205 * Account system cpu time to a process. 206 * @p: the process that the cpu time gets accounted to 207 * @hardirq_offset: the offset to subtract from hardirq_count() 208 * @cputime: the cpu time spent in kernel space since the last update 209 * @cputime_scaled: cputime scaled by cpu frequency 210 */ 211 void account_system_time(struct task_struct *p, int hardirq_offset, 212 cputime_t cputime, cputime_t cputime_scaled) 213 { 214 int index; 215 216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 217 account_guest_time(p, cputime, cputime_scaled); 218 return; 219 } 220 221 if (hardirq_count() - hardirq_offset) 222 index = CPUTIME_IRQ; 223 else if (in_serving_softirq()) 224 index = CPUTIME_SOFTIRQ; 225 else 226 index = CPUTIME_SYSTEM; 227 228 __account_system_time(p, cputime, cputime_scaled, index); 229 } 230 231 /* 232 * Account for involuntary wait time. 233 * @cputime: the cpu time spent in involuntary wait 234 */ 235 void account_steal_time(cputime_t cputime) 236 { 237 u64 *cpustat = kcpustat_this_cpu->cpustat; 238 239 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 240 } 241 242 /* 243 * Account for idle time. 244 * @cputime: the cpu time spent in idle wait 245 */ 246 void account_idle_time(cputime_t cputime) 247 { 248 u64 *cpustat = kcpustat_this_cpu->cpustat; 249 struct rq *rq = this_rq(); 250 251 if (atomic_read(&rq->nr_iowait) > 0) 252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 253 else 254 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 255 } 256 257 static __always_inline bool steal_account_process_tick(void) 258 { 259 #ifdef CONFIG_PARAVIRT 260 if (static_key_false(¶virt_steal_enabled)) { 261 u64 steal; 262 cputime_t steal_ct; 263 264 steal = paravirt_steal_clock(smp_processor_id()); 265 steal -= this_rq()->prev_steal_time; 266 267 /* 268 * cputime_t may be less precise than nsecs (eg: if it's 269 * based on jiffies). Lets cast the result to cputime 270 * granularity and account the rest on the next rounds. 271 */ 272 steal_ct = nsecs_to_cputime(steal); 273 this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct); 274 275 account_steal_time(steal_ct); 276 return steal_ct; 277 } 278 #endif 279 return false; 280 } 281 282 /* 283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 284 * tasks (sum on group iteration) belonging to @tsk's group. 285 */ 286 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 287 { 288 struct signal_struct *sig = tsk->signal; 289 cputime_t utime, stime; 290 struct task_struct *t; 291 292 times->utime = sig->utime; 293 times->stime = sig->stime; 294 times->sum_exec_runtime = sig->sum_sched_runtime; 295 296 rcu_read_lock(); 297 /* make sure we can trust tsk->thread_group list */ 298 if (!likely(pid_alive(tsk))) 299 goto out; 300 301 t = tsk; 302 do { 303 task_cputime(t, &utime, &stime); 304 times->utime += utime; 305 times->stime += stime; 306 times->sum_exec_runtime += task_sched_runtime(t); 307 } while_each_thread(tsk, t); 308 out: 309 rcu_read_unlock(); 310 } 311 312 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 313 /* 314 * Account a tick to a process and cpustat 315 * @p: the process that the cpu time gets accounted to 316 * @user_tick: is the tick from userspace 317 * @rq: the pointer to rq 318 * 319 * Tick demultiplexing follows the order 320 * - pending hardirq update 321 * - pending softirq update 322 * - user_time 323 * - idle_time 324 * - system time 325 * - check for guest_time 326 * - else account as system_time 327 * 328 * Check for hardirq is done both for system and user time as there is 329 * no timer going off while we are on hardirq and hence we may never get an 330 * opportunity to update it solely in system time. 331 * p->stime and friends are only updated on system time and not on irq 332 * softirq as those do not count in task exec_runtime any more. 333 */ 334 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 335 struct rq *rq, int ticks) 336 { 337 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy); 338 u64 cputime = (__force u64) cputime_one_jiffy; 339 u64 *cpustat = kcpustat_this_cpu->cpustat; 340 341 if (steal_account_process_tick()) 342 return; 343 344 cputime *= ticks; 345 scaled *= ticks; 346 347 if (irqtime_account_hi_update()) { 348 cpustat[CPUTIME_IRQ] += cputime; 349 } else if (irqtime_account_si_update()) { 350 cpustat[CPUTIME_SOFTIRQ] += cputime; 351 } else if (this_cpu_ksoftirqd() == p) { 352 /* 353 * ksoftirqd time do not get accounted in cpu_softirq_time. 354 * So, we have to handle it separately here. 355 * Also, p->stime needs to be updated for ksoftirqd. 356 */ 357 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ); 358 } else if (user_tick) { 359 account_user_time(p, cputime, scaled); 360 } else if (p == rq->idle) { 361 account_idle_time(cputime); 362 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 363 account_guest_time(p, cputime, scaled); 364 } else { 365 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM); 366 } 367 } 368 369 static void irqtime_account_idle_ticks(int ticks) 370 { 371 struct rq *rq = this_rq(); 372 373 irqtime_account_process_tick(current, 0, rq, ticks); 374 } 375 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 376 static inline void irqtime_account_idle_ticks(int ticks) {} 377 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 378 struct rq *rq, int nr_ticks) {} 379 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 380 381 /* 382 * Use precise platform statistics if available: 383 */ 384 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 385 386 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH 387 void vtime_common_task_switch(struct task_struct *prev) 388 { 389 if (is_idle_task(prev)) 390 vtime_account_idle(prev); 391 else 392 vtime_account_system(prev); 393 394 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 395 vtime_account_user(prev); 396 #endif 397 arch_vtime_task_switch(prev); 398 } 399 #endif 400 401 /* 402 * Archs that account the whole time spent in the idle task 403 * (outside irq) as idle time can rely on this and just implement 404 * vtime_account_system() and vtime_account_idle(). Archs that 405 * have other meaning of the idle time (s390 only includes the 406 * time spent by the CPU when it's in low power mode) must override 407 * vtime_account(). 408 */ 409 #ifndef __ARCH_HAS_VTIME_ACCOUNT 410 void vtime_common_account_irq_enter(struct task_struct *tsk) 411 { 412 if (!in_interrupt()) { 413 /* 414 * If we interrupted user, context_tracking_in_user() 415 * is 1 because the context tracking don't hook 416 * on irq entry/exit. This way we know if 417 * we need to flush user time on kernel entry. 418 */ 419 if (context_tracking_in_user()) { 420 vtime_account_user(tsk); 421 return; 422 } 423 424 if (is_idle_task(tsk)) { 425 vtime_account_idle(tsk); 426 return; 427 } 428 } 429 vtime_account_system(tsk); 430 } 431 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter); 432 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 433 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 434 435 436 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 437 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 438 { 439 *ut = p->utime; 440 *st = p->stime; 441 } 442 443 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 444 { 445 struct task_cputime cputime; 446 447 thread_group_cputime(p, &cputime); 448 449 *ut = cputime.utime; 450 *st = cputime.stime; 451 } 452 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 453 /* 454 * Account a single tick of cpu time. 455 * @p: the process that the cpu time gets accounted to 456 * @user_tick: indicates if the tick is a user or a system tick 457 */ 458 void account_process_tick(struct task_struct *p, int user_tick) 459 { 460 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 461 struct rq *rq = this_rq(); 462 463 if (vtime_accounting_enabled()) 464 return; 465 466 if (sched_clock_irqtime) { 467 irqtime_account_process_tick(p, user_tick, rq, 1); 468 return; 469 } 470 471 if (steal_account_process_tick()) 472 return; 473 474 if (user_tick) 475 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 476 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 477 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 478 one_jiffy_scaled); 479 else 480 account_idle_time(cputime_one_jiffy); 481 } 482 483 /* 484 * Account multiple ticks of steal time. 485 * @p: the process from which the cpu time has been stolen 486 * @ticks: number of stolen ticks 487 */ 488 void account_steal_ticks(unsigned long ticks) 489 { 490 account_steal_time(jiffies_to_cputime(ticks)); 491 } 492 493 /* 494 * Account multiple ticks of idle time. 495 * @ticks: number of stolen ticks 496 */ 497 void account_idle_ticks(unsigned long ticks) 498 { 499 500 if (sched_clock_irqtime) { 501 irqtime_account_idle_ticks(ticks); 502 return; 503 } 504 505 account_idle_time(jiffies_to_cputime(ticks)); 506 } 507 508 /* 509 * Perform (stime * rtime) / total, but avoid multiplication overflow by 510 * loosing precision when the numbers are big. 511 */ 512 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total) 513 { 514 u64 scaled; 515 516 for (;;) { 517 /* Make sure "rtime" is the bigger of stime/rtime */ 518 if (stime > rtime) 519 swap(rtime, stime); 520 521 /* Make sure 'total' fits in 32 bits */ 522 if (total >> 32) 523 goto drop_precision; 524 525 /* Does rtime (and thus stime) fit in 32 bits? */ 526 if (!(rtime >> 32)) 527 break; 528 529 /* Can we just balance rtime/stime rather than dropping bits? */ 530 if (stime >> 31) 531 goto drop_precision; 532 533 /* We can grow stime and shrink rtime and try to make them both fit */ 534 stime <<= 1; 535 rtime >>= 1; 536 continue; 537 538 drop_precision: 539 /* We drop from rtime, it has more bits than stime */ 540 rtime >>= 1; 541 total >>= 1; 542 } 543 544 /* 545 * Make sure gcc understands that this is a 32x32->64 multiply, 546 * followed by a 64/32->64 divide. 547 */ 548 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 549 return (__force cputime_t) scaled; 550 } 551 552 /* 553 * Adjust tick based cputime random precision against scheduler 554 * runtime accounting. 555 */ 556 static void cputime_adjust(struct task_cputime *curr, 557 struct cputime *prev, 558 cputime_t *ut, cputime_t *st) 559 { 560 cputime_t rtime, stime, utime; 561 562 /* 563 * Tick based cputime accounting depend on random scheduling 564 * timeslices of a task to be interrupted or not by the timer. 565 * Depending on these circumstances, the number of these interrupts 566 * may be over or under-optimistic, matching the real user and system 567 * cputime with a variable precision. 568 * 569 * Fix this by scaling these tick based values against the total 570 * runtime accounted by the CFS scheduler. 571 */ 572 rtime = nsecs_to_cputime(curr->sum_exec_runtime); 573 574 /* 575 * Update userspace visible utime/stime values only if actual execution 576 * time is bigger than already exported. Note that can happen, that we 577 * provided bigger values due to scaling inaccuracy on big numbers. 578 */ 579 if (prev->stime + prev->utime >= rtime) 580 goto out; 581 582 stime = curr->stime; 583 utime = curr->utime; 584 585 if (utime == 0) { 586 stime = rtime; 587 } else if (stime == 0) { 588 utime = rtime; 589 } else { 590 cputime_t total = stime + utime; 591 592 stime = scale_stime((__force u64)stime, 593 (__force u64)rtime, (__force u64)total); 594 utime = rtime - stime; 595 } 596 597 /* 598 * If the tick based count grows faster than the scheduler one, 599 * the result of the scaling may go backward. 600 * Let's enforce monotonicity. 601 */ 602 prev->stime = max(prev->stime, stime); 603 prev->utime = max(prev->utime, utime); 604 605 out: 606 *ut = prev->utime; 607 *st = prev->stime; 608 } 609 610 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 611 { 612 struct task_cputime cputime = { 613 .sum_exec_runtime = p->se.sum_exec_runtime, 614 }; 615 616 task_cputime(p, &cputime.utime, &cputime.stime); 617 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 618 } 619 620 /* 621 * Must be called with siglock held. 622 */ 623 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 624 { 625 struct task_cputime cputime; 626 627 thread_group_cputime(p, &cputime); 628 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 629 } 630 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 631 632 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 633 static unsigned long long vtime_delta(struct task_struct *tsk) 634 { 635 unsigned long long clock; 636 637 clock = local_clock(); 638 if (clock < tsk->vtime_snap) 639 return 0; 640 641 return clock - tsk->vtime_snap; 642 } 643 644 static cputime_t get_vtime_delta(struct task_struct *tsk) 645 { 646 unsigned long long delta = vtime_delta(tsk); 647 648 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING); 649 tsk->vtime_snap += delta; 650 651 /* CHECKME: always safe to convert nsecs to cputime? */ 652 return nsecs_to_cputime(delta); 653 } 654 655 static void __vtime_account_system(struct task_struct *tsk) 656 { 657 cputime_t delta_cpu = get_vtime_delta(tsk); 658 659 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu)); 660 } 661 662 void vtime_account_system(struct task_struct *tsk) 663 { 664 write_seqlock(&tsk->vtime_seqlock); 665 __vtime_account_system(tsk); 666 write_sequnlock(&tsk->vtime_seqlock); 667 } 668 669 void vtime_gen_account_irq_exit(struct task_struct *tsk) 670 { 671 write_seqlock(&tsk->vtime_seqlock); 672 __vtime_account_system(tsk); 673 if (context_tracking_in_user()) 674 tsk->vtime_snap_whence = VTIME_USER; 675 write_sequnlock(&tsk->vtime_seqlock); 676 } 677 678 void vtime_account_user(struct task_struct *tsk) 679 { 680 cputime_t delta_cpu; 681 682 write_seqlock(&tsk->vtime_seqlock); 683 delta_cpu = get_vtime_delta(tsk); 684 tsk->vtime_snap_whence = VTIME_SYS; 685 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu)); 686 write_sequnlock(&tsk->vtime_seqlock); 687 } 688 689 void vtime_user_enter(struct task_struct *tsk) 690 { 691 write_seqlock(&tsk->vtime_seqlock); 692 __vtime_account_system(tsk); 693 tsk->vtime_snap_whence = VTIME_USER; 694 write_sequnlock(&tsk->vtime_seqlock); 695 } 696 697 void vtime_guest_enter(struct task_struct *tsk) 698 { 699 /* 700 * The flags must be updated under the lock with 701 * the vtime_snap flush and update. 702 * That enforces a right ordering and update sequence 703 * synchronization against the reader (task_gtime()) 704 * that can thus safely catch up with a tickless delta. 705 */ 706 write_seqlock(&tsk->vtime_seqlock); 707 __vtime_account_system(tsk); 708 current->flags |= PF_VCPU; 709 write_sequnlock(&tsk->vtime_seqlock); 710 } 711 EXPORT_SYMBOL_GPL(vtime_guest_enter); 712 713 void vtime_guest_exit(struct task_struct *tsk) 714 { 715 write_seqlock(&tsk->vtime_seqlock); 716 __vtime_account_system(tsk); 717 current->flags &= ~PF_VCPU; 718 write_sequnlock(&tsk->vtime_seqlock); 719 } 720 EXPORT_SYMBOL_GPL(vtime_guest_exit); 721 722 void vtime_account_idle(struct task_struct *tsk) 723 { 724 cputime_t delta_cpu = get_vtime_delta(tsk); 725 726 account_idle_time(delta_cpu); 727 } 728 729 void arch_vtime_task_switch(struct task_struct *prev) 730 { 731 write_seqlock(&prev->vtime_seqlock); 732 prev->vtime_snap_whence = VTIME_SLEEPING; 733 write_sequnlock(&prev->vtime_seqlock); 734 735 write_seqlock(¤t->vtime_seqlock); 736 current->vtime_snap_whence = VTIME_SYS; 737 current->vtime_snap = sched_clock_cpu(smp_processor_id()); 738 write_sequnlock(¤t->vtime_seqlock); 739 } 740 741 void vtime_init_idle(struct task_struct *t, int cpu) 742 { 743 unsigned long flags; 744 745 write_seqlock_irqsave(&t->vtime_seqlock, flags); 746 t->vtime_snap_whence = VTIME_SYS; 747 t->vtime_snap = sched_clock_cpu(cpu); 748 write_sequnlock_irqrestore(&t->vtime_seqlock, flags); 749 } 750 751 cputime_t task_gtime(struct task_struct *t) 752 { 753 unsigned int seq; 754 cputime_t gtime; 755 756 do { 757 seq = read_seqbegin(&t->vtime_seqlock); 758 759 gtime = t->gtime; 760 if (t->flags & PF_VCPU) 761 gtime += vtime_delta(t); 762 763 } while (read_seqretry(&t->vtime_seqlock, seq)); 764 765 return gtime; 766 } 767 768 /* 769 * Fetch cputime raw values from fields of task_struct and 770 * add up the pending nohz execution time since the last 771 * cputime snapshot. 772 */ 773 static void 774 fetch_task_cputime(struct task_struct *t, 775 cputime_t *u_dst, cputime_t *s_dst, 776 cputime_t *u_src, cputime_t *s_src, 777 cputime_t *udelta, cputime_t *sdelta) 778 { 779 unsigned int seq; 780 unsigned long long delta; 781 782 do { 783 *udelta = 0; 784 *sdelta = 0; 785 786 seq = read_seqbegin(&t->vtime_seqlock); 787 788 if (u_dst) 789 *u_dst = *u_src; 790 if (s_dst) 791 *s_dst = *s_src; 792 793 /* Task is sleeping, nothing to add */ 794 if (t->vtime_snap_whence == VTIME_SLEEPING || 795 is_idle_task(t)) 796 continue; 797 798 delta = vtime_delta(t); 799 800 /* 801 * Task runs either in user or kernel space, add pending nohz time to 802 * the right place. 803 */ 804 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) { 805 *udelta = delta; 806 } else { 807 if (t->vtime_snap_whence == VTIME_SYS) 808 *sdelta = delta; 809 } 810 } while (read_seqretry(&t->vtime_seqlock, seq)); 811 } 812 813 814 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime) 815 { 816 cputime_t udelta, sdelta; 817 818 fetch_task_cputime(t, utime, stime, &t->utime, 819 &t->stime, &udelta, &sdelta); 820 if (utime) 821 *utime += udelta; 822 if (stime) 823 *stime += sdelta; 824 } 825 826 void task_cputime_scaled(struct task_struct *t, 827 cputime_t *utimescaled, cputime_t *stimescaled) 828 { 829 cputime_t udelta, sdelta; 830 831 fetch_task_cputime(t, utimescaled, stimescaled, 832 &t->utimescaled, &t->stimescaled, &udelta, &sdelta); 833 if (utimescaled) 834 *utimescaled += cputime_to_scaled(udelta); 835 if (stimescaled) 836 *stimescaled += cputime_to_scaled(sdelta); 837 } 838 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 839