1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include <linux/context_tracking.h> 7 #include "sched.h" 8 9 10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 11 12 /* 13 * There are no locks covering percpu hardirq/softirq time. 14 * They are only modified in vtime_account, on corresponding CPU 15 * with interrupts disabled. So, writes are safe. 16 * They are read and saved off onto struct rq in update_rq_clock(). 17 * This may result in other CPU reading this CPU's irq time and can 18 * race with irq/vtime_account on this CPU. We would either get old 19 * or new value with a side effect of accounting a slice of irq time to wrong 20 * task when irq is in progress while we read rq->clock. That is a worthy 21 * compromise in place of having locks on each irq in account_system_time. 22 */ 23 DEFINE_PER_CPU(u64, cpu_hardirq_time); 24 DEFINE_PER_CPU(u64, cpu_softirq_time); 25 26 static DEFINE_PER_CPU(u64, irq_start_time); 27 static int sched_clock_irqtime; 28 29 void enable_sched_clock_irqtime(void) 30 { 31 sched_clock_irqtime = 1; 32 } 33 34 void disable_sched_clock_irqtime(void) 35 { 36 sched_clock_irqtime = 0; 37 } 38 39 #ifndef CONFIG_64BIT 40 DEFINE_PER_CPU(seqcount_t, irq_time_seq); 41 #endif /* CONFIG_64BIT */ 42 43 /* 44 * Called before incrementing preempt_count on {soft,}irq_enter 45 * and before decrementing preempt_count on {soft,}irq_exit. 46 */ 47 void irqtime_account_irq(struct task_struct *curr) 48 { 49 unsigned long flags; 50 s64 delta; 51 int cpu; 52 53 if (!sched_clock_irqtime) 54 return; 55 56 local_irq_save(flags); 57 58 cpu = smp_processor_id(); 59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 60 __this_cpu_add(irq_start_time, delta); 61 62 irq_time_write_begin(); 63 /* 64 * We do not account for softirq time from ksoftirqd here. 65 * We want to continue accounting softirq time to ksoftirqd thread 66 * in that case, so as not to confuse scheduler with a special task 67 * that do not consume any time, but still wants to run. 68 */ 69 if (hardirq_count()) 70 __this_cpu_add(cpu_hardirq_time, delta); 71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 72 __this_cpu_add(cpu_softirq_time, delta); 73 74 irq_time_write_end(); 75 local_irq_restore(flags); 76 } 77 EXPORT_SYMBOL_GPL(irqtime_account_irq); 78 79 static int irqtime_account_hi_update(void) 80 { 81 u64 *cpustat = kcpustat_this_cpu->cpustat; 82 unsigned long flags; 83 u64 latest_ns; 84 int ret = 0; 85 86 local_irq_save(flags); 87 latest_ns = this_cpu_read(cpu_hardirq_time); 88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 89 ret = 1; 90 local_irq_restore(flags); 91 return ret; 92 } 93 94 static int irqtime_account_si_update(void) 95 { 96 u64 *cpustat = kcpustat_this_cpu->cpustat; 97 unsigned long flags; 98 u64 latest_ns; 99 int ret = 0; 100 101 local_irq_save(flags); 102 latest_ns = this_cpu_read(cpu_softirq_time); 103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 104 ret = 1; 105 local_irq_restore(flags); 106 return ret; 107 } 108 109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 110 111 #define sched_clock_irqtime (0) 112 113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 114 115 static inline void task_group_account_field(struct task_struct *p, int index, 116 u64 tmp) 117 { 118 #ifdef CONFIG_CGROUP_CPUACCT 119 struct kernel_cpustat *kcpustat; 120 struct cpuacct *ca; 121 #endif 122 /* 123 * Since all updates are sure to touch the root cgroup, we 124 * get ourselves ahead and touch it first. If the root cgroup 125 * is the only cgroup, then nothing else should be necessary. 126 * 127 */ 128 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; 129 130 #ifdef CONFIG_CGROUP_CPUACCT 131 if (unlikely(!cpuacct_subsys.active)) 132 return; 133 134 rcu_read_lock(); 135 ca = task_ca(p); 136 while (ca && (ca != &root_cpuacct)) { 137 kcpustat = this_cpu_ptr(ca->cpustat); 138 kcpustat->cpustat[index] += tmp; 139 ca = parent_ca(ca); 140 } 141 rcu_read_unlock(); 142 #endif 143 } 144 145 /* 146 * Account user cpu time to a process. 147 * @p: the process that the cpu time gets accounted to 148 * @cputime: the cpu time spent in user space since the last update 149 * @cputime_scaled: cputime scaled by cpu frequency 150 */ 151 void account_user_time(struct task_struct *p, cputime_t cputime, 152 cputime_t cputime_scaled) 153 { 154 int index; 155 156 /* Add user time to process. */ 157 p->utime += cputime; 158 p->utimescaled += cputime_scaled; 159 account_group_user_time(p, cputime); 160 161 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 162 163 /* Add user time to cpustat. */ 164 task_group_account_field(p, index, (__force u64) cputime); 165 166 /* Account for user time used */ 167 acct_account_cputime(p); 168 } 169 170 /* 171 * Account guest cpu time to a process. 172 * @p: the process that the cpu time gets accounted to 173 * @cputime: the cpu time spent in virtual machine since the last update 174 * @cputime_scaled: cputime scaled by cpu frequency 175 */ 176 static void account_guest_time(struct task_struct *p, cputime_t cputime, 177 cputime_t cputime_scaled) 178 { 179 u64 *cpustat = kcpustat_this_cpu->cpustat; 180 181 /* Add guest time to process. */ 182 p->utime += cputime; 183 p->utimescaled += cputime_scaled; 184 account_group_user_time(p, cputime); 185 p->gtime += cputime; 186 187 /* Add guest time to cpustat. */ 188 if (TASK_NICE(p) > 0) { 189 cpustat[CPUTIME_NICE] += (__force u64) cputime; 190 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 191 } else { 192 cpustat[CPUTIME_USER] += (__force u64) cputime; 193 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 194 } 195 } 196 197 /* 198 * Account system cpu time to a process and desired cpustat field 199 * @p: the process that the cpu time gets accounted to 200 * @cputime: the cpu time spent in kernel space since the last update 201 * @cputime_scaled: cputime scaled by cpu frequency 202 * @target_cputime64: pointer to cpustat field that has to be updated 203 */ 204 static inline 205 void __account_system_time(struct task_struct *p, cputime_t cputime, 206 cputime_t cputime_scaled, int index) 207 { 208 /* Add system time to process. */ 209 p->stime += cputime; 210 p->stimescaled += cputime_scaled; 211 account_group_system_time(p, cputime); 212 213 /* Add system time to cpustat. */ 214 task_group_account_field(p, index, (__force u64) cputime); 215 216 /* Account for system time used */ 217 acct_account_cputime(p); 218 } 219 220 /* 221 * Account system cpu time to a process. 222 * @p: the process that the cpu time gets accounted to 223 * @hardirq_offset: the offset to subtract from hardirq_count() 224 * @cputime: the cpu time spent in kernel space since the last update 225 * @cputime_scaled: cputime scaled by cpu frequency 226 */ 227 void account_system_time(struct task_struct *p, int hardirq_offset, 228 cputime_t cputime, cputime_t cputime_scaled) 229 { 230 int index; 231 232 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 233 account_guest_time(p, cputime, cputime_scaled); 234 return; 235 } 236 237 if (hardirq_count() - hardirq_offset) 238 index = CPUTIME_IRQ; 239 else if (in_serving_softirq()) 240 index = CPUTIME_SOFTIRQ; 241 else 242 index = CPUTIME_SYSTEM; 243 244 __account_system_time(p, cputime, cputime_scaled, index); 245 } 246 247 /* 248 * Account for involuntary wait time. 249 * @cputime: the cpu time spent in involuntary wait 250 */ 251 void account_steal_time(cputime_t cputime) 252 { 253 u64 *cpustat = kcpustat_this_cpu->cpustat; 254 255 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 256 } 257 258 /* 259 * Account for idle time. 260 * @cputime: the cpu time spent in idle wait 261 */ 262 void account_idle_time(cputime_t cputime) 263 { 264 u64 *cpustat = kcpustat_this_cpu->cpustat; 265 struct rq *rq = this_rq(); 266 267 if (atomic_read(&rq->nr_iowait) > 0) 268 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 269 else 270 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 271 } 272 273 static __always_inline bool steal_account_process_tick(void) 274 { 275 #ifdef CONFIG_PARAVIRT 276 if (static_key_false(¶virt_steal_enabled)) { 277 u64 steal, st = 0; 278 279 steal = paravirt_steal_clock(smp_processor_id()); 280 steal -= this_rq()->prev_steal_time; 281 282 st = steal_ticks(steal); 283 this_rq()->prev_steal_time += st * TICK_NSEC; 284 285 account_steal_time(st); 286 return st; 287 } 288 #endif 289 return false; 290 } 291 292 /* 293 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 294 * tasks (sum on group iteration) belonging to @tsk's group. 295 */ 296 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 297 { 298 struct signal_struct *sig = tsk->signal; 299 cputime_t utime, stime; 300 struct task_struct *t; 301 302 times->utime = sig->utime; 303 times->stime = sig->stime; 304 times->sum_exec_runtime = sig->sum_sched_runtime; 305 306 rcu_read_lock(); 307 /* make sure we can trust tsk->thread_group list */ 308 if (!likely(pid_alive(tsk))) 309 goto out; 310 311 t = tsk; 312 do { 313 task_cputime(tsk, &utime, &stime); 314 times->utime += utime; 315 times->stime += stime; 316 times->sum_exec_runtime += task_sched_runtime(t); 317 } while_each_thread(tsk, t); 318 out: 319 rcu_read_unlock(); 320 } 321 322 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 323 /* 324 * Account a tick to a process and cpustat 325 * @p: the process that the cpu time gets accounted to 326 * @user_tick: is the tick from userspace 327 * @rq: the pointer to rq 328 * 329 * Tick demultiplexing follows the order 330 * - pending hardirq update 331 * - pending softirq update 332 * - user_time 333 * - idle_time 334 * - system time 335 * - check for guest_time 336 * - else account as system_time 337 * 338 * Check for hardirq is done both for system and user time as there is 339 * no timer going off while we are on hardirq and hence we may never get an 340 * opportunity to update it solely in system time. 341 * p->stime and friends are only updated on system time and not on irq 342 * softirq as those do not count in task exec_runtime any more. 343 */ 344 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 345 struct rq *rq) 346 { 347 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 348 u64 *cpustat = kcpustat_this_cpu->cpustat; 349 350 if (steal_account_process_tick()) 351 return; 352 353 if (irqtime_account_hi_update()) { 354 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; 355 } else if (irqtime_account_si_update()) { 356 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; 357 } else if (this_cpu_ksoftirqd() == p) { 358 /* 359 * ksoftirqd time do not get accounted in cpu_softirq_time. 360 * So, we have to handle it separately here. 361 * Also, p->stime needs to be updated for ksoftirqd. 362 */ 363 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 364 CPUTIME_SOFTIRQ); 365 } else if (user_tick) { 366 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 367 } else if (p == rq->idle) { 368 account_idle_time(cputime_one_jiffy); 369 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 370 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); 371 } else { 372 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 373 CPUTIME_SYSTEM); 374 } 375 } 376 377 static void irqtime_account_idle_ticks(int ticks) 378 { 379 int i; 380 struct rq *rq = this_rq(); 381 382 for (i = 0; i < ticks; i++) 383 irqtime_account_process_tick(current, 0, rq); 384 } 385 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 386 static inline void irqtime_account_idle_ticks(int ticks) {} 387 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 388 struct rq *rq) {} 389 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 390 391 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 392 /* 393 * Account a single tick of cpu time. 394 * @p: the process that the cpu time gets accounted to 395 * @user_tick: indicates if the tick is a user or a system tick 396 */ 397 void account_process_tick(struct task_struct *p, int user_tick) 398 { 399 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 400 struct rq *rq = this_rq(); 401 402 if (vtime_accounting_enabled()) 403 return; 404 405 if (sched_clock_irqtime) { 406 irqtime_account_process_tick(p, user_tick, rq); 407 return; 408 } 409 410 if (steal_account_process_tick()) 411 return; 412 413 if (user_tick) 414 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 415 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 416 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 417 one_jiffy_scaled); 418 else 419 account_idle_time(cputime_one_jiffy); 420 } 421 422 /* 423 * Account multiple ticks of steal time. 424 * @p: the process from which the cpu time has been stolen 425 * @ticks: number of stolen ticks 426 */ 427 void account_steal_ticks(unsigned long ticks) 428 { 429 account_steal_time(jiffies_to_cputime(ticks)); 430 } 431 432 /* 433 * Account multiple ticks of idle time. 434 * @ticks: number of stolen ticks 435 */ 436 void account_idle_ticks(unsigned long ticks) 437 { 438 439 if (sched_clock_irqtime) { 440 irqtime_account_idle_ticks(ticks); 441 return; 442 } 443 444 account_idle_time(jiffies_to_cputime(ticks)); 445 } 446 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 447 448 /* 449 * Use precise platform statistics if available: 450 */ 451 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 452 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 453 { 454 *ut = p->utime; 455 *st = p->stime; 456 } 457 458 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 459 { 460 struct task_cputime cputime; 461 462 thread_group_cputime(p, &cputime); 463 464 *ut = cputime.utime; 465 *st = cputime.stime; 466 } 467 468 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH 469 void vtime_task_switch(struct task_struct *prev) 470 { 471 if (!vtime_accounting_enabled()) 472 return; 473 474 if (is_idle_task(prev)) 475 vtime_account_idle(prev); 476 else 477 vtime_account_system(prev); 478 479 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 480 vtime_account_user(prev); 481 #endif 482 arch_vtime_task_switch(prev); 483 } 484 #endif 485 486 /* 487 * Archs that account the whole time spent in the idle task 488 * (outside irq) as idle time can rely on this and just implement 489 * vtime_account_system() and vtime_account_idle(). Archs that 490 * have other meaning of the idle time (s390 only includes the 491 * time spent by the CPU when it's in low power mode) must override 492 * vtime_account(). 493 */ 494 #ifndef __ARCH_HAS_VTIME_ACCOUNT 495 void vtime_account_irq_enter(struct task_struct *tsk) 496 { 497 if (!vtime_accounting_enabled()) 498 return; 499 500 if (!in_interrupt()) { 501 /* 502 * If we interrupted user, context_tracking_in_user() 503 * is 1 because the context tracking don't hook 504 * on irq entry/exit. This way we know if 505 * we need to flush user time on kernel entry. 506 */ 507 if (context_tracking_in_user()) { 508 vtime_account_user(tsk); 509 return; 510 } 511 512 if (is_idle_task(tsk)) { 513 vtime_account_idle(tsk); 514 return; 515 } 516 } 517 vtime_account_system(tsk); 518 } 519 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 520 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 521 522 #else /* !CONFIG_VIRT_CPU_ACCOUNTING */ 523 524 static cputime_t scale_stime(cputime_t stime, cputime_t rtime, cputime_t total) 525 { 526 u64 temp = (__force u64) rtime; 527 528 temp *= (__force u64) stime; 529 530 if (sizeof(cputime_t) == 4) 531 temp = div_u64(temp, (__force u32) total); 532 else 533 temp = div64_u64(temp, (__force u64) total); 534 535 return (__force cputime_t) temp; 536 } 537 538 /* 539 * Adjust tick based cputime random precision against scheduler 540 * runtime accounting. 541 */ 542 static void cputime_adjust(struct task_cputime *curr, 543 struct cputime *prev, 544 cputime_t *ut, cputime_t *st) 545 { 546 cputime_t rtime, stime, total; 547 548 stime = curr->stime; 549 total = stime + curr->utime; 550 551 /* 552 * Tick based cputime accounting depend on random scheduling 553 * timeslices of a task to be interrupted or not by the timer. 554 * Depending on these circumstances, the number of these interrupts 555 * may be over or under-optimistic, matching the real user and system 556 * cputime with a variable precision. 557 * 558 * Fix this by scaling these tick based values against the total 559 * runtime accounted by the CFS scheduler. 560 */ 561 rtime = nsecs_to_cputime(curr->sum_exec_runtime); 562 563 if (total) 564 stime = scale_stime(stime, rtime, total); 565 else 566 stime = rtime; 567 568 /* 569 * If the tick based count grows faster than the scheduler one, 570 * the result of the scaling may go backward. 571 * Let's enforce monotonicity. 572 */ 573 prev->stime = max(prev->stime, stime); 574 prev->utime = max(prev->utime, rtime - prev->stime); 575 576 *ut = prev->utime; 577 *st = prev->stime; 578 } 579 580 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 581 { 582 struct task_cputime cputime = { 583 .sum_exec_runtime = p->se.sum_exec_runtime, 584 }; 585 586 task_cputime(p, &cputime.utime, &cputime.stime); 587 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 588 } 589 590 /* 591 * Must be called with siglock held. 592 */ 593 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 594 { 595 struct task_cputime cputime; 596 597 thread_group_cputime(p, &cputime); 598 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 599 } 600 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING */ 601 602 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 603 static unsigned long long vtime_delta(struct task_struct *tsk) 604 { 605 unsigned long long clock; 606 607 clock = sched_clock(); 608 if (clock < tsk->vtime_snap) 609 return 0; 610 611 return clock - tsk->vtime_snap; 612 } 613 614 static cputime_t get_vtime_delta(struct task_struct *tsk) 615 { 616 unsigned long long delta = vtime_delta(tsk); 617 618 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING); 619 tsk->vtime_snap += delta; 620 621 /* CHECKME: always safe to convert nsecs to cputime? */ 622 return nsecs_to_cputime(delta); 623 } 624 625 static void __vtime_account_system(struct task_struct *tsk) 626 { 627 cputime_t delta_cpu = get_vtime_delta(tsk); 628 629 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu)); 630 } 631 632 void vtime_account_system(struct task_struct *tsk) 633 { 634 if (!vtime_accounting_enabled()) 635 return; 636 637 write_seqlock(&tsk->vtime_seqlock); 638 __vtime_account_system(tsk); 639 write_sequnlock(&tsk->vtime_seqlock); 640 } 641 642 void vtime_account_irq_exit(struct task_struct *tsk) 643 { 644 if (!vtime_accounting_enabled()) 645 return; 646 647 write_seqlock(&tsk->vtime_seqlock); 648 if (context_tracking_in_user()) 649 tsk->vtime_snap_whence = VTIME_USER; 650 __vtime_account_system(tsk); 651 write_sequnlock(&tsk->vtime_seqlock); 652 } 653 654 void vtime_account_user(struct task_struct *tsk) 655 { 656 cputime_t delta_cpu; 657 658 if (!vtime_accounting_enabled()) 659 return; 660 661 delta_cpu = get_vtime_delta(tsk); 662 663 write_seqlock(&tsk->vtime_seqlock); 664 tsk->vtime_snap_whence = VTIME_SYS; 665 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu)); 666 write_sequnlock(&tsk->vtime_seqlock); 667 } 668 669 void vtime_user_enter(struct task_struct *tsk) 670 { 671 if (!vtime_accounting_enabled()) 672 return; 673 674 write_seqlock(&tsk->vtime_seqlock); 675 tsk->vtime_snap_whence = VTIME_USER; 676 __vtime_account_system(tsk); 677 write_sequnlock(&tsk->vtime_seqlock); 678 } 679 680 void vtime_guest_enter(struct task_struct *tsk) 681 { 682 write_seqlock(&tsk->vtime_seqlock); 683 __vtime_account_system(tsk); 684 current->flags |= PF_VCPU; 685 write_sequnlock(&tsk->vtime_seqlock); 686 } 687 688 void vtime_guest_exit(struct task_struct *tsk) 689 { 690 write_seqlock(&tsk->vtime_seqlock); 691 __vtime_account_system(tsk); 692 current->flags &= ~PF_VCPU; 693 write_sequnlock(&tsk->vtime_seqlock); 694 } 695 696 void vtime_account_idle(struct task_struct *tsk) 697 { 698 cputime_t delta_cpu = get_vtime_delta(tsk); 699 700 account_idle_time(delta_cpu); 701 } 702 703 bool vtime_accounting_enabled(void) 704 { 705 return context_tracking_active(); 706 } 707 708 void arch_vtime_task_switch(struct task_struct *prev) 709 { 710 write_seqlock(&prev->vtime_seqlock); 711 prev->vtime_snap_whence = VTIME_SLEEPING; 712 write_sequnlock(&prev->vtime_seqlock); 713 714 write_seqlock(¤t->vtime_seqlock); 715 current->vtime_snap_whence = VTIME_SYS; 716 current->vtime_snap = sched_clock(); 717 write_sequnlock(¤t->vtime_seqlock); 718 } 719 720 void vtime_init_idle(struct task_struct *t) 721 { 722 unsigned long flags; 723 724 write_seqlock_irqsave(&t->vtime_seqlock, flags); 725 t->vtime_snap_whence = VTIME_SYS; 726 t->vtime_snap = sched_clock(); 727 write_sequnlock_irqrestore(&t->vtime_seqlock, flags); 728 } 729 730 cputime_t task_gtime(struct task_struct *t) 731 { 732 unsigned int seq; 733 cputime_t gtime; 734 735 do { 736 seq = read_seqbegin(&t->vtime_seqlock); 737 738 gtime = t->gtime; 739 if (t->flags & PF_VCPU) 740 gtime += vtime_delta(t); 741 742 } while (read_seqretry(&t->vtime_seqlock, seq)); 743 744 return gtime; 745 } 746 747 /* 748 * Fetch cputime raw values from fields of task_struct and 749 * add up the pending nohz execution time since the last 750 * cputime snapshot. 751 */ 752 static void 753 fetch_task_cputime(struct task_struct *t, 754 cputime_t *u_dst, cputime_t *s_dst, 755 cputime_t *u_src, cputime_t *s_src, 756 cputime_t *udelta, cputime_t *sdelta) 757 { 758 unsigned int seq; 759 unsigned long long delta; 760 761 do { 762 *udelta = 0; 763 *sdelta = 0; 764 765 seq = read_seqbegin(&t->vtime_seqlock); 766 767 if (u_dst) 768 *u_dst = *u_src; 769 if (s_dst) 770 *s_dst = *s_src; 771 772 /* Task is sleeping, nothing to add */ 773 if (t->vtime_snap_whence == VTIME_SLEEPING || 774 is_idle_task(t)) 775 continue; 776 777 delta = vtime_delta(t); 778 779 /* 780 * Task runs either in user or kernel space, add pending nohz time to 781 * the right place. 782 */ 783 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) { 784 *udelta = delta; 785 } else { 786 if (t->vtime_snap_whence == VTIME_SYS) 787 *sdelta = delta; 788 } 789 } while (read_seqretry(&t->vtime_seqlock, seq)); 790 } 791 792 793 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime) 794 { 795 cputime_t udelta, sdelta; 796 797 fetch_task_cputime(t, utime, stime, &t->utime, 798 &t->stime, &udelta, &sdelta); 799 if (utime) 800 *utime += udelta; 801 if (stime) 802 *stime += sdelta; 803 } 804 805 void task_cputime_scaled(struct task_struct *t, 806 cputime_t *utimescaled, cputime_t *stimescaled) 807 { 808 cputime_t udelta, sdelta; 809 810 fetch_task_cputime(t, utimescaled, stimescaled, 811 &t->utimescaled, &t->stimescaled, &udelta, &sdelta); 812 if (utimescaled) 813 *utimescaled += cputime_to_scaled(udelta); 814 if (stimescaled) 815 *stimescaled += cputime_to_scaled(sdelta); 816 } 817 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 818