1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple CPU accounting cgroup controller 4 */ 5 #include "sched.h" 6 7 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 8 9 /* 10 * There are no locks covering percpu hardirq/softirq time. 11 * They are only modified in vtime_account, on corresponding CPU 12 * with interrupts disabled. So, writes are safe. 13 * They are read and saved off onto struct rq in update_rq_clock(). 14 * This may result in other CPU reading this CPU's irq time and can 15 * race with irq/vtime_account on this CPU. We would either get old 16 * or new value with a side effect of accounting a slice of irq time to wrong 17 * task when irq is in progress while we read rq->clock. That is a worthy 18 * compromise in place of having locks on each irq in account_system_time. 19 */ 20 DEFINE_PER_CPU(struct irqtime, cpu_irqtime); 21 22 static int sched_clock_irqtime; 23 24 void enable_sched_clock_irqtime(void) 25 { 26 sched_clock_irqtime = 1; 27 } 28 29 void disable_sched_clock_irqtime(void) 30 { 31 sched_clock_irqtime = 0; 32 } 33 34 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, 35 enum cpu_usage_stat idx) 36 { 37 u64 *cpustat = kcpustat_this_cpu->cpustat; 38 39 u64_stats_update_begin(&irqtime->sync); 40 cpustat[idx] += delta; 41 irqtime->total += delta; 42 irqtime->tick_delta += delta; 43 u64_stats_update_end(&irqtime->sync); 44 } 45 46 /* 47 * Called after incrementing preempt_count on {soft,}irq_enter 48 * and before decrementing preempt_count on {soft,}irq_exit. 49 */ 50 void irqtime_account_irq(struct task_struct *curr, unsigned int offset) 51 { 52 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 53 unsigned int pc; 54 s64 delta; 55 int cpu; 56 57 if (!sched_clock_irqtime) 58 return; 59 60 cpu = smp_processor_id(); 61 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; 62 irqtime->irq_start_time += delta; 63 pc = irq_count() - offset; 64 65 /* 66 * We do not account for softirq time from ksoftirqd here. 67 * We want to continue accounting softirq time to ksoftirqd thread 68 * in that case, so as not to confuse scheduler with a special task 69 * that do not consume any time, but still wants to run. 70 */ 71 if (pc & HARDIRQ_MASK) 72 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); 73 else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd()) 74 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); 75 } 76 77 static u64 irqtime_tick_accounted(u64 maxtime) 78 { 79 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 80 u64 delta; 81 82 delta = min(irqtime->tick_delta, maxtime); 83 irqtime->tick_delta -= delta; 84 85 return delta; 86 } 87 88 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 89 90 #define sched_clock_irqtime (0) 91 92 static u64 irqtime_tick_accounted(u64 dummy) 93 { 94 return 0; 95 } 96 97 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 98 99 static inline void task_group_account_field(struct task_struct *p, int index, 100 u64 tmp) 101 { 102 /* 103 * Since all updates are sure to touch the root cgroup, we 104 * get ourselves ahead and touch it first. If the root cgroup 105 * is the only cgroup, then nothing else should be necessary. 106 * 107 */ 108 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 109 110 cgroup_account_cputime_field(p, index, tmp); 111 } 112 113 /* 114 * Account user CPU time to a process. 115 * @p: the process that the CPU time gets accounted to 116 * @cputime: the CPU time spent in user space since the last update 117 */ 118 void account_user_time(struct task_struct *p, u64 cputime) 119 { 120 int index; 121 122 /* Add user time to process. */ 123 p->utime += cputime; 124 account_group_user_time(p, cputime); 125 126 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 127 128 /* Add user time to cpustat. */ 129 task_group_account_field(p, index, cputime); 130 131 /* Account for user time used */ 132 acct_account_cputime(p); 133 } 134 135 /* 136 * Account guest CPU time to a process. 137 * @p: the process that the CPU time gets accounted to 138 * @cputime: the CPU time spent in virtual machine since the last update 139 */ 140 void account_guest_time(struct task_struct *p, u64 cputime) 141 { 142 u64 *cpustat = kcpustat_this_cpu->cpustat; 143 144 /* Add guest time to process. */ 145 p->utime += cputime; 146 account_group_user_time(p, cputime); 147 p->gtime += cputime; 148 149 /* Add guest time to cpustat. */ 150 if (task_nice(p) > 0) { 151 task_group_account_field(p, CPUTIME_NICE, cputime); 152 cpustat[CPUTIME_GUEST_NICE] += cputime; 153 } else { 154 task_group_account_field(p, CPUTIME_USER, cputime); 155 cpustat[CPUTIME_GUEST] += cputime; 156 } 157 } 158 159 /* 160 * Account system CPU time to a process and desired cpustat field 161 * @p: the process that the CPU time gets accounted to 162 * @cputime: the CPU time spent in kernel space since the last update 163 * @index: pointer to cpustat field that has to be updated 164 */ 165 void account_system_index_time(struct task_struct *p, 166 u64 cputime, enum cpu_usage_stat index) 167 { 168 /* Add system time to process. */ 169 p->stime += cputime; 170 account_group_system_time(p, cputime); 171 172 /* Add system time to cpustat. */ 173 task_group_account_field(p, index, cputime); 174 175 /* Account for system time used */ 176 acct_account_cputime(p); 177 } 178 179 /* 180 * Account system CPU time to a process. 181 * @p: the process that the CPU time gets accounted to 182 * @hardirq_offset: the offset to subtract from hardirq_count() 183 * @cputime: the CPU time spent in kernel space since the last update 184 */ 185 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) 186 { 187 int index; 188 189 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 190 account_guest_time(p, cputime); 191 return; 192 } 193 194 if (hardirq_count() - hardirq_offset) 195 index = CPUTIME_IRQ; 196 else if (in_serving_softirq()) 197 index = CPUTIME_SOFTIRQ; 198 else 199 index = CPUTIME_SYSTEM; 200 201 account_system_index_time(p, cputime, index); 202 } 203 204 /* 205 * Account for involuntary wait time. 206 * @cputime: the CPU time spent in involuntary wait 207 */ 208 void account_steal_time(u64 cputime) 209 { 210 u64 *cpustat = kcpustat_this_cpu->cpustat; 211 212 cpustat[CPUTIME_STEAL] += cputime; 213 } 214 215 /* 216 * Account for idle time. 217 * @cputime: the CPU time spent in idle wait 218 */ 219 void account_idle_time(u64 cputime) 220 { 221 u64 *cpustat = kcpustat_this_cpu->cpustat; 222 struct rq *rq = this_rq(); 223 224 if (atomic_read(&rq->nr_iowait) > 0) 225 cpustat[CPUTIME_IOWAIT] += cputime; 226 else 227 cpustat[CPUTIME_IDLE] += cputime; 228 } 229 230 /* 231 * When a guest is interrupted for a longer amount of time, missed clock 232 * ticks are not redelivered later. Due to that, this function may on 233 * occasion account more time than the calling functions think elapsed. 234 */ 235 static __always_inline u64 steal_account_process_time(u64 maxtime) 236 { 237 #ifdef CONFIG_PARAVIRT 238 if (static_key_false(¶virt_steal_enabled)) { 239 u64 steal; 240 241 steal = paravirt_steal_clock(smp_processor_id()); 242 steal -= this_rq()->prev_steal_time; 243 steal = min(steal, maxtime); 244 account_steal_time(steal); 245 this_rq()->prev_steal_time += steal; 246 247 return steal; 248 } 249 #endif 250 return 0; 251 } 252 253 /* 254 * Account how much elapsed time was spent in steal, irq, or softirq time. 255 */ 256 static inline u64 account_other_time(u64 max) 257 { 258 u64 accounted; 259 260 lockdep_assert_irqs_disabled(); 261 262 accounted = steal_account_process_time(max); 263 264 if (accounted < max) 265 accounted += irqtime_tick_accounted(max - accounted); 266 267 return accounted; 268 } 269 270 #ifdef CONFIG_64BIT 271 static inline u64 read_sum_exec_runtime(struct task_struct *t) 272 { 273 return t->se.sum_exec_runtime; 274 } 275 #else 276 static u64 read_sum_exec_runtime(struct task_struct *t) 277 { 278 u64 ns; 279 struct rq_flags rf; 280 struct rq *rq; 281 282 rq = task_rq_lock(t, &rf); 283 ns = t->se.sum_exec_runtime; 284 task_rq_unlock(rq, t, &rf); 285 286 return ns; 287 } 288 #endif 289 290 /* 291 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 292 * tasks (sum on group iteration) belonging to @tsk's group. 293 */ 294 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 295 { 296 struct signal_struct *sig = tsk->signal; 297 u64 utime, stime; 298 struct task_struct *t; 299 unsigned int seq, nextseq; 300 unsigned long flags; 301 302 /* 303 * Update current task runtime to account pending time since last 304 * scheduler action or thread_group_cputime() call. This thread group 305 * might have other running tasks on different CPUs, but updating 306 * their runtime can affect syscall performance, so we skip account 307 * those pending times and rely only on values updated on tick or 308 * other scheduler action. 309 */ 310 if (same_thread_group(current, tsk)) 311 (void) task_sched_runtime(current); 312 313 rcu_read_lock(); 314 /* Attempt a lockless read on the first round. */ 315 nextseq = 0; 316 do { 317 seq = nextseq; 318 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 319 times->utime = sig->utime; 320 times->stime = sig->stime; 321 times->sum_exec_runtime = sig->sum_sched_runtime; 322 323 for_each_thread(tsk, t) { 324 task_cputime(t, &utime, &stime); 325 times->utime += utime; 326 times->stime += stime; 327 times->sum_exec_runtime += read_sum_exec_runtime(t); 328 } 329 /* If lockless access failed, take the lock. */ 330 nextseq = 1; 331 } while (need_seqretry(&sig->stats_lock, seq)); 332 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 333 rcu_read_unlock(); 334 } 335 336 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 337 /* 338 * Account a tick to a process and cpustat 339 * @p: the process that the CPU time gets accounted to 340 * @user_tick: is the tick from userspace 341 * @rq: the pointer to rq 342 * 343 * Tick demultiplexing follows the order 344 * - pending hardirq update 345 * - pending softirq update 346 * - user_time 347 * - idle_time 348 * - system time 349 * - check for guest_time 350 * - else account as system_time 351 * 352 * Check for hardirq is done both for system and user time as there is 353 * no timer going off while we are on hardirq and hence we may never get an 354 * opportunity to update it solely in system time. 355 * p->stime and friends are only updated on system time and not on irq 356 * softirq as those do not count in task exec_runtime any more. 357 */ 358 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 359 int ticks) 360 { 361 u64 other, cputime = TICK_NSEC * ticks; 362 363 /* 364 * When returning from idle, many ticks can get accounted at 365 * once, including some ticks of steal, irq, and softirq time. 366 * Subtract those ticks from the amount of time accounted to 367 * idle, or potentially user or system time. Due to rounding, 368 * other time can exceed ticks occasionally. 369 */ 370 other = account_other_time(ULONG_MAX); 371 if (other >= cputime) 372 return; 373 374 cputime -= other; 375 376 if (this_cpu_ksoftirqd() == p) { 377 /* 378 * ksoftirqd time do not get accounted in cpu_softirq_time. 379 * So, we have to handle it separately here. 380 * Also, p->stime needs to be updated for ksoftirqd. 381 */ 382 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); 383 } else if (user_tick) { 384 account_user_time(p, cputime); 385 } else if (p == this_rq()->idle) { 386 account_idle_time(cputime); 387 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 388 account_guest_time(p, cputime); 389 } else { 390 account_system_index_time(p, cputime, CPUTIME_SYSTEM); 391 } 392 } 393 394 static void irqtime_account_idle_ticks(int ticks) 395 { 396 irqtime_account_process_tick(current, 0, ticks); 397 } 398 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 399 static inline void irqtime_account_idle_ticks(int ticks) { } 400 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 401 int nr_ticks) { } 402 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 403 404 /* 405 * Use precise platform statistics if available: 406 */ 407 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 408 409 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH 410 void vtime_task_switch(struct task_struct *prev) 411 { 412 if (is_idle_task(prev)) 413 vtime_account_idle(prev); 414 else 415 vtime_account_kernel(prev); 416 417 vtime_flush(prev); 418 arch_vtime_task_switch(prev); 419 } 420 # endif 421 422 void vtime_account_irq(struct task_struct *tsk, unsigned int offset) 423 { 424 unsigned int pc = irq_count() - offset; 425 426 if (pc & HARDIRQ_OFFSET) { 427 vtime_account_hardirq(tsk); 428 } else if (pc & SOFTIRQ_OFFSET) { 429 vtime_account_softirq(tsk); 430 } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) && 431 is_idle_task(tsk)) { 432 vtime_account_idle(tsk); 433 } else { 434 vtime_account_kernel(tsk); 435 } 436 } 437 438 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 439 u64 *ut, u64 *st) 440 { 441 *ut = curr->utime; 442 *st = curr->stime; 443 } 444 445 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 446 { 447 *ut = p->utime; 448 *st = p->stime; 449 } 450 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 451 452 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 453 { 454 struct task_cputime cputime; 455 456 thread_group_cputime(p, &cputime); 457 458 *ut = cputime.utime; 459 *st = cputime.stime; 460 } 461 462 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */ 463 464 /* 465 * Account a single tick of CPU time. 466 * @p: the process that the CPU time gets accounted to 467 * @user_tick: indicates if the tick is a user or a system tick 468 */ 469 void account_process_tick(struct task_struct *p, int user_tick) 470 { 471 u64 cputime, steal; 472 473 if (vtime_accounting_enabled_this_cpu()) 474 return; 475 476 if (sched_clock_irqtime) { 477 irqtime_account_process_tick(p, user_tick, 1); 478 return; 479 } 480 481 cputime = TICK_NSEC; 482 steal = steal_account_process_time(ULONG_MAX); 483 484 if (steal >= cputime) 485 return; 486 487 cputime -= steal; 488 489 if (user_tick) 490 account_user_time(p, cputime); 491 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET)) 492 account_system_time(p, HARDIRQ_OFFSET, cputime); 493 else 494 account_idle_time(cputime); 495 } 496 497 /* 498 * Account multiple ticks of idle time. 499 * @ticks: number of stolen ticks 500 */ 501 void account_idle_ticks(unsigned long ticks) 502 { 503 u64 cputime, steal; 504 505 if (sched_clock_irqtime) { 506 irqtime_account_idle_ticks(ticks); 507 return; 508 } 509 510 cputime = ticks * TICK_NSEC; 511 steal = steal_account_process_time(ULONG_MAX); 512 513 if (steal >= cputime) 514 return; 515 516 cputime -= steal; 517 account_idle_time(cputime); 518 } 519 520 /* 521 * Adjust tick based cputime random precision against scheduler runtime 522 * accounting. 523 * 524 * Tick based cputime accounting depend on random scheduling timeslices of a 525 * task to be interrupted or not by the timer. Depending on these 526 * circumstances, the number of these interrupts may be over or 527 * under-optimistic, matching the real user and system cputime with a variable 528 * precision. 529 * 530 * Fix this by scaling these tick based values against the total runtime 531 * accounted by the CFS scheduler. 532 * 533 * This code provides the following guarantees: 534 * 535 * stime + utime == rtime 536 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 537 * 538 * Assuming that rtime_i+1 >= rtime_i. 539 */ 540 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 541 u64 *ut, u64 *st) 542 { 543 u64 rtime, stime, utime; 544 unsigned long flags; 545 546 /* Serialize concurrent callers such that we can honour our guarantees */ 547 raw_spin_lock_irqsave(&prev->lock, flags); 548 rtime = curr->sum_exec_runtime; 549 550 /* 551 * This is possible under two circumstances: 552 * - rtime isn't monotonic after all (a bug); 553 * - we got reordered by the lock. 554 * 555 * In both cases this acts as a filter such that the rest of the code 556 * can assume it is monotonic regardless of anything else. 557 */ 558 if (prev->stime + prev->utime >= rtime) 559 goto out; 560 561 stime = curr->stime; 562 utime = curr->utime; 563 564 /* 565 * If either stime or utime are 0, assume all runtime is userspace. 566 * Once a task gets some ticks, the monotonicity code at 'update:' 567 * will ensure things converge to the observed ratio. 568 */ 569 if (stime == 0) { 570 utime = rtime; 571 goto update; 572 } 573 574 if (utime == 0) { 575 stime = rtime; 576 goto update; 577 } 578 579 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime); 580 581 update: 582 /* 583 * Make sure stime doesn't go backwards; this preserves monotonicity 584 * for utime because rtime is monotonic. 585 * 586 * utime_i+1 = rtime_i+1 - stime_i 587 * = rtime_i+1 - (rtime_i - utime_i) 588 * = (rtime_i+1 - rtime_i) + utime_i 589 * >= utime_i 590 */ 591 if (stime < prev->stime) 592 stime = prev->stime; 593 utime = rtime - stime; 594 595 /* 596 * Make sure utime doesn't go backwards; this still preserves 597 * monotonicity for stime, analogous argument to above. 598 */ 599 if (utime < prev->utime) { 600 utime = prev->utime; 601 stime = rtime - utime; 602 } 603 604 prev->stime = stime; 605 prev->utime = utime; 606 out: 607 *ut = prev->utime; 608 *st = prev->stime; 609 raw_spin_unlock_irqrestore(&prev->lock, flags); 610 } 611 612 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 613 { 614 struct task_cputime cputime = { 615 .sum_exec_runtime = p->se.sum_exec_runtime, 616 }; 617 618 if (task_cputime(p, &cputime.utime, &cputime.stime)) 619 cputime.sum_exec_runtime = task_sched_runtime(p); 620 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 621 } 622 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 623 624 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 625 { 626 struct task_cputime cputime; 627 628 thread_group_cputime(p, &cputime); 629 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 630 } 631 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 632 633 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 634 static u64 vtime_delta(struct vtime *vtime) 635 { 636 unsigned long long clock; 637 638 clock = sched_clock(); 639 if (clock < vtime->starttime) 640 return 0; 641 642 return clock - vtime->starttime; 643 } 644 645 static u64 get_vtime_delta(struct vtime *vtime) 646 { 647 u64 delta = vtime_delta(vtime); 648 u64 other; 649 650 /* 651 * Unlike tick based timing, vtime based timing never has lost 652 * ticks, and no need for steal time accounting to make up for 653 * lost ticks. Vtime accounts a rounded version of actual 654 * elapsed time. Limit account_other_time to prevent rounding 655 * errors from causing elapsed vtime to go negative. 656 */ 657 other = account_other_time(delta); 658 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE); 659 vtime->starttime += delta; 660 661 return delta - other; 662 } 663 664 static void vtime_account_system(struct task_struct *tsk, 665 struct vtime *vtime) 666 { 667 vtime->stime += get_vtime_delta(vtime); 668 if (vtime->stime >= TICK_NSEC) { 669 account_system_time(tsk, irq_count(), vtime->stime); 670 vtime->stime = 0; 671 } 672 } 673 674 static void vtime_account_guest(struct task_struct *tsk, 675 struct vtime *vtime) 676 { 677 vtime->gtime += get_vtime_delta(vtime); 678 if (vtime->gtime >= TICK_NSEC) { 679 account_guest_time(tsk, vtime->gtime); 680 vtime->gtime = 0; 681 } 682 } 683 684 static void __vtime_account_kernel(struct task_struct *tsk, 685 struct vtime *vtime) 686 { 687 /* We might have scheduled out from guest path */ 688 if (vtime->state == VTIME_GUEST) 689 vtime_account_guest(tsk, vtime); 690 else 691 vtime_account_system(tsk, vtime); 692 } 693 694 void vtime_account_kernel(struct task_struct *tsk) 695 { 696 struct vtime *vtime = &tsk->vtime; 697 698 if (!vtime_delta(vtime)) 699 return; 700 701 write_seqcount_begin(&vtime->seqcount); 702 __vtime_account_kernel(tsk, vtime); 703 write_seqcount_end(&vtime->seqcount); 704 } 705 706 void vtime_user_enter(struct task_struct *tsk) 707 { 708 struct vtime *vtime = &tsk->vtime; 709 710 write_seqcount_begin(&vtime->seqcount); 711 vtime_account_system(tsk, vtime); 712 vtime->state = VTIME_USER; 713 write_seqcount_end(&vtime->seqcount); 714 } 715 716 void vtime_user_exit(struct task_struct *tsk) 717 { 718 struct vtime *vtime = &tsk->vtime; 719 720 write_seqcount_begin(&vtime->seqcount); 721 vtime->utime += get_vtime_delta(vtime); 722 if (vtime->utime >= TICK_NSEC) { 723 account_user_time(tsk, vtime->utime); 724 vtime->utime = 0; 725 } 726 vtime->state = VTIME_SYS; 727 write_seqcount_end(&vtime->seqcount); 728 } 729 730 void vtime_guest_enter(struct task_struct *tsk) 731 { 732 struct vtime *vtime = &tsk->vtime; 733 /* 734 * The flags must be updated under the lock with 735 * the vtime_starttime flush and update. 736 * That enforces a right ordering and update sequence 737 * synchronization against the reader (task_gtime()) 738 * that can thus safely catch up with a tickless delta. 739 */ 740 write_seqcount_begin(&vtime->seqcount); 741 vtime_account_system(tsk, vtime); 742 tsk->flags |= PF_VCPU; 743 vtime->state = VTIME_GUEST; 744 write_seqcount_end(&vtime->seqcount); 745 } 746 EXPORT_SYMBOL_GPL(vtime_guest_enter); 747 748 void vtime_guest_exit(struct task_struct *tsk) 749 { 750 struct vtime *vtime = &tsk->vtime; 751 752 write_seqcount_begin(&vtime->seqcount); 753 vtime_account_guest(tsk, vtime); 754 tsk->flags &= ~PF_VCPU; 755 vtime->state = VTIME_SYS; 756 write_seqcount_end(&vtime->seqcount); 757 } 758 EXPORT_SYMBOL_GPL(vtime_guest_exit); 759 760 void vtime_account_idle(struct task_struct *tsk) 761 { 762 account_idle_time(get_vtime_delta(&tsk->vtime)); 763 } 764 765 void vtime_task_switch_generic(struct task_struct *prev) 766 { 767 struct vtime *vtime = &prev->vtime; 768 769 write_seqcount_begin(&vtime->seqcount); 770 if (vtime->state == VTIME_IDLE) 771 vtime_account_idle(prev); 772 else 773 __vtime_account_kernel(prev, vtime); 774 vtime->state = VTIME_INACTIVE; 775 vtime->cpu = -1; 776 write_seqcount_end(&vtime->seqcount); 777 778 vtime = ¤t->vtime; 779 780 write_seqcount_begin(&vtime->seqcount); 781 if (is_idle_task(current)) 782 vtime->state = VTIME_IDLE; 783 else if (current->flags & PF_VCPU) 784 vtime->state = VTIME_GUEST; 785 else 786 vtime->state = VTIME_SYS; 787 vtime->starttime = sched_clock(); 788 vtime->cpu = smp_processor_id(); 789 write_seqcount_end(&vtime->seqcount); 790 } 791 792 void vtime_init_idle(struct task_struct *t, int cpu) 793 { 794 struct vtime *vtime = &t->vtime; 795 unsigned long flags; 796 797 local_irq_save(flags); 798 write_seqcount_begin(&vtime->seqcount); 799 vtime->state = VTIME_IDLE; 800 vtime->starttime = sched_clock(); 801 vtime->cpu = cpu; 802 write_seqcount_end(&vtime->seqcount); 803 local_irq_restore(flags); 804 } 805 806 u64 task_gtime(struct task_struct *t) 807 { 808 struct vtime *vtime = &t->vtime; 809 unsigned int seq; 810 u64 gtime; 811 812 if (!vtime_accounting_enabled()) 813 return t->gtime; 814 815 do { 816 seq = read_seqcount_begin(&vtime->seqcount); 817 818 gtime = t->gtime; 819 if (vtime->state == VTIME_GUEST) 820 gtime += vtime->gtime + vtime_delta(vtime); 821 822 } while (read_seqcount_retry(&vtime->seqcount, seq)); 823 824 return gtime; 825 } 826 827 /* 828 * Fetch cputime raw values from fields of task_struct and 829 * add up the pending nohz execution time since the last 830 * cputime snapshot. 831 */ 832 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime) 833 { 834 struct vtime *vtime = &t->vtime; 835 unsigned int seq; 836 u64 delta; 837 int ret; 838 839 if (!vtime_accounting_enabled()) { 840 *utime = t->utime; 841 *stime = t->stime; 842 return false; 843 } 844 845 do { 846 ret = false; 847 seq = read_seqcount_begin(&vtime->seqcount); 848 849 *utime = t->utime; 850 *stime = t->stime; 851 852 /* Task is sleeping or idle, nothing to add */ 853 if (vtime->state < VTIME_SYS) 854 continue; 855 856 ret = true; 857 delta = vtime_delta(vtime); 858 859 /* 860 * Task runs either in user (including guest) or kernel space, 861 * add pending nohz time to the right place. 862 */ 863 if (vtime->state == VTIME_SYS) 864 *stime += vtime->stime + delta; 865 else 866 *utime += vtime->utime + delta; 867 } while (read_seqcount_retry(&vtime->seqcount, seq)); 868 869 return ret; 870 } 871 872 static int vtime_state_fetch(struct vtime *vtime, int cpu) 873 { 874 int state = READ_ONCE(vtime->state); 875 876 /* 877 * We raced against a context switch, fetch the 878 * kcpustat task again. 879 */ 880 if (vtime->cpu != cpu && vtime->cpu != -1) 881 return -EAGAIN; 882 883 /* 884 * Two possible things here: 885 * 1) We are seeing the scheduling out task (prev) or any past one. 886 * 2) We are seeing the scheduling in task (next) but it hasn't 887 * passed though vtime_task_switch() yet so the pending 888 * cputime of the prev task may not be flushed yet. 889 * 890 * Case 1) is ok but 2) is not. So wait for a safe VTIME state. 891 */ 892 if (state == VTIME_INACTIVE) 893 return -EAGAIN; 894 895 return state; 896 } 897 898 static u64 kcpustat_user_vtime(struct vtime *vtime) 899 { 900 if (vtime->state == VTIME_USER) 901 return vtime->utime + vtime_delta(vtime); 902 else if (vtime->state == VTIME_GUEST) 903 return vtime->gtime + vtime_delta(vtime); 904 return 0; 905 } 906 907 static int kcpustat_field_vtime(u64 *cpustat, 908 struct task_struct *tsk, 909 enum cpu_usage_stat usage, 910 int cpu, u64 *val) 911 { 912 struct vtime *vtime = &tsk->vtime; 913 unsigned int seq; 914 915 do { 916 int state; 917 918 seq = read_seqcount_begin(&vtime->seqcount); 919 920 state = vtime_state_fetch(vtime, cpu); 921 if (state < 0) 922 return state; 923 924 *val = cpustat[usage]; 925 926 /* 927 * Nice VS unnice cputime accounting may be inaccurate if 928 * the nice value has changed since the last vtime update. 929 * But proper fix would involve interrupting target on nice 930 * updates which is a no go on nohz_full (although the scheduler 931 * may still interrupt the target if rescheduling is needed...) 932 */ 933 switch (usage) { 934 case CPUTIME_SYSTEM: 935 if (state == VTIME_SYS) 936 *val += vtime->stime + vtime_delta(vtime); 937 break; 938 case CPUTIME_USER: 939 if (task_nice(tsk) <= 0) 940 *val += kcpustat_user_vtime(vtime); 941 break; 942 case CPUTIME_NICE: 943 if (task_nice(tsk) > 0) 944 *val += kcpustat_user_vtime(vtime); 945 break; 946 case CPUTIME_GUEST: 947 if (state == VTIME_GUEST && task_nice(tsk) <= 0) 948 *val += vtime->gtime + vtime_delta(vtime); 949 break; 950 case CPUTIME_GUEST_NICE: 951 if (state == VTIME_GUEST && task_nice(tsk) > 0) 952 *val += vtime->gtime + vtime_delta(vtime); 953 break; 954 default: 955 break; 956 } 957 } while (read_seqcount_retry(&vtime->seqcount, seq)); 958 959 return 0; 960 } 961 962 u64 kcpustat_field(struct kernel_cpustat *kcpustat, 963 enum cpu_usage_stat usage, int cpu) 964 { 965 u64 *cpustat = kcpustat->cpustat; 966 u64 val = cpustat[usage]; 967 struct rq *rq; 968 int err; 969 970 if (!vtime_accounting_enabled_cpu(cpu)) 971 return val; 972 973 rq = cpu_rq(cpu); 974 975 for (;;) { 976 struct task_struct *curr; 977 978 rcu_read_lock(); 979 curr = rcu_dereference(rq->curr); 980 if (WARN_ON_ONCE(!curr)) { 981 rcu_read_unlock(); 982 return cpustat[usage]; 983 } 984 985 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val); 986 rcu_read_unlock(); 987 988 if (!err) 989 return val; 990 991 cpu_relax(); 992 } 993 } 994 EXPORT_SYMBOL_GPL(kcpustat_field); 995 996 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst, 997 const struct kernel_cpustat *src, 998 struct task_struct *tsk, int cpu) 999 { 1000 struct vtime *vtime = &tsk->vtime; 1001 unsigned int seq; 1002 1003 do { 1004 u64 *cpustat; 1005 u64 delta; 1006 int state; 1007 1008 seq = read_seqcount_begin(&vtime->seqcount); 1009 1010 state = vtime_state_fetch(vtime, cpu); 1011 if (state < 0) 1012 return state; 1013 1014 *dst = *src; 1015 cpustat = dst->cpustat; 1016 1017 /* Task is sleeping, dead or idle, nothing to add */ 1018 if (state < VTIME_SYS) 1019 continue; 1020 1021 delta = vtime_delta(vtime); 1022 1023 /* 1024 * Task runs either in user (including guest) or kernel space, 1025 * add pending nohz time to the right place. 1026 */ 1027 if (state == VTIME_SYS) { 1028 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta; 1029 } else if (state == VTIME_USER) { 1030 if (task_nice(tsk) > 0) 1031 cpustat[CPUTIME_NICE] += vtime->utime + delta; 1032 else 1033 cpustat[CPUTIME_USER] += vtime->utime + delta; 1034 } else { 1035 WARN_ON_ONCE(state != VTIME_GUEST); 1036 if (task_nice(tsk) > 0) { 1037 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta; 1038 cpustat[CPUTIME_NICE] += vtime->gtime + delta; 1039 } else { 1040 cpustat[CPUTIME_GUEST] += vtime->gtime + delta; 1041 cpustat[CPUTIME_USER] += vtime->gtime + delta; 1042 } 1043 } 1044 } while (read_seqcount_retry(&vtime->seqcount, seq)); 1045 1046 return 0; 1047 } 1048 1049 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) 1050 { 1051 const struct kernel_cpustat *src = &kcpustat_cpu(cpu); 1052 struct rq *rq; 1053 int err; 1054 1055 if (!vtime_accounting_enabled_cpu(cpu)) { 1056 *dst = *src; 1057 return; 1058 } 1059 1060 rq = cpu_rq(cpu); 1061 1062 for (;;) { 1063 struct task_struct *curr; 1064 1065 rcu_read_lock(); 1066 curr = rcu_dereference(rq->curr); 1067 if (WARN_ON_ONCE(!curr)) { 1068 rcu_read_unlock(); 1069 *dst = *src; 1070 return; 1071 } 1072 1073 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu); 1074 rcu_read_unlock(); 1075 1076 if (!err) 1077 return; 1078 1079 cpu_relax(); 1080 } 1081 } 1082 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch); 1083 1084 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 1085