xref: /openbmc/linux/kernel/sched/cputime.c (revision 861e10be)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 
9 
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11 
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's irq time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of irq time to wrong
20  * task when irq is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each irq in account_system_time.
22  */
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
25 
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
28 
29 void enable_sched_clock_irqtime(void)
30 {
31 	sched_clock_irqtime = 1;
32 }
33 
34 void disable_sched_clock_irqtime(void)
35 {
36 	sched_clock_irqtime = 0;
37 }
38 
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
42 
43 /*
44  * Called before incrementing preempt_count on {soft,}irq_enter
45  * and before decrementing preempt_count on {soft,}irq_exit.
46  */
47 void irqtime_account_irq(struct task_struct *curr)
48 {
49 	unsigned long flags;
50 	s64 delta;
51 	int cpu;
52 
53 	if (!sched_clock_irqtime)
54 		return;
55 
56 	local_irq_save(flags);
57 
58 	cpu = smp_processor_id();
59 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 	__this_cpu_add(irq_start_time, delta);
61 
62 	irq_time_write_begin();
63 	/*
64 	 * We do not account for softirq time from ksoftirqd here.
65 	 * We want to continue accounting softirq time to ksoftirqd thread
66 	 * in that case, so as not to confuse scheduler with a special task
67 	 * that do not consume any time, but still wants to run.
68 	 */
69 	if (hardirq_count())
70 		__this_cpu_add(cpu_hardirq_time, delta);
71 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 		__this_cpu_add(cpu_softirq_time, delta);
73 
74 	irq_time_write_end();
75 	local_irq_restore(flags);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78 
79 static int irqtime_account_hi_update(void)
80 {
81 	u64 *cpustat = kcpustat_this_cpu->cpustat;
82 	unsigned long flags;
83 	u64 latest_ns;
84 	int ret = 0;
85 
86 	local_irq_save(flags);
87 	latest_ns = this_cpu_read(cpu_hardirq_time);
88 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 		ret = 1;
90 	local_irq_restore(flags);
91 	return ret;
92 }
93 
94 static int irqtime_account_si_update(void)
95 {
96 	u64 *cpustat = kcpustat_this_cpu->cpustat;
97 	unsigned long flags;
98 	u64 latest_ns;
99 	int ret = 0;
100 
101 	local_irq_save(flags);
102 	latest_ns = this_cpu_read(cpu_softirq_time);
103 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 		ret = 1;
105 	local_irq_restore(flags);
106 	return ret;
107 }
108 
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
110 
111 #define sched_clock_irqtime	(0)
112 
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114 
115 static inline void task_group_account_field(struct task_struct *p, int index,
116 					    u64 tmp)
117 {
118 #ifdef CONFIG_CGROUP_CPUACCT
119 	struct kernel_cpustat *kcpustat;
120 	struct cpuacct *ca;
121 #endif
122 	/*
123 	 * Since all updates are sure to touch the root cgroup, we
124 	 * get ourselves ahead and touch it first. If the root cgroup
125 	 * is the only cgroup, then nothing else should be necessary.
126 	 *
127 	 */
128 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
129 
130 #ifdef CONFIG_CGROUP_CPUACCT
131 	if (unlikely(!cpuacct_subsys.active))
132 		return;
133 
134 	rcu_read_lock();
135 	ca = task_ca(p);
136 	while (ca && (ca != &root_cpuacct)) {
137 		kcpustat = this_cpu_ptr(ca->cpustat);
138 		kcpustat->cpustat[index] += tmp;
139 		ca = parent_ca(ca);
140 	}
141 	rcu_read_unlock();
142 #endif
143 }
144 
145 /*
146  * Account user cpu time to a process.
147  * @p: the process that the cpu time gets accounted to
148  * @cputime: the cpu time spent in user space since the last update
149  * @cputime_scaled: cputime scaled by cpu frequency
150  */
151 void account_user_time(struct task_struct *p, cputime_t cputime,
152 		       cputime_t cputime_scaled)
153 {
154 	int index;
155 
156 	/* Add user time to process. */
157 	p->utime += cputime;
158 	p->utimescaled += cputime_scaled;
159 	account_group_user_time(p, cputime);
160 
161 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
162 
163 	/* Add user time to cpustat. */
164 	task_group_account_field(p, index, (__force u64) cputime);
165 
166 	/* Account for user time used */
167 	acct_account_cputime(p);
168 }
169 
170 /*
171  * Account guest cpu time to a process.
172  * @p: the process that the cpu time gets accounted to
173  * @cputime: the cpu time spent in virtual machine since the last update
174  * @cputime_scaled: cputime scaled by cpu frequency
175  */
176 static void account_guest_time(struct task_struct *p, cputime_t cputime,
177 			       cputime_t cputime_scaled)
178 {
179 	u64 *cpustat = kcpustat_this_cpu->cpustat;
180 
181 	/* Add guest time to process. */
182 	p->utime += cputime;
183 	p->utimescaled += cputime_scaled;
184 	account_group_user_time(p, cputime);
185 	p->gtime += cputime;
186 
187 	/* Add guest time to cpustat. */
188 	if (TASK_NICE(p) > 0) {
189 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
190 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
191 	} else {
192 		cpustat[CPUTIME_USER] += (__force u64) cputime;
193 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
194 	}
195 }
196 
197 /*
198  * Account system cpu time to a process and desired cpustat field
199  * @p: the process that the cpu time gets accounted to
200  * @cputime: the cpu time spent in kernel space since the last update
201  * @cputime_scaled: cputime scaled by cpu frequency
202  * @target_cputime64: pointer to cpustat field that has to be updated
203  */
204 static inline
205 void __account_system_time(struct task_struct *p, cputime_t cputime,
206 			cputime_t cputime_scaled, int index)
207 {
208 	/* Add system time to process. */
209 	p->stime += cputime;
210 	p->stimescaled += cputime_scaled;
211 	account_group_system_time(p, cputime);
212 
213 	/* Add system time to cpustat. */
214 	task_group_account_field(p, index, (__force u64) cputime);
215 
216 	/* Account for system time used */
217 	acct_account_cputime(p);
218 }
219 
220 /*
221  * Account system cpu time to a process.
222  * @p: the process that the cpu time gets accounted to
223  * @hardirq_offset: the offset to subtract from hardirq_count()
224  * @cputime: the cpu time spent in kernel space since the last update
225  * @cputime_scaled: cputime scaled by cpu frequency
226  */
227 void account_system_time(struct task_struct *p, int hardirq_offset,
228 			 cputime_t cputime, cputime_t cputime_scaled)
229 {
230 	int index;
231 
232 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
233 		account_guest_time(p, cputime, cputime_scaled);
234 		return;
235 	}
236 
237 	if (hardirq_count() - hardirq_offset)
238 		index = CPUTIME_IRQ;
239 	else if (in_serving_softirq())
240 		index = CPUTIME_SOFTIRQ;
241 	else
242 		index = CPUTIME_SYSTEM;
243 
244 	__account_system_time(p, cputime, cputime_scaled, index);
245 }
246 
247 /*
248  * Account for involuntary wait time.
249  * @cputime: the cpu time spent in involuntary wait
250  */
251 void account_steal_time(cputime_t cputime)
252 {
253 	u64 *cpustat = kcpustat_this_cpu->cpustat;
254 
255 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
256 }
257 
258 /*
259  * Account for idle time.
260  * @cputime: the cpu time spent in idle wait
261  */
262 void account_idle_time(cputime_t cputime)
263 {
264 	u64 *cpustat = kcpustat_this_cpu->cpustat;
265 	struct rq *rq = this_rq();
266 
267 	if (atomic_read(&rq->nr_iowait) > 0)
268 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
269 	else
270 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
271 }
272 
273 static __always_inline bool steal_account_process_tick(void)
274 {
275 #ifdef CONFIG_PARAVIRT
276 	if (static_key_false(&paravirt_steal_enabled)) {
277 		u64 steal, st = 0;
278 
279 		steal = paravirt_steal_clock(smp_processor_id());
280 		steal -= this_rq()->prev_steal_time;
281 
282 		st = steal_ticks(steal);
283 		this_rq()->prev_steal_time += st * TICK_NSEC;
284 
285 		account_steal_time(st);
286 		return st;
287 	}
288 #endif
289 	return false;
290 }
291 
292 /*
293  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
294  * tasks (sum on group iteration) belonging to @tsk's group.
295  */
296 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
297 {
298 	struct signal_struct *sig = tsk->signal;
299 	cputime_t utime, stime;
300 	struct task_struct *t;
301 
302 	times->utime = sig->utime;
303 	times->stime = sig->stime;
304 	times->sum_exec_runtime = sig->sum_sched_runtime;
305 
306 	rcu_read_lock();
307 	/* make sure we can trust tsk->thread_group list */
308 	if (!likely(pid_alive(tsk)))
309 		goto out;
310 
311 	t = tsk;
312 	do {
313 		task_cputime(tsk, &utime, &stime);
314 		times->utime += utime;
315 		times->stime += stime;
316 		times->sum_exec_runtime += task_sched_runtime(t);
317 	} while_each_thread(tsk, t);
318 out:
319 	rcu_read_unlock();
320 }
321 
322 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
323 /*
324  * Account a tick to a process and cpustat
325  * @p: the process that the cpu time gets accounted to
326  * @user_tick: is the tick from userspace
327  * @rq: the pointer to rq
328  *
329  * Tick demultiplexing follows the order
330  * - pending hardirq update
331  * - pending softirq update
332  * - user_time
333  * - idle_time
334  * - system time
335  *   - check for guest_time
336  *   - else account as system_time
337  *
338  * Check for hardirq is done both for system and user time as there is
339  * no timer going off while we are on hardirq and hence we may never get an
340  * opportunity to update it solely in system time.
341  * p->stime and friends are only updated on system time and not on irq
342  * softirq as those do not count in task exec_runtime any more.
343  */
344 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
345 						struct rq *rq)
346 {
347 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
348 	u64 *cpustat = kcpustat_this_cpu->cpustat;
349 
350 	if (steal_account_process_tick())
351 		return;
352 
353 	if (irqtime_account_hi_update()) {
354 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
355 	} else if (irqtime_account_si_update()) {
356 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
357 	} else if (this_cpu_ksoftirqd() == p) {
358 		/*
359 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
360 		 * So, we have to handle it separately here.
361 		 * Also, p->stime needs to be updated for ksoftirqd.
362 		 */
363 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
364 					CPUTIME_SOFTIRQ);
365 	} else if (user_tick) {
366 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
367 	} else if (p == rq->idle) {
368 		account_idle_time(cputime_one_jiffy);
369 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
370 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
371 	} else {
372 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
373 					CPUTIME_SYSTEM);
374 	}
375 }
376 
377 static void irqtime_account_idle_ticks(int ticks)
378 {
379 	int i;
380 	struct rq *rq = this_rq();
381 
382 	for (i = 0; i < ticks; i++)
383 		irqtime_account_process_tick(current, 0, rq);
384 }
385 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
386 static inline void irqtime_account_idle_ticks(int ticks) {}
387 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
388 						struct rq *rq) {}
389 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
390 
391 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
392 /*
393  * Account a single tick of cpu time.
394  * @p: the process that the cpu time gets accounted to
395  * @user_tick: indicates if the tick is a user or a system tick
396  */
397 void account_process_tick(struct task_struct *p, int user_tick)
398 {
399 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
400 	struct rq *rq = this_rq();
401 
402 	if (vtime_accounting_enabled())
403 		return;
404 
405 	if (sched_clock_irqtime) {
406 		irqtime_account_process_tick(p, user_tick, rq);
407 		return;
408 	}
409 
410 	if (steal_account_process_tick())
411 		return;
412 
413 	if (user_tick)
414 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
415 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
416 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
417 				    one_jiffy_scaled);
418 	else
419 		account_idle_time(cputime_one_jiffy);
420 }
421 
422 /*
423  * Account multiple ticks of steal time.
424  * @p: the process from which the cpu time has been stolen
425  * @ticks: number of stolen ticks
426  */
427 void account_steal_ticks(unsigned long ticks)
428 {
429 	account_steal_time(jiffies_to_cputime(ticks));
430 }
431 
432 /*
433  * Account multiple ticks of idle time.
434  * @ticks: number of stolen ticks
435  */
436 void account_idle_ticks(unsigned long ticks)
437 {
438 
439 	if (sched_clock_irqtime) {
440 		irqtime_account_idle_ticks(ticks);
441 		return;
442 	}
443 
444 	account_idle_time(jiffies_to_cputime(ticks));
445 }
446 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
447 
448 /*
449  * Use precise platform statistics if available:
450  */
451 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
452 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
453 {
454 	*ut = p->utime;
455 	*st = p->stime;
456 }
457 
458 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
459 {
460 	struct task_cputime cputime;
461 
462 	thread_group_cputime(p, &cputime);
463 
464 	*ut = cputime.utime;
465 	*st = cputime.stime;
466 }
467 
468 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
469 void vtime_task_switch(struct task_struct *prev)
470 {
471 	if (!vtime_accounting_enabled())
472 		return;
473 
474 	if (is_idle_task(prev))
475 		vtime_account_idle(prev);
476 	else
477 		vtime_account_system(prev);
478 
479 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
480 	vtime_account_user(prev);
481 #endif
482 	arch_vtime_task_switch(prev);
483 }
484 #endif
485 
486 /*
487  * Archs that account the whole time spent in the idle task
488  * (outside irq) as idle time can rely on this and just implement
489  * vtime_account_system() and vtime_account_idle(). Archs that
490  * have other meaning of the idle time (s390 only includes the
491  * time spent by the CPU when it's in low power mode) must override
492  * vtime_account().
493  */
494 #ifndef __ARCH_HAS_VTIME_ACCOUNT
495 void vtime_account_irq_enter(struct task_struct *tsk)
496 {
497 	if (!vtime_accounting_enabled())
498 		return;
499 
500 	if (!in_interrupt()) {
501 		/*
502 		 * If we interrupted user, context_tracking_in_user()
503 		 * is 1 because the context tracking don't hook
504 		 * on irq entry/exit. This way we know if
505 		 * we need to flush user time on kernel entry.
506 		 */
507 		if (context_tracking_in_user()) {
508 			vtime_account_user(tsk);
509 			return;
510 		}
511 
512 		if (is_idle_task(tsk)) {
513 			vtime_account_idle(tsk);
514 			return;
515 		}
516 	}
517 	vtime_account_system(tsk);
518 }
519 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
520 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
521 
522 #else /* !CONFIG_VIRT_CPU_ACCOUNTING */
523 
524 static cputime_t scale_stime(cputime_t stime, cputime_t rtime, cputime_t total)
525 {
526 	u64 temp = (__force u64) rtime;
527 
528 	temp *= (__force u64) stime;
529 
530 	if (sizeof(cputime_t) == 4)
531 		temp = div_u64(temp, (__force u32) total);
532 	else
533 		temp = div64_u64(temp, (__force u64) total);
534 
535 	return (__force cputime_t) temp;
536 }
537 
538 /*
539  * Adjust tick based cputime random precision against scheduler
540  * runtime accounting.
541  */
542 static void cputime_adjust(struct task_cputime *curr,
543 			   struct cputime *prev,
544 			   cputime_t *ut, cputime_t *st)
545 {
546 	cputime_t rtime, stime, total;
547 
548 	stime = curr->stime;
549 	total = stime + curr->utime;
550 
551 	/*
552 	 * Tick based cputime accounting depend on random scheduling
553 	 * timeslices of a task to be interrupted or not by the timer.
554 	 * Depending on these circumstances, the number of these interrupts
555 	 * may be over or under-optimistic, matching the real user and system
556 	 * cputime with a variable precision.
557 	 *
558 	 * Fix this by scaling these tick based values against the total
559 	 * runtime accounted by the CFS scheduler.
560 	 */
561 	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
562 
563 	if (total)
564 		stime = scale_stime(stime, rtime, total);
565 	else
566 		stime = rtime;
567 
568 	/*
569 	 * If the tick based count grows faster than the scheduler one,
570 	 * the result of the scaling may go backward.
571 	 * Let's enforce monotonicity.
572 	 */
573 	prev->stime = max(prev->stime, stime);
574 	prev->utime = max(prev->utime, rtime - prev->stime);
575 
576 	*ut = prev->utime;
577 	*st = prev->stime;
578 }
579 
580 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
581 {
582 	struct task_cputime cputime = {
583 		.sum_exec_runtime = p->se.sum_exec_runtime,
584 	};
585 
586 	task_cputime(p, &cputime.utime, &cputime.stime);
587 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
588 }
589 
590 /*
591  * Must be called with siglock held.
592  */
593 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
594 {
595 	struct task_cputime cputime;
596 
597 	thread_group_cputime(p, &cputime);
598 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
599 }
600 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING */
601 
602 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
603 static unsigned long long vtime_delta(struct task_struct *tsk)
604 {
605 	unsigned long long clock;
606 
607 	clock = sched_clock();
608 	if (clock < tsk->vtime_snap)
609 		return 0;
610 
611 	return clock - tsk->vtime_snap;
612 }
613 
614 static cputime_t get_vtime_delta(struct task_struct *tsk)
615 {
616 	unsigned long long delta = vtime_delta(tsk);
617 
618 	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
619 	tsk->vtime_snap += delta;
620 
621 	/* CHECKME: always safe to convert nsecs to cputime? */
622 	return nsecs_to_cputime(delta);
623 }
624 
625 static void __vtime_account_system(struct task_struct *tsk)
626 {
627 	cputime_t delta_cpu = get_vtime_delta(tsk);
628 
629 	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
630 }
631 
632 void vtime_account_system(struct task_struct *tsk)
633 {
634 	if (!vtime_accounting_enabled())
635 		return;
636 
637 	write_seqlock(&tsk->vtime_seqlock);
638 	__vtime_account_system(tsk);
639 	write_sequnlock(&tsk->vtime_seqlock);
640 }
641 
642 void vtime_account_irq_exit(struct task_struct *tsk)
643 {
644 	if (!vtime_accounting_enabled())
645 		return;
646 
647 	write_seqlock(&tsk->vtime_seqlock);
648 	if (context_tracking_in_user())
649 		tsk->vtime_snap_whence = VTIME_USER;
650 	__vtime_account_system(tsk);
651 	write_sequnlock(&tsk->vtime_seqlock);
652 }
653 
654 void vtime_account_user(struct task_struct *tsk)
655 {
656 	cputime_t delta_cpu;
657 
658 	if (!vtime_accounting_enabled())
659 		return;
660 
661 	delta_cpu = get_vtime_delta(tsk);
662 
663 	write_seqlock(&tsk->vtime_seqlock);
664 	tsk->vtime_snap_whence = VTIME_SYS;
665 	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
666 	write_sequnlock(&tsk->vtime_seqlock);
667 }
668 
669 void vtime_user_enter(struct task_struct *tsk)
670 {
671 	if (!vtime_accounting_enabled())
672 		return;
673 
674 	write_seqlock(&tsk->vtime_seqlock);
675 	tsk->vtime_snap_whence = VTIME_USER;
676 	__vtime_account_system(tsk);
677 	write_sequnlock(&tsk->vtime_seqlock);
678 }
679 
680 void vtime_guest_enter(struct task_struct *tsk)
681 {
682 	write_seqlock(&tsk->vtime_seqlock);
683 	__vtime_account_system(tsk);
684 	current->flags |= PF_VCPU;
685 	write_sequnlock(&tsk->vtime_seqlock);
686 }
687 
688 void vtime_guest_exit(struct task_struct *tsk)
689 {
690 	write_seqlock(&tsk->vtime_seqlock);
691 	__vtime_account_system(tsk);
692 	current->flags &= ~PF_VCPU;
693 	write_sequnlock(&tsk->vtime_seqlock);
694 }
695 
696 void vtime_account_idle(struct task_struct *tsk)
697 {
698 	cputime_t delta_cpu = get_vtime_delta(tsk);
699 
700 	account_idle_time(delta_cpu);
701 }
702 
703 bool vtime_accounting_enabled(void)
704 {
705 	return context_tracking_active();
706 }
707 
708 void arch_vtime_task_switch(struct task_struct *prev)
709 {
710 	write_seqlock(&prev->vtime_seqlock);
711 	prev->vtime_snap_whence = VTIME_SLEEPING;
712 	write_sequnlock(&prev->vtime_seqlock);
713 
714 	write_seqlock(&current->vtime_seqlock);
715 	current->vtime_snap_whence = VTIME_SYS;
716 	current->vtime_snap = sched_clock();
717 	write_sequnlock(&current->vtime_seqlock);
718 }
719 
720 void vtime_init_idle(struct task_struct *t)
721 {
722 	unsigned long flags;
723 
724 	write_seqlock_irqsave(&t->vtime_seqlock, flags);
725 	t->vtime_snap_whence = VTIME_SYS;
726 	t->vtime_snap = sched_clock();
727 	write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
728 }
729 
730 cputime_t task_gtime(struct task_struct *t)
731 {
732 	unsigned int seq;
733 	cputime_t gtime;
734 
735 	do {
736 		seq = read_seqbegin(&t->vtime_seqlock);
737 
738 		gtime = t->gtime;
739 		if (t->flags & PF_VCPU)
740 			gtime += vtime_delta(t);
741 
742 	} while (read_seqretry(&t->vtime_seqlock, seq));
743 
744 	return gtime;
745 }
746 
747 /*
748  * Fetch cputime raw values from fields of task_struct and
749  * add up the pending nohz execution time since the last
750  * cputime snapshot.
751  */
752 static void
753 fetch_task_cputime(struct task_struct *t,
754 		   cputime_t *u_dst, cputime_t *s_dst,
755 		   cputime_t *u_src, cputime_t *s_src,
756 		   cputime_t *udelta, cputime_t *sdelta)
757 {
758 	unsigned int seq;
759 	unsigned long long delta;
760 
761 	do {
762 		*udelta = 0;
763 		*sdelta = 0;
764 
765 		seq = read_seqbegin(&t->vtime_seqlock);
766 
767 		if (u_dst)
768 			*u_dst = *u_src;
769 		if (s_dst)
770 			*s_dst = *s_src;
771 
772 		/* Task is sleeping, nothing to add */
773 		if (t->vtime_snap_whence == VTIME_SLEEPING ||
774 		    is_idle_task(t))
775 			continue;
776 
777 		delta = vtime_delta(t);
778 
779 		/*
780 		 * Task runs either in user or kernel space, add pending nohz time to
781 		 * the right place.
782 		 */
783 		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
784 			*udelta = delta;
785 		} else {
786 			if (t->vtime_snap_whence == VTIME_SYS)
787 				*sdelta = delta;
788 		}
789 	} while (read_seqretry(&t->vtime_seqlock, seq));
790 }
791 
792 
793 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
794 {
795 	cputime_t udelta, sdelta;
796 
797 	fetch_task_cputime(t, utime, stime, &t->utime,
798 			   &t->stime, &udelta, &sdelta);
799 	if (utime)
800 		*utime += udelta;
801 	if (stime)
802 		*stime += sdelta;
803 }
804 
805 void task_cputime_scaled(struct task_struct *t,
806 			 cputime_t *utimescaled, cputime_t *stimescaled)
807 {
808 	cputime_t udelta, sdelta;
809 
810 	fetch_task_cputime(t, utimescaled, stimescaled,
811 			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
812 	if (utimescaled)
813 		*utimescaled += cputime_to_scaled(udelta);
814 	if (stimescaled)
815 		*stimescaled += cputime_to_scaled(sdelta);
816 }
817 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
818