1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include <linux/context_tracking.h> 7 #include <linux/sched/cputime.h> 8 #include "sched.h" 9 10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 11 12 /* 13 * There are no locks covering percpu hardirq/softirq time. 14 * They are only modified in vtime_account, on corresponding CPU 15 * with interrupts disabled. So, writes are safe. 16 * They are read and saved off onto struct rq in update_rq_clock(). 17 * This may result in other CPU reading this CPU's irq time and can 18 * race with irq/vtime_account on this CPU. We would either get old 19 * or new value with a side effect of accounting a slice of irq time to wrong 20 * task when irq is in progress while we read rq->clock. That is a worthy 21 * compromise in place of having locks on each irq in account_system_time. 22 */ 23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime); 24 25 static int sched_clock_irqtime; 26 27 void enable_sched_clock_irqtime(void) 28 { 29 sched_clock_irqtime = 1; 30 } 31 32 void disable_sched_clock_irqtime(void) 33 { 34 sched_clock_irqtime = 0; 35 } 36 37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, 38 enum cpu_usage_stat idx) 39 { 40 u64 *cpustat = kcpustat_this_cpu->cpustat; 41 42 u64_stats_update_begin(&irqtime->sync); 43 cpustat[idx] += delta; 44 irqtime->total += delta; 45 irqtime->tick_delta += delta; 46 u64_stats_update_end(&irqtime->sync); 47 } 48 49 /* 50 * Called before incrementing preempt_count on {soft,}irq_enter 51 * and before decrementing preempt_count on {soft,}irq_exit. 52 */ 53 void irqtime_account_irq(struct task_struct *curr) 54 { 55 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 56 s64 delta; 57 int cpu; 58 59 if (!sched_clock_irqtime) 60 return; 61 62 cpu = smp_processor_id(); 63 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; 64 irqtime->irq_start_time += delta; 65 66 /* 67 * We do not account for softirq time from ksoftirqd here. 68 * We want to continue accounting softirq time to ksoftirqd thread 69 * in that case, so as not to confuse scheduler with a special task 70 * that do not consume any time, but still wants to run. 71 */ 72 if (hardirq_count()) 73 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); 74 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 75 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); 76 } 77 EXPORT_SYMBOL_GPL(irqtime_account_irq); 78 79 static u64 irqtime_tick_accounted(u64 maxtime) 80 { 81 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 82 u64 delta; 83 84 delta = min(irqtime->tick_delta, maxtime); 85 irqtime->tick_delta -= delta; 86 87 return delta; 88 } 89 90 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 91 92 #define sched_clock_irqtime (0) 93 94 static u64 irqtime_tick_accounted(u64 dummy) 95 { 96 return 0; 97 } 98 99 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 100 101 static inline void task_group_account_field(struct task_struct *p, int index, 102 u64 tmp) 103 { 104 /* 105 * Since all updates are sure to touch the root cgroup, we 106 * get ourselves ahead and touch it first. If the root cgroup 107 * is the only cgroup, then nothing else should be necessary. 108 * 109 */ 110 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 111 112 cgroup_account_cputime_field(p, index, tmp); 113 } 114 115 /* 116 * Account user cpu time to a process. 117 * @p: the process that the cpu time gets accounted to 118 * @cputime: the cpu time spent in user space since the last update 119 */ 120 void account_user_time(struct task_struct *p, u64 cputime) 121 { 122 int index; 123 124 /* Add user time to process. */ 125 p->utime += cputime; 126 account_group_user_time(p, cputime); 127 128 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 129 130 /* Add user time to cpustat. */ 131 task_group_account_field(p, index, cputime); 132 133 /* Account for user time used */ 134 acct_account_cputime(p); 135 } 136 137 /* 138 * Account guest cpu time to a process. 139 * @p: the process that the cpu time gets accounted to 140 * @cputime: the cpu time spent in virtual machine since the last update 141 */ 142 void account_guest_time(struct task_struct *p, u64 cputime) 143 { 144 u64 *cpustat = kcpustat_this_cpu->cpustat; 145 146 /* Add guest time to process. */ 147 p->utime += cputime; 148 account_group_user_time(p, cputime); 149 p->gtime += cputime; 150 151 /* Add guest time to cpustat. */ 152 if (task_nice(p) > 0) { 153 cpustat[CPUTIME_NICE] += cputime; 154 cpustat[CPUTIME_GUEST_NICE] += cputime; 155 } else { 156 cpustat[CPUTIME_USER] += cputime; 157 cpustat[CPUTIME_GUEST] += cputime; 158 } 159 } 160 161 /* 162 * Account system cpu time to a process and desired cpustat field 163 * @p: the process that the cpu time gets accounted to 164 * @cputime: the cpu time spent in kernel space since the last update 165 * @index: pointer to cpustat field that has to be updated 166 */ 167 void account_system_index_time(struct task_struct *p, 168 u64 cputime, enum cpu_usage_stat index) 169 { 170 /* Add system time to process. */ 171 p->stime += cputime; 172 account_group_system_time(p, cputime); 173 174 /* Add system time to cpustat. */ 175 task_group_account_field(p, index, cputime); 176 177 /* Account for system time used */ 178 acct_account_cputime(p); 179 } 180 181 /* 182 * Account system cpu time to a process. 183 * @p: the process that the cpu time gets accounted to 184 * @hardirq_offset: the offset to subtract from hardirq_count() 185 * @cputime: the cpu time spent in kernel space since the last update 186 */ 187 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) 188 { 189 int index; 190 191 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 192 account_guest_time(p, cputime); 193 return; 194 } 195 196 if (hardirq_count() - hardirq_offset) 197 index = CPUTIME_IRQ; 198 else if (in_serving_softirq()) 199 index = CPUTIME_SOFTIRQ; 200 else 201 index = CPUTIME_SYSTEM; 202 203 account_system_index_time(p, cputime, index); 204 } 205 206 /* 207 * Account for involuntary wait time. 208 * @cputime: the cpu time spent in involuntary wait 209 */ 210 void account_steal_time(u64 cputime) 211 { 212 u64 *cpustat = kcpustat_this_cpu->cpustat; 213 214 cpustat[CPUTIME_STEAL] += cputime; 215 } 216 217 /* 218 * Account for idle time. 219 * @cputime: the cpu time spent in idle wait 220 */ 221 void account_idle_time(u64 cputime) 222 { 223 u64 *cpustat = kcpustat_this_cpu->cpustat; 224 struct rq *rq = this_rq(); 225 226 if (atomic_read(&rq->nr_iowait) > 0) 227 cpustat[CPUTIME_IOWAIT] += cputime; 228 else 229 cpustat[CPUTIME_IDLE] += cputime; 230 } 231 232 /* 233 * When a guest is interrupted for a longer amount of time, missed clock 234 * ticks are not redelivered later. Due to that, this function may on 235 * occasion account more time than the calling functions think elapsed. 236 */ 237 static __always_inline u64 steal_account_process_time(u64 maxtime) 238 { 239 #ifdef CONFIG_PARAVIRT 240 if (static_key_false(¶virt_steal_enabled)) { 241 u64 steal; 242 243 steal = paravirt_steal_clock(smp_processor_id()); 244 steal -= this_rq()->prev_steal_time; 245 steal = min(steal, maxtime); 246 account_steal_time(steal); 247 this_rq()->prev_steal_time += steal; 248 249 return steal; 250 } 251 #endif 252 return 0; 253 } 254 255 /* 256 * Account how much elapsed time was spent in steal, irq, or softirq time. 257 */ 258 static inline u64 account_other_time(u64 max) 259 { 260 u64 accounted; 261 262 lockdep_assert_irqs_disabled(); 263 264 accounted = steal_account_process_time(max); 265 266 if (accounted < max) 267 accounted += irqtime_tick_accounted(max - accounted); 268 269 return accounted; 270 } 271 272 #ifdef CONFIG_64BIT 273 static inline u64 read_sum_exec_runtime(struct task_struct *t) 274 { 275 return t->se.sum_exec_runtime; 276 } 277 #else 278 static u64 read_sum_exec_runtime(struct task_struct *t) 279 { 280 u64 ns; 281 struct rq_flags rf; 282 struct rq *rq; 283 284 rq = task_rq_lock(t, &rf); 285 ns = t->se.sum_exec_runtime; 286 task_rq_unlock(rq, t, &rf); 287 288 return ns; 289 } 290 #endif 291 292 /* 293 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 294 * tasks (sum on group iteration) belonging to @tsk's group. 295 */ 296 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 297 { 298 struct signal_struct *sig = tsk->signal; 299 u64 utime, stime; 300 struct task_struct *t; 301 unsigned int seq, nextseq; 302 unsigned long flags; 303 304 /* 305 * Update current task runtime to account pending time since last 306 * scheduler action or thread_group_cputime() call. This thread group 307 * might have other running tasks on different CPUs, but updating 308 * their runtime can affect syscall performance, so we skip account 309 * those pending times and rely only on values updated on tick or 310 * other scheduler action. 311 */ 312 if (same_thread_group(current, tsk)) 313 (void) task_sched_runtime(current); 314 315 rcu_read_lock(); 316 /* Attempt a lockless read on the first round. */ 317 nextseq = 0; 318 do { 319 seq = nextseq; 320 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 321 times->utime = sig->utime; 322 times->stime = sig->stime; 323 times->sum_exec_runtime = sig->sum_sched_runtime; 324 325 for_each_thread(tsk, t) { 326 task_cputime(t, &utime, &stime); 327 times->utime += utime; 328 times->stime += stime; 329 times->sum_exec_runtime += read_sum_exec_runtime(t); 330 } 331 /* If lockless access failed, take the lock. */ 332 nextseq = 1; 333 } while (need_seqretry(&sig->stats_lock, seq)); 334 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 335 rcu_read_unlock(); 336 } 337 338 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 339 /* 340 * Account a tick to a process and cpustat 341 * @p: the process that the cpu time gets accounted to 342 * @user_tick: is the tick from userspace 343 * @rq: the pointer to rq 344 * 345 * Tick demultiplexing follows the order 346 * - pending hardirq update 347 * - pending softirq update 348 * - user_time 349 * - idle_time 350 * - system time 351 * - check for guest_time 352 * - else account as system_time 353 * 354 * Check for hardirq is done both for system and user time as there is 355 * no timer going off while we are on hardirq and hence we may never get an 356 * opportunity to update it solely in system time. 357 * p->stime and friends are only updated on system time and not on irq 358 * softirq as those do not count in task exec_runtime any more. 359 */ 360 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 361 struct rq *rq, int ticks) 362 { 363 u64 other, cputime = TICK_NSEC * ticks; 364 365 /* 366 * When returning from idle, many ticks can get accounted at 367 * once, including some ticks of steal, irq, and softirq time. 368 * Subtract those ticks from the amount of time accounted to 369 * idle, or potentially user or system time. Due to rounding, 370 * other time can exceed ticks occasionally. 371 */ 372 other = account_other_time(ULONG_MAX); 373 if (other >= cputime) 374 return; 375 376 cputime -= other; 377 378 if (this_cpu_ksoftirqd() == p) { 379 /* 380 * ksoftirqd time do not get accounted in cpu_softirq_time. 381 * So, we have to handle it separately here. 382 * Also, p->stime needs to be updated for ksoftirqd. 383 */ 384 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); 385 } else if (user_tick) { 386 account_user_time(p, cputime); 387 } else if (p == rq->idle) { 388 account_idle_time(cputime); 389 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 390 account_guest_time(p, cputime); 391 } else { 392 account_system_index_time(p, cputime, CPUTIME_SYSTEM); 393 } 394 } 395 396 static void irqtime_account_idle_ticks(int ticks) 397 { 398 struct rq *rq = this_rq(); 399 400 irqtime_account_process_tick(current, 0, rq, ticks); 401 } 402 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 403 static inline void irqtime_account_idle_ticks(int ticks) {} 404 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 405 struct rq *rq, int nr_ticks) {} 406 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 407 408 /* 409 * Use precise platform statistics if available: 410 */ 411 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 412 413 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH 414 void vtime_common_task_switch(struct task_struct *prev) 415 { 416 if (is_idle_task(prev)) 417 vtime_account_idle(prev); 418 else 419 vtime_account_system(prev); 420 421 vtime_flush(prev); 422 arch_vtime_task_switch(prev); 423 } 424 #endif 425 426 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 427 428 429 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 430 /* 431 * Archs that account the whole time spent in the idle task 432 * (outside irq) as idle time can rely on this and just implement 433 * vtime_account_system() and vtime_account_idle(). Archs that 434 * have other meaning of the idle time (s390 only includes the 435 * time spent by the CPU when it's in low power mode) must override 436 * vtime_account(). 437 */ 438 #ifndef __ARCH_HAS_VTIME_ACCOUNT 439 void vtime_account_irq_enter(struct task_struct *tsk) 440 { 441 if (!in_interrupt() && is_idle_task(tsk)) 442 vtime_account_idle(tsk); 443 else 444 vtime_account_system(tsk); 445 } 446 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 447 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 448 449 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 450 u64 *ut, u64 *st) 451 { 452 *ut = curr->utime; 453 *st = curr->stime; 454 } 455 456 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 457 { 458 *ut = p->utime; 459 *st = p->stime; 460 } 461 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 462 463 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 464 { 465 struct task_cputime cputime; 466 467 thread_group_cputime(p, &cputime); 468 469 *ut = cputime.utime; 470 *st = cputime.stime; 471 } 472 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 473 /* 474 * Account a single tick of cpu time. 475 * @p: the process that the cpu time gets accounted to 476 * @user_tick: indicates if the tick is a user or a system tick 477 */ 478 void account_process_tick(struct task_struct *p, int user_tick) 479 { 480 u64 cputime, steal; 481 struct rq *rq = this_rq(); 482 483 if (vtime_accounting_cpu_enabled()) 484 return; 485 486 if (sched_clock_irqtime) { 487 irqtime_account_process_tick(p, user_tick, rq, 1); 488 return; 489 } 490 491 cputime = TICK_NSEC; 492 steal = steal_account_process_time(ULONG_MAX); 493 494 if (steal >= cputime) 495 return; 496 497 cputime -= steal; 498 499 if (user_tick) 500 account_user_time(p, cputime); 501 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 502 account_system_time(p, HARDIRQ_OFFSET, cputime); 503 else 504 account_idle_time(cputime); 505 } 506 507 /* 508 * Account multiple ticks of idle time. 509 * @ticks: number of stolen ticks 510 */ 511 void account_idle_ticks(unsigned long ticks) 512 { 513 u64 cputime, steal; 514 515 if (sched_clock_irqtime) { 516 irqtime_account_idle_ticks(ticks); 517 return; 518 } 519 520 cputime = ticks * TICK_NSEC; 521 steal = steal_account_process_time(ULONG_MAX); 522 523 if (steal >= cputime) 524 return; 525 526 cputime -= steal; 527 account_idle_time(cputime); 528 } 529 530 /* 531 * Perform (stime * rtime) / total, but avoid multiplication overflow by 532 * loosing precision when the numbers are big. 533 */ 534 static u64 scale_stime(u64 stime, u64 rtime, u64 total) 535 { 536 u64 scaled; 537 538 for (;;) { 539 /* Make sure "rtime" is the bigger of stime/rtime */ 540 if (stime > rtime) 541 swap(rtime, stime); 542 543 /* Make sure 'total' fits in 32 bits */ 544 if (total >> 32) 545 goto drop_precision; 546 547 /* Does rtime (and thus stime) fit in 32 bits? */ 548 if (!(rtime >> 32)) 549 break; 550 551 /* Can we just balance rtime/stime rather than dropping bits? */ 552 if (stime >> 31) 553 goto drop_precision; 554 555 /* We can grow stime and shrink rtime and try to make them both fit */ 556 stime <<= 1; 557 rtime >>= 1; 558 continue; 559 560 drop_precision: 561 /* We drop from rtime, it has more bits than stime */ 562 rtime >>= 1; 563 total >>= 1; 564 } 565 566 /* 567 * Make sure gcc understands that this is a 32x32->64 multiply, 568 * followed by a 64/32->64 divide. 569 */ 570 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 571 return scaled; 572 } 573 574 /* 575 * Adjust tick based cputime random precision against scheduler runtime 576 * accounting. 577 * 578 * Tick based cputime accounting depend on random scheduling timeslices of a 579 * task to be interrupted or not by the timer. Depending on these 580 * circumstances, the number of these interrupts may be over or 581 * under-optimistic, matching the real user and system cputime with a variable 582 * precision. 583 * 584 * Fix this by scaling these tick based values against the total runtime 585 * accounted by the CFS scheduler. 586 * 587 * This code provides the following guarantees: 588 * 589 * stime + utime == rtime 590 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 591 * 592 * Assuming that rtime_i+1 >= rtime_i. 593 */ 594 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 595 u64 *ut, u64 *st) 596 { 597 u64 rtime, stime, utime; 598 unsigned long flags; 599 600 /* Serialize concurrent callers such that we can honour our guarantees */ 601 raw_spin_lock_irqsave(&prev->lock, flags); 602 rtime = curr->sum_exec_runtime; 603 604 /* 605 * This is possible under two circumstances: 606 * - rtime isn't monotonic after all (a bug); 607 * - we got reordered by the lock. 608 * 609 * In both cases this acts as a filter such that the rest of the code 610 * can assume it is monotonic regardless of anything else. 611 */ 612 if (prev->stime + prev->utime >= rtime) 613 goto out; 614 615 stime = curr->stime; 616 utime = curr->utime; 617 618 /* 619 * If either stime or utime are 0, assume all runtime is userspace. 620 * Once a task gets some ticks, the monotonicy code at 'update:' 621 * will ensure things converge to the observed ratio. 622 */ 623 if (stime == 0) { 624 utime = rtime; 625 goto update; 626 } 627 628 if (utime == 0) { 629 stime = rtime; 630 goto update; 631 } 632 633 stime = scale_stime(stime, rtime, stime + utime); 634 635 update: 636 /* 637 * Make sure stime doesn't go backwards; this preserves monotonicity 638 * for utime because rtime is monotonic. 639 * 640 * utime_i+1 = rtime_i+1 - stime_i 641 * = rtime_i+1 - (rtime_i - utime_i) 642 * = (rtime_i+1 - rtime_i) + utime_i 643 * >= utime_i 644 */ 645 if (stime < prev->stime) 646 stime = prev->stime; 647 utime = rtime - stime; 648 649 /* 650 * Make sure utime doesn't go backwards; this still preserves 651 * monotonicity for stime, analogous argument to above. 652 */ 653 if (utime < prev->utime) { 654 utime = prev->utime; 655 stime = rtime - utime; 656 } 657 658 prev->stime = stime; 659 prev->utime = utime; 660 out: 661 *ut = prev->utime; 662 *st = prev->stime; 663 raw_spin_unlock_irqrestore(&prev->lock, flags); 664 } 665 666 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 667 { 668 struct task_cputime cputime = { 669 .sum_exec_runtime = p->se.sum_exec_runtime, 670 }; 671 672 task_cputime(p, &cputime.utime, &cputime.stime); 673 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 674 } 675 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 676 677 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 678 { 679 struct task_cputime cputime; 680 681 thread_group_cputime(p, &cputime); 682 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 683 } 684 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 685 686 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 687 static u64 vtime_delta(struct vtime *vtime) 688 { 689 unsigned long long clock; 690 691 clock = sched_clock(); 692 if (clock < vtime->starttime) 693 return 0; 694 695 return clock - vtime->starttime; 696 } 697 698 static u64 get_vtime_delta(struct vtime *vtime) 699 { 700 u64 delta = vtime_delta(vtime); 701 u64 other; 702 703 /* 704 * Unlike tick based timing, vtime based timing never has lost 705 * ticks, and no need for steal time accounting to make up for 706 * lost ticks. Vtime accounts a rounded version of actual 707 * elapsed time. Limit account_other_time to prevent rounding 708 * errors from causing elapsed vtime to go negative. 709 */ 710 other = account_other_time(delta); 711 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE); 712 vtime->starttime += delta; 713 714 return delta - other; 715 } 716 717 static void __vtime_account_system(struct task_struct *tsk, 718 struct vtime *vtime) 719 { 720 vtime->stime += get_vtime_delta(vtime); 721 if (vtime->stime >= TICK_NSEC) { 722 account_system_time(tsk, irq_count(), vtime->stime); 723 vtime->stime = 0; 724 } 725 } 726 727 static void vtime_account_guest(struct task_struct *tsk, 728 struct vtime *vtime) 729 { 730 vtime->gtime += get_vtime_delta(vtime); 731 if (vtime->gtime >= TICK_NSEC) { 732 account_guest_time(tsk, vtime->gtime); 733 vtime->gtime = 0; 734 } 735 } 736 737 void vtime_account_system(struct task_struct *tsk) 738 { 739 struct vtime *vtime = &tsk->vtime; 740 741 if (!vtime_delta(vtime)) 742 return; 743 744 write_seqcount_begin(&vtime->seqcount); 745 /* We might have scheduled out from guest path */ 746 if (current->flags & PF_VCPU) 747 vtime_account_guest(tsk, vtime); 748 else 749 __vtime_account_system(tsk, vtime); 750 write_seqcount_end(&vtime->seqcount); 751 } 752 753 void vtime_user_enter(struct task_struct *tsk) 754 { 755 struct vtime *vtime = &tsk->vtime; 756 757 write_seqcount_begin(&vtime->seqcount); 758 __vtime_account_system(tsk, vtime); 759 vtime->state = VTIME_USER; 760 write_seqcount_end(&vtime->seqcount); 761 } 762 763 void vtime_user_exit(struct task_struct *tsk) 764 { 765 struct vtime *vtime = &tsk->vtime; 766 767 write_seqcount_begin(&vtime->seqcount); 768 vtime->utime += get_vtime_delta(vtime); 769 if (vtime->utime >= TICK_NSEC) { 770 account_user_time(tsk, vtime->utime); 771 vtime->utime = 0; 772 } 773 vtime->state = VTIME_SYS; 774 write_seqcount_end(&vtime->seqcount); 775 } 776 777 void vtime_guest_enter(struct task_struct *tsk) 778 { 779 struct vtime *vtime = &tsk->vtime; 780 /* 781 * The flags must be updated under the lock with 782 * the vtime_starttime flush and update. 783 * That enforces a right ordering and update sequence 784 * synchronization against the reader (task_gtime()) 785 * that can thus safely catch up with a tickless delta. 786 */ 787 write_seqcount_begin(&vtime->seqcount); 788 __vtime_account_system(tsk, vtime); 789 current->flags |= PF_VCPU; 790 write_seqcount_end(&vtime->seqcount); 791 } 792 EXPORT_SYMBOL_GPL(vtime_guest_enter); 793 794 void vtime_guest_exit(struct task_struct *tsk) 795 { 796 struct vtime *vtime = &tsk->vtime; 797 798 write_seqcount_begin(&vtime->seqcount); 799 vtime_account_guest(tsk, vtime); 800 current->flags &= ~PF_VCPU; 801 write_seqcount_end(&vtime->seqcount); 802 } 803 EXPORT_SYMBOL_GPL(vtime_guest_exit); 804 805 void vtime_account_idle(struct task_struct *tsk) 806 { 807 account_idle_time(get_vtime_delta(&tsk->vtime)); 808 } 809 810 void arch_vtime_task_switch(struct task_struct *prev) 811 { 812 struct vtime *vtime = &prev->vtime; 813 814 write_seqcount_begin(&vtime->seqcount); 815 vtime->state = VTIME_INACTIVE; 816 write_seqcount_end(&vtime->seqcount); 817 818 vtime = ¤t->vtime; 819 820 write_seqcount_begin(&vtime->seqcount); 821 vtime->state = VTIME_SYS; 822 vtime->starttime = sched_clock(); 823 write_seqcount_end(&vtime->seqcount); 824 } 825 826 void vtime_init_idle(struct task_struct *t, int cpu) 827 { 828 struct vtime *vtime = &t->vtime; 829 unsigned long flags; 830 831 local_irq_save(flags); 832 write_seqcount_begin(&vtime->seqcount); 833 vtime->state = VTIME_SYS; 834 vtime->starttime = sched_clock(); 835 write_seqcount_end(&vtime->seqcount); 836 local_irq_restore(flags); 837 } 838 839 u64 task_gtime(struct task_struct *t) 840 { 841 struct vtime *vtime = &t->vtime; 842 unsigned int seq; 843 u64 gtime; 844 845 if (!vtime_accounting_enabled()) 846 return t->gtime; 847 848 do { 849 seq = read_seqcount_begin(&vtime->seqcount); 850 851 gtime = t->gtime; 852 if (vtime->state == VTIME_SYS && t->flags & PF_VCPU) 853 gtime += vtime->gtime + vtime_delta(vtime); 854 855 } while (read_seqcount_retry(&vtime->seqcount, seq)); 856 857 return gtime; 858 } 859 860 /* 861 * Fetch cputime raw values from fields of task_struct and 862 * add up the pending nohz execution time since the last 863 * cputime snapshot. 864 */ 865 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) 866 { 867 struct vtime *vtime = &t->vtime; 868 unsigned int seq; 869 u64 delta; 870 871 if (!vtime_accounting_enabled()) { 872 *utime = t->utime; 873 *stime = t->stime; 874 return; 875 } 876 877 do { 878 seq = read_seqcount_begin(&vtime->seqcount); 879 880 *utime = t->utime; 881 *stime = t->stime; 882 883 /* Task is sleeping, nothing to add */ 884 if (vtime->state == VTIME_INACTIVE || is_idle_task(t)) 885 continue; 886 887 delta = vtime_delta(vtime); 888 889 /* 890 * Task runs either in user or kernel space, add pending nohz time to 891 * the right place. 892 */ 893 if (vtime->state == VTIME_USER || t->flags & PF_VCPU) 894 *utime += vtime->utime + delta; 895 else if (vtime->state == VTIME_SYS) 896 *stime += vtime->stime + delta; 897 } while (read_seqcount_retry(&vtime->seqcount, seq)); 898 } 899 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 900