1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include <linux/context_tracking.h> 7 #include <linux/cputime.h> 8 #include "sched.h" 9 #ifdef CONFIG_PARAVIRT 10 #include <asm/paravirt.h> 11 #endif 12 13 14 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 15 16 /* 17 * There are no locks covering percpu hardirq/softirq time. 18 * They are only modified in vtime_account, on corresponding CPU 19 * with interrupts disabled. So, writes are safe. 20 * They are read and saved off onto struct rq in update_rq_clock(). 21 * This may result in other CPU reading this CPU's irq time and can 22 * race with irq/vtime_account on this CPU. We would either get old 23 * or new value with a side effect of accounting a slice of irq time to wrong 24 * task when irq is in progress while we read rq->clock. That is a worthy 25 * compromise in place of having locks on each irq in account_system_time. 26 */ 27 DEFINE_PER_CPU(struct irqtime, cpu_irqtime); 28 29 static int sched_clock_irqtime; 30 31 void enable_sched_clock_irqtime(void) 32 { 33 sched_clock_irqtime = 1; 34 } 35 36 void disable_sched_clock_irqtime(void) 37 { 38 sched_clock_irqtime = 0; 39 } 40 41 /* 42 * Called before incrementing preempt_count on {soft,}irq_enter 43 * and before decrementing preempt_count on {soft,}irq_exit. 44 */ 45 void irqtime_account_irq(struct task_struct *curr) 46 { 47 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 48 u64 *cpustat = kcpustat_this_cpu->cpustat; 49 s64 delta; 50 int cpu; 51 52 if (!sched_clock_irqtime) 53 return; 54 55 cpu = smp_processor_id(); 56 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; 57 irqtime->irq_start_time += delta; 58 59 u64_stats_update_begin(&irqtime->sync); 60 /* 61 * We do not account for softirq time from ksoftirqd here. 62 * We want to continue accounting softirq time to ksoftirqd thread 63 * in that case, so as not to confuse scheduler with a special task 64 * that do not consume any time, but still wants to run. 65 */ 66 if (hardirq_count()) { 67 cpustat[CPUTIME_IRQ] += delta; 68 irqtime->tick_delta += delta; 69 } else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) { 70 cpustat[CPUTIME_SOFTIRQ] += delta; 71 irqtime->tick_delta += delta; 72 } 73 74 u64_stats_update_end(&irqtime->sync); 75 } 76 EXPORT_SYMBOL_GPL(irqtime_account_irq); 77 78 static u64 irqtime_tick_accounted(u64 maxtime) 79 { 80 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 81 u64 delta; 82 83 delta = min(irqtime->tick_delta, maxtime); 84 irqtime->tick_delta -= delta; 85 86 return delta; 87 } 88 89 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 90 91 #define sched_clock_irqtime (0) 92 93 static u64 irqtime_tick_accounted(u64 dummy) 94 { 95 return 0; 96 } 97 98 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 99 100 static inline void task_group_account_field(struct task_struct *p, int index, 101 u64 tmp) 102 { 103 /* 104 * Since all updates are sure to touch the root cgroup, we 105 * get ourselves ahead and touch it first. If the root cgroup 106 * is the only cgroup, then nothing else should be necessary. 107 * 108 */ 109 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 110 111 cpuacct_account_field(p, index, tmp); 112 } 113 114 /* 115 * Account user cpu time to a process. 116 * @p: the process that the cpu time gets accounted to 117 * @cputime: the cpu time spent in user space since the last update 118 */ 119 void account_user_time(struct task_struct *p, u64 cputime) 120 { 121 int index; 122 123 /* Add user time to process. */ 124 p->utime += cputime; 125 account_group_user_time(p, cputime); 126 127 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 128 129 /* Add user time to cpustat. */ 130 task_group_account_field(p, index, cputime); 131 132 /* Account for user time used */ 133 acct_account_cputime(p); 134 } 135 136 /* 137 * Account guest cpu time to a process. 138 * @p: the process that the cpu time gets accounted to 139 * @cputime: the cpu time spent in virtual machine since the last update 140 */ 141 void account_guest_time(struct task_struct *p, u64 cputime) 142 { 143 u64 *cpustat = kcpustat_this_cpu->cpustat; 144 145 /* Add guest time to process. */ 146 p->utime += cputime; 147 account_group_user_time(p, cputime); 148 p->gtime += cputime; 149 150 /* Add guest time to cpustat. */ 151 if (task_nice(p) > 0) { 152 cpustat[CPUTIME_NICE] += cputime; 153 cpustat[CPUTIME_GUEST_NICE] += cputime; 154 } else { 155 cpustat[CPUTIME_USER] += cputime; 156 cpustat[CPUTIME_GUEST] += cputime; 157 } 158 } 159 160 /* 161 * Account system cpu time to a process and desired cpustat field 162 * @p: the process that the cpu time gets accounted to 163 * @cputime: the cpu time spent in kernel space since the last update 164 * @index: pointer to cpustat field that has to be updated 165 */ 166 void account_system_index_time(struct task_struct *p, 167 u64 cputime, enum cpu_usage_stat index) 168 { 169 /* Add system time to process. */ 170 p->stime += cputime; 171 account_group_system_time(p, cputime); 172 173 /* Add system time to cpustat. */ 174 task_group_account_field(p, index, cputime); 175 176 /* Account for system time used */ 177 acct_account_cputime(p); 178 } 179 180 /* 181 * Account system cpu time to a process. 182 * @p: the process that the cpu time gets accounted to 183 * @hardirq_offset: the offset to subtract from hardirq_count() 184 * @cputime: the cpu time spent in kernel space since the last update 185 */ 186 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) 187 { 188 int index; 189 190 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 191 account_guest_time(p, cputime); 192 return; 193 } 194 195 if (hardirq_count() - hardirq_offset) 196 index = CPUTIME_IRQ; 197 else if (in_serving_softirq()) 198 index = CPUTIME_SOFTIRQ; 199 else 200 index = CPUTIME_SYSTEM; 201 202 account_system_index_time(p, cputime, index); 203 } 204 205 /* 206 * Account for involuntary wait time. 207 * @cputime: the cpu time spent in involuntary wait 208 */ 209 void account_steal_time(u64 cputime) 210 { 211 u64 *cpustat = kcpustat_this_cpu->cpustat; 212 213 cpustat[CPUTIME_STEAL] += cputime; 214 } 215 216 /* 217 * Account for idle time. 218 * @cputime: the cpu time spent in idle wait 219 */ 220 void account_idle_time(u64 cputime) 221 { 222 u64 *cpustat = kcpustat_this_cpu->cpustat; 223 struct rq *rq = this_rq(); 224 225 if (atomic_read(&rq->nr_iowait) > 0) 226 cpustat[CPUTIME_IOWAIT] += cputime; 227 else 228 cpustat[CPUTIME_IDLE] += cputime; 229 } 230 231 /* 232 * When a guest is interrupted for a longer amount of time, missed clock 233 * ticks are not redelivered later. Due to that, this function may on 234 * occasion account more time than the calling functions think elapsed. 235 */ 236 static __always_inline u64 steal_account_process_time(u64 maxtime) 237 { 238 #ifdef CONFIG_PARAVIRT 239 if (static_key_false(¶virt_steal_enabled)) { 240 u64 steal; 241 242 steal = paravirt_steal_clock(smp_processor_id()); 243 steal -= this_rq()->prev_steal_time; 244 steal = min(steal, maxtime); 245 account_steal_time(steal); 246 this_rq()->prev_steal_time += steal; 247 248 return steal; 249 } 250 #endif 251 return 0; 252 } 253 254 /* 255 * Account how much elapsed time was spent in steal, irq, or softirq time. 256 */ 257 static inline u64 account_other_time(u64 max) 258 { 259 u64 accounted; 260 261 /* Shall be converted to a lockdep-enabled lightweight check */ 262 WARN_ON_ONCE(!irqs_disabled()); 263 264 accounted = steal_account_process_time(max); 265 266 if (accounted < max) 267 accounted += irqtime_tick_accounted(max - accounted); 268 269 return accounted; 270 } 271 272 #ifdef CONFIG_64BIT 273 static inline u64 read_sum_exec_runtime(struct task_struct *t) 274 { 275 return t->se.sum_exec_runtime; 276 } 277 #else 278 static u64 read_sum_exec_runtime(struct task_struct *t) 279 { 280 u64 ns; 281 struct rq_flags rf; 282 struct rq *rq; 283 284 rq = task_rq_lock(t, &rf); 285 ns = t->se.sum_exec_runtime; 286 task_rq_unlock(rq, t, &rf); 287 288 return ns; 289 } 290 #endif 291 292 /* 293 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 294 * tasks (sum on group iteration) belonging to @tsk's group. 295 */ 296 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 297 { 298 struct signal_struct *sig = tsk->signal; 299 u64 utime, stime; 300 struct task_struct *t; 301 unsigned int seq, nextseq; 302 unsigned long flags; 303 304 /* 305 * Update current task runtime to account pending time since last 306 * scheduler action or thread_group_cputime() call. This thread group 307 * might have other running tasks on different CPUs, but updating 308 * their runtime can affect syscall performance, so we skip account 309 * those pending times and rely only on values updated on tick or 310 * other scheduler action. 311 */ 312 if (same_thread_group(current, tsk)) 313 (void) task_sched_runtime(current); 314 315 rcu_read_lock(); 316 /* Attempt a lockless read on the first round. */ 317 nextseq = 0; 318 do { 319 seq = nextseq; 320 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 321 times->utime = sig->utime; 322 times->stime = sig->stime; 323 times->sum_exec_runtime = sig->sum_sched_runtime; 324 325 for_each_thread(tsk, t) { 326 task_cputime(t, &utime, &stime); 327 times->utime += utime; 328 times->stime += stime; 329 times->sum_exec_runtime += read_sum_exec_runtime(t); 330 } 331 /* If lockless access failed, take the lock. */ 332 nextseq = 1; 333 } while (need_seqretry(&sig->stats_lock, seq)); 334 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 335 rcu_read_unlock(); 336 } 337 338 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 339 /* 340 * Account a tick to a process and cpustat 341 * @p: the process that the cpu time gets accounted to 342 * @user_tick: is the tick from userspace 343 * @rq: the pointer to rq 344 * 345 * Tick demultiplexing follows the order 346 * - pending hardirq update 347 * - pending softirq update 348 * - user_time 349 * - idle_time 350 * - system time 351 * - check for guest_time 352 * - else account as system_time 353 * 354 * Check for hardirq is done both for system and user time as there is 355 * no timer going off while we are on hardirq and hence we may never get an 356 * opportunity to update it solely in system time. 357 * p->stime and friends are only updated on system time and not on irq 358 * softirq as those do not count in task exec_runtime any more. 359 */ 360 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 361 struct rq *rq, int ticks) 362 { 363 u64 other, cputime = TICK_NSEC * ticks; 364 365 /* 366 * When returning from idle, many ticks can get accounted at 367 * once, including some ticks of steal, irq, and softirq time. 368 * Subtract those ticks from the amount of time accounted to 369 * idle, or potentially user or system time. Due to rounding, 370 * other time can exceed ticks occasionally. 371 */ 372 other = account_other_time(ULONG_MAX); 373 if (other >= cputime) 374 return; 375 376 cputime -= other; 377 378 if (this_cpu_ksoftirqd() == p) { 379 /* 380 * ksoftirqd time do not get accounted in cpu_softirq_time. 381 * So, we have to handle it separately here. 382 * Also, p->stime needs to be updated for ksoftirqd. 383 */ 384 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); 385 } else if (user_tick) { 386 account_user_time(p, cputime); 387 } else if (p == rq->idle) { 388 account_idle_time(cputime); 389 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 390 account_guest_time(p, cputime); 391 } else { 392 account_system_index_time(p, cputime, CPUTIME_SYSTEM); 393 } 394 } 395 396 static void irqtime_account_idle_ticks(int ticks) 397 { 398 struct rq *rq = this_rq(); 399 400 irqtime_account_process_tick(current, 0, rq, ticks); 401 } 402 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 403 static inline void irqtime_account_idle_ticks(int ticks) {} 404 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 405 struct rq *rq, int nr_ticks) {} 406 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 407 408 /* 409 * Use precise platform statistics if available: 410 */ 411 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 412 413 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH 414 void vtime_common_task_switch(struct task_struct *prev) 415 { 416 if (is_idle_task(prev)) 417 vtime_account_idle(prev); 418 else 419 vtime_account_system(prev); 420 421 vtime_flush(prev); 422 arch_vtime_task_switch(prev); 423 } 424 #endif 425 426 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 427 428 429 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 430 /* 431 * Archs that account the whole time spent in the idle task 432 * (outside irq) as idle time can rely on this and just implement 433 * vtime_account_system() and vtime_account_idle(). Archs that 434 * have other meaning of the idle time (s390 only includes the 435 * time spent by the CPU when it's in low power mode) must override 436 * vtime_account(). 437 */ 438 #ifndef __ARCH_HAS_VTIME_ACCOUNT 439 void vtime_account_irq_enter(struct task_struct *tsk) 440 { 441 if (!in_interrupt() && is_idle_task(tsk)) 442 vtime_account_idle(tsk); 443 else 444 vtime_account_system(tsk); 445 } 446 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 447 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 448 449 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 450 { 451 *ut = p->utime; 452 *st = p->stime; 453 } 454 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 455 456 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 457 { 458 struct task_cputime cputime; 459 460 thread_group_cputime(p, &cputime); 461 462 *ut = cputime.utime; 463 *st = cputime.stime; 464 } 465 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 466 /* 467 * Account a single tick of cpu time. 468 * @p: the process that the cpu time gets accounted to 469 * @user_tick: indicates if the tick is a user or a system tick 470 */ 471 void account_process_tick(struct task_struct *p, int user_tick) 472 { 473 u64 cputime, steal; 474 struct rq *rq = this_rq(); 475 476 if (vtime_accounting_cpu_enabled()) 477 return; 478 479 if (sched_clock_irqtime) { 480 irqtime_account_process_tick(p, user_tick, rq, 1); 481 return; 482 } 483 484 cputime = TICK_NSEC; 485 steal = steal_account_process_time(ULONG_MAX); 486 487 if (steal >= cputime) 488 return; 489 490 cputime -= steal; 491 492 if (user_tick) 493 account_user_time(p, cputime); 494 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 495 account_system_time(p, HARDIRQ_OFFSET, cputime); 496 else 497 account_idle_time(cputime); 498 } 499 500 /* 501 * Account multiple ticks of idle time. 502 * @ticks: number of stolen ticks 503 */ 504 void account_idle_ticks(unsigned long ticks) 505 { 506 u64 cputime, steal; 507 508 if (sched_clock_irqtime) { 509 irqtime_account_idle_ticks(ticks); 510 return; 511 } 512 513 cputime = ticks * TICK_NSEC; 514 steal = steal_account_process_time(ULONG_MAX); 515 516 if (steal >= cputime) 517 return; 518 519 cputime -= steal; 520 account_idle_time(cputime); 521 } 522 523 /* 524 * Perform (stime * rtime) / total, but avoid multiplication overflow by 525 * loosing precision when the numbers are big. 526 */ 527 static u64 scale_stime(u64 stime, u64 rtime, u64 total) 528 { 529 u64 scaled; 530 531 for (;;) { 532 /* Make sure "rtime" is the bigger of stime/rtime */ 533 if (stime > rtime) 534 swap(rtime, stime); 535 536 /* Make sure 'total' fits in 32 bits */ 537 if (total >> 32) 538 goto drop_precision; 539 540 /* Does rtime (and thus stime) fit in 32 bits? */ 541 if (!(rtime >> 32)) 542 break; 543 544 /* Can we just balance rtime/stime rather than dropping bits? */ 545 if (stime >> 31) 546 goto drop_precision; 547 548 /* We can grow stime and shrink rtime and try to make them both fit */ 549 stime <<= 1; 550 rtime >>= 1; 551 continue; 552 553 drop_precision: 554 /* We drop from rtime, it has more bits than stime */ 555 rtime >>= 1; 556 total >>= 1; 557 } 558 559 /* 560 * Make sure gcc understands that this is a 32x32->64 multiply, 561 * followed by a 64/32->64 divide. 562 */ 563 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 564 return scaled; 565 } 566 567 /* 568 * Adjust tick based cputime random precision against scheduler runtime 569 * accounting. 570 * 571 * Tick based cputime accounting depend on random scheduling timeslices of a 572 * task to be interrupted or not by the timer. Depending on these 573 * circumstances, the number of these interrupts may be over or 574 * under-optimistic, matching the real user and system cputime with a variable 575 * precision. 576 * 577 * Fix this by scaling these tick based values against the total runtime 578 * accounted by the CFS scheduler. 579 * 580 * This code provides the following guarantees: 581 * 582 * stime + utime == rtime 583 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 584 * 585 * Assuming that rtime_i+1 >= rtime_i. 586 */ 587 static void cputime_adjust(struct task_cputime *curr, 588 struct prev_cputime *prev, 589 u64 *ut, u64 *st) 590 { 591 u64 rtime, stime, utime; 592 unsigned long flags; 593 594 /* Serialize concurrent callers such that we can honour our guarantees */ 595 raw_spin_lock_irqsave(&prev->lock, flags); 596 rtime = curr->sum_exec_runtime; 597 598 /* 599 * This is possible under two circumstances: 600 * - rtime isn't monotonic after all (a bug); 601 * - we got reordered by the lock. 602 * 603 * In both cases this acts as a filter such that the rest of the code 604 * can assume it is monotonic regardless of anything else. 605 */ 606 if (prev->stime + prev->utime >= rtime) 607 goto out; 608 609 stime = curr->stime; 610 utime = curr->utime; 611 612 /* 613 * If either stime or both stime and utime are 0, assume all runtime is 614 * userspace. Once a task gets some ticks, the monotonicy code at 615 * 'update' will ensure things converge to the observed ratio. 616 */ 617 if (stime == 0) { 618 utime = rtime; 619 goto update; 620 } 621 622 if (utime == 0) { 623 stime = rtime; 624 goto update; 625 } 626 627 stime = scale_stime(stime, rtime, stime + utime); 628 629 update: 630 /* 631 * Make sure stime doesn't go backwards; this preserves monotonicity 632 * for utime because rtime is monotonic. 633 * 634 * utime_i+1 = rtime_i+1 - stime_i 635 * = rtime_i+1 - (rtime_i - utime_i) 636 * = (rtime_i+1 - rtime_i) + utime_i 637 * >= utime_i 638 */ 639 if (stime < prev->stime) 640 stime = prev->stime; 641 utime = rtime - stime; 642 643 /* 644 * Make sure utime doesn't go backwards; this still preserves 645 * monotonicity for stime, analogous argument to above. 646 */ 647 if (utime < prev->utime) { 648 utime = prev->utime; 649 stime = rtime - utime; 650 } 651 652 prev->stime = stime; 653 prev->utime = utime; 654 out: 655 *ut = prev->utime; 656 *st = prev->stime; 657 raw_spin_unlock_irqrestore(&prev->lock, flags); 658 } 659 660 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 661 { 662 struct task_cputime cputime = { 663 .sum_exec_runtime = p->se.sum_exec_runtime, 664 }; 665 666 task_cputime(p, &cputime.utime, &cputime.stime); 667 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 668 } 669 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 670 671 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 672 { 673 struct task_cputime cputime; 674 675 thread_group_cputime(p, &cputime); 676 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 677 } 678 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 679 680 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 681 static u64 vtime_delta(struct task_struct *tsk) 682 { 683 unsigned long now = READ_ONCE(jiffies); 684 685 if (time_before(now, (unsigned long)tsk->vtime_snap)) 686 return 0; 687 688 return jiffies_to_nsecs(now - tsk->vtime_snap); 689 } 690 691 static u64 get_vtime_delta(struct task_struct *tsk) 692 { 693 unsigned long now = READ_ONCE(jiffies); 694 u64 delta, other; 695 696 /* 697 * Unlike tick based timing, vtime based timing never has lost 698 * ticks, and no need for steal time accounting to make up for 699 * lost ticks. Vtime accounts a rounded version of actual 700 * elapsed time. Limit account_other_time to prevent rounding 701 * errors from causing elapsed vtime to go negative. 702 */ 703 delta = jiffies_to_nsecs(now - tsk->vtime_snap); 704 other = account_other_time(delta); 705 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE); 706 tsk->vtime_snap = now; 707 708 return delta - other; 709 } 710 711 static void __vtime_account_system(struct task_struct *tsk) 712 { 713 account_system_time(tsk, irq_count(), get_vtime_delta(tsk)); 714 } 715 716 void vtime_account_system(struct task_struct *tsk) 717 { 718 if (!vtime_delta(tsk)) 719 return; 720 721 write_seqcount_begin(&tsk->vtime_seqcount); 722 __vtime_account_system(tsk); 723 write_seqcount_end(&tsk->vtime_seqcount); 724 } 725 726 void vtime_account_user(struct task_struct *tsk) 727 { 728 write_seqcount_begin(&tsk->vtime_seqcount); 729 tsk->vtime_snap_whence = VTIME_SYS; 730 if (vtime_delta(tsk)) 731 account_user_time(tsk, get_vtime_delta(tsk)); 732 write_seqcount_end(&tsk->vtime_seqcount); 733 } 734 735 void vtime_user_enter(struct task_struct *tsk) 736 { 737 write_seqcount_begin(&tsk->vtime_seqcount); 738 if (vtime_delta(tsk)) 739 __vtime_account_system(tsk); 740 tsk->vtime_snap_whence = VTIME_USER; 741 write_seqcount_end(&tsk->vtime_seqcount); 742 } 743 744 void vtime_guest_enter(struct task_struct *tsk) 745 { 746 /* 747 * The flags must be updated under the lock with 748 * the vtime_snap flush and update. 749 * That enforces a right ordering and update sequence 750 * synchronization against the reader (task_gtime()) 751 * that can thus safely catch up with a tickless delta. 752 */ 753 write_seqcount_begin(&tsk->vtime_seqcount); 754 if (vtime_delta(tsk)) 755 __vtime_account_system(tsk); 756 current->flags |= PF_VCPU; 757 write_seqcount_end(&tsk->vtime_seqcount); 758 } 759 EXPORT_SYMBOL_GPL(vtime_guest_enter); 760 761 void vtime_guest_exit(struct task_struct *tsk) 762 { 763 write_seqcount_begin(&tsk->vtime_seqcount); 764 __vtime_account_system(tsk); 765 current->flags &= ~PF_VCPU; 766 write_seqcount_end(&tsk->vtime_seqcount); 767 } 768 EXPORT_SYMBOL_GPL(vtime_guest_exit); 769 770 void vtime_account_idle(struct task_struct *tsk) 771 { 772 account_idle_time(get_vtime_delta(tsk)); 773 } 774 775 void arch_vtime_task_switch(struct task_struct *prev) 776 { 777 write_seqcount_begin(&prev->vtime_seqcount); 778 prev->vtime_snap_whence = VTIME_INACTIVE; 779 write_seqcount_end(&prev->vtime_seqcount); 780 781 write_seqcount_begin(¤t->vtime_seqcount); 782 current->vtime_snap_whence = VTIME_SYS; 783 current->vtime_snap = jiffies; 784 write_seqcount_end(¤t->vtime_seqcount); 785 } 786 787 void vtime_init_idle(struct task_struct *t, int cpu) 788 { 789 unsigned long flags; 790 791 local_irq_save(flags); 792 write_seqcount_begin(&t->vtime_seqcount); 793 t->vtime_snap_whence = VTIME_SYS; 794 t->vtime_snap = jiffies; 795 write_seqcount_end(&t->vtime_seqcount); 796 local_irq_restore(flags); 797 } 798 799 u64 task_gtime(struct task_struct *t) 800 { 801 unsigned int seq; 802 u64 gtime; 803 804 if (!vtime_accounting_enabled()) 805 return t->gtime; 806 807 do { 808 seq = read_seqcount_begin(&t->vtime_seqcount); 809 810 gtime = t->gtime; 811 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU) 812 gtime += vtime_delta(t); 813 814 } while (read_seqcount_retry(&t->vtime_seqcount, seq)); 815 816 return gtime; 817 } 818 819 /* 820 * Fetch cputime raw values from fields of task_struct and 821 * add up the pending nohz execution time since the last 822 * cputime snapshot. 823 */ 824 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) 825 { 826 u64 delta; 827 unsigned int seq; 828 829 if (!vtime_accounting_enabled()) { 830 *utime = t->utime; 831 *stime = t->stime; 832 return; 833 } 834 835 do { 836 seq = read_seqcount_begin(&t->vtime_seqcount); 837 838 *utime = t->utime; 839 *stime = t->stime; 840 841 /* Task is sleeping, nothing to add */ 842 if (t->vtime_snap_whence == VTIME_INACTIVE || is_idle_task(t)) 843 continue; 844 845 delta = vtime_delta(t); 846 847 /* 848 * Task runs either in user or kernel space, add pending nohz time to 849 * the right place. 850 */ 851 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) 852 *utime += delta; 853 else if (t->vtime_snap_whence == VTIME_SYS) 854 *stime += delta; 855 } while (read_seqcount_retry(&t->vtime_seqcount, seq)); 856 } 857 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 858