xref: /openbmc/linux/kernel/sched/cputime.c (revision 7bcae826)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include <linux/cputime.h>
8 #include "sched.h"
9 #ifdef CONFIG_PARAVIRT
10 #include <asm/paravirt.h>
11 #endif
12 
13 
14 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
15 
16 /*
17  * There are no locks covering percpu hardirq/softirq time.
18  * They are only modified in vtime_account, on corresponding CPU
19  * with interrupts disabled. So, writes are safe.
20  * They are read and saved off onto struct rq in update_rq_clock().
21  * This may result in other CPU reading this CPU's irq time and can
22  * race with irq/vtime_account on this CPU. We would either get old
23  * or new value with a side effect of accounting a slice of irq time to wrong
24  * task when irq is in progress while we read rq->clock. That is a worthy
25  * compromise in place of having locks on each irq in account_system_time.
26  */
27 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
28 
29 static int sched_clock_irqtime;
30 
31 void enable_sched_clock_irqtime(void)
32 {
33 	sched_clock_irqtime = 1;
34 }
35 
36 void disable_sched_clock_irqtime(void)
37 {
38 	sched_clock_irqtime = 0;
39 }
40 
41 /*
42  * Called before incrementing preempt_count on {soft,}irq_enter
43  * and before decrementing preempt_count on {soft,}irq_exit.
44  */
45 void irqtime_account_irq(struct task_struct *curr)
46 {
47 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
48 	u64 *cpustat = kcpustat_this_cpu->cpustat;
49 	s64 delta;
50 	int cpu;
51 
52 	if (!sched_clock_irqtime)
53 		return;
54 
55 	cpu = smp_processor_id();
56 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
57 	irqtime->irq_start_time += delta;
58 
59 	u64_stats_update_begin(&irqtime->sync);
60 	/*
61 	 * We do not account for softirq time from ksoftirqd here.
62 	 * We want to continue accounting softirq time to ksoftirqd thread
63 	 * in that case, so as not to confuse scheduler with a special task
64 	 * that do not consume any time, but still wants to run.
65 	 */
66 	if (hardirq_count()) {
67 		cpustat[CPUTIME_IRQ] += delta;
68 		irqtime->tick_delta += delta;
69 	} else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) {
70 		cpustat[CPUTIME_SOFTIRQ] += delta;
71 		irqtime->tick_delta += delta;
72 	}
73 
74 	u64_stats_update_end(&irqtime->sync);
75 }
76 EXPORT_SYMBOL_GPL(irqtime_account_irq);
77 
78 static u64 irqtime_tick_accounted(u64 maxtime)
79 {
80 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
81 	u64 delta;
82 
83 	delta = min(irqtime->tick_delta, maxtime);
84 	irqtime->tick_delta -= delta;
85 
86 	return delta;
87 }
88 
89 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
90 
91 #define sched_clock_irqtime	(0)
92 
93 static u64 irqtime_tick_accounted(u64 dummy)
94 {
95 	return 0;
96 }
97 
98 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
99 
100 static inline void task_group_account_field(struct task_struct *p, int index,
101 					    u64 tmp)
102 {
103 	/*
104 	 * Since all updates are sure to touch the root cgroup, we
105 	 * get ourselves ahead and touch it first. If the root cgroup
106 	 * is the only cgroup, then nothing else should be necessary.
107 	 *
108 	 */
109 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
110 
111 	cpuacct_account_field(p, index, tmp);
112 }
113 
114 /*
115  * Account user cpu time to a process.
116  * @p: the process that the cpu time gets accounted to
117  * @cputime: the cpu time spent in user space since the last update
118  */
119 void account_user_time(struct task_struct *p, u64 cputime)
120 {
121 	int index;
122 
123 	/* Add user time to process. */
124 	p->utime += cputime;
125 	account_group_user_time(p, cputime);
126 
127 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
128 
129 	/* Add user time to cpustat. */
130 	task_group_account_field(p, index, cputime);
131 
132 	/* Account for user time used */
133 	acct_account_cputime(p);
134 }
135 
136 /*
137  * Account guest cpu time to a process.
138  * @p: the process that the cpu time gets accounted to
139  * @cputime: the cpu time spent in virtual machine since the last update
140  */
141 void account_guest_time(struct task_struct *p, u64 cputime)
142 {
143 	u64 *cpustat = kcpustat_this_cpu->cpustat;
144 
145 	/* Add guest time to process. */
146 	p->utime += cputime;
147 	account_group_user_time(p, cputime);
148 	p->gtime += cputime;
149 
150 	/* Add guest time to cpustat. */
151 	if (task_nice(p) > 0) {
152 		cpustat[CPUTIME_NICE] += cputime;
153 		cpustat[CPUTIME_GUEST_NICE] += cputime;
154 	} else {
155 		cpustat[CPUTIME_USER] += cputime;
156 		cpustat[CPUTIME_GUEST] += cputime;
157 	}
158 }
159 
160 /*
161  * Account system cpu time to a process and desired cpustat field
162  * @p: the process that the cpu time gets accounted to
163  * @cputime: the cpu time spent in kernel space since the last update
164  * @index: pointer to cpustat field that has to be updated
165  */
166 void account_system_index_time(struct task_struct *p,
167 			       u64 cputime, enum cpu_usage_stat index)
168 {
169 	/* Add system time to process. */
170 	p->stime += cputime;
171 	account_group_system_time(p, cputime);
172 
173 	/* Add system time to cpustat. */
174 	task_group_account_field(p, index, cputime);
175 
176 	/* Account for system time used */
177 	acct_account_cputime(p);
178 }
179 
180 /*
181  * Account system cpu time to a process.
182  * @p: the process that the cpu time gets accounted to
183  * @hardirq_offset: the offset to subtract from hardirq_count()
184  * @cputime: the cpu time spent in kernel space since the last update
185  */
186 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
187 {
188 	int index;
189 
190 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
191 		account_guest_time(p, cputime);
192 		return;
193 	}
194 
195 	if (hardirq_count() - hardirq_offset)
196 		index = CPUTIME_IRQ;
197 	else if (in_serving_softirq())
198 		index = CPUTIME_SOFTIRQ;
199 	else
200 		index = CPUTIME_SYSTEM;
201 
202 	account_system_index_time(p, cputime, index);
203 }
204 
205 /*
206  * Account for involuntary wait time.
207  * @cputime: the cpu time spent in involuntary wait
208  */
209 void account_steal_time(u64 cputime)
210 {
211 	u64 *cpustat = kcpustat_this_cpu->cpustat;
212 
213 	cpustat[CPUTIME_STEAL] += cputime;
214 }
215 
216 /*
217  * Account for idle time.
218  * @cputime: the cpu time spent in idle wait
219  */
220 void account_idle_time(u64 cputime)
221 {
222 	u64 *cpustat = kcpustat_this_cpu->cpustat;
223 	struct rq *rq = this_rq();
224 
225 	if (atomic_read(&rq->nr_iowait) > 0)
226 		cpustat[CPUTIME_IOWAIT] += cputime;
227 	else
228 		cpustat[CPUTIME_IDLE] += cputime;
229 }
230 
231 /*
232  * When a guest is interrupted for a longer amount of time, missed clock
233  * ticks are not redelivered later. Due to that, this function may on
234  * occasion account more time than the calling functions think elapsed.
235  */
236 static __always_inline u64 steal_account_process_time(u64 maxtime)
237 {
238 #ifdef CONFIG_PARAVIRT
239 	if (static_key_false(&paravirt_steal_enabled)) {
240 		u64 steal;
241 
242 		steal = paravirt_steal_clock(smp_processor_id());
243 		steal -= this_rq()->prev_steal_time;
244 		steal = min(steal, maxtime);
245 		account_steal_time(steal);
246 		this_rq()->prev_steal_time += steal;
247 
248 		return steal;
249 	}
250 #endif
251 	return 0;
252 }
253 
254 /*
255  * Account how much elapsed time was spent in steal, irq, or softirq time.
256  */
257 static inline u64 account_other_time(u64 max)
258 {
259 	u64 accounted;
260 
261 	/* Shall be converted to a lockdep-enabled lightweight check */
262 	WARN_ON_ONCE(!irqs_disabled());
263 
264 	accounted = steal_account_process_time(max);
265 
266 	if (accounted < max)
267 		accounted += irqtime_tick_accounted(max - accounted);
268 
269 	return accounted;
270 }
271 
272 #ifdef CONFIG_64BIT
273 static inline u64 read_sum_exec_runtime(struct task_struct *t)
274 {
275 	return t->se.sum_exec_runtime;
276 }
277 #else
278 static u64 read_sum_exec_runtime(struct task_struct *t)
279 {
280 	u64 ns;
281 	struct rq_flags rf;
282 	struct rq *rq;
283 
284 	rq = task_rq_lock(t, &rf);
285 	ns = t->se.sum_exec_runtime;
286 	task_rq_unlock(rq, t, &rf);
287 
288 	return ns;
289 }
290 #endif
291 
292 /*
293  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
294  * tasks (sum on group iteration) belonging to @tsk's group.
295  */
296 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
297 {
298 	struct signal_struct *sig = tsk->signal;
299 	u64 utime, stime;
300 	struct task_struct *t;
301 	unsigned int seq, nextseq;
302 	unsigned long flags;
303 
304 	/*
305 	 * Update current task runtime to account pending time since last
306 	 * scheduler action or thread_group_cputime() call. This thread group
307 	 * might have other running tasks on different CPUs, but updating
308 	 * their runtime can affect syscall performance, so we skip account
309 	 * those pending times and rely only on values updated on tick or
310 	 * other scheduler action.
311 	 */
312 	if (same_thread_group(current, tsk))
313 		(void) task_sched_runtime(current);
314 
315 	rcu_read_lock();
316 	/* Attempt a lockless read on the first round. */
317 	nextseq = 0;
318 	do {
319 		seq = nextseq;
320 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
321 		times->utime = sig->utime;
322 		times->stime = sig->stime;
323 		times->sum_exec_runtime = sig->sum_sched_runtime;
324 
325 		for_each_thread(tsk, t) {
326 			task_cputime(t, &utime, &stime);
327 			times->utime += utime;
328 			times->stime += stime;
329 			times->sum_exec_runtime += read_sum_exec_runtime(t);
330 		}
331 		/* If lockless access failed, take the lock. */
332 		nextseq = 1;
333 	} while (need_seqretry(&sig->stats_lock, seq));
334 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
335 	rcu_read_unlock();
336 }
337 
338 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
339 /*
340  * Account a tick to a process and cpustat
341  * @p: the process that the cpu time gets accounted to
342  * @user_tick: is the tick from userspace
343  * @rq: the pointer to rq
344  *
345  * Tick demultiplexing follows the order
346  * - pending hardirq update
347  * - pending softirq update
348  * - user_time
349  * - idle_time
350  * - system time
351  *   - check for guest_time
352  *   - else account as system_time
353  *
354  * Check for hardirq is done both for system and user time as there is
355  * no timer going off while we are on hardirq and hence we may never get an
356  * opportunity to update it solely in system time.
357  * p->stime and friends are only updated on system time and not on irq
358  * softirq as those do not count in task exec_runtime any more.
359  */
360 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
361 					 struct rq *rq, int ticks)
362 {
363 	u64 other, cputime = TICK_NSEC * ticks;
364 
365 	/*
366 	 * When returning from idle, many ticks can get accounted at
367 	 * once, including some ticks of steal, irq, and softirq time.
368 	 * Subtract those ticks from the amount of time accounted to
369 	 * idle, or potentially user or system time. Due to rounding,
370 	 * other time can exceed ticks occasionally.
371 	 */
372 	other = account_other_time(ULONG_MAX);
373 	if (other >= cputime)
374 		return;
375 
376 	cputime -= other;
377 
378 	if (this_cpu_ksoftirqd() == p) {
379 		/*
380 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
381 		 * So, we have to handle it separately here.
382 		 * Also, p->stime needs to be updated for ksoftirqd.
383 		 */
384 		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
385 	} else if (user_tick) {
386 		account_user_time(p, cputime);
387 	} else if (p == rq->idle) {
388 		account_idle_time(cputime);
389 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
390 		account_guest_time(p, cputime);
391 	} else {
392 		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
393 	}
394 }
395 
396 static void irqtime_account_idle_ticks(int ticks)
397 {
398 	struct rq *rq = this_rq();
399 
400 	irqtime_account_process_tick(current, 0, rq, ticks);
401 }
402 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
403 static inline void irqtime_account_idle_ticks(int ticks) {}
404 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
405 						struct rq *rq, int nr_ticks) {}
406 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
407 
408 /*
409  * Use precise platform statistics if available:
410  */
411 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
412 
413 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
414 void vtime_common_task_switch(struct task_struct *prev)
415 {
416 	if (is_idle_task(prev))
417 		vtime_account_idle(prev);
418 	else
419 		vtime_account_system(prev);
420 
421 	vtime_flush(prev);
422 	arch_vtime_task_switch(prev);
423 }
424 #endif
425 
426 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
427 
428 
429 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
430 /*
431  * Archs that account the whole time spent in the idle task
432  * (outside irq) as idle time can rely on this and just implement
433  * vtime_account_system() and vtime_account_idle(). Archs that
434  * have other meaning of the idle time (s390 only includes the
435  * time spent by the CPU when it's in low power mode) must override
436  * vtime_account().
437  */
438 #ifndef __ARCH_HAS_VTIME_ACCOUNT
439 void vtime_account_irq_enter(struct task_struct *tsk)
440 {
441 	if (!in_interrupt() && is_idle_task(tsk))
442 		vtime_account_idle(tsk);
443 	else
444 		vtime_account_system(tsk);
445 }
446 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
447 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
448 
449 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
450 {
451 	*ut = p->utime;
452 	*st = p->stime;
453 }
454 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
455 
456 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
457 {
458 	struct task_cputime cputime;
459 
460 	thread_group_cputime(p, &cputime);
461 
462 	*ut = cputime.utime;
463 	*st = cputime.stime;
464 }
465 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
466 /*
467  * Account a single tick of cpu time.
468  * @p: the process that the cpu time gets accounted to
469  * @user_tick: indicates if the tick is a user or a system tick
470  */
471 void account_process_tick(struct task_struct *p, int user_tick)
472 {
473 	u64 cputime, steal;
474 	struct rq *rq = this_rq();
475 
476 	if (vtime_accounting_cpu_enabled())
477 		return;
478 
479 	if (sched_clock_irqtime) {
480 		irqtime_account_process_tick(p, user_tick, rq, 1);
481 		return;
482 	}
483 
484 	cputime = TICK_NSEC;
485 	steal = steal_account_process_time(ULONG_MAX);
486 
487 	if (steal >= cputime)
488 		return;
489 
490 	cputime -= steal;
491 
492 	if (user_tick)
493 		account_user_time(p, cputime);
494 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
495 		account_system_time(p, HARDIRQ_OFFSET, cputime);
496 	else
497 		account_idle_time(cputime);
498 }
499 
500 /*
501  * Account multiple ticks of idle time.
502  * @ticks: number of stolen ticks
503  */
504 void account_idle_ticks(unsigned long ticks)
505 {
506 	u64 cputime, steal;
507 
508 	if (sched_clock_irqtime) {
509 		irqtime_account_idle_ticks(ticks);
510 		return;
511 	}
512 
513 	cputime = ticks * TICK_NSEC;
514 	steal = steal_account_process_time(ULONG_MAX);
515 
516 	if (steal >= cputime)
517 		return;
518 
519 	cputime -= steal;
520 	account_idle_time(cputime);
521 }
522 
523 /*
524  * Perform (stime * rtime) / total, but avoid multiplication overflow by
525  * loosing precision when the numbers are big.
526  */
527 static u64 scale_stime(u64 stime, u64 rtime, u64 total)
528 {
529 	u64 scaled;
530 
531 	for (;;) {
532 		/* Make sure "rtime" is the bigger of stime/rtime */
533 		if (stime > rtime)
534 			swap(rtime, stime);
535 
536 		/* Make sure 'total' fits in 32 bits */
537 		if (total >> 32)
538 			goto drop_precision;
539 
540 		/* Does rtime (and thus stime) fit in 32 bits? */
541 		if (!(rtime >> 32))
542 			break;
543 
544 		/* Can we just balance rtime/stime rather than dropping bits? */
545 		if (stime >> 31)
546 			goto drop_precision;
547 
548 		/* We can grow stime and shrink rtime and try to make them both fit */
549 		stime <<= 1;
550 		rtime >>= 1;
551 		continue;
552 
553 drop_precision:
554 		/* We drop from rtime, it has more bits than stime */
555 		rtime >>= 1;
556 		total >>= 1;
557 	}
558 
559 	/*
560 	 * Make sure gcc understands that this is a 32x32->64 multiply,
561 	 * followed by a 64/32->64 divide.
562 	 */
563 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
564 	return scaled;
565 }
566 
567 /*
568  * Adjust tick based cputime random precision against scheduler runtime
569  * accounting.
570  *
571  * Tick based cputime accounting depend on random scheduling timeslices of a
572  * task to be interrupted or not by the timer.  Depending on these
573  * circumstances, the number of these interrupts may be over or
574  * under-optimistic, matching the real user and system cputime with a variable
575  * precision.
576  *
577  * Fix this by scaling these tick based values against the total runtime
578  * accounted by the CFS scheduler.
579  *
580  * This code provides the following guarantees:
581  *
582  *   stime + utime == rtime
583  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
584  *
585  * Assuming that rtime_i+1 >= rtime_i.
586  */
587 static void cputime_adjust(struct task_cputime *curr,
588 			   struct prev_cputime *prev,
589 			   u64 *ut, u64 *st)
590 {
591 	u64 rtime, stime, utime;
592 	unsigned long flags;
593 
594 	/* Serialize concurrent callers such that we can honour our guarantees */
595 	raw_spin_lock_irqsave(&prev->lock, flags);
596 	rtime = curr->sum_exec_runtime;
597 
598 	/*
599 	 * This is possible under two circumstances:
600 	 *  - rtime isn't monotonic after all (a bug);
601 	 *  - we got reordered by the lock.
602 	 *
603 	 * In both cases this acts as a filter such that the rest of the code
604 	 * can assume it is monotonic regardless of anything else.
605 	 */
606 	if (prev->stime + prev->utime >= rtime)
607 		goto out;
608 
609 	stime = curr->stime;
610 	utime = curr->utime;
611 
612 	/*
613 	 * If either stime or both stime and utime are 0, assume all runtime is
614 	 * userspace. Once a task gets some ticks, the monotonicy code at
615 	 * 'update' will ensure things converge to the observed ratio.
616 	 */
617 	if (stime == 0) {
618 		utime = rtime;
619 		goto update;
620 	}
621 
622 	if (utime == 0) {
623 		stime = rtime;
624 		goto update;
625 	}
626 
627 	stime = scale_stime(stime, rtime, stime + utime);
628 
629 update:
630 	/*
631 	 * Make sure stime doesn't go backwards; this preserves monotonicity
632 	 * for utime because rtime is monotonic.
633 	 *
634 	 *  utime_i+1 = rtime_i+1 - stime_i
635 	 *            = rtime_i+1 - (rtime_i - utime_i)
636 	 *            = (rtime_i+1 - rtime_i) + utime_i
637 	 *            >= utime_i
638 	 */
639 	if (stime < prev->stime)
640 		stime = prev->stime;
641 	utime = rtime - stime;
642 
643 	/*
644 	 * Make sure utime doesn't go backwards; this still preserves
645 	 * monotonicity for stime, analogous argument to above.
646 	 */
647 	if (utime < prev->utime) {
648 		utime = prev->utime;
649 		stime = rtime - utime;
650 	}
651 
652 	prev->stime = stime;
653 	prev->utime = utime;
654 out:
655 	*ut = prev->utime;
656 	*st = prev->stime;
657 	raw_spin_unlock_irqrestore(&prev->lock, flags);
658 }
659 
660 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
661 {
662 	struct task_cputime cputime = {
663 		.sum_exec_runtime = p->se.sum_exec_runtime,
664 	};
665 
666 	task_cputime(p, &cputime.utime, &cputime.stime);
667 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
668 }
669 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
670 
671 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
672 {
673 	struct task_cputime cputime;
674 
675 	thread_group_cputime(p, &cputime);
676 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
677 }
678 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
679 
680 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
681 static u64 vtime_delta(struct task_struct *tsk)
682 {
683 	unsigned long now = READ_ONCE(jiffies);
684 
685 	if (time_before(now, (unsigned long)tsk->vtime_snap))
686 		return 0;
687 
688 	return jiffies_to_nsecs(now - tsk->vtime_snap);
689 }
690 
691 static u64 get_vtime_delta(struct task_struct *tsk)
692 {
693 	unsigned long now = READ_ONCE(jiffies);
694 	u64 delta, other;
695 
696 	/*
697 	 * Unlike tick based timing, vtime based timing never has lost
698 	 * ticks, and no need for steal time accounting to make up for
699 	 * lost ticks. Vtime accounts a rounded version of actual
700 	 * elapsed time. Limit account_other_time to prevent rounding
701 	 * errors from causing elapsed vtime to go negative.
702 	 */
703 	delta = jiffies_to_nsecs(now - tsk->vtime_snap);
704 	other = account_other_time(delta);
705 	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
706 	tsk->vtime_snap = now;
707 
708 	return delta - other;
709 }
710 
711 static void __vtime_account_system(struct task_struct *tsk)
712 {
713 	account_system_time(tsk, irq_count(), get_vtime_delta(tsk));
714 }
715 
716 void vtime_account_system(struct task_struct *tsk)
717 {
718 	if (!vtime_delta(tsk))
719 		return;
720 
721 	write_seqcount_begin(&tsk->vtime_seqcount);
722 	__vtime_account_system(tsk);
723 	write_seqcount_end(&tsk->vtime_seqcount);
724 }
725 
726 void vtime_account_user(struct task_struct *tsk)
727 {
728 	write_seqcount_begin(&tsk->vtime_seqcount);
729 	tsk->vtime_snap_whence = VTIME_SYS;
730 	if (vtime_delta(tsk))
731 		account_user_time(tsk, get_vtime_delta(tsk));
732 	write_seqcount_end(&tsk->vtime_seqcount);
733 }
734 
735 void vtime_user_enter(struct task_struct *tsk)
736 {
737 	write_seqcount_begin(&tsk->vtime_seqcount);
738 	if (vtime_delta(tsk))
739 		__vtime_account_system(tsk);
740 	tsk->vtime_snap_whence = VTIME_USER;
741 	write_seqcount_end(&tsk->vtime_seqcount);
742 }
743 
744 void vtime_guest_enter(struct task_struct *tsk)
745 {
746 	/*
747 	 * The flags must be updated under the lock with
748 	 * the vtime_snap flush and update.
749 	 * That enforces a right ordering and update sequence
750 	 * synchronization against the reader (task_gtime())
751 	 * that can thus safely catch up with a tickless delta.
752 	 */
753 	write_seqcount_begin(&tsk->vtime_seqcount);
754 	if (vtime_delta(tsk))
755 		__vtime_account_system(tsk);
756 	current->flags |= PF_VCPU;
757 	write_seqcount_end(&tsk->vtime_seqcount);
758 }
759 EXPORT_SYMBOL_GPL(vtime_guest_enter);
760 
761 void vtime_guest_exit(struct task_struct *tsk)
762 {
763 	write_seqcount_begin(&tsk->vtime_seqcount);
764 	__vtime_account_system(tsk);
765 	current->flags &= ~PF_VCPU;
766 	write_seqcount_end(&tsk->vtime_seqcount);
767 }
768 EXPORT_SYMBOL_GPL(vtime_guest_exit);
769 
770 void vtime_account_idle(struct task_struct *tsk)
771 {
772 	account_idle_time(get_vtime_delta(tsk));
773 }
774 
775 void arch_vtime_task_switch(struct task_struct *prev)
776 {
777 	write_seqcount_begin(&prev->vtime_seqcount);
778 	prev->vtime_snap_whence = VTIME_INACTIVE;
779 	write_seqcount_end(&prev->vtime_seqcount);
780 
781 	write_seqcount_begin(&current->vtime_seqcount);
782 	current->vtime_snap_whence = VTIME_SYS;
783 	current->vtime_snap = jiffies;
784 	write_seqcount_end(&current->vtime_seqcount);
785 }
786 
787 void vtime_init_idle(struct task_struct *t, int cpu)
788 {
789 	unsigned long flags;
790 
791 	local_irq_save(flags);
792 	write_seqcount_begin(&t->vtime_seqcount);
793 	t->vtime_snap_whence = VTIME_SYS;
794 	t->vtime_snap = jiffies;
795 	write_seqcount_end(&t->vtime_seqcount);
796 	local_irq_restore(flags);
797 }
798 
799 u64 task_gtime(struct task_struct *t)
800 {
801 	unsigned int seq;
802 	u64 gtime;
803 
804 	if (!vtime_accounting_enabled())
805 		return t->gtime;
806 
807 	do {
808 		seq = read_seqcount_begin(&t->vtime_seqcount);
809 
810 		gtime = t->gtime;
811 		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
812 			gtime += vtime_delta(t);
813 
814 	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
815 
816 	return gtime;
817 }
818 
819 /*
820  * Fetch cputime raw values from fields of task_struct and
821  * add up the pending nohz execution time since the last
822  * cputime snapshot.
823  */
824 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
825 {
826 	u64 delta;
827 	unsigned int seq;
828 
829 	if (!vtime_accounting_enabled()) {
830 		*utime = t->utime;
831 		*stime = t->stime;
832 		return;
833 	}
834 
835 	do {
836 		seq = read_seqcount_begin(&t->vtime_seqcount);
837 
838 		*utime = t->utime;
839 		*stime = t->stime;
840 
841 		/* Task is sleeping, nothing to add */
842 		if (t->vtime_snap_whence == VTIME_INACTIVE || is_idle_task(t))
843 			continue;
844 
845 		delta = vtime_delta(t);
846 
847 		/*
848 		 * Task runs either in user or kernel space, add pending nohz time to
849 		 * the right place.
850 		 */
851 		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU)
852 			*utime += delta;
853 		else if (t->vtime_snap_whence == VTIME_SYS)
854 			*stime += delta;
855 	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
856 }
857 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
858