xref: /openbmc/linux/kernel/sched/cputime.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include <linux/sched/cputime.h>
8 #include "sched.h"
9 
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11 
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's irq time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of irq time to wrong
20  * task when irq is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each irq in account_system_time.
22  */
23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
24 
25 static int sched_clock_irqtime;
26 
27 void enable_sched_clock_irqtime(void)
28 {
29 	sched_clock_irqtime = 1;
30 }
31 
32 void disable_sched_clock_irqtime(void)
33 {
34 	sched_clock_irqtime = 0;
35 }
36 
37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 				  enum cpu_usage_stat idx)
39 {
40 	u64 *cpustat = kcpustat_this_cpu->cpustat;
41 
42 	u64_stats_update_begin(&irqtime->sync);
43 	cpustat[idx] += delta;
44 	irqtime->total += delta;
45 	irqtime->tick_delta += delta;
46 	u64_stats_update_end(&irqtime->sync);
47 }
48 
49 /*
50  * Called before incrementing preempt_count on {soft,}irq_enter
51  * and before decrementing preempt_count on {soft,}irq_exit.
52  */
53 void irqtime_account_irq(struct task_struct *curr)
54 {
55 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 	s64 delta;
57 	int cpu;
58 
59 	if (!sched_clock_irqtime)
60 		return;
61 
62 	cpu = smp_processor_id();
63 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
64 	irqtime->irq_start_time += delta;
65 
66 	/*
67 	 * We do not account for softirq time from ksoftirqd here.
68 	 * We want to continue accounting softirq time to ksoftirqd thread
69 	 * in that case, so as not to confuse scheduler with a special task
70 	 * that do not consume any time, but still wants to run.
71 	 */
72 	if (hardirq_count())
73 		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
74 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
75 		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78 
79 static u64 irqtime_tick_accounted(u64 maxtime)
80 {
81 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
82 	u64 delta;
83 
84 	delta = min(irqtime->tick_delta, maxtime);
85 	irqtime->tick_delta -= delta;
86 
87 	return delta;
88 }
89 
90 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
91 
92 #define sched_clock_irqtime	(0)
93 
94 static u64 irqtime_tick_accounted(u64 dummy)
95 {
96 	return 0;
97 }
98 
99 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
100 
101 static inline void task_group_account_field(struct task_struct *p, int index,
102 					    u64 tmp)
103 {
104 	/*
105 	 * Since all updates are sure to touch the root cgroup, we
106 	 * get ourselves ahead and touch it first. If the root cgroup
107 	 * is the only cgroup, then nothing else should be necessary.
108 	 *
109 	 */
110 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
111 
112 	cpuacct_account_field(p, index, tmp);
113 }
114 
115 /*
116  * Account user cpu time to a process.
117  * @p: the process that the cpu time gets accounted to
118  * @cputime: the cpu time spent in user space since the last update
119  */
120 void account_user_time(struct task_struct *p, u64 cputime)
121 {
122 	int index;
123 
124 	/* Add user time to process. */
125 	p->utime += cputime;
126 	account_group_user_time(p, cputime);
127 
128 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
129 
130 	/* Add user time to cpustat. */
131 	task_group_account_field(p, index, cputime);
132 
133 	/* Account for user time used */
134 	acct_account_cputime(p);
135 }
136 
137 /*
138  * Account guest cpu time to a process.
139  * @p: the process that the cpu time gets accounted to
140  * @cputime: the cpu time spent in virtual machine since the last update
141  */
142 void account_guest_time(struct task_struct *p, u64 cputime)
143 {
144 	u64 *cpustat = kcpustat_this_cpu->cpustat;
145 
146 	/* Add guest time to process. */
147 	p->utime += cputime;
148 	account_group_user_time(p, cputime);
149 	p->gtime += cputime;
150 
151 	/* Add guest time to cpustat. */
152 	if (task_nice(p) > 0) {
153 		cpustat[CPUTIME_NICE] += cputime;
154 		cpustat[CPUTIME_GUEST_NICE] += cputime;
155 	} else {
156 		cpustat[CPUTIME_USER] += cputime;
157 		cpustat[CPUTIME_GUEST] += cputime;
158 	}
159 }
160 
161 /*
162  * Account system cpu time to a process and desired cpustat field
163  * @p: the process that the cpu time gets accounted to
164  * @cputime: the cpu time spent in kernel space since the last update
165  * @index: pointer to cpustat field that has to be updated
166  */
167 void account_system_index_time(struct task_struct *p,
168 			       u64 cputime, enum cpu_usage_stat index)
169 {
170 	/* Add system time to process. */
171 	p->stime += cputime;
172 	account_group_system_time(p, cputime);
173 
174 	/* Add system time to cpustat. */
175 	task_group_account_field(p, index, cputime);
176 
177 	/* Account for system time used */
178 	acct_account_cputime(p);
179 }
180 
181 /*
182  * Account system cpu time to a process.
183  * @p: the process that the cpu time gets accounted to
184  * @hardirq_offset: the offset to subtract from hardirq_count()
185  * @cputime: the cpu time spent in kernel space since the last update
186  */
187 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
188 {
189 	int index;
190 
191 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
192 		account_guest_time(p, cputime);
193 		return;
194 	}
195 
196 	if (hardirq_count() - hardirq_offset)
197 		index = CPUTIME_IRQ;
198 	else if (in_serving_softirq())
199 		index = CPUTIME_SOFTIRQ;
200 	else
201 		index = CPUTIME_SYSTEM;
202 
203 	account_system_index_time(p, cputime, index);
204 }
205 
206 /*
207  * Account for involuntary wait time.
208  * @cputime: the cpu time spent in involuntary wait
209  */
210 void account_steal_time(u64 cputime)
211 {
212 	u64 *cpustat = kcpustat_this_cpu->cpustat;
213 
214 	cpustat[CPUTIME_STEAL] += cputime;
215 }
216 
217 /*
218  * Account for idle time.
219  * @cputime: the cpu time spent in idle wait
220  */
221 void account_idle_time(u64 cputime)
222 {
223 	u64 *cpustat = kcpustat_this_cpu->cpustat;
224 	struct rq *rq = this_rq();
225 
226 	if (atomic_read(&rq->nr_iowait) > 0)
227 		cpustat[CPUTIME_IOWAIT] += cputime;
228 	else
229 		cpustat[CPUTIME_IDLE] += cputime;
230 }
231 
232 /*
233  * When a guest is interrupted for a longer amount of time, missed clock
234  * ticks are not redelivered later. Due to that, this function may on
235  * occasion account more time than the calling functions think elapsed.
236  */
237 static __always_inline u64 steal_account_process_time(u64 maxtime)
238 {
239 #ifdef CONFIG_PARAVIRT
240 	if (static_key_false(&paravirt_steal_enabled)) {
241 		u64 steal;
242 
243 		steal = paravirt_steal_clock(smp_processor_id());
244 		steal -= this_rq()->prev_steal_time;
245 		steal = min(steal, maxtime);
246 		account_steal_time(steal);
247 		this_rq()->prev_steal_time += steal;
248 
249 		return steal;
250 	}
251 #endif
252 	return 0;
253 }
254 
255 /*
256  * Account how much elapsed time was spent in steal, irq, or softirq time.
257  */
258 static inline u64 account_other_time(u64 max)
259 {
260 	u64 accounted;
261 
262 	/* Shall be converted to a lockdep-enabled lightweight check */
263 	WARN_ON_ONCE(!irqs_disabled());
264 
265 	accounted = steal_account_process_time(max);
266 
267 	if (accounted < max)
268 		accounted += irqtime_tick_accounted(max - accounted);
269 
270 	return accounted;
271 }
272 
273 #ifdef CONFIG_64BIT
274 static inline u64 read_sum_exec_runtime(struct task_struct *t)
275 {
276 	return t->se.sum_exec_runtime;
277 }
278 #else
279 static u64 read_sum_exec_runtime(struct task_struct *t)
280 {
281 	u64 ns;
282 	struct rq_flags rf;
283 	struct rq *rq;
284 
285 	rq = task_rq_lock(t, &rf);
286 	ns = t->se.sum_exec_runtime;
287 	task_rq_unlock(rq, t, &rf);
288 
289 	return ns;
290 }
291 #endif
292 
293 /*
294  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
295  * tasks (sum on group iteration) belonging to @tsk's group.
296  */
297 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
298 {
299 	struct signal_struct *sig = tsk->signal;
300 	u64 utime, stime;
301 	struct task_struct *t;
302 	unsigned int seq, nextseq;
303 	unsigned long flags;
304 
305 	/*
306 	 * Update current task runtime to account pending time since last
307 	 * scheduler action or thread_group_cputime() call. This thread group
308 	 * might have other running tasks on different CPUs, but updating
309 	 * their runtime can affect syscall performance, so we skip account
310 	 * those pending times and rely only on values updated on tick or
311 	 * other scheduler action.
312 	 */
313 	if (same_thread_group(current, tsk))
314 		(void) task_sched_runtime(current);
315 
316 	rcu_read_lock();
317 	/* Attempt a lockless read on the first round. */
318 	nextseq = 0;
319 	do {
320 		seq = nextseq;
321 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
322 		times->utime = sig->utime;
323 		times->stime = sig->stime;
324 		times->sum_exec_runtime = sig->sum_sched_runtime;
325 
326 		for_each_thread(tsk, t) {
327 			task_cputime(t, &utime, &stime);
328 			times->utime += utime;
329 			times->stime += stime;
330 			times->sum_exec_runtime += read_sum_exec_runtime(t);
331 		}
332 		/* If lockless access failed, take the lock. */
333 		nextseq = 1;
334 	} while (need_seqretry(&sig->stats_lock, seq));
335 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
336 	rcu_read_unlock();
337 }
338 
339 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
340 /*
341  * Account a tick to a process and cpustat
342  * @p: the process that the cpu time gets accounted to
343  * @user_tick: is the tick from userspace
344  * @rq: the pointer to rq
345  *
346  * Tick demultiplexing follows the order
347  * - pending hardirq update
348  * - pending softirq update
349  * - user_time
350  * - idle_time
351  * - system time
352  *   - check for guest_time
353  *   - else account as system_time
354  *
355  * Check for hardirq is done both for system and user time as there is
356  * no timer going off while we are on hardirq and hence we may never get an
357  * opportunity to update it solely in system time.
358  * p->stime and friends are only updated on system time and not on irq
359  * softirq as those do not count in task exec_runtime any more.
360  */
361 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
362 					 struct rq *rq, int ticks)
363 {
364 	u64 other, cputime = TICK_NSEC * ticks;
365 
366 	/*
367 	 * When returning from idle, many ticks can get accounted at
368 	 * once, including some ticks of steal, irq, and softirq time.
369 	 * Subtract those ticks from the amount of time accounted to
370 	 * idle, or potentially user or system time. Due to rounding,
371 	 * other time can exceed ticks occasionally.
372 	 */
373 	other = account_other_time(ULONG_MAX);
374 	if (other >= cputime)
375 		return;
376 
377 	cputime -= other;
378 
379 	if (this_cpu_ksoftirqd() == p) {
380 		/*
381 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
382 		 * So, we have to handle it separately here.
383 		 * Also, p->stime needs to be updated for ksoftirqd.
384 		 */
385 		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
386 	} else if (user_tick) {
387 		account_user_time(p, cputime);
388 	} else if (p == rq->idle) {
389 		account_idle_time(cputime);
390 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
391 		account_guest_time(p, cputime);
392 	} else {
393 		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
394 	}
395 }
396 
397 static void irqtime_account_idle_ticks(int ticks)
398 {
399 	struct rq *rq = this_rq();
400 
401 	irqtime_account_process_tick(current, 0, rq, ticks);
402 }
403 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
404 static inline void irqtime_account_idle_ticks(int ticks) {}
405 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
406 						struct rq *rq, int nr_ticks) {}
407 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
408 
409 /*
410  * Use precise platform statistics if available:
411  */
412 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
413 
414 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
415 void vtime_common_task_switch(struct task_struct *prev)
416 {
417 	if (is_idle_task(prev))
418 		vtime_account_idle(prev);
419 	else
420 		vtime_account_system(prev);
421 
422 	vtime_flush(prev);
423 	arch_vtime_task_switch(prev);
424 }
425 #endif
426 
427 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
428 
429 
430 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
431 /*
432  * Archs that account the whole time spent in the idle task
433  * (outside irq) as idle time can rely on this and just implement
434  * vtime_account_system() and vtime_account_idle(). Archs that
435  * have other meaning of the idle time (s390 only includes the
436  * time spent by the CPU when it's in low power mode) must override
437  * vtime_account().
438  */
439 #ifndef __ARCH_HAS_VTIME_ACCOUNT
440 void vtime_account_irq_enter(struct task_struct *tsk)
441 {
442 	if (!in_interrupt() && is_idle_task(tsk))
443 		vtime_account_idle(tsk);
444 	else
445 		vtime_account_system(tsk);
446 }
447 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
448 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
449 
450 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
451 {
452 	*ut = p->utime;
453 	*st = p->stime;
454 }
455 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
456 
457 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
458 {
459 	struct task_cputime cputime;
460 
461 	thread_group_cputime(p, &cputime);
462 
463 	*ut = cputime.utime;
464 	*st = cputime.stime;
465 }
466 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
467 /*
468  * Account a single tick of cpu time.
469  * @p: the process that the cpu time gets accounted to
470  * @user_tick: indicates if the tick is a user or a system tick
471  */
472 void account_process_tick(struct task_struct *p, int user_tick)
473 {
474 	u64 cputime, steal;
475 	struct rq *rq = this_rq();
476 
477 	if (vtime_accounting_cpu_enabled())
478 		return;
479 
480 	if (sched_clock_irqtime) {
481 		irqtime_account_process_tick(p, user_tick, rq, 1);
482 		return;
483 	}
484 
485 	cputime = TICK_NSEC;
486 	steal = steal_account_process_time(ULONG_MAX);
487 
488 	if (steal >= cputime)
489 		return;
490 
491 	cputime -= steal;
492 
493 	if (user_tick)
494 		account_user_time(p, cputime);
495 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
496 		account_system_time(p, HARDIRQ_OFFSET, cputime);
497 	else
498 		account_idle_time(cputime);
499 }
500 
501 /*
502  * Account multiple ticks of idle time.
503  * @ticks: number of stolen ticks
504  */
505 void account_idle_ticks(unsigned long ticks)
506 {
507 	u64 cputime, steal;
508 
509 	if (sched_clock_irqtime) {
510 		irqtime_account_idle_ticks(ticks);
511 		return;
512 	}
513 
514 	cputime = ticks * TICK_NSEC;
515 	steal = steal_account_process_time(ULONG_MAX);
516 
517 	if (steal >= cputime)
518 		return;
519 
520 	cputime -= steal;
521 	account_idle_time(cputime);
522 }
523 
524 /*
525  * Perform (stime * rtime) / total, but avoid multiplication overflow by
526  * loosing precision when the numbers are big.
527  */
528 static u64 scale_stime(u64 stime, u64 rtime, u64 total)
529 {
530 	u64 scaled;
531 
532 	for (;;) {
533 		/* Make sure "rtime" is the bigger of stime/rtime */
534 		if (stime > rtime)
535 			swap(rtime, stime);
536 
537 		/* Make sure 'total' fits in 32 bits */
538 		if (total >> 32)
539 			goto drop_precision;
540 
541 		/* Does rtime (and thus stime) fit in 32 bits? */
542 		if (!(rtime >> 32))
543 			break;
544 
545 		/* Can we just balance rtime/stime rather than dropping bits? */
546 		if (stime >> 31)
547 			goto drop_precision;
548 
549 		/* We can grow stime and shrink rtime and try to make them both fit */
550 		stime <<= 1;
551 		rtime >>= 1;
552 		continue;
553 
554 drop_precision:
555 		/* We drop from rtime, it has more bits than stime */
556 		rtime >>= 1;
557 		total >>= 1;
558 	}
559 
560 	/*
561 	 * Make sure gcc understands that this is a 32x32->64 multiply,
562 	 * followed by a 64/32->64 divide.
563 	 */
564 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
565 	return scaled;
566 }
567 
568 /*
569  * Adjust tick based cputime random precision against scheduler runtime
570  * accounting.
571  *
572  * Tick based cputime accounting depend on random scheduling timeslices of a
573  * task to be interrupted or not by the timer.  Depending on these
574  * circumstances, the number of these interrupts may be over or
575  * under-optimistic, matching the real user and system cputime with a variable
576  * precision.
577  *
578  * Fix this by scaling these tick based values against the total runtime
579  * accounted by the CFS scheduler.
580  *
581  * This code provides the following guarantees:
582  *
583  *   stime + utime == rtime
584  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
585  *
586  * Assuming that rtime_i+1 >= rtime_i.
587  */
588 static void cputime_adjust(struct task_cputime *curr,
589 			   struct prev_cputime *prev,
590 			   u64 *ut, u64 *st)
591 {
592 	u64 rtime, stime, utime;
593 	unsigned long flags;
594 
595 	/* Serialize concurrent callers such that we can honour our guarantees */
596 	raw_spin_lock_irqsave(&prev->lock, flags);
597 	rtime = curr->sum_exec_runtime;
598 
599 	/*
600 	 * This is possible under two circumstances:
601 	 *  - rtime isn't monotonic after all (a bug);
602 	 *  - we got reordered by the lock.
603 	 *
604 	 * In both cases this acts as a filter such that the rest of the code
605 	 * can assume it is monotonic regardless of anything else.
606 	 */
607 	if (prev->stime + prev->utime >= rtime)
608 		goto out;
609 
610 	stime = curr->stime;
611 	utime = curr->utime;
612 
613 	/*
614 	 * If either stime or utime are 0, assume all runtime is userspace.
615 	 * Once a task gets some ticks, the monotonicy code at 'update:'
616 	 * will ensure things converge to the observed ratio.
617 	 */
618 	if (stime == 0) {
619 		utime = rtime;
620 		goto update;
621 	}
622 
623 	if (utime == 0) {
624 		stime = rtime;
625 		goto update;
626 	}
627 
628 	stime = scale_stime(stime, rtime, stime + utime);
629 
630 update:
631 	/*
632 	 * Make sure stime doesn't go backwards; this preserves monotonicity
633 	 * for utime because rtime is monotonic.
634 	 *
635 	 *  utime_i+1 = rtime_i+1 - stime_i
636 	 *            = rtime_i+1 - (rtime_i - utime_i)
637 	 *            = (rtime_i+1 - rtime_i) + utime_i
638 	 *            >= utime_i
639 	 */
640 	if (stime < prev->stime)
641 		stime = prev->stime;
642 	utime = rtime - stime;
643 
644 	/*
645 	 * Make sure utime doesn't go backwards; this still preserves
646 	 * monotonicity for stime, analogous argument to above.
647 	 */
648 	if (utime < prev->utime) {
649 		utime = prev->utime;
650 		stime = rtime - utime;
651 	}
652 
653 	prev->stime = stime;
654 	prev->utime = utime;
655 out:
656 	*ut = prev->utime;
657 	*st = prev->stime;
658 	raw_spin_unlock_irqrestore(&prev->lock, flags);
659 }
660 
661 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
662 {
663 	struct task_cputime cputime = {
664 		.sum_exec_runtime = p->se.sum_exec_runtime,
665 	};
666 
667 	task_cputime(p, &cputime.utime, &cputime.stime);
668 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
669 }
670 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
671 
672 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
673 {
674 	struct task_cputime cputime;
675 
676 	thread_group_cputime(p, &cputime);
677 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
678 }
679 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
680 
681 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
682 static u64 vtime_delta(struct vtime *vtime)
683 {
684 	unsigned long long clock;
685 
686 	clock = sched_clock_cpu(smp_processor_id());
687 	if (clock < vtime->starttime)
688 		return 0;
689 
690 	return clock - vtime->starttime;
691 }
692 
693 static u64 get_vtime_delta(struct vtime *vtime)
694 {
695 	u64 delta = vtime_delta(vtime);
696 	u64 other;
697 
698 	/*
699 	 * Unlike tick based timing, vtime based timing never has lost
700 	 * ticks, and no need for steal time accounting to make up for
701 	 * lost ticks. Vtime accounts a rounded version of actual
702 	 * elapsed time. Limit account_other_time to prevent rounding
703 	 * errors from causing elapsed vtime to go negative.
704 	 */
705 	other = account_other_time(delta);
706 	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
707 	vtime->starttime += delta;
708 
709 	return delta - other;
710 }
711 
712 static void __vtime_account_system(struct task_struct *tsk,
713 				   struct vtime *vtime)
714 {
715 	vtime->stime += get_vtime_delta(vtime);
716 	if (vtime->stime >= TICK_NSEC) {
717 		account_system_time(tsk, irq_count(), vtime->stime);
718 		vtime->stime = 0;
719 	}
720 }
721 
722 static void vtime_account_guest(struct task_struct *tsk,
723 				struct vtime *vtime)
724 {
725 	vtime->gtime += get_vtime_delta(vtime);
726 	if (vtime->gtime >= TICK_NSEC) {
727 		account_guest_time(tsk, vtime->gtime);
728 		vtime->gtime = 0;
729 	}
730 }
731 
732 void vtime_account_system(struct task_struct *tsk)
733 {
734 	struct vtime *vtime = &tsk->vtime;
735 
736 	if (!vtime_delta(vtime))
737 		return;
738 
739 	write_seqcount_begin(&vtime->seqcount);
740 	/* We might have scheduled out from guest path */
741 	if (current->flags & PF_VCPU)
742 		vtime_account_guest(tsk, vtime);
743 	else
744 		__vtime_account_system(tsk, vtime);
745 	write_seqcount_end(&vtime->seqcount);
746 }
747 
748 void vtime_user_enter(struct task_struct *tsk)
749 {
750 	struct vtime *vtime = &tsk->vtime;
751 
752 	write_seqcount_begin(&vtime->seqcount);
753 	__vtime_account_system(tsk, vtime);
754 	vtime->state = VTIME_USER;
755 	write_seqcount_end(&vtime->seqcount);
756 }
757 
758 void vtime_user_exit(struct task_struct *tsk)
759 {
760 	struct vtime *vtime = &tsk->vtime;
761 
762 	write_seqcount_begin(&vtime->seqcount);
763 	vtime->utime += get_vtime_delta(vtime);
764 	if (vtime->utime >= TICK_NSEC) {
765 		account_user_time(tsk, vtime->utime);
766 		vtime->utime = 0;
767 	}
768 	vtime->state = VTIME_SYS;
769 	write_seqcount_end(&vtime->seqcount);
770 }
771 
772 void vtime_guest_enter(struct task_struct *tsk)
773 {
774 	struct vtime *vtime = &tsk->vtime;
775 	/*
776 	 * The flags must be updated under the lock with
777 	 * the vtime_starttime flush and update.
778 	 * That enforces a right ordering and update sequence
779 	 * synchronization against the reader (task_gtime())
780 	 * that can thus safely catch up with a tickless delta.
781 	 */
782 	write_seqcount_begin(&vtime->seqcount);
783 	__vtime_account_system(tsk, vtime);
784 	current->flags |= PF_VCPU;
785 	write_seqcount_end(&vtime->seqcount);
786 }
787 EXPORT_SYMBOL_GPL(vtime_guest_enter);
788 
789 void vtime_guest_exit(struct task_struct *tsk)
790 {
791 	struct vtime *vtime = &tsk->vtime;
792 
793 	write_seqcount_begin(&vtime->seqcount);
794 	vtime_account_guest(tsk, vtime);
795 	current->flags &= ~PF_VCPU;
796 	write_seqcount_end(&vtime->seqcount);
797 }
798 EXPORT_SYMBOL_GPL(vtime_guest_exit);
799 
800 void vtime_account_idle(struct task_struct *tsk)
801 {
802 	account_idle_time(get_vtime_delta(&tsk->vtime));
803 }
804 
805 void arch_vtime_task_switch(struct task_struct *prev)
806 {
807 	struct vtime *vtime = &prev->vtime;
808 
809 	write_seqcount_begin(&vtime->seqcount);
810 	vtime->state = VTIME_INACTIVE;
811 	write_seqcount_end(&vtime->seqcount);
812 
813 	vtime = &current->vtime;
814 
815 	write_seqcount_begin(&vtime->seqcount);
816 	vtime->state = VTIME_SYS;
817 	vtime->starttime = sched_clock_cpu(smp_processor_id());
818 	write_seqcount_end(&vtime->seqcount);
819 }
820 
821 void vtime_init_idle(struct task_struct *t, int cpu)
822 {
823 	struct vtime *vtime = &t->vtime;
824 	unsigned long flags;
825 
826 	local_irq_save(flags);
827 	write_seqcount_begin(&vtime->seqcount);
828 	vtime->state = VTIME_SYS;
829 	vtime->starttime = sched_clock_cpu(cpu);
830 	write_seqcount_end(&vtime->seqcount);
831 	local_irq_restore(flags);
832 }
833 
834 u64 task_gtime(struct task_struct *t)
835 {
836 	struct vtime *vtime = &t->vtime;
837 	unsigned int seq;
838 	u64 gtime;
839 
840 	if (!vtime_accounting_enabled())
841 		return t->gtime;
842 
843 	do {
844 		seq = read_seqcount_begin(&vtime->seqcount);
845 
846 		gtime = t->gtime;
847 		if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
848 			gtime += vtime->gtime + vtime_delta(vtime);
849 
850 	} while (read_seqcount_retry(&vtime->seqcount, seq));
851 
852 	return gtime;
853 }
854 
855 /*
856  * Fetch cputime raw values from fields of task_struct and
857  * add up the pending nohz execution time since the last
858  * cputime snapshot.
859  */
860 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
861 {
862 	struct vtime *vtime = &t->vtime;
863 	unsigned int seq;
864 	u64 delta;
865 
866 	if (!vtime_accounting_enabled()) {
867 		*utime = t->utime;
868 		*stime = t->stime;
869 		return;
870 	}
871 
872 	do {
873 		seq = read_seqcount_begin(&vtime->seqcount);
874 
875 		*utime = t->utime;
876 		*stime = t->stime;
877 
878 		/* Task is sleeping, nothing to add */
879 		if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
880 			continue;
881 
882 		delta = vtime_delta(vtime);
883 
884 		/*
885 		 * Task runs either in user or kernel space, add pending nohz time to
886 		 * the right place.
887 		 */
888 		if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
889 			*utime += vtime->utime + delta;
890 		else if (vtime->state == VTIME_SYS)
891 			*stime += vtime->stime + delta;
892 	} while (read_seqcount_retry(&vtime->seqcount, seq));
893 }
894 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
895