1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple CPU accounting cgroup controller 4 */ 5 #include "sched.h" 6 7 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 8 9 /* 10 * There are no locks covering percpu hardirq/softirq time. 11 * They are only modified in vtime_account, on corresponding CPU 12 * with interrupts disabled. So, writes are safe. 13 * They are read and saved off onto struct rq in update_rq_clock(). 14 * This may result in other CPU reading this CPU's irq time and can 15 * race with irq/vtime_account on this CPU. We would either get old 16 * or new value with a side effect of accounting a slice of irq time to wrong 17 * task when irq is in progress while we read rq->clock. That is a worthy 18 * compromise in place of having locks on each irq in account_system_time. 19 */ 20 DEFINE_PER_CPU(struct irqtime, cpu_irqtime); 21 22 static int sched_clock_irqtime; 23 24 void enable_sched_clock_irqtime(void) 25 { 26 sched_clock_irqtime = 1; 27 } 28 29 void disable_sched_clock_irqtime(void) 30 { 31 sched_clock_irqtime = 0; 32 } 33 34 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, 35 enum cpu_usage_stat idx) 36 { 37 u64 *cpustat = kcpustat_this_cpu->cpustat; 38 39 u64_stats_update_begin(&irqtime->sync); 40 cpustat[idx] += delta; 41 irqtime->total += delta; 42 irqtime->tick_delta += delta; 43 u64_stats_update_end(&irqtime->sync); 44 } 45 46 /* 47 * Called before incrementing preempt_count on {soft,}irq_enter 48 * and before decrementing preempt_count on {soft,}irq_exit. 49 */ 50 void irqtime_account_irq(struct task_struct *curr) 51 { 52 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 53 s64 delta; 54 int cpu; 55 56 if (!sched_clock_irqtime) 57 return; 58 59 cpu = smp_processor_id(); 60 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; 61 irqtime->irq_start_time += delta; 62 63 /* 64 * We do not account for softirq time from ksoftirqd here. 65 * We want to continue accounting softirq time to ksoftirqd thread 66 * in that case, so as not to confuse scheduler with a special task 67 * that do not consume any time, but still wants to run. 68 */ 69 if (hardirq_count()) 70 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); 71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 72 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); 73 } 74 EXPORT_SYMBOL_GPL(irqtime_account_irq); 75 76 static u64 irqtime_tick_accounted(u64 maxtime) 77 { 78 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 79 u64 delta; 80 81 delta = min(irqtime->tick_delta, maxtime); 82 irqtime->tick_delta -= delta; 83 84 return delta; 85 } 86 87 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 88 89 #define sched_clock_irqtime (0) 90 91 static u64 irqtime_tick_accounted(u64 dummy) 92 { 93 return 0; 94 } 95 96 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 97 98 static inline void task_group_account_field(struct task_struct *p, int index, 99 u64 tmp) 100 { 101 /* 102 * Since all updates are sure to touch the root cgroup, we 103 * get ourselves ahead and touch it first. If the root cgroup 104 * is the only cgroup, then nothing else should be necessary. 105 * 106 */ 107 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 108 109 cgroup_account_cputime_field(p, index, tmp); 110 } 111 112 /* 113 * Account user CPU time to a process. 114 * @p: the process that the CPU time gets accounted to 115 * @cputime: the CPU time spent in user space since the last update 116 */ 117 void account_user_time(struct task_struct *p, u64 cputime) 118 { 119 int index; 120 121 /* Add user time to process. */ 122 p->utime += cputime; 123 account_group_user_time(p, cputime); 124 125 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 126 127 /* Add user time to cpustat. */ 128 task_group_account_field(p, index, cputime); 129 130 /* Account for user time used */ 131 acct_account_cputime(p); 132 } 133 134 /* 135 * Account guest CPU time to a process. 136 * @p: the process that the CPU time gets accounted to 137 * @cputime: the CPU time spent in virtual machine since the last update 138 */ 139 void account_guest_time(struct task_struct *p, u64 cputime) 140 { 141 u64 *cpustat = kcpustat_this_cpu->cpustat; 142 143 /* Add guest time to process. */ 144 p->utime += cputime; 145 account_group_user_time(p, cputime); 146 p->gtime += cputime; 147 148 /* Add guest time to cpustat. */ 149 if (task_nice(p) > 0) { 150 cpustat[CPUTIME_NICE] += cputime; 151 cpustat[CPUTIME_GUEST_NICE] += cputime; 152 } else { 153 cpustat[CPUTIME_USER] += cputime; 154 cpustat[CPUTIME_GUEST] += cputime; 155 } 156 } 157 158 /* 159 * Account system CPU time to a process and desired cpustat field 160 * @p: the process that the CPU time gets accounted to 161 * @cputime: the CPU time spent in kernel space since the last update 162 * @index: pointer to cpustat field that has to be updated 163 */ 164 void account_system_index_time(struct task_struct *p, 165 u64 cputime, enum cpu_usage_stat index) 166 { 167 /* Add system time to process. */ 168 p->stime += cputime; 169 account_group_system_time(p, cputime); 170 171 /* Add system time to cpustat. */ 172 task_group_account_field(p, index, cputime); 173 174 /* Account for system time used */ 175 acct_account_cputime(p); 176 } 177 178 /* 179 * Account system CPU time to a process. 180 * @p: the process that the CPU time gets accounted to 181 * @hardirq_offset: the offset to subtract from hardirq_count() 182 * @cputime: the CPU time spent in kernel space since the last update 183 */ 184 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) 185 { 186 int index; 187 188 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 189 account_guest_time(p, cputime); 190 return; 191 } 192 193 if (hardirq_count() - hardirq_offset) 194 index = CPUTIME_IRQ; 195 else if (in_serving_softirq()) 196 index = CPUTIME_SOFTIRQ; 197 else 198 index = CPUTIME_SYSTEM; 199 200 account_system_index_time(p, cputime, index); 201 } 202 203 /* 204 * Account for involuntary wait time. 205 * @cputime: the CPU time spent in involuntary wait 206 */ 207 void account_steal_time(u64 cputime) 208 { 209 u64 *cpustat = kcpustat_this_cpu->cpustat; 210 211 cpustat[CPUTIME_STEAL] += cputime; 212 } 213 214 /* 215 * Account for idle time. 216 * @cputime: the CPU time spent in idle wait 217 */ 218 void account_idle_time(u64 cputime) 219 { 220 u64 *cpustat = kcpustat_this_cpu->cpustat; 221 struct rq *rq = this_rq(); 222 223 if (atomic_read(&rq->nr_iowait) > 0) 224 cpustat[CPUTIME_IOWAIT] += cputime; 225 else 226 cpustat[CPUTIME_IDLE] += cputime; 227 } 228 229 /* 230 * When a guest is interrupted for a longer amount of time, missed clock 231 * ticks are not redelivered later. Due to that, this function may on 232 * occasion account more time than the calling functions think elapsed. 233 */ 234 static __always_inline u64 steal_account_process_time(u64 maxtime) 235 { 236 #ifdef CONFIG_PARAVIRT 237 if (static_key_false(¶virt_steal_enabled)) { 238 u64 steal; 239 240 steal = paravirt_steal_clock(smp_processor_id()); 241 steal -= this_rq()->prev_steal_time; 242 steal = min(steal, maxtime); 243 account_steal_time(steal); 244 this_rq()->prev_steal_time += steal; 245 246 return steal; 247 } 248 #endif 249 return 0; 250 } 251 252 /* 253 * Account how much elapsed time was spent in steal, irq, or softirq time. 254 */ 255 static inline u64 account_other_time(u64 max) 256 { 257 u64 accounted; 258 259 lockdep_assert_irqs_disabled(); 260 261 accounted = steal_account_process_time(max); 262 263 if (accounted < max) 264 accounted += irqtime_tick_accounted(max - accounted); 265 266 return accounted; 267 } 268 269 #ifdef CONFIG_64BIT 270 static inline u64 read_sum_exec_runtime(struct task_struct *t) 271 { 272 return t->se.sum_exec_runtime; 273 } 274 #else 275 static u64 read_sum_exec_runtime(struct task_struct *t) 276 { 277 u64 ns; 278 struct rq_flags rf; 279 struct rq *rq; 280 281 rq = task_rq_lock(t, &rf); 282 ns = t->se.sum_exec_runtime; 283 task_rq_unlock(rq, t, &rf); 284 285 return ns; 286 } 287 #endif 288 289 /* 290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 291 * tasks (sum on group iteration) belonging to @tsk's group. 292 */ 293 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 294 { 295 struct signal_struct *sig = tsk->signal; 296 u64 utime, stime; 297 struct task_struct *t; 298 unsigned int seq, nextseq; 299 unsigned long flags; 300 301 /* 302 * Update current task runtime to account pending time since last 303 * scheduler action or thread_group_cputime() call. This thread group 304 * might have other running tasks on different CPUs, but updating 305 * their runtime can affect syscall performance, so we skip account 306 * those pending times and rely only on values updated on tick or 307 * other scheduler action. 308 */ 309 if (same_thread_group(current, tsk)) 310 (void) task_sched_runtime(current); 311 312 rcu_read_lock(); 313 /* Attempt a lockless read on the first round. */ 314 nextseq = 0; 315 do { 316 seq = nextseq; 317 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 318 times->utime = sig->utime; 319 times->stime = sig->stime; 320 times->sum_exec_runtime = sig->sum_sched_runtime; 321 322 for_each_thread(tsk, t) { 323 task_cputime(t, &utime, &stime); 324 times->utime += utime; 325 times->stime += stime; 326 times->sum_exec_runtime += read_sum_exec_runtime(t); 327 } 328 /* If lockless access failed, take the lock. */ 329 nextseq = 1; 330 } while (need_seqretry(&sig->stats_lock, seq)); 331 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 332 rcu_read_unlock(); 333 } 334 335 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 336 /* 337 * Account a tick to a process and cpustat 338 * @p: the process that the CPU time gets accounted to 339 * @user_tick: is the tick from userspace 340 * @rq: the pointer to rq 341 * 342 * Tick demultiplexing follows the order 343 * - pending hardirq update 344 * - pending softirq update 345 * - user_time 346 * - idle_time 347 * - system time 348 * - check for guest_time 349 * - else account as system_time 350 * 351 * Check for hardirq is done both for system and user time as there is 352 * no timer going off while we are on hardirq and hence we may never get an 353 * opportunity to update it solely in system time. 354 * p->stime and friends are only updated on system time and not on irq 355 * softirq as those do not count in task exec_runtime any more. 356 */ 357 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 358 struct rq *rq, int ticks) 359 { 360 u64 other, cputime = TICK_NSEC * ticks; 361 362 /* 363 * When returning from idle, many ticks can get accounted at 364 * once, including some ticks of steal, irq, and softirq time. 365 * Subtract those ticks from the amount of time accounted to 366 * idle, or potentially user or system time. Due to rounding, 367 * other time can exceed ticks occasionally. 368 */ 369 other = account_other_time(ULONG_MAX); 370 if (other >= cputime) 371 return; 372 373 cputime -= other; 374 375 if (this_cpu_ksoftirqd() == p) { 376 /* 377 * ksoftirqd time do not get accounted in cpu_softirq_time. 378 * So, we have to handle it separately here. 379 * Also, p->stime needs to be updated for ksoftirqd. 380 */ 381 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); 382 } else if (user_tick) { 383 account_user_time(p, cputime); 384 } else if (p == rq->idle) { 385 account_idle_time(cputime); 386 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 387 account_guest_time(p, cputime); 388 } else { 389 account_system_index_time(p, cputime, CPUTIME_SYSTEM); 390 } 391 } 392 393 static void irqtime_account_idle_ticks(int ticks) 394 { 395 struct rq *rq = this_rq(); 396 397 irqtime_account_process_tick(current, 0, rq, ticks); 398 } 399 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 400 static inline void irqtime_account_idle_ticks(int ticks) { } 401 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 402 struct rq *rq, int nr_ticks) { } 403 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 404 405 /* 406 * Use precise platform statistics if available: 407 */ 408 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 409 410 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH 411 void vtime_task_switch(struct task_struct *prev) 412 { 413 if (is_idle_task(prev)) 414 vtime_account_idle(prev); 415 else 416 vtime_account_kernel(prev); 417 418 vtime_flush(prev); 419 arch_vtime_task_switch(prev); 420 } 421 # endif 422 423 /* 424 * Archs that account the whole time spent in the idle task 425 * (outside irq) as idle time can rely on this and just implement 426 * vtime_account_kernel() and vtime_account_idle(). Archs that 427 * have other meaning of the idle time (s390 only includes the 428 * time spent by the CPU when it's in low power mode) must override 429 * vtime_account(). 430 */ 431 #ifndef __ARCH_HAS_VTIME_ACCOUNT 432 void vtime_account_irq_enter(struct task_struct *tsk) 433 { 434 if (!in_interrupt() && is_idle_task(tsk)) 435 vtime_account_idle(tsk); 436 else 437 vtime_account_kernel(tsk); 438 } 439 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 440 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 441 442 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 443 u64 *ut, u64 *st) 444 { 445 *ut = curr->utime; 446 *st = curr->stime; 447 } 448 449 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 450 { 451 *ut = p->utime; 452 *st = p->stime; 453 } 454 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 455 456 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 457 { 458 struct task_cputime cputime; 459 460 thread_group_cputime(p, &cputime); 461 462 *ut = cputime.utime; 463 *st = cputime.stime; 464 } 465 466 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */ 467 468 /* 469 * Account a single tick of CPU time. 470 * @p: the process that the CPU time gets accounted to 471 * @user_tick: indicates if the tick is a user or a system tick 472 */ 473 void account_process_tick(struct task_struct *p, int user_tick) 474 { 475 u64 cputime, steal; 476 struct rq *rq = this_rq(); 477 478 if (vtime_accounting_enabled_this_cpu()) 479 return; 480 481 if (sched_clock_irqtime) { 482 irqtime_account_process_tick(p, user_tick, rq, 1); 483 return; 484 } 485 486 cputime = TICK_NSEC; 487 steal = steal_account_process_time(ULONG_MAX); 488 489 if (steal >= cputime) 490 return; 491 492 cputime -= steal; 493 494 if (user_tick) 495 account_user_time(p, cputime); 496 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 497 account_system_time(p, HARDIRQ_OFFSET, cputime); 498 else 499 account_idle_time(cputime); 500 } 501 502 /* 503 * Account multiple ticks of idle time. 504 * @ticks: number of stolen ticks 505 */ 506 void account_idle_ticks(unsigned long ticks) 507 { 508 u64 cputime, steal; 509 510 if (sched_clock_irqtime) { 511 irqtime_account_idle_ticks(ticks); 512 return; 513 } 514 515 cputime = ticks * TICK_NSEC; 516 steal = steal_account_process_time(ULONG_MAX); 517 518 if (steal >= cputime) 519 return; 520 521 cputime -= steal; 522 account_idle_time(cputime); 523 } 524 525 /* 526 * Perform (stime * rtime) / total, but avoid multiplication overflow by 527 * losing precision when the numbers are big. 528 */ 529 static u64 scale_stime(u64 stime, u64 rtime, u64 total) 530 { 531 u64 scaled; 532 533 for (;;) { 534 /* Make sure "rtime" is the bigger of stime/rtime */ 535 if (stime > rtime) 536 swap(rtime, stime); 537 538 /* Make sure 'total' fits in 32 bits */ 539 if (total >> 32) 540 goto drop_precision; 541 542 /* Does rtime (and thus stime) fit in 32 bits? */ 543 if (!(rtime >> 32)) 544 break; 545 546 /* Can we just balance rtime/stime rather than dropping bits? */ 547 if (stime >> 31) 548 goto drop_precision; 549 550 /* We can grow stime and shrink rtime and try to make them both fit */ 551 stime <<= 1; 552 rtime >>= 1; 553 continue; 554 555 drop_precision: 556 /* We drop from rtime, it has more bits than stime */ 557 rtime >>= 1; 558 total >>= 1; 559 } 560 561 /* 562 * Make sure gcc understands that this is a 32x32->64 multiply, 563 * followed by a 64/32->64 divide. 564 */ 565 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 566 return scaled; 567 } 568 569 /* 570 * Adjust tick based cputime random precision against scheduler runtime 571 * accounting. 572 * 573 * Tick based cputime accounting depend on random scheduling timeslices of a 574 * task to be interrupted or not by the timer. Depending on these 575 * circumstances, the number of these interrupts may be over or 576 * under-optimistic, matching the real user and system cputime with a variable 577 * precision. 578 * 579 * Fix this by scaling these tick based values against the total runtime 580 * accounted by the CFS scheduler. 581 * 582 * This code provides the following guarantees: 583 * 584 * stime + utime == rtime 585 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 586 * 587 * Assuming that rtime_i+1 >= rtime_i. 588 */ 589 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 590 u64 *ut, u64 *st) 591 { 592 u64 rtime, stime, utime; 593 unsigned long flags; 594 595 /* Serialize concurrent callers such that we can honour our guarantees */ 596 raw_spin_lock_irqsave(&prev->lock, flags); 597 rtime = curr->sum_exec_runtime; 598 599 /* 600 * This is possible under two circumstances: 601 * - rtime isn't monotonic after all (a bug); 602 * - we got reordered by the lock. 603 * 604 * In both cases this acts as a filter such that the rest of the code 605 * can assume it is monotonic regardless of anything else. 606 */ 607 if (prev->stime + prev->utime >= rtime) 608 goto out; 609 610 stime = curr->stime; 611 utime = curr->utime; 612 613 /* 614 * If either stime or utime are 0, assume all runtime is userspace. 615 * Once a task gets some ticks, the monotonicy code at 'update:' 616 * will ensure things converge to the observed ratio. 617 */ 618 if (stime == 0) { 619 utime = rtime; 620 goto update; 621 } 622 623 if (utime == 0) { 624 stime = rtime; 625 goto update; 626 } 627 628 stime = scale_stime(stime, rtime, stime + utime); 629 630 update: 631 /* 632 * Make sure stime doesn't go backwards; this preserves monotonicity 633 * for utime because rtime is monotonic. 634 * 635 * utime_i+1 = rtime_i+1 - stime_i 636 * = rtime_i+1 - (rtime_i - utime_i) 637 * = (rtime_i+1 - rtime_i) + utime_i 638 * >= utime_i 639 */ 640 if (stime < prev->stime) 641 stime = prev->stime; 642 utime = rtime - stime; 643 644 /* 645 * Make sure utime doesn't go backwards; this still preserves 646 * monotonicity for stime, analogous argument to above. 647 */ 648 if (utime < prev->utime) { 649 utime = prev->utime; 650 stime = rtime - utime; 651 } 652 653 prev->stime = stime; 654 prev->utime = utime; 655 out: 656 *ut = prev->utime; 657 *st = prev->stime; 658 raw_spin_unlock_irqrestore(&prev->lock, flags); 659 } 660 661 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 662 { 663 struct task_cputime cputime = { 664 .sum_exec_runtime = p->se.sum_exec_runtime, 665 }; 666 667 task_cputime(p, &cputime.utime, &cputime.stime); 668 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 669 } 670 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 671 672 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 673 { 674 struct task_cputime cputime; 675 676 thread_group_cputime(p, &cputime); 677 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 678 } 679 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 680 681 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 682 static u64 vtime_delta(struct vtime *vtime) 683 { 684 unsigned long long clock; 685 686 clock = sched_clock(); 687 if (clock < vtime->starttime) 688 return 0; 689 690 return clock - vtime->starttime; 691 } 692 693 static u64 get_vtime_delta(struct vtime *vtime) 694 { 695 u64 delta = vtime_delta(vtime); 696 u64 other; 697 698 /* 699 * Unlike tick based timing, vtime based timing never has lost 700 * ticks, and no need for steal time accounting to make up for 701 * lost ticks. Vtime accounts a rounded version of actual 702 * elapsed time. Limit account_other_time to prevent rounding 703 * errors from causing elapsed vtime to go negative. 704 */ 705 other = account_other_time(delta); 706 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE); 707 vtime->starttime += delta; 708 709 return delta - other; 710 } 711 712 static void vtime_account_system(struct task_struct *tsk, 713 struct vtime *vtime) 714 { 715 vtime->stime += get_vtime_delta(vtime); 716 if (vtime->stime >= TICK_NSEC) { 717 account_system_time(tsk, irq_count(), vtime->stime); 718 vtime->stime = 0; 719 } 720 } 721 722 static void vtime_account_guest(struct task_struct *tsk, 723 struct vtime *vtime) 724 { 725 vtime->gtime += get_vtime_delta(vtime); 726 if (vtime->gtime >= TICK_NSEC) { 727 account_guest_time(tsk, vtime->gtime); 728 vtime->gtime = 0; 729 } 730 } 731 732 static void __vtime_account_kernel(struct task_struct *tsk, 733 struct vtime *vtime) 734 { 735 /* We might have scheduled out from guest path */ 736 if (vtime->state == VTIME_GUEST) 737 vtime_account_guest(tsk, vtime); 738 else 739 vtime_account_system(tsk, vtime); 740 } 741 742 void vtime_account_kernel(struct task_struct *tsk) 743 { 744 struct vtime *vtime = &tsk->vtime; 745 746 if (!vtime_delta(vtime)) 747 return; 748 749 write_seqcount_begin(&vtime->seqcount); 750 __vtime_account_kernel(tsk, vtime); 751 write_seqcount_end(&vtime->seqcount); 752 } 753 754 void vtime_user_enter(struct task_struct *tsk) 755 { 756 struct vtime *vtime = &tsk->vtime; 757 758 write_seqcount_begin(&vtime->seqcount); 759 vtime_account_system(tsk, vtime); 760 vtime->state = VTIME_USER; 761 write_seqcount_end(&vtime->seqcount); 762 } 763 764 void vtime_user_exit(struct task_struct *tsk) 765 { 766 struct vtime *vtime = &tsk->vtime; 767 768 write_seqcount_begin(&vtime->seqcount); 769 vtime->utime += get_vtime_delta(vtime); 770 if (vtime->utime >= TICK_NSEC) { 771 account_user_time(tsk, vtime->utime); 772 vtime->utime = 0; 773 } 774 vtime->state = VTIME_SYS; 775 write_seqcount_end(&vtime->seqcount); 776 } 777 778 void vtime_guest_enter(struct task_struct *tsk) 779 { 780 struct vtime *vtime = &tsk->vtime; 781 /* 782 * The flags must be updated under the lock with 783 * the vtime_starttime flush and update. 784 * That enforces a right ordering and update sequence 785 * synchronization against the reader (task_gtime()) 786 * that can thus safely catch up with a tickless delta. 787 */ 788 write_seqcount_begin(&vtime->seqcount); 789 vtime_account_system(tsk, vtime); 790 tsk->flags |= PF_VCPU; 791 vtime->state = VTIME_GUEST; 792 write_seqcount_end(&vtime->seqcount); 793 } 794 EXPORT_SYMBOL_GPL(vtime_guest_enter); 795 796 void vtime_guest_exit(struct task_struct *tsk) 797 { 798 struct vtime *vtime = &tsk->vtime; 799 800 write_seqcount_begin(&vtime->seqcount); 801 vtime_account_guest(tsk, vtime); 802 tsk->flags &= ~PF_VCPU; 803 vtime->state = VTIME_SYS; 804 write_seqcount_end(&vtime->seqcount); 805 } 806 EXPORT_SYMBOL_GPL(vtime_guest_exit); 807 808 void vtime_account_idle(struct task_struct *tsk) 809 { 810 account_idle_time(get_vtime_delta(&tsk->vtime)); 811 } 812 813 void vtime_task_switch_generic(struct task_struct *prev) 814 { 815 struct vtime *vtime = &prev->vtime; 816 817 write_seqcount_begin(&vtime->seqcount); 818 if (vtime->state == VTIME_IDLE) 819 vtime_account_idle(prev); 820 else 821 __vtime_account_kernel(prev, vtime); 822 vtime->state = VTIME_INACTIVE; 823 vtime->cpu = -1; 824 write_seqcount_end(&vtime->seqcount); 825 826 vtime = ¤t->vtime; 827 828 write_seqcount_begin(&vtime->seqcount); 829 if (is_idle_task(current)) 830 vtime->state = VTIME_IDLE; 831 else if (current->flags & PF_VCPU) 832 vtime->state = VTIME_GUEST; 833 else 834 vtime->state = VTIME_SYS; 835 vtime->starttime = sched_clock(); 836 vtime->cpu = smp_processor_id(); 837 write_seqcount_end(&vtime->seqcount); 838 } 839 840 void vtime_init_idle(struct task_struct *t, int cpu) 841 { 842 struct vtime *vtime = &t->vtime; 843 unsigned long flags; 844 845 local_irq_save(flags); 846 write_seqcount_begin(&vtime->seqcount); 847 vtime->state = VTIME_IDLE; 848 vtime->starttime = sched_clock(); 849 vtime->cpu = cpu; 850 write_seqcount_end(&vtime->seqcount); 851 local_irq_restore(flags); 852 } 853 854 u64 task_gtime(struct task_struct *t) 855 { 856 struct vtime *vtime = &t->vtime; 857 unsigned int seq; 858 u64 gtime; 859 860 if (!vtime_accounting_enabled()) 861 return t->gtime; 862 863 do { 864 seq = read_seqcount_begin(&vtime->seqcount); 865 866 gtime = t->gtime; 867 if (vtime->state == VTIME_GUEST) 868 gtime += vtime->gtime + vtime_delta(vtime); 869 870 } while (read_seqcount_retry(&vtime->seqcount, seq)); 871 872 return gtime; 873 } 874 875 /* 876 * Fetch cputime raw values from fields of task_struct and 877 * add up the pending nohz execution time since the last 878 * cputime snapshot. 879 */ 880 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) 881 { 882 struct vtime *vtime = &t->vtime; 883 unsigned int seq; 884 u64 delta; 885 886 if (!vtime_accounting_enabled()) { 887 *utime = t->utime; 888 *stime = t->stime; 889 return; 890 } 891 892 do { 893 seq = read_seqcount_begin(&vtime->seqcount); 894 895 *utime = t->utime; 896 *stime = t->stime; 897 898 /* Task is sleeping or idle, nothing to add */ 899 if (vtime->state < VTIME_SYS) 900 continue; 901 902 delta = vtime_delta(vtime); 903 904 /* 905 * Task runs either in user (including guest) or kernel space, 906 * add pending nohz time to the right place. 907 */ 908 if (vtime->state == VTIME_SYS) 909 *stime += vtime->stime + delta; 910 else 911 *utime += vtime->utime + delta; 912 } while (read_seqcount_retry(&vtime->seqcount, seq)); 913 } 914 915 static int vtime_state_check(struct vtime *vtime, int cpu) 916 { 917 /* 918 * We raced against a context switch, fetch the 919 * kcpustat task again. 920 */ 921 if (vtime->cpu != cpu && vtime->cpu != -1) 922 return -EAGAIN; 923 924 /* 925 * Two possible things here: 926 * 1) We are seeing the scheduling out task (prev) or any past one. 927 * 2) We are seeing the scheduling in task (next) but it hasn't 928 * passed though vtime_task_switch() yet so the pending 929 * cputime of the prev task may not be flushed yet. 930 * 931 * Case 1) is ok but 2) is not. So wait for a safe VTIME state. 932 */ 933 if (vtime->state == VTIME_INACTIVE) 934 return -EAGAIN; 935 936 return 0; 937 } 938 939 static u64 kcpustat_user_vtime(struct vtime *vtime) 940 { 941 if (vtime->state == VTIME_USER) 942 return vtime->utime + vtime_delta(vtime); 943 else if (vtime->state == VTIME_GUEST) 944 return vtime->gtime + vtime_delta(vtime); 945 return 0; 946 } 947 948 static int kcpustat_field_vtime(u64 *cpustat, 949 struct task_struct *tsk, 950 enum cpu_usage_stat usage, 951 int cpu, u64 *val) 952 { 953 struct vtime *vtime = &tsk->vtime; 954 unsigned int seq; 955 int err; 956 957 do { 958 seq = read_seqcount_begin(&vtime->seqcount); 959 960 err = vtime_state_check(vtime, cpu); 961 if (err < 0) 962 return err; 963 964 *val = cpustat[usage]; 965 966 /* 967 * Nice VS unnice cputime accounting may be inaccurate if 968 * the nice value has changed since the last vtime update. 969 * But proper fix would involve interrupting target on nice 970 * updates which is a no go on nohz_full (although the scheduler 971 * may still interrupt the target if rescheduling is needed...) 972 */ 973 switch (usage) { 974 case CPUTIME_SYSTEM: 975 if (vtime->state == VTIME_SYS) 976 *val += vtime->stime + vtime_delta(vtime); 977 break; 978 case CPUTIME_USER: 979 if (task_nice(tsk) <= 0) 980 *val += kcpustat_user_vtime(vtime); 981 break; 982 case CPUTIME_NICE: 983 if (task_nice(tsk) > 0) 984 *val += kcpustat_user_vtime(vtime); 985 break; 986 case CPUTIME_GUEST: 987 if (vtime->state == VTIME_GUEST && task_nice(tsk) <= 0) 988 *val += vtime->gtime + vtime_delta(vtime); 989 break; 990 case CPUTIME_GUEST_NICE: 991 if (vtime->state == VTIME_GUEST && task_nice(tsk) > 0) 992 *val += vtime->gtime + vtime_delta(vtime); 993 break; 994 default: 995 break; 996 } 997 } while (read_seqcount_retry(&vtime->seqcount, seq)); 998 999 return 0; 1000 } 1001 1002 u64 kcpustat_field(struct kernel_cpustat *kcpustat, 1003 enum cpu_usage_stat usage, int cpu) 1004 { 1005 u64 *cpustat = kcpustat->cpustat; 1006 struct rq *rq; 1007 u64 val; 1008 int err; 1009 1010 if (!vtime_accounting_enabled_cpu(cpu)) 1011 return cpustat[usage]; 1012 1013 rq = cpu_rq(cpu); 1014 1015 for (;;) { 1016 struct task_struct *curr; 1017 1018 rcu_read_lock(); 1019 curr = rcu_dereference(rq->curr); 1020 if (WARN_ON_ONCE(!curr)) { 1021 rcu_read_unlock(); 1022 return cpustat[usage]; 1023 } 1024 1025 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val); 1026 rcu_read_unlock(); 1027 1028 if (!err) 1029 return val; 1030 1031 cpu_relax(); 1032 } 1033 } 1034 EXPORT_SYMBOL_GPL(kcpustat_field); 1035 1036 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst, 1037 const struct kernel_cpustat *src, 1038 struct task_struct *tsk, int cpu) 1039 { 1040 struct vtime *vtime = &tsk->vtime; 1041 unsigned int seq; 1042 int err; 1043 1044 do { 1045 u64 *cpustat; 1046 u64 delta; 1047 1048 seq = read_seqcount_begin(&vtime->seqcount); 1049 1050 err = vtime_state_check(vtime, cpu); 1051 if (err < 0) 1052 return err; 1053 1054 *dst = *src; 1055 cpustat = dst->cpustat; 1056 1057 /* Task is sleeping, dead or idle, nothing to add */ 1058 if (vtime->state < VTIME_SYS) 1059 continue; 1060 1061 delta = vtime_delta(vtime); 1062 1063 /* 1064 * Task runs either in user (including guest) or kernel space, 1065 * add pending nohz time to the right place. 1066 */ 1067 if (vtime->state == VTIME_SYS) { 1068 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta; 1069 } else if (vtime->state == VTIME_USER) { 1070 if (task_nice(tsk) > 0) 1071 cpustat[CPUTIME_NICE] += vtime->utime + delta; 1072 else 1073 cpustat[CPUTIME_USER] += vtime->utime + delta; 1074 } else { 1075 WARN_ON_ONCE(vtime->state != VTIME_GUEST); 1076 if (task_nice(tsk) > 0) { 1077 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta; 1078 cpustat[CPUTIME_NICE] += vtime->gtime + delta; 1079 } else { 1080 cpustat[CPUTIME_GUEST] += vtime->gtime + delta; 1081 cpustat[CPUTIME_USER] += vtime->gtime + delta; 1082 } 1083 } 1084 } while (read_seqcount_retry(&vtime->seqcount, seq)); 1085 1086 return err; 1087 } 1088 1089 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) 1090 { 1091 const struct kernel_cpustat *src = &kcpustat_cpu(cpu); 1092 struct rq *rq; 1093 int err; 1094 1095 if (!vtime_accounting_enabled_cpu(cpu)) { 1096 *dst = *src; 1097 return; 1098 } 1099 1100 rq = cpu_rq(cpu); 1101 1102 for (;;) { 1103 struct task_struct *curr; 1104 1105 rcu_read_lock(); 1106 curr = rcu_dereference(rq->curr); 1107 if (WARN_ON_ONCE(!curr)) { 1108 rcu_read_unlock(); 1109 *dst = *src; 1110 return; 1111 } 1112 1113 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu); 1114 rcu_read_unlock(); 1115 1116 if (!err) 1117 return; 1118 1119 cpu_relax(); 1120 } 1121 } 1122 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch); 1123 1124 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 1125