xref: /openbmc/linux/kernel/sched/cputime.c (revision 14eae6e9)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include "sched.h"
7 
8 
9 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
10 
11 /*
12  * There are no locks covering percpu hardirq/softirq time.
13  * They are only modified in vtime_account, on corresponding CPU
14  * with interrupts disabled. So, writes are safe.
15  * They are read and saved off onto struct rq in update_rq_clock().
16  * This may result in other CPU reading this CPU's irq time and can
17  * race with irq/vtime_account on this CPU. We would either get old
18  * or new value with a side effect of accounting a slice of irq time to wrong
19  * task when irq is in progress while we read rq->clock. That is a worthy
20  * compromise in place of having locks on each irq in account_system_time.
21  */
22 DEFINE_PER_CPU(u64, cpu_hardirq_time);
23 DEFINE_PER_CPU(u64, cpu_softirq_time);
24 
25 static DEFINE_PER_CPU(u64, irq_start_time);
26 static int sched_clock_irqtime;
27 
28 void enable_sched_clock_irqtime(void)
29 {
30 	sched_clock_irqtime = 1;
31 }
32 
33 void disable_sched_clock_irqtime(void)
34 {
35 	sched_clock_irqtime = 0;
36 }
37 
38 #ifndef CONFIG_64BIT
39 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
40 #endif /* CONFIG_64BIT */
41 
42 /*
43  * Called before incrementing preempt_count on {soft,}irq_enter
44  * and before decrementing preempt_count on {soft,}irq_exit.
45  */
46 void irqtime_account_irq(struct task_struct *curr)
47 {
48 	unsigned long flags;
49 	s64 delta;
50 	int cpu;
51 
52 	if (!sched_clock_irqtime)
53 		return;
54 
55 	local_irq_save(flags);
56 
57 	cpu = smp_processor_id();
58 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
59 	__this_cpu_add(irq_start_time, delta);
60 
61 	irq_time_write_begin();
62 	/*
63 	 * We do not account for softirq time from ksoftirqd here.
64 	 * We want to continue accounting softirq time to ksoftirqd thread
65 	 * in that case, so as not to confuse scheduler with a special task
66 	 * that do not consume any time, but still wants to run.
67 	 */
68 	if (hardirq_count())
69 		__this_cpu_add(cpu_hardirq_time, delta);
70 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
71 		__this_cpu_add(cpu_softirq_time, delta);
72 
73 	irq_time_write_end();
74 	local_irq_restore(flags);
75 }
76 EXPORT_SYMBOL_GPL(irqtime_account_irq);
77 
78 static int irqtime_account_hi_update(void)
79 {
80 	u64 *cpustat = kcpustat_this_cpu->cpustat;
81 	unsigned long flags;
82 	u64 latest_ns;
83 	int ret = 0;
84 
85 	local_irq_save(flags);
86 	latest_ns = this_cpu_read(cpu_hardirq_time);
87 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
88 		ret = 1;
89 	local_irq_restore(flags);
90 	return ret;
91 }
92 
93 static int irqtime_account_si_update(void)
94 {
95 	u64 *cpustat = kcpustat_this_cpu->cpustat;
96 	unsigned long flags;
97 	u64 latest_ns;
98 	int ret = 0;
99 
100 	local_irq_save(flags);
101 	latest_ns = this_cpu_read(cpu_softirq_time);
102 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
103 		ret = 1;
104 	local_irq_restore(flags);
105 	return ret;
106 }
107 
108 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
109 
110 #define sched_clock_irqtime	(0)
111 
112 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
113 
114 static inline void task_group_account_field(struct task_struct *p, int index,
115 					    u64 tmp)
116 {
117 #ifdef CONFIG_CGROUP_CPUACCT
118 	struct kernel_cpustat *kcpustat;
119 	struct cpuacct *ca;
120 #endif
121 	/*
122 	 * Since all updates are sure to touch the root cgroup, we
123 	 * get ourselves ahead and touch it first. If the root cgroup
124 	 * is the only cgroup, then nothing else should be necessary.
125 	 *
126 	 */
127 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
128 
129 #ifdef CONFIG_CGROUP_CPUACCT
130 	if (unlikely(!cpuacct_subsys.active))
131 		return;
132 
133 	rcu_read_lock();
134 	ca = task_ca(p);
135 	while (ca && (ca != &root_cpuacct)) {
136 		kcpustat = this_cpu_ptr(ca->cpustat);
137 		kcpustat->cpustat[index] += tmp;
138 		ca = parent_ca(ca);
139 	}
140 	rcu_read_unlock();
141 #endif
142 }
143 
144 /*
145  * Account user cpu time to a process.
146  * @p: the process that the cpu time gets accounted to
147  * @cputime: the cpu time spent in user space since the last update
148  * @cputime_scaled: cputime scaled by cpu frequency
149  */
150 void account_user_time(struct task_struct *p, cputime_t cputime,
151 		       cputime_t cputime_scaled)
152 {
153 	int index;
154 
155 	/* Add user time to process. */
156 	p->utime += cputime;
157 	p->utimescaled += cputime_scaled;
158 	account_group_user_time(p, cputime);
159 
160 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
161 
162 	/* Add user time to cpustat. */
163 	task_group_account_field(p, index, (__force u64) cputime);
164 
165 	/* Account for user time used */
166 	acct_update_integrals(p);
167 }
168 
169 /*
170  * Account guest cpu time to a process.
171  * @p: the process that the cpu time gets accounted to
172  * @cputime: the cpu time spent in virtual machine since the last update
173  * @cputime_scaled: cputime scaled by cpu frequency
174  */
175 static void account_guest_time(struct task_struct *p, cputime_t cputime,
176 			       cputime_t cputime_scaled)
177 {
178 	u64 *cpustat = kcpustat_this_cpu->cpustat;
179 
180 	/* Add guest time to process. */
181 	p->utime += cputime;
182 	p->utimescaled += cputime_scaled;
183 	account_group_user_time(p, cputime);
184 	p->gtime += cputime;
185 
186 	/* Add guest time to cpustat. */
187 	if (TASK_NICE(p) > 0) {
188 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
189 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
190 	} else {
191 		cpustat[CPUTIME_USER] += (__force u64) cputime;
192 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
193 	}
194 }
195 
196 /*
197  * Account system cpu time to a process and desired cpustat field
198  * @p: the process that the cpu time gets accounted to
199  * @cputime: the cpu time spent in kernel space since the last update
200  * @cputime_scaled: cputime scaled by cpu frequency
201  * @target_cputime64: pointer to cpustat field that has to be updated
202  */
203 static inline
204 void __account_system_time(struct task_struct *p, cputime_t cputime,
205 			cputime_t cputime_scaled, int index)
206 {
207 	/* Add system time to process. */
208 	p->stime += cputime;
209 	p->stimescaled += cputime_scaled;
210 	account_group_system_time(p, cputime);
211 
212 	/* Add system time to cpustat. */
213 	task_group_account_field(p, index, (__force u64) cputime);
214 
215 	/* Account for system time used */
216 	acct_update_integrals(p);
217 }
218 
219 /*
220  * Account system cpu time to a process.
221  * @p: the process that the cpu time gets accounted to
222  * @hardirq_offset: the offset to subtract from hardirq_count()
223  * @cputime: the cpu time spent in kernel space since the last update
224  * @cputime_scaled: cputime scaled by cpu frequency
225  */
226 void account_system_time(struct task_struct *p, int hardirq_offset,
227 			 cputime_t cputime, cputime_t cputime_scaled)
228 {
229 	int index;
230 
231 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
232 		account_guest_time(p, cputime, cputime_scaled);
233 		return;
234 	}
235 
236 	if (hardirq_count() - hardirq_offset)
237 		index = CPUTIME_IRQ;
238 	else if (in_serving_softirq())
239 		index = CPUTIME_SOFTIRQ;
240 	else
241 		index = CPUTIME_SYSTEM;
242 
243 	__account_system_time(p, cputime, cputime_scaled, index);
244 }
245 
246 /*
247  * Account for involuntary wait time.
248  * @cputime: the cpu time spent in involuntary wait
249  */
250 void account_steal_time(cputime_t cputime)
251 {
252 	u64 *cpustat = kcpustat_this_cpu->cpustat;
253 
254 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
255 }
256 
257 /*
258  * Account for idle time.
259  * @cputime: the cpu time spent in idle wait
260  */
261 void account_idle_time(cputime_t cputime)
262 {
263 	u64 *cpustat = kcpustat_this_cpu->cpustat;
264 	struct rq *rq = this_rq();
265 
266 	if (atomic_read(&rq->nr_iowait) > 0)
267 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
268 	else
269 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
270 }
271 
272 static __always_inline bool steal_account_process_tick(void)
273 {
274 #ifdef CONFIG_PARAVIRT
275 	if (static_key_false(&paravirt_steal_enabled)) {
276 		u64 steal, st = 0;
277 
278 		steal = paravirt_steal_clock(smp_processor_id());
279 		steal -= this_rq()->prev_steal_time;
280 
281 		st = steal_ticks(steal);
282 		this_rq()->prev_steal_time += st * TICK_NSEC;
283 
284 		account_steal_time(st);
285 		return st;
286 	}
287 #endif
288 	return false;
289 }
290 
291 /*
292  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
293  * tasks (sum on group iteration) belonging to @tsk's group.
294  */
295 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
296 {
297 	struct signal_struct *sig = tsk->signal;
298 	struct task_struct *t;
299 
300 	times->utime = sig->utime;
301 	times->stime = sig->stime;
302 	times->sum_exec_runtime = sig->sum_sched_runtime;
303 
304 	rcu_read_lock();
305 	/* make sure we can trust tsk->thread_group list */
306 	if (!likely(pid_alive(tsk)))
307 		goto out;
308 
309 	t = tsk;
310 	do {
311 		times->utime += t->utime;
312 		times->stime += t->stime;
313 		times->sum_exec_runtime += task_sched_runtime(t);
314 	} while_each_thread(tsk, t);
315 out:
316 	rcu_read_unlock();
317 }
318 
319 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
320 
321 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
322 /*
323  * Account a tick to a process and cpustat
324  * @p: the process that the cpu time gets accounted to
325  * @user_tick: is the tick from userspace
326  * @rq: the pointer to rq
327  *
328  * Tick demultiplexing follows the order
329  * - pending hardirq update
330  * - pending softirq update
331  * - user_time
332  * - idle_time
333  * - system time
334  *   - check for guest_time
335  *   - else account as system_time
336  *
337  * Check for hardirq is done both for system and user time as there is
338  * no timer going off while we are on hardirq and hence we may never get an
339  * opportunity to update it solely in system time.
340  * p->stime and friends are only updated on system time and not on irq
341  * softirq as those do not count in task exec_runtime any more.
342  */
343 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
344 						struct rq *rq)
345 {
346 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
347 	u64 *cpustat = kcpustat_this_cpu->cpustat;
348 
349 	if (steal_account_process_tick())
350 		return;
351 
352 	if (irqtime_account_hi_update()) {
353 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
354 	} else if (irqtime_account_si_update()) {
355 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
356 	} else if (this_cpu_ksoftirqd() == p) {
357 		/*
358 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
359 		 * So, we have to handle it separately here.
360 		 * Also, p->stime needs to be updated for ksoftirqd.
361 		 */
362 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
363 					CPUTIME_SOFTIRQ);
364 	} else if (user_tick) {
365 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
366 	} else if (p == rq->idle) {
367 		account_idle_time(cputime_one_jiffy);
368 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
369 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
370 	} else {
371 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
372 					CPUTIME_SYSTEM);
373 	}
374 }
375 
376 static void irqtime_account_idle_ticks(int ticks)
377 {
378 	int i;
379 	struct rq *rq = this_rq();
380 
381 	for (i = 0; i < ticks; i++)
382 		irqtime_account_process_tick(current, 0, rq);
383 }
384 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
385 static void irqtime_account_idle_ticks(int ticks) {}
386 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
387 						struct rq *rq) {}
388 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
389 
390 /*
391  * Account a single tick of cpu time.
392  * @p: the process that the cpu time gets accounted to
393  * @user_tick: indicates if the tick is a user or a system tick
394  */
395 void account_process_tick(struct task_struct *p, int user_tick)
396 {
397 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
398 	struct rq *rq = this_rq();
399 
400 	if (sched_clock_irqtime) {
401 		irqtime_account_process_tick(p, user_tick, rq);
402 		return;
403 	}
404 
405 	if (steal_account_process_tick())
406 		return;
407 
408 	if (user_tick)
409 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
410 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
411 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
412 				    one_jiffy_scaled);
413 	else
414 		account_idle_time(cputime_one_jiffy);
415 }
416 
417 /*
418  * Account multiple ticks of steal time.
419  * @p: the process from which the cpu time has been stolen
420  * @ticks: number of stolen ticks
421  */
422 void account_steal_ticks(unsigned long ticks)
423 {
424 	account_steal_time(jiffies_to_cputime(ticks));
425 }
426 
427 /*
428  * Account multiple ticks of idle time.
429  * @ticks: number of stolen ticks
430  */
431 void account_idle_ticks(unsigned long ticks)
432 {
433 
434 	if (sched_clock_irqtime) {
435 		irqtime_account_idle_ticks(ticks);
436 		return;
437 	}
438 
439 	account_idle_time(jiffies_to_cputime(ticks));
440 }
441 
442 #endif
443 
444 /*
445  * Use precise platform statistics if available:
446  */
447 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
448 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
449 {
450 	*ut = p->utime;
451 	*st = p->stime;
452 }
453 
454 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
455 {
456 	struct task_cputime cputime;
457 
458 	thread_group_cputime(p, &cputime);
459 
460 	*ut = cputime.utime;
461 	*st = cputime.stime;
462 }
463 
464 void vtime_account_system_irqsafe(struct task_struct *tsk)
465 {
466 	unsigned long flags;
467 
468 	local_irq_save(flags);
469 	vtime_account_system(tsk);
470 	local_irq_restore(flags);
471 }
472 EXPORT_SYMBOL_GPL(vtime_account_system_irqsafe);
473 
474 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
475 void vtime_task_switch(struct task_struct *prev)
476 {
477 	if (is_idle_task(prev))
478 		vtime_account_idle(prev);
479 	else
480 		vtime_account_system(prev);
481 
482 	vtime_account_user(prev);
483 	arch_vtime_task_switch(prev);
484 }
485 #endif
486 
487 /*
488  * Archs that account the whole time spent in the idle task
489  * (outside irq) as idle time can rely on this and just implement
490  * vtime_account_system() and vtime_account_idle(). Archs that
491  * have other meaning of the idle time (s390 only includes the
492  * time spent by the CPU when it's in low power mode) must override
493  * vtime_account().
494  */
495 #ifndef __ARCH_HAS_VTIME_ACCOUNT
496 void vtime_account(struct task_struct *tsk)
497 {
498 	if (in_interrupt() || !is_idle_task(tsk))
499 		vtime_account_system(tsk);
500 	else
501 		vtime_account_idle(tsk);
502 }
503 EXPORT_SYMBOL_GPL(vtime_account);
504 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
505 
506 #else
507 
508 #ifndef nsecs_to_cputime
509 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
510 #endif
511 
512 static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
513 {
514 	u64 temp = (__force u64) rtime;
515 
516 	temp *= (__force u64) utime;
517 
518 	if (sizeof(cputime_t) == 4)
519 		temp = div_u64(temp, (__force u32) total);
520 	else
521 		temp = div64_u64(temp, (__force u64) total);
522 
523 	return (__force cputime_t) temp;
524 }
525 
526 /*
527  * Adjust tick based cputime random precision against scheduler
528  * runtime accounting.
529  */
530 static void cputime_adjust(struct task_cputime *curr,
531 			   struct cputime *prev,
532 			   cputime_t *ut, cputime_t *st)
533 {
534 	cputime_t rtime, utime, total;
535 
536 	utime = curr->utime;
537 	total = utime + curr->stime;
538 
539 	/*
540 	 * Tick based cputime accounting depend on random scheduling
541 	 * timeslices of a task to be interrupted or not by the timer.
542 	 * Depending on these circumstances, the number of these interrupts
543 	 * may be over or under-optimistic, matching the real user and system
544 	 * cputime with a variable precision.
545 	 *
546 	 * Fix this by scaling these tick based values against the total
547 	 * runtime accounted by the CFS scheduler.
548 	 */
549 	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
550 
551 	if (total)
552 		utime = scale_utime(utime, rtime, total);
553 	else
554 		utime = rtime;
555 
556 	/*
557 	 * If the tick based count grows faster than the scheduler one,
558 	 * the result of the scaling may go backward.
559 	 * Let's enforce monotonicity.
560 	 */
561 	prev->utime = max(prev->utime, utime);
562 	prev->stime = max(prev->stime, rtime - prev->utime);
563 
564 	*ut = prev->utime;
565 	*st = prev->stime;
566 }
567 
568 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
569 {
570 	struct task_cputime cputime = {
571 		.utime = p->utime,
572 		.stime = p->stime,
573 		.sum_exec_runtime = p->se.sum_exec_runtime,
574 	};
575 
576 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
577 }
578 
579 /*
580  * Must be called with siglock held.
581  */
582 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
583 {
584 	struct task_cputime cputime;
585 
586 	thread_group_cputime(p, &cputime);
587 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
588 }
589 #endif
590