1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple CPU accounting cgroup controller 4 */ 5 #include "sched.h" 6 7 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 8 9 /* 10 * There are no locks covering percpu hardirq/softirq time. 11 * They are only modified in vtime_account, on corresponding CPU 12 * with interrupts disabled. So, writes are safe. 13 * They are read and saved off onto struct rq in update_rq_clock(). 14 * This may result in other CPU reading this CPU's irq time and can 15 * race with irq/vtime_account on this CPU. We would either get old 16 * or new value with a side effect of accounting a slice of irq time to wrong 17 * task when irq is in progress while we read rq->clock. That is a worthy 18 * compromise in place of having locks on each irq in account_system_time. 19 */ 20 DEFINE_PER_CPU(struct irqtime, cpu_irqtime); 21 22 static int sched_clock_irqtime; 23 24 void enable_sched_clock_irqtime(void) 25 { 26 sched_clock_irqtime = 1; 27 } 28 29 void disable_sched_clock_irqtime(void) 30 { 31 sched_clock_irqtime = 0; 32 } 33 34 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, 35 enum cpu_usage_stat idx) 36 { 37 u64 *cpustat = kcpustat_this_cpu->cpustat; 38 39 u64_stats_update_begin(&irqtime->sync); 40 cpustat[idx] += delta; 41 irqtime->total += delta; 42 irqtime->tick_delta += delta; 43 u64_stats_update_end(&irqtime->sync); 44 } 45 46 /* 47 * Called before incrementing preempt_count on {soft,}irq_enter 48 * and before decrementing preempt_count on {soft,}irq_exit. 49 */ 50 void irqtime_account_irq(struct task_struct *curr) 51 { 52 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 53 s64 delta; 54 int cpu; 55 56 if (!sched_clock_irqtime) 57 return; 58 59 cpu = smp_processor_id(); 60 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; 61 irqtime->irq_start_time += delta; 62 63 /* 64 * We do not account for softirq time from ksoftirqd here. 65 * We want to continue accounting softirq time to ksoftirqd thread 66 * in that case, so as not to confuse scheduler with a special task 67 * that do not consume any time, but still wants to run. 68 */ 69 if (hardirq_count()) 70 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); 71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 72 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); 73 } 74 EXPORT_SYMBOL_GPL(irqtime_account_irq); 75 76 static u64 irqtime_tick_accounted(u64 maxtime) 77 { 78 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 79 u64 delta; 80 81 delta = min(irqtime->tick_delta, maxtime); 82 irqtime->tick_delta -= delta; 83 84 return delta; 85 } 86 87 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 88 89 #define sched_clock_irqtime (0) 90 91 static u64 irqtime_tick_accounted(u64 dummy) 92 { 93 return 0; 94 } 95 96 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 97 98 static inline void task_group_account_field(struct task_struct *p, int index, 99 u64 tmp) 100 { 101 /* 102 * Since all updates are sure to touch the root cgroup, we 103 * get ourselves ahead and touch it first. If the root cgroup 104 * is the only cgroup, then nothing else should be necessary. 105 * 106 */ 107 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 108 109 cgroup_account_cputime_field(p, index, tmp); 110 } 111 112 /* 113 * Account user CPU time to a process. 114 * @p: the process that the CPU time gets accounted to 115 * @cputime: the CPU time spent in user space since the last update 116 */ 117 void account_user_time(struct task_struct *p, u64 cputime) 118 { 119 int index; 120 121 /* Add user time to process. */ 122 p->utime += cputime; 123 account_group_user_time(p, cputime); 124 125 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 126 127 /* Add user time to cpustat. */ 128 task_group_account_field(p, index, cputime); 129 130 /* Account for user time used */ 131 acct_account_cputime(p); 132 } 133 134 /* 135 * Account guest CPU time to a process. 136 * @p: the process that the CPU time gets accounted to 137 * @cputime: the CPU time spent in virtual machine since the last update 138 */ 139 void account_guest_time(struct task_struct *p, u64 cputime) 140 { 141 u64 *cpustat = kcpustat_this_cpu->cpustat; 142 143 /* Add guest time to process. */ 144 p->utime += cputime; 145 account_group_user_time(p, cputime); 146 p->gtime += cputime; 147 148 /* Add guest time to cpustat. */ 149 if (task_nice(p) > 0) { 150 cpustat[CPUTIME_NICE] += cputime; 151 cpustat[CPUTIME_GUEST_NICE] += cputime; 152 } else { 153 cpustat[CPUTIME_USER] += cputime; 154 cpustat[CPUTIME_GUEST] += cputime; 155 } 156 } 157 158 /* 159 * Account system CPU time to a process and desired cpustat field 160 * @p: the process that the CPU time gets accounted to 161 * @cputime: the CPU time spent in kernel space since the last update 162 * @index: pointer to cpustat field that has to be updated 163 */ 164 void account_system_index_time(struct task_struct *p, 165 u64 cputime, enum cpu_usage_stat index) 166 { 167 /* Add system time to process. */ 168 p->stime += cputime; 169 account_group_system_time(p, cputime); 170 171 /* Add system time to cpustat. */ 172 task_group_account_field(p, index, cputime); 173 174 /* Account for system time used */ 175 acct_account_cputime(p); 176 } 177 178 /* 179 * Account system CPU time to a process. 180 * @p: the process that the CPU time gets accounted to 181 * @hardirq_offset: the offset to subtract from hardirq_count() 182 * @cputime: the CPU time spent in kernel space since the last update 183 */ 184 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) 185 { 186 int index; 187 188 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 189 account_guest_time(p, cputime); 190 return; 191 } 192 193 if (hardirq_count() - hardirq_offset) 194 index = CPUTIME_IRQ; 195 else if (in_serving_softirq()) 196 index = CPUTIME_SOFTIRQ; 197 else 198 index = CPUTIME_SYSTEM; 199 200 account_system_index_time(p, cputime, index); 201 } 202 203 /* 204 * Account for involuntary wait time. 205 * @cputime: the CPU time spent in involuntary wait 206 */ 207 void account_steal_time(u64 cputime) 208 { 209 u64 *cpustat = kcpustat_this_cpu->cpustat; 210 211 cpustat[CPUTIME_STEAL] += cputime; 212 } 213 214 /* 215 * Account for idle time. 216 * @cputime: the CPU time spent in idle wait 217 */ 218 void account_idle_time(u64 cputime) 219 { 220 u64 *cpustat = kcpustat_this_cpu->cpustat; 221 struct rq *rq = this_rq(); 222 223 if (atomic_read(&rq->nr_iowait) > 0) 224 cpustat[CPUTIME_IOWAIT] += cputime; 225 else 226 cpustat[CPUTIME_IDLE] += cputime; 227 } 228 229 /* 230 * When a guest is interrupted for a longer amount of time, missed clock 231 * ticks are not redelivered later. Due to that, this function may on 232 * occasion account more time than the calling functions think elapsed. 233 */ 234 static __always_inline u64 steal_account_process_time(u64 maxtime) 235 { 236 #ifdef CONFIG_PARAVIRT 237 if (static_key_false(¶virt_steal_enabled)) { 238 u64 steal; 239 240 steal = paravirt_steal_clock(smp_processor_id()); 241 steal -= this_rq()->prev_steal_time; 242 steal = min(steal, maxtime); 243 account_steal_time(steal); 244 this_rq()->prev_steal_time += steal; 245 246 return steal; 247 } 248 #endif 249 return 0; 250 } 251 252 /* 253 * Account how much elapsed time was spent in steal, irq, or softirq time. 254 */ 255 static inline u64 account_other_time(u64 max) 256 { 257 u64 accounted; 258 259 lockdep_assert_irqs_disabled(); 260 261 accounted = steal_account_process_time(max); 262 263 if (accounted < max) 264 accounted += irqtime_tick_accounted(max - accounted); 265 266 return accounted; 267 } 268 269 #ifdef CONFIG_64BIT 270 static inline u64 read_sum_exec_runtime(struct task_struct *t) 271 { 272 return t->se.sum_exec_runtime; 273 } 274 #else 275 static u64 read_sum_exec_runtime(struct task_struct *t) 276 { 277 u64 ns; 278 struct rq_flags rf; 279 struct rq *rq; 280 281 rq = task_rq_lock(t, &rf); 282 ns = t->se.sum_exec_runtime; 283 task_rq_unlock(rq, t, &rf); 284 285 return ns; 286 } 287 #endif 288 289 /* 290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 291 * tasks (sum on group iteration) belonging to @tsk's group. 292 */ 293 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 294 { 295 struct signal_struct *sig = tsk->signal; 296 u64 utime, stime; 297 struct task_struct *t; 298 unsigned int seq, nextseq; 299 unsigned long flags; 300 301 /* 302 * Update current task runtime to account pending time since last 303 * scheduler action or thread_group_cputime() call. This thread group 304 * might have other running tasks on different CPUs, but updating 305 * their runtime can affect syscall performance, so we skip account 306 * those pending times and rely only on values updated on tick or 307 * other scheduler action. 308 */ 309 if (same_thread_group(current, tsk)) 310 (void) task_sched_runtime(current); 311 312 rcu_read_lock(); 313 /* Attempt a lockless read on the first round. */ 314 nextseq = 0; 315 do { 316 seq = nextseq; 317 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 318 times->utime = sig->utime; 319 times->stime = sig->stime; 320 times->sum_exec_runtime = sig->sum_sched_runtime; 321 322 for_each_thread(tsk, t) { 323 task_cputime(t, &utime, &stime); 324 times->utime += utime; 325 times->stime += stime; 326 times->sum_exec_runtime += read_sum_exec_runtime(t); 327 } 328 /* If lockless access failed, take the lock. */ 329 nextseq = 1; 330 } while (need_seqretry(&sig->stats_lock, seq)); 331 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 332 rcu_read_unlock(); 333 } 334 335 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 336 /* 337 * Account a tick to a process and cpustat 338 * @p: the process that the CPU time gets accounted to 339 * @user_tick: is the tick from userspace 340 * @rq: the pointer to rq 341 * 342 * Tick demultiplexing follows the order 343 * - pending hardirq update 344 * - pending softirq update 345 * - user_time 346 * - idle_time 347 * - system time 348 * - check for guest_time 349 * - else account as system_time 350 * 351 * Check for hardirq is done both for system and user time as there is 352 * no timer going off while we are on hardirq and hence we may never get an 353 * opportunity to update it solely in system time. 354 * p->stime and friends are only updated on system time and not on irq 355 * softirq as those do not count in task exec_runtime any more. 356 */ 357 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 358 struct rq *rq, int ticks) 359 { 360 u64 other, cputime = TICK_NSEC * ticks; 361 362 /* 363 * When returning from idle, many ticks can get accounted at 364 * once, including some ticks of steal, irq, and softirq time. 365 * Subtract those ticks from the amount of time accounted to 366 * idle, or potentially user or system time. Due to rounding, 367 * other time can exceed ticks occasionally. 368 */ 369 other = account_other_time(ULONG_MAX); 370 if (other >= cputime) 371 return; 372 373 cputime -= other; 374 375 if (this_cpu_ksoftirqd() == p) { 376 /* 377 * ksoftirqd time do not get accounted in cpu_softirq_time. 378 * So, we have to handle it separately here. 379 * Also, p->stime needs to be updated for ksoftirqd. 380 */ 381 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); 382 } else if (user_tick) { 383 account_user_time(p, cputime); 384 } else if (p == rq->idle) { 385 account_idle_time(cputime); 386 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 387 account_guest_time(p, cputime); 388 } else { 389 account_system_index_time(p, cputime, CPUTIME_SYSTEM); 390 } 391 } 392 393 static void irqtime_account_idle_ticks(int ticks) 394 { 395 struct rq *rq = this_rq(); 396 397 irqtime_account_process_tick(current, 0, rq, ticks); 398 } 399 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 400 static inline void irqtime_account_idle_ticks(int ticks) { } 401 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 402 struct rq *rq, int nr_ticks) { } 403 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 404 405 /* 406 * Use precise platform statistics if available: 407 */ 408 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 409 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH 410 void vtime_common_task_switch(struct task_struct *prev) 411 { 412 if (is_idle_task(prev)) 413 vtime_account_idle(prev); 414 else 415 vtime_account_system(prev); 416 417 vtime_flush(prev); 418 arch_vtime_task_switch(prev); 419 } 420 # endif 421 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 422 423 424 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 425 /* 426 * Archs that account the whole time spent in the idle task 427 * (outside irq) as idle time can rely on this and just implement 428 * vtime_account_system() and vtime_account_idle(). Archs that 429 * have other meaning of the idle time (s390 only includes the 430 * time spent by the CPU when it's in low power mode) must override 431 * vtime_account(). 432 */ 433 #ifndef __ARCH_HAS_VTIME_ACCOUNT 434 void vtime_account_irq_enter(struct task_struct *tsk) 435 { 436 if (!in_interrupt() && is_idle_task(tsk)) 437 vtime_account_idle(tsk); 438 else 439 vtime_account_system(tsk); 440 } 441 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 442 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 443 444 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 445 u64 *ut, u64 *st) 446 { 447 *ut = curr->utime; 448 *st = curr->stime; 449 } 450 451 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 452 { 453 *ut = p->utime; 454 *st = p->stime; 455 } 456 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 457 458 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 459 { 460 struct task_cputime cputime; 461 462 thread_group_cputime(p, &cputime); 463 464 *ut = cputime.utime; 465 *st = cputime.stime; 466 } 467 468 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */ 469 470 /* 471 * Account a single tick of CPU time. 472 * @p: the process that the CPU time gets accounted to 473 * @user_tick: indicates if the tick is a user or a system tick 474 */ 475 void account_process_tick(struct task_struct *p, int user_tick) 476 { 477 u64 cputime, steal; 478 struct rq *rq = this_rq(); 479 480 if (vtime_accounting_cpu_enabled()) 481 return; 482 483 if (sched_clock_irqtime) { 484 irqtime_account_process_tick(p, user_tick, rq, 1); 485 return; 486 } 487 488 cputime = TICK_NSEC; 489 steal = steal_account_process_time(ULONG_MAX); 490 491 if (steal >= cputime) 492 return; 493 494 cputime -= steal; 495 496 if (user_tick) 497 account_user_time(p, cputime); 498 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 499 account_system_time(p, HARDIRQ_OFFSET, cputime); 500 else 501 account_idle_time(cputime); 502 } 503 504 /* 505 * Account multiple ticks of idle time. 506 * @ticks: number of stolen ticks 507 */ 508 void account_idle_ticks(unsigned long ticks) 509 { 510 u64 cputime, steal; 511 512 if (sched_clock_irqtime) { 513 irqtime_account_idle_ticks(ticks); 514 return; 515 } 516 517 cputime = ticks * TICK_NSEC; 518 steal = steal_account_process_time(ULONG_MAX); 519 520 if (steal >= cputime) 521 return; 522 523 cputime -= steal; 524 account_idle_time(cputime); 525 } 526 527 /* 528 * Perform (stime * rtime) / total, but avoid multiplication overflow by 529 * losing precision when the numbers are big. 530 */ 531 static u64 scale_stime(u64 stime, u64 rtime, u64 total) 532 { 533 u64 scaled; 534 535 for (;;) { 536 /* Make sure "rtime" is the bigger of stime/rtime */ 537 if (stime > rtime) 538 swap(rtime, stime); 539 540 /* Make sure 'total' fits in 32 bits */ 541 if (total >> 32) 542 goto drop_precision; 543 544 /* Does rtime (and thus stime) fit in 32 bits? */ 545 if (!(rtime >> 32)) 546 break; 547 548 /* Can we just balance rtime/stime rather than dropping bits? */ 549 if (stime >> 31) 550 goto drop_precision; 551 552 /* We can grow stime and shrink rtime and try to make them both fit */ 553 stime <<= 1; 554 rtime >>= 1; 555 continue; 556 557 drop_precision: 558 /* We drop from rtime, it has more bits than stime */ 559 rtime >>= 1; 560 total >>= 1; 561 } 562 563 /* 564 * Make sure gcc understands that this is a 32x32->64 multiply, 565 * followed by a 64/32->64 divide. 566 */ 567 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 568 return scaled; 569 } 570 571 /* 572 * Adjust tick based cputime random precision against scheduler runtime 573 * accounting. 574 * 575 * Tick based cputime accounting depend on random scheduling timeslices of a 576 * task to be interrupted or not by the timer. Depending on these 577 * circumstances, the number of these interrupts may be over or 578 * under-optimistic, matching the real user and system cputime with a variable 579 * precision. 580 * 581 * Fix this by scaling these tick based values against the total runtime 582 * accounted by the CFS scheduler. 583 * 584 * This code provides the following guarantees: 585 * 586 * stime + utime == rtime 587 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 588 * 589 * Assuming that rtime_i+1 >= rtime_i. 590 */ 591 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 592 u64 *ut, u64 *st) 593 { 594 u64 rtime, stime, utime; 595 unsigned long flags; 596 597 /* Serialize concurrent callers such that we can honour our guarantees */ 598 raw_spin_lock_irqsave(&prev->lock, flags); 599 rtime = curr->sum_exec_runtime; 600 601 /* 602 * This is possible under two circumstances: 603 * - rtime isn't monotonic after all (a bug); 604 * - we got reordered by the lock. 605 * 606 * In both cases this acts as a filter such that the rest of the code 607 * can assume it is monotonic regardless of anything else. 608 */ 609 if (prev->stime + prev->utime >= rtime) 610 goto out; 611 612 stime = curr->stime; 613 utime = curr->utime; 614 615 /* 616 * If either stime or utime are 0, assume all runtime is userspace. 617 * Once a task gets some ticks, the monotonicy code at 'update:' 618 * will ensure things converge to the observed ratio. 619 */ 620 if (stime == 0) { 621 utime = rtime; 622 goto update; 623 } 624 625 if (utime == 0) { 626 stime = rtime; 627 goto update; 628 } 629 630 stime = scale_stime(stime, rtime, stime + utime); 631 632 update: 633 /* 634 * Make sure stime doesn't go backwards; this preserves monotonicity 635 * for utime because rtime is monotonic. 636 * 637 * utime_i+1 = rtime_i+1 - stime_i 638 * = rtime_i+1 - (rtime_i - utime_i) 639 * = (rtime_i+1 - rtime_i) + utime_i 640 * >= utime_i 641 */ 642 if (stime < prev->stime) 643 stime = prev->stime; 644 utime = rtime - stime; 645 646 /* 647 * Make sure utime doesn't go backwards; this still preserves 648 * monotonicity for stime, analogous argument to above. 649 */ 650 if (utime < prev->utime) { 651 utime = prev->utime; 652 stime = rtime - utime; 653 } 654 655 prev->stime = stime; 656 prev->utime = utime; 657 out: 658 *ut = prev->utime; 659 *st = prev->stime; 660 raw_spin_unlock_irqrestore(&prev->lock, flags); 661 } 662 663 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 664 { 665 struct task_cputime cputime = { 666 .sum_exec_runtime = p->se.sum_exec_runtime, 667 }; 668 669 task_cputime(p, &cputime.utime, &cputime.stime); 670 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 671 } 672 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 673 674 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 675 { 676 struct task_cputime cputime; 677 678 thread_group_cputime(p, &cputime); 679 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 680 } 681 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 682 683 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 684 static u64 vtime_delta(struct vtime *vtime) 685 { 686 unsigned long long clock; 687 688 clock = sched_clock(); 689 if (clock < vtime->starttime) 690 return 0; 691 692 return clock - vtime->starttime; 693 } 694 695 static u64 get_vtime_delta(struct vtime *vtime) 696 { 697 u64 delta = vtime_delta(vtime); 698 u64 other; 699 700 /* 701 * Unlike tick based timing, vtime based timing never has lost 702 * ticks, and no need for steal time accounting to make up for 703 * lost ticks. Vtime accounts a rounded version of actual 704 * elapsed time. Limit account_other_time to prevent rounding 705 * errors from causing elapsed vtime to go negative. 706 */ 707 other = account_other_time(delta); 708 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE); 709 vtime->starttime += delta; 710 711 return delta - other; 712 } 713 714 static void __vtime_account_system(struct task_struct *tsk, 715 struct vtime *vtime) 716 { 717 vtime->stime += get_vtime_delta(vtime); 718 if (vtime->stime >= TICK_NSEC) { 719 account_system_time(tsk, irq_count(), vtime->stime); 720 vtime->stime = 0; 721 } 722 } 723 724 static void vtime_account_guest(struct task_struct *tsk, 725 struct vtime *vtime) 726 { 727 vtime->gtime += get_vtime_delta(vtime); 728 if (vtime->gtime >= TICK_NSEC) { 729 account_guest_time(tsk, vtime->gtime); 730 vtime->gtime = 0; 731 } 732 } 733 734 void vtime_account_system(struct task_struct *tsk) 735 { 736 struct vtime *vtime = &tsk->vtime; 737 738 if (!vtime_delta(vtime)) 739 return; 740 741 write_seqcount_begin(&vtime->seqcount); 742 /* We might have scheduled out from guest path */ 743 if (tsk->flags & PF_VCPU) 744 vtime_account_guest(tsk, vtime); 745 else 746 __vtime_account_system(tsk, vtime); 747 write_seqcount_end(&vtime->seqcount); 748 } 749 750 void vtime_user_enter(struct task_struct *tsk) 751 { 752 struct vtime *vtime = &tsk->vtime; 753 754 write_seqcount_begin(&vtime->seqcount); 755 __vtime_account_system(tsk, vtime); 756 vtime->state = VTIME_USER; 757 write_seqcount_end(&vtime->seqcount); 758 } 759 760 void vtime_user_exit(struct task_struct *tsk) 761 { 762 struct vtime *vtime = &tsk->vtime; 763 764 write_seqcount_begin(&vtime->seqcount); 765 vtime->utime += get_vtime_delta(vtime); 766 if (vtime->utime >= TICK_NSEC) { 767 account_user_time(tsk, vtime->utime); 768 vtime->utime = 0; 769 } 770 vtime->state = VTIME_SYS; 771 write_seqcount_end(&vtime->seqcount); 772 } 773 774 void vtime_guest_enter(struct task_struct *tsk) 775 { 776 struct vtime *vtime = &tsk->vtime; 777 /* 778 * The flags must be updated under the lock with 779 * the vtime_starttime flush and update. 780 * That enforces a right ordering and update sequence 781 * synchronization against the reader (task_gtime()) 782 * that can thus safely catch up with a tickless delta. 783 */ 784 write_seqcount_begin(&vtime->seqcount); 785 __vtime_account_system(tsk, vtime); 786 tsk->flags |= PF_VCPU; 787 write_seqcount_end(&vtime->seqcount); 788 } 789 EXPORT_SYMBOL_GPL(vtime_guest_enter); 790 791 void vtime_guest_exit(struct task_struct *tsk) 792 { 793 struct vtime *vtime = &tsk->vtime; 794 795 write_seqcount_begin(&vtime->seqcount); 796 vtime_account_guest(tsk, vtime); 797 tsk->flags &= ~PF_VCPU; 798 write_seqcount_end(&vtime->seqcount); 799 } 800 EXPORT_SYMBOL_GPL(vtime_guest_exit); 801 802 void vtime_account_idle(struct task_struct *tsk) 803 { 804 account_idle_time(get_vtime_delta(&tsk->vtime)); 805 } 806 807 void arch_vtime_task_switch(struct task_struct *prev) 808 { 809 struct vtime *vtime = &prev->vtime; 810 811 write_seqcount_begin(&vtime->seqcount); 812 vtime->state = VTIME_INACTIVE; 813 write_seqcount_end(&vtime->seqcount); 814 815 vtime = ¤t->vtime; 816 817 write_seqcount_begin(&vtime->seqcount); 818 vtime->state = VTIME_SYS; 819 vtime->starttime = sched_clock(); 820 write_seqcount_end(&vtime->seqcount); 821 } 822 823 void vtime_init_idle(struct task_struct *t, int cpu) 824 { 825 struct vtime *vtime = &t->vtime; 826 unsigned long flags; 827 828 local_irq_save(flags); 829 write_seqcount_begin(&vtime->seqcount); 830 vtime->state = VTIME_SYS; 831 vtime->starttime = sched_clock(); 832 write_seqcount_end(&vtime->seqcount); 833 local_irq_restore(flags); 834 } 835 836 u64 task_gtime(struct task_struct *t) 837 { 838 struct vtime *vtime = &t->vtime; 839 unsigned int seq; 840 u64 gtime; 841 842 if (!vtime_accounting_enabled()) 843 return t->gtime; 844 845 do { 846 seq = read_seqcount_begin(&vtime->seqcount); 847 848 gtime = t->gtime; 849 if (vtime->state == VTIME_SYS && t->flags & PF_VCPU) 850 gtime += vtime->gtime + vtime_delta(vtime); 851 852 } while (read_seqcount_retry(&vtime->seqcount, seq)); 853 854 return gtime; 855 } 856 857 /* 858 * Fetch cputime raw values from fields of task_struct and 859 * add up the pending nohz execution time since the last 860 * cputime snapshot. 861 */ 862 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) 863 { 864 struct vtime *vtime = &t->vtime; 865 unsigned int seq; 866 u64 delta; 867 868 if (!vtime_accounting_enabled()) { 869 *utime = t->utime; 870 *stime = t->stime; 871 return; 872 } 873 874 do { 875 seq = read_seqcount_begin(&vtime->seqcount); 876 877 *utime = t->utime; 878 *stime = t->stime; 879 880 /* Task is sleeping, nothing to add */ 881 if (vtime->state == VTIME_INACTIVE || is_idle_task(t)) 882 continue; 883 884 delta = vtime_delta(vtime); 885 886 /* 887 * Task runs either in user or kernel space, add pending nohz time to 888 * the right place. 889 */ 890 if (vtime->state == VTIME_USER || t->flags & PF_VCPU) 891 *utime += vtime->utime + delta; 892 else if (vtime->state == VTIME_SYS) 893 *stime += vtime->stime + delta; 894 } while (read_seqcount_retry(&vtime->seqcount, seq)); 895 } 896 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 897