xref: /openbmc/linux/kernel/sched/cpupri.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/cpupri.c
4  *
5  *  CPU priority management
6  *
7  *  Copyright (C) 2007-2008 Novell
8  *
9  *  Author: Gregory Haskins <ghaskins@novell.com>
10  *
11  *  This code tracks the priority of each CPU so that global migration
12  *  decisions are easy to calculate.  Each CPU can be in a state as follows:
13  *
14  *                 (INVALID), IDLE, NORMAL, RT1, ... RT99
15  *
16  *  going from the lowest priority to the highest.  CPUs in the INVALID state
17  *  are not eligible for routing.  The system maintains this state with
18  *  a 2 dimensional bitmap (the first for priority class, the second for CPUs
19  *  in that class).  Therefore a typical application without affinity
20  *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
21  *  searches).  For tasks with affinity restrictions, the algorithm has a
22  *  worst case complexity of O(min(102, nr_domcpus)), though the scenario that
23  *  yields the worst case search is fairly contrived.
24  */
25 #include "sched.h"
26 
27 /* Convert between a 140 based task->prio, and our 102 based cpupri */
28 static int convert_prio(int prio)
29 {
30 	int cpupri;
31 
32 	if (prio == CPUPRI_INVALID)
33 		cpupri = CPUPRI_INVALID;
34 	else if (prio == MAX_PRIO)
35 		cpupri = CPUPRI_IDLE;
36 	else if (prio >= MAX_RT_PRIO)
37 		cpupri = CPUPRI_NORMAL;
38 	else
39 		cpupri = MAX_RT_PRIO - prio + 1;
40 
41 	return cpupri;
42 }
43 
44 static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
45 				struct cpumask *lowest_mask, int idx)
46 {
47 	struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
48 	int skip = 0;
49 
50 	if (!atomic_read(&(vec)->count))
51 		skip = 1;
52 	/*
53 	 * When looking at the vector, we need to read the counter,
54 	 * do a memory barrier, then read the mask.
55 	 *
56 	 * Note: This is still all racey, but we can deal with it.
57 	 *  Ideally, we only want to look at masks that are set.
58 	 *
59 	 *  If a mask is not set, then the only thing wrong is that we
60 	 *  did a little more work than necessary.
61 	 *
62 	 *  If we read a zero count but the mask is set, because of the
63 	 *  memory barriers, that can only happen when the highest prio
64 	 *  task for a run queue has left the run queue, in which case,
65 	 *  it will be followed by a pull. If the task we are processing
66 	 *  fails to find a proper place to go, that pull request will
67 	 *  pull this task if the run queue is running at a lower
68 	 *  priority.
69 	 */
70 	smp_rmb();
71 
72 	/* Need to do the rmb for every iteration */
73 	if (skip)
74 		return 0;
75 
76 	if (cpumask_any_and(p->cpus_ptr, vec->mask) >= nr_cpu_ids)
77 		return 0;
78 
79 	if (lowest_mask) {
80 		cpumask_and(lowest_mask, p->cpus_ptr, vec->mask);
81 
82 		/*
83 		 * We have to ensure that we have at least one bit
84 		 * still set in the array, since the map could have
85 		 * been concurrently emptied between the first and
86 		 * second reads of vec->mask.  If we hit this
87 		 * condition, simply act as though we never hit this
88 		 * priority level and continue on.
89 		 */
90 		if (cpumask_empty(lowest_mask))
91 			return 0;
92 	}
93 
94 	return 1;
95 }
96 
97 int cpupri_find(struct cpupri *cp, struct task_struct *p,
98 		struct cpumask *lowest_mask)
99 {
100 	return cpupri_find_fitness(cp, p, lowest_mask, NULL);
101 }
102 
103 /**
104  * cpupri_find_fitness - find the best (lowest-pri) CPU in the system
105  * @cp: The cpupri context
106  * @p: The task
107  * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
108  * @fitness_fn: A pointer to a function to do custom checks whether the CPU
109  *              fits a specific criteria so that we only return those CPUs.
110  *
111  * Note: This function returns the recommended CPUs as calculated during the
112  * current invocation.  By the time the call returns, the CPUs may have in
113  * fact changed priorities any number of times.  While not ideal, it is not
114  * an issue of correctness since the normal rebalancer logic will correct
115  * any discrepancies created by racing against the uncertainty of the current
116  * priority configuration.
117  *
118  * Return: (int)bool - CPUs were found
119  */
120 int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
121 		struct cpumask *lowest_mask,
122 		bool (*fitness_fn)(struct task_struct *p, int cpu))
123 {
124 	int task_pri = convert_prio(p->prio);
125 	int idx, cpu;
126 
127 	BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
128 
129 	for (idx = 0; idx < task_pri; idx++) {
130 
131 		if (!__cpupri_find(cp, p, lowest_mask, idx))
132 			continue;
133 
134 		if (!lowest_mask || !fitness_fn)
135 			return 1;
136 
137 		/* Ensure the capacity of the CPUs fit the task */
138 		for_each_cpu(cpu, lowest_mask) {
139 			if (!fitness_fn(p, cpu))
140 				cpumask_clear_cpu(cpu, lowest_mask);
141 		}
142 
143 		/*
144 		 * If no CPU at the current priority can fit the task
145 		 * continue looking
146 		 */
147 		if (cpumask_empty(lowest_mask))
148 			continue;
149 
150 		return 1;
151 	}
152 
153 	/*
154 	 * If we failed to find a fitting lowest_mask, kick off a new search
155 	 * but without taking into account any fitness criteria this time.
156 	 *
157 	 * This rule favours honouring priority over fitting the task in the
158 	 * correct CPU (Capacity Awareness being the only user now).
159 	 * The idea is that if a higher priority task can run, then it should
160 	 * run even if this ends up being on unfitting CPU.
161 	 *
162 	 * The cost of this trade-off is not entirely clear and will probably
163 	 * be good for some workloads and bad for others.
164 	 *
165 	 * The main idea here is that if some CPUs were overcommitted, we try
166 	 * to spread which is what the scheduler traditionally did. Sys admins
167 	 * must do proper RT planning to avoid overloading the system if they
168 	 * really care.
169 	 */
170 	if (fitness_fn)
171 		return cpupri_find(cp, p, lowest_mask);
172 
173 	return 0;
174 }
175 
176 /**
177  * cpupri_set - update the CPU priority setting
178  * @cp: The cpupri context
179  * @cpu: The target CPU
180  * @newpri: The priority (INVALID-RT99) to assign to this CPU
181  *
182  * Note: Assumes cpu_rq(cpu)->lock is locked
183  *
184  * Returns: (void)
185  */
186 void cpupri_set(struct cpupri *cp, int cpu, int newpri)
187 {
188 	int *currpri = &cp->cpu_to_pri[cpu];
189 	int oldpri = *currpri;
190 	int do_mb = 0;
191 
192 	newpri = convert_prio(newpri);
193 
194 	BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
195 
196 	if (newpri == oldpri)
197 		return;
198 
199 	/*
200 	 * If the CPU was currently mapped to a different value, we
201 	 * need to map it to the new value then remove the old value.
202 	 * Note, we must add the new value first, otherwise we risk the
203 	 * cpu being missed by the priority loop in cpupri_find.
204 	 */
205 	if (likely(newpri != CPUPRI_INVALID)) {
206 		struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
207 
208 		cpumask_set_cpu(cpu, vec->mask);
209 		/*
210 		 * When adding a new vector, we update the mask first,
211 		 * do a write memory barrier, and then update the count, to
212 		 * make sure the vector is visible when count is set.
213 		 */
214 		smp_mb__before_atomic();
215 		atomic_inc(&(vec)->count);
216 		do_mb = 1;
217 	}
218 	if (likely(oldpri != CPUPRI_INVALID)) {
219 		struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];
220 
221 		/*
222 		 * Because the order of modification of the vec->count
223 		 * is important, we must make sure that the update
224 		 * of the new prio is seen before we decrement the
225 		 * old prio. This makes sure that the loop sees
226 		 * one or the other when we raise the priority of
227 		 * the run queue. We don't care about when we lower the
228 		 * priority, as that will trigger an rt pull anyway.
229 		 *
230 		 * We only need to do a memory barrier if we updated
231 		 * the new priority vec.
232 		 */
233 		if (do_mb)
234 			smp_mb__after_atomic();
235 
236 		/*
237 		 * When removing from the vector, we decrement the counter first
238 		 * do a memory barrier and then clear the mask.
239 		 */
240 		atomic_dec(&(vec)->count);
241 		smp_mb__after_atomic();
242 		cpumask_clear_cpu(cpu, vec->mask);
243 	}
244 
245 	*currpri = newpri;
246 }
247 
248 /**
249  * cpupri_init - initialize the cpupri structure
250  * @cp: The cpupri context
251  *
252  * Return: -ENOMEM on memory allocation failure.
253  */
254 int cpupri_init(struct cpupri *cp)
255 {
256 	int i;
257 
258 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
259 		struct cpupri_vec *vec = &cp->pri_to_cpu[i];
260 
261 		atomic_set(&vec->count, 0);
262 		if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
263 			goto cleanup;
264 	}
265 
266 	cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
267 	if (!cp->cpu_to_pri)
268 		goto cleanup;
269 
270 	for_each_possible_cpu(i)
271 		cp->cpu_to_pri[i] = CPUPRI_INVALID;
272 
273 	return 0;
274 
275 cleanup:
276 	for (i--; i >= 0; i--)
277 		free_cpumask_var(cp->pri_to_cpu[i].mask);
278 	return -ENOMEM;
279 }
280 
281 /**
282  * cpupri_cleanup - clean up the cpupri structure
283  * @cp: The cpupri context
284  */
285 void cpupri_cleanup(struct cpupri *cp)
286 {
287 	int i;
288 
289 	kfree(cp->cpu_to_pri);
290 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
291 		free_cpumask_var(cp->pri_to_cpu[i].mask);
292 }
293