xref: /openbmc/linux/kernel/sched/cpupri.c (revision 93d90ad7)
1 /*
2  *  kernel/sched/cpupri.c
3  *
4  *  CPU priority management
5  *
6  *  Copyright (C) 2007-2008 Novell
7  *
8  *  Author: Gregory Haskins <ghaskins@novell.com>
9  *
10  *  This code tracks the priority of each CPU so that global migration
11  *  decisions are easy to calculate.  Each CPU can be in a state as follows:
12  *
13  *                 (INVALID), IDLE, NORMAL, RT1, ... RT99
14  *
15  *  going from the lowest priority to the highest.  CPUs in the INVALID state
16  *  are not eligible for routing.  The system maintains this state with
17  *  a 2 dimensional bitmap (the first for priority class, the second for cpus
18  *  in that class).  Therefore a typical application without affinity
19  *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
20  *  searches).  For tasks with affinity restrictions, the algorithm has a
21  *  worst case complexity of O(min(102, nr_domcpus)), though the scenario that
22  *  yields the worst case search is fairly contrived.
23  *
24  *  This program is free software; you can redistribute it and/or
25  *  modify it under the terms of the GNU General Public License
26  *  as published by the Free Software Foundation; version 2
27  *  of the License.
28  */
29 
30 #include <linux/gfp.h>
31 #include <linux/sched.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include "cpupri.h"
35 
36 /* Convert between a 140 based task->prio, and our 102 based cpupri */
37 static int convert_prio(int prio)
38 {
39 	int cpupri;
40 
41 	if (prio == CPUPRI_INVALID)
42 		cpupri = CPUPRI_INVALID;
43 	else if (prio == MAX_PRIO)
44 		cpupri = CPUPRI_IDLE;
45 	else if (prio >= MAX_RT_PRIO)
46 		cpupri = CPUPRI_NORMAL;
47 	else
48 		cpupri = MAX_RT_PRIO - prio + 1;
49 
50 	return cpupri;
51 }
52 
53 /**
54  * cpupri_find - find the best (lowest-pri) CPU in the system
55  * @cp: The cpupri context
56  * @p: The task
57  * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
58  *
59  * Note: This function returns the recommended CPUs as calculated during the
60  * current invocation.  By the time the call returns, the CPUs may have in
61  * fact changed priorities any number of times.  While not ideal, it is not
62  * an issue of correctness since the normal rebalancer logic will correct
63  * any discrepancies created by racing against the uncertainty of the current
64  * priority configuration.
65  *
66  * Return: (int)bool - CPUs were found
67  */
68 int cpupri_find(struct cpupri *cp, struct task_struct *p,
69 		struct cpumask *lowest_mask)
70 {
71 	int idx = 0;
72 	int task_pri = convert_prio(p->prio);
73 
74 	BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
75 
76 	for (idx = 0; idx < task_pri; idx++) {
77 		struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
78 		int skip = 0;
79 
80 		if (!atomic_read(&(vec)->count))
81 			skip = 1;
82 		/*
83 		 * When looking at the vector, we need to read the counter,
84 		 * do a memory barrier, then read the mask.
85 		 *
86 		 * Note: This is still all racey, but we can deal with it.
87 		 *  Ideally, we only want to look at masks that are set.
88 		 *
89 		 *  If a mask is not set, then the only thing wrong is that we
90 		 *  did a little more work than necessary.
91 		 *
92 		 *  If we read a zero count but the mask is set, because of the
93 		 *  memory barriers, that can only happen when the highest prio
94 		 *  task for a run queue has left the run queue, in which case,
95 		 *  it will be followed by a pull. If the task we are processing
96 		 *  fails to find a proper place to go, that pull request will
97 		 *  pull this task if the run queue is running at a lower
98 		 *  priority.
99 		 */
100 		smp_rmb();
101 
102 		/* Need to do the rmb for every iteration */
103 		if (skip)
104 			continue;
105 
106 		if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
107 			continue;
108 
109 		if (lowest_mask) {
110 			cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);
111 
112 			/*
113 			 * We have to ensure that we have at least one bit
114 			 * still set in the array, since the map could have
115 			 * been concurrently emptied between the first and
116 			 * second reads of vec->mask.  If we hit this
117 			 * condition, simply act as though we never hit this
118 			 * priority level and continue on.
119 			 */
120 			if (cpumask_any(lowest_mask) >= nr_cpu_ids)
121 				continue;
122 		}
123 
124 		return 1;
125 	}
126 
127 	return 0;
128 }
129 
130 /**
131  * cpupri_set - update the cpu priority setting
132  * @cp: The cpupri context
133  * @cpu: The target cpu
134  * @newpri: The priority (INVALID-RT99) to assign to this CPU
135  *
136  * Note: Assumes cpu_rq(cpu)->lock is locked
137  *
138  * Returns: (void)
139  */
140 void cpupri_set(struct cpupri *cp, int cpu, int newpri)
141 {
142 	int *currpri = &cp->cpu_to_pri[cpu];
143 	int oldpri = *currpri;
144 	int do_mb = 0;
145 
146 	newpri = convert_prio(newpri);
147 
148 	BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
149 
150 	if (newpri == oldpri)
151 		return;
152 
153 	/*
154 	 * If the cpu was currently mapped to a different value, we
155 	 * need to map it to the new value then remove the old value.
156 	 * Note, we must add the new value first, otherwise we risk the
157 	 * cpu being missed by the priority loop in cpupri_find.
158 	 */
159 	if (likely(newpri != CPUPRI_INVALID)) {
160 		struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
161 
162 		cpumask_set_cpu(cpu, vec->mask);
163 		/*
164 		 * When adding a new vector, we update the mask first,
165 		 * do a write memory barrier, and then update the count, to
166 		 * make sure the vector is visible when count is set.
167 		 */
168 		smp_mb__before_atomic();
169 		atomic_inc(&(vec)->count);
170 		do_mb = 1;
171 	}
172 	if (likely(oldpri != CPUPRI_INVALID)) {
173 		struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];
174 
175 		/*
176 		 * Because the order of modification of the vec->count
177 		 * is important, we must make sure that the update
178 		 * of the new prio is seen before we decrement the
179 		 * old prio. This makes sure that the loop sees
180 		 * one or the other when we raise the priority of
181 		 * the run queue. We don't care about when we lower the
182 		 * priority, as that will trigger an rt pull anyway.
183 		 *
184 		 * We only need to do a memory barrier if we updated
185 		 * the new priority vec.
186 		 */
187 		if (do_mb)
188 			smp_mb__after_atomic();
189 
190 		/*
191 		 * When removing from the vector, we decrement the counter first
192 		 * do a memory barrier and then clear the mask.
193 		 */
194 		atomic_dec(&(vec)->count);
195 		smp_mb__after_atomic();
196 		cpumask_clear_cpu(cpu, vec->mask);
197 	}
198 
199 	*currpri = newpri;
200 }
201 
202 /**
203  * cpupri_init - initialize the cpupri structure
204  * @cp: The cpupri context
205  *
206  * Return: -ENOMEM on memory allocation failure.
207  */
208 int cpupri_init(struct cpupri *cp)
209 {
210 	int i;
211 
212 	memset(cp, 0, sizeof(*cp));
213 
214 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
215 		struct cpupri_vec *vec = &cp->pri_to_cpu[i];
216 
217 		atomic_set(&vec->count, 0);
218 		if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
219 			goto cleanup;
220 	}
221 
222 	cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
223 	if (!cp->cpu_to_pri)
224 		goto cleanup;
225 
226 	for_each_possible_cpu(i)
227 		cp->cpu_to_pri[i] = CPUPRI_INVALID;
228 
229 	return 0;
230 
231 cleanup:
232 	for (i--; i >= 0; i--)
233 		free_cpumask_var(cp->pri_to_cpu[i].mask);
234 	return -ENOMEM;
235 }
236 
237 /**
238  * cpupri_cleanup - clean up the cpupri structure
239  * @cp: The cpupri context
240  */
241 void cpupri_cleanup(struct cpupri *cp)
242 {
243 	int i;
244 
245 	kfree(cp->cpu_to_pri);
246 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
247 		free_cpumask_var(cp->pri_to_cpu[i].mask);
248 }
249