xref: /openbmc/linux/kernel/sched/cpupri.c (revision 5ebfa90bdd3d78f4967dc0095daf755989a999e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/cpupri.c
4  *
5  *  CPU priority management
6  *
7  *  Copyright (C) 2007-2008 Novell
8  *
9  *  Author: Gregory Haskins <ghaskins@novell.com>
10  *
11  *  This code tracks the priority of each CPU so that global migration
12  *  decisions are easy to calculate.  Each CPU can be in a state as follows:
13  *
14  *                 (INVALID), NORMAL, RT1, ... RT99, HIGHER
15  *
16  *  going from the lowest priority to the highest.  CPUs in the INVALID state
17  *  are not eligible for routing.  The system maintains this state with
18  *  a 2 dimensional bitmap (the first for priority class, the second for CPUs
19  *  in that class).  Therefore a typical application without affinity
20  *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
21  *  searches).  For tasks with affinity restrictions, the algorithm has a
22  *  worst case complexity of O(min(101, nr_domcpus)), though the scenario that
23  *  yields the worst case search is fairly contrived.
24  */
25 
26 /*
27  * p->rt_priority   p->prio   newpri   cpupri
28  *
29  *				  -1       -1 (CPUPRI_INVALID)
30  *
31  *				  99        0 (CPUPRI_NORMAL)
32  *
33  *		1        98       98        1
34  *	      ...
35  *	       49        50       50       49
36  *	       50        49       49       50
37  *	      ...
38  *	       99         0        0       99
39  *
40  *				 100	  100 (CPUPRI_HIGHER)
41  */
42 static int convert_prio(int prio)
43 {
44 	int cpupri;
45 
46 	switch (prio) {
47 	case CPUPRI_INVALID:
48 		cpupri = CPUPRI_INVALID;	/* -1 */
49 		break;
50 
51 	case 0 ... 98:
52 		cpupri = MAX_RT_PRIO-1 - prio;	/* 1 ... 99 */
53 		break;
54 
55 	case MAX_RT_PRIO-1:
56 		cpupri = CPUPRI_NORMAL;		/*  0 */
57 		break;
58 
59 	case MAX_RT_PRIO:
60 		cpupri = CPUPRI_HIGHER;		/* 100 */
61 		break;
62 	}
63 
64 	return cpupri;
65 }
66 
67 static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
68 				struct cpumask *lowest_mask, int idx)
69 {
70 	struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
71 	int skip = 0;
72 
73 	if (!atomic_read(&(vec)->count))
74 		skip = 1;
75 	/*
76 	 * When looking at the vector, we need to read the counter,
77 	 * do a memory barrier, then read the mask.
78 	 *
79 	 * Note: This is still all racy, but we can deal with it.
80 	 *  Ideally, we only want to look at masks that are set.
81 	 *
82 	 *  If a mask is not set, then the only thing wrong is that we
83 	 *  did a little more work than necessary.
84 	 *
85 	 *  If we read a zero count but the mask is set, because of the
86 	 *  memory barriers, that can only happen when the highest prio
87 	 *  task for a run queue has left the run queue, in which case,
88 	 *  it will be followed by a pull. If the task we are processing
89 	 *  fails to find a proper place to go, that pull request will
90 	 *  pull this task if the run queue is running at a lower
91 	 *  priority.
92 	 */
93 	smp_rmb();
94 
95 	/* Need to do the rmb for every iteration */
96 	if (skip)
97 		return 0;
98 
99 	if (cpumask_any_and(&p->cpus_mask, vec->mask) >= nr_cpu_ids)
100 		return 0;
101 
102 	if (lowest_mask) {
103 		cpumask_and(lowest_mask, &p->cpus_mask, vec->mask);
104 
105 		/*
106 		 * We have to ensure that we have at least one bit
107 		 * still set in the array, since the map could have
108 		 * been concurrently emptied between the first and
109 		 * second reads of vec->mask.  If we hit this
110 		 * condition, simply act as though we never hit this
111 		 * priority level and continue on.
112 		 */
113 		if (cpumask_empty(lowest_mask))
114 			return 0;
115 	}
116 
117 	return 1;
118 }
119 
120 int cpupri_find(struct cpupri *cp, struct task_struct *p,
121 		struct cpumask *lowest_mask)
122 {
123 	return cpupri_find_fitness(cp, p, lowest_mask, NULL);
124 }
125 
126 /**
127  * cpupri_find_fitness - find the best (lowest-pri) CPU in the system
128  * @cp: The cpupri context
129  * @p: The task
130  * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
131  * @fitness_fn: A pointer to a function to do custom checks whether the CPU
132  *              fits a specific criteria so that we only return those CPUs.
133  *
134  * Note: This function returns the recommended CPUs as calculated during the
135  * current invocation.  By the time the call returns, the CPUs may have in
136  * fact changed priorities any number of times.  While not ideal, it is not
137  * an issue of correctness since the normal rebalancer logic will correct
138  * any discrepancies created by racing against the uncertainty of the current
139  * priority configuration.
140  *
141  * Return: (int)bool - CPUs were found
142  */
143 int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
144 		struct cpumask *lowest_mask,
145 		bool (*fitness_fn)(struct task_struct *p, int cpu))
146 {
147 	int task_pri = convert_prio(p->prio);
148 	int idx, cpu;
149 
150 	WARN_ON_ONCE(task_pri >= CPUPRI_NR_PRIORITIES);
151 
152 	for (idx = 0; idx < task_pri; idx++) {
153 
154 		if (!__cpupri_find(cp, p, lowest_mask, idx))
155 			continue;
156 
157 		if (!lowest_mask || !fitness_fn)
158 			return 1;
159 
160 		/* Ensure the capacity of the CPUs fit the task */
161 		for_each_cpu(cpu, lowest_mask) {
162 			if (!fitness_fn(p, cpu))
163 				cpumask_clear_cpu(cpu, lowest_mask);
164 		}
165 
166 		/*
167 		 * If no CPU at the current priority can fit the task
168 		 * continue looking
169 		 */
170 		if (cpumask_empty(lowest_mask))
171 			continue;
172 
173 		return 1;
174 	}
175 
176 	/*
177 	 * If we failed to find a fitting lowest_mask, kick off a new search
178 	 * but without taking into account any fitness criteria this time.
179 	 *
180 	 * This rule favours honouring priority over fitting the task in the
181 	 * correct CPU (Capacity Awareness being the only user now).
182 	 * The idea is that if a higher priority task can run, then it should
183 	 * run even if this ends up being on unfitting CPU.
184 	 *
185 	 * The cost of this trade-off is not entirely clear and will probably
186 	 * be good for some workloads and bad for others.
187 	 *
188 	 * The main idea here is that if some CPUs were over-committed, we try
189 	 * to spread which is what the scheduler traditionally did. Sys admins
190 	 * must do proper RT planning to avoid overloading the system if they
191 	 * really care.
192 	 */
193 	if (fitness_fn)
194 		return cpupri_find(cp, p, lowest_mask);
195 
196 	return 0;
197 }
198 
199 /**
200  * cpupri_set - update the CPU priority setting
201  * @cp: The cpupri context
202  * @cpu: The target CPU
203  * @newpri: The priority (INVALID,NORMAL,RT1-RT99,HIGHER) to assign to this CPU
204  *
205  * Note: Assumes cpu_rq(cpu)->lock is locked
206  *
207  * Returns: (void)
208  */
209 void cpupri_set(struct cpupri *cp, int cpu, int newpri)
210 {
211 	int *currpri = &cp->cpu_to_pri[cpu];
212 	int oldpri = *currpri;
213 	int do_mb = 0;
214 
215 	newpri = convert_prio(newpri);
216 
217 	BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
218 
219 	if (newpri == oldpri)
220 		return;
221 
222 	/*
223 	 * If the CPU was currently mapped to a different value, we
224 	 * need to map it to the new value then remove the old value.
225 	 * Note, we must add the new value first, otherwise we risk the
226 	 * cpu being missed by the priority loop in cpupri_find.
227 	 */
228 	if (likely(newpri != CPUPRI_INVALID)) {
229 		struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
230 
231 		cpumask_set_cpu(cpu, vec->mask);
232 		/*
233 		 * When adding a new vector, we update the mask first,
234 		 * do a write memory barrier, and then update the count, to
235 		 * make sure the vector is visible when count is set.
236 		 */
237 		smp_mb__before_atomic();
238 		atomic_inc(&(vec)->count);
239 		do_mb = 1;
240 	}
241 	if (likely(oldpri != CPUPRI_INVALID)) {
242 		struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];
243 
244 		/*
245 		 * Because the order of modification of the vec->count
246 		 * is important, we must make sure that the update
247 		 * of the new prio is seen before we decrement the
248 		 * old prio. This makes sure that the loop sees
249 		 * one or the other when we raise the priority of
250 		 * the run queue. We don't care about when we lower the
251 		 * priority, as that will trigger an rt pull anyway.
252 		 *
253 		 * We only need to do a memory barrier if we updated
254 		 * the new priority vec.
255 		 */
256 		if (do_mb)
257 			smp_mb__after_atomic();
258 
259 		/*
260 		 * When removing from the vector, we decrement the counter first
261 		 * do a memory barrier and then clear the mask.
262 		 */
263 		atomic_dec(&(vec)->count);
264 		smp_mb__after_atomic();
265 		cpumask_clear_cpu(cpu, vec->mask);
266 	}
267 
268 	*currpri = newpri;
269 }
270 
271 /**
272  * cpupri_init - initialize the cpupri structure
273  * @cp: The cpupri context
274  *
275  * Return: -ENOMEM on memory allocation failure.
276  */
277 int cpupri_init(struct cpupri *cp)
278 {
279 	int i;
280 
281 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
282 		struct cpupri_vec *vec = &cp->pri_to_cpu[i];
283 
284 		atomic_set(&vec->count, 0);
285 		if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
286 			goto cleanup;
287 	}
288 
289 	cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
290 	if (!cp->cpu_to_pri)
291 		goto cleanup;
292 
293 	for_each_possible_cpu(i)
294 		cp->cpu_to_pri[i] = CPUPRI_INVALID;
295 
296 	return 0;
297 
298 cleanup:
299 	for (i--; i >= 0; i--)
300 		free_cpumask_var(cp->pri_to_cpu[i].mask);
301 	return -ENOMEM;
302 }
303 
304 /**
305  * cpupri_cleanup - clean up the cpupri structure
306  * @cp: The cpupri context
307  */
308 void cpupri_cleanup(struct cpupri *cp)
309 {
310 	int i;
311 
312 	kfree(cp->cpu_to_pri);
313 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
314 		free_cpumask_var(cp->pri_to_cpu[i].mask);
315 }
316