xref: /openbmc/linux/kernel/sched/cpupri.c (revision 09bae3b6)
1 /*
2  *  kernel/sched/cpupri.c
3  *
4  *  CPU priority management
5  *
6  *  Copyright (C) 2007-2008 Novell
7  *
8  *  Author: Gregory Haskins <ghaskins@novell.com>
9  *
10  *  This code tracks the priority of each CPU so that global migration
11  *  decisions are easy to calculate.  Each CPU can be in a state as follows:
12  *
13  *                 (INVALID), IDLE, NORMAL, RT1, ... RT99
14  *
15  *  going from the lowest priority to the highest.  CPUs in the INVALID state
16  *  are not eligible for routing.  The system maintains this state with
17  *  a 2 dimensional bitmap (the first for priority class, the second for CPUs
18  *  in that class).  Therefore a typical application without affinity
19  *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
20  *  searches).  For tasks with affinity restrictions, the algorithm has a
21  *  worst case complexity of O(min(102, nr_domcpus)), though the scenario that
22  *  yields the worst case search is fairly contrived.
23  *
24  *  This program is free software; you can redistribute it and/or
25  *  modify it under the terms of the GNU General Public License
26  *  as published by the Free Software Foundation; version 2
27  *  of the License.
28  */
29 #include "sched.h"
30 
31 /* Convert between a 140 based task->prio, and our 102 based cpupri */
32 static int convert_prio(int prio)
33 {
34 	int cpupri;
35 
36 	if (prio == CPUPRI_INVALID)
37 		cpupri = CPUPRI_INVALID;
38 	else if (prio == MAX_PRIO)
39 		cpupri = CPUPRI_IDLE;
40 	else if (prio >= MAX_RT_PRIO)
41 		cpupri = CPUPRI_NORMAL;
42 	else
43 		cpupri = MAX_RT_PRIO - prio + 1;
44 
45 	return cpupri;
46 }
47 
48 /**
49  * cpupri_find - find the best (lowest-pri) CPU in the system
50  * @cp: The cpupri context
51  * @p: The task
52  * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
53  *
54  * Note: This function returns the recommended CPUs as calculated during the
55  * current invocation.  By the time the call returns, the CPUs may have in
56  * fact changed priorities any number of times.  While not ideal, it is not
57  * an issue of correctness since the normal rebalancer logic will correct
58  * any discrepancies created by racing against the uncertainty of the current
59  * priority configuration.
60  *
61  * Return: (int)bool - CPUs were found
62  */
63 int cpupri_find(struct cpupri *cp, struct task_struct *p,
64 		struct cpumask *lowest_mask)
65 {
66 	int idx = 0;
67 	int task_pri = convert_prio(p->prio);
68 
69 	BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
70 
71 	for (idx = 0; idx < task_pri; idx++) {
72 		struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
73 		int skip = 0;
74 
75 		if (!atomic_read(&(vec)->count))
76 			skip = 1;
77 		/*
78 		 * When looking at the vector, we need to read the counter,
79 		 * do a memory barrier, then read the mask.
80 		 *
81 		 * Note: This is still all racey, but we can deal with it.
82 		 *  Ideally, we only want to look at masks that are set.
83 		 *
84 		 *  If a mask is not set, then the only thing wrong is that we
85 		 *  did a little more work than necessary.
86 		 *
87 		 *  If we read a zero count but the mask is set, because of the
88 		 *  memory barriers, that can only happen when the highest prio
89 		 *  task for a run queue has left the run queue, in which case,
90 		 *  it will be followed by a pull. If the task we are processing
91 		 *  fails to find a proper place to go, that pull request will
92 		 *  pull this task if the run queue is running at a lower
93 		 *  priority.
94 		 */
95 		smp_rmb();
96 
97 		/* Need to do the rmb for every iteration */
98 		if (skip)
99 			continue;
100 
101 		if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
102 			continue;
103 
104 		if (lowest_mask) {
105 			cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);
106 
107 			/*
108 			 * We have to ensure that we have at least one bit
109 			 * still set in the array, since the map could have
110 			 * been concurrently emptied between the first and
111 			 * second reads of vec->mask.  If we hit this
112 			 * condition, simply act as though we never hit this
113 			 * priority level and continue on.
114 			 */
115 			if (cpumask_any(lowest_mask) >= nr_cpu_ids)
116 				continue;
117 		}
118 
119 		return 1;
120 	}
121 
122 	return 0;
123 }
124 
125 /**
126  * cpupri_set - update the CPU priority setting
127  * @cp: The cpupri context
128  * @cpu: The target CPU
129  * @newpri: The priority (INVALID-RT99) to assign to this CPU
130  *
131  * Note: Assumes cpu_rq(cpu)->lock is locked
132  *
133  * Returns: (void)
134  */
135 void cpupri_set(struct cpupri *cp, int cpu, int newpri)
136 {
137 	int *currpri = &cp->cpu_to_pri[cpu];
138 	int oldpri = *currpri;
139 	int do_mb = 0;
140 
141 	newpri = convert_prio(newpri);
142 
143 	BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
144 
145 	if (newpri == oldpri)
146 		return;
147 
148 	/*
149 	 * If the CPU was currently mapped to a different value, we
150 	 * need to map it to the new value then remove the old value.
151 	 * Note, we must add the new value first, otherwise we risk the
152 	 * cpu being missed by the priority loop in cpupri_find.
153 	 */
154 	if (likely(newpri != CPUPRI_INVALID)) {
155 		struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
156 
157 		cpumask_set_cpu(cpu, vec->mask);
158 		/*
159 		 * When adding a new vector, we update the mask first,
160 		 * do a write memory barrier, and then update the count, to
161 		 * make sure the vector is visible when count is set.
162 		 */
163 		smp_mb__before_atomic();
164 		atomic_inc(&(vec)->count);
165 		do_mb = 1;
166 	}
167 	if (likely(oldpri != CPUPRI_INVALID)) {
168 		struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];
169 
170 		/*
171 		 * Because the order of modification of the vec->count
172 		 * is important, we must make sure that the update
173 		 * of the new prio is seen before we decrement the
174 		 * old prio. This makes sure that the loop sees
175 		 * one or the other when we raise the priority of
176 		 * the run queue. We don't care about when we lower the
177 		 * priority, as that will trigger an rt pull anyway.
178 		 *
179 		 * We only need to do a memory barrier if we updated
180 		 * the new priority vec.
181 		 */
182 		if (do_mb)
183 			smp_mb__after_atomic();
184 
185 		/*
186 		 * When removing from the vector, we decrement the counter first
187 		 * do a memory barrier and then clear the mask.
188 		 */
189 		atomic_dec(&(vec)->count);
190 		smp_mb__after_atomic();
191 		cpumask_clear_cpu(cpu, vec->mask);
192 	}
193 
194 	*currpri = newpri;
195 }
196 
197 /**
198  * cpupri_init - initialize the cpupri structure
199  * @cp: The cpupri context
200  *
201  * Return: -ENOMEM on memory allocation failure.
202  */
203 int cpupri_init(struct cpupri *cp)
204 {
205 	int i;
206 
207 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
208 		struct cpupri_vec *vec = &cp->pri_to_cpu[i];
209 
210 		atomic_set(&vec->count, 0);
211 		if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
212 			goto cleanup;
213 	}
214 
215 	cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
216 	if (!cp->cpu_to_pri)
217 		goto cleanup;
218 
219 	for_each_possible_cpu(i)
220 		cp->cpu_to_pri[i] = CPUPRI_INVALID;
221 
222 	return 0;
223 
224 cleanup:
225 	for (i--; i >= 0; i--)
226 		free_cpumask_var(cp->pri_to_cpu[i].mask);
227 	return -ENOMEM;
228 }
229 
230 /**
231  * cpupri_cleanup - clean up the cpupri structure
232  * @cp: The cpupri context
233  */
234 void cpupri_cleanup(struct cpupri *cp)
235 {
236 	int i;
237 
238 	kfree(cp->cpu_to_pri);
239 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
240 		free_cpumask_var(cp->pri_to_cpu[i].mask);
241 }
242