1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CPUFreq governor based on scheduler-provided CPU utilization data. 4 * 5 * Copyright (C) 2016, Intel Corporation 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include "sched.h" 12 13 #include <linux/sched/cpufreq.h> 14 #include <trace/events/power.h> 15 16 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8) 17 18 struct sugov_tunables { 19 struct gov_attr_set attr_set; 20 unsigned int rate_limit_us; 21 }; 22 23 struct sugov_policy { 24 struct cpufreq_policy *policy; 25 26 struct sugov_tunables *tunables; 27 struct list_head tunables_hook; 28 29 raw_spinlock_t update_lock; /* For shared policies */ 30 u64 last_freq_update_time; 31 s64 freq_update_delay_ns; 32 unsigned int next_freq; 33 unsigned int cached_raw_freq; 34 35 /* The next fields are only needed if fast switch cannot be used: */ 36 struct irq_work irq_work; 37 struct kthread_work work; 38 struct mutex work_lock; 39 struct kthread_worker worker; 40 struct task_struct *thread; 41 bool work_in_progress; 42 43 bool limits_changed; 44 bool need_freq_update; 45 }; 46 47 struct sugov_cpu { 48 struct update_util_data update_util; 49 struct sugov_policy *sg_policy; 50 unsigned int cpu; 51 52 bool iowait_boost_pending; 53 unsigned int iowait_boost; 54 u64 last_update; 55 56 unsigned long bw_dl; 57 unsigned long max; 58 59 /* The field below is for single-CPU policies only: */ 60 #ifdef CONFIG_NO_HZ_COMMON 61 unsigned long saved_idle_calls; 62 #endif 63 }; 64 65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); 66 67 /************************ Governor internals ***********************/ 68 69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) 70 { 71 s64 delta_ns; 72 73 /* 74 * Since cpufreq_update_util() is called with rq->lock held for 75 * the @target_cpu, our per-CPU data is fully serialized. 76 * 77 * However, drivers cannot in general deal with cross-CPU 78 * requests, so while get_next_freq() will work, our 79 * sugov_update_commit() call may not for the fast switching platforms. 80 * 81 * Hence stop here for remote requests if they aren't supported 82 * by the hardware, as calculating the frequency is pointless if 83 * we cannot in fact act on it. 84 * 85 * This is needed on the slow switching platforms too to prevent CPUs 86 * going offline from leaving stale IRQ work items behind. 87 */ 88 if (!cpufreq_this_cpu_can_update(sg_policy->policy)) 89 return false; 90 91 if (unlikely(sg_policy->limits_changed)) { 92 sg_policy->limits_changed = false; 93 sg_policy->need_freq_update = true; 94 return true; 95 } 96 97 delta_ns = time - sg_policy->last_freq_update_time; 98 99 return delta_ns >= sg_policy->freq_update_delay_ns; 100 } 101 102 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time, 103 unsigned int next_freq) 104 { 105 if (sg_policy->next_freq == next_freq) 106 return false; 107 108 sg_policy->next_freq = next_freq; 109 sg_policy->last_freq_update_time = time; 110 111 return true; 112 } 113 114 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time, 115 unsigned int next_freq) 116 { 117 struct cpufreq_policy *policy = sg_policy->policy; 118 int cpu; 119 120 if (!sugov_update_next_freq(sg_policy, time, next_freq)) 121 return; 122 123 next_freq = cpufreq_driver_fast_switch(policy, next_freq); 124 if (!next_freq) 125 return; 126 127 policy->cur = next_freq; 128 129 if (trace_cpu_frequency_enabled()) { 130 for_each_cpu(cpu, policy->cpus) 131 trace_cpu_frequency(next_freq, cpu); 132 } 133 } 134 135 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time, 136 unsigned int next_freq) 137 { 138 if (!sugov_update_next_freq(sg_policy, time, next_freq)) 139 return; 140 141 if (!sg_policy->work_in_progress) { 142 sg_policy->work_in_progress = true; 143 irq_work_queue(&sg_policy->irq_work); 144 } 145 } 146 147 /** 148 * get_next_freq - Compute a new frequency for a given cpufreq policy. 149 * @sg_policy: schedutil policy object to compute the new frequency for. 150 * @util: Current CPU utilization. 151 * @max: CPU capacity. 152 * 153 * If the utilization is frequency-invariant, choose the new frequency to be 154 * proportional to it, that is 155 * 156 * next_freq = C * max_freq * util / max 157 * 158 * Otherwise, approximate the would-be frequency-invariant utilization by 159 * util_raw * (curr_freq / max_freq) which leads to 160 * 161 * next_freq = C * curr_freq * util_raw / max 162 * 163 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. 164 * 165 * The lowest driver-supported frequency which is equal or greater than the raw 166 * next_freq (as calculated above) is returned, subject to policy min/max and 167 * cpufreq driver limitations. 168 */ 169 static unsigned int get_next_freq(struct sugov_policy *sg_policy, 170 unsigned long util, unsigned long max) 171 { 172 struct cpufreq_policy *policy = sg_policy->policy; 173 unsigned int freq = arch_scale_freq_invariant() ? 174 policy->cpuinfo.max_freq : policy->cur; 175 176 freq = map_util_freq(util, freq, max); 177 178 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update) 179 return sg_policy->next_freq; 180 181 sg_policy->need_freq_update = false; 182 sg_policy->cached_raw_freq = freq; 183 return cpufreq_driver_resolve_freq(policy, freq); 184 } 185 186 /* 187 * This function computes an effective utilization for the given CPU, to be 188 * used for frequency selection given the linear relation: f = u * f_max. 189 * 190 * The scheduler tracks the following metrics: 191 * 192 * cpu_util_{cfs,rt,dl,irq}() 193 * cpu_bw_dl() 194 * 195 * Where the cfs,rt and dl util numbers are tracked with the same metric and 196 * synchronized windows and are thus directly comparable. 197 * 198 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 199 * which excludes things like IRQ and steal-time. These latter are then accrued 200 * in the irq utilization. 201 * 202 * The DL bandwidth number otoh is not a measured metric but a value computed 203 * based on the task model parameters and gives the minimal utilization 204 * required to meet deadlines. 205 */ 206 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, 207 unsigned long max, enum schedutil_type type, 208 struct task_struct *p) 209 { 210 unsigned long dl_util, util, irq; 211 struct rq *rq = cpu_rq(cpu); 212 213 if (!IS_BUILTIN(CONFIG_UCLAMP_TASK) && 214 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 215 return max; 216 } 217 218 /* 219 * Early check to see if IRQ/steal time saturates the CPU, can be 220 * because of inaccuracies in how we track these -- see 221 * update_irq_load_avg(). 222 */ 223 irq = cpu_util_irq(rq); 224 if (unlikely(irq >= max)) 225 return max; 226 227 /* 228 * Because the time spend on RT/DL tasks is visible as 'lost' time to 229 * CFS tasks and we use the same metric to track the effective 230 * utilization (PELT windows are synchronized) we can directly add them 231 * to obtain the CPU's actual utilization. 232 * 233 * CFS and RT utilization can be boosted or capped, depending on 234 * utilization clamp constraints requested by currently RUNNABLE 235 * tasks. 236 * When there are no CFS RUNNABLE tasks, clamps are released and 237 * frequency will be gracefully reduced with the utilization decay. 238 */ 239 util = util_cfs + cpu_util_rt(rq); 240 if (type == FREQUENCY_UTIL) 241 util = uclamp_util_with(rq, util, p); 242 243 dl_util = cpu_util_dl(rq); 244 245 /* 246 * For frequency selection we do not make cpu_util_dl() a permanent part 247 * of this sum because we want to use cpu_bw_dl() later on, but we need 248 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 249 * that we select f_max when there is no idle time. 250 * 251 * NOTE: numerical errors or stop class might cause us to not quite hit 252 * saturation when we should -- something for later. 253 */ 254 if (util + dl_util >= max) 255 return max; 256 257 /* 258 * OTOH, for energy computation we need the estimated running time, so 259 * include util_dl and ignore dl_bw. 260 */ 261 if (type == ENERGY_UTIL) 262 util += dl_util; 263 264 /* 265 * There is still idle time; further improve the number by using the 266 * irq metric. Because IRQ/steal time is hidden from the task clock we 267 * need to scale the task numbers: 268 * 269 * max - irq 270 * U' = irq + --------- * U 271 * max 272 */ 273 util = scale_irq_capacity(util, irq, max); 274 util += irq; 275 276 /* 277 * Bandwidth required by DEADLINE must always be granted while, for 278 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 279 * to gracefully reduce the frequency when no tasks show up for longer 280 * periods of time. 281 * 282 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 283 * bw_dl as requested freq. However, cpufreq is not yet ready for such 284 * an interface. So, we only do the latter for now. 285 */ 286 if (type == FREQUENCY_UTIL) 287 util += cpu_bw_dl(rq); 288 289 return min(max, util); 290 } 291 292 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu) 293 { 294 struct rq *rq = cpu_rq(sg_cpu->cpu); 295 unsigned long util = cpu_util_cfs(rq); 296 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu); 297 298 sg_cpu->max = max; 299 sg_cpu->bw_dl = cpu_bw_dl(rq); 300 301 return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL); 302 } 303 304 /** 305 * sugov_iowait_reset() - Reset the IO boost status of a CPU. 306 * @sg_cpu: the sugov data for the CPU to boost 307 * @time: the update time from the caller 308 * @set_iowait_boost: true if an IO boost has been requested 309 * 310 * The IO wait boost of a task is disabled after a tick since the last update 311 * of a CPU. If a new IO wait boost is requested after more then a tick, then 312 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy 313 * efficiency by ignoring sporadic wakeups from IO. 314 */ 315 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time, 316 bool set_iowait_boost) 317 { 318 s64 delta_ns = time - sg_cpu->last_update; 319 320 /* Reset boost only if a tick has elapsed since last request */ 321 if (delta_ns <= TICK_NSEC) 322 return false; 323 324 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0; 325 sg_cpu->iowait_boost_pending = set_iowait_boost; 326 327 return true; 328 } 329 330 /** 331 * sugov_iowait_boost() - Updates the IO boost status of a CPU. 332 * @sg_cpu: the sugov data for the CPU to boost 333 * @time: the update time from the caller 334 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait 335 * 336 * Each time a task wakes up after an IO operation, the CPU utilization can be 337 * boosted to a certain utilization which doubles at each "frequent and 338 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization 339 * of the maximum OPP. 340 * 341 * To keep doubling, an IO boost has to be requested at least once per tick, 342 * otherwise we restart from the utilization of the minimum OPP. 343 */ 344 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time, 345 unsigned int flags) 346 { 347 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT; 348 349 /* Reset boost if the CPU appears to have been idle enough */ 350 if (sg_cpu->iowait_boost && 351 sugov_iowait_reset(sg_cpu, time, set_iowait_boost)) 352 return; 353 354 /* Boost only tasks waking up after IO */ 355 if (!set_iowait_boost) 356 return; 357 358 /* Ensure boost doubles only one time at each request */ 359 if (sg_cpu->iowait_boost_pending) 360 return; 361 sg_cpu->iowait_boost_pending = true; 362 363 /* Double the boost at each request */ 364 if (sg_cpu->iowait_boost) { 365 sg_cpu->iowait_boost = 366 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE); 367 return; 368 } 369 370 /* First wakeup after IO: start with minimum boost */ 371 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN; 372 } 373 374 /** 375 * sugov_iowait_apply() - Apply the IO boost to a CPU. 376 * @sg_cpu: the sugov data for the cpu to boost 377 * @time: the update time from the caller 378 * @util: the utilization to (eventually) boost 379 * @max: the maximum value the utilization can be boosted to 380 * 381 * A CPU running a task which woken up after an IO operation can have its 382 * utilization boosted to speed up the completion of those IO operations. 383 * The IO boost value is increased each time a task wakes up from IO, in 384 * sugov_iowait_apply(), and it's instead decreased by this function, 385 * each time an increase has not been requested (!iowait_boost_pending). 386 * 387 * A CPU which also appears to have been idle for at least one tick has also 388 * its IO boost utilization reset. 389 * 390 * This mechanism is designed to boost high frequently IO waiting tasks, while 391 * being more conservative on tasks which does sporadic IO operations. 392 */ 393 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time, 394 unsigned long util, unsigned long max) 395 { 396 unsigned long boost; 397 398 /* No boost currently required */ 399 if (!sg_cpu->iowait_boost) 400 return util; 401 402 /* Reset boost if the CPU appears to have been idle enough */ 403 if (sugov_iowait_reset(sg_cpu, time, false)) 404 return util; 405 406 if (!sg_cpu->iowait_boost_pending) { 407 /* 408 * No boost pending; reduce the boost value. 409 */ 410 sg_cpu->iowait_boost >>= 1; 411 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) { 412 sg_cpu->iowait_boost = 0; 413 return util; 414 } 415 } 416 417 sg_cpu->iowait_boost_pending = false; 418 419 /* 420 * @util is already in capacity scale; convert iowait_boost 421 * into the same scale so we can compare. 422 */ 423 boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT; 424 return max(boost, util); 425 } 426 427 #ifdef CONFIG_NO_HZ_COMMON 428 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) 429 { 430 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); 431 bool ret = idle_calls == sg_cpu->saved_idle_calls; 432 433 sg_cpu->saved_idle_calls = idle_calls; 434 return ret; 435 } 436 #else 437 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; } 438 #endif /* CONFIG_NO_HZ_COMMON */ 439 440 /* 441 * Make sugov_should_update_freq() ignore the rate limit when DL 442 * has increased the utilization. 443 */ 444 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy) 445 { 446 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl) 447 sg_policy->limits_changed = true; 448 } 449 450 static void sugov_update_single(struct update_util_data *hook, u64 time, 451 unsigned int flags) 452 { 453 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 454 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 455 unsigned long util, max; 456 unsigned int next_f; 457 bool busy; 458 459 sugov_iowait_boost(sg_cpu, time, flags); 460 sg_cpu->last_update = time; 461 462 ignore_dl_rate_limit(sg_cpu, sg_policy); 463 464 if (!sugov_should_update_freq(sg_policy, time)) 465 return; 466 467 /* Limits may have changed, don't skip frequency update */ 468 busy = !sg_policy->need_freq_update && sugov_cpu_is_busy(sg_cpu); 469 470 util = sugov_get_util(sg_cpu); 471 max = sg_cpu->max; 472 util = sugov_iowait_apply(sg_cpu, time, util, max); 473 next_f = get_next_freq(sg_policy, util, max); 474 /* 475 * Do not reduce the frequency if the CPU has not been idle 476 * recently, as the reduction is likely to be premature then. 477 */ 478 if (busy && next_f < sg_policy->next_freq) { 479 next_f = sg_policy->next_freq; 480 481 /* Reset cached freq as next_freq has changed */ 482 sg_policy->cached_raw_freq = 0; 483 } 484 485 /* 486 * This code runs under rq->lock for the target CPU, so it won't run 487 * concurrently on two different CPUs for the same target and it is not 488 * necessary to acquire the lock in the fast switch case. 489 */ 490 if (sg_policy->policy->fast_switch_enabled) { 491 sugov_fast_switch(sg_policy, time, next_f); 492 } else { 493 raw_spin_lock(&sg_policy->update_lock); 494 sugov_deferred_update(sg_policy, time, next_f); 495 raw_spin_unlock(&sg_policy->update_lock); 496 } 497 } 498 499 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time) 500 { 501 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 502 struct cpufreq_policy *policy = sg_policy->policy; 503 unsigned long util = 0, max = 1; 504 unsigned int j; 505 506 for_each_cpu(j, policy->cpus) { 507 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j); 508 unsigned long j_util, j_max; 509 510 j_util = sugov_get_util(j_sg_cpu); 511 j_max = j_sg_cpu->max; 512 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max); 513 514 if (j_util * max > j_max * util) { 515 util = j_util; 516 max = j_max; 517 } 518 } 519 520 return get_next_freq(sg_policy, util, max); 521 } 522 523 static void 524 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) 525 { 526 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 527 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 528 unsigned int next_f; 529 530 raw_spin_lock(&sg_policy->update_lock); 531 532 sugov_iowait_boost(sg_cpu, time, flags); 533 sg_cpu->last_update = time; 534 535 ignore_dl_rate_limit(sg_cpu, sg_policy); 536 537 if (sugov_should_update_freq(sg_policy, time)) { 538 next_f = sugov_next_freq_shared(sg_cpu, time); 539 540 if (sg_policy->policy->fast_switch_enabled) 541 sugov_fast_switch(sg_policy, time, next_f); 542 else 543 sugov_deferred_update(sg_policy, time, next_f); 544 } 545 546 raw_spin_unlock(&sg_policy->update_lock); 547 } 548 549 static void sugov_work(struct kthread_work *work) 550 { 551 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); 552 unsigned int freq; 553 unsigned long flags; 554 555 /* 556 * Hold sg_policy->update_lock shortly to handle the case where: 557 * incase sg_policy->next_freq is read here, and then updated by 558 * sugov_deferred_update() just before work_in_progress is set to false 559 * here, we may miss queueing the new update. 560 * 561 * Note: If a work was queued after the update_lock is released, 562 * sugov_work() will just be called again by kthread_work code; and the 563 * request will be proceed before the sugov thread sleeps. 564 */ 565 raw_spin_lock_irqsave(&sg_policy->update_lock, flags); 566 freq = sg_policy->next_freq; 567 sg_policy->work_in_progress = false; 568 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags); 569 570 mutex_lock(&sg_policy->work_lock); 571 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L); 572 mutex_unlock(&sg_policy->work_lock); 573 } 574 575 static void sugov_irq_work(struct irq_work *irq_work) 576 { 577 struct sugov_policy *sg_policy; 578 579 sg_policy = container_of(irq_work, struct sugov_policy, irq_work); 580 581 kthread_queue_work(&sg_policy->worker, &sg_policy->work); 582 } 583 584 /************************** sysfs interface ************************/ 585 586 static struct sugov_tunables *global_tunables; 587 static DEFINE_MUTEX(global_tunables_lock); 588 589 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) 590 { 591 return container_of(attr_set, struct sugov_tunables, attr_set); 592 } 593 594 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) 595 { 596 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 597 598 return sprintf(buf, "%u\n", tunables->rate_limit_us); 599 } 600 601 static ssize_t 602 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) 603 { 604 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 605 struct sugov_policy *sg_policy; 606 unsigned int rate_limit_us; 607 608 if (kstrtouint(buf, 10, &rate_limit_us)) 609 return -EINVAL; 610 611 tunables->rate_limit_us = rate_limit_us; 612 613 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) 614 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; 615 616 return count; 617 } 618 619 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); 620 621 static struct attribute *sugov_attrs[] = { 622 &rate_limit_us.attr, 623 NULL 624 }; 625 ATTRIBUTE_GROUPS(sugov); 626 627 static struct kobj_type sugov_tunables_ktype = { 628 .default_groups = sugov_groups, 629 .sysfs_ops = &governor_sysfs_ops, 630 }; 631 632 /********************** cpufreq governor interface *********************/ 633 634 struct cpufreq_governor schedutil_gov; 635 636 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) 637 { 638 struct sugov_policy *sg_policy; 639 640 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); 641 if (!sg_policy) 642 return NULL; 643 644 sg_policy->policy = policy; 645 raw_spin_lock_init(&sg_policy->update_lock); 646 return sg_policy; 647 } 648 649 static void sugov_policy_free(struct sugov_policy *sg_policy) 650 { 651 kfree(sg_policy); 652 } 653 654 static int sugov_kthread_create(struct sugov_policy *sg_policy) 655 { 656 struct task_struct *thread; 657 struct sched_attr attr = { 658 .size = sizeof(struct sched_attr), 659 .sched_policy = SCHED_DEADLINE, 660 .sched_flags = SCHED_FLAG_SUGOV, 661 .sched_nice = 0, 662 .sched_priority = 0, 663 /* 664 * Fake (unused) bandwidth; workaround to "fix" 665 * priority inheritance. 666 */ 667 .sched_runtime = 1000000, 668 .sched_deadline = 10000000, 669 .sched_period = 10000000, 670 }; 671 struct cpufreq_policy *policy = sg_policy->policy; 672 int ret; 673 674 /* kthread only required for slow path */ 675 if (policy->fast_switch_enabled) 676 return 0; 677 678 kthread_init_work(&sg_policy->work, sugov_work); 679 kthread_init_worker(&sg_policy->worker); 680 thread = kthread_create(kthread_worker_fn, &sg_policy->worker, 681 "sugov:%d", 682 cpumask_first(policy->related_cpus)); 683 if (IS_ERR(thread)) { 684 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread)); 685 return PTR_ERR(thread); 686 } 687 688 ret = sched_setattr_nocheck(thread, &attr); 689 if (ret) { 690 kthread_stop(thread); 691 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__); 692 return ret; 693 } 694 695 sg_policy->thread = thread; 696 kthread_bind_mask(thread, policy->related_cpus); 697 init_irq_work(&sg_policy->irq_work, sugov_irq_work); 698 mutex_init(&sg_policy->work_lock); 699 700 wake_up_process(thread); 701 702 return 0; 703 } 704 705 static void sugov_kthread_stop(struct sugov_policy *sg_policy) 706 { 707 /* kthread only required for slow path */ 708 if (sg_policy->policy->fast_switch_enabled) 709 return; 710 711 kthread_flush_worker(&sg_policy->worker); 712 kthread_stop(sg_policy->thread); 713 mutex_destroy(&sg_policy->work_lock); 714 } 715 716 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) 717 { 718 struct sugov_tunables *tunables; 719 720 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); 721 if (tunables) { 722 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); 723 if (!have_governor_per_policy()) 724 global_tunables = tunables; 725 } 726 return tunables; 727 } 728 729 static void sugov_tunables_free(struct sugov_tunables *tunables) 730 { 731 if (!have_governor_per_policy()) 732 global_tunables = NULL; 733 734 kfree(tunables); 735 } 736 737 static int sugov_init(struct cpufreq_policy *policy) 738 { 739 struct sugov_policy *sg_policy; 740 struct sugov_tunables *tunables; 741 int ret = 0; 742 743 /* State should be equivalent to EXIT */ 744 if (policy->governor_data) 745 return -EBUSY; 746 747 cpufreq_enable_fast_switch(policy); 748 749 sg_policy = sugov_policy_alloc(policy); 750 if (!sg_policy) { 751 ret = -ENOMEM; 752 goto disable_fast_switch; 753 } 754 755 ret = sugov_kthread_create(sg_policy); 756 if (ret) 757 goto free_sg_policy; 758 759 mutex_lock(&global_tunables_lock); 760 761 if (global_tunables) { 762 if (WARN_ON(have_governor_per_policy())) { 763 ret = -EINVAL; 764 goto stop_kthread; 765 } 766 policy->governor_data = sg_policy; 767 sg_policy->tunables = global_tunables; 768 769 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); 770 goto out; 771 } 772 773 tunables = sugov_tunables_alloc(sg_policy); 774 if (!tunables) { 775 ret = -ENOMEM; 776 goto stop_kthread; 777 } 778 779 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy); 780 781 policy->governor_data = sg_policy; 782 sg_policy->tunables = tunables; 783 784 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, 785 get_governor_parent_kobj(policy), "%s", 786 schedutil_gov.name); 787 if (ret) 788 goto fail; 789 790 out: 791 mutex_unlock(&global_tunables_lock); 792 return 0; 793 794 fail: 795 kobject_put(&tunables->attr_set.kobj); 796 policy->governor_data = NULL; 797 sugov_tunables_free(tunables); 798 799 stop_kthread: 800 sugov_kthread_stop(sg_policy); 801 mutex_unlock(&global_tunables_lock); 802 803 free_sg_policy: 804 sugov_policy_free(sg_policy); 805 806 disable_fast_switch: 807 cpufreq_disable_fast_switch(policy); 808 809 pr_err("initialization failed (error %d)\n", ret); 810 return ret; 811 } 812 813 static void sugov_exit(struct cpufreq_policy *policy) 814 { 815 struct sugov_policy *sg_policy = policy->governor_data; 816 struct sugov_tunables *tunables = sg_policy->tunables; 817 unsigned int count; 818 819 mutex_lock(&global_tunables_lock); 820 821 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); 822 policy->governor_data = NULL; 823 if (!count) 824 sugov_tunables_free(tunables); 825 826 mutex_unlock(&global_tunables_lock); 827 828 sugov_kthread_stop(sg_policy); 829 sugov_policy_free(sg_policy); 830 cpufreq_disable_fast_switch(policy); 831 } 832 833 static int sugov_start(struct cpufreq_policy *policy) 834 { 835 struct sugov_policy *sg_policy = policy->governor_data; 836 unsigned int cpu; 837 838 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; 839 sg_policy->last_freq_update_time = 0; 840 sg_policy->next_freq = 0; 841 sg_policy->work_in_progress = false; 842 sg_policy->limits_changed = false; 843 sg_policy->need_freq_update = false; 844 sg_policy->cached_raw_freq = 0; 845 846 for_each_cpu(cpu, policy->cpus) { 847 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 848 849 memset(sg_cpu, 0, sizeof(*sg_cpu)); 850 sg_cpu->cpu = cpu; 851 sg_cpu->sg_policy = sg_policy; 852 } 853 854 for_each_cpu(cpu, policy->cpus) { 855 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 856 857 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, 858 policy_is_shared(policy) ? 859 sugov_update_shared : 860 sugov_update_single); 861 } 862 return 0; 863 } 864 865 static void sugov_stop(struct cpufreq_policy *policy) 866 { 867 struct sugov_policy *sg_policy = policy->governor_data; 868 unsigned int cpu; 869 870 for_each_cpu(cpu, policy->cpus) 871 cpufreq_remove_update_util_hook(cpu); 872 873 synchronize_rcu(); 874 875 if (!policy->fast_switch_enabled) { 876 irq_work_sync(&sg_policy->irq_work); 877 kthread_cancel_work_sync(&sg_policy->work); 878 } 879 } 880 881 static void sugov_limits(struct cpufreq_policy *policy) 882 { 883 struct sugov_policy *sg_policy = policy->governor_data; 884 885 if (!policy->fast_switch_enabled) { 886 mutex_lock(&sg_policy->work_lock); 887 cpufreq_policy_apply_limits(policy); 888 mutex_unlock(&sg_policy->work_lock); 889 } 890 891 sg_policy->limits_changed = true; 892 } 893 894 struct cpufreq_governor schedutil_gov = { 895 .name = "schedutil", 896 .owner = THIS_MODULE, 897 .dynamic_switching = true, 898 .init = sugov_init, 899 .exit = sugov_exit, 900 .start = sugov_start, 901 .stop = sugov_stop, 902 .limits = sugov_limits, 903 }; 904 905 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL 906 struct cpufreq_governor *cpufreq_default_governor(void) 907 { 908 return &schedutil_gov; 909 } 910 #endif 911 912 static int __init sugov_register(void) 913 { 914 return cpufreq_register_governor(&schedutil_gov); 915 } 916 core_initcall(sugov_register); 917 918 #ifdef CONFIG_ENERGY_MODEL 919 extern bool sched_energy_update; 920 extern struct mutex sched_energy_mutex; 921 922 static void rebuild_sd_workfn(struct work_struct *work) 923 { 924 mutex_lock(&sched_energy_mutex); 925 sched_energy_update = true; 926 rebuild_sched_domains(); 927 sched_energy_update = false; 928 mutex_unlock(&sched_energy_mutex); 929 } 930 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn); 931 932 /* 933 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains 934 * on governor changes to make sure the scheduler knows about it. 935 */ 936 void sched_cpufreq_governor_change(struct cpufreq_policy *policy, 937 struct cpufreq_governor *old_gov) 938 { 939 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) { 940 /* 941 * When called from the cpufreq_register_driver() path, the 942 * cpu_hotplug_lock is already held, so use a work item to 943 * avoid nested locking in rebuild_sched_domains(). 944 */ 945 schedule_work(&rebuild_sd_work); 946 } 947 948 } 949 #endif 950