1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CPUFreq governor based on scheduler-provided CPU utilization data. 4 * 5 * Copyright (C) 2016, Intel Corporation 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include "sched.h" 12 13 #include <linux/sched/cpufreq.h> 14 #include <trace/events/power.h> 15 16 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8) 17 18 struct sugov_tunables { 19 struct gov_attr_set attr_set; 20 unsigned int rate_limit_us; 21 }; 22 23 struct sugov_policy { 24 struct cpufreq_policy *policy; 25 26 struct sugov_tunables *tunables; 27 struct list_head tunables_hook; 28 29 raw_spinlock_t update_lock; /* For shared policies */ 30 u64 last_freq_update_time; 31 s64 freq_update_delay_ns; 32 unsigned int next_freq; 33 unsigned int cached_raw_freq; 34 35 /* The next fields are only needed if fast switch cannot be used: */ 36 struct irq_work irq_work; 37 struct kthread_work work; 38 struct mutex work_lock; 39 struct kthread_worker worker; 40 struct task_struct *thread; 41 bool work_in_progress; 42 43 bool need_freq_update; 44 }; 45 46 struct sugov_cpu { 47 struct update_util_data update_util; 48 struct sugov_policy *sg_policy; 49 unsigned int cpu; 50 51 bool iowait_boost_pending; 52 unsigned int iowait_boost; 53 u64 last_update; 54 55 unsigned long bw_dl; 56 unsigned long max; 57 58 /* The field below is for single-CPU policies only: */ 59 #ifdef CONFIG_NO_HZ_COMMON 60 unsigned long saved_idle_calls; 61 #endif 62 }; 63 64 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); 65 66 /************************ Governor internals ***********************/ 67 68 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) 69 { 70 s64 delta_ns; 71 72 /* 73 * Since cpufreq_update_util() is called with rq->lock held for 74 * the @target_cpu, our per-CPU data is fully serialized. 75 * 76 * However, drivers cannot in general deal with cross-CPU 77 * requests, so while get_next_freq() will work, our 78 * sugov_update_commit() call may not for the fast switching platforms. 79 * 80 * Hence stop here for remote requests if they aren't supported 81 * by the hardware, as calculating the frequency is pointless if 82 * we cannot in fact act on it. 83 * 84 * For the slow switching platforms, the kthread is always scheduled on 85 * the right set of CPUs and any CPU can find the next frequency and 86 * schedule the kthread. 87 */ 88 if (sg_policy->policy->fast_switch_enabled && 89 !cpufreq_this_cpu_can_update(sg_policy->policy)) 90 return false; 91 92 if (unlikely(sg_policy->need_freq_update)) 93 return true; 94 95 delta_ns = time - sg_policy->last_freq_update_time; 96 97 return delta_ns >= sg_policy->freq_update_delay_ns; 98 } 99 100 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time, 101 unsigned int next_freq) 102 { 103 if (sg_policy->next_freq == next_freq) 104 return false; 105 106 sg_policy->next_freq = next_freq; 107 sg_policy->last_freq_update_time = time; 108 109 return true; 110 } 111 112 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time, 113 unsigned int next_freq) 114 { 115 struct cpufreq_policy *policy = sg_policy->policy; 116 117 if (!sugov_update_next_freq(sg_policy, time, next_freq)) 118 return; 119 120 next_freq = cpufreq_driver_fast_switch(policy, next_freq); 121 if (!next_freq) 122 return; 123 124 policy->cur = next_freq; 125 trace_cpu_frequency(next_freq, smp_processor_id()); 126 } 127 128 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time, 129 unsigned int next_freq) 130 { 131 if (!sugov_update_next_freq(sg_policy, time, next_freq)) 132 return; 133 134 if (!sg_policy->work_in_progress) { 135 sg_policy->work_in_progress = true; 136 irq_work_queue(&sg_policy->irq_work); 137 } 138 } 139 140 /** 141 * get_next_freq - Compute a new frequency for a given cpufreq policy. 142 * @sg_policy: schedutil policy object to compute the new frequency for. 143 * @util: Current CPU utilization. 144 * @max: CPU capacity. 145 * 146 * If the utilization is frequency-invariant, choose the new frequency to be 147 * proportional to it, that is 148 * 149 * next_freq = C * max_freq * util / max 150 * 151 * Otherwise, approximate the would-be frequency-invariant utilization by 152 * util_raw * (curr_freq / max_freq) which leads to 153 * 154 * next_freq = C * curr_freq * util_raw / max 155 * 156 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. 157 * 158 * The lowest driver-supported frequency which is equal or greater than the raw 159 * next_freq (as calculated above) is returned, subject to policy min/max and 160 * cpufreq driver limitations. 161 */ 162 static unsigned int get_next_freq(struct sugov_policy *sg_policy, 163 unsigned long util, unsigned long max) 164 { 165 struct cpufreq_policy *policy = sg_policy->policy; 166 unsigned int freq = arch_scale_freq_invariant() ? 167 policy->cpuinfo.max_freq : policy->cur; 168 169 freq = map_util_freq(util, freq, max); 170 171 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update) 172 return sg_policy->next_freq; 173 174 sg_policy->need_freq_update = false; 175 sg_policy->cached_raw_freq = freq; 176 return cpufreq_driver_resolve_freq(policy, freq); 177 } 178 179 /* 180 * This function computes an effective utilization for the given CPU, to be 181 * used for frequency selection given the linear relation: f = u * f_max. 182 * 183 * The scheduler tracks the following metrics: 184 * 185 * cpu_util_{cfs,rt,dl,irq}() 186 * cpu_bw_dl() 187 * 188 * Where the cfs,rt and dl util numbers are tracked with the same metric and 189 * synchronized windows and are thus directly comparable. 190 * 191 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 192 * which excludes things like IRQ and steal-time. These latter are then accrued 193 * in the irq utilization. 194 * 195 * The DL bandwidth number otoh is not a measured metric but a value computed 196 * based on the task model parameters and gives the minimal utilization 197 * required to meet deadlines. 198 */ 199 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, 200 unsigned long max, enum schedutil_type type, 201 struct task_struct *p) 202 { 203 unsigned long dl_util, util, irq; 204 struct rq *rq = cpu_rq(cpu); 205 206 if (!IS_BUILTIN(CONFIG_UCLAMP_TASK) && 207 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 208 return max; 209 } 210 211 /* 212 * Early check to see if IRQ/steal time saturates the CPU, can be 213 * because of inaccuracies in how we track these -- see 214 * update_irq_load_avg(). 215 */ 216 irq = cpu_util_irq(rq); 217 if (unlikely(irq >= max)) 218 return max; 219 220 /* 221 * Because the time spend on RT/DL tasks is visible as 'lost' time to 222 * CFS tasks and we use the same metric to track the effective 223 * utilization (PELT windows are synchronized) we can directly add them 224 * to obtain the CPU's actual utilization. 225 * 226 * CFS and RT utilization can be boosted or capped, depending on 227 * utilization clamp constraints requested by currently RUNNABLE 228 * tasks. 229 * When there are no CFS RUNNABLE tasks, clamps are released and 230 * frequency will be gracefully reduced with the utilization decay. 231 */ 232 util = util_cfs + cpu_util_rt(rq); 233 if (type == FREQUENCY_UTIL) 234 util = uclamp_util_with(rq, util, p); 235 236 dl_util = cpu_util_dl(rq); 237 238 /* 239 * For frequency selection we do not make cpu_util_dl() a permanent part 240 * of this sum because we want to use cpu_bw_dl() later on, but we need 241 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 242 * that we select f_max when there is no idle time. 243 * 244 * NOTE: numerical errors or stop class might cause us to not quite hit 245 * saturation when we should -- something for later. 246 */ 247 if (util + dl_util >= max) 248 return max; 249 250 /* 251 * OTOH, for energy computation we need the estimated running time, so 252 * include util_dl and ignore dl_bw. 253 */ 254 if (type == ENERGY_UTIL) 255 util += dl_util; 256 257 /* 258 * There is still idle time; further improve the number by using the 259 * irq metric. Because IRQ/steal time is hidden from the task clock we 260 * need to scale the task numbers: 261 * 262 * 1 - irq 263 * U' = irq + ------- * U 264 * max 265 */ 266 util = scale_irq_capacity(util, irq, max); 267 util += irq; 268 269 /* 270 * Bandwidth required by DEADLINE must always be granted while, for 271 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 272 * to gracefully reduce the frequency when no tasks show up for longer 273 * periods of time. 274 * 275 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 276 * bw_dl as requested freq. However, cpufreq is not yet ready for such 277 * an interface. So, we only do the latter for now. 278 */ 279 if (type == FREQUENCY_UTIL) 280 util += cpu_bw_dl(rq); 281 282 return min(max, util); 283 } 284 285 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu) 286 { 287 struct rq *rq = cpu_rq(sg_cpu->cpu); 288 unsigned long util = cpu_util_cfs(rq); 289 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu); 290 291 sg_cpu->max = max; 292 sg_cpu->bw_dl = cpu_bw_dl(rq); 293 294 return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL); 295 } 296 297 /** 298 * sugov_iowait_reset() - Reset the IO boost status of a CPU. 299 * @sg_cpu: the sugov data for the CPU to boost 300 * @time: the update time from the caller 301 * @set_iowait_boost: true if an IO boost has been requested 302 * 303 * The IO wait boost of a task is disabled after a tick since the last update 304 * of a CPU. If a new IO wait boost is requested after more then a tick, then 305 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy 306 * efficiency by ignoring sporadic wakeups from IO. 307 */ 308 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time, 309 bool set_iowait_boost) 310 { 311 s64 delta_ns = time - sg_cpu->last_update; 312 313 /* Reset boost only if a tick has elapsed since last request */ 314 if (delta_ns <= TICK_NSEC) 315 return false; 316 317 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0; 318 sg_cpu->iowait_boost_pending = set_iowait_boost; 319 320 return true; 321 } 322 323 /** 324 * sugov_iowait_boost() - Updates the IO boost status of a CPU. 325 * @sg_cpu: the sugov data for the CPU to boost 326 * @time: the update time from the caller 327 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait 328 * 329 * Each time a task wakes up after an IO operation, the CPU utilization can be 330 * boosted to a certain utilization which doubles at each "frequent and 331 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization 332 * of the maximum OPP. 333 * 334 * To keep doubling, an IO boost has to be requested at least once per tick, 335 * otherwise we restart from the utilization of the minimum OPP. 336 */ 337 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time, 338 unsigned int flags) 339 { 340 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT; 341 342 /* Reset boost if the CPU appears to have been idle enough */ 343 if (sg_cpu->iowait_boost && 344 sugov_iowait_reset(sg_cpu, time, set_iowait_boost)) 345 return; 346 347 /* Boost only tasks waking up after IO */ 348 if (!set_iowait_boost) 349 return; 350 351 /* Ensure boost doubles only one time at each request */ 352 if (sg_cpu->iowait_boost_pending) 353 return; 354 sg_cpu->iowait_boost_pending = true; 355 356 /* Double the boost at each request */ 357 if (sg_cpu->iowait_boost) { 358 sg_cpu->iowait_boost = 359 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE); 360 return; 361 } 362 363 /* First wakeup after IO: start with minimum boost */ 364 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN; 365 } 366 367 /** 368 * sugov_iowait_apply() - Apply the IO boost to a CPU. 369 * @sg_cpu: the sugov data for the cpu to boost 370 * @time: the update time from the caller 371 * @util: the utilization to (eventually) boost 372 * @max: the maximum value the utilization can be boosted to 373 * 374 * A CPU running a task which woken up after an IO operation can have its 375 * utilization boosted to speed up the completion of those IO operations. 376 * The IO boost value is increased each time a task wakes up from IO, in 377 * sugov_iowait_apply(), and it's instead decreased by this function, 378 * each time an increase has not been requested (!iowait_boost_pending). 379 * 380 * A CPU which also appears to have been idle for at least one tick has also 381 * its IO boost utilization reset. 382 * 383 * This mechanism is designed to boost high frequently IO waiting tasks, while 384 * being more conservative on tasks which does sporadic IO operations. 385 */ 386 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time, 387 unsigned long util, unsigned long max) 388 { 389 unsigned long boost; 390 391 /* No boost currently required */ 392 if (!sg_cpu->iowait_boost) 393 return util; 394 395 /* Reset boost if the CPU appears to have been idle enough */ 396 if (sugov_iowait_reset(sg_cpu, time, false)) 397 return util; 398 399 if (!sg_cpu->iowait_boost_pending) { 400 /* 401 * No boost pending; reduce the boost value. 402 */ 403 sg_cpu->iowait_boost >>= 1; 404 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) { 405 sg_cpu->iowait_boost = 0; 406 return util; 407 } 408 } 409 410 sg_cpu->iowait_boost_pending = false; 411 412 /* 413 * @util is already in capacity scale; convert iowait_boost 414 * into the same scale so we can compare. 415 */ 416 boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT; 417 return max(boost, util); 418 } 419 420 #ifdef CONFIG_NO_HZ_COMMON 421 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) 422 { 423 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); 424 bool ret = idle_calls == sg_cpu->saved_idle_calls; 425 426 sg_cpu->saved_idle_calls = idle_calls; 427 return ret; 428 } 429 #else 430 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; } 431 #endif /* CONFIG_NO_HZ_COMMON */ 432 433 /* 434 * Make sugov_should_update_freq() ignore the rate limit when DL 435 * has increased the utilization. 436 */ 437 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy) 438 { 439 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl) 440 sg_policy->need_freq_update = true; 441 } 442 443 static void sugov_update_single(struct update_util_data *hook, u64 time, 444 unsigned int flags) 445 { 446 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 447 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 448 unsigned long util, max; 449 unsigned int next_f; 450 bool busy; 451 452 sugov_iowait_boost(sg_cpu, time, flags); 453 sg_cpu->last_update = time; 454 455 ignore_dl_rate_limit(sg_cpu, sg_policy); 456 457 if (!sugov_should_update_freq(sg_policy, time)) 458 return; 459 460 busy = sugov_cpu_is_busy(sg_cpu); 461 462 util = sugov_get_util(sg_cpu); 463 max = sg_cpu->max; 464 util = sugov_iowait_apply(sg_cpu, time, util, max); 465 next_f = get_next_freq(sg_policy, util, max); 466 /* 467 * Do not reduce the frequency if the CPU has not been idle 468 * recently, as the reduction is likely to be premature then. 469 */ 470 if (busy && next_f < sg_policy->next_freq) { 471 next_f = sg_policy->next_freq; 472 473 /* Reset cached freq as next_freq has changed */ 474 sg_policy->cached_raw_freq = 0; 475 } 476 477 /* 478 * This code runs under rq->lock for the target CPU, so it won't run 479 * concurrently on two different CPUs for the same target and it is not 480 * necessary to acquire the lock in the fast switch case. 481 */ 482 if (sg_policy->policy->fast_switch_enabled) { 483 sugov_fast_switch(sg_policy, time, next_f); 484 } else { 485 raw_spin_lock(&sg_policy->update_lock); 486 sugov_deferred_update(sg_policy, time, next_f); 487 raw_spin_unlock(&sg_policy->update_lock); 488 } 489 } 490 491 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time) 492 { 493 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 494 struct cpufreq_policy *policy = sg_policy->policy; 495 unsigned long util = 0, max = 1; 496 unsigned int j; 497 498 for_each_cpu(j, policy->cpus) { 499 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j); 500 unsigned long j_util, j_max; 501 502 j_util = sugov_get_util(j_sg_cpu); 503 j_max = j_sg_cpu->max; 504 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max); 505 506 if (j_util * max > j_max * util) { 507 util = j_util; 508 max = j_max; 509 } 510 } 511 512 return get_next_freq(sg_policy, util, max); 513 } 514 515 static void 516 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) 517 { 518 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 519 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 520 unsigned int next_f; 521 522 raw_spin_lock(&sg_policy->update_lock); 523 524 sugov_iowait_boost(sg_cpu, time, flags); 525 sg_cpu->last_update = time; 526 527 ignore_dl_rate_limit(sg_cpu, sg_policy); 528 529 if (sugov_should_update_freq(sg_policy, time)) { 530 next_f = sugov_next_freq_shared(sg_cpu, time); 531 532 if (sg_policy->policy->fast_switch_enabled) 533 sugov_fast_switch(sg_policy, time, next_f); 534 else 535 sugov_deferred_update(sg_policy, time, next_f); 536 } 537 538 raw_spin_unlock(&sg_policy->update_lock); 539 } 540 541 static void sugov_work(struct kthread_work *work) 542 { 543 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); 544 unsigned int freq; 545 unsigned long flags; 546 547 /* 548 * Hold sg_policy->update_lock shortly to handle the case where: 549 * incase sg_policy->next_freq is read here, and then updated by 550 * sugov_deferred_update() just before work_in_progress is set to false 551 * here, we may miss queueing the new update. 552 * 553 * Note: If a work was queued after the update_lock is released, 554 * sugov_work() will just be called again by kthread_work code; and the 555 * request will be proceed before the sugov thread sleeps. 556 */ 557 raw_spin_lock_irqsave(&sg_policy->update_lock, flags); 558 freq = sg_policy->next_freq; 559 sg_policy->work_in_progress = false; 560 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags); 561 562 mutex_lock(&sg_policy->work_lock); 563 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L); 564 mutex_unlock(&sg_policy->work_lock); 565 } 566 567 static void sugov_irq_work(struct irq_work *irq_work) 568 { 569 struct sugov_policy *sg_policy; 570 571 sg_policy = container_of(irq_work, struct sugov_policy, irq_work); 572 573 kthread_queue_work(&sg_policy->worker, &sg_policy->work); 574 } 575 576 /************************** sysfs interface ************************/ 577 578 static struct sugov_tunables *global_tunables; 579 static DEFINE_MUTEX(global_tunables_lock); 580 581 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) 582 { 583 return container_of(attr_set, struct sugov_tunables, attr_set); 584 } 585 586 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) 587 { 588 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 589 590 return sprintf(buf, "%u\n", tunables->rate_limit_us); 591 } 592 593 static ssize_t 594 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) 595 { 596 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 597 struct sugov_policy *sg_policy; 598 unsigned int rate_limit_us; 599 600 if (kstrtouint(buf, 10, &rate_limit_us)) 601 return -EINVAL; 602 603 tunables->rate_limit_us = rate_limit_us; 604 605 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) 606 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; 607 608 return count; 609 } 610 611 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); 612 613 static struct attribute *sugov_attrs[] = { 614 &rate_limit_us.attr, 615 NULL 616 }; 617 ATTRIBUTE_GROUPS(sugov); 618 619 static struct kobj_type sugov_tunables_ktype = { 620 .default_groups = sugov_groups, 621 .sysfs_ops = &governor_sysfs_ops, 622 }; 623 624 /********************** cpufreq governor interface *********************/ 625 626 struct cpufreq_governor schedutil_gov; 627 628 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) 629 { 630 struct sugov_policy *sg_policy; 631 632 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); 633 if (!sg_policy) 634 return NULL; 635 636 sg_policy->policy = policy; 637 raw_spin_lock_init(&sg_policy->update_lock); 638 return sg_policy; 639 } 640 641 static void sugov_policy_free(struct sugov_policy *sg_policy) 642 { 643 kfree(sg_policy); 644 } 645 646 static int sugov_kthread_create(struct sugov_policy *sg_policy) 647 { 648 struct task_struct *thread; 649 struct sched_attr attr = { 650 .size = sizeof(struct sched_attr), 651 .sched_policy = SCHED_DEADLINE, 652 .sched_flags = SCHED_FLAG_SUGOV, 653 .sched_nice = 0, 654 .sched_priority = 0, 655 /* 656 * Fake (unused) bandwidth; workaround to "fix" 657 * priority inheritance. 658 */ 659 .sched_runtime = 1000000, 660 .sched_deadline = 10000000, 661 .sched_period = 10000000, 662 }; 663 struct cpufreq_policy *policy = sg_policy->policy; 664 int ret; 665 666 /* kthread only required for slow path */ 667 if (policy->fast_switch_enabled) 668 return 0; 669 670 kthread_init_work(&sg_policy->work, sugov_work); 671 kthread_init_worker(&sg_policy->worker); 672 thread = kthread_create(kthread_worker_fn, &sg_policy->worker, 673 "sugov:%d", 674 cpumask_first(policy->related_cpus)); 675 if (IS_ERR(thread)) { 676 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread)); 677 return PTR_ERR(thread); 678 } 679 680 ret = sched_setattr_nocheck(thread, &attr); 681 if (ret) { 682 kthread_stop(thread); 683 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__); 684 return ret; 685 } 686 687 sg_policy->thread = thread; 688 kthread_bind_mask(thread, policy->related_cpus); 689 init_irq_work(&sg_policy->irq_work, sugov_irq_work); 690 mutex_init(&sg_policy->work_lock); 691 692 wake_up_process(thread); 693 694 return 0; 695 } 696 697 static void sugov_kthread_stop(struct sugov_policy *sg_policy) 698 { 699 /* kthread only required for slow path */ 700 if (sg_policy->policy->fast_switch_enabled) 701 return; 702 703 kthread_flush_worker(&sg_policy->worker); 704 kthread_stop(sg_policy->thread); 705 mutex_destroy(&sg_policy->work_lock); 706 } 707 708 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) 709 { 710 struct sugov_tunables *tunables; 711 712 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); 713 if (tunables) { 714 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); 715 if (!have_governor_per_policy()) 716 global_tunables = tunables; 717 } 718 return tunables; 719 } 720 721 static void sugov_tunables_free(struct sugov_tunables *tunables) 722 { 723 if (!have_governor_per_policy()) 724 global_tunables = NULL; 725 726 kfree(tunables); 727 } 728 729 static int sugov_init(struct cpufreq_policy *policy) 730 { 731 struct sugov_policy *sg_policy; 732 struct sugov_tunables *tunables; 733 int ret = 0; 734 735 /* State should be equivalent to EXIT */ 736 if (policy->governor_data) 737 return -EBUSY; 738 739 cpufreq_enable_fast_switch(policy); 740 741 sg_policy = sugov_policy_alloc(policy); 742 if (!sg_policy) { 743 ret = -ENOMEM; 744 goto disable_fast_switch; 745 } 746 747 ret = sugov_kthread_create(sg_policy); 748 if (ret) 749 goto free_sg_policy; 750 751 mutex_lock(&global_tunables_lock); 752 753 if (global_tunables) { 754 if (WARN_ON(have_governor_per_policy())) { 755 ret = -EINVAL; 756 goto stop_kthread; 757 } 758 policy->governor_data = sg_policy; 759 sg_policy->tunables = global_tunables; 760 761 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); 762 goto out; 763 } 764 765 tunables = sugov_tunables_alloc(sg_policy); 766 if (!tunables) { 767 ret = -ENOMEM; 768 goto stop_kthread; 769 } 770 771 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy); 772 773 policy->governor_data = sg_policy; 774 sg_policy->tunables = tunables; 775 776 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, 777 get_governor_parent_kobj(policy), "%s", 778 schedutil_gov.name); 779 if (ret) 780 goto fail; 781 782 out: 783 mutex_unlock(&global_tunables_lock); 784 return 0; 785 786 fail: 787 kobject_put(&tunables->attr_set.kobj); 788 policy->governor_data = NULL; 789 sugov_tunables_free(tunables); 790 791 stop_kthread: 792 sugov_kthread_stop(sg_policy); 793 mutex_unlock(&global_tunables_lock); 794 795 free_sg_policy: 796 sugov_policy_free(sg_policy); 797 798 disable_fast_switch: 799 cpufreq_disable_fast_switch(policy); 800 801 pr_err("initialization failed (error %d)\n", ret); 802 return ret; 803 } 804 805 static void sugov_exit(struct cpufreq_policy *policy) 806 { 807 struct sugov_policy *sg_policy = policy->governor_data; 808 struct sugov_tunables *tunables = sg_policy->tunables; 809 unsigned int count; 810 811 mutex_lock(&global_tunables_lock); 812 813 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); 814 policy->governor_data = NULL; 815 if (!count) 816 sugov_tunables_free(tunables); 817 818 mutex_unlock(&global_tunables_lock); 819 820 sugov_kthread_stop(sg_policy); 821 sugov_policy_free(sg_policy); 822 cpufreq_disable_fast_switch(policy); 823 } 824 825 static int sugov_start(struct cpufreq_policy *policy) 826 { 827 struct sugov_policy *sg_policy = policy->governor_data; 828 unsigned int cpu; 829 830 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; 831 sg_policy->last_freq_update_time = 0; 832 sg_policy->next_freq = 0; 833 sg_policy->work_in_progress = false; 834 sg_policy->need_freq_update = false; 835 sg_policy->cached_raw_freq = 0; 836 837 for_each_cpu(cpu, policy->cpus) { 838 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 839 840 memset(sg_cpu, 0, sizeof(*sg_cpu)); 841 sg_cpu->cpu = cpu; 842 sg_cpu->sg_policy = sg_policy; 843 } 844 845 for_each_cpu(cpu, policy->cpus) { 846 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 847 848 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, 849 policy_is_shared(policy) ? 850 sugov_update_shared : 851 sugov_update_single); 852 } 853 return 0; 854 } 855 856 static void sugov_stop(struct cpufreq_policy *policy) 857 { 858 struct sugov_policy *sg_policy = policy->governor_data; 859 unsigned int cpu; 860 861 for_each_cpu(cpu, policy->cpus) 862 cpufreq_remove_update_util_hook(cpu); 863 864 synchronize_rcu(); 865 866 if (!policy->fast_switch_enabled) { 867 irq_work_sync(&sg_policy->irq_work); 868 kthread_cancel_work_sync(&sg_policy->work); 869 } 870 } 871 872 static void sugov_limits(struct cpufreq_policy *policy) 873 { 874 struct sugov_policy *sg_policy = policy->governor_data; 875 876 if (!policy->fast_switch_enabled) { 877 mutex_lock(&sg_policy->work_lock); 878 cpufreq_policy_apply_limits(policy); 879 mutex_unlock(&sg_policy->work_lock); 880 } 881 882 sg_policy->need_freq_update = true; 883 } 884 885 struct cpufreq_governor schedutil_gov = { 886 .name = "schedutil", 887 .owner = THIS_MODULE, 888 .dynamic_switching = true, 889 .init = sugov_init, 890 .exit = sugov_exit, 891 .start = sugov_start, 892 .stop = sugov_stop, 893 .limits = sugov_limits, 894 }; 895 896 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL 897 struct cpufreq_governor *cpufreq_default_governor(void) 898 { 899 return &schedutil_gov; 900 } 901 #endif 902 903 static int __init sugov_register(void) 904 { 905 return cpufreq_register_governor(&schedutil_gov); 906 } 907 fs_initcall(sugov_register); 908 909 #ifdef CONFIG_ENERGY_MODEL 910 extern bool sched_energy_update; 911 extern struct mutex sched_energy_mutex; 912 913 static void rebuild_sd_workfn(struct work_struct *work) 914 { 915 mutex_lock(&sched_energy_mutex); 916 sched_energy_update = true; 917 rebuild_sched_domains(); 918 sched_energy_update = false; 919 mutex_unlock(&sched_energy_mutex); 920 } 921 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn); 922 923 /* 924 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains 925 * on governor changes to make sure the scheduler knows about it. 926 */ 927 void sched_cpufreq_governor_change(struct cpufreq_policy *policy, 928 struct cpufreq_governor *old_gov) 929 { 930 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) { 931 /* 932 * When called from the cpufreq_register_driver() path, the 933 * cpu_hotplug_lock is already held, so use a work item to 934 * avoid nested locking in rebuild_sched_domains(). 935 */ 936 schedule_work(&rebuild_sd_work); 937 } 938 939 } 940 #endif 941