xref: /openbmc/linux/kernel/sched/cpufreq_schedutil.c (revision b755c25fbcd568821a3bb0e0d5c2daa5fcb00bba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
10 
11 struct sugov_tunables {
12 	struct gov_attr_set	attr_set;
13 	unsigned int		rate_limit_us;
14 };
15 
16 struct sugov_policy {
17 	struct cpufreq_policy	*policy;
18 
19 	struct sugov_tunables	*tunables;
20 	struct list_head	tunables_hook;
21 
22 	raw_spinlock_t		update_lock;
23 	u64			last_freq_update_time;
24 	s64			freq_update_delay_ns;
25 	unsigned int		next_freq;
26 	unsigned int		cached_raw_freq;
27 
28 	/* The next fields are only needed if fast switch cannot be used: */
29 	struct			irq_work irq_work;
30 	struct			kthread_work work;
31 	struct			mutex work_lock;
32 	struct			kthread_worker worker;
33 	struct task_struct	*thread;
34 	bool			work_in_progress;
35 
36 	bool			limits_changed;
37 	bool			need_freq_update;
38 };
39 
40 struct sugov_cpu {
41 	struct update_util_data	update_util;
42 	struct sugov_policy	*sg_policy;
43 	unsigned int		cpu;
44 
45 	bool			iowait_boost_pending;
46 	unsigned int		iowait_boost;
47 	u64			last_update;
48 
49 	unsigned long		util;
50 	unsigned long		bw_dl;
51 
52 	/* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54 	unsigned long		saved_idle_calls;
55 #endif
56 };
57 
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59 
60 /************************ Governor internals ***********************/
61 
62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64 	s64 delta_ns;
65 
66 	/*
67 	 * Since cpufreq_update_util() is called with rq->lock held for
68 	 * the @target_cpu, our per-CPU data is fully serialized.
69 	 *
70 	 * However, drivers cannot in general deal with cross-CPU
71 	 * requests, so while get_next_freq() will work, our
72 	 * sugov_update_commit() call may not for the fast switching platforms.
73 	 *
74 	 * Hence stop here for remote requests if they aren't supported
75 	 * by the hardware, as calculating the frequency is pointless if
76 	 * we cannot in fact act on it.
77 	 *
78 	 * This is needed on the slow switching platforms too to prevent CPUs
79 	 * going offline from leaving stale IRQ work items behind.
80 	 */
81 	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82 		return false;
83 
84 	if (unlikely(sg_policy->limits_changed)) {
85 		sg_policy->limits_changed = false;
86 		sg_policy->need_freq_update = true;
87 		return true;
88 	}
89 
90 	delta_ns = time - sg_policy->last_freq_update_time;
91 
92 	return delta_ns >= sg_policy->freq_update_delay_ns;
93 }
94 
95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96 				   unsigned int next_freq)
97 {
98 	if (sg_policy->need_freq_update)
99 		sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100 	else if (sg_policy->next_freq == next_freq)
101 		return false;
102 
103 	sg_policy->next_freq = next_freq;
104 	sg_policy->last_freq_update_time = time;
105 
106 	return true;
107 }
108 
109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
110 {
111 	if (!sg_policy->work_in_progress) {
112 		sg_policy->work_in_progress = true;
113 		irq_work_queue(&sg_policy->irq_work);
114 	}
115 }
116 
117 /**
118  * get_next_freq - Compute a new frequency for a given cpufreq policy.
119  * @sg_policy: schedutil policy object to compute the new frequency for.
120  * @util: Current CPU utilization.
121  * @max: CPU capacity.
122  *
123  * If the utilization is frequency-invariant, choose the new frequency to be
124  * proportional to it, that is
125  *
126  * next_freq = C * max_freq * util / max
127  *
128  * Otherwise, approximate the would-be frequency-invariant utilization by
129  * util_raw * (curr_freq / max_freq) which leads to
130  *
131  * next_freq = C * curr_freq * util_raw / max
132  *
133  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
134  *
135  * The lowest driver-supported frequency which is equal or greater than the raw
136  * next_freq (as calculated above) is returned, subject to policy min/max and
137  * cpufreq driver limitations.
138  */
139 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
140 				  unsigned long util, unsigned long max)
141 {
142 	struct cpufreq_policy *policy = sg_policy->policy;
143 	unsigned int freq = arch_scale_freq_invariant() ?
144 				policy->cpuinfo.max_freq : policy->cur;
145 
146 	util = map_util_perf(util);
147 	freq = map_util_freq(util, freq, max);
148 
149 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
150 		return sg_policy->next_freq;
151 
152 	sg_policy->cached_raw_freq = freq;
153 	return cpufreq_driver_resolve_freq(policy, freq);
154 }
155 
156 static void sugov_get_util(struct sugov_cpu *sg_cpu)
157 {
158 	unsigned long util = cpu_util_cfs_boost(sg_cpu->cpu);
159 	struct rq *rq = cpu_rq(sg_cpu->cpu);
160 
161 	sg_cpu->bw_dl = cpu_bw_dl(rq);
162 	sg_cpu->util = effective_cpu_util(sg_cpu->cpu, util,
163 					  FREQUENCY_UTIL, NULL);
164 }
165 
166 /**
167  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
168  * @sg_cpu: the sugov data for the CPU to boost
169  * @time: the update time from the caller
170  * @set_iowait_boost: true if an IO boost has been requested
171  *
172  * The IO wait boost of a task is disabled after a tick since the last update
173  * of a CPU. If a new IO wait boost is requested after more then a tick, then
174  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
175  * efficiency by ignoring sporadic wakeups from IO.
176  */
177 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
178 			       bool set_iowait_boost)
179 {
180 	s64 delta_ns = time - sg_cpu->last_update;
181 
182 	/* Reset boost only if a tick has elapsed since last request */
183 	if (delta_ns <= TICK_NSEC)
184 		return false;
185 
186 	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
187 	sg_cpu->iowait_boost_pending = set_iowait_boost;
188 
189 	return true;
190 }
191 
192 /**
193  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
194  * @sg_cpu: the sugov data for the CPU to boost
195  * @time: the update time from the caller
196  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
197  *
198  * Each time a task wakes up after an IO operation, the CPU utilization can be
199  * boosted to a certain utilization which doubles at each "frequent and
200  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
201  * of the maximum OPP.
202  *
203  * To keep doubling, an IO boost has to be requested at least once per tick,
204  * otherwise we restart from the utilization of the minimum OPP.
205  */
206 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
207 			       unsigned int flags)
208 {
209 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
210 
211 	/* Reset boost if the CPU appears to have been idle enough */
212 	if (sg_cpu->iowait_boost &&
213 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
214 		return;
215 
216 	/* Boost only tasks waking up after IO */
217 	if (!set_iowait_boost)
218 		return;
219 
220 	/* Ensure boost doubles only one time at each request */
221 	if (sg_cpu->iowait_boost_pending)
222 		return;
223 	sg_cpu->iowait_boost_pending = true;
224 
225 	/* Double the boost at each request */
226 	if (sg_cpu->iowait_boost) {
227 		sg_cpu->iowait_boost =
228 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
229 		return;
230 	}
231 
232 	/* First wakeup after IO: start with minimum boost */
233 	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
234 }
235 
236 /**
237  * sugov_iowait_apply() - Apply the IO boost to a CPU.
238  * @sg_cpu: the sugov data for the cpu to boost
239  * @time: the update time from the caller
240  * @max_cap: the max CPU capacity
241  *
242  * A CPU running a task which woken up after an IO operation can have its
243  * utilization boosted to speed up the completion of those IO operations.
244  * The IO boost value is increased each time a task wakes up from IO, in
245  * sugov_iowait_apply(), and it's instead decreased by this function,
246  * each time an increase has not been requested (!iowait_boost_pending).
247  *
248  * A CPU which also appears to have been idle for at least one tick has also
249  * its IO boost utilization reset.
250  *
251  * This mechanism is designed to boost high frequently IO waiting tasks, while
252  * being more conservative on tasks which does sporadic IO operations.
253  */
254 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
255 			       unsigned long max_cap)
256 {
257 	unsigned long boost;
258 
259 	/* No boost currently required */
260 	if (!sg_cpu->iowait_boost)
261 		return;
262 
263 	/* Reset boost if the CPU appears to have been idle enough */
264 	if (sugov_iowait_reset(sg_cpu, time, false))
265 		return;
266 
267 	if (!sg_cpu->iowait_boost_pending) {
268 		/*
269 		 * No boost pending; reduce the boost value.
270 		 */
271 		sg_cpu->iowait_boost >>= 1;
272 		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
273 			sg_cpu->iowait_boost = 0;
274 			return;
275 		}
276 	}
277 
278 	sg_cpu->iowait_boost_pending = false;
279 
280 	/*
281 	 * sg_cpu->util is already in capacity scale; convert iowait_boost
282 	 * into the same scale so we can compare.
283 	 */
284 	boost = (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
285 	boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
286 	if (sg_cpu->util < boost)
287 		sg_cpu->util = boost;
288 }
289 
290 #ifdef CONFIG_NO_HZ_COMMON
291 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
292 {
293 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
294 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
295 
296 	sg_cpu->saved_idle_calls = idle_calls;
297 	return ret;
298 }
299 #else
300 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
301 #endif /* CONFIG_NO_HZ_COMMON */
302 
303 /*
304  * Make sugov_should_update_freq() ignore the rate limit when DL
305  * has increased the utilization.
306  */
307 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
308 {
309 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
310 		sg_cpu->sg_policy->limits_changed = true;
311 }
312 
313 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
314 					      u64 time, unsigned long max_cap,
315 					      unsigned int flags)
316 {
317 	sugov_iowait_boost(sg_cpu, time, flags);
318 	sg_cpu->last_update = time;
319 
320 	ignore_dl_rate_limit(sg_cpu);
321 
322 	if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
323 		return false;
324 
325 	sugov_get_util(sg_cpu);
326 	sugov_iowait_apply(sg_cpu, time, max_cap);
327 
328 	return true;
329 }
330 
331 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
332 				     unsigned int flags)
333 {
334 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
335 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
336 	unsigned int cached_freq = sg_policy->cached_raw_freq;
337 	unsigned long max_cap;
338 	unsigned int next_f;
339 
340 	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
341 
342 	if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
343 		return;
344 
345 	next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
346 	/*
347 	 * Do not reduce the frequency if the CPU has not been idle
348 	 * recently, as the reduction is likely to be premature then.
349 	 *
350 	 * Except when the rq is capped by uclamp_max.
351 	 */
352 	if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
353 	    sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
354 		next_f = sg_policy->next_freq;
355 
356 		/* Restore cached freq as next_freq has changed */
357 		sg_policy->cached_raw_freq = cached_freq;
358 	}
359 
360 	if (!sugov_update_next_freq(sg_policy, time, next_f))
361 		return;
362 
363 	/*
364 	 * This code runs under rq->lock for the target CPU, so it won't run
365 	 * concurrently on two different CPUs for the same target and it is not
366 	 * necessary to acquire the lock in the fast switch case.
367 	 */
368 	if (sg_policy->policy->fast_switch_enabled) {
369 		cpufreq_driver_fast_switch(sg_policy->policy, next_f);
370 	} else {
371 		raw_spin_lock(&sg_policy->update_lock);
372 		sugov_deferred_update(sg_policy);
373 		raw_spin_unlock(&sg_policy->update_lock);
374 	}
375 }
376 
377 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
378 				     unsigned int flags)
379 {
380 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
381 	unsigned long prev_util = sg_cpu->util;
382 	unsigned long max_cap;
383 
384 	/*
385 	 * Fall back to the "frequency" path if frequency invariance is not
386 	 * supported, because the direct mapping between the utilization and
387 	 * the performance levels depends on the frequency invariance.
388 	 */
389 	if (!arch_scale_freq_invariant()) {
390 		sugov_update_single_freq(hook, time, flags);
391 		return;
392 	}
393 
394 	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
395 
396 	if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
397 		return;
398 
399 	/*
400 	 * Do not reduce the target performance level if the CPU has not been
401 	 * idle recently, as the reduction is likely to be premature then.
402 	 *
403 	 * Except when the rq is capped by uclamp_max.
404 	 */
405 	if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
406 	    sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
407 		sg_cpu->util = prev_util;
408 
409 	cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
410 				   map_util_perf(sg_cpu->util), max_cap);
411 
412 	sg_cpu->sg_policy->last_freq_update_time = time;
413 }
414 
415 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
416 {
417 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
418 	struct cpufreq_policy *policy = sg_policy->policy;
419 	unsigned long util = 0, max_cap;
420 	unsigned int j;
421 
422 	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
423 
424 	for_each_cpu(j, policy->cpus) {
425 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
426 
427 		sugov_get_util(j_sg_cpu);
428 		sugov_iowait_apply(j_sg_cpu, time, max_cap);
429 
430 		util = max(j_sg_cpu->util, util);
431 	}
432 
433 	return get_next_freq(sg_policy, util, max_cap);
434 }
435 
436 static void
437 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
438 {
439 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
440 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
441 	unsigned int next_f;
442 
443 	raw_spin_lock(&sg_policy->update_lock);
444 
445 	sugov_iowait_boost(sg_cpu, time, flags);
446 	sg_cpu->last_update = time;
447 
448 	ignore_dl_rate_limit(sg_cpu);
449 
450 	if (sugov_should_update_freq(sg_policy, time)) {
451 		next_f = sugov_next_freq_shared(sg_cpu, time);
452 
453 		if (!sugov_update_next_freq(sg_policy, time, next_f))
454 			goto unlock;
455 
456 		if (sg_policy->policy->fast_switch_enabled)
457 			cpufreq_driver_fast_switch(sg_policy->policy, next_f);
458 		else
459 			sugov_deferred_update(sg_policy);
460 	}
461 unlock:
462 	raw_spin_unlock(&sg_policy->update_lock);
463 }
464 
465 static void sugov_work(struct kthread_work *work)
466 {
467 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
468 	unsigned int freq;
469 	unsigned long flags;
470 
471 	/*
472 	 * Hold sg_policy->update_lock shortly to handle the case where:
473 	 * in case sg_policy->next_freq is read here, and then updated by
474 	 * sugov_deferred_update() just before work_in_progress is set to false
475 	 * here, we may miss queueing the new update.
476 	 *
477 	 * Note: If a work was queued after the update_lock is released,
478 	 * sugov_work() will just be called again by kthread_work code; and the
479 	 * request will be proceed before the sugov thread sleeps.
480 	 */
481 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
482 	freq = sg_policy->next_freq;
483 	sg_policy->work_in_progress = false;
484 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
485 
486 	mutex_lock(&sg_policy->work_lock);
487 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
488 	mutex_unlock(&sg_policy->work_lock);
489 }
490 
491 static void sugov_irq_work(struct irq_work *irq_work)
492 {
493 	struct sugov_policy *sg_policy;
494 
495 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
496 
497 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
498 }
499 
500 /************************** sysfs interface ************************/
501 
502 static struct sugov_tunables *global_tunables;
503 static DEFINE_MUTEX(global_tunables_lock);
504 
505 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
506 {
507 	return container_of(attr_set, struct sugov_tunables, attr_set);
508 }
509 
510 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
511 {
512 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
513 
514 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
515 }
516 
517 static ssize_t
518 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
519 {
520 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
521 	struct sugov_policy *sg_policy;
522 	unsigned int rate_limit_us;
523 
524 	if (kstrtouint(buf, 10, &rate_limit_us))
525 		return -EINVAL;
526 
527 	tunables->rate_limit_us = rate_limit_us;
528 
529 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
530 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
531 
532 	return count;
533 }
534 
535 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
536 
537 static struct attribute *sugov_attrs[] = {
538 	&rate_limit_us.attr,
539 	NULL
540 };
541 ATTRIBUTE_GROUPS(sugov);
542 
543 static void sugov_tunables_free(struct kobject *kobj)
544 {
545 	struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
546 
547 	kfree(to_sugov_tunables(attr_set));
548 }
549 
550 static const struct kobj_type sugov_tunables_ktype = {
551 	.default_groups = sugov_groups,
552 	.sysfs_ops = &governor_sysfs_ops,
553 	.release = &sugov_tunables_free,
554 };
555 
556 /********************** cpufreq governor interface *********************/
557 
558 struct cpufreq_governor schedutil_gov;
559 
560 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
561 {
562 	struct sugov_policy *sg_policy;
563 
564 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
565 	if (!sg_policy)
566 		return NULL;
567 
568 	sg_policy->policy = policy;
569 	raw_spin_lock_init(&sg_policy->update_lock);
570 	return sg_policy;
571 }
572 
573 static void sugov_policy_free(struct sugov_policy *sg_policy)
574 {
575 	kfree(sg_policy);
576 }
577 
578 static int sugov_kthread_create(struct sugov_policy *sg_policy)
579 {
580 	struct task_struct *thread;
581 	struct sched_attr attr = {
582 		.size		= sizeof(struct sched_attr),
583 		.sched_policy	= SCHED_DEADLINE,
584 		.sched_flags	= SCHED_FLAG_SUGOV,
585 		.sched_nice	= 0,
586 		.sched_priority	= 0,
587 		/*
588 		 * Fake (unused) bandwidth; workaround to "fix"
589 		 * priority inheritance.
590 		 */
591 		.sched_runtime	=  1000000,
592 		.sched_deadline = 10000000,
593 		.sched_period	= 10000000,
594 	};
595 	struct cpufreq_policy *policy = sg_policy->policy;
596 	int ret;
597 
598 	/* kthread only required for slow path */
599 	if (policy->fast_switch_enabled)
600 		return 0;
601 
602 	kthread_init_work(&sg_policy->work, sugov_work);
603 	kthread_init_worker(&sg_policy->worker);
604 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
605 				"sugov:%d",
606 				cpumask_first(policy->related_cpus));
607 	if (IS_ERR(thread)) {
608 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
609 		return PTR_ERR(thread);
610 	}
611 
612 	ret = sched_setattr_nocheck(thread, &attr);
613 	if (ret) {
614 		kthread_stop(thread);
615 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
616 		return ret;
617 	}
618 
619 	sg_policy->thread = thread;
620 	kthread_bind_mask(thread, policy->related_cpus);
621 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
622 	mutex_init(&sg_policy->work_lock);
623 
624 	wake_up_process(thread);
625 
626 	return 0;
627 }
628 
629 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
630 {
631 	/* kthread only required for slow path */
632 	if (sg_policy->policy->fast_switch_enabled)
633 		return;
634 
635 	kthread_flush_worker(&sg_policy->worker);
636 	kthread_stop(sg_policy->thread);
637 	mutex_destroy(&sg_policy->work_lock);
638 }
639 
640 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
641 {
642 	struct sugov_tunables *tunables;
643 
644 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
645 	if (tunables) {
646 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
647 		if (!have_governor_per_policy())
648 			global_tunables = tunables;
649 	}
650 	return tunables;
651 }
652 
653 static void sugov_clear_global_tunables(void)
654 {
655 	if (!have_governor_per_policy())
656 		global_tunables = NULL;
657 }
658 
659 static int sugov_init(struct cpufreq_policy *policy)
660 {
661 	struct sugov_policy *sg_policy;
662 	struct sugov_tunables *tunables;
663 	int ret = 0;
664 
665 	/* State should be equivalent to EXIT */
666 	if (policy->governor_data)
667 		return -EBUSY;
668 
669 	cpufreq_enable_fast_switch(policy);
670 
671 	sg_policy = sugov_policy_alloc(policy);
672 	if (!sg_policy) {
673 		ret = -ENOMEM;
674 		goto disable_fast_switch;
675 	}
676 
677 	ret = sugov_kthread_create(sg_policy);
678 	if (ret)
679 		goto free_sg_policy;
680 
681 	mutex_lock(&global_tunables_lock);
682 
683 	if (global_tunables) {
684 		if (WARN_ON(have_governor_per_policy())) {
685 			ret = -EINVAL;
686 			goto stop_kthread;
687 		}
688 		policy->governor_data = sg_policy;
689 		sg_policy->tunables = global_tunables;
690 
691 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
692 		goto out;
693 	}
694 
695 	tunables = sugov_tunables_alloc(sg_policy);
696 	if (!tunables) {
697 		ret = -ENOMEM;
698 		goto stop_kthread;
699 	}
700 
701 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
702 
703 	policy->governor_data = sg_policy;
704 	sg_policy->tunables = tunables;
705 
706 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
707 				   get_governor_parent_kobj(policy), "%s",
708 				   schedutil_gov.name);
709 	if (ret)
710 		goto fail;
711 
712 out:
713 	mutex_unlock(&global_tunables_lock);
714 	return 0;
715 
716 fail:
717 	kobject_put(&tunables->attr_set.kobj);
718 	policy->governor_data = NULL;
719 	sugov_clear_global_tunables();
720 
721 stop_kthread:
722 	sugov_kthread_stop(sg_policy);
723 	mutex_unlock(&global_tunables_lock);
724 
725 free_sg_policy:
726 	sugov_policy_free(sg_policy);
727 
728 disable_fast_switch:
729 	cpufreq_disable_fast_switch(policy);
730 
731 	pr_err("initialization failed (error %d)\n", ret);
732 	return ret;
733 }
734 
735 static void sugov_exit(struct cpufreq_policy *policy)
736 {
737 	struct sugov_policy *sg_policy = policy->governor_data;
738 	struct sugov_tunables *tunables = sg_policy->tunables;
739 	unsigned int count;
740 
741 	mutex_lock(&global_tunables_lock);
742 
743 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
744 	policy->governor_data = NULL;
745 	if (!count)
746 		sugov_clear_global_tunables();
747 
748 	mutex_unlock(&global_tunables_lock);
749 
750 	sugov_kthread_stop(sg_policy);
751 	sugov_policy_free(sg_policy);
752 	cpufreq_disable_fast_switch(policy);
753 }
754 
755 static int sugov_start(struct cpufreq_policy *policy)
756 {
757 	struct sugov_policy *sg_policy = policy->governor_data;
758 	void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
759 	unsigned int cpu;
760 
761 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
762 	sg_policy->last_freq_update_time	= 0;
763 	sg_policy->next_freq			= 0;
764 	sg_policy->work_in_progress		= false;
765 	sg_policy->limits_changed		= false;
766 	sg_policy->cached_raw_freq		= 0;
767 
768 	sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
769 
770 	for_each_cpu(cpu, policy->cpus) {
771 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
772 
773 		memset(sg_cpu, 0, sizeof(*sg_cpu));
774 		sg_cpu->cpu			= cpu;
775 		sg_cpu->sg_policy		= sg_policy;
776 	}
777 
778 	if (policy_is_shared(policy))
779 		uu = sugov_update_shared;
780 	else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
781 		uu = sugov_update_single_perf;
782 	else
783 		uu = sugov_update_single_freq;
784 
785 	for_each_cpu(cpu, policy->cpus) {
786 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
787 
788 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
789 	}
790 	return 0;
791 }
792 
793 static void sugov_stop(struct cpufreq_policy *policy)
794 {
795 	struct sugov_policy *sg_policy = policy->governor_data;
796 	unsigned int cpu;
797 
798 	for_each_cpu(cpu, policy->cpus)
799 		cpufreq_remove_update_util_hook(cpu);
800 
801 	synchronize_rcu();
802 
803 	if (!policy->fast_switch_enabled) {
804 		irq_work_sync(&sg_policy->irq_work);
805 		kthread_cancel_work_sync(&sg_policy->work);
806 	}
807 }
808 
809 static void sugov_limits(struct cpufreq_policy *policy)
810 {
811 	struct sugov_policy *sg_policy = policy->governor_data;
812 
813 	if (!policy->fast_switch_enabled) {
814 		mutex_lock(&sg_policy->work_lock);
815 		cpufreq_policy_apply_limits(policy);
816 		mutex_unlock(&sg_policy->work_lock);
817 	}
818 
819 	sg_policy->limits_changed = true;
820 }
821 
822 struct cpufreq_governor schedutil_gov = {
823 	.name			= "schedutil",
824 	.owner			= THIS_MODULE,
825 	.flags			= CPUFREQ_GOV_DYNAMIC_SWITCHING,
826 	.init			= sugov_init,
827 	.exit			= sugov_exit,
828 	.start			= sugov_start,
829 	.stop			= sugov_stop,
830 	.limits			= sugov_limits,
831 };
832 
833 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
834 struct cpufreq_governor *cpufreq_default_governor(void)
835 {
836 	return &schedutil_gov;
837 }
838 #endif
839 
840 cpufreq_governor_init(schedutil_gov);
841 
842 #ifdef CONFIG_ENERGY_MODEL
843 static void rebuild_sd_workfn(struct work_struct *work)
844 {
845 	rebuild_sched_domains_energy();
846 }
847 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
848 
849 /*
850  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
851  * on governor changes to make sure the scheduler knows about it.
852  */
853 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
854 				  struct cpufreq_governor *old_gov)
855 {
856 	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
857 		/*
858 		 * When called from the cpufreq_register_driver() path, the
859 		 * cpu_hotplug_lock is already held, so use a work item to
860 		 * avoid nested locking in rebuild_sched_domains().
861 		 */
862 		schedule_work(&rebuild_sd_work);
863 	}
864 
865 }
866 #endif
867