xref: /openbmc/linux/kernel/sched/cpufreq_schedutil.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include "sched.h"
12 
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15 
16 #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
17 
18 struct sugov_tunables {
19 	struct gov_attr_set	attr_set;
20 	unsigned int		rate_limit_us;
21 };
22 
23 struct sugov_policy {
24 	struct cpufreq_policy	*policy;
25 
26 	struct sugov_tunables	*tunables;
27 	struct list_head	tunables_hook;
28 
29 	raw_spinlock_t		update_lock;	/* For shared policies */
30 	u64			last_freq_update_time;
31 	s64			freq_update_delay_ns;
32 	unsigned int		next_freq;
33 	unsigned int		cached_raw_freq;
34 
35 	/* The next fields are only needed if fast switch cannot be used: */
36 	struct			irq_work irq_work;
37 	struct			kthread_work work;
38 	struct			mutex work_lock;
39 	struct			kthread_worker worker;
40 	struct task_struct	*thread;
41 	bool			work_in_progress;
42 
43 	bool			need_freq_update;
44 };
45 
46 struct sugov_cpu {
47 	struct update_util_data	update_util;
48 	struct sugov_policy	*sg_policy;
49 	unsigned int		cpu;
50 
51 	bool			iowait_boost_pending;
52 	unsigned int		iowait_boost;
53 	u64			last_update;
54 
55 	unsigned long		bw_dl;
56 	unsigned long		max;
57 
58 	/* The field below is for single-CPU policies only: */
59 #ifdef CONFIG_NO_HZ_COMMON
60 	unsigned long		saved_idle_calls;
61 #endif
62 };
63 
64 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
65 
66 /************************ Governor internals ***********************/
67 
68 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
69 {
70 	s64 delta_ns;
71 
72 	/*
73 	 * Since cpufreq_update_util() is called with rq->lock held for
74 	 * the @target_cpu, our per-CPU data is fully serialized.
75 	 *
76 	 * However, drivers cannot in general deal with cross-CPU
77 	 * requests, so while get_next_freq() will work, our
78 	 * sugov_update_commit() call may not for the fast switching platforms.
79 	 *
80 	 * Hence stop here for remote requests if they aren't supported
81 	 * by the hardware, as calculating the frequency is pointless if
82 	 * we cannot in fact act on it.
83 	 *
84 	 * For the slow switching platforms, the kthread is always scheduled on
85 	 * the right set of CPUs and any CPU can find the next frequency and
86 	 * schedule the kthread.
87 	 */
88 	if (sg_policy->policy->fast_switch_enabled &&
89 	    !cpufreq_this_cpu_can_update(sg_policy->policy))
90 		return false;
91 
92 	if (unlikely(sg_policy->need_freq_update))
93 		return true;
94 
95 	delta_ns = time - sg_policy->last_freq_update_time;
96 
97 	return delta_ns >= sg_policy->freq_update_delay_ns;
98 }
99 
100 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
101 				   unsigned int next_freq)
102 {
103 	if (sg_policy->next_freq == next_freq)
104 		return false;
105 
106 	sg_policy->next_freq = next_freq;
107 	sg_policy->last_freq_update_time = time;
108 
109 	return true;
110 }
111 
112 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
113 			      unsigned int next_freq)
114 {
115 	struct cpufreq_policy *policy = sg_policy->policy;
116 
117 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
118 		return;
119 
120 	next_freq = cpufreq_driver_fast_switch(policy, next_freq);
121 	if (!next_freq)
122 		return;
123 
124 	policy->cur = next_freq;
125 	trace_cpu_frequency(next_freq, smp_processor_id());
126 }
127 
128 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
129 				  unsigned int next_freq)
130 {
131 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
132 		return;
133 
134 	if (!sg_policy->work_in_progress) {
135 		sg_policy->work_in_progress = true;
136 		irq_work_queue(&sg_policy->irq_work);
137 	}
138 }
139 
140 /**
141  * get_next_freq - Compute a new frequency for a given cpufreq policy.
142  * @sg_policy: schedutil policy object to compute the new frequency for.
143  * @util: Current CPU utilization.
144  * @max: CPU capacity.
145  *
146  * If the utilization is frequency-invariant, choose the new frequency to be
147  * proportional to it, that is
148  *
149  * next_freq = C * max_freq * util / max
150  *
151  * Otherwise, approximate the would-be frequency-invariant utilization by
152  * util_raw * (curr_freq / max_freq) which leads to
153  *
154  * next_freq = C * curr_freq * util_raw / max
155  *
156  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
157  *
158  * The lowest driver-supported frequency which is equal or greater than the raw
159  * next_freq (as calculated above) is returned, subject to policy min/max and
160  * cpufreq driver limitations.
161  */
162 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
163 				  unsigned long util, unsigned long max)
164 {
165 	struct cpufreq_policy *policy = sg_policy->policy;
166 	unsigned int freq = arch_scale_freq_invariant() ?
167 				policy->cpuinfo.max_freq : policy->cur;
168 
169 	freq = map_util_freq(util, freq, max);
170 
171 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
172 		return sg_policy->next_freq;
173 
174 	sg_policy->need_freq_update = false;
175 	sg_policy->cached_raw_freq = freq;
176 	return cpufreq_driver_resolve_freq(policy, freq);
177 }
178 
179 /*
180  * This function computes an effective utilization for the given CPU, to be
181  * used for frequency selection given the linear relation: f = u * f_max.
182  *
183  * The scheduler tracks the following metrics:
184  *
185  *   cpu_util_{cfs,rt,dl,irq}()
186  *   cpu_bw_dl()
187  *
188  * Where the cfs,rt and dl util numbers are tracked with the same metric and
189  * synchronized windows and are thus directly comparable.
190  *
191  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
192  * which excludes things like IRQ and steal-time. These latter are then accrued
193  * in the irq utilization.
194  *
195  * The DL bandwidth number otoh is not a measured metric but a value computed
196  * based on the task model parameters and gives the minimal utilization
197  * required to meet deadlines.
198  */
199 unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
200 				  unsigned long max, enum schedutil_type type)
201 {
202 	unsigned long dl_util, util, irq;
203 	struct rq *rq = cpu_rq(cpu);
204 
205 	if (type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt))
206 		return max;
207 
208 	/*
209 	 * Early check to see if IRQ/steal time saturates the CPU, can be
210 	 * because of inaccuracies in how we track these -- see
211 	 * update_irq_load_avg().
212 	 */
213 	irq = cpu_util_irq(rq);
214 	if (unlikely(irq >= max))
215 		return max;
216 
217 	/*
218 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
219 	 * CFS tasks and we use the same metric to track the effective
220 	 * utilization (PELT windows are synchronized) we can directly add them
221 	 * to obtain the CPU's actual utilization.
222 	 */
223 	util = util_cfs;
224 	util += cpu_util_rt(rq);
225 
226 	dl_util = cpu_util_dl(rq);
227 
228 	/*
229 	 * For frequency selection we do not make cpu_util_dl() a permanent part
230 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
231 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
232 	 * that we select f_max when there is no idle time.
233 	 *
234 	 * NOTE: numerical errors or stop class might cause us to not quite hit
235 	 * saturation when we should -- something for later.
236 	 */
237 	if (util + dl_util >= max)
238 		return max;
239 
240 	/*
241 	 * OTOH, for energy computation we need the estimated running time, so
242 	 * include util_dl and ignore dl_bw.
243 	 */
244 	if (type == ENERGY_UTIL)
245 		util += dl_util;
246 
247 	/*
248 	 * There is still idle time; further improve the number by using the
249 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
250 	 * need to scale the task numbers:
251 	 *
252 	 *              1 - irq
253 	 *   U' = irq + ------- * U
254 	 *                max
255 	 */
256 	util = scale_irq_capacity(util, irq, max);
257 	util += irq;
258 
259 	/*
260 	 * Bandwidth required by DEADLINE must always be granted while, for
261 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
262 	 * to gracefully reduce the frequency when no tasks show up for longer
263 	 * periods of time.
264 	 *
265 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
266 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
267 	 * an interface. So, we only do the latter for now.
268 	 */
269 	if (type == FREQUENCY_UTIL)
270 		util += cpu_bw_dl(rq);
271 
272 	return min(max, util);
273 }
274 
275 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
276 {
277 	struct rq *rq = cpu_rq(sg_cpu->cpu);
278 	unsigned long util = cpu_util_cfs(rq);
279 	unsigned long max = arch_scale_cpu_capacity(NULL, sg_cpu->cpu);
280 
281 	sg_cpu->max = max;
282 	sg_cpu->bw_dl = cpu_bw_dl(rq);
283 
284 	return schedutil_freq_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL);
285 }
286 
287 /**
288  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
289  * @sg_cpu: the sugov data for the CPU to boost
290  * @time: the update time from the caller
291  * @set_iowait_boost: true if an IO boost has been requested
292  *
293  * The IO wait boost of a task is disabled after a tick since the last update
294  * of a CPU. If a new IO wait boost is requested after more then a tick, then
295  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
296  * efficiency by ignoring sporadic wakeups from IO.
297  */
298 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
299 			       bool set_iowait_boost)
300 {
301 	s64 delta_ns = time - sg_cpu->last_update;
302 
303 	/* Reset boost only if a tick has elapsed since last request */
304 	if (delta_ns <= TICK_NSEC)
305 		return false;
306 
307 	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
308 	sg_cpu->iowait_boost_pending = set_iowait_boost;
309 
310 	return true;
311 }
312 
313 /**
314  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
315  * @sg_cpu: the sugov data for the CPU to boost
316  * @time: the update time from the caller
317  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
318  *
319  * Each time a task wakes up after an IO operation, the CPU utilization can be
320  * boosted to a certain utilization which doubles at each "frequent and
321  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
322  * of the maximum OPP.
323  *
324  * To keep doubling, an IO boost has to be requested at least once per tick,
325  * otherwise we restart from the utilization of the minimum OPP.
326  */
327 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
328 			       unsigned int flags)
329 {
330 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
331 
332 	/* Reset boost if the CPU appears to have been idle enough */
333 	if (sg_cpu->iowait_boost &&
334 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
335 		return;
336 
337 	/* Boost only tasks waking up after IO */
338 	if (!set_iowait_boost)
339 		return;
340 
341 	/* Ensure boost doubles only one time at each request */
342 	if (sg_cpu->iowait_boost_pending)
343 		return;
344 	sg_cpu->iowait_boost_pending = true;
345 
346 	/* Double the boost at each request */
347 	if (sg_cpu->iowait_boost) {
348 		sg_cpu->iowait_boost =
349 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
350 		return;
351 	}
352 
353 	/* First wakeup after IO: start with minimum boost */
354 	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
355 }
356 
357 /**
358  * sugov_iowait_apply() - Apply the IO boost to a CPU.
359  * @sg_cpu: the sugov data for the cpu to boost
360  * @time: the update time from the caller
361  * @util: the utilization to (eventually) boost
362  * @max: the maximum value the utilization can be boosted to
363  *
364  * A CPU running a task which woken up after an IO operation can have its
365  * utilization boosted to speed up the completion of those IO operations.
366  * The IO boost value is increased each time a task wakes up from IO, in
367  * sugov_iowait_apply(), and it's instead decreased by this function,
368  * each time an increase has not been requested (!iowait_boost_pending).
369  *
370  * A CPU which also appears to have been idle for at least one tick has also
371  * its IO boost utilization reset.
372  *
373  * This mechanism is designed to boost high frequently IO waiting tasks, while
374  * being more conservative on tasks which does sporadic IO operations.
375  */
376 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
377 					unsigned long util, unsigned long max)
378 {
379 	unsigned long boost;
380 
381 	/* No boost currently required */
382 	if (!sg_cpu->iowait_boost)
383 		return util;
384 
385 	/* Reset boost if the CPU appears to have been idle enough */
386 	if (sugov_iowait_reset(sg_cpu, time, false))
387 		return util;
388 
389 	if (!sg_cpu->iowait_boost_pending) {
390 		/*
391 		 * No boost pending; reduce the boost value.
392 		 */
393 		sg_cpu->iowait_boost >>= 1;
394 		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
395 			sg_cpu->iowait_boost = 0;
396 			return util;
397 		}
398 	}
399 
400 	sg_cpu->iowait_boost_pending = false;
401 
402 	/*
403 	 * @util is already in capacity scale; convert iowait_boost
404 	 * into the same scale so we can compare.
405 	 */
406 	boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
407 	return max(boost, util);
408 }
409 
410 #ifdef CONFIG_NO_HZ_COMMON
411 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
412 {
413 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
414 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
415 
416 	sg_cpu->saved_idle_calls = idle_calls;
417 	return ret;
418 }
419 #else
420 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
421 #endif /* CONFIG_NO_HZ_COMMON */
422 
423 /*
424  * Make sugov_should_update_freq() ignore the rate limit when DL
425  * has increased the utilization.
426  */
427 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
428 {
429 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
430 		sg_policy->need_freq_update = true;
431 }
432 
433 static void sugov_update_single(struct update_util_data *hook, u64 time,
434 				unsigned int flags)
435 {
436 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
437 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
438 	unsigned long util, max;
439 	unsigned int next_f;
440 	bool busy;
441 
442 	sugov_iowait_boost(sg_cpu, time, flags);
443 	sg_cpu->last_update = time;
444 
445 	ignore_dl_rate_limit(sg_cpu, sg_policy);
446 
447 	if (!sugov_should_update_freq(sg_policy, time))
448 		return;
449 
450 	busy = sugov_cpu_is_busy(sg_cpu);
451 
452 	util = sugov_get_util(sg_cpu);
453 	max = sg_cpu->max;
454 	util = sugov_iowait_apply(sg_cpu, time, util, max);
455 	next_f = get_next_freq(sg_policy, util, max);
456 	/*
457 	 * Do not reduce the frequency if the CPU has not been idle
458 	 * recently, as the reduction is likely to be premature then.
459 	 */
460 	if (busy && next_f < sg_policy->next_freq) {
461 		next_f = sg_policy->next_freq;
462 
463 		/* Reset cached freq as next_freq has changed */
464 		sg_policy->cached_raw_freq = 0;
465 	}
466 
467 	/*
468 	 * This code runs under rq->lock for the target CPU, so it won't run
469 	 * concurrently on two different CPUs for the same target and it is not
470 	 * necessary to acquire the lock in the fast switch case.
471 	 */
472 	if (sg_policy->policy->fast_switch_enabled) {
473 		sugov_fast_switch(sg_policy, time, next_f);
474 	} else {
475 		raw_spin_lock(&sg_policy->update_lock);
476 		sugov_deferred_update(sg_policy, time, next_f);
477 		raw_spin_unlock(&sg_policy->update_lock);
478 	}
479 }
480 
481 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
482 {
483 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
484 	struct cpufreq_policy *policy = sg_policy->policy;
485 	unsigned long util = 0, max = 1;
486 	unsigned int j;
487 
488 	for_each_cpu(j, policy->cpus) {
489 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
490 		unsigned long j_util, j_max;
491 
492 		j_util = sugov_get_util(j_sg_cpu);
493 		j_max = j_sg_cpu->max;
494 		j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
495 
496 		if (j_util * max > j_max * util) {
497 			util = j_util;
498 			max = j_max;
499 		}
500 	}
501 
502 	return get_next_freq(sg_policy, util, max);
503 }
504 
505 static void
506 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
507 {
508 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
509 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
510 	unsigned int next_f;
511 
512 	raw_spin_lock(&sg_policy->update_lock);
513 
514 	sugov_iowait_boost(sg_cpu, time, flags);
515 	sg_cpu->last_update = time;
516 
517 	ignore_dl_rate_limit(sg_cpu, sg_policy);
518 
519 	if (sugov_should_update_freq(sg_policy, time)) {
520 		next_f = sugov_next_freq_shared(sg_cpu, time);
521 
522 		if (sg_policy->policy->fast_switch_enabled)
523 			sugov_fast_switch(sg_policy, time, next_f);
524 		else
525 			sugov_deferred_update(sg_policy, time, next_f);
526 	}
527 
528 	raw_spin_unlock(&sg_policy->update_lock);
529 }
530 
531 static void sugov_work(struct kthread_work *work)
532 {
533 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
534 	unsigned int freq;
535 	unsigned long flags;
536 
537 	/*
538 	 * Hold sg_policy->update_lock shortly to handle the case where:
539 	 * incase sg_policy->next_freq is read here, and then updated by
540 	 * sugov_deferred_update() just before work_in_progress is set to false
541 	 * here, we may miss queueing the new update.
542 	 *
543 	 * Note: If a work was queued after the update_lock is released,
544 	 * sugov_work() will just be called again by kthread_work code; and the
545 	 * request will be proceed before the sugov thread sleeps.
546 	 */
547 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
548 	freq = sg_policy->next_freq;
549 	sg_policy->work_in_progress = false;
550 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
551 
552 	mutex_lock(&sg_policy->work_lock);
553 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
554 	mutex_unlock(&sg_policy->work_lock);
555 }
556 
557 static void sugov_irq_work(struct irq_work *irq_work)
558 {
559 	struct sugov_policy *sg_policy;
560 
561 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
562 
563 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
564 }
565 
566 /************************** sysfs interface ************************/
567 
568 static struct sugov_tunables *global_tunables;
569 static DEFINE_MUTEX(global_tunables_lock);
570 
571 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
572 {
573 	return container_of(attr_set, struct sugov_tunables, attr_set);
574 }
575 
576 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
577 {
578 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
579 
580 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
581 }
582 
583 static ssize_t
584 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
585 {
586 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
587 	struct sugov_policy *sg_policy;
588 	unsigned int rate_limit_us;
589 
590 	if (kstrtouint(buf, 10, &rate_limit_us))
591 		return -EINVAL;
592 
593 	tunables->rate_limit_us = rate_limit_us;
594 
595 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
596 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
597 
598 	return count;
599 }
600 
601 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
602 
603 static struct attribute *sugov_attrs[] = {
604 	&rate_limit_us.attr,
605 	NULL
606 };
607 ATTRIBUTE_GROUPS(sugov);
608 
609 static struct kobj_type sugov_tunables_ktype = {
610 	.default_groups = sugov_groups,
611 	.sysfs_ops = &governor_sysfs_ops,
612 };
613 
614 /********************** cpufreq governor interface *********************/
615 
616 struct cpufreq_governor schedutil_gov;
617 
618 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
619 {
620 	struct sugov_policy *sg_policy;
621 
622 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
623 	if (!sg_policy)
624 		return NULL;
625 
626 	sg_policy->policy = policy;
627 	raw_spin_lock_init(&sg_policy->update_lock);
628 	return sg_policy;
629 }
630 
631 static void sugov_policy_free(struct sugov_policy *sg_policy)
632 {
633 	kfree(sg_policy);
634 }
635 
636 static int sugov_kthread_create(struct sugov_policy *sg_policy)
637 {
638 	struct task_struct *thread;
639 	struct sched_attr attr = {
640 		.size		= sizeof(struct sched_attr),
641 		.sched_policy	= SCHED_DEADLINE,
642 		.sched_flags	= SCHED_FLAG_SUGOV,
643 		.sched_nice	= 0,
644 		.sched_priority	= 0,
645 		/*
646 		 * Fake (unused) bandwidth; workaround to "fix"
647 		 * priority inheritance.
648 		 */
649 		.sched_runtime	=  1000000,
650 		.sched_deadline = 10000000,
651 		.sched_period	= 10000000,
652 	};
653 	struct cpufreq_policy *policy = sg_policy->policy;
654 	int ret;
655 
656 	/* kthread only required for slow path */
657 	if (policy->fast_switch_enabled)
658 		return 0;
659 
660 	kthread_init_work(&sg_policy->work, sugov_work);
661 	kthread_init_worker(&sg_policy->worker);
662 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
663 				"sugov:%d",
664 				cpumask_first(policy->related_cpus));
665 	if (IS_ERR(thread)) {
666 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
667 		return PTR_ERR(thread);
668 	}
669 
670 	ret = sched_setattr_nocheck(thread, &attr);
671 	if (ret) {
672 		kthread_stop(thread);
673 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
674 		return ret;
675 	}
676 
677 	sg_policy->thread = thread;
678 	kthread_bind_mask(thread, policy->related_cpus);
679 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
680 	mutex_init(&sg_policy->work_lock);
681 
682 	wake_up_process(thread);
683 
684 	return 0;
685 }
686 
687 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
688 {
689 	/* kthread only required for slow path */
690 	if (sg_policy->policy->fast_switch_enabled)
691 		return;
692 
693 	kthread_flush_worker(&sg_policy->worker);
694 	kthread_stop(sg_policy->thread);
695 	mutex_destroy(&sg_policy->work_lock);
696 }
697 
698 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
699 {
700 	struct sugov_tunables *tunables;
701 
702 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
703 	if (tunables) {
704 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
705 		if (!have_governor_per_policy())
706 			global_tunables = tunables;
707 	}
708 	return tunables;
709 }
710 
711 static void sugov_tunables_free(struct sugov_tunables *tunables)
712 {
713 	if (!have_governor_per_policy())
714 		global_tunables = NULL;
715 
716 	kfree(tunables);
717 }
718 
719 static int sugov_init(struct cpufreq_policy *policy)
720 {
721 	struct sugov_policy *sg_policy;
722 	struct sugov_tunables *tunables;
723 	int ret = 0;
724 
725 	/* State should be equivalent to EXIT */
726 	if (policy->governor_data)
727 		return -EBUSY;
728 
729 	cpufreq_enable_fast_switch(policy);
730 
731 	sg_policy = sugov_policy_alloc(policy);
732 	if (!sg_policy) {
733 		ret = -ENOMEM;
734 		goto disable_fast_switch;
735 	}
736 
737 	ret = sugov_kthread_create(sg_policy);
738 	if (ret)
739 		goto free_sg_policy;
740 
741 	mutex_lock(&global_tunables_lock);
742 
743 	if (global_tunables) {
744 		if (WARN_ON(have_governor_per_policy())) {
745 			ret = -EINVAL;
746 			goto stop_kthread;
747 		}
748 		policy->governor_data = sg_policy;
749 		sg_policy->tunables = global_tunables;
750 
751 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
752 		goto out;
753 	}
754 
755 	tunables = sugov_tunables_alloc(sg_policy);
756 	if (!tunables) {
757 		ret = -ENOMEM;
758 		goto stop_kthread;
759 	}
760 
761 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
762 
763 	policy->governor_data = sg_policy;
764 	sg_policy->tunables = tunables;
765 
766 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
767 				   get_governor_parent_kobj(policy), "%s",
768 				   schedutil_gov.name);
769 	if (ret)
770 		goto fail;
771 
772 out:
773 	mutex_unlock(&global_tunables_lock);
774 	return 0;
775 
776 fail:
777 	kobject_put(&tunables->attr_set.kobj);
778 	policy->governor_data = NULL;
779 	sugov_tunables_free(tunables);
780 
781 stop_kthread:
782 	sugov_kthread_stop(sg_policy);
783 	mutex_unlock(&global_tunables_lock);
784 
785 free_sg_policy:
786 	sugov_policy_free(sg_policy);
787 
788 disable_fast_switch:
789 	cpufreq_disable_fast_switch(policy);
790 
791 	pr_err("initialization failed (error %d)\n", ret);
792 	return ret;
793 }
794 
795 static void sugov_exit(struct cpufreq_policy *policy)
796 {
797 	struct sugov_policy *sg_policy = policy->governor_data;
798 	struct sugov_tunables *tunables = sg_policy->tunables;
799 	unsigned int count;
800 
801 	mutex_lock(&global_tunables_lock);
802 
803 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
804 	policy->governor_data = NULL;
805 	if (!count)
806 		sugov_tunables_free(tunables);
807 
808 	mutex_unlock(&global_tunables_lock);
809 
810 	sugov_kthread_stop(sg_policy);
811 	sugov_policy_free(sg_policy);
812 	cpufreq_disable_fast_switch(policy);
813 }
814 
815 static int sugov_start(struct cpufreq_policy *policy)
816 {
817 	struct sugov_policy *sg_policy = policy->governor_data;
818 	unsigned int cpu;
819 
820 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
821 	sg_policy->last_freq_update_time	= 0;
822 	sg_policy->next_freq			= 0;
823 	sg_policy->work_in_progress		= false;
824 	sg_policy->need_freq_update		= false;
825 	sg_policy->cached_raw_freq		= 0;
826 
827 	for_each_cpu(cpu, policy->cpus) {
828 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
829 
830 		memset(sg_cpu, 0, sizeof(*sg_cpu));
831 		sg_cpu->cpu			= cpu;
832 		sg_cpu->sg_policy		= sg_policy;
833 	}
834 
835 	for_each_cpu(cpu, policy->cpus) {
836 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
837 
838 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
839 					     policy_is_shared(policy) ?
840 							sugov_update_shared :
841 							sugov_update_single);
842 	}
843 	return 0;
844 }
845 
846 static void sugov_stop(struct cpufreq_policy *policy)
847 {
848 	struct sugov_policy *sg_policy = policy->governor_data;
849 	unsigned int cpu;
850 
851 	for_each_cpu(cpu, policy->cpus)
852 		cpufreq_remove_update_util_hook(cpu);
853 
854 	synchronize_rcu();
855 
856 	if (!policy->fast_switch_enabled) {
857 		irq_work_sync(&sg_policy->irq_work);
858 		kthread_cancel_work_sync(&sg_policy->work);
859 	}
860 }
861 
862 static void sugov_limits(struct cpufreq_policy *policy)
863 {
864 	struct sugov_policy *sg_policy = policy->governor_data;
865 
866 	if (!policy->fast_switch_enabled) {
867 		mutex_lock(&sg_policy->work_lock);
868 		cpufreq_policy_apply_limits(policy);
869 		mutex_unlock(&sg_policy->work_lock);
870 	}
871 
872 	sg_policy->need_freq_update = true;
873 }
874 
875 struct cpufreq_governor schedutil_gov = {
876 	.name			= "schedutil",
877 	.owner			= THIS_MODULE,
878 	.dynamic_switching	= true,
879 	.init			= sugov_init,
880 	.exit			= sugov_exit,
881 	.start			= sugov_start,
882 	.stop			= sugov_stop,
883 	.limits			= sugov_limits,
884 };
885 
886 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
887 struct cpufreq_governor *cpufreq_default_governor(void)
888 {
889 	return &schedutil_gov;
890 }
891 #endif
892 
893 static int __init sugov_register(void)
894 {
895 	return cpufreq_register_governor(&schedutil_gov);
896 }
897 fs_initcall(sugov_register);
898 
899 #ifdef CONFIG_ENERGY_MODEL
900 extern bool sched_energy_update;
901 extern struct mutex sched_energy_mutex;
902 
903 static void rebuild_sd_workfn(struct work_struct *work)
904 {
905 	mutex_lock(&sched_energy_mutex);
906 	sched_energy_update = true;
907 	rebuild_sched_domains();
908 	sched_energy_update = false;
909 	mutex_unlock(&sched_energy_mutex);
910 }
911 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
912 
913 /*
914  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
915  * on governor changes to make sure the scheduler knows about it.
916  */
917 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
918 				  struct cpufreq_governor *old_gov)
919 {
920 	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
921 		/*
922 		 * When called from the cpufreq_register_driver() path, the
923 		 * cpu_hotplug_lock is already held, so use a work item to
924 		 * avoid nested locking in rebuild_sched_domains().
925 		 */
926 		schedule_work(&rebuild_sd_work);
927 	}
928 
929 }
930 #endif
931