1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include "sched.h"
12 
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15 
16 struct sugov_tunables {
17 	struct gov_attr_set	attr_set;
18 	unsigned int		rate_limit_us;
19 };
20 
21 struct sugov_policy {
22 	struct cpufreq_policy	*policy;
23 
24 	struct sugov_tunables	*tunables;
25 	struct list_head	tunables_hook;
26 
27 	raw_spinlock_t		update_lock;	/* For shared policies */
28 	u64			last_freq_update_time;
29 	s64			freq_update_delay_ns;
30 	unsigned int		next_freq;
31 	unsigned int		cached_raw_freq;
32 
33 	/* The next fields are only needed if fast switch cannot be used: */
34 	struct			irq_work irq_work;
35 	struct			kthread_work work;
36 	struct			mutex work_lock;
37 	struct			kthread_worker worker;
38 	struct task_struct	*thread;
39 	bool			work_in_progress;
40 
41 	bool			need_freq_update;
42 };
43 
44 struct sugov_cpu {
45 	struct update_util_data	update_util;
46 	struct sugov_policy	*sg_policy;
47 	unsigned int		cpu;
48 
49 	bool			iowait_boost_pending;
50 	unsigned int		iowait_boost;
51 	u64			last_update;
52 
53 	unsigned long		bw_dl;
54 	unsigned long		min;
55 	unsigned long		max;
56 
57 	/* The field below is for single-CPU policies only: */
58 #ifdef CONFIG_NO_HZ_COMMON
59 	unsigned long		saved_idle_calls;
60 #endif
61 };
62 
63 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
64 
65 /************************ Governor internals ***********************/
66 
67 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
68 {
69 	s64 delta_ns;
70 
71 	/*
72 	 * Since cpufreq_update_util() is called with rq->lock held for
73 	 * the @target_cpu, our per-CPU data is fully serialized.
74 	 *
75 	 * However, drivers cannot in general deal with cross-CPU
76 	 * requests, so while get_next_freq() will work, our
77 	 * sugov_update_commit() call may not for the fast switching platforms.
78 	 *
79 	 * Hence stop here for remote requests if they aren't supported
80 	 * by the hardware, as calculating the frequency is pointless if
81 	 * we cannot in fact act on it.
82 	 *
83 	 * For the slow switching platforms, the kthread is always scheduled on
84 	 * the right set of CPUs and any CPU can find the next frequency and
85 	 * schedule the kthread.
86 	 */
87 	if (sg_policy->policy->fast_switch_enabled &&
88 	    !cpufreq_this_cpu_can_update(sg_policy->policy))
89 		return false;
90 
91 	if (unlikely(sg_policy->need_freq_update))
92 		return true;
93 
94 	delta_ns = time - sg_policy->last_freq_update_time;
95 
96 	return delta_ns >= sg_policy->freq_update_delay_ns;
97 }
98 
99 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
100 				   unsigned int next_freq)
101 {
102 	if (sg_policy->next_freq == next_freq)
103 		return false;
104 
105 	sg_policy->next_freq = next_freq;
106 	sg_policy->last_freq_update_time = time;
107 
108 	return true;
109 }
110 
111 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
112 			      unsigned int next_freq)
113 {
114 	struct cpufreq_policy *policy = sg_policy->policy;
115 
116 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
117 		return;
118 
119 	next_freq = cpufreq_driver_fast_switch(policy, next_freq);
120 	if (!next_freq)
121 		return;
122 
123 	policy->cur = next_freq;
124 	trace_cpu_frequency(next_freq, smp_processor_id());
125 }
126 
127 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
128 				  unsigned int next_freq)
129 {
130 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
131 		return;
132 
133 	if (!sg_policy->work_in_progress) {
134 		sg_policy->work_in_progress = true;
135 		irq_work_queue(&sg_policy->irq_work);
136 	}
137 }
138 
139 /**
140  * get_next_freq - Compute a new frequency for a given cpufreq policy.
141  * @sg_policy: schedutil policy object to compute the new frequency for.
142  * @util: Current CPU utilization.
143  * @max: CPU capacity.
144  *
145  * If the utilization is frequency-invariant, choose the new frequency to be
146  * proportional to it, that is
147  *
148  * next_freq = C * max_freq * util / max
149  *
150  * Otherwise, approximate the would-be frequency-invariant utilization by
151  * util_raw * (curr_freq / max_freq) which leads to
152  *
153  * next_freq = C * curr_freq * util_raw / max
154  *
155  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
156  *
157  * The lowest driver-supported frequency which is equal or greater than the raw
158  * next_freq (as calculated above) is returned, subject to policy min/max and
159  * cpufreq driver limitations.
160  */
161 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
162 				  unsigned long util, unsigned long max)
163 {
164 	struct cpufreq_policy *policy = sg_policy->policy;
165 	unsigned int freq = arch_scale_freq_invariant() ?
166 				policy->cpuinfo.max_freq : policy->cur;
167 
168 	freq = map_util_freq(util, freq, max);
169 
170 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
171 		return sg_policy->next_freq;
172 
173 	sg_policy->need_freq_update = false;
174 	sg_policy->cached_raw_freq = freq;
175 	return cpufreq_driver_resolve_freq(policy, freq);
176 }
177 
178 /*
179  * This function computes an effective utilization for the given CPU, to be
180  * used for frequency selection given the linear relation: f = u * f_max.
181  *
182  * The scheduler tracks the following metrics:
183  *
184  *   cpu_util_{cfs,rt,dl,irq}()
185  *   cpu_bw_dl()
186  *
187  * Where the cfs,rt and dl util numbers are tracked with the same metric and
188  * synchronized windows and are thus directly comparable.
189  *
190  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
191  * which excludes things like IRQ and steal-time. These latter are then accrued
192  * in the irq utilization.
193  *
194  * The DL bandwidth number otoh is not a measured metric but a value computed
195  * based on the task model parameters and gives the minimal utilization
196  * required to meet deadlines.
197  */
198 unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
199 				  unsigned long max, enum schedutil_type type)
200 {
201 	unsigned long dl_util, util, irq;
202 	struct rq *rq = cpu_rq(cpu);
203 
204 	if (type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt))
205 		return max;
206 
207 	/*
208 	 * Early check to see if IRQ/steal time saturates the CPU, can be
209 	 * because of inaccuracies in how we track these -- see
210 	 * update_irq_load_avg().
211 	 */
212 	irq = cpu_util_irq(rq);
213 	if (unlikely(irq >= max))
214 		return max;
215 
216 	/*
217 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
218 	 * CFS tasks and we use the same metric to track the effective
219 	 * utilization (PELT windows are synchronized) we can directly add them
220 	 * to obtain the CPU's actual utilization.
221 	 */
222 	util = util_cfs;
223 	util += cpu_util_rt(rq);
224 
225 	dl_util = cpu_util_dl(rq);
226 
227 	/*
228 	 * For frequency selection we do not make cpu_util_dl() a permanent part
229 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
230 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
231 	 * that we select f_max when there is no idle time.
232 	 *
233 	 * NOTE: numerical errors or stop class might cause us to not quite hit
234 	 * saturation when we should -- something for later.
235 	 */
236 	if (util + dl_util >= max)
237 		return max;
238 
239 	/*
240 	 * OTOH, for energy computation we need the estimated running time, so
241 	 * include util_dl and ignore dl_bw.
242 	 */
243 	if (type == ENERGY_UTIL)
244 		util += dl_util;
245 
246 	/*
247 	 * There is still idle time; further improve the number by using the
248 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
249 	 * need to scale the task numbers:
250 	 *
251 	 *              1 - irq
252 	 *   U' = irq + ------- * U
253 	 *                max
254 	 */
255 	util = scale_irq_capacity(util, irq, max);
256 	util += irq;
257 
258 	/*
259 	 * Bandwidth required by DEADLINE must always be granted while, for
260 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
261 	 * to gracefully reduce the frequency when no tasks show up for longer
262 	 * periods of time.
263 	 *
264 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
265 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
266 	 * an interface. So, we only do the latter for now.
267 	 */
268 	if (type == FREQUENCY_UTIL)
269 		util += cpu_bw_dl(rq);
270 
271 	return min(max, util);
272 }
273 
274 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
275 {
276 	struct rq *rq = cpu_rq(sg_cpu->cpu);
277 	unsigned long util = cpu_util_cfs(rq);
278 	unsigned long max = arch_scale_cpu_capacity(NULL, sg_cpu->cpu);
279 
280 	sg_cpu->max = max;
281 	sg_cpu->bw_dl = cpu_bw_dl(rq);
282 
283 	return schedutil_freq_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL);
284 }
285 
286 /**
287  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
288  * @sg_cpu: the sugov data for the CPU to boost
289  * @time: the update time from the caller
290  * @set_iowait_boost: true if an IO boost has been requested
291  *
292  * The IO wait boost of a task is disabled after a tick since the last update
293  * of a CPU. If a new IO wait boost is requested after more then a tick, then
294  * we enable the boost starting from the minimum frequency, which improves
295  * energy efficiency by ignoring sporadic wakeups from IO.
296  */
297 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
298 			       bool set_iowait_boost)
299 {
300 	s64 delta_ns = time - sg_cpu->last_update;
301 
302 	/* Reset boost only if a tick has elapsed since last request */
303 	if (delta_ns <= TICK_NSEC)
304 		return false;
305 
306 	sg_cpu->iowait_boost = set_iowait_boost ? sg_cpu->min : 0;
307 	sg_cpu->iowait_boost_pending = set_iowait_boost;
308 
309 	return true;
310 }
311 
312 /**
313  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
314  * @sg_cpu: the sugov data for the CPU to boost
315  * @time: the update time from the caller
316  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
317  *
318  * Each time a task wakes up after an IO operation, the CPU utilization can be
319  * boosted to a certain utilization which doubles at each "frequent and
320  * successive" wakeup from IO, ranging from the utilization of the minimum
321  * OPP to the utilization of the maximum OPP.
322  * To keep doubling, an IO boost has to be requested at least once per tick,
323  * otherwise we restart from the utilization of the minimum OPP.
324  */
325 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
326 			       unsigned int flags)
327 {
328 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
329 
330 	/* Reset boost if the CPU appears to have been idle enough */
331 	if (sg_cpu->iowait_boost &&
332 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
333 		return;
334 
335 	/* Boost only tasks waking up after IO */
336 	if (!set_iowait_boost)
337 		return;
338 
339 	/* Ensure boost doubles only one time at each request */
340 	if (sg_cpu->iowait_boost_pending)
341 		return;
342 	sg_cpu->iowait_boost_pending = true;
343 
344 	/* Double the boost at each request */
345 	if (sg_cpu->iowait_boost) {
346 		sg_cpu->iowait_boost =
347 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
348 		return;
349 	}
350 
351 	/* First wakeup after IO: start with minimum boost */
352 	sg_cpu->iowait_boost = sg_cpu->min;
353 }
354 
355 /**
356  * sugov_iowait_apply() - Apply the IO boost to a CPU.
357  * @sg_cpu: the sugov data for the cpu to boost
358  * @time: the update time from the caller
359  * @util: the utilization to (eventually) boost
360  * @max: the maximum value the utilization can be boosted to
361  *
362  * A CPU running a task which woken up after an IO operation can have its
363  * utilization boosted to speed up the completion of those IO operations.
364  * The IO boost value is increased each time a task wakes up from IO, in
365  * sugov_iowait_apply(), and it's instead decreased by this function,
366  * each time an increase has not been requested (!iowait_boost_pending).
367  *
368  * A CPU which also appears to have been idle for at least one tick has also
369  * its IO boost utilization reset.
370  *
371  * This mechanism is designed to boost high frequently IO waiting tasks, while
372  * being more conservative on tasks which does sporadic IO operations.
373  */
374 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
375 					unsigned long util, unsigned long max)
376 {
377 	unsigned long boost;
378 
379 	/* No boost currently required */
380 	if (!sg_cpu->iowait_boost)
381 		return util;
382 
383 	/* Reset boost if the CPU appears to have been idle enough */
384 	if (sugov_iowait_reset(sg_cpu, time, false))
385 		return util;
386 
387 	if (!sg_cpu->iowait_boost_pending) {
388 		/*
389 		 * No boost pending; reduce the boost value.
390 		 */
391 		sg_cpu->iowait_boost >>= 1;
392 		if (sg_cpu->iowait_boost < sg_cpu->min) {
393 			sg_cpu->iowait_boost = 0;
394 			return util;
395 		}
396 	}
397 
398 	sg_cpu->iowait_boost_pending = false;
399 
400 	/*
401 	 * @util is already in capacity scale; convert iowait_boost
402 	 * into the same scale so we can compare.
403 	 */
404 	boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
405 	return max(boost, util);
406 }
407 
408 #ifdef CONFIG_NO_HZ_COMMON
409 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
410 {
411 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
412 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
413 
414 	sg_cpu->saved_idle_calls = idle_calls;
415 	return ret;
416 }
417 #else
418 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
419 #endif /* CONFIG_NO_HZ_COMMON */
420 
421 /*
422  * Make sugov_should_update_freq() ignore the rate limit when DL
423  * has increased the utilization.
424  */
425 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
426 {
427 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
428 		sg_policy->need_freq_update = true;
429 }
430 
431 static void sugov_update_single(struct update_util_data *hook, u64 time,
432 				unsigned int flags)
433 {
434 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
435 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
436 	unsigned long util, max;
437 	unsigned int next_f;
438 	bool busy;
439 
440 	sugov_iowait_boost(sg_cpu, time, flags);
441 	sg_cpu->last_update = time;
442 
443 	ignore_dl_rate_limit(sg_cpu, sg_policy);
444 
445 	if (!sugov_should_update_freq(sg_policy, time))
446 		return;
447 
448 	busy = sugov_cpu_is_busy(sg_cpu);
449 
450 	util = sugov_get_util(sg_cpu);
451 	max = sg_cpu->max;
452 	util = sugov_iowait_apply(sg_cpu, time, util, max);
453 	next_f = get_next_freq(sg_policy, util, max);
454 	/*
455 	 * Do not reduce the frequency if the CPU has not been idle
456 	 * recently, as the reduction is likely to be premature then.
457 	 */
458 	if (busy && next_f < sg_policy->next_freq) {
459 		next_f = sg_policy->next_freq;
460 
461 		/* Reset cached freq as next_freq has changed */
462 		sg_policy->cached_raw_freq = 0;
463 	}
464 
465 	/*
466 	 * This code runs under rq->lock for the target CPU, so it won't run
467 	 * concurrently on two different CPUs for the same target and it is not
468 	 * necessary to acquire the lock in the fast switch case.
469 	 */
470 	if (sg_policy->policy->fast_switch_enabled) {
471 		sugov_fast_switch(sg_policy, time, next_f);
472 	} else {
473 		raw_spin_lock(&sg_policy->update_lock);
474 		sugov_deferred_update(sg_policy, time, next_f);
475 		raw_spin_unlock(&sg_policy->update_lock);
476 	}
477 }
478 
479 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
480 {
481 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
482 	struct cpufreq_policy *policy = sg_policy->policy;
483 	unsigned long util = 0, max = 1;
484 	unsigned int j;
485 
486 	for_each_cpu(j, policy->cpus) {
487 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
488 		unsigned long j_util, j_max;
489 
490 		j_util = sugov_get_util(j_sg_cpu);
491 		j_max = j_sg_cpu->max;
492 		j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
493 
494 		if (j_util * max > j_max * util) {
495 			util = j_util;
496 			max = j_max;
497 		}
498 	}
499 
500 	return get_next_freq(sg_policy, util, max);
501 }
502 
503 static void
504 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
505 {
506 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
507 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
508 	unsigned int next_f;
509 
510 	raw_spin_lock(&sg_policy->update_lock);
511 
512 	sugov_iowait_boost(sg_cpu, time, flags);
513 	sg_cpu->last_update = time;
514 
515 	ignore_dl_rate_limit(sg_cpu, sg_policy);
516 
517 	if (sugov_should_update_freq(sg_policy, time)) {
518 		next_f = sugov_next_freq_shared(sg_cpu, time);
519 
520 		if (sg_policy->policy->fast_switch_enabled)
521 			sugov_fast_switch(sg_policy, time, next_f);
522 		else
523 			sugov_deferred_update(sg_policy, time, next_f);
524 	}
525 
526 	raw_spin_unlock(&sg_policy->update_lock);
527 }
528 
529 static void sugov_work(struct kthread_work *work)
530 {
531 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
532 	unsigned int freq;
533 	unsigned long flags;
534 
535 	/*
536 	 * Hold sg_policy->update_lock shortly to handle the case where:
537 	 * incase sg_policy->next_freq is read here, and then updated by
538 	 * sugov_deferred_update() just before work_in_progress is set to false
539 	 * here, we may miss queueing the new update.
540 	 *
541 	 * Note: If a work was queued after the update_lock is released,
542 	 * sugov_work() will just be called again by kthread_work code; and the
543 	 * request will be proceed before the sugov thread sleeps.
544 	 */
545 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
546 	freq = sg_policy->next_freq;
547 	sg_policy->work_in_progress = false;
548 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
549 
550 	mutex_lock(&sg_policy->work_lock);
551 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
552 	mutex_unlock(&sg_policy->work_lock);
553 }
554 
555 static void sugov_irq_work(struct irq_work *irq_work)
556 {
557 	struct sugov_policy *sg_policy;
558 
559 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
560 
561 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
562 }
563 
564 /************************** sysfs interface ************************/
565 
566 static struct sugov_tunables *global_tunables;
567 static DEFINE_MUTEX(global_tunables_lock);
568 
569 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
570 {
571 	return container_of(attr_set, struct sugov_tunables, attr_set);
572 }
573 
574 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
575 {
576 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
577 
578 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
579 }
580 
581 static ssize_t
582 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
583 {
584 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
585 	struct sugov_policy *sg_policy;
586 	unsigned int rate_limit_us;
587 
588 	if (kstrtouint(buf, 10, &rate_limit_us))
589 		return -EINVAL;
590 
591 	tunables->rate_limit_us = rate_limit_us;
592 
593 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
594 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
595 
596 	return count;
597 }
598 
599 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
600 
601 static struct attribute *sugov_attributes[] = {
602 	&rate_limit_us.attr,
603 	NULL
604 };
605 
606 static struct kobj_type sugov_tunables_ktype = {
607 	.default_attrs = sugov_attributes,
608 	.sysfs_ops = &governor_sysfs_ops,
609 };
610 
611 /********************** cpufreq governor interface *********************/
612 
613 struct cpufreq_governor schedutil_gov;
614 
615 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
616 {
617 	struct sugov_policy *sg_policy;
618 
619 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
620 	if (!sg_policy)
621 		return NULL;
622 
623 	sg_policy->policy = policy;
624 	raw_spin_lock_init(&sg_policy->update_lock);
625 	return sg_policy;
626 }
627 
628 static void sugov_policy_free(struct sugov_policy *sg_policy)
629 {
630 	kfree(sg_policy);
631 }
632 
633 static int sugov_kthread_create(struct sugov_policy *sg_policy)
634 {
635 	struct task_struct *thread;
636 	struct sched_attr attr = {
637 		.size		= sizeof(struct sched_attr),
638 		.sched_policy	= SCHED_DEADLINE,
639 		.sched_flags	= SCHED_FLAG_SUGOV,
640 		.sched_nice	= 0,
641 		.sched_priority	= 0,
642 		/*
643 		 * Fake (unused) bandwidth; workaround to "fix"
644 		 * priority inheritance.
645 		 */
646 		.sched_runtime	=  1000000,
647 		.sched_deadline = 10000000,
648 		.sched_period	= 10000000,
649 	};
650 	struct cpufreq_policy *policy = sg_policy->policy;
651 	int ret;
652 
653 	/* kthread only required for slow path */
654 	if (policy->fast_switch_enabled)
655 		return 0;
656 
657 	kthread_init_work(&sg_policy->work, sugov_work);
658 	kthread_init_worker(&sg_policy->worker);
659 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
660 				"sugov:%d",
661 				cpumask_first(policy->related_cpus));
662 	if (IS_ERR(thread)) {
663 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
664 		return PTR_ERR(thread);
665 	}
666 
667 	ret = sched_setattr_nocheck(thread, &attr);
668 	if (ret) {
669 		kthread_stop(thread);
670 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
671 		return ret;
672 	}
673 
674 	sg_policy->thread = thread;
675 	kthread_bind_mask(thread, policy->related_cpus);
676 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
677 	mutex_init(&sg_policy->work_lock);
678 
679 	wake_up_process(thread);
680 
681 	return 0;
682 }
683 
684 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
685 {
686 	/* kthread only required for slow path */
687 	if (sg_policy->policy->fast_switch_enabled)
688 		return;
689 
690 	kthread_flush_worker(&sg_policy->worker);
691 	kthread_stop(sg_policy->thread);
692 	mutex_destroy(&sg_policy->work_lock);
693 }
694 
695 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
696 {
697 	struct sugov_tunables *tunables;
698 
699 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
700 	if (tunables) {
701 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
702 		if (!have_governor_per_policy())
703 			global_tunables = tunables;
704 	}
705 	return tunables;
706 }
707 
708 static void sugov_tunables_free(struct sugov_tunables *tunables)
709 {
710 	if (!have_governor_per_policy())
711 		global_tunables = NULL;
712 
713 	kfree(tunables);
714 }
715 
716 static int sugov_init(struct cpufreq_policy *policy)
717 {
718 	struct sugov_policy *sg_policy;
719 	struct sugov_tunables *tunables;
720 	int ret = 0;
721 
722 	/* State should be equivalent to EXIT */
723 	if (policy->governor_data)
724 		return -EBUSY;
725 
726 	cpufreq_enable_fast_switch(policy);
727 
728 	sg_policy = sugov_policy_alloc(policy);
729 	if (!sg_policy) {
730 		ret = -ENOMEM;
731 		goto disable_fast_switch;
732 	}
733 
734 	ret = sugov_kthread_create(sg_policy);
735 	if (ret)
736 		goto free_sg_policy;
737 
738 	mutex_lock(&global_tunables_lock);
739 
740 	if (global_tunables) {
741 		if (WARN_ON(have_governor_per_policy())) {
742 			ret = -EINVAL;
743 			goto stop_kthread;
744 		}
745 		policy->governor_data = sg_policy;
746 		sg_policy->tunables = global_tunables;
747 
748 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
749 		goto out;
750 	}
751 
752 	tunables = sugov_tunables_alloc(sg_policy);
753 	if (!tunables) {
754 		ret = -ENOMEM;
755 		goto stop_kthread;
756 	}
757 
758 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
759 
760 	policy->governor_data = sg_policy;
761 	sg_policy->tunables = tunables;
762 
763 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
764 				   get_governor_parent_kobj(policy), "%s",
765 				   schedutil_gov.name);
766 	if (ret)
767 		goto fail;
768 
769 out:
770 	mutex_unlock(&global_tunables_lock);
771 	return 0;
772 
773 fail:
774 	policy->governor_data = NULL;
775 	sugov_tunables_free(tunables);
776 
777 stop_kthread:
778 	sugov_kthread_stop(sg_policy);
779 	mutex_unlock(&global_tunables_lock);
780 
781 free_sg_policy:
782 	sugov_policy_free(sg_policy);
783 
784 disable_fast_switch:
785 	cpufreq_disable_fast_switch(policy);
786 
787 	pr_err("initialization failed (error %d)\n", ret);
788 	return ret;
789 }
790 
791 static void sugov_exit(struct cpufreq_policy *policy)
792 {
793 	struct sugov_policy *sg_policy = policy->governor_data;
794 	struct sugov_tunables *tunables = sg_policy->tunables;
795 	unsigned int count;
796 
797 	mutex_lock(&global_tunables_lock);
798 
799 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
800 	policy->governor_data = NULL;
801 	if (!count)
802 		sugov_tunables_free(tunables);
803 
804 	mutex_unlock(&global_tunables_lock);
805 
806 	sugov_kthread_stop(sg_policy);
807 	sugov_policy_free(sg_policy);
808 	cpufreq_disable_fast_switch(policy);
809 }
810 
811 static int sugov_start(struct cpufreq_policy *policy)
812 {
813 	struct sugov_policy *sg_policy = policy->governor_data;
814 	unsigned int cpu;
815 
816 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
817 	sg_policy->last_freq_update_time	= 0;
818 	sg_policy->next_freq			= 0;
819 	sg_policy->work_in_progress		= false;
820 	sg_policy->need_freq_update		= false;
821 	sg_policy->cached_raw_freq		= 0;
822 
823 	for_each_cpu(cpu, policy->cpus) {
824 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
825 
826 		memset(sg_cpu, 0, sizeof(*sg_cpu));
827 		sg_cpu->cpu			= cpu;
828 		sg_cpu->sg_policy		= sg_policy;
829 		sg_cpu->min			=
830 			(SCHED_CAPACITY_SCALE * policy->cpuinfo.min_freq) /
831 			policy->cpuinfo.max_freq;
832 	}
833 
834 	for_each_cpu(cpu, policy->cpus) {
835 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
836 
837 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
838 					     policy_is_shared(policy) ?
839 							sugov_update_shared :
840 							sugov_update_single);
841 	}
842 	return 0;
843 }
844 
845 static void sugov_stop(struct cpufreq_policy *policy)
846 {
847 	struct sugov_policy *sg_policy = policy->governor_data;
848 	unsigned int cpu;
849 
850 	for_each_cpu(cpu, policy->cpus)
851 		cpufreq_remove_update_util_hook(cpu);
852 
853 	synchronize_rcu();
854 
855 	if (!policy->fast_switch_enabled) {
856 		irq_work_sync(&sg_policy->irq_work);
857 		kthread_cancel_work_sync(&sg_policy->work);
858 	}
859 }
860 
861 static void sugov_limits(struct cpufreq_policy *policy)
862 {
863 	struct sugov_policy *sg_policy = policy->governor_data;
864 
865 	if (!policy->fast_switch_enabled) {
866 		mutex_lock(&sg_policy->work_lock);
867 		cpufreq_policy_apply_limits(policy);
868 		mutex_unlock(&sg_policy->work_lock);
869 	}
870 
871 	sg_policy->need_freq_update = true;
872 }
873 
874 struct cpufreq_governor schedutil_gov = {
875 	.name			= "schedutil",
876 	.owner			= THIS_MODULE,
877 	.dynamic_switching	= true,
878 	.init			= sugov_init,
879 	.exit			= sugov_exit,
880 	.start			= sugov_start,
881 	.stop			= sugov_stop,
882 	.limits			= sugov_limits,
883 };
884 
885 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
886 struct cpufreq_governor *cpufreq_default_governor(void)
887 {
888 	return &schedutil_gov;
889 }
890 #endif
891 
892 static int __init sugov_register(void)
893 {
894 	return cpufreq_register_governor(&schedutil_gov);
895 }
896 fs_initcall(sugov_register);
897 
898 #ifdef CONFIG_ENERGY_MODEL
899 extern bool sched_energy_update;
900 extern struct mutex sched_energy_mutex;
901 
902 static void rebuild_sd_workfn(struct work_struct *work)
903 {
904 	mutex_lock(&sched_energy_mutex);
905 	sched_energy_update = true;
906 	rebuild_sched_domains();
907 	sched_energy_update = false;
908 	mutex_unlock(&sched_energy_mutex);
909 }
910 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
911 
912 /*
913  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
914  * on governor changes to make sure the scheduler knows about it.
915  */
916 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
917 				  struct cpufreq_governor *old_gov)
918 {
919 	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
920 		/*
921 		 * When called from the cpufreq_register_driver() path, the
922 		 * cpu_hotplug_lock is already held, so use a work item to
923 		 * avoid nested locking in rebuild_sched_domains().
924 		 */
925 		schedule_work(&rebuild_sd_work);
926 	}
927 
928 }
929 #endif
930