xref: /openbmc/linux/kernel/sched/cpufreq_schedutil.c (revision 9235756885e865070c4be2facda75262dbd85967)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * CPUFreq governor based on scheduler-provided CPU utilization data.
4   *
5   * Copyright (C) 2016, Intel Corporation
6   * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7   */
8  
9  #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
10  
11  struct sugov_tunables {
12  	struct gov_attr_set	attr_set;
13  	unsigned int		rate_limit_us;
14  };
15  
16  struct sugov_policy {
17  	struct cpufreq_policy	*policy;
18  
19  	struct sugov_tunables	*tunables;
20  	struct list_head	tunables_hook;
21  
22  	raw_spinlock_t		update_lock;
23  	u64			last_freq_update_time;
24  	s64			freq_update_delay_ns;
25  	unsigned int		next_freq;
26  	unsigned int		cached_raw_freq;
27  
28  	/* The next fields are only needed if fast switch cannot be used: */
29  	struct			irq_work irq_work;
30  	struct			kthread_work work;
31  	struct			mutex work_lock;
32  	struct			kthread_worker worker;
33  	struct task_struct	*thread;
34  	bool			work_in_progress;
35  
36  	bool			limits_changed;
37  	bool			need_freq_update;
38  };
39  
40  struct sugov_cpu {
41  	struct update_util_data	update_util;
42  	struct sugov_policy	*sg_policy;
43  	unsigned int		cpu;
44  
45  	bool			iowait_boost_pending;
46  	unsigned int		iowait_boost;
47  	u64			last_update;
48  
49  	unsigned long		util;
50  	unsigned long		bw_dl;
51  
52  	/* The field below is for single-CPU policies only: */
53  #ifdef CONFIG_NO_HZ_COMMON
54  	unsigned long		saved_idle_calls;
55  #endif
56  };
57  
58  static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59  
60  /************************ Governor internals ***********************/
61  
62  static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63  {
64  	s64 delta_ns;
65  
66  	/*
67  	 * Since cpufreq_update_util() is called with rq->lock held for
68  	 * the @target_cpu, our per-CPU data is fully serialized.
69  	 *
70  	 * However, drivers cannot in general deal with cross-CPU
71  	 * requests, so while get_next_freq() will work, our
72  	 * sugov_update_commit() call may not for the fast switching platforms.
73  	 *
74  	 * Hence stop here for remote requests if they aren't supported
75  	 * by the hardware, as calculating the frequency is pointless if
76  	 * we cannot in fact act on it.
77  	 *
78  	 * This is needed on the slow switching platforms too to prevent CPUs
79  	 * going offline from leaving stale IRQ work items behind.
80  	 */
81  	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82  		return false;
83  
84  	if (unlikely(sg_policy->limits_changed)) {
85  		sg_policy->limits_changed = false;
86  		sg_policy->need_freq_update = true;
87  		return true;
88  	}
89  
90  	delta_ns = time - sg_policy->last_freq_update_time;
91  
92  	return delta_ns >= sg_policy->freq_update_delay_ns;
93  }
94  
95  static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96  				   unsigned int next_freq)
97  {
98  	if (sg_policy->need_freq_update)
99  		sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100  	else if (sg_policy->next_freq == next_freq)
101  		return false;
102  
103  	sg_policy->next_freq = next_freq;
104  	sg_policy->last_freq_update_time = time;
105  
106  	return true;
107  }
108  
109  static void sugov_deferred_update(struct sugov_policy *sg_policy)
110  {
111  	if (!sg_policy->work_in_progress) {
112  		sg_policy->work_in_progress = true;
113  		irq_work_queue(&sg_policy->irq_work);
114  	}
115  }
116  
117  /**
118   * get_next_freq - Compute a new frequency for a given cpufreq policy.
119   * @sg_policy: schedutil policy object to compute the new frequency for.
120   * @util: Current CPU utilization.
121   * @max: CPU capacity.
122   *
123   * If the utilization is frequency-invariant, choose the new frequency to be
124   * proportional to it, that is
125   *
126   * next_freq = C * max_freq * util / max
127   *
128   * Otherwise, approximate the would-be frequency-invariant utilization by
129   * util_raw * (curr_freq / max_freq) which leads to
130   *
131   * next_freq = C * curr_freq * util_raw / max
132   *
133   * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
134   *
135   * The lowest driver-supported frequency which is equal or greater than the raw
136   * next_freq (as calculated above) is returned, subject to policy min/max and
137   * cpufreq driver limitations.
138   */
139  static unsigned int get_next_freq(struct sugov_policy *sg_policy,
140  				  unsigned long util, unsigned long max)
141  {
142  	struct cpufreq_policy *policy = sg_policy->policy;
143  	unsigned int freq = arch_scale_freq_invariant() ?
144  				policy->cpuinfo.max_freq : policy->cur;
145  
146  	util = map_util_perf(util);
147  	freq = map_util_freq(util, freq, max);
148  
149  	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
150  		return sg_policy->next_freq;
151  
152  	sg_policy->cached_raw_freq = freq;
153  	return cpufreq_driver_resolve_freq(policy, freq);
154  }
155  
156  static void sugov_get_util(struct sugov_cpu *sg_cpu)
157  {
158  	struct rq *rq = cpu_rq(sg_cpu->cpu);
159  
160  	sg_cpu->bw_dl = cpu_bw_dl(rq);
161  	sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu),
162  					  FREQUENCY_UTIL, NULL);
163  }
164  
165  /**
166   * sugov_iowait_reset() - Reset the IO boost status of a CPU.
167   * @sg_cpu: the sugov data for the CPU to boost
168   * @time: the update time from the caller
169   * @set_iowait_boost: true if an IO boost has been requested
170   *
171   * The IO wait boost of a task is disabled after a tick since the last update
172   * of a CPU. If a new IO wait boost is requested after more then a tick, then
173   * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
174   * efficiency by ignoring sporadic wakeups from IO.
175   */
176  static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
177  			       bool set_iowait_boost)
178  {
179  	s64 delta_ns = time - sg_cpu->last_update;
180  
181  	/* Reset boost only if a tick has elapsed since last request */
182  	if (delta_ns <= TICK_NSEC)
183  		return false;
184  
185  	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
186  	sg_cpu->iowait_boost_pending = set_iowait_boost;
187  
188  	return true;
189  }
190  
191  /**
192   * sugov_iowait_boost() - Updates the IO boost status of a CPU.
193   * @sg_cpu: the sugov data for the CPU to boost
194   * @time: the update time from the caller
195   * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
196   *
197   * Each time a task wakes up after an IO operation, the CPU utilization can be
198   * boosted to a certain utilization which doubles at each "frequent and
199   * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
200   * of the maximum OPP.
201   *
202   * To keep doubling, an IO boost has to be requested at least once per tick,
203   * otherwise we restart from the utilization of the minimum OPP.
204   */
205  static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
206  			       unsigned int flags)
207  {
208  	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
209  
210  	/* Reset boost if the CPU appears to have been idle enough */
211  	if (sg_cpu->iowait_boost &&
212  	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
213  		return;
214  
215  	/* Boost only tasks waking up after IO */
216  	if (!set_iowait_boost)
217  		return;
218  
219  	/* Ensure boost doubles only one time at each request */
220  	if (sg_cpu->iowait_boost_pending)
221  		return;
222  	sg_cpu->iowait_boost_pending = true;
223  
224  	/* Double the boost at each request */
225  	if (sg_cpu->iowait_boost) {
226  		sg_cpu->iowait_boost =
227  			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
228  		return;
229  	}
230  
231  	/* First wakeup after IO: start with minimum boost */
232  	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
233  }
234  
235  /**
236   * sugov_iowait_apply() - Apply the IO boost to a CPU.
237   * @sg_cpu: the sugov data for the cpu to boost
238   * @time: the update time from the caller
239   * @max_cap: the max CPU capacity
240   *
241   * A CPU running a task which woken up after an IO operation can have its
242   * utilization boosted to speed up the completion of those IO operations.
243   * The IO boost value is increased each time a task wakes up from IO, in
244   * sugov_iowait_apply(), and it's instead decreased by this function,
245   * each time an increase has not been requested (!iowait_boost_pending).
246   *
247   * A CPU which also appears to have been idle for at least one tick has also
248   * its IO boost utilization reset.
249   *
250   * This mechanism is designed to boost high frequently IO waiting tasks, while
251   * being more conservative on tasks which does sporadic IO operations.
252   */
253  static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
254  			       unsigned long max_cap)
255  {
256  	unsigned long boost;
257  
258  	/* No boost currently required */
259  	if (!sg_cpu->iowait_boost)
260  		return;
261  
262  	/* Reset boost if the CPU appears to have been idle enough */
263  	if (sugov_iowait_reset(sg_cpu, time, false))
264  		return;
265  
266  	if (!sg_cpu->iowait_boost_pending) {
267  		/*
268  		 * No boost pending; reduce the boost value.
269  		 */
270  		sg_cpu->iowait_boost >>= 1;
271  		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
272  			sg_cpu->iowait_boost = 0;
273  			return;
274  		}
275  	}
276  
277  	sg_cpu->iowait_boost_pending = false;
278  
279  	/*
280  	 * sg_cpu->util is already in capacity scale; convert iowait_boost
281  	 * into the same scale so we can compare.
282  	 */
283  	boost = (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
284  	boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
285  	if (sg_cpu->util < boost)
286  		sg_cpu->util = boost;
287  }
288  
289  #ifdef CONFIG_NO_HZ_COMMON
290  static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
291  {
292  	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
293  	bool ret = idle_calls == sg_cpu->saved_idle_calls;
294  
295  	sg_cpu->saved_idle_calls = idle_calls;
296  	return ret;
297  }
298  #else
299  static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
300  #endif /* CONFIG_NO_HZ_COMMON */
301  
302  /*
303   * Make sugov_should_update_freq() ignore the rate limit when DL
304   * has increased the utilization.
305   */
306  static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
307  {
308  	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
309  		sg_cpu->sg_policy->limits_changed = true;
310  }
311  
312  static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
313  					      u64 time, unsigned long max_cap,
314  					      unsigned int flags)
315  {
316  	sugov_iowait_boost(sg_cpu, time, flags);
317  	sg_cpu->last_update = time;
318  
319  	ignore_dl_rate_limit(sg_cpu);
320  
321  	if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
322  		return false;
323  
324  	sugov_get_util(sg_cpu);
325  	sugov_iowait_apply(sg_cpu, time, max_cap);
326  
327  	return true;
328  }
329  
330  static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
331  				     unsigned int flags)
332  {
333  	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
334  	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
335  	unsigned int cached_freq = sg_policy->cached_raw_freq;
336  	unsigned long max_cap;
337  	unsigned int next_f;
338  
339  	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
340  
341  	if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
342  		return;
343  
344  	next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
345  	/*
346  	 * Do not reduce the frequency if the CPU has not been idle
347  	 * recently, as the reduction is likely to be premature then.
348  	 *
349  	 * Except when the rq is capped by uclamp_max.
350  	 */
351  	if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
352  	    sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
353  		next_f = sg_policy->next_freq;
354  
355  		/* Restore cached freq as next_freq has changed */
356  		sg_policy->cached_raw_freq = cached_freq;
357  	}
358  
359  	if (!sugov_update_next_freq(sg_policy, time, next_f))
360  		return;
361  
362  	/*
363  	 * This code runs under rq->lock for the target CPU, so it won't run
364  	 * concurrently on two different CPUs for the same target and it is not
365  	 * necessary to acquire the lock in the fast switch case.
366  	 */
367  	if (sg_policy->policy->fast_switch_enabled) {
368  		cpufreq_driver_fast_switch(sg_policy->policy, next_f);
369  	} else {
370  		raw_spin_lock(&sg_policy->update_lock);
371  		sugov_deferred_update(sg_policy);
372  		raw_spin_unlock(&sg_policy->update_lock);
373  	}
374  }
375  
376  static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
377  				     unsigned int flags)
378  {
379  	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
380  	unsigned long prev_util = sg_cpu->util;
381  	unsigned long max_cap;
382  
383  	/*
384  	 * Fall back to the "frequency" path if frequency invariance is not
385  	 * supported, because the direct mapping between the utilization and
386  	 * the performance levels depends on the frequency invariance.
387  	 */
388  	if (!arch_scale_freq_invariant()) {
389  		sugov_update_single_freq(hook, time, flags);
390  		return;
391  	}
392  
393  	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
394  
395  	if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
396  		return;
397  
398  	/*
399  	 * Do not reduce the target performance level if the CPU has not been
400  	 * idle recently, as the reduction is likely to be premature then.
401  	 *
402  	 * Except when the rq is capped by uclamp_max.
403  	 */
404  	if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
405  	    sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
406  		sg_cpu->util = prev_util;
407  
408  	cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
409  				   map_util_perf(sg_cpu->util), max_cap);
410  
411  	sg_cpu->sg_policy->last_freq_update_time = time;
412  }
413  
414  static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
415  {
416  	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
417  	struct cpufreq_policy *policy = sg_policy->policy;
418  	unsigned long util = 0, max_cap;
419  	unsigned int j;
420  
421  	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
422  
423  	for_each_cpu(j, policy->cpus) {
424  		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
425  
426  		sugov_get_util(j_sg_cpu);
427  		sugov_iowait_apply(j_sg_cpu, time, max_cap);
428  
429  		util = max(j_sg_cpu->util, util);
430  	}
431  
432  	return get_next_freq(sg_policy, util, max_cap);
433  }
434  
435  static void
436  sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
437  {
438  	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
439  	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
440  	unsigned int next_f;
441  
442  	raw_spin_lock(&sg_policy->update_lock);
443  
444  	sugov_iowait_boost(sg_cpu, time, flags);
445  	sg_cpu->last_update = time;
446  
447  	ignore_dl_rate_limit(sg_cpu);
448  
449  	if (sugov_should_update_freq(sg_policy, time)) {
450  		next_f = sugov_next_freq_shared(sg_cpu, time);
451  
452  		if (!sugov_update_next_freq(sg_policy, time, next_f))
453  			goto unlock;
454  
455  		if (sg_policy->policy->fast_switch_enabled)
456  			cpufreq_driver_fast_switch(sg_policy->policy, next_f);
457  		else
458  			sugov_deferred_update(sg_policy);
459  	}
460  unlock:
461  	raw_spin_unlock(&sg_policy->update_lock);
462  }
463  
464  static void sugov_work(struct kthread_work *work)
465  {
466  	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
467  	unsigned int freq;
468  	unsigned long flags;
469  
470  	/*
471  	 * Hold sg_policy->update_lock shortly to handle the case where:
472  	 * in case sg_policy->next_freq is read here, and then updated by
473  	 * sugov_deferred_update() just before work_in_progress is set to false
474  	 * here, we may miss queueing the new update.
475  	 *
476  	 * Note: If a work was queued after the update_lock is released,
477  	 * sugov_work() will just be called again by kthread_work code; and the
478  	 * request will be proceed before the sugov thread sleeps.
479  	 */
480  	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
481  	freq = sg_policy->next_freq;
482  	sg_policy->work_in_progress = false;
483  	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
484  
485  	mutex_lock(&sg_policy->work_lock);
486  	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
487  	mutex_unlock(&sg_policy->work_lock);
488  }
489  
490  static void sugov_irq_work(struct irq_work *irq_work)
491  {
492  	struct sugov_policy *sg_policy;
493  
494  	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
495  
496  	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
497  }
498  
499  /************************** sysfs interface ************************/
500  
501  static struct sugov_tunables *global_tunables;
502  static DEFINE_MUTEX(global_tunables_lock);
503  
504  static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
505  {
506  	return container_of(attr_set, struct sugov_tunables, attr_set);
507  }
508  
509  static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
510  {
511  	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
512  
513  	return sprintf(buf, "%u\n", tunables->rate_limit_us);
514  }
515  
516  static ssize_t
517  rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
518  {
519  	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
520  	struct sugov_policy *sg_policy;
521  	unsigned int rate_limit_us;
522  
523  	if (kstrtouint(buf, 10, &rate_limit_us))
524  		return -EINVAL;
525  
526  	tunables->rate_limit_us = rate_limit_us;
527  
528  	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
529  		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
530  
531  	return count;
532  }
533  
534  static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
535  
536  static struct attribute *sugov_attrs[] = {
537  	&rate_limit_us.attr,
538  	NULL
539  };
540  ATTRIBUTE_GROUPS(sugov);
541  
542  static void sugov_tunables_free(struct kobject *kobj)
543  {
544  	struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
545  
546  	kfree(to_sugov_tunables(attr_set));
547  }
548  
549  static const struct kobj_type sugov_tunables_ktype = {
550  	.default_groups = sugov_groups,
551  	.sysfs_ops = &governor_sysfs_ops,
552  	.release = &sugov_tunables_free,
553  };
554  
555  /********************** cpufreq governor interface *********************/
556  
557  struct cpufreq_governor schedutil_gov;
558  
559  static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
560  {
561  	struct sugov_policy *sg_policy;
562  
563  	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
564  	if (!sg_policy)
565  		return NULL;
566  
567  	sg_policy->policy = policy;
568  	raw_spin_lock_init(&sg_policy->update_lock);
569  	return sg_policy;
570  }
571  
572  static void sugov_policy_free(struct sugov_policy *sg_policy)
573  {
574  	kfree(sg_policy);
575  }
576  
577  static int sugov_kthread_create(struct sugov_policy *sg_policy)
578  {
579  	struct task_struct *thread;
580  	struct sched_attr attr = {
581  		.size		= sizeof(struct sched_attr),
582  		.sched_policy	= SCHED_DEADLINE,
583  		.sched_flags	= SCHED_FLAG_SUGOV,
584  		.sched_nice	= 0,
585  		.sched_priority	= 0,
586  		/*
587  		 * Fake (unused) bandwidth; workaround to "fix"
588  		 * priority inheritance.
589  		 */
590  		.sched_runtime	=  1000000,
591  		.sched_deadline = 10000000,
592  		.sched_period	= 10000000,
593  	};
594  	struct cpufreq_policy *policy = sg_policy->policy;
595  	int ret;
596  
597  	/* kthread only required for slow path */
598  	if (policy->fast_switch_enabled)
599  		return 0;
600  
601  	kthread_init_work(&sg_policy->work, sugov_work);
602  	kthread_init_worker(&sg_policy->worker);
603  	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
604  				"sugov:%d",
605  				cpumask_first(policy->related_cpus));
606  	if (IS_ERR(thread)) {
607  		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
608  		return PTR_ERR(thread);
609  	}
610  
611  	ret = sched_setattr_nocheck(thread, &attr);
612  	if (ret) {
613  		kthread_stop(thread);
614  		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
615  		return ret;
616  	}
617  
618  	sg_policy->thread = thread;
619  	kthread_bind_mask(thread, policy->related_cpus);
620  	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
621  	mutex_init(&sg_policy->work_lock);
622  
623  	wake_up_process(thread);
624  
625  	return 0;
626  }
627  
628  static void sugov_kthread_stop(struct sugov_policy *sg_policy)
629  {
630  	/* kthread only required for slow path */
631  	if (sg_policy->policy->fast_switch_enabled)
632  		return;
633  
634  	kthread_flush_worker(&sg_policy->worker);
635  	kthread_stop(sg_policy->thread);
636  	mutex_destroy(&sg_policy->work_lock);
637  }
638  
639  static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
640  {
641  	struct sugov_tunables *tunables;
642  
643  	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
644  	if (tunables) {
645  		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
646  		if (!have_governor_per_policy())
647  			global_tunables = tunables;
648  	}
649  	return tunables;
650  }
651  
652  static void sugov_clear_global_tunables(void)
653  {
654  	if (!have_governor_per_policy())
655  		global_tunables = NULL;
656  }
657  
658  static int sugov_init(struct cpufreq_policy *policy)
659  {
660  	struct sugov_policy *sg_policy;
661  	struct sugov_tunables *tunables;
662  	int ret = 0;
663  
664  	/* State should be equivalent to EXIT */
665  	if (policy->governor_data)
666  		return -EBUSY;
667  
668  	cpufreq_enable_fast_switch(policy);
669  
670  	sg_policy = sugov_policy_alloc(policy);
671  	if (!sg_policy) {
672  		ret = -ENOMEM;
673  		goto disable_fast_switch;
674  	}
675  
676  	ret = sugov_kthread_create(sg_policy);
677  	if (ret)
678  		goto free_sg_policy;
679  
680  	mutex_lock(&global_tunables_lock);
681  
682  	if (global_tunables) {
683  		if (WARN_ON(have_governor_per_policy())) {
684  			ret = -EINVAL;
685  			goto stop_kthread;
686  		}
687  		policy->governor_data = sg_policy;
688  		sg_policy->tunables = global_tunables;
689  
690  		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
691  		goto out;
692  	}
693  
694  	tunables = sugov_tunables_alloc(sg_policy);
695  	if (!tunables) {
696  		ret = -ENOMEM;
697  		goto stop_kthread;
698  	}
699  
700  	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
701  
702  	policy->governor_data = sg_policy;
703  	sg_policy->tunables = tunables;
704  
705  	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
706  				   get_governor_parent_kobj(policy), "%s",
707  				   schedutil_gov.name);
708  	if (ret)
709  		goto fail;
710  
711  out:
712  	mutex_unlock(&global_tunables_lock);
713  	return 0;
714  
715  fail:
716  	kobject_put(&tunables->attr_set.kobj);
717  	policy->governor_data = NULL;
718  	sugov_clear_global_tunables();
719  
720  stop_kthread:
721  	sugov_kthread_stop(sg_policy);
722  	mutex_unlock(&global_tunables_lock);
723  
724  free_sg_policy:
725  	sugov_policy_free(sg_policy);
726  
727  disable_fast_switch:
728  	cpufreq_disable_fast_switch(policy);
729  
730  	pr_err("initialization failed (error %d)\n", ret);
731  	return ret;
732  }
733  
734  static void sugov_exit(struct cpufreq_policy *policy)
735  {
736  	struct sugov_policy *sg_policy = policy->governor_data;
737  	struct sugov_tunables *tunables = sg_policy->tunables;
738  	unsigned int count;
739  
740  	mutex_lock(&global_tunables_lock);
741  
742  	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
743  	policy->governor_data = NULL;
744  	if (!count)
745  		sugov_clear_global_tunables();
746  
747  	mutex_unlock(&global_tunables_lock);
748  
749  	sugov_kthread_stop(sg_policy);
750  	sugov_policy_free(sg_policy);
751  	cpufreq_disable_fast_switch(policy);
752  }
753  
754  static int sugov_start(struct cpufreq_policy *policy)
755  {
756  	struct sugov_policy *sg_policy = policy->governor_data;
757  	void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
758  	unsigned int cpu;
759  
760  	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
761  	sg_policy->last_freq_update_time	= 0;
762  	sg_policy->next_freq			= 0;
763  	sg_policy->work_in_progress		= false;
764  	sg_policy->limits_changed		= false;
765  	sg_policy->cached_raw_freq		= 0;
766  
767  	sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
768  
769  	for_each_cpu(cpu, policy->cpus) {
770  		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
771  
772  		memset(sg_cpu, 0, sizeof(*sg_cpu));
773  		sg_cpu->cpu			= cpu;
774  		sg_cpu->sg_policy		= sg_policy;
775  	}
776  
777  	if (policy_is_shared(policy))
778  		uu = sugov_update_shared;
779  	else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
780  		uu = sugov_update_single_perf;
781  	else
782  		uu = sugov_update_single_freq;
783  
784  	for_each_cpu(cpu, policy->cpus) {
785  		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
786  
787  		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
788  	}
789  	return 0;
790  }
791  
792  static void sugov_stop(struct cpufreq_policy *policy)
793  {
794  	struct sugov_policy *sg_policy = policy->governor_data;
795  	unsigned int cpu;
796  
797  	for_each_cpu(cpu, policy->cpus)
798  		cpufreq_remove_update_util_hook(cpu);
799  
800  	synchronize_rcu();
801  
802  	if (!policy->fast_switch_enabled) {
803  		irq_work_sync(&sg_policy->irq_work);
804  		kthread_cancel_work_sync(&sg_policy->work);
805  	}
806  }
807  
808  static void sugov_limits(struct cpufreq_policy *policy)
809  {
810  	struct sugov_policy *sg_policy = policy->governor_data;
811  
812  	if (!policy->fast_switch_enabled) {
813  		mutex_lock(&sg_policy->work_lock);
814  		cpufreq_policy_apply_limits(policy);
815  		mutex_unlock(&sg_policy->work_lock);
816  	}
817  
818  	sg_policy->limits_changed = true;
819  }
820  
821  struct cpufreq_governor schedutil_gov = {
822  	.name			= "schedutil",
823  	.owner			= THIS_MODULE,
824  	.flags			= CPUFREQ_GOV_DYNAMIC_SWITCHING,
825  	.init			= sugov_init,
826  	.exit			= sugov_exit,
827  	.start			= sugov_start,
828  	.stop			= sugov_stop,
829  	.limits			= sugov_limits,
830  };
831  
832  #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
833  struct cpufreq_governor *cpufreq_default_governor(void)
834  {
835  	return &schedutil_gov;
836  }
837  #endif
838  
839  cpufreq_governor_init(schedutil_gov);
840  
841  #ifdef CONFIG_ENERGY_MODEL
842  static void rebuild_sd_workfn(struct work_struct *work)
843  {
844  	rebuild_sched_domains_energy();
845  }
846  static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
847  
848  /*
849   * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
850   * on governor changes to make sure the scheduler knows about it.
851   */
852  void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
853  				  struct cpufreq_governor *old_gov)
854  {
855  	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
856  		/*
857  		 * When called from the cpufreq_register_driver() path, the
858  		 * cpu_hotplug_lock is already held, so use a work item to
859  		 * avoid nested locking in rebuild_sched_domains().
860  		 */
861  		schedule_work(&rebuild_sd_work);
862  	}
863  
864  }
865  #endif
866