1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include "sched.h"
12 
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15 
16 #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
17 
18 struct sugov_tunables {
19 	struct gov_attr_set	attr_set;
20 	unsigned int		rate_limit_us;
21 };
22 
23 struct sugov_policy {
24 	struct cpufreq_policy	*policy;
25 
26 	struct sugov_tunables	*tunables;
27 	struct list_head	tunables_hook;
28 
29 	raw_spinlock_t		update_lock;	/* For shared policies */
30 	u64			last_freq_update_time;
31 	s64			freq_update_delay_ns;
32 	unsigned int		next_freq;
33 	unsigned int		cached_raw_freq;
34 
35 	/* The next fields are only needed if fast switch cannot be used: */
36 	struct			irq_work irq_work;
37 	struct			kthread_work work;
38 	struct			mutex work_lock;
39 	struct			kthread_worker worker;
40 	struct task_struct	*thread;
41 	bool			work_in_progress;
42 
43 	bool			limits_changed;
44 	bool			need_freq_update;
45 };
46 
47 struct sugov_cpu {
48 	struct update_util_data	update_util;
49 	struct sugov_policy	*sg_policy;
50 	unsigned int		cpu;
51 
52 	bool			iowait_boost_pending;
53 	unsigned int		iowait_boost;
54 	u64			last_update;
55 
56 	unsigned long		bw_dl;
57 	unsigned long		max;
58 
59 	/* The field below is for single-CPU policies only: */
60 #ifdef CONFIG_NO_HZ_COMMON
61 	unsigned long		saved_idle_calls;
62 #endif
63 };
64 
65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
66 
67 /************************ Governor internals ***********************/
68 
69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
70 {
71 	s64 delta_ns;
72 
73 	/*
74 	 * Since cpufreq_update_util() is called with rq->lock held for
75 	 * the @target_cpu, our per-CPU data is fully serialized.
76 	 *
77 	 * However, drivers cannot in general deal with cross-CPU
78 	 * requests, so while get_next_freq() will work, our
79 	 * sugov_update_commit() call may not for the fast switching platforms.
80 	 *
81 	 * Hence stop here for remote requests if they aren't supported
82 	 * by the hardware, as calculating the frequency is pointless if
83 	 * we cannot in fact act on it.
84 	 *
85 	 * For the slow switching platforms, the kthread is always scheduled on
86 	 * the right set of CPUs and any CPU can find the next frequency and
87 	 * schedule the kthread.
88 	 */
89 	if (sg_policy->policy->fast_switch_enabled &&
90 	    !cpufreq_this_cpu_can_update(sg_policy->policy))
91 		return false;
92 
93 	if (unlikely(sg_policy->limits_changed)) {
94 		sg_policy->limits_changed = false;
95 		sg_policy->need_freq_update = true;
96 		return true;
97 	}
98 
99 	delta_ns = time - sg_policy->last_freq_update_time;
100 
101 	return delta_ns >= sg_policy->freq_update_delay_ns;
102 }
103 
104 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
105 				   unsigned int next_freq)
106 {
107 	if (sg_policy->next_freq == next_freq)
108 		return false;
109 
110 	sg_policy->next_freq = next_freq;
111 	sg_policy->last_freq_update_time = time;
112 
113 	return true;
114 }
115 
116 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
117 			      unsigned int next_freq)
118 {
119 	struct cpufreq_policy *policy = sg_policy->policy;
120 
121 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
122 		return;
123 
124 	next_freq = cpufreq_driver_fast_switch(policy, next_freq);
125 	if (!next_freq)
126 		return;
127 
128 	policy->cur = next_freq;
129 	trace_cpu_frequency(next_freq, smp_processor_id());
130 }
131 
132 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
133 				  unsigned int next_freq)
134 {
135 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
136 		return;
137 
138 	if (!sg_policy->work_in_progress) {
139 		sg_policy->work_in_progress = true;
140 		irq_work_queue(&sg_policy->irq_work);
141 	}
142 }
143 
144 /**
145  * get_next_freq - Compute a new frequency for a given cpufreq policy.
146  * @sg_policy: schedutil policy object to compute the new frequency for.
147  * @util: Current CPU utilization.
148  * @max: CPU capacity.
149  *
150  * If the utilization is frequency-invariant, choose the new frequency to be
151  * proportional to it, that is
152  *
153  * next_freq = C * max_freq * util / max
154  *
155  * Otherwise, approximate the would-be frequency-invariant utilization by
156  * util_raw * (curr_freq / max_freq) which leads to
157  *
158  * next_freq = C * curr_freq * util_raw / max
159  *
160  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
161  *
162  * The lowest driver-supported frequency which is equal or greater than the raw
163  * next_freq (as calculated above) is returned, subject to policy min/max and
164  * cpufreq driver limitations.
165  */
166 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
167 				  unsigned long util, unsigned long max)
168 {
169 	struct cpufreq_policy *policy = sg_policy->policy;
170 	unsigned int freq = arch_scale_freq_invariant() ?
171 				policy->cpuinfo.max_freq : policy->cur;
172 
173 	freq = map_util_freq(util, freq, max);
174 
175 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
176 		return sg_policy->next_freq;
177 
178 	sg_policy->need_freq_update = false;
179 	sg_policy->cached_raw_freq = freq;
180 	return cpufreq_driver_resolve_freq(policy, freq);
181 }
182 
183 /*
184  * This function computes an effective utilization for the given CPU, to be
185  * used for frequency selection given the linear relation: f = u * f_max.
186  *
187  * The scheduler tracks the following metrics:
188  *
189  *   cpu_util_{cfs,rt,dl,irq}()
190  *   cpu_bw_dl()
191  *
192  * Where the cfs,rt and dl util numbers are tracked with the same metric and
193  * synchronized windows and are thus directly comparable.
194  *
195  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
196  * which excludes things like IRQ and steal-time. These latter are then accrued
197  * in the irq utilization.
198  *
199  * The DL bandwidth number otoh is not a measured metric but a value computed
200  * based on the task model parameters and gives the minimal utilization
201  * required to meet deadlines.
202  */
203 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
204 				 unsigned long max, enum schedutil_type type,
205 				 struct task_struct *p)
206 {
207 	unsigned long dl_util, util, irq;
208 	struct rq *rq = cpu_rq(cpu);
209 
210 	if (!IS_BUILTIN(CONFIG_UCLAMP_TASK) &&
211 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
212 		return max;
213 	}
214 
215 	/*
216 	 * Early check to see if IRQ/steal time saturates the CPU, can be
217 	 * because of inaccuracies in how we track these -- see
218 	 * update_irq_load_avg().
219 	 */
220 	irq = cpu_util_irq(rq);
221 	if (unlikely(irq >= max))
222 		return max;
223 
224 	/*
225 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
226 	 * CFS tasks and we use the same metric to track the effective
227 	 * utilization (PELT windows are synchronized) we can directly add them
228 	 * to obtain the CPU's actual utilization.
229 	 *
230 	 * CFS and RT utilization can be boosted or capped, depending on
231 	 * utilization clamp constraints requested by currently RUNNABLE
232 	 * tasks.
233 	 * When there are no CFS RUNNABLE tasks, clamps are released and
234 	 * frequency will be gracefully reduced with the utilization decay.
235 	 */
236 	util = util_cfs + cpu_util_rt(rq);
237 	if (type == FREQUENCY_UTIL)
238 		util = uclamp_util_with(rq, util, p);
239 
240 	dl_util = cpu_util_dl(rq);
241 
242 	/*
243 	 * For frequency selection we do not make cpu_util_dl() a permanent part
244 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
245 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
246 	 * that we select f_max when there is no idle time.
247 	 *
248 	 * NOTE: numerical errors or stop class might cause us to not quite hit
249 	 * saturation when we should -- something for later.
250 	 */
251 	if (util + dl_util >= max)
252 		return max;
253 
254 	/*
255 	 * OTOH, for energy computation we need the estimated running time, so
256 	 * include util_dl and ignore dl_bw.
257 	 */
258 	if (type == ENERGY_UTIL)
259 		util += dl_util;
260 
261 	/*
262 	 * There is still idle time; further improve the number by using the
263 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
264 	 * need to scale the task numbers:
265 	 *
266 	 *              1 - irq
267 	 *   U' = irq + ------- * U
268 	 *                max
269 	 */
270 	util = scale_irq_capacity(util, irq, max);
271 	util += irq;
272 
273 	/*
274 	 * Bandwidth required by DEADLINE must always be granted while, for
275 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
276 	 * to gracefully reduce the frequency when no tasks show up for longer
277 	 * periods of time.
278 	 *
279 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
280 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
281 	 * an interface. So, we only do the latter for now.
282 	 */
283 	if (type == FREQUENCY_UTIL)
284 		util += cpu_bw_dl(rq);
285 
286 	return min(max, util);
287 }
288 
289 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
290 {
291 	struct rq *rq = cpu_rq(sg_cpu->cpu);
292 	unsigned long util = cpu_util_cfs(rq);
293 	unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
294 
295 	sg_cpu->max = max;
296 	sg_cpu->bw_dl = cpu_bw_dl(rq);
297 
298 	return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
299 }
300 
301 /**
302  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
303  * @sg_cpu: the sugov data for the CPU to boost
304  * @time: the update time from the caller
305  * @set_iowait_boost: true if an IO boost has been requested
306  *
307  * The IO wait boost of a task is disabled after a tick since the last update
308  * of a CPU. If a new IO wait boost is requested after more then a tick, then
309  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
310  * efficiency by ignoring sporadic wakeups from IO.
311  */
312 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
313 			       bool set_iowait_boost)
314 {
315 	s64 delta_ns = time - sg_cpu->last_update;
316 
317 	/* Reset boost only if a tick has elapsed since last request */
318 	if (delta_ns <= TICK_NSEC)
319 		return false;
320 
321 	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
322 	sg_cpu->iowait_boost_pending = set_iowait_boost;
323 
324 	return true;
325 }
326 
327 /**
328  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
329  * @sg_cpu: the sugov data for the CPU to boost
330  * @time: the update time from the caller
331  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
332  *
333  * Each time a task wakes up after an IO operation, the CPU utilization can be
334  * boosted to a certain utilization which doubles at each "frequent and
335  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
336  * of the maximum OPP.
337  *
338  * To keep doubling, an IO boost has to be requested at least once per tick,
339  * otherwise we restart from the utilization of the minimum OPP.
340  */
341 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
342 			       unsigned int flags)
343 {
344 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
345 
346 	/* Reset boost if the CPU appears to have been idle enough */
347 	if (sg_cpu->iowait_boost &&
348 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
349 		return;
350 
351 	/* Boost only tasks waking up after IO */
352 	if (!set_iowait_boost)
353 		return;
354 
355 	/* Ensure boost doubles only one time at each request */
356 	if (sg_cpu->iowait_boost_pending)
357 		return;
358 	sg_cpu->iowait_boost_pending = true;
359 
360 	/* Double the boost at each request */
361 	if (sg_cpu->iowait_boost) {
362 		sg_cpu->iowait_boost =
363 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
364 		return;
365 	}
366 
367 	/* First wakeup after IO: start with minimum boost */
368 	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
369 }
370 
371 /**
372  * sugov_iowait_apply() - Apply the IO boost to a CPU.
373  * @sg_cpu: the sugov data for the cpu to boost
374  * @time: the update time from the caller
375  * @util: the utilization to (eventually) boost
376  * @max: the maximum value the utilization can be boosted to
377  *
378  * A CPU running a task which woken up after an IO operation can have its
379  * utilization boosted to speed up the completion of those IO operations.
380  * The IO boost value is increased each time a task wakes up from IO, in
381  * sugov_iowait_apply(), and it's instead decreased by this function,
382  * each time an increase has not been requested (!iowait_boost_pending).
383  *
384  * A CPU which also appears to have been idle for at least one tick has also
385  * its IO boost utilization reset.
386  *
387  * This mechanism is designed to boost high frequently IO waiting tasks, while
388  * being more conservative on tasks which does sporadic IO operations.
389  */
390 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
391 					unsigned long util, unsigned long max)
392 {
393 	unsigned long boost;
394 
395 	/* No boost currently required */
396 	if (!sg_cpu->iowait_boost)
397 		return util;
398 
399 	/* Reset boost if the CPU appears to have been idle enough */
400 	if (sugov_iowait_reset(sg_cpu, time, false))
401 		return util;
402 
403 	if (!sg_cpu->iowait_boost_pending) {
404 		/*
405 		 * No boost pending; reduce the boost value.
406 		 */
407 		sg_cpu->iowait_boost >>= 1;
408 		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
409 			sg_cpu->iowait_boost = 0;
410 			return util;
411 		}
412 	}
413 
414 	sg_cpu->iowait_boost_pending = false;
415 
416 	/*
417 	 * @util is already in capacity scale; convert iowait_boost
418 	 * into the same scale so we can compare.
419 	 */
420 	boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
421 	return max(boost, util);
422 }
423 
424 #ifdef CONFIG_NO_HZ_COMMON
425 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
426 {
427 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
428 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
429 
430 	sg_cpu->saved_idle_calls = idle_calls;
431 	return ret;
432 }
433 #else
434 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
435 #endif /* CONFIG_NO_HZ_COMMON */
436 
437 /*
438  * Make sugov_should_update_freq() ignore the rate limit when DL
439  * has increased the utilization.
440  */
441 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
442 {
443 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
444 		sg_policy->limits_changed = true;
445 }
446 
447 static void sugov_update_single(struct update_util_data *hook, u64 time,
448 				unsigned int flags)
449 {
450 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
451 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
452 	unsigned long util, max;
453 	unsigned int next_f;
454 	bool busy;
455 
456 	sugov_iowait_boost(sg_cpu, time, flags);
457 	sg_cpu->last_update = time;
458 
459 	ignore_dl_rate_limit(sg_cpu, sg_policy);
460 
461 	if (!sugov_should_update_freq(sg_policy, time))
462 		return;
463 
464 	/* Limits may have changed, don't skip frequency update */
465 	busy = !sg_policy->need_freq_update && sugov_cpu_is_busy(sg_cpu);
466 
467 	util = sugov_get_util(sg_cpu);
468 	max = sg_cpu->max;
469 	util = sugov_iowait_apply(sg_cpu, time, util, max);
470 	next_f = get_next_freq(sg_policy, util, max);
471 	/*
472 	 * Do not reduce the frequency if the CPU has not been idle
473 	 * recently, as the reduction is likely to be premature then.
474 	 */
475 	if (busy && next_f < sg_policy->next_freq) {
476 		next_f = sg_policy->next_freq;
477 
478 		/* Reset cached freq as next_freq has changed */
479 		sg_policy->cached_raw_freq = 0;
480 	}
481 
482 	/*
483 	 * This code runs under rq->lock for the target CPU, so it won't run
484 	 * concurrently on two different CPUs for the same target and it is not
485 	 * necessary to acquire the lock in the fast switch case.
486 	 */
487 	if (sg_policy->policy->fast_switch_enabled) {
488 		sugov_fast_switch(sg_policy, time, next_f);
489 	} else {
490 		raw_spin_lock(&sg_policy->update_lock);
491 		sugov_deferred_update(sg_policy, time, next_f);
492 		raw_spin_unlock(&sg_policy->update_lock);
493 	}
494 }
495 
496 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
497 {
498 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
499 	struct cpufreq_policy *policy = sg_policy->policy;
500 	unsigned long util = 0, max = 1;
501 	unsigned int j;
502 
503 	for_each_cpu(j, policy->cpus) {
504 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
505 		unsigned long j_util, j_max;
506 
507 		j_util = sugov_get_util(j_sg_cpu);
508 		j_max = j_sg_cpu->max;
509 		j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
510 
511 		if (j_util * max > j_max * util) {
512 			util = j_util;
513 			max = j_max;
514 		}
515 	}
516 
517 	return get_next_freq(sg_policy, util, max);
518 }
519 
520 static void
521 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
522 {
523 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
524 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
525 	unsigned int next_f;
526 
527 	raw_spin_lock(&sg_policy->update_lock);
528 
529 	sugov_iowait_boost(sg_cpu, time, flags);
530 	sg_cpu->last_update = time;
531 
532 	ignore_dl_rate_limit(sg_cpu, sg_policy);
533 
534 	if (sugov_should_update_freq(sg_policy, time)) {
535 		next_f = sugov_next_freq_shared(sg_cpu, time);
536 
537 		if (sg_policy->policy->fast_switch_enabled)
538 			sugov_fast_switch(sg_policy, time, next_f);
539 		else
540 			sugov_deferred_update(sg_policy, time, next_f);
541 	}
542 
543 	raw_spin_unlock(&sg_policy->update_lock);
544 }
545 
546 static void sugov_work(struct kthread_work *work)
547 {
548 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
549 	unsigned int freq;
550 	unsigned long flags;
551 
552 	/*
553 	 * Hold sg_policy->update_lock shortly to handle the case where:
554 	 * incase sg_policy->next_freq is read here, and then updated by
555 	 * sugov_deferred_update() just before work_in_progress is set to false
556 	 * here, we may miss queueing the new update.
557 	 *
558 	 * Note: If a work was queued after the update_lock is released,
559 	 * sugov_work() will just be called again by kthread_work code; and the
560 	 * request will be proceed before the sugov thread sleeps.
561 	 */
562 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
563 	freq = sg_policy->next_freq;
564 	sg_policy->work_in_progress = false;
565 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
566 
567 	mutex_lock(&sg_policy->work_lock);
568 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
569 	mutex_unlock(&sg_policy->work_lock);
570 }
571 
572 static void sugov_irq_work(struct irq_work *irq_work)
573 {
574 	struct sugov_policy *sg_policy;
575 
576 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
577 
578 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
579 }
580 
581 /************************** sysfs interface ************************/
582 
583 static struct sugov_tunables *global_tunables;
584 static DEFINE_MUTEX(global_tunables_lock);
585 
586 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
587 {
588 	return container_of(attr_set, struct sugov_tunables, attr_set);
589 }
590 
591 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
592 {
593 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
594 
595 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
596 }
597 
598 static ssize_t
599 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
600 {
601 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
602 	struct sugov_policy *sg_policy;
603 	unsigned int rate_limit_us;
604 
605 	if (kstrtouint(buf, 10, &rate_limit_us))
606 		return -EINVAL;
607 
608 	tunables->rate_limit_us = rate_limit_us;
609 
610 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
611 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
612 
613 	return count;
614 }
615 
616 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
617 
618 static struct attribute *sugov_attrs[] = {
619 	&rate_limit_us.attr,
620 	NULL
621 };
622 ATTRIBUTE_GROUPS(sugov);
623 
624 static struct kobj_type sugov_tunables_ktype = {
625 	.default_groups = sugov_groups,
626 	.sysfs_ops = &governor_sysfs_ops,
627 };
628 
629 /********************** cpufreq governor interface *********************/
630 
631 struct cpufreq_governor schedutil_gov;
632 
633 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
634 {
635 	struct sugov_policy *sg_policy;
636 
637 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
638 	if (!sg_policy)
639 		return NULL;
640 
641 	sg_policy->policy = policy;
642 	raw_spin_lock_init(&sg_policy->update_lock);
643 	return sg_policy;
644 }
645 
646 static void sugov_policy_free(struct sugov_policy *sg_policy)
647 {
648 	kfree(sg_policy);
649 }
650 
651 static int sugov_kthread_create(struct sugov_policy *sg_policy)
652 {
653 	struct task_struct *thread;
654 	struct sched_attr attr = {
655 		.size		= sizeof(struct sched_attr),
656 		.sched_policy	= SCHED_DEADLINE,
657 		.sched_flags	= SCHED_FLAG_SUGOV,
658 		.sched_nice	= 0,
659 		.sched_priority	= 0,
660 		/*
661 		 * Fake (unused) bandwidth; workaround to "fix"
662 		 * priority inheritance.
663 		 */
664 		.sched_runtime	=  1000000,
665 		.sched_deadline = 10000000,
666 		.sched_period	= 10000000,
667 	};
668 	struct cpufreq_policy *policy = sg_policy->policy;
669 	int ret;
670 
671 	/* kthread only required for slow path */
672 	if (policy->fast_switch_enabled)
673 		return 0;
674 
675 	kthread_init_work(&sg_policy->work, sugov_work);
676 	kthread_init_worker(&sg_policy->worker);
677 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
678 				"sugov:%d",
679 				cpumask_first(policy->related_cpus));
680 	if (IS_ERR(thread)) {
681 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
682 		return PTR_ERR(thread);
683 	}
684 
685 	ret = sched_setattr_nocheck(thread, &attr);
686 	if (ret) {
687 		kthread_stop(thread);
688 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
689 		return ret;
690 	}
691 
692 	sg_policy->thread = thread;
693 	kthread_bind_mask(thread, policy->related_cpus);
694 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
695 	mutex_init(&sg_policy->work_lock);
696 
697 	wake_up_process(thread);
698 
699 	return 0;
700 }
701 
702 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
703 {
704 	/* kthread only required for slow path */
705 	if (sg_policy->policy->fast_switch_enabled)
706 		return;
707 
708 	kthread_flush_worker(&sg_policy->worker);
709 	kthread_stop(sg_policy->thread);
710 	mutex_destroy(&sg_policy->work_lock);
711 }
712 
713 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
714 {
715 	struct sugov_tunables *tunables;
716 
717 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
718 	if (tunables) {
719 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
720 		if (!have_governor_per_policy())
721 			global_tunables = tunables;
722 	}
723 	return tunables;
724 }
725 
726 static void sugov_tunables_free(struct sugov_tunables *tunables)
727 {
728 	if (!have_governor_per_policy())
729 		global_tunables = NULL;
730 
731 	kfree(tunables);
732 }
733 
734 static int sugov_init(struct cpufreq_policy *policy)
735 {
736 	struct sugov_policy *sg_policy;
737 	struct sugov_tunables *tunables;
738 	int ret = 0;
739 
740 	/* State should be equivalent to EXIT */
741 	if (policy->governor_data)
742 		return -EBUSY;
743 
744 	cpufreq_enable_fast_switch(policy);
745 
746 	sg_policy = sugov_policy_alloc(policy);
747 	if (!sg_policy) {
748 		ret = -ENOMEM;
749 		goto disable_fast_switch;
750 	}
751 
752 	ret = sugov_kthread_create(sg_policy);
753 	if (ret)
754 		goto free_sg_policy;
755 
756 	mutex_lock(&global_tunables_lock);
757 
758 	if (global_tunables) {
759 		if (WARN_ON(have_governor_per_policy())) {
760 			ret = -EINVAL;
761 			goto stop_kthread;
762 		}
763 		policy->governor_data = sg_policy;
764 		sg_policy->tunables = global_tunables;
765 
766 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
767 		goto out;
768 	}
769 
770 	tunables = sugov_tunables_alloc(sg_policy);
771 	if (!tunables) {
772 		ret = -ENOMEM;
773 		goto stop_kthread;
774 	}
775 
776 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
777 
778 	policy->governor_data = sg_policy;
779 	sg_policy->tunables = tunables;
780 
781 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
782 				   get_governor_parent_kobj(policy), "%s",
783 				   schedutil_gov.name);
784 	if (ret)
785 		goto fail;
786 
787 out:
788 	mutex_unlock(&global_tunables_lock);
789 	return 0;
790 
791 fail:
792 	kobject_put(&tunables->attr_set.kobj);
793 	policy->governor_data = NULL;
794 	sugov_tunables_free(tunables);
795 
796 stop_kthread:
797 	sugov_kthread_stop(sg_policy);
798 	mutex_unlock(&global_tunables_lock);
799 
800 free_sg_policy:
801 	sugov_policy_free(sg_policy);
802 
803 disable_fast_switch:
804 	cpufreq_disable_fast_switch(policy);
805 
806 	pr_err("initialization failed (error %d)\n", ret);
807 	return ret;
808 }
809 
810 static void sugov_exit(struct cpufreq_policy *policy)
811 {
812 	struct sugov_policy *sg_policy = policy->governor_data;
813 	struct sugov_tunables *tunables = sg_policy->tunables;
814 	unsigned int count;
815 
816 	mutex_lock(&global_tunables_lock);
817 
818 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
819 	policy->governor_data = NULL;
820 	if (!count)
821 		sugov_tunables_free(tunables);
822 
823 	mutex_unlock(&global_tunables_lock);
824 
825 	sugov_kthread_stop(sg_policy);
826 	sugov_policy_free(sg_policy);
827 	cpufreq_disable_fast_switch(policy);
828 }
829 
830 static int sugov_start(struct cpufreq_policy *policy)
831 {
832 	struct sugov_policy *sg_policy = policy->governor_data;
833 	unsigned int cpu;
834 
835 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
836 	sg_policy->last_freq_update_time	= 0;
837 	sg_policy->next_freq			= 0;
838 	sg_policy->work_in_progress		= false;
839 	sg_policy->limits_changed		= false;
840 	sg_policy->need_freq_update		= false;
841 	sg_policy->cached_raw_freq		= 0;
842 
843 	for_each_cpu(cpu, policy->cpus) {
844 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
845 
846 		memset(sg_cpu, 0, sizeof(*sg_cpu));
847 		sg_cpu->cpu			= cpu;
848 		sg_cpu->sg_policy		= sg_policy;
849 	}
850 
851 	for_each_cpu(cpu, policy->cpus) {
852 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
853 
854 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
855 					     policy_is_shared(policy) ?
856 							sugov_update_shared :
857 							sugov_update_single);
858 	}
859 	return 0;
860 }
861 
862 static void sugov_stop(struct cpufreq_policy *policy)
863 {
864 	struct sugov_policy *sg_policy = policy->governor_data;
865 	unsigned int cpu;
866 
867 	for_each_cpu(cpu, policy->cpus)
868 		cpufreq_remove_update_util_hook(cpu);
869 
870 	synchronize_rcu();
871 
872 	if (!policy->fast_switch_enabled) {
873 		irq_work_sync(&sg_policy->irq_work);
874 		kthread_cancel_work_sync(&sg_policy->work);
875 	}
876 }
877 
878 static void sugov_limits(struct cpufreq_policy *policy)
879 {
880 	struct sugov_policy *sg_policy = policy->governor_data;
881 
882 	if (!policy->fast_switch_enabled) {
883 		mutex_lock(&sg_policy->work_lock);
884 		cpufreq_policy_apply_limits(policy);
885 		mutex_unlock(&sg_policy->work_lock);
886 	}
887 
888 	sg_policy->limits_changed = true;
889 }
890 
891 struct cpufreq_governor schedutil_gov = {
892 	.name			= "schedutil",
893 	.owner			= THIS_MODULE,
894 	.dynamic_switching	= true,
895 	.init			= sugov_init,
896 	.exit			= sugov_exit,
897 	.start			= sugov_start,
898 	.stop			= sugov_stop,
899 	.limits			= sugov_limits,
900 };
901 
902 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
903 struct cpufreq_governor *cpufreq_default_governor(void)
904 {
905 	return &schedutil_gov;
906 }
907 #endif
908 
909 static int __init sugov_register(void)
910 {
911 	return cpufreq_register_governor(&schedutil_gov);
912 }
913 fs_initcall(sugov_register);
914 
915 #ifdef CONFIG_ENERGY_MODEL
916 extern bool sched_energy_update;
917 extern struct mutex sched_energy_mutex;
918 
919 static void rebuild_sd_workfn(struct work_struct *work)
920 {
921 	mutex_lock(&sched_energy_mutex);
922 	sched_energy_update = true;
923 	rebuild_sched_domains();
924 	sched_energy_update = false;
925 	mutex_unlock(&sched_energy_mutex);
926 }
927 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
928 
929 /*
930  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
931  * on governor changes to make sure the scheduler knows about it.
932  */
933 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
934 				  struct cpufreq_governor *old_gov)
935 {
936 	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
937 		/*
938 		 * When called from the cpufreq_register_driver() path, the
939 		 * cpu_hotplug_lock is already held, so use a work item to
940 		 * avoid nested locking in rebuild_sched_domains().
941 		 */
942 		schedule_work(&rebuild_sd_work);
943 	}
944 
945 }
946 #endif
947