1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CPUFreq governor based on scheduler-provided CPU utilization data. 4 * 5 * Copyright (C) 2016, Intel Corporation 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include "sched.h" 12 13 #include <linux/sched/cpufreq.h> 14 #include <trace/events/power.h> 15 16 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8) 17 18 struct sugov_tunables { 19 struct gov_attr_set attr_set; 20 unsigned int rate_limit_us; 21 }; 22 23 struct sugov_policy { 24 struct cpufreq_policy *policy; 25 26 struct sugov_tunables *tunables; 27 struct list_head tunables_hook; 28 29 raw_spinlock_t update_lock; /* For shared policies */ 30 u64 last_freq_update_time; 31 s64 freq_update_delay_ns; 32 unsigned int next_freq; 33 unsigned int cached_raw_freq; 34 35 /* The next fields are only needed if fast switch cannot be used: */ 36 struct irq_work irq_work; 37 struct kthread_work work; 38 struct mutex work_lock; 39 struct kthread_worker worker; 40 struct task_struct *thread; 41 bool work_in_progress; 42 43 bool limits_changed; 44 bool need_freq_update; 45 }; 46 47 struct sugov_cpu { 48 struct update_util_data update_util; 49 struct sugov_policy *sg_policy; 50 unsigned int cpu; 51 52 bool iowait_boost_pending; 53 unsigned int iowait_boost; 54 u64 last_update; 55 56 unsigned long util; 57 unsigned long bw_dl; 58 unsigned long max; 59 60 /* The field below is for single-CPU policies only: */ 61 #ifdef CONFIG_NO_HZ_COMMON 62 unsigned long saved_idle_calls; 63 #endif 64 }; 65 66 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); 67 68 /************************ Governor internals ***********************/ 69 70 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) 71 { 72 s64 delta_ns; 73 74 /* 75 * Since cpufreq_update_util() is called with rq->lock held for 76 * the @target_cpu, our per-CPU data is fully serialized. 77 * 78 * However, drivers cannot in general deal with cross-CPU 79 * requests, so while get_next_freq() will work, our 80 * sugov_update_commit() call may not for the fast switching platforms. 81 * 82 * Hence stop here for remote requests if they aren't supported 83 * by the hardware, as calculating the frequency is pointless if 84 * we cannot in fact act on it. 85 * 86 * This is needed on the slow switching platforms too to prevent CPUs 87 * going offline from leaving stale IRQ work items behind. 88 */ 89 if (!cpufreq_this_cpu_can_update(sg_policy->policy)) 90 return false; 91 92 if (unlikely(sg_policy->limits_changed)) { 93 sg_policy->limits_changed = false; 94 sg_policy->need_freq_update = true; 95 return true; 96 } 97 98 delta_ns = time - sg_policy->last_freq_update_time; 99 100 return delta_ns >= sg_policy->freq_update_delay_ns; 101 } 102 103 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time, 104 unsigned int next_freq) 105 { 106 if (sg_policy->need_freq_update) 107 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 108 else if (sg_policy->next_freq == next_freq) 109 return false; 110 111 sg_policy->next_freq = next_freq; 112 sg_policy->last_freq_update_time = time; 113 114 return true; 115 } 116 117 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time, 118 unsigned int next_freq) 119 { 120 if (sugov_update_next_freq(sg_policy, time, next_freq)) 121 cpufreq_driver_fast_switch(sg_policy->policy, next_freq); 122 } 123 124 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time, 125 unsigned int next_freq) 126 { 127 if (!sugov_update_next_freq(sg_policy, time, next_freq)) 128 return; 129 130 if (!sg_policy->work_in_progress) { 131 sg_policy->work_in_progress = true; 132 irq_work_queue(&sg_policy->irq_work); 133 } 134 } 135 136 /** 137 * get_next_freq - Compute a new frequency for a given cpufreq policy. 138 * @sg_policy: schedutil policy object to compute the new frequency for. 139 * @util: Current CPU utilization. 140 * @max: CPU capacity. 141 * 142 * If the utilization is frequency-invariant, choose the new frequency to be 143 * proportional to it, that is 144 * 145 * next_freq = C * max_freq * util / max 146 * 147 * Otherwise, approximate the would-be frequency-invariant utilization by 148 * util_raw * (curr_freq / max_freq) which leads to 149 * 150 * next_freq = C * curr_freq * util_raw / max 151 * 152 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. 153 * 154 * The lowest driver-supported frequency which is equal or greater than the raw 155 * next_freq (as calculated above) is returned, subject to policy min/max and 156 * cpufreq driver limitations. 157 */ 158 static unsigned int get_next_freq(struct sugov_policy *sg_policy, 159 unsigned long util, unsigned long max) 160 { 161 struct cpufreq_policy *policy = sg_policy->policy; 162 unsigned int freq = arch_scale_freq_invariant() ? 163 policy->cpuinfo.max_freq : policy->cur; 164 165 freq = map_util_freq(util, freq, max); 166 167 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update) 168 return sg_policy->next_freq; 169 170 sg_policy->cached_raw_freq = freq; 171 return cpufreq_driver_resolve_freq(policy, freq); 172 } 173 174 static void sugov_get_util(struct sugov_cpu *sg_cpu) 175 { 176 struct rq *rq = cpu_rq(sg_cpu->cpu); 177 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu); 178 179 sg_cpu->max = max; 180 sg_cpu->bw_dl = cpu_bw_dl(rq); 181 sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(rq), max, 182 FREQUENCY_UTIL, NULL); 183 } 184 185 /** 186 * sugov_iowait_reset() - Reset the IO boost status of a CPU. 187 * @sg_cpu: the sugov data for the CPU to boost 188 * @time: the update time from the caller 189 * @set_iowait_boost: true if an IO boost has been requested 190 * 191 * The IO wait boost of a task is disabled after a tick since the last update 192 * of a CPU. If a new IO wait boost is requested after more then a tick, then 193 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy 194 * efficiency by ignoring sporadic wakeups from IO. 195 */ 196 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time, 197 bool set_iowait_boost) 198 { 199 s64 delta_ns = time - sg_cpu->last_update; 200 201 /* Reset boost only if a tick has elapsed since last request */ 202 if (delta_ns <= TICK_NSEC) 203 return false; 204 205 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0; 206 sg_cpu->iowait_boost_pending = set_iowait_boost; 207 208 return true; 209 } 210 211 /** 212 * sugov_iowait_boost() - Updates the IO boost status of a CPU. 213 * @sg_cpu: the sugov data for the CPU to boost 214 * @time: the update time from the caller 215 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait 216 * 217 * Each time a task wakes up after an IO operation, the CPU utilization can be 218 * boosted to a certain utilization which doubles at each "frequent and 219 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization 220 * of the maximum OPP. 221 * 222 * To keep doubling, an IO boost has to be requested at least once per tick, 223 * otherwise we restart from the utilization of the minimum OPP. 224 */ 225 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time, 226 unsigned int flags) 227 { 228 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT; 229 230 /* Reset boost if the CPU appears to have been idle enough */ 231 if (sg_cpu->iowait_boost && 232 sugov_iowait_reset(sg_cpu, time, set_iowait_boost)) 233 return; 234 235 /* Boost only tasks waking up after IO */ 236 if (!set_iowait_boost) 237 return; 238 239 /* Ensure boost doubles only one time at each request */ 240 if (sg_cpu->iowait_boost_pending) 241 return; 242 sg_cpu->iowait_boost_pending = true; 243 244 /* Double the boost at each request */ 245 if (sg_cpu->iowait_boost) { 246 sg_cpu->iowait_boost = 247 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE); 248 return; 249 } 250 251 /* First wakeup after IO: start with minimum boost */ 252 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN; 253 } 254 255 /** 256 * sugov_iowait_apply() - Apply the IO boost to a CPU. 257 * @sg_cpu: the sugov data for the cpu to boost 258 * @time: the update time from the caller 259 * 260 * A CPU running a task which woken up after an IO operation can have its 261 * utilization boosted to speed up the completion of those IO operations. 262 * The IO boost value is increased each time a task wakes up from IO, in 263 * sugov_iowait_apply(), and it's instead decreased by this function, 264 * each time an increase has not been requested (!iowait_boost_pending). 265 * 266 * A CPU which also appears to have been idle for at least one tick has also 267 * its IO boost utilization reset. 268 * 269 * This mechanism is designed to boost high frequently IO waiting tasks, while 270 * being more conservative on tasks which does sporadic IO operations. 271 */ 272 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time) 273 { 274 unsigned long boost; 275 276 /* No boost currently required */ 277 if (!sg_cpu->iowait_boost) 278 return; 279 280 /* Reset boost if the CPU appears to have been idle enough */ 281 if (sugov_iowait_reset(sg_cpu, time, false)) 282 return; 283 284 if (!sg_cpu->iowait_boost_pending) { 285 /* 286 * No boost pending; reduce the boost value. 287 */ 288 sg_cpu->iowait_boost >>= 1; 289 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) { 290 sg_cpu->iowait_boost = 0; 291 return; 292 } 293 } 294 295 sg_cpu->iowait_boost_pending = false; 296 297 /* 298 * sg_cpu->util is already in capacity scale; convert iowait_boost 299 * into the same scale so we can compare. 300 */ 301 boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT; 302 if (sg_cpu->util < boost) 303 sg_cpu->util = boost; 304 } 305 306 #ifdef CONFIG_NO_HZ_COMMON 307 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) 308 { 309 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); 310 bool ret = idle_calls == sg_cpu->saved_idle_calls; 311 312 sg_cpu->saved_idle_calls = idle_calls; 313 return ret; 314 } 315 #else 316 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; } 317 #endif /* CONFIG_NO_HZ_COMMON */ 318 319 /* 320 * Make sugov_should_update_freq() ignore the rate limit when DL 321 * has increased the utilization. 322 */ 323 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy) 324 { 325 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl) 326 sg_policy->limits_changed = true; 327 } 328 329 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu, 330 u64 time, unsigned int flags) 331 { 332 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 333 334 sugov_iowait_boost(sg_cpu, time, flags); 335 sg_cpu->last_update = time; 336 337 ignore_dl_rate_limit(sg_cpu, sg_policy); 338 339 if (!sugov_should_update_freq(sg_policy, time)) 340 return false; 341 342 sugov_get_util(sg_cpu); 343 sugov_iowait_apply(sg_cpu, time); 344 345 return true; 346 } 347 348 static void sugov_update_single_freq(struct update_util_data *hook, u64 time, 349 unsigned int flags) 350 { 351 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 352 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 353 unsigned int cached_freq = sg_policy->cached_raw_freq; 354 unsigned int next_f; 355 356 if (!sugov_update_single_common(sg_cpu, time, flags)) 357 return; 358 359 next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max); 360 /* 361 * Do not reduce the frequency if the CPU has not been idle 362 * recently, as the reduction is likely to be premature then. 363 */ 364 if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) { 365 next_f = sg_policy->next_freq; 366 367 /* Restore cached freq as next_freq has changed */ 368 sg_policy->cached_raw_freq = cached_freq; 369 } 370 371 /* 372 * This code runs under rq->lock for the target CPU, so it won't run 373 * concurrently on two different CPUs for the same target and it is not 374 * necessary to acquire the lock in the fast switch case. 375 */ 376 if (sg_policy->policy->fast_switch_enabled) { 377 sugov_fast_switch(sg_policy, time, next_f); 378 } else { 379 raw_spin_lock(&sg_policy->update_lock); 380 sugov_deferred_update(sg_policy, time, next_f); 381 raw_spin_unlock(&sg_policy->update_lock); 382 } 383 } 384 385 static void sugov_update_single_perf(struct update_util_data *hook, u64 time, 386 unsigned int flags) 387 { 388 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 389 unsigned long prev_util = sg_cpu->util; 390 391 /* 392 * Fall back to the "frequency" path if frequency invariance is not 393 * supported, because the direct mapping between the utilization and 394 * the performance levels depends on the frequency invariance. 395 */ 396 if (!arch_scale_freq_invariant()) { 397 sugov_update_single_freq(hook, time, flags); 398 return; 399 } 400 401 if (!sugov_update_single_common(sg_cpu, time, flags)) 402 return; 403 404 /* 405 * Do not reduce the target performance level if the CPU has not been 406 * idle recently, as the reduction is likely to be premature then. 407 */ 408 if (sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util) 409 sg_cpu->util = prev_util; 410 411 cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl), 412 map_util_perf(sg_cpu->util), sg_cpu->max); 413 414 sg_cpu->sg_policy->last_freq_update_time = time; 415 } 416 417 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time) 418 { 419 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 420 struct cpufreq_policy *policy = sg_policy->policy; 421 unsigned long util = 0, max = 1; 422 unsigned int j; 423 424 for_each_cpu(j, policy->cpus) { 425 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j); 426 unsigned long j_util, j_max; 427 428 sugov_get_util(j_sg_cpu); 429 sugov_iowait_apply(j_sg_cpu, time); 430 j_util = j_sg_cpu->util; 431 j_max = j_sg_cpu->max; 432 433 if (j_util * max > j_max * util) { 434 util = j_util; 435 max = j_max; 436 } 437 } 438 439 return get_next_freq(sg_policy, util, max); 440 } 441 442 static void 443 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) 444 { 445 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 446 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 447 unsigned int next_f; 448 449 raw_spin_lock(&sg_policy->update_lock); 450 451 sugov_iowait_boost(sg_cpu, time, flags); 452 sg_cpu->last_update = time; 453 454 ignore_dl_rate_limit(sg_cpu, sg_policy); 455 456 if (sugov_should_update_freq(sg_policy, time)) { 457 next_f = sugov_next_freq_shared(sg_cpu, time); 458 459 if (sg_policy->policy->fast_switch_enabled) 460 sugov_fast_switch(sg_policy, time, next_f); 461 else 462 sugov_deferred_update(sg_policy, time, next_f); 463 } 464 465 raw_spin_unlock(&sg_policy->update_lock); 466 } 467 468 static void sugov_work(struct kthread_work *work) 469 { 470 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); 471 unsigned int freq; 472 unsigned long flags; 473 474 /* 475 * Hold sg_policy->update_lock shortly to handle the case where: 476 * incase sg_policy->next_freq is read here, and then updated by 477 * sugov_deferred_update() just before work_in_progress is set to false 478 * here, we may miss queueing the new update. 479 * 480 * Note: If a work was queued after the update_lock is released, 481 * sugov_work() will just be called again by kthread_work code; and the 482 * request will be proceed before the sugov thread sleeps. 483 */ 484 raw_spin_lock_irqsave(&sg_policy->update_lock, flags); 485 freq = sg_policy->next_freq; 486 sg_policy->work_in_progress = false; 487 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags); 488 489 mutex_lock(&sg_policy->work_lock); 490 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L); 491 mutex_unlock(&sg_policy->work_lock); 492 } 493 494 static void sugov_irq_work(struct irq_work *irq_work) 495 { 496 struct sugov_policy *sg_policy; 497 498 sg_policy = container_of(irq_work, struct sugov_policy, irq_work); 499 500 kthread_queue_work(&sg_policy->worker, &sg_policy->work); 501 } 502 503 /************************** sysfs interface ************************/ 504 505 static struct sugov_tunables *global_tunables; 506 static DEFINE_MUTEX(global_tunables_lock); 507 508 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) 509 { 510 return container_of(attr_set, struct sugov_tunables, attr_set); 511 } 512 513 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) 514 { 515 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 516 517 return sprintf(buf, "%u\n", tunables->rate_limit_us); 518 } 519 520 static ssize_t 521 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) 522 { 523 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 524 struct sugov_policy *sg_policy; 525 unsigned int rate_limit_us; 526 527 if (kstrtouint(buf, 10, &rate_limit_us)) 528 return -EINVAL; 529 530 tunables->rate_limit_us = rate_limit_us; 531 532 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) 533 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; 534 535 return count; 536 } 537 538 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); 539 540 static struct attribute *sugov_attrs[] = { 541 &rate_limit_us.attr, 542 NULL 543 }; 544 ATTRIBUTE_GROUPS(sugov); 545 546 static struct kobj_type sugov_tunables_ktype = { 547 .default_groups = sugov_groups, 548 .sysfs_ops = &governor_sysfs_ops, 549 }; 550 551 /********************** cpufreq governor interface *********************/ 552 553 struct cpufreq_governor schedutil_gov; 554 555 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) 556 { 557 struct sugov_policy *sg_policy; 558 559 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); 560 if (!sg_policy) 561 return NULL; 562 563 sg_policy->policy = policy; 564 raw_spin_lock_init(&sg_policy->update_lock); 565 return sg_policy; 566 } 567 568 static void sugov_policy_free(struct sugov_policy *sg_policy) 569 { 570 kfree(sg_policy); 571 } 572 573 static int sugov_kthread_create(struct sugov_policy *sg_policy) 574 { 575 struct task_struct *thread; 576 struct sched_attr attr = { 577 .size = sizeof(struct sched_attr), 578 .sched_policy = SCHED_DEADLINE, 579 .sched_flags = SCHED_FLAG_SUGOV, 580 .sched_nice = 0, 581 .sched_priority = 0, 582 /* 583 * Fake (unused) bandwidth; workaround to "fix" 584 * priority inheritance. 585 */ 586 .sched_runtime = 1000000, 587 .sched_deadline = 10000000, 588 .sched_period = 10000000, 589 }; 590 struct cpufreq_policy *policy = sg_policy->policy; 591 int ret; 592 593 /* kthread only required for slow path */ 594 if (policy->fast_switch_enabled) 595 return 0; 596 597 kthread_init_work(&sg_policy->work, sugov_work); 598 kthread_init_worker(&sg_policy->worker); 599 thread = kthread_create(kthread_worker_fn, &sg_policy->worker, 600 "sugov:%d", 601 cpumask_first(policy->related_cpus)); 602 if (IS_ERR(thread)) { 603 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread)); 604 return PTR_ERR(thread); 605 } 606 607 ret = sched_setattr_nocheck(thread, &attr); 608 if (ret) { 609 kthread_stop(thread); 610 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__); 611 return ret; 612 } 613 614 sg_policy->thread = thread; 615 kthread_bind_mask(thread, policy->related_cpus); 616 init_irq_work(&sg_policy->irq_work, sugov_irq_work); 617 mutex_init(&sg_policy->work_lock); 618 619 wake_up_process(thread); 620 621 return 0; 622 } 623 624 static void sugov_kthread_stop(struct sugov_policy *sg_policy) 625 { 626 /* kthread only required for slow path */ 627 if (sg_policy->policy->fast_switch_enabled) 628 return; 629 630 kthread_flush_worker(&sg_policy->worker); 631 kthread_stop(sg_policy->thread); 632 mutex_destroy(&sg_policy->work_lock); 633 } 634 635 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) 636 { 637 struct sugov_tunables *tunables; 638 639 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); 640 if (tunables) { 641 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); 642 if (!have_governor_per_policy()) 643 global_tunables = tunables; 644 } 645 return tunables; 646 } 647 648 static void sugov_tunables_free(struct sugov_tunables *tunables) 649 { 650 if (!have_governor_per_policy()) 651 global_tunables = NULL; 652 653 kfree(tunables); 654 } 655 656 static int sugov_init(struct cpufreq_policy *policy) 657 { 658 struct sugov_policy *sg_policy; 659 struct sugov_tunables *tunables; 660 int ret = 0; 661 662 /* State should be equivalent to EXIT */ 663 if (policy->governor_data) 664 return -EBUSY; 665 666 cpufreq_enable_fast_switch(policy); 667 668 sg_policy = sugov_policy_alloc(policy); 669 if (!sg_policy) { 670 ret = -ENOMEM; 671 goto disable_fast_switch; 672 } 673 674 ret = sugov_kthread_create(sg_policy); 675 if (ret) 676 goto free_sg_policy; 677 678 mutex_lock(&global_tunables_lock); 679 680 if (global_tunables) { 681 if (WARN_ON(have_governor_per_policy())) { 682 ret = -EINVAL; 683 goto stop_kthread; 684 } 685 policy->governor_data = sg_policy; 686 sg_policy->tunables = global_tunables; 687 688 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); 689 goto out; 690 } 691 692 tunables = sugov_tunables_alloc(sg_policy); 693 if (!tunables) { 694 ret = -ENOMEM; 695 goto stop_kthread; 696 } 697 698 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy); 699 700 policy->governor_data = sg_policy; 701 sg_policy->tunables = tunables; 702 703 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, 704 get_governor_parent_kobj(policy), "%s", 705 schedutil_gov.name); 706 if (ret) 707 goto fail; 708 709 out: 710 mutex_unlock(&global_tunables_lock); 711 return 0; 712 713 fail: 714 kobject_put(&tunables->attr_set.kobj); 715 policy->governor_data = NULL; 716 sugov_tunables_free(tunables); 717 718 stop_kthread: 719 sugov_kthread_stop(sg_policy); 720 mutex_unlock(&global_tunables_lock); 721 722 free_sg_policy: 723 sugov_policy_free(sg_policy); 724 725 disable_fast_switch: 726 cpufreq_disable_fast_switch(policy); 727 728 pr_err("initialization failed (error %d)\n", ret); 729 return ret; 730 } 731 732 static void sugov_exit(struct cpufreq_policy *policy) 733 { 734 struct sugov_policy *sg_policy = policy->governor_data; 735 struct sugov_tunables *tunables = sg_policy->tunables; 736 unsigned int count; 737 738 mutex_lock(&global_tunables_lock); 739 740 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); 741 policy->governor_data = NULL; 742 if (!count) 743 sugov_tunables_free(tunables); 744 745 mutex_unlock(&global_tunables_lock); 746 747 sugov_kthread_stop(sg_policy); 748 sugov_policy_free(sg_policy); 749 cpufreq_disable_fast_switch(policy); 750 } 751 752 static int sugov_start(struct cpufreq_policy *policy) 753 { 754 struct sugov_policy *sg_policy = policy->governor_data; 755 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags); 756 unsigned int cpu; 757 758 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; 759 sg_policy->last_freq_update_time = 0; 760 sg_policy->next_freq = 0; 761 sg_policy->work_in_progress = false; 762 sg_policy->limits_changed = false; 763 sg_policy->cached_raw_freq = 0; 764 765 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 766 767 for_each_cpu(cpu, policy->cpus) { 768 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 769 770 memset(sg_cpu, 0, sizeof(*sg_cpu)); 771 sg_cpu->cpu = cpu; 772 sg_cpu->sg_policy = sg_policy; 773 } 774 775 if (policy_is_shared(policy)) 776 uu = sugov_update_shared; 777 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf()) 778 uu = sugov_update_single_perf; 779 else 780 uu = sugov_update_single_freq; 781 782 for_each_cpu(cpu, policy->cpus) { 783 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 784 785 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu); 786 } 787 return 0; 788 } 789 790 static void sugov_stop(struct cpufreq_policy *policy) 791 { 792 struct sugov_policy *sg_policy = policy->governor_data; 793 unsigned int cpu; 794 795 for_each_cpu(cpu, policy->cpus) 796 cpufreq_remove_update_util_hook(cpu); 797 798 synchronize_rcu(); 799 800 if (!policy->fast_switch_enabled) { 801 irq_work_sync(&sg_policy->irq_work); 802 kthread_cancel_work_sync(&sg_policy->work); 803 } 804 } 805 806 static void sugov_limits(struct cpufreq_policy *policy) 807 { 808 struct sugov_policy *sg_policy = policy->governor_data; 809 810 if (!policy->fast_switch_enabled) { 811 mutex_lock(&sg_policy->work_lock); 812 cpufreq_policy_apply_limits(policy); 813 mutex_unlock(&sg_policy->work_lock); 814 } 815 816 sg_policy->limits_changed = true; 817 } 818 819 struct cpufreq_governor schedutil_gov = { 820 .name = "schedutil", 821 .owner = THIS_MODULE, 822 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING, 823 .init = sugov_init, 824 .exit = sugov_exit, 825 .start = sugov_start, 826 .stop = sugov_stop, 827 .limits = sugov_limits, 828 }; 829 830 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL 831 struct cpufreq_governor *cpufreq_default_governor(void) 832 { 833 return &schedutil_gov; 834 } 835 #endif 836 837 cpufreq_governor_init(schedutil_gov); 838 839 #ifdef CONFIG_ENERGY_MODEL 840 static void rebuild_sd_workfn(struct work_struct *work) 841 { 842 rebuild_sched_domains_energy(); 843 } 844 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn); 845 846 /* 847 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains 848 * on governor changes to make sure the scheduler knows about it. 849 */ 850 void sched_cpufreq_governor_change(struct cpufreq_policy *policy, 851 struct cpufreq_governor *old_gov) 852 { 853 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) { 854 /* 855 * When called from the cpufreq_register_driver() path, the 856 * cpu_hotplug_lock is already held, so use a work item to 857 * avoid nested locking in rebuild_sched_domains(). 858 */ 859 schedule_work(&rebuild_sd_work); 860 } 861 862 } 863 #endif 864