1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include "sched.h"
12 
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15 
16 #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
17 
18 struct sugov_tunables {
19 	struct gov_attr_set	attr_set;
20 	unsigned int		rate_limit_us;
21 };
22 
23 struct sugov_policy {
24 	struct cpufreq_policy	*policy;
25 
26 	struct sugov_tunables	*tunables;
27 	struct list_head	tunables_hook;
28 
29 	raw_spinlock_t		update_lock;	/* For shared policies */
30 	u64			last_freq_update_time;
31 	s64			freq_update_delay_ns;
32 	unsigned int		next_freq;
33 	unsigned int		cached_raw_freq;
34 
35 	/* The next fields are only needed if fast switch cannot be used: */
36 	struct			irq_work irq_work;
37 	struct			kthread_work work;
38 	struct			mutex work_lock;
39 	struct			kthread_worker worker;
40 	struct task_struct	*thread;
41 	bool			work_in_progress;
42 
43 	bool			limits_changed;
44 	bool			need_freq_update;
45 };
46 
47 struct sugov_cpu {
48 	struct update_util_data	update_util;
49 	struct sugov_policy	*sg_policy;
50 	unsigned int		cpu;
51 
52 	bool			iowait_boost_pending;
53 	unsigned int		iowait_boost;
54 	u64			last_update;
55 
56 	unsigned long		bw_dl;
57 	unsigned long		max;
58 
59 	/* The field below is for single-CPU policies only: */
60 #ifdef CONFIG_NO_HZ_COMMON
61 	unsigned long		saved_idle_calls;
62 #endif
63 };
64 
65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
66 
67 /************************ Governor internals ***********************/
68 
69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
70 {
71 	s64 delta_ns;
72 
73 	/*
74 	 * Since cpufreq_update_util() is called with rq->lock held for
75 	 * the @target_cpu, our per-CPU data is fully serialized.
76 	 *
77 	 * However, drivers cannot in general deal with cross-CPU
78 	 * requests, so while get_next_freq() will work, our
79 	 * sugov_update_commit() call may not for the fast switching platforms.
80 	 *
81 	 * Hence stop here for remote requests if they aren't supported
82 	 * by the hardware, as calculating the frequency is pointless if
83 	 * we cannot in fact act on it.
84 	 *
85 	 * This is needed on the slow switching platforms too to prevent CPUs
86 	 * going offline from leaving stale IRQ work items behind.
87 	 */
88 	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
89 		return false;
90 
91 	if (unlikely(sg_policy->limits_changed)) {
92 		sg_policy->limits_changed = false;
93 		sg_policy->need_freq_update = true;
94 		return true;
95 	}
96 
97 	delta_ns = time - sg_policy->last_freq_update_time;
98 
99 	return delta_ns >= sg_policy->freq_update_delay_ns;
100 }
101 
102 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
103 				   unsigned int next_freq)
104 {
105 	if (sg_policy->need_freq_update)
106 		sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
107 	else if (sg_policy->next_freq == next_freq)
108 		return false;
109 
110 	sg_policy->next_freq = next_freq;
111 	sg_policy->last_freq_update_time = time;
112 
113 	return true;
114 }
115 
116 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
117 			      unsigned int next_freq)
118 {
119 	if (sugov_update_next_freq(sg_policy, time, next_freq))
120 		cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
121 }
122 
123 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
124 				  unsigned int next_freq)
125 {
126 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
127 		return;
128 
129 	if (!sg_policy->work_in_progress) {
130 		sg_policy->work_in_progress = true;
131 		irq_work_queue(&sg_policy->irq_work);
132 	}
133 }
134 
135 /**
136  * get_next_freq - Compute a new frequency for a given cpufreq policy.
137  * @sg_policy: schedutil policy object to compute the new frequency for.
138  * @util: Current CPU utilization.
139  * @max: CPU capacity.
140  *
141  * If the utilization is frequency-invariant, choose the new frequency to be
142  * proportional to it, that is
143  *
144  * next_freq = C * max_freq * util / max
145  *
146  * Otherwise, approximate the would-be frequency-invariant utilization by
147  * util_raw * (curr_freq / max_freq) which leads to
148  *
149  * next_freq = C * curr_freq * util_raw / max
150  *
151  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
152  *
153  * The lowest driver-supported frequency which is equal or greater than the raw
154  * next_freq (as calculated above) is returned, subject to policy min/max and
155  * cpufreq driver limitations.
156  */
157 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
158 				  unsigned long util, unsigned long max)
159 {
160 	struct cpufreq_policy *policy = sg_policy->policy;
161 	unsigned int freq = arch_scale_freq_invariant() ?
162 				policy->cpuinfo.max_freq : policy->cur;
163 
164 	freq = map_util_freq(util, freq, max);
165 
166 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
167 		return sg_policy->next_freq;
168 
169 	sg_policy->cached_raw_freq = freq;
170 	return cpufreq_driver_resolve_freq(policy, freq);
171 }
172 
173 /*
174  * This function computes an effective utilization for the given CPU, to be
175  * used for frequency selection given the linear relation: f = u * f_max.
176  *
177  * The scheduler tracks the following metrics:
178  *
179  *   cpu_util_{cfs,rt,dl,irq}()
180  *   cpu_bw_dl()
181  *
182  * Where the cfs,rt and dl util numbers are tracked with the same metric and
183  * synchronized windows and are thus directly comparable.
184  *
185  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
186  * which excludes things like IRQ and steal-time. These latter are then accrued
187  * in the irq utilization.
188  *
189  * The DL bandwidth number otoh is not a measured metric but a value computed
190  * based on the task model parameters and gives the minimal utilization
191  * required to meet deadlines.
192  */
193 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
194 				 unsigned long max, enum schedutil_type type,
195 				 struct task_struct *p)
196 {
197 	unsigned long dl_util, util, irq;
198 	struct rq *rq = cpu_rq(cpu);
199 
200 	if (!uclamp_is_used() &&
201 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
202 		return max;
203 	}
204 
205 	/*
206 	 * Early check to see if IRQ/steal time saturates the CPU, can be
207 	 * because of inaccuracies in how we track these -- see
208 	 * update_irq_load_avg().
209 	 */
210 	irq = cpu_util_irq(rq);
211 	if (unlikely(irq >= max))
212 		return max;
213 
214 	/*
215 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
216 	 * CFS tasks and we use the same metric to track the effective
217 	 * utilization (PELT windows are synchronized) we can directly add them
218 	 * to obtain the CPU's actual utilization.
219 	 *
220 	 * CFS and RT utilization can be boosted or capped, depending on
221 	 * utilization clamp constraints requested by currently RUNNABLE
222 	 * tasks.
223 	 * When there are no CFS RUNNABLE tasks, clamps are released and
224 	 * frequency will be gracefully reduced with the utilization decay.
225 	 */
226 	util = util_cfs + cpu_util_rt(rq);
227 	if (type == FREQUENCY_UTIL)
228 		util = uclamp_rq_util_with(rq, util, p);
229 
230 	dl_util = cpu_util_dl(rq);
231 
232 	/*
233 	 * For frequency selection we do not make cpu_util_dl() a permanent part
234 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
235 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
236 	 * that we select f_max when there is no idle time.
237 	 *
238 	 * NOTE: numerical errors or stop class might cause us to not quite hit
239 	 * saturation when we should -- something for later.
240 	 */
241 	if (util + dl_util >= max)
242 		return max;
243 
244 	/*
245 	 * OTOH, for energy computation we need the estimated running time, so
246 	 * include util_dl and ignore dl_bw.
247 	 */
248 	if (type == ENERGY_UTIL)
249 		util += dl_util;
250 
251 	/*
252 	 * There is still idle time; further improve the number by using the
253 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
254 	 * need to scale the task numbers:
255 	 *
256 	 *              max - irq
257 	 *   U' = irq + --------- * U
258 	 *                 max
259 	 */
260 	util = scale_irq_capacity(util, irq, max);
261 	util += irq;
262 
263 	/*
264 	 * Bandwidth required by DEADLINE must always be granted while, for
265 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
266 	 * to gracefully reduce the frequency when no tasks show up for longer
267 	 * periods of time.
268 	 *
269 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
270 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
271 	 * an interface. So, we only do the latter for now.
272 	 */
273 	if (type == FREQUENCY_UTIL)
274 		util += cpu_bw_dl(rq);
275 
276 	return min(max, util);
277 }
278 
279 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
280 {
281 	struct rq *rq = cpu_rq(sg_cpu->cpu);
282 	unsigned long util = cpu_util_cfs(rq);
283 	unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
284 
285 	sg_cpu->max = max;
286 	sg_cpu->bw_dl = cpu_bw_dl(rq);
287 
288 	return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
289 }
290 
291 /**
292  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
293  * @sg_cpu: the sugov data for the CPU to boost
294  * @time: the update time from the caller
295  * @set_iowait_boost: true if an IO boost has been requested
296  *
297  * The IO wait boost of a task is disabled after a tick since the last update
298  * of a CPU. If a new IO wait boost is requested after more then a tick, then
299  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
300  * efficiency by ignoring sporadic wakeups from IO.
301  */
302 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
303 			       bool set_iowait_boost)
304 {
305 	s64 delta_ns = time - sg_cpu->last_update;
306 
307 	/* Reset boost only if a tick has elapsed since last request */
308 	if (delta_ns <= TICK_NSEC)
309 		return false;
310 
311 	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
312 	sg_cpu->iowait_boost_pending = set_iowait_boost;
313 
314 	return true;
315 }
316 
317 /**
318  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
319  * @sg_cpu: the sugov data for the CPU to boost
320  * @time: the update time from the caller
321  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
322  *
323  * Each time a task wakes up after an IO operation, the CPU utilization can be
324  * boosted to a certain utilization which doubles at each "frequent and
325  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
326  * of the maximum OPP.
327  *
328  * To keep doubling, an IO boost has to be requested at least once per tick,
329  * otherwise we restart from the utilization of the minimum OPP.
330  */
331 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
332 			       unsigned int flags)
333 {
334 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
335 
336 	/* Reset boost if the CPU appears to have been idle enough */
337 	if (sg_cpu->iowait_boost &&
338 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
339 		return;
340 
341 	/* Boost only tasks waking up after IO */
342 	if (!set_iowait_boost)
343 		return;
344 
345 	/* Ensure boost doubles only one time at each request */
346 	if (sg_cpu->iowait_boost_pending)
347 		return;
348 	sg_cpu->iowait_boost_pending = true;
349 
350 	/* Double the boost at each request */
351 	if (sg_cpu->iowait_boost) {
352 		sg_cpu->iowait_boost =
353 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
354 		return;
355 	}
356 
357 	/* First wakeup after IO: start with minimum boost */
358 	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
359 }
360 
361 /**
362  * sugov_iowait_apply() - Apply the IO boost to a CPU.
363  * @sg_cpu: the sugov data for the cpu to boost
364  * @time: the update time from the caller
365  * @util: the utilization to (eventually) boost
366  * @max: the maximum value the utilization can be boosted to
367  *
368  * A CPU running a task which woken up after an IO operation can have its
369  * utilization boosted to speed up the completion of those IO operations.
370  * The IO boost value is increased each time a task wakes up from IO, in
371  * sugov_iowait_apply(), and it's instead decreased by this function,
372  * each time an increase has not been requested (!iowait_boost_pending).
373  *
374  * A CPU which also appears to have been idle for at least one tick has also
375  * its IO boost utilization reset.
376  *
377  * This mechanism is designed to boost high frequently IO waiting tasks, while
378  * being more conservative on tasks which does sporadic IO operations.
379  */
380 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
381 					unsigned long util, unsigned long max)
382 {
383 	unsigned long boost;
384 
385 	/* No boost currently required */
386 	if (!sg_cpu->iowait_boost)
387 		return util;
388 
389 	/* Reset boost if the CPU appears to have been idle enough */
390 	if (sugov_iowait_reset(sg_cpu, time, false))
391 		return util;
392 
393 	if (!sg_cpu->iowait_boost_pending) {
394 		/*
395 		 * No boost pending; reduce the boost value.
396 		 */
397 		sg_cpu->iowait_boost >>= 1;
398 		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
399 			sg_cpu->iowait_boost = 0;
400 			return util;
401 		}
402 	}
403 
404 	sg_cpu->iowait_boost_pending = false;
405 
406 	/*
407 	 * @util is already in capacity scale; convert iowait_boost
408 	 * into the same scale so we can compare.
409 	 */
410 	boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
411 	return max(boost, util);
412 }
413 
414 #ifdef CONFIG_NO_HZ_COMMON
415 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
416 {
417 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
418 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
419 
420 	sg_cpu->saved_idle_calls = idle_calls;
421 	return ret;
422 }
423 #else
424 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
425 #endif /* CONFIG_NO_HZ_COMMON */
426 
427 /*
428  * Make sugov_should_update_freq() ignore the rate limit when DL
429  * has increased the utilization.
430  */
431 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
432 {
433 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
434 		sg_policy->limits_changed = true;
435 }
436 
437 static void sugov_update_single(struct update_util_data *hook, u64 time,
438 				unsigned int flags)
439 {
440 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
441 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
442 	unsigned long util, max;
443 	unsigned int next_f;
444 	unsigned int cached_freq = sg_policy->cached_raw_freq;
445 
446 	sugov_iowait_boost(sg_cpu, time, flags);
447 	sg_cpu->last_update = time;
448 
449 	ignore_dl_rate_limit(sg_cpu, sg_policy);
450 
451 	if (!sugov_should_update_freq(sg_policy, time))
452 		return;
453 
454 	util = sugov_get_util(sg_cpu);
455 	max = sg_cpu->max;
456 	util = sugov_iowait_apply(sg_cpu, time, util, max);
457 	next_f = get_next_freq(sg_policy, util, max);
458 	/*
459 	 * Do not reduce the frequency if the CPU has not been idle
460 	 * recently, as the reduction is likely to be premature then.
461 	 */
462 	if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
463 		next_f = sg_policy->next_freq;
464 
465 		/* Restore cached freq as next_freq has changed */
466 		sg_policy->cached_raw_freq = cached_freq;
467 	}
468 
469 	/*
470 	 * This code runs under rq->lock for the target CPU, so it won't run
471 	 * concurrently on two different CPUs for the same target and it is not
472 	 * necessary to acquire the lock in the fast switch case.
473 	 */
474 	if (sg_policy->policy->fast_switch_enabled) {
475 		sugov_fast_switch(sg_policy, time, next_f);
476 	} else {
477 		raw_spin_lock(&sg_policy->update_lock);
478 		sugov_deferred_update(sg_policy, time, next_f);
479 		raw_spin_unlock(&sg_policy->update_lock);
480 	}
481 }
482 
483 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
484 {
485 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
486 	struct cpufreq_policy *policy = sg_policy->policy;
487 	unsigned long util = 0, max = 1;
488 	unsigned int j;
489 
490 	for_each_cpu(j, policy->cpus) {
491 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
492 		unsigned long j_util, j_max;
493 
494 		j_util = sugov_get_util(j_sg_cpu);
495 		j_max = j_sg_cpu->max;
496 		j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
497 
498 		if (j_util * max > j_max * util) {
499 			util = j_util;
500 			max = j_max;
501 		}
502 	}
503 
504 	return get_next_freq(sg_policy, util, max);
505 }
506 
507 static void
508 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
509 {
510 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
511 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
512 	unsigned int next_f;
513 
514 	raw_spin_lock(&sg_policy->update_lock);
515 
516 	sugov_iowait_boost(sg_cpu, time, flags);
517 	sg_cpu->last_update = time;
518 
519 	ignore_dl_rate_limit(sg_cpu, sg_policy);
520 
521 	if (sugov_should_update_freq(sg_policy, time)) {
522 		next_f = sugov_next_freq_shared(sg_cpu, time);
523 
524 		if (sg_policy->policy->fast_switch_enabled)
525 			sugov_fast_switch(sg_policy, time, next_f);
526 		else
527 			sugov_deferred_update(sg_policy, time, next_f);
528 	}
529 
530 	raw_spin_unlock(&sg_policy->update_lock);
531 }
532 
533 static void sugov_work(struct kthread_work *work)
534 {
535 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
536 	unsigned int freq;
537 	unsigned long flags;
538 
539 	/*
540 	 * Hold sg_policy->update_lock shortly to handle the case where:
541 	 * incase sg_policy->next_freq is read here, and then updated by
542 	 * sugov_deferred_update() just before work_in_progress is set to false
543 	 * here, we may miss queueing the new update.
544 	 *
545 	 * Note: If a work was queued after the update_lock is released,
546 	 * sugov_work() will just be called again by kthread_work code; and the
547 	 * request will be proceed before the sugov thread sleeps.
548 	 */
549 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
550 	freq = sg_policy->next_freq;
551 	sg_policy->work_in_progress = false;
552 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
553 
554 	mutex_lock(&sg_policy->work_lock);
555 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
556 	mutex_unlock(&sg_policy->work_lock);
557 }
558 
559 static void sugov_irq_work(struct irq_work *irq_work)
560 {
561 	struct sugov_policy *sg_policy;
562 
563 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
564 
565 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
566 }
567 
568 /************************** sysfs interface ************************/
569 
570 static struct sugov_tunables *global_tunables;
571 static DEFINE_MUTEX(global_tunables_lock);
572 
573 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
574 {
575 	return container_of(attr_set, struct sugov_tunables, attr_set);
576 }
577 
578 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
579 {
580 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
581 
582 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
583 }
584 
585 static ssize_t
586 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
587 {
588 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
589 	struct sugov_policy *sg_policy;
590 	unsigned int rate_limit_us;
591 
592 	if (kstrtouint(buf, 10, &rate_limit_us))
593 		return -EINVAL;
594 
595 	tunables->rate_limit_us = rate_limit_us;
596 
597 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
598 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
599 
600 	return count;
601 }
602 
603 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
604 
605 static struct attribute *sugov_attrs[] = {
606 	&rate_limit_us.attr,
607 	NULL
608 };
609 ATTRIBUTE_GROUPS(sugov);
610 
611 static struct kobj_type sugov_tunables_ktype = {
612 	.default_groups = sugov_groups,
613 	.sysfs_ops = &governor_sysfs_ops,
614 };
615 
616 /********************** cpufreq governor interface *********************/
617 
618 struct cpufreq_governor schedutil_gov;
619 
620 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
621 {
622 	struct sugov_policy *sg_policy;
623 
624 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
625 	if (!sg_policy)
626 		return NULL;
627 
628 	sg_policy->policy = policy;
629 	raw_spin_lock_init(&sg_policy->update_lock);
630 	return sg_policy;
631 }
632 
633 static void sugov_policy_free(struct sugov_policy *sg_policy)
634 {
635 	kfree(sg_policy);
636 }
637 
638 static int sugov_kthread_create(struct sugov_policy *sg_policy)
639 {
640 	struct task_struct *thread;
641 	struct sched_attr attr = {
642 		.size		= sizeof(struct sched_attr),
643 		.sched_policy	= SCHED_DEADLINE,
644 		.sched_flags	= SCHED_FLAG_SUGOV,
645 		.sched_nice	= 0,
646 		.sched_priority	= 0,
647 		/*
648 		 * Fake (unused) bandwidth; workaround to "fix"
649 		 * priority inheritance.
650 		 */
651 		.sched_runtime	=  1000000,
652 		.sched_deadline = 10000000,
653 		.sched_period	= 10000000,
654 	};
655 	struct cpufreq_policy *policy = sg_policy->policy;
656 	int ret;
657 
658 	/* kthread only required for slow path */
659 	if (policy->fast_switch_enabled)
660 		return 0;
661 
662 	kthread_init_work(&sg_policy->work, sugov_work);
663 	kthread_init_worker(&sg_policy->worker);
664 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
665 				"sugov:%d",
666 				cpumask_first(policy->related_cpus));
667 	if (IS_ERR(thread)) {
668 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
669 		return PTR_ERR(thread);
670 	}
671 
672 	ret = sched_setattr_nocheck(thread, &attr);
673 	if (ret) {
674 		kthread_stop(thread);
675 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
676 		return ret;
677 	}
678 
679 	sg_policy->thread = thread;
680 	kthread_bind_mask(thread, policy->related_cpus);
681 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
682 	mutex_init(&sg_policy->work_lock);
683 
684 	wake_up_process(thread);
685 
686 	return 0;
687 }
688 
689 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
690 {
691 	/* kthread only required for slow path */
692 	if (sg_policy->policy->fast_switch_enabled)
693 		return;
694 
695 	kthread_flush_worker(&sg_policy->worker);
696 	kthread_stop(sg_policy->thread);
697 	mutex_destroy(&sg_policy->work_lock);
698 }
699 
700 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
701 {
702 	struct sugov_tunables *tunables;
703 
704 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
705 	if (tunables) {
706 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
707 		if (!have_governor_per_policy())
708 			global_tunables = tunables;
709 	}
710 	return tunables;
711 }
712 
713 static void sugov_tunables_free(struct sugov_tunables *tunables)
714 {
715 	if (!have_governor_per_policy())
716 		global_tunables = NULL;
717 
718 	kfree(tunables);
719 }
720 
721 static int sugov_init(struct cpufreq_policy *policy)
722 {
723 	struct sugov_policy *sg_policy;
724 	struct sugov_tunables *tunables;
725 	int ret = 0;
726 
727 	/* State should be equivalent to EXIT */
728 	if (policy->governor_data)
729 		return -EBUSY;
730 
731 	cpufreq_enable_fast_switch(policy);
732 
733 	sg_policy = sugov_policy_alloc(policy);
734 	if (!sg_policy) {
735 		ret = -ENOMEM;
736 		goto disable_fast_switch;
737 	}
738 
739 	ret = sugov_kthread_create(sg_policy);
740 	if (ret)
741 		goto free_sg_policy;
742 
743 	mutex_lock(&global_tunables_lock);
744 
745 	if (global_tunables) {
746 		if (WARN_ON(have_governor_per_policy())) {
747 			ret = -EINVAL;
748 			goto stop_kthread;
749 		}
750 		policy->governor_data = sg_policy;
751 		sg_policy->tunables = global_tunables;
752 
753 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
754 		goto out;
755 	}
756 
757 	tunables = sugov_tunables_alloc(sg_policy);
758 	if (!tunables) {
759 		ret = -ENOMEM;
760 		goto stop_kthread;
761 	}
762 
763 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
764 
765 	policy->governor_data = sg_policy;
766 	sg_policy->tunables = tunables;
767 
768 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
769 				   get_governor_parent_kobj(policy), "%s",
770 				   schedutil_gov.name);
771 	if (ret)
772 		goto fail;
773 
774 out:
775 	mutex_unlock(&global_tunables_lock);
776 	return 0;
777 
778 fail:
779 	kobject_put(&tunables->attr_set.kobj);
780 	policy->governor_data = NULL;
781 	sugov_tunables_free(tunables);
782 
783 stop_kthread:
784 	sugov_kthread_stop(sg_policy);
785 	mutex_unlock(&global_tunables_lock);
786 
787 free_sg_policy:
788 	sugov_policy_free(sg_policy);
789 
790 disable_fast_switch:
791 	cpufreq_disable_fast_switch(policy);
792 
793 	pr_err("initialization failed (error %d)\n", ret);
794 	return ret;
795 }
796 
797 static void sugov_exit(struct cpufreq_policy *policy)
798 {
799 	struct sugov_policy *sg_policy = policy->governor_data;
800 	struct sugov_tunables *tunables = sg_policy->tunables;
801 	unsigned int count;
802 
803 	mutex_lock(&global_tunables_lock);
804 
805 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
806 	policy->governor_data = NULL;
807 	if (!count)
808 		sugov_tunables_free(tunables);
809 
810 	mutex_unlock(&global_tunables_lock);
811 
812 	sugov_kthread_stop(sg_policy);
813 	sugov_policy_free(sg_policy);
814 	cpufreq_disable_fast_switch(policy);
815 }
816 
817 static int sugov_start(struct cpufreq_policy *policy)
818 {
819 	struct sugov_policy *sg_policy = policy->governor_data;
820 	unsigned int cpu;
821 
822 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
823 	sg_policy->last_freq_update_time	= 0;
824 	sg_policy->next_freq			= 0;
825 	sg_policy->work_in_progress		= false;
826 	sg_policy->limits_changed		= false;
827 	sg_policy->cached_raw_freq		= 0;
828 
829 	sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
830 
831 	for_each_cpu(cpu, policy->cpus) {
832 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
833 
834 		memset(sg_cpu, 0, sizeof(*sg_cpu));
835 		sg_cpu->cpu			= cpu;
836 		sg_cpu->sg_policy		= sg_policy;
837 	}
838 
839 	for_each_cpu(cpu, policy->cpus) {
840 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
841 
842 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
843 					     policy_is_shared(policy) ?
844 							sugov_update_shared :
845 							sugov_update_single);
846 	}
847 	return 0;
848 }
849 
850 static void sugov_stop(struct cpufreq_policy *policy)
851 {
852 	struct sugov_policy *sg_policy = policy->governor_data;
853 	unsigned int cpu;
854 
855 	for_each_cpu(cpu, policy->cpus)
856 		cpufreq_remove_update_util_hook(cpu);
857 
858 	synchronize_rcu();
859 
860 	if (!policy->fast_switch_enabled) {
861 		irq_work_sync(&sg_policy->irq_work);
862 		kthread_cancel_work_sync(&sg_policy->work);
863 	}
864 }
865 
866 static void sugov_limits(struct cpufreq_policy *policy)
867 {
868 	struct sugov_policy *sg_policy = policy->governor_data;
869 
870 	if (!policy->fast_switch_enabled) {
871 		mutex_lock(&sg_policy->work_lock);
872 		cpufreq_policy_apply_limits(policy);
873 		mutex_unlock(&sg_policy->work_lock);
874 	}
875 
876 	sg_policy->limits_changed = true;
877 }
878 
879 struct cpufreq_governor schedutil_gov = {
880 	.name			= "schedutil",
881 	.owner			= THIS_MODULE,
882 	.flags			= CPUFREQ_GOV_DYNAMIC_SWITCHING,
883 	.init			= sugov_init,
884 	.exit			= sugov_exit,
885 	.start			= sugov_start,
886 	.stop			= sugov_stop,
887 	.limits			= sugov_limits,
888 };
889 
890 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
891 struct cpufreq_governor *cpufreq_default_governor(void)
892 {
893 	return &schedutil_gov;
894 }
895 #endif
896 
897 cpufreq_governor_init(schedutil_gov);
898 
899 #ifdef CONFIG_ENERGY_MODEL
900 static void rebuild_sd_workfn(struct work_struct *work)
901 {
902 	rebuild_sched_domains_energy();
903 }
904 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
905 
906 /*
907  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
908  * on governor changes to make sure the scheduler knows about it.
909  */
910 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
911 				  struct cpufreq_governor *old_gov)
912 {
913 	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
914 		/*
915 		 * When called from the cpufreq_register_driver() path, the
916 		 * cpu_hotplug_lock is already held, so use a work item to
917 		 * avoid nested locking in rebuild_sched_domains().
918 		 */
919 		schedule_work(&rebuild_sd_work);
920 	}
921 
922 }
923 #endif
924