1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CPUFreq governor based on scheduler-provided CPU utilization data. 4 * 5 * Copyright (C) 2016, Intel Corporation 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include "sched.h" 12 13 #include <linux/sched/cpufreq.h> 14 #include <trace/events/power.h> 15 16 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8) 17 18 struct sugov_tunables { 19 struct gov_attr_set attr_set; 20 unsigned int rate_limit_us; 21 }; 22 23 struct sugov_policy { 24 struct cpufreq_policy *policy; 25 26 struct sugov_tunables *tunables; 27 struct list_head tunables_hook; 28 29 raw_spinlock_t update_lock; /* For shared policies */ 30 u64 last_freq_update_time; 31 s64 freq_update_delay_ns; 32 unsigned int next_freq; 33 unsigned int cached_raw_freq; 34 35 /* The next fields are only needed if fast switch cannot be used: */ 36 struct irq_work irq_work; 37 struct kthread_work work; 38 struct mutex work_lock; 39 struct kthread_worker worker; 40 struct task_struct *thread; 41 bool work_in_progress; 42 43 bool limits_changed; 44 bool need_freq_update; 45 }; 46 47 struct sugov_cpu { 48 struct update_util_data update_util; 49 struct sugov_policy *sg_policy; 50 unsigned int cpu; 51 52 bool iowait_boost_pending; 53 unsigned int iowait_boost; 54 u64 last_update; 55 56 unsigned long bw_dl; 57 unsigned long max; 58 59 /* The field below is for single-CPU policies only: */ 60 #ifdef CONFIG_NO_HZ_COMMON 61 unsigned long saved_idle_calls; 62 #endif 63 }; 64 65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); 66 67 /************************ Governor internals ***********************/ 68 69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) 70 { 71 s64 delta_ns; 72 73 /* 74 * Since cpufreq_update_util() is called with rq->lock held for 75 * the @target_cpu, our per-CPU data is fully serialized. 76 * 77 * However, drivers cannot in general deal with cross-CPU 78 * requests, so while get_next_freq() will work, our 79 * sugov_update_commit() call may not for the fast switching platforms. 80 * 81 * Hence stop here for remote requests if they aren't supported 82 * by the hardware, as calculating the frequency is pointless if 83 * we cannot in fact act on it. 84 * 85 * This is needed on the slow switching platforms too to prevent CPUs 86 * going offline from leaving stale IRQ work items behind. 87 */ 88 if (!cpufreq_this_cpu_can_update(sg_policy->policy)) 89 return false; 90 91 if (unlikely(sg_policy->limits_changed)) { 92 sg_policy->limits_changed = false; 93 sg_policy->need_freq_update = true; 94 return true; 95 } 96 97 delta_ns = time - sg_policy->last_freq_update_time; 98 99 return delta_ns >= sg_policy->freq_update_delay_ns; 100 } 101 102 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time, 103 unsigned int next_freq) 104 { 105 if (sg_policy->need_freq_update) 106 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 107 else if (sg_policy->next_freq == next_freq) 108 return false; 109 110 sg_policy->next_freq = next_freq; 111 sg_policy->last_freq_update_time = time; 112 113 return true; 114 } 115 116 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time, 117 unsigned int next_freq) 118 { 119 if (sugov_update_next_freq(sg_policy, time, next_freq)) 120 cpufreq_driver_fast_switch(sg_policy->policy, next_freq); 121 } 122 123 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time, 124 unsigned int next_freq) 125 { 126 if (!sugov_update_next_freq(sg_policy, time, next_freq)) 127 return; 128 129 if (!sg_policy->work_in_progress) { 130 sg_policy->work_in_progress = true; 131 irq_work_queue(&sg_policy->irq_work); 132 } 133 } 134 135 /** 136 * get_next_freq - Compute a new frequency for a given cpufreq policy. 137 * @sg_policy: schedutil policy object to compute the new frequency for. 138 * @util: Current CPU utilization. 139 * @max: CPU capacity. 140 * 141 * If the utilization is frequency-invariant, choose the new frequency to be 142 * proportional to it, that is 143 * 144 * next_freq = C * max_freq * util / max 145 * 146 * Otherwise, approximate the would-be frequency-invariant utilization by 147 * util_raw * (curr_freq / max_freq) which leads to 148 * 149 * next_freq = C * curr_freq * util_raw / max 150 * 151 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. 152 * 153 * The lowest driver-supported frequency which is equal or greater than the raw 154 * next_freq (as calculated above) is returned, subject to policy min/max and 155 * cpufreq driver limitations. 156 */ 157 static unsigned int get_next_freq(struct sugov_policy *sg_policy, 158 unsigned long util, unsigned long max) 159 { 160 struct cpufreq_policy *policy = sg_policy->policy; 161 unsigned int freq = arch_scale_freq_invariant() ? 162 policy->cpuinfo.max_freq : policy->cur; 163 164 freq = map_util_freq(util, freq, max); 165 166 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update) 167 return sg_policy->next_freq; 168 169 sg_policy->cached_raw_freq = freq; 170 return cpufreq_driver_resolve_freq(policy, freq); 171 } 172 173 /* 174 * This function computes an effective utilization for the given CPU, to be 175 * used for frequency selection given the linear relation: f = u * f_max. 176 * 177 * The scheduler tracks the following metrics: 178 * 179 * cpu_util_{cfs,rt,dl,irq}() 180 * cpu_bw_dl() 181 * 182 * Where the cfs,rt and dl util numbers are tracked with the same metric and 183 * synchronized windows and are thus directly comparable. 184 * 185 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 186 * which excludes things like IRQ and steal-time. These latter are then accrued 187 * in the irq utilization. 188 * 189 * The DL bandwidth number otoh is not a measured metric but a value computed 190 * based on the task model parameters and gives the minimal utilization 191 * required to meet deadlines. 192 */ 193 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, 194 unsigned long max, enum schedutil_type type, 195 struct task_struct *p) 196 { 197 unsigned long dl_util, util, irq; 198 struct rq *rq = cpu_rq(cpu); 199 200 if (!uclamp_is_used() && 201 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 202 return max; 203 } 204 205 /* 206 * Early check to see if IRQ/steal time saturates the CPU, can be 207 * because of inaccuracies in how we track these -- see 208 * update_irq_load_avg(). 209 */ 210 irq = cpu_util_irq(rq); 211 if (unlikely(irq >= max)) 212 return max; 213 214 /* 215 * Because the time spend on RT/DL tasks is visible as 'lost' time to 216 * CFS tasks and we use the same metric to track the effective 217 * utilization (PELT windows are synchronized) we can directly add them 218 * to obtain the CPU's actual utilization. 219 * 220 * CFS and RT utilization can be boosted or capped, depending on 221 * utilization clamp constraints requested by currently RUNNABLE 222 * tasks. 223 * When there are no CFS RUNNABLE tasks, clamps are released and 224 * frequency will be gracefully reduced with the utilization decay. 225 */ 226 util = util_cfs + cpu_util_rt(rq); 227 if (type == FREQUENCY_UTIL) 228 util = uclamp_rq_util_with(rq, util, p); 229 230 dl_util = cpu_util_dl(rq); 231 232 /* 233 * For frequency selection we do not make cpu_util_dl() a permanent part 234 * of this sum because we want to use cpu_bw_dl() later on, but we need 235 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 236 * that we select f_max when there is no idle time. 237 * 238 * NOTE: numerical errors or stop class might cause us to not quite hit 239 * saturation when we should -- something for later. 240 */ 241 if (util + dl_util >= max) 242 return max; 243 244 /* 245 * OTOH, for energy computation we need the estimated running time, so 246 * include util_dl and ignore dl_bw. 247 */ 248 if (type == ENERGY_UTIL) 249 util += dl_util; 250 251 /* 252 * There is still idle time; further improve the number by using the 253 * irq metric. Because IRQ/steal time is hidden from the task clock we 254 * need to scale the task numbers: 255 * 256 * max - irq 257 * U' = irq + --------- * U 258 * max 259 */ 260 util = scale_irq_capacity(util, irq, max); 261 util += irq; 262 263 /* 264 * Bandwidth required by DEADLINE must always be granted while, for 265 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 266 * to gracefully reduce the frequency when no tasks show up for longer 267 * periods of time. 268 * 269 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 270 * bw_dl as requested freq. However, cpufreq is not yet ready for such 271 * an interface. So, we only do the latter for now. 272 */ 273 if (type == FREQUENCY_UTIL) 274 util += cpu_bw_dl(rq); 275 276 return min(max, util); 277 } 278 279 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu) 280 { 281 struct rq *rq = cpu_rq(sg_cpu->cpu); 282 unsigned long util = cpu_util_cfs(rq); 283 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu); 284 285 sg_cpu->max = max; 286 sg_cpu->bw_dl = cpu_bw_dl(rq); 287 288 return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL); 289 } 290 291 /** 292 * sugov_iowait_reset() - Reset the IO boost status of a CPU. 293 * @sg_cpu: the sugov data for the CPU to boost 294 * @time: the update time from the caller 295 * @set_iowait_boost: true if an IO boost has been requested 296 * 297 * The IO wait boost of a task is disabled after a tick since the last update 298 * of a CPU. If a new IO wait boost is requested after more then a tick, then 299 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy 300 * efficiency by ignoring sporadic wakeups from IO. 301 */ 302 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time, 303 bool set_iowait_boost) 304 { 305 s64 delta_ns = time - sg_cpu->last_update; 306 307 /* Reset boost only if a tick has elapsed since last request */ 308 if (delta_ns <= TICK_NSEC) 309 return false; 310 311 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0; 312 sg_cpu->iowait_boost_pending = set_iowait_boost; 313 314 return true; 315 } 316 317 /** 318 * sugov_iowait_boost() - Updates the IO boost status of a CPU. 319 * @sg_cpu: the sugov data for the CPU to boost 320 * @time: the update time from the caller 321 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait 322 * 323 * Each time a task wakes up after an IO operation, the CPU utilization can be 324 * boosted to a certain utilization which doubles at each "frequent and 325 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization 326 * of the maximum OPP. 327 * 328 * To keep doubling, an IO boost has to be requested at least once per tick, 329 * otherwise we restart from the utilization of the minimum OPP. 330 */ 331 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time, 332 unsigned int flags) 333 { 334 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT; 335 336 /* Reset boost if the CPU appears to have been idle enough */ 337 if (sg_cpu->iowait_boost && 338 sugov_iowait_reset(sg_cpu, time, set_iowait_boost)) 339 return; 340 341 /* Boost only tasks waking up after IO */ 342 if (!set_iowait_boost) 343 return; 344 345 /* Ensure boost doubles only one time at each request */ 346 if (sg_cpu->iowait_boost_pending) 347 return; 348 sg_cpu->iowait_boost_pending = true; 349 350 /* Double the boost at each request */ 351 if (sg_cpu->iowait_boost) { 352 sg_cpu->iowait_boost = 353 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE); 354 return; 355 } 356 357 /* First wakeup after IO: start with minimum boost */ 358 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN; 359 } 360 361 /** 362 * sugov_iowait_apply() - Apply the IO boost to a CPU. 363 * @sg_cpu: the sugov data for the cpu to boost 364 * @time: the update time from the caller 365 * @util: the utilization to (eventually) boost 366 * @max: the maximum value the utilization can be boosted to 367 * 368 * A CPU running a task which woken up after an IO operation can have its 369 * utilization boosted to speed up the completion of those IO operations. 370 * The IO boost value is increased each time a task wakes up from IO, in 371 * sugov_iowait_apply(), and it's instead decreased by this function, 372 * each time an increase has not been requested (!iowait_boost_pending). 373 * 374 * A CPU which also appears to have been idle for at least one tick has also 375 * its IO boost utilization reset. 376 * 377 * This mechanism is designed to boost high frequently IO waiting tasks, while 378 * being more conservative on tasks which does sporadic IO operations. 379 */ 380 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time, 381 unsigned long util, unsigned long max) 382 { 383 unsigned long boost; 384 385 /* No boost currently required */ 386 if (!sg_cpu->iowait_boost) 387 return util; 388 389 /* Reset boost if the CPU appears to have been idle enough */ 390 if (sugov_iowait_reset(sg_cpu, time, false)) 391 return util; 392 393 if (!sg_cpu->iowait_boost_pending) { 394 /* 395 * No boost pending; reduce the boost value. 396 */ 397 sg_cpu->iowait_boost >>= 1; 398 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) { 399 sg_cpu->iowait_boost = 0; 400 return util; 401 } 402 } 403 404 sg_cpu->iowait_boost_pending = false; 405 406 /* 407 * @util is already in capacity scale; convert iowait_boost 408 * into the same scale so we can compare. 409 */ 410 boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT; 411 return max(boost, util); 412 } 413 414 #ifdef CONFIG_NO_HZ_COMMON 415 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) 416 { 417 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); 418 bool ret = idle_calls == sg_cpu->saved_idle_calls; 419 420 sg_cpu->saved_idle_calls = idle_calls; 421 return ret; 422 } 423 #else 424 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; } 425 #endif /* CONFIG_NO_HZ_COMMON */ 426 427 /* 428 * Make sugov_should_update_freq() ignore the rate limit when DL 429 * has increased the utilization. 430 */ 431 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy) 432 { 433 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl) 434 sg_policy->limits_changed = true; 435 } 436 437 static void sugov_update_single(struct update_util_data *hook, u64 time, 438 unsigned int flags) 439 { 440 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 441 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 442 unsigned long util, max; 443 unsigned int next_f; 444 unsigned int cached_freq = sg_policy->cached_raw_freq; 445 446 sugov_iowait_boost(sg_cpu, time, flags); 447 sg_cpu->last_update = time; 448 449 ignore_dl_rate_limit(sg_cpu, sg_policy); 450 451 if (!sugov_should_update_freq(sg_policy, time)) 452 return; 453 454 util = sugov_get_util(sg_cpu); 455 max = sg_cpu->max; 456 util = sugov_iowait_apply(sg_cpu, time, util, max); 457 next_f = get_next_freq(sg_policy, util, max); 458 /* 459 * Do not reduce the frequency if the CPU has not been idle 460 * recently, as the reduction is likely to be premature then. 461 */ 462 if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) { 463 next_f = sg_policy->next_freq; 464 465 /* Restore cached freq as next_freq has changed */ 466 sg_policy->cached_raw_freq = cached_freq; 467 } 468 469 /* 470 * This code runs under rq->lock for the target CPU, so it won't run 471 * concurrently on two different CPUs for the same target and it is not 472 * necessary to acquire the lock in the fast switch case. 473 */ 474 if (sg_policy->policy->fast_switch_enabled) { 475 sugov_fast_switch(sg_policy, time, next_f); 476 } else { 477 raw_spin_lock(&sg_policy->update_lock); 478 sugov_deferred_update(sg_policy, time, next_f); 479 raw_spin_unlock(&sg_policy->update_lock); 480 } 481 } 482 483 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time) 484 { 485 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 486 struct cpufreq_policy *policy = sg_policy->policy; 487 unsigned long util = 0, max = 1; 488 unsigned int j; 489 490 for_each_cpu(j, policy->cpus) { 491 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j); 492 unsigned long j_util, j_max; 493 494 j_util = sugov_get_util(j_sg_cpu); 495 j_max = j_sg_cpu->max; 496 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max); 497 498 if (j_util * max > j_max * util) { 499 util = j_util; 500 max = j_max; 501 } 502 } 503 504 return get_next_freq(sg_policy, util, max); 505 } 506 507 static void 508 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) 509 { 510 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 511 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 512 unsigned int next_f; 513 514 raw_spin_lock(&sg_policy->update_lock); 515 516 sugov_iowait_boost(sg_cpu, time, flags); 517 sg_cpu->last_update = time; 518 519 ignore_dl_rate_limit(sg_cpu, sg_policy); 520 521 if (sugov_should_update_freq(sg_policy, time)) { 522 next_f = sugov_next_freq_shared(sg_cpu, time); 523 524 if (sg_policy->policy->fast_switch_enabled) 525 sugov_fast_switch(sg_policy, time, next_f); 526 else 527 sugov_deferred_update(sg_policy, time, next_f); 528 } 529 530 raw_spin_unlock(&sg_policy->update_lock); 531 } 532 533 static void sugov_work(struct kthread_work *work) 534 { 535 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); 536 unsigned int freq; 537 unsigned long flags; 538 539 /* 540 * Hold sg_policy->update_lock shortly to handle the case where: 541 * incase sg_policy->next_freq is read here, and then updated by 542 * sugov_deferred_update() just before work_in_progress is set to false 543 * here, we may miss queueing the new update. 544 * 545 * Note: If a work was queued after the update_lock is released, 546 * sugov_work() will just be called again by kthread_work code; and the 547 * request will be proceed before the sugov thread sleeps. 548 */ 549 raw_spin_lock_irqsave(&sg_policy->update_lock, flags); 550 freq = sg_policy->next_freq; 551 sg_policy->work_in_progress = false; 552 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags); 553 554 mutex_lock(&sg_policy->work_lock); 555 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L); 556 mutex_unlock(&sg_policy->work_lock); 557 } 558 559 static void sugov_irq_work(struct irq_work *irq_work) 560 { 561 struct sugov_policy *sg_policy; 562 563 sg_policy = container_of(irq_work, struct sugov_policy, irq_work); 564 565 kthread_queue_work(&sg_policy->worker, &sg_policy->work); 566 } 567 568 /************************** sysfs interface ************************/ 569 570 static struct sugov_tunables *global_tunables; 571 static DEFINE_MUTEX(global_tunables_lock); 572 573 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) 574 { 575 return container_of(attr_set, struct sugov_tunables, attr_set); 576 } 577 578 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) 579 { 580 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 581 582 return sprintf(buf, "%u\n", tunables->rate_limit_us); 583 } 584 585 static ssize_t 586 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) 587 { 588 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 589 struct sugov_policy *sg_policy; 590 unsigned int rate_limit_us; 591 592 if (kstrtouint(buf, 10, &rate_limit_us)) 593 return -EINVAL; 594 595 tunables->rate_limit_us = rate_limit_us; 596 597 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) 598 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; 599 600 return count; 601 } 602 603 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); 604 605 static struct attribute *sugov_attrs[] = { 606 &rate_limit_us.attr, 607 NULL 608 }; 609 ATTRIBUTE_GROUPS(sugov); 610 611 static struct kobj_type sugov_tunables_ktype = { 612 .default_groups = sugov_groups, 613 .sysfs_ops = &governor_sysfs_ops, 614 }; 615 616 /********************** cpufreq governor interface *********************/ 617 618 struct cpufreq_governor schedutil_gov; 619 620 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) 621 { 622 struct sugov_policy *sg_policy; 623 624 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); 625 if (!sg_policy) 626 return NULL; 627 628 sg_policy->policy = policy; 629 raw_spin_lock_init(&sg_policy->update_lock); 630 return sg_policy; 631 } 632 633 static void sugov_policy_free(struct sugov_policy *sg_policy) 634 { 635 kfree(sg_policy); 636 } 637 638 static int sugov_kthread_create(struct sugov_policy *sg_policy) 639 { 640 struct task_struct *thread; 641 struct sched_attr attr = { 642 .size = sizeof(struct sched_attr), 643 .sched_policy = SCHED_DEADLINE, 644 .sched_flags = SCHED_FLAG_SUGOV, 645 .sched_nice = 0, 646 .sched_priority = 0, 647 /* 648 * Fake (unused) bandwidth; workaround to "fix" 649 * priority inheritance. 650 */ 651 .sched_runtime = 1000000, 652 .sched_deadline = 10000000, 653 .sched_period = 10000000, 654 }; 655 struct cpufreq_policy *policy = sg_policy->policy; 656 int ret; 657 658 /* kthread only required for slow path */ 659 if (policy->fast_switch_enabled) 660 return 0; 661 662 kthread_init_work(&sg_policy->work, sugov_work); 663 kthread_init_worker(&sg_policy->worker); 664 thread = kthread_create(kthread_worker_fn, &sg_policy->worker, 665 "sugov:%d", 666 cpumask_first(policy->related_cpus)); 667 if (IS_ERR(thread)) { 668 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread)); 669 return PTR_ERR(thread); 670 } 671 672 ret = sched_setattr_nocheck(thread, &attr); 673 if (ret) { 674 kthread_stop(thread); 675 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__); 676 return ret; 677 } 678 679 sg_policy->thread = thread; 680 kthread_bind_mask(thread, policy->related_cpus); 681 init_irq_work(&sg_policy->irq_work, sugov_irq_work); 682 mutex_init(&sg_policy->work_lock); 683 684 wake_up_process(thread); 685 686 return 0; 687 } 688 689 static void sugov_kthread_stop(struct sugov_policy *sg_policy) 690 { 691 /* kthread only required for slow path */ 692 if (sg_policy->policy->fast_switch_enabled) 693 return; 694 695 kthread_flush_worker(&sg_policy->worker); 696 kthread_stop(sg_policy->thread); 697 mutex_destroy(&sg_policy->work_lock); 698 } 699 700 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) 701 { 702 struct sugov_tunables *tunables; 703 704 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); 705 if (tunables) { 706 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); 707 if (!have_governor_per_policy()) 708 global_tunables = tunables; 709 } 710 return tunables; 711 } 712 713 static void sugov_tunables_free(struct sugov_tunables *tunables) 714 { 715 if (!have_governor_per_policy()) 716 global_tunables = NULL; 717 718 kfree(tunables); 719 } 720 721 static int sugov_init(struct cpufreq_policy *policy) 722 { 723 struct sugov_policy *sg_policy; 724 struct sugov_tunables *tunables; 725 int ret = 0; 726 727 /* State should be equivalent to EXIT */ 728 if (policy->governor_data) 729 return -EBUSY; 730 731 cpufreq_enable_fast_switch(policy); 732 733 sg_policy = sugov_policy_alloc(policy); 734 if (!sg_policy) { 735 ret = -ENOMEM; 736 goto disable_fast_switch; 737 } 738 739 ret = sugov_kthread_create(sg_policy); 740 if (ret) 741 goto free_sg_policy; 742 743 mutex_lock(&global_tunables_lock); 744 745 if (global_tunables) { 746 if (WARN_ON(have_governor_per_policy())) { 747 ret = -EINVAL; 748 goto stop_kthread; 749 } 750 policy->governor_data = sg_policy; 751 sg_policy->tunables = global_tunables; 752 753 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); 754 goto out; 755 } 756 757 tunables = sugov_tunables_alloc(sg_policy); 758 if (!tunables) { 759 ret = -ENOMEM; 760 goto stop_kthread; 761 } 762 763 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy); 764 765 policy->governor_data = sg_policy; 766 sg_policy->tunables = tunables; 767 768 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, 769 get_governor_parent_kobj(policy), "%s", 770 schedutil_gov.name); 771 if (ret) 772 goto fail; 773 774 out: 775 mutex_unlock(&global_tunables_lock); 776 return 0; 777 778 fail: 779 kobject_put(&tunables->attr_set.kobj); 780 policy->governor_data = NULL; 781 sugov_tunables_free(tunables); 782 783 stop_kthread: 784 sugov_kthread_stop(sg_policy); 785 mutex_unlock(&global_tunables_lock); 786 787 free_sg_policy: 788 sugov_policy_free(sg_policy); 789 790 disable_fast_switch: 791 cpufreq_disable_fast_switch(policy); 792 793 pr_err("initialization failed (error %d)\n", ret); 794 return ret; 795 } 796 797 static void sugov_exit(struct cpufreq_policy *policy) 798 { 799 struct sugov_policy *sg_policy = policy->governor_data; 800 struct sugov_tunables *tunables = sg_policy->tunables; 801 unsigned int count; 802 803 mutex_lock(&global_tunables_lock); 804 805 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); 806 policy->governor_data = NULL; 807 if (!count) 808 sugov_tunables_free(tunables); 809 810 mutex_unlock(&global_tunables_lock); 811 812 sugov_kthread_stop(sg_policy); 813 sugov_policy_free(sg_policy); 814 cpufreq_disable_fast_switch(policy); 815 } 816 817 static int sugov_start(struct cpufreq_policy *policy) 818 { 819 struct sugov_policy *sg_policy = policy->governor_data; 820 unsigned int cpu; 821 822 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; 823 sg_policy->last_freq_update_time = 0; 824 sg_policy->next_freq = 0; 825 sg_policy->work_in_progress = false; 826 sg_policy->limits_changed = false; 827 sg_policy->cached_raw_freq = 0; 828 829 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 830 831 for_each_cpu(cpu, policy->cpus) { 832 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 833 834 memset(sg_cpu, 0, sizeof(*sg_cpu)); 835 sg_cpu->cpu = cpu; 836 sg_cpu->sg_policy = sg_policy; 837 } 838 839 for_each_cpu(cpu, policy->cpus) { 840 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 841 842 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, 843 policy_is_shared(policy) ? 844 sugov_update_shared : 845 sugov_update_single); 846 } 847 return 0; 848 } 849 850 static void sugov_stop(struct cpufreq_policy *policy) 851 { 852 struct sugov_policy *sg_policy = policy->governor_data; 853 unsigned int cpu; 854 855 for_each_cpu(cpu, policy->cpus) 856 cpufreq_remove_update_util_hook(cpu); 857 858 synchronize_rcu(); 859 860 if (!policy->fast_switch_enabled) { 861 irq_work_sync(&sg_policy->irq_work); 862 kthread_cancel_work_sync(&sg_policy->work); 863 } 864 } 865 866 static void sugov_limits(struct cpufreq_policy *policy) 867 { 868 struct sugov_policy *sg_policy = policy->governor_data; 869 870 if (!policy->fast_switch_enabled) { 871 mutex_lock(&sg_policy->work_lock); 872 cpufreq_policy_apply_limits(policy); 873 mutex_unlock(&sg_policy->work_lock); 874 } 875 876 sg_policy->limits_changed = true; 877 } 878 879 struct cpufreq_governor schedutil_gov = { 880 .name = "schedutil", 881 .owner = THIS_MODULE, 882 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING, 883 .init = sugov_init, 884 .exit = sugov_exit, 885 .start = sugov_start, 886 .stop = sugov_stop, 887 .limits = sugov_limits, 888 }; 889 890 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL 891 struct cpufreq_governor *cpufreq_default_governor(void) 892 { 893 return &schedutil_gov; 894 } 895 #endif 896 897 cpufreq_governor_init(schedutil_gov); 898 899 #ifdef CONFIG_ENERGY_MODEL 900 static void rebuild_sd_workfn(struct work_struct *work) 901 { 902 rebuild_sched_domains_energy(); 903 } 904 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn); 905 906 /* 907 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains 908 * on governor changes to make sure the scheduler knows about it. 909 */ 910 void sched_cpufreq_governor_change(struct cpufreq_policy *policy, 911 struct cpufreq_governor *old_gov) 912 { 913 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) { 914 /* 915 * When called from the cpufreq_register_driver() path, the 916 * cpu_hotplug_lock is already held, so use a work item to 917 * avoid nested locking in rebuild_sched_domains(). 918 */ 919 schedule_work(&rebuild_sd_work); 920 } 921 922 } 923 #endif 924