xref: /openbmc/linux/kernel/sched/cpufreq_schedutil.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * CPUFreq governor based on scheduler-provided CPU utilization data.
3  *
4  * Copyright (C) 2016, Intel Corporation
5  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include "sched.h"
15 
16 #include <trace/events/power.h>
17 
18 struct sugov_tunables {
19 	struct gov_attr_set	attr_set;
20 	unsigned int		rate_limit_us;
21 };
22 
23 struct sugov_policy {
24 	struct cpufreq_policy	*policy;
25 
26 	struct sugov_tunables	*tunables;
27 	struct list_head	tunables_hook;
28 
29 	raw_spinlock_t		update_lock;	/* For shared policies */
30 	u64			last_freq_update_time;
31 	s64			freq_update_delay_ns;
32 	unsigned int		next_freq;
33 	unsigned int		cached_raw_freq;
34 
35 	/* The next fields are only needed if fast switch cannot be used: */
36 	struct			irq_work irq_work;
37 	struct			kthread_work work;
38 	struct			mutex work_lock;
39 	struct			kthread_worker worker;
40 	struct task_struct	*thread;
41 	bool			work_in_progress;
42 
43 	bool			need_freq_update;
44 };
45 
46 struct sugov_cpu {
47 	struct update_util_data	update_util;
48 	struct sugov_policy	*sg_policy;
49 	unsigned int		cpu;
50 
51 	bool			iowait_boost_pending;
52 	unsigned int		iowait_boost;
53 	unsigned int		iowait_boost_max;
54 	u64			last_update;
55 
56 	unsigned long		bw_dl;
57 	unsigned long		max;
58 
59 	/* The field below is for single-CPU policies only: */
60 #ifdef CONFIG_NO_HZ_COMMON
61 	unsigned long		saved_idle_calls;
62 #endif
63 };
64 
65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
66 
67 /************************ Governor internals ***********************/
68 
69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
70 {
71 	s64 delta_ns;
72 
73 	/*
74 	 * Since cpufreq_update_util() is called with rq->lock held for
75 	 * the @target_cpu, our per-CPU data is fully serialized.
76 	 *
77 	 * However, drivers cannot in general deal with cross-CPU
78 	 * requests, so while get_next_freq() will work, our
79 	 * sugov_update_commit() call may not for the fast switching platforms.
80 	 *
81 	 * Hence stop here for remote requests if they aren't supported
82 	 * by the hardware, as calculating the frequency is pointless if
83 	 * we cannot in fact act on it.
84 	 *
85 	 * For the slow switching platforms, the kthread is always scheduled on
86 	 * the right set of CPUs and any CPU can find the next frequency and
87 	 * schedule the kthread.
88 	 */
89 	if (sg_policy->policy->fast_switch_enabled &&
90 	    !cpufreq_this_cpu_can_update(sg_policy->policy))
91 		return false;
92 
93 	if (unlikely(sg_policy->need_freq_update))
94 		return true;
95 
96 	delta_ns = time - sg_policy->last_freq_update_time;
97 
98 	return delta_ns >= sg_policy->freq_update_delay_ns;
99 }
100 
101 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
102 				   unsigned int next_freq)
103 {
104 	if (sg_policy->next_freq == next_freq)
105 		return false;
106 
107 	sg_policy->next_freq = next_freq;
108 	sg_policy->last_freq_update_time = time;
109 
110 	return true;
111 }
112 
113 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
114 			      unsigned int next_freq)
115 {
116 	struct cpufreq_policy *policy = sg_policy->policy;
117 
118 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
119 		return;
120 
121 	next_freq = cpufreq_driver_fast_switch(policy, next_freq);
122 	if (!next_freq)
123 		return;
124 
125 	policy->cur = next_freq;
126 	trace_cpu_frequency(next_freq, smp_processor_id());
127 }
128 
129 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
130 				  unsigned int next_freq)
131 {
132 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
133 		return;
134 
135 	if (!sg_policy->work_in_progress) {
136 		sg_policy->work_in_progress = true;
137 		irq_work_queue(&sg_policy->irq_work);
138 	}
139 }
140 
141 /**
142  * get_next_freq - Compute a new frequency for a given cpufreq policy.
143  * @sg_policy: schedutil policy object to compute the new frequency for.
144  * @util: Current CPU utilization.
145  * @max: CPU capacity.
146  *
147  * If the utilization is frequency-invariant, choose the new frequency to be
148  * proportional to it, that is
149  *
150  * next_freq = C * max_freq * util / max
151  *
152  * Otherwise, approximate the would-be frequency-invariant utilization by
153  * util_raw * (curr_freq / max_freq) which leads to
154  *
155  * next_freq = C * curr_freq * util_raw / max
156  *
157  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
158  *
159  * The lowest driver-supported frequency which is equal or greater than the raw
160  * next_freq (as calculated above) is returned, subject to policy min/max and
161  * cpufreq driver limitations.
162  */
163 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
164 				  unsigned long util, unsigned long max)
165 {
166 	struct cpufreq_policy *policy = sg_policy->policy;
167 	unsigned int freq = arch_scale_freq_invariant() ?
168 				policy->cpuinfo.max_freq : policy->cur;
169 
170 	freq = (freq + (freq >> 2)) * util / max;
171 
172 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
173 		return sg_policy->next_freq;
174 
175 	sg_policy->need_freq_update = false;
176 	sg_policy->cached_raw_freq = freq;
177 	return cpufreq_driver_resolve_freq(policy, freq);
178 }
179 
180 /*
181  * This function computes an effective utilization for the given CPU, to be
182  * used for frequency selection given the linear relation: f = u * f_max.
183  *
184  * The scheduler tracks the following metrics:
185  *
186  *   cpu_util_{cfs,rt,dl,irq}()
187  *   cpu_bw_dl()
188  *
189  * Where the cfs,rt and dl util numbers are tracked with the same metric and
190  * synchronized windows and are thus directly comparable.
191  *
192  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
193  * which excludes things like IRQ and steal-time. These latter are then accrued
194  * in the irq utilization.
195  *
196  * The DL bandwidth number otoh is not a measured metric but a value computed
197  * based on the task model parameters and gives the minimal utilization
198  * required to meet deadlines.
199  */
200 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
201 {
202 	struct rq *rq = cpu_rq(sg_cpu->cpu);
203 	unsigned long util, irq, max;
204 
205 	sg_cpu->max = max = arch_scale_cpu_capacity(NULL, sg_cpu->cpu);
206 	sg_cpu->bw_dl = cpu_bw_dl(rq);
207 
208 	if (rt_rq_is_runnable(&rq->rt))
209 		return max;
210 
211 	/*
212 	 * Early check to see if IRQ/steal time saturates the CPU, can be
213 	 * because of inaccuracies in how we track these -- see
214 	 * update_irq_load_avg().
215 	 */
216 	irq = cpu_util_irq(rq);
217 	if (unlikely(irq >= max))
218 		return max;
219 
220 	/*
221 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
222 	 * CFS tasks and we use the same metric to track the effective
223 	 * utilization (PELT windows are synchronized) we can directly add them
224 	 * to obtain the CPU's actual utilization.
225 	 */
226 	util = cpu_util_cfs(rq);
227 	util += cpu_util_rt(rq);
228 
229 	/*
230 	 * We do not make cpu_util_dl() a permanent part of this sum because we
231 	 * want to use cpu_bw_dl() later on, but we need to check if the
232 	 * CFS+RT+DL sum is saturated (ie. no idle time) such that we select
233 	 * f_max when there is no idle time.
234 	 *
235 	 * NOTE: numerical errors or stop class might cause us to not quite hit
236 	 * saturation when we should -- something for later.
237 	 */
238 	if ((util + cpu_util_dl(rq)) >= max)
239 		return max;
240 
241 	/*
242 	 * There is still idle time; further improve the number by using the
243 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
244 	 * need to scale the task numbers:
245 	 *
246 	 *              1 - irq
247 	 *   U' = irq + ------- * U
248 	 *                max
249 	 */
250 	util = scale_irq_capacity(util, irq, max);
251 	util += irq;
252 
253 	/*
254 	 * Bandwidth required by DEADLINE must always be granted while, for
255 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
256 	 * to gracefully reduce the frequency when no tasks show up for longer
257 	 * periods of time.
258 	 *
259 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
260 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
261 	 * an interface. So, we only do the latter for now.
262 	 */
263 	return min(max, util + sg_cpu->bw_dl);
264 }
265 
266 /**
267  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
268  * @sg_cpu: the sugov data for the CPU to boost
269  * @time: the update time from the caller
270  * @set_iowait_boost: true if an IO boost has been requested
271  *
272  * The IO wait boost of a task is disabled after a tick since the last update
273  * of a CPU. If a new IO wait boost is requested after more then a tick, then
274  * we enable the boost starting from the minimum frequency, which improves
275  * energy efficiency by ignoring sporadic wakeups from IO.
276  */
277 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
278 			       bool set_iowait_boost)
279 {
280 	s64 delta_ns = time - sg_cpu->last_update;
281 
282 	/* Reset boost only if a tick has elapsed since last request */
283 	if (delta_ns <= TICK_NSEC)
284 		return false;
285 
286 	sg_cpu->iowait_boost = set_iowait_boost
287 		? sg_cpu->sg_policy->policy->min : 0;
288 	sg_cpu->iowait_boost_pending = set_iowait_boost;
289 
290 	return true;
291 }
292 
293 /**
294  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
295  * @sg_cpu: the sugov data for the CPU to boost
296  * @time: the update time from the caller
297  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
298  *
299  * Each time a task wakes up after an IO operation, the CPU utilization can be
300  * boosted to a certain utilization which doubles at each "frequent and
301  * successive" wakeup from IO, ranging from the utilization of the minimum
302  * OPP to the utilization of the maximum OPP.
303  * To keep doubling, an IO boost has to be requested at least once per tick,
304  * otherwise we restart from the utilization of the minimum OPP.
305  */
306 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
307 			       unsigned int flags)
308 {
309 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
310 
311 	/* Reset boost if the CPU appears to have been idle enough */
312 	if (sg_cpu->iowait_boost &&
313 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
314 		return;
315 
316 	/* Boost only tasks waking up after IO */
317 	if (!set_iowait_boost)
318 		return;
319 
320 	/* Ensure boost doubles only one time at each request */
321 	if (sg_cpu->iowait_boost_pending)
322 		return;
323 	sg_cpu->iowait_boost_pending = true;
324 
325 	/* Double the boost at each request */
326 	if (sg_cpu->iowait_boost) {
327 		sg_cpu->iowait_boost <<= 1;
328 		if (sg_cpu->iowait_boost > sg_cpu->iowait_boost_max)
329 			sg_cpu->iowait_boost = sg_cpu->iowait_boost_max;
330 		return;
331 	}
332 
333 	/* First wakeup after IO: start with minimum boost */
334 	sg_cpu->iowait_boost = sg_cpu->sg_policy->policy->min;
335 }
336 
337 /**
338  * sugov_iowait_apply() - Apply the IO boost to a CPU.
339  * @sg_cpu: the sugov data for the cpu to boost
340  * @time: the update time from the caller
341  * @util: the utilization to (eventually) boost
342  * @max: the maximum value the utilization can be boosted to
343  *
344  * A CPU running a task which woken up after an IO operation can have its
345  * utilization boosted to speed up the completion of those IO operations.
346  * The IO boost value is increased each time a task wakes up from IO, in
347  * sugov_iowait_apply(), and it's instead decreased by this function,
348  * each time an increase has not been requested (!iowait_boost_pending).
349  *
350  * A CPU which also appears to have been idle for at least one tick has also
351  * its IO boost utilization reset.
352  *
353  * This mechanism is designed to boost high frequently IO waiting tasks, while
354  * being more conservative on tasks which does sporadic IO operations.
355  */
356 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
357 			       unsigned long *util, unsigned long *max)
358 {
359 	unsigned int boost_util, boost_max;
360 
361 	/* No boost currently required */
362 	if (!sg_cpu->iowait_boost)
363 		return;
364 
365 	/* Reset boost if the CPU appears to have been idle enough */
366 	if (sugov_iowait_reset(sg_cpu, time, false))
367 		return;
368 
369 	/*
370 	 * An IO waiting task has just woken up:
371 	 * allow to further double the boost value
372 	 */
373 	if (sg_cpu->iowait_boost_pending) {
374 		sg_cpu->iowait_boost_pending = false;
375 	} else {
376 		/*
377 		 * Otherwise: reduce the boost value and disable it when we
378 		 * reach the minimum.
379 		 */
380 		sg_cpu->iowait_boost >>= 1;
381 		if (sg_cpu->iowait_boost < sg_cpu->sg_policy->policy->min) {
382 			sg_cpu->iowait_boost = 0;
383 			return;
384 		}
385 	}
386 
387 	/*
388 	 * Apply the current boost value: a CPU is boosted only if its current
389 	 * utilization is smaller then the current IO boost level.
390 	 */
391 	boost_util = sg_cpu->iowait_boost;
392 	boost_max = sg_cpu->iowait_boost_max;
393 	if (*util * boost_max < *max * boost_util) {
394 		*util = boost_util;
395 		*max = boost_max;
396 	}
397 }
398 
399 #ifdef CONFIG_NO_HZ_COMMON
400 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
401 {
402 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
403 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
404 
405 	sg_cpu->saved_idle_calls = idle_calls;
406 	return ret;
407 }
408 #else
409 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
410 #endif /* CONFIG_NO_HZ_COMMON */
411 
412 /*
413  * Make sugov_should_update_freq() ignore the rate limit when DL
414  * has increased the utilization.
415  */
416 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
417 {
418 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
419 		sg_policy->need_freq_update = true;
420 }
421 
422 static void sugov_update_single(struct update_util_data *hook, u64 time,
423 				unsigned int flags)
424 {
425 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
426 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
427 	unsigned long util, max;
428 	unsigned int next_f;
429 	bool busy;
430 
431 	sugov_iowait_boost(sg_cpu, time, flags);
432 	sg_cpu->last_update = time;
433 
434 	ignore_dl_rate_limit(sg_cpu, sg_policy);
435 
436 	if (!sugov_should_update_freq(sg_policy, time))
437 		return;
438 
439 	busy = sugov_cpu_is_busy(sg_cpu);
440 
441 	util = sugov_get_util(sg_cpu);
442 	max = sg_cpu->max;
443 	sugov_iowait_apply(sg_cpu, time, &util, &max);
444 	next_f = get_next_freq(sg_policy, util, max);
445 	/*
446 	 * Do not reduce the frequency if the CPU has not been idle
447 	 * recently, as the reduction is likely to be premature then.
448 	 */
449 	if (busy && next_f < sg_policy->next_freq) {
450 		next_f = sg_policy->next_freq;
451 
452 		/* Reset cached freq as next_freq has changed */
453 		sg_policy->cached_raw_freq = 0;
454 	}
455 
456 	/*
457 	 * This code runs under rq->lock for the target CPU, so it won't run
458 	 * concurrently on two different CPUs for the same target and it is not
459 	 * necessary to acquire the lock in the fast switch case.
460 	 */
461 	if (sg_policy->policy->fast_switch_enabled) {
462 		sugov_fast_switch(sg_policy, time, next_f);
463 	} else {
464 		raw_spin_lock(&sg_policy->update_lock);
465 		sugov_deferred_update(sg_policy, time, next_f);
466 		raw_spin_unlock(&sg_policy->update_lock);
467 	}
468 }
469 
470 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
471 {
472 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
473 	struct cpufreq_policy *policy = sg_policy->policy;
474 	unsigned long util = 0, max = 1;
475 	unsigned int j;
476 
477 	for_each_cpu(j, policy->cpus) {
478 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
479 		unsigned long j_util, j_max;
480 
481 		j_util = sugov_get_util(j_sg_cpu);
482 		j_max = j_sg_cpu->max;
483 		sugov_iowait_apply(j_sg_cpu, time, &j_util, &j_max);
484 
485 		if (j_util * max > j_max * util) {
486 			util = j_util;
487 			max = j_max;
488 		}
489 	}
490 
491 	return get_next_freq(sg_policy, util, max);
492 }
493 
494 static void
495 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
496 {
497 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
498 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
499 	unsigned int next_f;
500 
501 	raw_spin_lock(&sg_policy->update_lock);
502 
503 	sugov_iowait_boost(sg_cpu, time, flags);
504 	sg_cpu->last_update = time;
505 
506 	ignore_dl_rate_limit(sg_cpu, sg_policy);
507 
508 	if (sugov_should_update_freq(sg_policy, time)) {
509 		next_f = sugov_next_freq_shared(sg_cpu, time);
510 
511 		if (sg_policy->policy->fast_switch_enabled)
512 			sugov_fast_switch(sg_policy, time, next_f);
513 		else
514 			sugov_deferred_update(sg_policy, time, next_f);
515 	}
516 
517 	raw_spin_unlock(&sg_policy->update_lock);
518 }
519 
520 static void sugov_work(struct kthread_work *work)
521 {
522 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
523 	unsigned int freq;
524 	unsigned long flags;
525 
526 	/*
527 	 * Hold sg_policy->update_lock shortly to handle the case where:
528 	 * incase sg_policy->next_freq is read here, and then updated by
529 	 * sugov_deferred_update() just before work_in_progress is set to false
530 	 * here, we may miss queueing the new update.
531 	 *
532 	 * Note: If a work was queued after the update_lock is released,
533 	 * sugov_work() will just be called again by kthread_work code; and the
534 	 * request will be proceed before the sugov thread sleeps.
535 	 */
536 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
537 	freq = sg_policy->next_freq;
538 	sg_policy->work_in_progress = false;
539 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
540 
541 	mutex_lock(&sg_policy->work_lock);
542 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
543 	mutex_unlock(&sg_policy->work_lock);
544 }
545 
546 static void sugov_irq_work(struct irq_work *irq_work)
547 {
548 	struct sugov_policy *sg_policy;
549 
550 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
551 
552 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
553 }
554 
555 /************************** sysfs interface ************************/
556 
557 static struct sugov_tunables *global_tunables;
558 static DEFINE_MUTEX(global_tunables_lock);
559 
560 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
561 {
562 	return container_of(attr_set, struct sugov_tunables, attr_set);
563 }
564 
565 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
566 {
567 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
568 
569 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
570 }
571 
572 static ssize_t
573 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
574 {
575 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
576 	struct sugov_policy *sg_policy;
577 	unsigned int rate_limit_us;
578 
579 	if (kstrtouint(buf, 10, &rate_limit_us))
580 		return -EINVAL;
581 
582 	tunables->rate_limit_us = rate_limit_us;
583 
584 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
585 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
586 
587 	return count;
588 }
589 
590 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
591 
592 static struct attribute *sugov_attributes[] = {
593 	&rate_limit_us.attr,
594 	NULL
595 };
596 
597 static struct kobj_type sugov_tunables_ktype = {
598 	.default_attrs = sugov_attributes,
599 	.sysfs_ops = &governor_sysfs_ops,
600 };
601 
602 /********************** cpufreq governor interface *********************/
603 
604 static struct cpufreq_governor schedutil_gov;
605 
606 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
607 {
608 	struct sugov_policy *sg_policy;
609 
610 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
611 	if (!sg_policy)
612 		return NULL;
613 
614 	sg_policy->policy = policy;
615 	raw_spin_lock_init(&sg_policy->update_lock);
616 	return sg_policy;
617 }
618 
619 static void sugov_policy_free(struct sugov_policy *sg_policy)
620 {
621 	kfree(sg_policy);
622 }
623 
624 static int sugov_kthread_create(struct sugov_policy *sg_policy)
625 {
626 	struct task_struct *thread;
627 	struct sched_attr attr = {
628 		.size		= sizeof(struct sched_attr),
629 		.sched_policy	= SCHED_DEADLINE,
630 		.sched_flags	= SCHED_FLAG_SUGOV,
631 		.sched_nice	= 0,
632 		.sched_priority	= 0,
633 		/*
634 		 * Fake (unused) bandwidth; workaround to "fix"
635 		 * priority inheritance.
636 		 */
637 		.sched_runtime	=  1000000,
638 		.sched_deadline = 10000000,
639 		.sched_period	= 10000000,
640 	};
641 	struct cpufreq_policy *policy = sg_policy->policy;
642 	int ret;
643 
644 	/* kthread only required for slow path */
645 	if (policy->fast_switch_enabled)
646 		return 0;
647 
648 	kthread_init_work(&sg_policy->work, sugov_work);
649 	kthread_init_worker(&sg_policy->worker);
650 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
651 				"sugov:%d",
652 				cpumask_first(policy->related_cpus));
653 	if (IS_ERR(thread)) {
654 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
655 		return PTR_ERR(thread);
656 	}
657 
658 	ret = sched_setattr_nocheck(thread, &attr);
659 	if (ret) {
660 		kthread_stop(thread);
661 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
662 		return ret;
663 	}
664 
665 	sg_policy->thread = thread;
666 	kthread_bind_mask(thread, policy->related_cpus);
667 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
668 	mutex_init(&sg_policy->work_lock);
669 
670 	wake_up_process(thread);
671 
672 	return 0;
673 }
674 
675 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
676 {
677 	/* kthread only required for slow path */
678 	if (sg_policy->policy->fast_switch_enabled)
679 		return;
680 
681 	kthread_flush_worker(&sg_policy->worker);
682 	kthread_stop(sg_policy->thread);
683 	mutex_destroy(&sg_policy->work_lock);
684 }
685 
686 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
687 {
688 	struct sugov_tunables *tunables;
689 
690 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
691 	if (tunables) {
692 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
693 		if (!have_governor_per_policy())
694 			global_tunables = tunables;
695 	}
696 	return tunables;
697 }
698 
699 static void sugov_tunables_free(struct sugov_tunables *tunables)
700 {
701 	if (!have_governor_per_policy())
702 		global_tunables = NULL;
703 
704 	kfree(tunables);
705 }
706 
707 static int sugov_init(struct cpufreq_policy *policy)
708 {
709 	struct sugov_policy *sg_policy;
710 	struct sugov_tunables *tunables;
711 	int ret = 0;
712 
713 	/* State should be equivalent to EXIT */
714 	if (policy->governor_data)
715 		return -EBUSY;
716 
717 	cpufreq_enable_fast_switch(policy);
718 
719 	sg_policy = sugov_policy_alloc(policy);
720 	if (!sg_policy) {
721 		ret = -ENOMEM;
722 		goto disable_fast_switch;
723 	}
724 
725 	ret = sugov_kthread_create(sg_policy);
726 	if (ret)
727 		goto free_sg_policy;
728 
729 	mutex_lock(&global_tunables_lock);
730 
731 	if (global_tunables) {
732 		if (WARN_ON(have_governor_per_policy())) {
733 			ret = -EINVAL;
734 			goto stop_kthread;
735 		}
736 		policy->governor_data = sg_policy;
737 		sg_policy->tunables = global_tunables;
738 
739 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
740 		goto out;
741 	}
742 
743 	tunables = sugov_tunables_alloc(sg_policy);
744 	if (!tunables) {
745 		ret = -ENOMEM;
746 		goto stop_kthread;
747 	}
748 
749 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
750 
751 	policy->governor_data = sg_policy;
752 	sg_policy->tunables = tunables;
753 
754 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
755 				   get_governor_parent_kobj(policy), "%s",
756 				   schedutil_gov.name);
757 	if (ret)
758 		goto fail;
759 
760 out:
761 	mutex_unlock(&global_tunables_lock);
762 	return 0;
763 
764 fail:
765 	policy->governor_data = NULL;
766 	sugov_tunables_free(tunables);
767 
768 stop_kthread:
769 	sugov_kthread_stop(sg_policy);
770 	mutex_unlock(&global_tunables_lock);
771 
772 free_sg_policy:
773 	sugov_policy_free(sg_policy);
774 
775 disable_fast_switch:
776 	cpufreq_disable_fast_switch(policy);
777 
778 	pr_err("initialization failed (error %d)\n", ret);
779 	return ret;
780 }
781 
782 static void sugov_exit(struct cpufreq_policy *policy)
783 {
784 	struct sugov_policy *sg_policy = policy->governor_data;
785 	struct sugov_tunables *tunables = sg_policy->tunables;
786 	unsigned int count;
787 
788 	mutex_lock(&global_tunables_lock);
789 
790 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
791 	policy->governor_data = NULL;
792 	if (!count)
793 		sugov_tunables_free(tunables);
794 
795 	mutex_unlock(&global_tunables_lock);
796 
797 	sugov_kthread_stop(sg_policy);
798 	sugov_policy_free(sg_policy);
799 	cpufreq_disable_fast_switch(policy);
800 }
801 
802 static int sugov_start(struct cpufreq_policy *policy)
803 {
804 	struct sugov_policy *sg_policy = policy->governor_data;
805 	unsigned int cpu;
806 
807 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
808 	sg_policy->last_freq_update_time	= 0;
809 	sg_policy->next_freq			= 0;
810 	sg_policy->work_in_progress		= false;
811 	sg_policy->need_freq_update		= false;
812 	sg_policy->cached_raw_freq		= 0;
813 
814 	for_each_cpu(cpu, policy->cpus) {
815 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
816 
817 		memset(sg_cpu, 0, sizeof(*sg_cpu));
818 		sg_cpu->cpu			= cpu;
819 		sg_cpu->sg_policy		= sg_policy;
820 		sg_cpu->iowait_boost_max	= policy->cpuinfo.max_freq;
821 	}
822 
823 	for_each_cpu(cpu, policy->cpus) {
824 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
825 
826 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
827 					     policy_is_shared(policy) ?
828 							sugov_update_shared :
829 							sugov_update_single);
830 	}
831 	return 0;
832 }
833 
834 static void sugov_stop(struct cpufreq_policy *policy)
835 {
836 	struct sugov_policy *sg_policy = policy->governor_data;
837 	unsigned int cpu;
838 
839 	for_each_cpu(cpu, policy->cpus)
840 		cpufreq_remove_update_util_hook(cpu);
841 
842 	synchronize_sched();
843 
844 	if (!policy->fast_switch_enabled) {
845 		irq_work_sync(&sg_policy->irq_work);
846 		kthread_cancel_work_sync(&sg_policy->work);
847 	}
848 }
849 
850 static void sugov_limits(struct cpufreq_policy *policy)
851 {
852 	struct sugov_policy *sg_policy = policy->governor_data;
853 
854 	if (!policy->fast_switch_enabled) {
855 		mutex_lock(&sg_policy->work_lock);
856 		cpufreq_policy_apply_limits(policy);
857 		mutex_unlock(&sg_policy->work_lock);
858 	}
859 
860 	sg_policy->need_freq_update = true;
861 }
862 
863 static struct cpufreq_governor schedutil_gov = {
864 	.name			= "schedutil",
865 	.owner			= THIS_MODULE,
866 	.dynamic_switching	= true,
867 	.init			= sugov_init,
868 	.exit			= sugov_exit,
869 	.start			= sugov_start,
870 	.stop			= sugov_stop,
871 	.limits			= sugov_limits,
872 };
873 
874 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
875 struct cpufreq_governor *cpufreq_default_governor(void)
876 {
877 	return &schedutil_gov;
878 }
879 #endif
880 
881 static int __init sugov_register(void)
882 {
883 	return cpufreq_register_governor(&schedutil_gov);
884 }
885 fs_initcall(sugov_register);
886