1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CPUFreq governor based on scheduler-provided CPU utilization data. 4 * 5 * Copyright (C) 2016, Intel Corporation 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include "sched.h" 12 13 #include <linux/sched/cpufreq.h> 14 #include <trace/events/power.h> 15 16 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8) 17 18 struct sugov_tunables { 19 struct gov_attr_set attr_set; 20 unsigned int rate_limit_us; 21 }; 22 23 struct sugov_policy { 24 struct cpufreq_policy *policy; 25 26 struct sugov_tunables *tunables; 27 struct list_head tunables_hook; 28 29 raw_spinlock_t update_lock; /* For shared policies */ 30 u64 last_freq_update_time; 31 s64 freq_update_delay_ns; 32 unsigned int next_freq; 33 unsigned int cached_raw_freq; 34 35 /* The next fields are only needed if fast switch cannot be used: */ 36 struct irq_work irq_work; 37 struct kthread_work work; 38 struct mutex work_lock; 39 struct kthread_worker worker; 40 struct task_struct *thread; 41 bool work_in_progress; 42 43 bool limits_changed; 44 bool need_freq_update; 45 }; 46 47 struct sugov_cpu { 48 struct update_util_data update_util; 49 struct sugov_policy *sg_policy; 50 unsigned int cpu; 51 52 bool iowait_boost_pending; 53 unsigned int iowait_boost; 54 u64 last_update; 55 56 unsigned long bw_dl; 57 unsigned long max; 58 59 /* The field below is for single-CPU policies only: */ 60 #ifdef CONFIG_NO_HZ_COMMON 61 unsigned long saved_idle_calls; 62 #endif 63 }; 64 65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); 66 67 /************************ Governor internals ***********************/ 68 69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) 70 { 71 s64 delta_ns; 72 73 /* 74 * Since cpufreq_update_util() is called with rq->lock held for 75 * the @target_cpu, our per-CPU data is fully serialized. 76 * 77 * However, drivers cannot in general deal with cross-CPU 78 * requests, so while get_next_freq() will work, our 79 * sugov_update_commit() call may not for the fast switching platforms. 80 * 81 * Hence stop here for remote requests if they aren't supported 82 * by the hardware, as calculating the frequency is pointless if 83 * we cannot in fact act on it. 84 * 85 * This is needed on the slow switching platforms too to prevent CPUs 86 * going offline from leaving stale IRQ work items behind. 87 */ 88 if (!cpufreq_this_cpu_can_update(sg_policy->policy)) 89 return false; 90 91 if (unlikely(sg_policy->limits_changed)) { 92 sg_policy->limits_changed = false; 93 sg_policy->need_freq_update = true; 94 return true; 95 } 96 97 delta_ns = time - sg_policy->last_freq_update_time; 98 99 return delta_ns >= sg_policy->freq_update_delay_ns; 100 } 101 102 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time, 103 unsigned int next_freq) 104 { 105 if (sg_policy->next_freq == next_freq) 106 return false; 107 108 sg_policy->next_freq = next_freq; 109 sg_policy->last_freq_update_time = time; 110 111 return true; 112 } 113 114 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time, 115 unsigned int next_freq) 116 { 117 if (sugov_update_next_freq(sg_policy, time, next_freq)) 118 cpufreq_driver_fast_switch(sg_policy->policy, next_freq); 119 } 120 121 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time, 122 unsigned int next_freq) 123 { 124 if (!sugov_update_next_freq(sg_policy, time, next_freq)) 125 return; 126 127 if (!sg_policy->work_in_progress) { 128 sg_policy->work_in_progress = true; 129 irq_work_queue(&sg_policy->irq_work); 130 } 131 } 132 133 /** 134 * get_next_freq - Compute a new frequency for a given cpufreq policy. 135 * @sg_policy: schedutil policy object to compute the new frequency for. 136 * @util: Current CPU utilization. 137 * @max: CPU capacity. 138 * 139 * If the utilization is frequency-invariant, choose the new frequency to be 140 * proportional to it, that is 141 * 142 * next_freq = C * max_freq * util / max 143 * 144 * Otherwise, approximate the would-be frequency-invariant utilization by 145 * util_raw * (curr_freq / max_freq) which leads to 146 * 147 * next_freq = C * curr_freq * util_raw / max 148 * 149 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. 150 * 151 * The lowest driver-supported frequency which is equal or greater than the raw 152 * next_freq (as calculated above) is returned, subject to policy min/max and 153 * cpufreq driver limitations. 154 */ 155 static unsigned int get_next_freq(struct sugov_policy *sg_policy, 156 unsigned long util, unsigned long max) 157 { 158 struct cpufreq_policy *policy = sg_policy->policy; 159 unsigned int freq = arch_scale_freq_invariant() ? 160 policy->cpuinfo.max_freq : policy->cur; 161 162 freq = map_util_freq(util, freq, max); 163 164 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update) 165 return sg_policy->next_freq; 166 167 sg_policy->need_freq_update = false; 168 sg_policy->cached_raw_freq = freq; 169 return cpufreq_driver_resolve_freq(policy, freq); 170 } 171 172 /* 173 * This function computes an effective utilization for the given CPU, to be 174 * used for frequency selection given the linear relation: f = u * f_max. 175 * 176 * The scheduler tracks the following metrics: 177 * 178 * cpu_util_{cfs,rt,dl,irq}() 179 * cpu_bw_dl() 180 * 181 * Where the cfs,rt and dl util numbers are tracked with the same metric and 182 * synchronized windows and are thus directly comparable. 183 * 184 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 185 * which excludes things like IRQ and steal-time. These latter are then accrued 186 * in the irq utilization. 187 * 188 * The DL bandwidth number otoh is not a measured metric but a value computed 189 * based on the task model parameters and gives the minimal utilization 190 * required to meet deadlines. 191 */ 192 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, 193 unsigned long max, enum schedutil_type type, 194 struct task_struct *p) 195 { 196 unsigned long dl_util, util, irq; 197 struct rq *rq = cpu_rq(cpu); 198 199 if (!uclamp_is_used() && 200 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 201 return max; 202 } 203 204 /* 205 * Early check to see if IRQ/steal time saturates the CPU, can be 206 * because of inaccuracies in how we track these -- see 207 * update_irq_load_avg(). 208 */ 209 irq = cpu_util_irq(rq); 210 if (unlikely(irq >= max)) 211 return max; 212 213 /* 214 * Because the time spend on RT/DL tasks is visible as 'lost' time to 215 * CFS tasks and we use the same metric to track the effective 216 * utilization (PELT windows are synchronized) we can directly add them 217 * to obtain the CPU's actual utilization. 218 * 219 * CFS and RT utilization can be boosted or capped, depending on 220 * utilization clamp constraints requested by currently RUNNABLE 221 * tasks. 222 * When there are no CFS RUNNABLE tasks, clamps are released and 223 * frequency will be gracefully reduced with the utilization decay. 224 */ 225 util = util_cfs + cpu_util_rt(rq); 226 if (type == FREQUENCY_UTIL) 227 util = uclamp_rq_util_with(rq, util, p); 228 229 dl_util = cpu_util_dl(rq); 230 231 /* 232 * For frequency selection we do not make cpu_util_dl() a permanent part 233 * of this sum because we want to use cpu_bw_dl() later on, but we need 234 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 235 * that we select f_max when there is no idle time. 236 * 237 * NOTE: numerical errors or stop class might cause us to not quite hit 238 * saturation when we should -- something for later. 239 */ 240 if (util + dl_util >= max) 241 return max; 242 243 /* 244 * OTOH, for energy computation we need the estimated running time, so 245 * include util_dl and ignore dl_bw. 246 */ 247 if (type == ENERGY_UTIL) 248 util += dl_util; 249 250 /* 251 * There is still idle time; further improve the number by using the 252 * irq metric. Because IRQ/steal time is hidden from the task clock we 253 * need to scale the task numbers: 254 * 255 * max - irq 256 * U' = irq + --------- * U 257 * max 258 */ 259 util = scale_irq_capacity(util, irq, max); 260 util += irq; 261 262 /* 263 * Bandwidth required by DEADLINE must always be granted while, for 264 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 265 * to gracefully reduce the frequency when no tasks show up for longer 266 * periods of time. 267 * 268 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 269 * bw_dl as requested freq. However, cpufreq is not yet ready for such 270 * an interface. So, we only do the latter for now. 271 */ 272 if (type == FREQUENCY_UTIL) 273 util += cpu_bw_dl(rq); 274 275 return min(max, util); 276 } 277 278 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu) 279 { 280 struct rq *rq = cpu_rq(sg_cpu->cpu); 281 unsigned long util = cpu_util_cfs(rq); 282 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu); 283 284 sg_cpu->max = max; 285 sg_cpu->bw_dl = cpu_bw_dl(rq); 286 287 return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL); 288 } 289 290 /** 291 * sugov_iowait_reset() - Reset the IO boost status of a CPU. 292 * @sg_cpu: the sugov data for the CPU to boost 293 * @time: the update time from the caller 294 * @set_iowait_boost: true if an IO boost has been requested 295 * 296 * The IO wait boost of a task is disabled after a tick since the last update 297 * of a CPU. If a new IO wait boost is requested after more then a tick, then 298 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy 299 * efficiency by ignoring sporadic wakeups from IO. 300 */ 301 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time, 302 bool set_iowait_boost) 303 { 304 s64 delta_ns = time - sg_cpu->last_update; 305 306 /* Reset boost only if a tick has elapsed since last request */ 307 if (delta_ns <= TICK_NSEC) 308 return false; 309 310 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0; 311 sg_cpu->iowait_boost_pending = set_iowait_boost; 312 313 return true; 314 } 315 316 /** 317 * sugov_iowait_boost() - Updates the IO boost status of a CPU. 318 * @sg_cpu: the sugov data for the CPU to boost 319 * @time: the update time from the caller 320 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait 321 * 322 * Each time a task wakes up after an IO operation, the CPU utilization can be 323 * boosted to a certain utilization which doubles at each "frequent and 324 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization 325 * of the maximum OPP. 326 * 327 * To keep doubling, an IO boost has to be requested at least once per tick, 328 * otherwise we restart from the utilization of the minimum OPP. 329 */ 330 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time, 331 unsigned int flags) 332 { 333 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT; 334 335 /* Reset boost if the CPU appears to have been idle enough */ 336 if (sg_cpu->iowait_boost && 337 sugov_iowait_reset(sg_cpu, time, set_iowait_boost)) 338 return; 339 340 /* Boost only tasks waking up after IO */ 341 if (!set_iowait_boost) 342 return; 343 344 /* Ensure boost doubles only one time at each request */ 345 if (sg_cpu->iowait_boost_pending) 346 return; 347 sg_cpu->iowait_boost_pending = true; 348 349 /* Double the boost at each request */ 350 if (sg_cpu->iowait_boost) { 351 sg_cpu->iowait_boost = 352 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE); 353 return; 354 } 355 356 /* First wakeup after IO: start with minimum boost */ 357 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN; 358 } 359 360 /** 361 * sugov_iowait_apply() - Apply the IO boost to a CPU. 362 * @sg_cpu: the sugov data for the cpu to boost 363 * @time: the update time from the caller 364 * @util: the utilization to (eventually) boost 365 * @max: the maximum value the utilization can be boosted to 366 * 367 * A CPU running a task which woken up after an IO operation can have its 368 * utilization boosted to speed up the completion of those IO operations. 369 * The IO boost value is increased each time a task wakes up from IO, in 370 * sugov_iowait_apply(), and it's instead decreased by this function, 371 * each time an increase has not been requested (!iowait_boost_pending). 372 * 373 * A CPU which also appears to have been idle for at least one tick has also 374 * its IO boost utilization reset. 375 * 376 * This mechanism is designed to boost high frequently IO waiting tasks, while 377 * being more conservative on tasks which does sporadic IO operations. 378 */ 379 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time, 380 unsigned long util, unsigned long max) 381 { 382 unsigned long boost; 383 384 /* No boost currently required */ 385 if (!sg_cpu->iowait_boost) 386 return util; 387 388 /* Reset boost if the CPU appears to have been idle enough */ 389 if (sugov_iowait_reset(sg_cpu, time, false)) 390 return util; 391 392 if (!sg_cpu->iowait_boost_pending) { 393 /* 394 * No boost pending; reduce the boost value. 395 */ 396 sg_cpu->iowait_boost >>= 1; 397 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) { 398 sg_cpu->iowait_boost = 0; 399 return util; 400 } 401 } 402 403 sg_cpu->iowait_boost_pending = false; 404 405 /* 406 * @util is already in capacity scale; convert iowait_boost 407 * into the same scale so we can compare. 408 */ 409 boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT; 410 return max(boost, util); 411 } 412 413 #ifdef CONFIG_NO_HZ_COMMON 414 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) 415 { 416 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); 417 bool ret = idle_calls == sg_cpu->saved_idle_calls; 418 419 sg_cpu->saved_idle_calls = idle_calls; 420 return ret; 421 } 422 #else 423 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; } 424 #endif /* CONFIG_NO_HZ_COMMON */ 425 426 /* 427 * Make sugov_should_update_freq() ignore the rate limit when DL 428 * has increased the utilization. 429 */ 430 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy) 431 { 432 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl) 433 sg_policy->limits_changed = true; 434 } 435 436 static void sugov_update_single(struct update_util_data *hook, u64 time, 437 unsigned int flags) 438 { 439 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 440 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 441 unsigned long util, max; 442 unsigned int next_f; 443 bool busy; 444 unsigned int cached_freq = sg_policy->cached_raw_freq; 445 446 sugov_iowait_boost(sg_cpu, time, flags); 447 sg_cpu->last_update = time; 448 449 ignore_dl_rate_limit(sg_cpu, sg_policy); 450 451 if (!sugov_should_update_freq(sg_policy, time)) 452 return; 453 454 /* Limits may have changed, don't skip frequency update */ 455 busy = !sg_policy->need_freq_update && sugov_cpu_is_busy(sg_cpu); 456 457 util = sugov_get_util(sg_cpu); 458 max = sg_cpu->max; 459 util = sugov_iowait_apply(sg_cpu, time, util, max); 460 next_f = get_next_freq(sg_policy, util, max); 461 /* 462 * Do not reduce the frequency if the CPU has not been idle 463 * recently, as the reduction is likely to be premature then. 464 */ 465 if (busy && next_f < sg_policy->next_freq) { 466 next_f = sg_policy->next_freq; 467 468 /* Restore cached freq as next_freq has changed */ 469 sg_policy->cached_raw_freq = cached_freq; 470 } 471 472 /* 473 * This code runs under rq->lock for the target CPU, so it won't run 474 * concurrently on two different CPUs for the same target and it is not 475 * necessary to acquire the lock in the fast switch case. 476 */ 477 if (sg_policy->policy->fast_switch_enabled) { 478 sugov_fast_switch(sg_policy, time, next_f); 479 } else { 480 raw_spin_lock(&sg_policy->update_lock); 481 sugov_deferred_update(sg_policy, time, next_f); 482 raw_spin_unlock(&sg_policy->update_lock); 483 } 484 } 485 486 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time) 487 { 488 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 489 struct cpufreq_policy *policy = sg_policy->policy; 490 unsigned long util = 0, max = 1; 491 unsigned int j; 492 493 for_each_cpu(j, policy->cpus) { 494 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j); 495 unsigned long j_util, j_max; 496 497 j_util = sugov_get_util(j_sg_cpu); 498 j_max = j_sg_cpu->max; 499 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max); 500 501 if (j_util * max > j_max * util) { 502 util = j_util; 503 max = j_max; 504 } 505 } 506 507 return get_next_freq(sg_policy, util, max); 508 } 509 510 static void 511 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) 512 { 513 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 514 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 515 unsigned int next_f; 516 517 raw_spin_lock(&sg_policy->update_lock); 518 519 sugov_iowait_boost(sg_cpu, time, flags); 520 sg_cpu->last_update = time; 521 522 ignore_dl_rate_limit(sg_cpu, sg_policy); 523 524 if (sugov_should_update_freq(sg_policy, time)) { 525 next_f = sugov_next_freq_shared(sg_cpu, time); 526 527 if (sg_policy->policy->fast_switch_enabled) 528 sugov_fast_switch(sg_policy, time, next_f); 529 else 530 sugov_deferred_update(sg_policy, time, next_f); 531 } 532 533 raw_spin_unlock(&sg_policy->update_lock); 534 } 535 536 static void sugov_work(struct kthread_work *work) 537 { 538 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); 539 unsigned int freq; 540 unsigned long flags; 541 542 /* 543 * Hold sg_policy->update_lock shortly to handle the case where: 544 * incase sg_policy->next_freq is read here, and then updated by 545 * sugov_deferred_update() just before work_in_progress is set to false 546 * here, we may miss queueing the new update. 547 * 548 * Note: If a work was queued after the update_lock is released, 549 * sugov_work() will just be called again by kthread_work code; and the 550 * request will be proceed before the sugov thread sleeps. 551 */ 552 raw_spin_lock_irqsave(&sg_policy->update_lock, flags); 553 freq = sg_policy->next_freq; 554 sg_policy->work_in_progress = false; 555 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags); 556 557 mutex_lock(&sg_policy->work_lock); 558 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L); 559 mutex_unlock(&sg_policy->work_lock); 560 } 561 562 static void sugov_irq_work(struct irq_work *irq_work) 563 { 564 struct sugov_policy *sg_policy; 565 566 sg_policy = container_of(irq_work, struct sugov_policy, irq_work); 567 568 kthread_queue_work(&sg_policy->worker, &sg_policy->work); 569 } 570 571 /************************** sysfs interface ************************/ 572 573 static struct sugov_tunables *global_tunables; 574 static DEFINE_MUTEX(global_tunables_lock); 575 576 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) 577 { 578 return container_of(attr_set, struct sugov_tunables, attr_set); 579 } 580 581 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) 582 { 583 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 584 585 return sprintf(buf, "%u\n", tunables->rate_limit_us); 586 } 587 588 static ssize_t 589 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) 590 { 591 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 592 struct sugov_policy *sg_policy; 593 unsigned int rate_limit_us; 594 595 if (kstrtouint(buf, 10, &rate_limit_us)) 596 return -EINVAL; 597 598 tunables->rate_limit_us = rate_limit_us; 599 600 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) 601 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; 602 603 return count; 604 } 605 606 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); 607 608 static struct attribute *sugov_attrs[] = { 609 &rate_limit_us.attr, 610 NULL 611 }; 612 ATTRIBUTE_GROUPS(sugov); 613 614 static struct kobj_type sugov_tunables_ktype = { 615 .default_groups = sugov_groups, 616 .sysfs_ops = &governor_sysfs_ops, 617 }; 618 619 /********************** cpufreq governor interface *********************/ 620 621 struct cpufreq_governor schedutil_gov; 622 623 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) 624 { 625 struct sugov_policy *sg_policy; 626 627 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); 628 if (!sg_policy) 629 return NULL; 630 631 sg_policy->policy = policy; 632 raw_spin_lock_init(&sg_policy->update_lock); 633 return sg_policy; 634 } 635 636 static void sugov_policy_free(struct sugov_policy *sg_policy) 637 { 638 kfree(sg_policy); 639 } 640 641 static int sugov_kthread_create(struct sugov_policy *sg_policy) 642 { 643 struct task_struct *thread; 644 struct sched_attr attr = { 645 .size = sizeof(struct sched_attr), 646 .sched_policy = SCHED_DEADLINE, 647 .sched_flags = SCHED_FLAG_SUGOV, 648 .sched_nice = 0, 649 .sched_priority = 0, 650 /* 651 * Fake (unused) bandwidth; workaround to "fix" 652 * priority inheritance. 653 */ 654 .sched_runtime = 1000000, 655 .sched_deadline = 10000000, 656 .sched_period = 10000000, 657 }; 658 struct cpufreq_policy *policy = sg_policy->policy; 659 int ret; 660 661 /* kthread only required for slow path */ 662 if (policy->fast_switch_enabled) 663 return 0; 664 665 kthread_init_work(&sg_policy->work, sugov_work); 666 kthread_init_worker(&sg_policy->worker); 667 thread = kthread_create(kthread_worker_fn, &sg_policy->worker, 668 "sugov:%d", 669 cpumask_first(policy->related_cpus)); 670 if (IS_ERR(thread)) { 671 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread)); 672 return PTR_ERR(thread); 673 } 674 675 ret = sched_setattr_nocheck(thread, &attr); 676 if (ret) { 677 kthread_stop(thread); 678 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__); 679 return ret; 680 } 681 682 sg_policy->thread = thread; 683 kthread_bind_mask(thread, policy->related_cpus); 684 init_irq_work(&sg_policy->irq_work, sugov_irq_work); 685 mutex_init(&sg_policy->work_lock); 686 687 wake_up_process(thread); 688 689 return 0; 690 } 691 692 static void sugov_kthread_stop(struct sugov_policy *sg_policy) 693 { 694 /* kthread only required for slow path */ 695 if (sg_policy->policy->fast_switch_enabled) 696 return; 697 698 kthread_flush_worker(&sg_policy->worker); 699 kthread_stop(sg_policy->thread); 700 mutex_destroy(&sg_policy->work_lock); 701 } 702 703 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) 704 { 705 struct sugov_tunables *tunables; 706 707 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); 708 if (tunables) { 709 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); 710 if (!have_governor_per_policy()) 711 global_tunables = tunables; 712 } 713 return tunables; 714 } 715 716 static void sugov_tunables_free(struct sugov_tunables *tunables) 717 { 718 if (!have_governor_per_policy()) 719 global_tunables = NULL; 720 721 kfree(tunables); 722 } 723 724 static int sugov_init(struct cpufreq_policy *policy) 725 { 726 struct sugov_policy *sg_policy; 727 struct sugov_tunables *tunables; 728 int ret = 0; 729 730 /* State should be equivalent to EXIT */ 731 if (policy->governor_data) 732 return -EBUSY; 733 734 cpufreq_enable_fast_switch(policy); 735 736 sg_policy = sugov_policy_alloc(policy); 737 if (!sg_policy) { 738 ret = -ENOMEM; 739 goto disable_fast_switch; 740 } 741 742 ret = sugov_kthread_create(sg_policy); 743 if (ret) 744 goto free_sg_policy; 745 746 mutex_lock(&global_tunables_lock); 747 748 if (global_tunables) { 749 if (WARN_ON(have_governor_per_policy())) { 750 ret = -EINVAL; 751 goto stop_kthread; 752 } 753 policy->governor_data = sg_policy; 754 sg_policy->tunables = global_tunables; 755 756 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); 757 goto out; 758 } 759 760 tunables = sugov_tunables_alloc(sg_policy); 761 if (!tunables) { 762 ret = -ENOMEM; 763 goto stop_kthread; 764 } 765 766 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy); 767 768 policy->governor_data = sg_policy; 769 sg_policy->tunables = tunables; 770 771 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, 772 get_governor_parent_kobj(policy), "%s", 773 schedutil_gov.name); 774 if (ret) 775 goto fail; 776 777 out: 778 mutex_unlock(&global_tunables_lock); 779 return 0; 780 781 fail: 782 kobject_put(&tunables->attr_set.kobj); 783 policy->governor_data = NULL; 784 sugov_tunables_free(tunables); 785 786 stop_kthread: 787 sugov_kthread_stop(sg_policy); 788 mutex_unlock(&global_tunables_lock); 789 790 free_sg_policy: 791 sugov_policy_free(sg_policy); 792 793 disable_fast_switch: 794 cpufreq_disable_fast_switch(policy); 795 796 pr_err("initialization failed (error %d)\n", ret); 797 return ret; 798 } 799 800 static void sugov_exit(struct cpufreq_policy *policy) 801 { 802 struct sugov_policy *sg_policy = policy->governor_data; 803 struct sugov_tunables *tunables = sg_policy->tunables; 804 unsigned int count; 805 806 mutex_lock(&global_tunables_lock); 807 808 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); 809 policy->governor_data = NULL; 810 if (!count) 811 sugov_tunables_free(tunables); 812 813 mutex_unlock(&global_tunables_lock); 814 815 sugov_kthread_stop(sg_policy); 816 sugov_policy_free(sg_policy); 817 cpufreq_disable_fast_switch(policy); 818 } 819 820 static int sugov_start(struct cpufreq_policy *policy) 821 { 822 struct sugov_policy *sg_policy = policy->governor_data; 823 unsigned int cpu; 824 825 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; 826 sg_policy->last_freq_update_time = 0; 827 sg_policy->next_freq = 0; 828 sg_policy->work_in_progress = false; 829 sg_policy->limits_changed = false; 830 sg_policy->need_freq_update = false; 831 sg_policy->cached_raw_freq = 0; 832 833 for_each_cpu(cpu, policy->cpus) { 834 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 835 836 memset(sg_cpu, 0, sizeof(*sg_cpu)); 837 sg_cpu->cpu = cpu; 838 sg_cpu->sg_policy = sg_policy; 839 } 840 841 for_each_cpu(cpu, policy->cpus) { 842 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 843 844 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, 845 policy_is_shared(policy) ? 846 sugov_update_shared : 847 sugov_update_single); 848 } 849 return 0; 850 } 851 852 static void sugov_stop(struct cpufreq_policy *policy) 853 { 854 struct sugov_policy *sg_policy = policy->governor_data; 855 unsigned int cpu; 856 857 for_each_cpu(cpu, policy->cpus) 858 cpufreq_remove_update_util_hook(cpu); 859 860 synchronize_rcu(); 861 862 if (!policy->fast_switch_enabled) { 863 irq_work_sync(&sg_policy->irq_work); 864 kthread_cancel_work_sync(&sg_policy->work); 865 } 866 } 867 868 static void sugov_limits(struct cpufreq_policy *policy) 869 { 870 struct sugov_policy *sg_policy = policy->governor_data; 871 872 if (!policy->fast_switch_enabled) { 873 mutex_lock(&sg_policy->work_lock); 874 cpufreq_policy_apply_limits(policy); 875 mutex_unlock(&sg_policy->work_lock); 876 } 877 878 sg_policy->limits_changed = true; 879 } 880 881 struct cpufreq_governor schedutil_gov = { 882 .name = "schedutil", 883 .owner = THIS_MODULE, 884 .dynamic_switching = true, 885 .init = sugov_init, 886 .exit = sugov_exit, 887 .start = sugov_start, 888 .stop = sugov_stop, 889 .limits = sugov_limits, 890 }; 891 892 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL 893 struct cpufreq_governor *cpufreq_default_governor(void) 894 { 895 return &schedutil_gov; 896 } 897 #endif 898 899 cpufreq_governor_init(schedutil_gov); 900 901 #ifdef CONFIG_ENERGY_MODEL 902 extern bool sched_energy_update; 903 extern struct mutex sched_energy_mutex; 904 905 static void rebuild_sd_workfn(struct work_struct *work) 906 { 907 mutex_lock(&sched_energy_mutex); 908 sched_energy_update = true; 909 rebuild_sched_domains(); 910 sched_energy_update = false; 911 mutex_unlock(&sched_energy_mutex); 912 } 913 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn); 914 915 /* 916 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains 917 * on governor changes to make sure the scheduler knows about it. 918 */ 919 void sched_cpufreq_governor_change(struct cpufreq_policy *policy, 920 struct cpufreq_governor *old_gov) 921 { 922 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) { 923 /* 924 * When called from the cpufreq_register_driver() path, the 925 * cpu_hotplug_lock is already held, so use a work item to 926 * avoid nested locking in rebuild_sched_domains(). 927 */ 928 schedule_work(&rebuild_sd_work); 929 } 930 931 } 932 #endif 933