1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include "sched.h"
12 
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15 
16 #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
17 
18 struct sugov_tunables {
19 	struct gov_attr_set	attr_set;
20 	unsigned int		rate_limit_us;
21 };
22 
23 struct sugov_policy {
24 	struct cpufreq_policy	*policy;
25 
26 	struct sugov_tunables	*tunables;
27 	struct list_head	tunables_hook;
28 
29 	raw_spinlock_t		update_lock;	/* For shared policies */
30 	u64			last_freq_update_time;
31 	s64			freq_update_delay_ns;
32 	unsigned int		next_freq;
33 	unsigned int		cached_raw_freq;
34 
35 	/* The next fields are only needed if fast switch cannot be used: */
36 	struct			irq_work irq_work;
37 	struct			kthread_work work;
38 	struct			mutex work_lock;
39 	struct			kthread_worker worker;
40 	struct task_struct	*thread;
41 	bool			work_in_progress;
42 
43 	bool			limits_changed;
44 	bool			need_freq_update;
45 };
46 
47 struct sugov_cpu {
48 	struct update_util_data	update_util;
49 	struct sugov_policy	*sg_policy;
50 	unsigned int		cpu;
51 
52 	bool			iowait_boost_pending;
53 	unsigned int		iowait_boost;
54 	u64			last_update;
55 
56 	unsigned long		bw_dl;
57 	unsigned long		max;
58 
59 	/* The field below is for single-CPU policies only: */
60 #ifdef CONFIG_NO_HZ_COMMON
61 	unsigned long		saved_idle_calls;
62 #endif
63 };
64 
65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
66 
67 /************************ Governor internals ***********************/
68 
69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
70 {
71 	s64 delta_ns;
72 
73 	/*
74 	 * Since cpufreq_update_util() is called with rq->lock held for
75 	 * the @target_cpu, our per-CPU data is fully serialized.
76 	 *
77 	 * However, drivers cannot in general deal with cross-CPU
78 	 * requests, so while get_next_freq() will work, our
79 	 * sugov_update_commit() call may not for the fast switching platforms.
80 	 *
81 	 * Hence stop here for remote requests if they aren't supported
82 	 * by the hardware, as calculating the frequency is pointless if
83 	 * we cannot in fact act on it.
84 	 *
85 	 * This is needed on the slow switching platforms too to prevent CPUs
86 	 * going offline from leaving stale IRQ work items behind.
87 	 */
88 	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
89 		return false;
90 
91 	if (unlikely(sg_policy->limits_changed)) {
92 		sg_policy->limits_changed = false;
93 		sg_policy->need_freq_update = true;
94 		return true;
95 	}
96 
97 	delta_ns = time - sg_policy->last_freq_update_time;
98 
99 	return delta_ns >= sg_policy->freq_update_delay_ns;
100 }
101 
102 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
103 				   unsigned int next_freq)
104 {
105 	if (sg_policy->next_freq == next_freq)
106 		return false;
107 
108 	sg_policy->next_freq = next_freq;
109 	sg_policy->last_freq_update_time = time;
110 
111 	return true;
112 }
113 
114 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
115 			      unsigned int next_freq)
116 {
117 	if (sugov_update_next_freq(sg_policy, time, next_freq))
118 		cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
119 }
120 
121 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
122 				  unsigned int next_freq)
123 {
124 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
125 		return;
126 
127 	if (!sg_policy->work_in_progress) {
128 		sg_policy->work_in_progress = true;
129 		irq_work_queue(&sg_policy->irq_work);
130 	}
131 }
132 
133 /**
134  * get_next_freq - Compute a new frequency for a given cpufreq policy.
135  * @sg_policy: schedutil policy object to compute the new frequency for.
136  * @util: Current CPU utilization.
137  * @max: CPU capacity.
138  *
139  * If the utilization is frequency-invariant, choose the new frequency to be
140  * proportional to it, that is
141  *
142  * next_freq = C * max_freq * util / max
143  *
144  * Otherwise, approximate the would-be frequency-invariant utilization by
145  * util_raw * (curr_freq / max_freq) which leads to
146  *
147  * next_freq = C * curr_freq * util_raw / max
148  *
149  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
150  *
151  * The lowest driver-supported frequency which is equal or greater than the raw
152  * next_freq (as calculated above) is returned, subject to policy min/max and
153  * cpufreq driver limitations.
154  */
155 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
156 				  unsigned long util, unsigned long max)
157 {
158 	struct cpufreq_policy *policy = sg_policy->policy;
159 	unsigned int freq = arch_scale_freq_invariant() ?
160 				policy->cpuinfo.max_freq : policy->cur;
161 
162 	freq = map_util_freq(util, freq, max);
163 
164 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
165 		return sg_policy->next_freq;
166 
167 	sg_policy->need_freq_update = false;
168 	sg_policy->cached_raw_freq = freq;
169 	return cpufreq_driver_resolve_freq(policy, freq);
170 }
171 
172 /*
173  * This function computes an effective utilization for the given CPU, to be
174  * used for frequency selection given the linear relation: f = u * f_max.
175  *
176  * The scheduler tracks the following metrics:
177  *
178  *   cpu_util_{cfs,rt,dl,irq}()
179  *   cpu_bw_dl()
180  *
181  * Where the cfs,rt and dl util numbers are tracked with the same metric and
182  * synchronized windows and are thus directly comparable.
183  *
184  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
185  * which excludes things like IRQ and steal-time. These latter are then accrued
186  * in the irq utilization.
187  *
188  * The DL bandwidth number otoh is not a measured metric but a value computed
189  * based on the task model parameters and gives the minimal utilization
190  * required to meet deadlines.
191  */
192 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
193 				 unsigned long max, enum schedutil_type type,
194 				 struct task_struct *p)
195 {
196 	unsigned long dl_util, util, irq;
197 	struct rq *rq = cpu_rq(cpu);
198 
199 	if (!uclamp_is_used() &&
200 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
201 		return max;
202 	}
203 
204 	/*
205 	 * Early check to see if IRQ/steal time saturates the CPU, can be
206 	 * because of inaccuracies in how we track these -- see
207 	 * update_irq_load_avg().
208 	 */
209 	irq = cpu_util_irq(rq);
210 	if (unlikely(irq >= max))
211 		return max;
212 
213 	/*
214 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
215 	 * CFS tasks and we use the same metric to track the effective
216 	 * utilization (PELT windows are synchronized) we can directly add them
217 	 * to obtain the CPU's actual utilization.
218 	 *
219 	 * CFS and RT utilization can be boosted or capped, depending on
220 	 * utilization clamp constraints requested by currently RUNNABLE
221 	 * tasks.
222 	 * When there are no CFS RUNNABLE tasks, clamps are released and
223 	 * frequency will be gracefully reduced with the utilization decay.
224 	 */
225 	util = util_cfs + cpu_util_rt(rq);
226 	if (type == FREQUENCY_UTIL)
227 		util = uclamp_rq_util_with(rq, util, p);
228 
229 	dl_util = cpu_util_dl(rq);
230 
231 	/*
232 	 * For frequency selection we do not make cpu_util_dl() a permanent part
233 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
234 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
235 	 * that we select f_max when there is no idle time.
236 	 *
237 	 * NOTE: numerical errors or stop class might cause us to not quite hit
238 	 * saturation when we should -- something for later.
239 	 */
240 	if (util + dl_util >= max)
241 		return max;
242 
243 	/*
244 	 * OTOH, for energy computation we need the estimated running time, so
245 	 * include util_dl and ignore dl_bw.
246 	 */
247 	if (type == ENERGY_UTIL)
248 		util += dl_util;
249 
250 	/*
251 	 * There is still idle time; further improve the number by using the
252 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
253 	 * need to scale the task numbers:
254 	 *
255 	 *              max - irq
256 	 *   U' = irq + --------- * U
257 	 *                 max
258 	 */
259 	util = scale_irq_capacity(util, irq, max);
260 	util += irq;
261 
262 	/*
263 	 * Bandwidth required by DEADLINE must always be granted while, for
264 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
265 	 * to gracefully reduce the frequency when no tasks show up for longer
266 	 * periods of time.
267 	 *
268 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
269 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
270 	 * an interface. So, we only do the latter for now.
271 	 */
272 	if (type == FREQUENCY_UTIL)
273 		util += cpu_bw_dl(rq);
274 
275 	return min(max, util);
276 }
277 
278 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
279 {
280 	struct rq *rq = cpu_rq(sg_cpu->cpu);
281 	unsigned long util = cpu_util_cfs(rq);
282 	unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
283 
284 	sg_cpu->max = max;
285 	sg_cpu->bw_dl = cpu_bw_dl(rq);
286 
287 	return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
288 }
289 
290 /**
291  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
292  * @sg_cpu: the sugov data for the CPU to boost
293  * @time: the update time from the caller
294  * @set_iowait_boost: true if an IO boost has been requested
295  *
296  * The IO wait boost of a task is disabled after a tick since the last update
297  * of a CPU. If a new IO wait boost is requested after more then a tick, then
298  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
299  * efficiency by ignoring sporadic wakeups from IO.
300  */
301 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
302 			       bool set_iowait_boost)
303 {
304 	s64 delta_ns = time - sg_cpu->last_update;
305 
306 	/* Reset boost only if a tick has elapsed since last request */
307 	if (delta_ns <= TICK_NSEC)
308 		return false;
309 
310 	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
311 	sg_cpu->iowait_boost_pending = set_iowait_boost;
312 
313 	return true;
314 }
315 
316 /**
317  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
318  * @sg_cpu: the sugov data for the CPU to boost
319  * @time: the update time from the caller
320  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
321  *
322  * Each time a task wakes up after an IO operation, the CPU utilization can be
323  * boosted to a certain utilization which doubles at each "frequent and
324  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
325  * of the maximum OPP.
326  *
327  * To keep doubling, an IO boost has to be requested at least once per tick,
328  * otherwise we restart from the utilization of the minimum OPP.
329  */
330 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
331 			       unsigned int flags)
332 {
333 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
334 
335 	/* Reset boost if the CPU appears to have been idle enough */
336 	if (sg_cpu->iowait_boost &&
337 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
338 		return;
339 
340 	/* Boost only tasks waking up after IO */
341 	if (!set_iowait_boost)
342 		return;
343 
344 	/* Ensure boost doubles only one time at each request */
345 	if (sg_cpu->iowait_boost_pending)
346 		return;
347 	sg_cpu->iowait_boost_pending = true;
348 
349 	/* Double the boost at each request */
350 	if (sg_cpu->iowait_boost) {
351 		sg_cpu->iowait_boost =
352 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
353 		return;
354 	}
355 
356 	/* First wakeup after IO: start with minimum boost */
357 	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
358 }
359 
360 /**
361  * sugov_iowait_apply() - Apply the IO boost to a CPU.
362  * @sg_cpu: the sugov data for the cpu to boost
363  * @time: the update time from the caller
364  * @util: the utilization to (eventually) boost
365  * @max: the maximum value the utilization can be boosted to
366  *
367  * A CPU running a task which woken up after an IO operation can have its
368  * utilization boosted to speed up the completion of those IO operations.
369  * The IO boost value is increased each time a task wakes up from IO, in
370  * sugov_iowait_apply(), and it's instead decreased by this function,
371  * each time an increase has not been requested (!iowait_boost_pending).
372  *
373  * A CPU which also appears to have been idle for at least one tick has also
374  * its IO boost utilization reset.
375  *
376  * This mechanism is designed to boost high frequently IO waiting tasks, while
377  * being more conservative on tasks which does sporadic IO operations.
378  */
379 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
380 					unsigned long util, unsigned long max)
381 {
382 	unsigned long boost;
383 
384 	/* No boost currently required */
385 	if (!sg_cpu->iowait_boost)
386 		return util;
387 
388 	/* Reset boost if the CPU appears to have been idle enough */
389 	if (sugov_iowait_reset(sg_cpu, time, false))
390 		return util;
391 
392 	if (!sg_cpu->iowait_boost_pending) {
393 		/*
394 		 * No boost pending; reduce the boost value.
395 		 */
396 		sg_cpu->iowait_boost >>= 1;
397 		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
398 			sg_cpu->iowait_boost = 0;
399 			return util;
400 		}
401 	}
402 
403 	sg_cpu->iowait_boost_pending = false;
404 
405 	/*
406 	 * @util is already in capacity scale; convert iowait_boost
407 	 * into the same scale so we can compare.
408 	 */
409 	boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
410 	return max(boost, util);
411 }
412 
413 #ifdef CONFIG_NO_HZ_COMMON
414 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
415 {
416 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
417 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
418 
419 	sg_cpu->saved_idle_calls = idle_calls;
420 	return ret;
421 }
422 #else
423 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
424 #endif /* CONFIG_NO_HZ_COMMON */
425 
426 /*
427  * Make sugov_should_update_freq() ignore the rate limit when DL
428  * has increased the utilization.
429  */
430 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
431 {
432 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
433 		sg_policy->limits_changed = true;
434 }
435 
436 static void sugov_update_single(struct update_util_data *hook, u64 time,
437 				unsigned int flags)
438 {
439 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
440 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
441 	unsigned long util, max;
442 	unsigned int next_f;
443 	bool busy;
444 	unsigned int cached_freq = sg_policy->cached_raw_freq;
445 
446 	sugov_iowait_boost(sg_cpu, time, flags);
447 	sg_cpu->last_update = time;
448 
449 	ignore_dl_rate_limit(sg_cpu, sg_policy);
450 
451 	if (!sugov_should_update_freq(sg_policy, time))
452 		return;
453 
454 	/* Limits may have changed, don't skip frequency update */
455 	busy = !sg_policy->need_freq_update && sugov_cpu_is_busy(sg_cpu);
456 
457 	util = sugov_get_util(sg_cpu);
458 	max = sg_cpu->max;
459 	util = sugov_iowait_apply(sg_cpu, time, util, max);
460 	next_f = get_next_freq(sg_policy, util, max);
461 	/*
462 	 * Do not reduce the frequency if the CPU has not been idle
463 	 * recently, as the reduction is likely to be premature then.
464 	 */
465 	if (busy && next_f < sg_policy->next_freq) {
466 		next_f = sg_policy->next_freq;
467 
468 		/* Restore cached freq as next_freq has changed */
469 		sg_policy->cached_raw_freq = cached_freq;
470 	}
471 
472 	/*
473 	 * This code runs under rq->lock for the target CPU, so it won't run
474 	 * concurrently on two different CPUs for the same target and it is not
475 	 * necessary to acquire the lock in the fast switch case.
476 	 */
477 	if (sg_policy->policy->fast_switch_enabled) {
478 		sugov_fast_switch(sg_policy, time, next_f);
479 	} else {
480 		raw_spin_lock(&sg_policy->update_lock);
481 		sugov_deferred_update(sg_policy, time, next_f);
482 		raw_spin_unlock(&sg_policy->update_lock);
483 	}
484 }
485 
486 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
487 {
488 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
489 	struct cpufreq_policy *policy = sg_policy->policy;
490 	unsigned long util = 0, max = 1;
491 	unsigned int j;
492 
493 	for_each_cpu(j, policy->cpus) {
494 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
495 		unsigned long j_util, j_max;
496 
497 		j_util = sugov_get_util(j_sg_cpu);
498 		j_max = j_sg_cpu->max;
499 		j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
500 
501 		if (j_util * max > j_max * util) {
502 			util = j_util;
503 			max = j_max;
504 		}
505 	}
506 
507 	return get_next_freq(sg_policy, util, max);
508 }
509 
510 static void
511 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
512 {
513 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
514 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
515 	unsigned int next_f;
516 
517 	raw_spin_lock(&sg_policy->update_lock);
518 
519 	sugov_iowait_boost(sg_cpu, time, flags);
520 	sg_cpu->last_update = time;
521 
522 	ignore_dl_rate_limit(sg_cpu, sg_policy);
523 
524 	if (sugov_should_update_freq(sg_policy, time)) {
525 		next_f = sugov_next_freq_shared(sg_cpu, time);
526 
527 		if (sg_policy->policy->fast_switch_enabled)
528 			sugov_fast_switch(sg_policy, time, next_f);
529 		else
530 			sugov_deferred_update(sg_policy, time, next_f);
531 	}
532 
533 	raw_spin_unlock(&sg_policy->update_lock);
534 }
535 
536 static void sugov_work(struct kthread_work *work)
537 {
538 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
539 	unsigned int freq;
540 	unsigned long flags;
541 
542 	/*
543 	 * Hold sg_policy->update_lock shortly to handle the case where:
544 	 * incase sg_policy->next_freq is read here, and then updated by
545 	 * sugov_deferred_update() just before work_in_progress is set to false
546 	 * here, we may miss queueing the new update.
547 	 *
548 	 * Note: If a work was queued after the update_lock is released,
549 	 * sugov_work() will just be called again by kthread_work code; and the
550 	 * request will be proceed before the sugov thread sleeps.
551 	 */
552 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
553 	freq = sg_policy->next_freq;
554 	sg_policy->work_in_progress = false;
555 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
556 
557 	mutex_lock(&sg_policy->work_lock);
558 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
559 	mutex_unlock(&sg_policy->work_lock);
560 }
561 
562 static void sugov_irq_work(struct irq_work *irq_work)
563 {
564 	struct sugov_policy *sg_policy;
565 
566 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
567 
568 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
569 }
570 
571 /************************** sysfs interface ************************/
572 
573 static struct sugov_tunables *global_tunables;
574 static DEFINE_MUTEX(global_tunables_lock);
575 
576 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
577 {
578 	return container_of(attr_set, struct sugov_tunables, attr_set);
579 }
580 
581 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
582 {
583 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
584 
585 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
586 }
587 
588 static ssize_t
589 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
590 {
591 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
592 	struct sugov_policy *sg_policy;
593 	unsigned int rate_limit_us;
594 
595 	if (kstrtouint(buf, 10, &rate_limit_us))
596 		return -EINVAL;
597 
598 	tunables->rate_limit_us = rate_limit_us;
599 
600 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
601 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
602 
603 	return count;
604 }
605 
606 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
607 
608 static struct attribute *sugov_attrs[] = {
609 	&rate_limit_us.attr,
610 	NULL
611 };
612 ATTRIBUTE_GROUPS(sugov);
613 
614 static struct kobj_type sugov_tunables_ktype = {
615 	.default_groups = sugov_groups,
616 	.sysfs_ops = &governor_sysfs_ops,
617 };
618 
619 /********************** cpufreq governor interface *********************/
620 
621 struct cpufreq_governor schedutil_gov;
622 
623 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
624 {
625 	struct sugov_policy *sg_policy;
626 
627 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
628 	if (!sg_policy)
629 		return NULL;
630 
631 	sg_policy->policy = policy;
632 	raw_spin_lock_init(&sg_policy->update_lock);
633 	return sg_policy;
634 }
635 
636 static void sugov_policy_free(struct sugov_policy *sg_policy)
637 {
638 	kfree(sg_policy);
639 }
640 
641 static int sugov_kthread_create(struct sugov_policy *sg_policy)
642 {
643 	struct task_struct *thread;
644 	struct sched_attr attr = {
645 		.size		= sizeof(struct sched_attr),
646 		.sched_policy	= SCHED_DEADLINE,
647 		.sched_flags	= SCHED_FLAG_SUGOV,
648 		.sched_nice	= 0,
649 		.sched_priority	= 0,
650 		/*
651 		 * Fake (unused) bandwidth; workaround to "fix"
652 		 * priority inheritance.
653 		 */
654 		.sched_runtime	=  1000000,
655 		.sched_deadline = 10000000,
656 		.sched_period	= 10000000,
657 	};
658 	struct cpufreq_policy *policy = sg_policy->policy;
659 	int ret;
660 
661 	/* kthread only required for slow path */
662 	if (policy->fast_switch_enabled)
663 		return 0;
664 
665 	kthread_init_work(&sg_policy->work, sugov_work);
666 	kthread_init_worker(&sg_policy->worker);
667 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
668 				"sugov:%d",
669 				cpumask_first(policy->related_cpus));
670 	if (IS_ERR(thread)) {
671 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
672 		return PTR_ERR(thread);
673 	}
674 
675 	ret = sched_setattr_nocheck(thread, &attr);
676 	if (ret) {
677 		kthread_stop(thread);
678 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
679 		return ret;
680 	}
681 
682 	sg_policy->thread = thread;
683 	kthread_bind_mask(thread, policy->related_cpus);
684 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
685 	mutex_init(&sg_policy->work_lock);
686 
687 	wake_up_process(thread);
688 
689 	return 0;
690 }
691 
692 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
693 {
694 	/* kthread only required for slow path */
695 	if (sg_policy->policy->fast_switch_enabled)
696 		return;
697 
698 	kthread_flush_worker(&sg_policy->worker);
699 	kthread_stop(sg_policy->thread);
700 	mutex_destroy(&sg_policy->work_lock);
701 }
702 
703 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
704 {
705 	struct sugov_tunables *tunables;
706 
707 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
708 	if (tunables) {
709 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
710 		if (!have_governor_per_policy())
711 			global_tunables = tunables;
712 	}
713 	return tunables;
714 }
715 
716 static void sugov_tunables_free(struct sugov_tunables *tunables)
717 {
718 	if (!have_governor_per_policy())
719 		global_tunables = NULL;
720 
721 	kfree(tunables);
722 }
723 
724 static int sugov_init(struct cpufreq_policy *policy)
725 {
726 	struct sugov_policy *sg_policy;
727 	struct sugov_tunables *tunables;
728 	int ret = 0;
729 
730 	/* State should be equivalent to EXIT */
731 	if (policy->governor_data)
732 		return -EBUSY;
733 
734 	cpufreq_enable_fast_switch(policy);
735 
736 	sg_policy = sugov_policy_alloc(policy);
737 	if (!sg_policy) {
738 		ret = -ENOMEM;
739 		goto disable_fast_switch;
740 	}
741 
742 	ret = sugov_kthread_create(sg_policy);
743 	if (ret)
744 		goto free_sg_policy;
745 
746 	mutex_lock(&global_tunables_lock);
747 
748 	if (global_tunables) {
749 		if (WARN_ON(have_governor_per_policy())) {
750 			ret = -EINVAL;
751 			goto stop_kthread;
752 		}
753 		policy->governor_data = sg_policy;
754 		sg_policy->tunables = global_tunables;
755 
756 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
757 		goto out;
758 	}
759 
760 	tunables = sugov_tunables_alloc(sg_policy);
761 	if (!tunables) {
762 		ret = -ENOMEM;
763 		goto stop_kthread;
764 	}
765 
766 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
767 
768 	policy->governor_data = sg_policy;
769 	sg_policy->tunables = tunables;
770 
771 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
772 				   get_governor_parent_kobj(policy), "%s",
773 				   schedutil_gov.name);
774 	if (ret)
775 		goto fail;
776 
777 out:
778 	mutex_unlock(&global_tunables_lock);
779 	return 0;
780 
781 fail:
782 	kobject_put(&tunables->attr_set.kobj);
783 	policy->governor_data = NULL;
784 	sugov_tunables_free(tunables);
785 
786 stop_kthread:
787 	sugov_kthread_stop(sg_policy);
788 	mutex_unlock(&global_tunables_lock);
789 
790 free_sg_policy:
791 	sugov_policy_free(sg_policy);
792 
793 disable_fast_switch:
794 	cpufreq_disable_fast_switch(policy);
795 
796 	pr_err("initialization failed (error %d)\n", ret);
797 	return ret;
798 }
799 
800 static void sugov_exit(struct cpufreq_policy *policy)
801 {
802 	struct sugov_policy *sg_policy = policy->governor_data;
803 	struct sugov_tunables *tunables = sg_policy->tunables;
804 	unsigned int count;
805 
806 	mutex_lock(&global_tunables_lock);
807 
808 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
809 	policy->governor_data = NULL;
810 	if (!count)
811 		sugov_tunables_free(tunables);
812 
813 	mutex_unlock(&global_tunables_lock);
814 
815 	sugov_kthread_stop(sg_policy);
816 	sugov_policy_free(sg_policy);
817 	cpufreq_disable_fast_switch(policy);
818 }
819 
820 static int sugov_start(struct cpufreq_policy *policy)
821 {
822 	struct sugov_policy *sg_policy = policy->governor_data;
823 	unsigned int cpu;
824 
825 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
826 	sg_policy->last_freq_update_time	= 0;
827 	sg_policy->next_freq			= 0;
828 	sg_policy->work_in_progress		= false;
829 	sg_policy->limits_changed		= false;
830 	sg_policy->need_freq_update		= false;
831 	sg_policy->cached_raw_freq		= 0;
832 
833 	for_each_cpu(cpu, policy->cpus) {
834 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
835 
836 		memset(sg_cpu, 0, sizeof(*sg_cpu));
837 		sg_cpu->cpu			= cpu;
838 		sg_cpu->sg_policy		= sg_policy;
839 	}
840 
841 	for_each_cpu(cpu, policy->cpus) {
842 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
843 
844 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
845 					     policy_is_shared(policy) ?
846 							sugov_update_shared :
847 							sugov_update_single);
848 	}
849 	return 0;
850 }
851 
852 static void sugov_stop(struct cpufreq_policy *policy)
853 {
854 	struct sugov_policy *sg_policy = policy->governor_data;
855 	unsigned int cpu;
856 
857 	for_each_cpu(cpu, policy->cpus)
858 		cpufreq_remove_update_util_hook(cpu);
859 
860 	synchronize_rcu();
861 
862 	if (!policy->fast_switch_enabled) {
863 		irq_work_sync(&sg_policy->irq_work);
864 		kthread_cancel_work_sync(&sg_policy->work);
865 	}
866 }
867 
868 static void sugov_limits(struct cpufreq_policy *policy)
869 {
870 	struct sugov_policy *sg_policy = policy->governor_data;
871 
872 	if (!policy->fast_switch_enabled) {
873 		mutex_lock(&sg_policy->work_lock);
874 		cpufreq_policy_apply_limits(policy);
875 		mutex_unlock(&sg_policy->work_lock);
876 	}
877 
878 	sg_policy->limits_changed = true;
879 }
880 
881 struct cpufreq_governor schedutil_gov = {
882 	.name			= "schedutil",
883 	.owner			= THIS_MODULE,
884 	.dynamic_switching	= true,
885 	.init			= sugov_init,
886 	.exit			= sugov_exit,
887 	.start			= sugov_start,
888 	.stop			= sugov_stop,
889 	.limits			= sugov_limits,
890 };
891 
892 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
893 struct cpufreq_governor *cpufreq_default_governor(void)
894 {
895 	return &schedutil_gov;
896 }
897 #endif
898 
899 cpufreq_governor_init(schedutil_gov);
900 
901 #ifdef CONFIG_ENERGY_MODEL
902 extern bool sched_energy_update;
903 extern struct mutex sched_energy_mutex;
904 
905 static void rebuild_sd_workfn(struct work_struct *work)
906 {
907 	mutex_lock(&sched_energy_mutex);
908 	sched_energy_update = true;
909 	rebuild_sched_domains();
910 	sched_energy_update = false;
911 	mutex_unlock(&sched_energy_mutex);
912 }
913 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
914 
915 /*
916  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
917  * on governor changes to make sure the scheduler knows about it.
918  */
919 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
920 				  struct cpufreq_governor *old_gov)
921 {
922 	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
923 		/*
924 		 * When called from the cpufreq_register_driver() path, the
925 		 * cpu_hotplug_lock is already held, so use a work item to
926 		 * avoid nested locking in rebuild_sched_domains().
927 		 */
928 		schedule_work(&rebuild_sd_work);
929 	}
930 
931 }
932 #endif
933