1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CPUFreq governor based on scheduler-provided CPU utilization data. 4 * 5 * Copyright (C) 2016, Intel Corporation 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include "sched.h" 12 13 #include <linux/sched/cpufreq.h> 14 #include <trace/events/power.h> 15 16 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8) 17 18 struct sugov_tunables { 19 struct gov_attr_set attr_set; 20 unsigned int rate_limit_us; 21 }; 22 23 struct sugov_policy { 24 struct cpufreq_policy *policy; 25 26 struct sugov_tunables *tunables; 27 struct list_head tunables_hook; 28 29 raw_spinlock_t update_lock; /* For shared policies */ 30 u64 last_freq_update_time; 31 s64 freq_update_delay_ns; 32 unsigned int next_freq; 33 unsigned int cached_raw_freq; 34 35 /* The next fields are only needed if fast switch cannot be used: */ 36 struct irq_work irq_work; 37 struct kthread_work work; 38 struct mutex work_lock; 39 struct kthread_worker worker; 40 struct task_struct *thread; 41 bool work_in_progress; 42 43 bool limits_changed; 44 bool need_freq_update; 45 }; 46 47 struct sugov_cpu { 48 struct update_util_data update_util; 49 struct sugov_policy *sg_policy; 50 unsigned int cpu; 51 52 bool iowait_boost_pending; 53 unsigned int iowait_boost; 54 u64 last_update; 55 56 unsigned long util; 57 unsigned long bw_dl; 58 unsigned long max; 59 60 /* The field below is for single-CPU policies only: */ 61 #ifdef CONFIG_NO_HZ_COMMON 62 unsigned long saved_idle_calls; 63 #endif 64 }; 65 66 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); 67 68 /************************ Governor internals ***********************/ 69 70 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) 71 { 72 s64 delta_ns; 73 74 /* 75 * Since cpufreq_update_util() is called with rq->lock held for 76 * the @target_cpu, our per-CPU data is fully serialized. 77 * 78 * However, drivers cannot in general deal with cross-CPU 79 * requests, so while get_next_freq() will work, our 80 * sugov_update_commit() call may not for the fast switching platforms. 81 * 82 * Hence stop here for remote requests if they aren't supported 83 * by the hardware, as calculating the frequency is pointless if 84 * we cannot in fact act on it. 85 * 86 * This is needed on the slow switching platforms too to prevent CPUs 87 * going offline from leaving stale IRQ work items behind. 88 */ 89 if (!cpufreq_this_cpu_can_update(sg_policy->policy)) 90 return false; 91 92 if (unlikely(sg_policy->limits_changed)) { 93 sg_policy->limits_changed = false; 94 sg_policy->need_freq_update = true; 95 return true; 96 } 97 98 delta_ns = time - sg_policy->last_freq_update_time; 99 100 return delta_ns >= sg_policy->freq_update_delay_ns; 101 } 102 103 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time, 104 unsigned int next_freq) 105 { 106 if (sg_policy->need_freq_update) 107 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 108 else if (sg_policy->next_freq == next_freq) 109 return false; 110 111 sg_policy->next_freq = next_freq; 112 sg_policy->last_freq_update_time = time; 113 114 return true; 115 } 116 117 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time, 118 unsigned int next_freq) 119 { 120 if (sugov_update_next_freq(sg_policy, time, next_freq)) 121 cpufreq_driver_fast_switch(sg_policy->policy, next_freq); 122 } 123 124 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time, 125 unsigned int next_freq) 126 { 127 if (!sugov_update_next_freq(sg_policy, time, next_freq)) 128 return; 129 130 if (!sg_policy->work_in_progress) { 131 sg_policy->work_in_progress = true; 132 irq_work_queue(&sg_policy->irq_work); 133 } 134 } 135 136 /** 137 * get_next_freq - Compute a new frequency for a given cpufreq policy. 138 * @sg_policy: schedutil policy object to compute the new frequency for. 139 * @util: Current CPU utilization. 140 * @max: CPU capacity. 141 * 142 * If the utilization is frequency-invariant, choose the new frequency to be 143 * proportional to it, that is 144 * 145 * next_freq = C * max_freq * util / max 146 * 147 * Otherwise, approximate the would-be frequency-invariant utilization by 148 * util_raw * (curr_freq / max_freq) which leads to 149 * 150 * next_freq = C * curr_freq * util_raw / max 151 * 152 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. 153 * 154 * The lowest driver-supported frequency which is equal or greater than the raw 155 * next_freq (as calculated above) is returned, subject to policy min/max and 156 * cpufreq driver limitations. 157 */ 158 static unsigned int get_next_freq(struct sugov_policy *sg_policy, 159 unsigned long util, unsigned long max) 160 { 161 struct cpufreq_policy *policy = sg_policy->policy; 162 unsigned int freq = arch_scale_freq_invariant() ? 163 policy->cpuinfo.max_freq : policy->cur; 164 165 freq = map_util_freq(util, freq, max); 166 167 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update) 168 return sg_policy->next_freq; 169 170 sg_policy->cached_raw_freq = freq; 171 return cpufreq_driver_resolve_freq(policy, freq); 172 } 173 174 /* 175 * This function computes an effective utilization for the given CPU, to be 176 * used for frequency selection given the linear relation: f = u * f_max. 177 * 178 * The scheduler tracks the following metrics: 179 * 180 * cpu_util_{cfs,rt,dl,irq}() 181 * cpu_bw_dl() 182 * 183 * Where the cfs,rt and dl util numbers are tracked with the same metric and 184 * synchronized windows and are thus directly comparable. 185 * 186 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 187 * which excludes things like IRQ and steal-time. These latter are then accrued 188 * in the irq utilization. 189 * 190 * The DL bandwidth number otoh is not a measured metric but a value computed 191 * based on the task model parameters and gives the minimal utilization 192 * required to meet deadlines. 193 */ 194 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, 195 unsigned long max, enum schedutil_type type, 196 struct task_struct *p) 197 { 198 unsigned long dl_util, util, irq; 199 struct rq *rq = cpu_rq(cpu); 200 201 if (!uclamp_is_used() && 202 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 203 return max; 204 } 205 206 /* 207 * Early check to see if IRQ/steal time saturates the CPU, can be 208 * because of inaccuracies in how we track these -- see 209 * update_irq_load_avg(). 210 */ 211 irq = cpu_util_irq(rq); 212 if (unlikely(irq >= max)) 213 return max; 214 215 /* 216 * Because the time spend on RT/DL tasks is visible as 'lost' time to 217 * CFS tasks and we use the same metric to track the effective 218 * utilization (PELT windows are synchronized) we can directly add them 219 * to obtain the CPU's actual utilization. 220 * 221 * CFS and RT utilization can be boosted or capped, depending on 222 * utilization clamp constraints requested by currently RUNNABLE 223 * tasks. 224 * When there are no CFS RUNNABLE tasks, clamps are released and 225 * frequency will be gracefully reduced with the utilization decay. 226 */ 227 util = util_cfs + cpu_util_rt(rq); 228 if (type == FREQUENCY_UTIL) 229 util = uclamp_rq_util_with(rq, util, p); 230 231 dl_util = cpu_util_dl(rq); 232 233 /* 234 * For frequency selection we do not make cpu_util_dl() a permanent part 235 * of this sum because we want to use cpu_bw_dl() later on, but we need 236 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 237 * that we select f_max when there is no idle time. 238 * 239 * NOTE: numerical errors or stop class might cause us to not quite hit 240 * saturation when we should -- something for later. 241 */ 242 if (util + dl_util >= max) 243 return max; 244 245 /* 246 * OTOH, for energy computation we need the estimated running time, so 247 * include util_dl and ignore dl_bw. 248 */ 249 if (type == ENERGY_UTIL) 250 util += dl_util; 251 252 /* 253 * There is still idle time; further improve the number by using the 254 * irq metric. Because IRQ/steal time is hidden from the task clock we 255 * need to scale the task numbers: 256 * 257 * max - irq 258 * U' = irq + --------- * U 259 * max 260 */ 261 util = scale_irq_capacity(util, irq, max); 262 util += irq; 263 264 /* 265 * Bandwidth required by DEADLINE must always be granted while, for 266 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 267 * to gracefully reduce the frequency when no tasks show up for longer 268 * periods of time. 269 * 270 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 271 * bw_dl as requested freq. However, cpufreq is not yet ready for such 272 * an interface. So, we only do the latter for now. 273 */ 274 if (type == FREQUENCY_UTIL) 275 util += cpu_bw_dl(rq); 276 277 return min(max, util); 278 } 279 280 static void sugov_get_util(struct sugov_cpu *sg_cpu) 281 { 282 struct rq *rq = cpu_rq(sg_cpu->cpu); 283 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu); 284 285 sg_cpu->max = max; 286 sg_cpu->bw_dl = cpu_bw_dl(rq); 287 sg_cpu->util = schedutil_cpu_util(sg_cpu->cpu, cpu_util_cfs(rq), max, 288 FREQUENCY_UTIL, NULL); 289 } 290 291 /** 292 * sugov_iowait_reset() - Reset the IO boost status of a CPU. 293 * @sg_cpu: the sugov data for the CPU to boost 294 * @time: the update time from the caller 295 * @set_iowait_boost: true if an IO boost has been requested 296 * 297 * The IO wait boost of a task is disabled after a tick since the last update 298 * of a CPU. If a new IO wait boost is requested after more then a tick, then 299 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy 300 * efficiency by ignoring sporadic wakeups from IO. 301 */ 302 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time, 303 bool set_iowait_boost) 304 { 305 s64 delta_ns = time - sg_cpu->last_update; 306 307 /* Reset boost only if a tick has elapsed since last request */ 308 if (delta_ns <= TICK_NSEC) 309 return false; 310 311 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0; 312 sg_cpu->iowait_boost_pending = set_iowait_boost; 313 314 return true; 315 } 316 317 /** 318 * sugov_iowait_boost() - Updates the IO boost status of a CPU. 319 * @sg_cpu: the sugov data for the CPU to boost 320 * @time: the update time from the caller 321 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait 322 * 323 * Each time a task wakes up after an IO operation, the CPU utilization can be 324 * boosted to a certain utilization which doubles at each "frequent and 325 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization 326 * of the maximum OPP. 327 * 328 * To keep doubling, an IO boost has to be requested at least once per tick, 329 * otherwise we restart from the utilization of the minimum OPP. 330 */ 331 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time, 332 unsigned int flags) 333 { 334 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT; 335 336 /* Reset boost if the CPU appears to have been idle enough */ 337 if (sg_cpu->iowait_boost && 338 sugov_iowait_reset(sg_cpu, time, set_iowait_boost)) 339 return; 340 341 /* Boost only tasks waking up after IO */ 342 if (!set_iowait_boost) 343 return; 344 345 /* Ensure boost doubles only one time at each request */ 346 if (sg_cpu->iowait_boost_pending) 347 return; 348 sg_cpu->iowait_boost_pending = true; 349 350 /* Double the boost at each request */ 351 if (sg_cpu->iowait_boost) { 352 sg_cpu->iowait_boost = 353 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE); 354 return; 355 } 356 357 /* First wakeup after IO: start with minimum boost */ 358 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN; 359 } 360 361 /** 362 * sugov_iowait_apply() - Apply the IO boost to a CPU. 363 * @sg_cpu: the sugov data for the cpu to boost 364 * @time: the update time from the caller 365 * 366 * A CPU running a task which woken up after an IO operation can have its 367 * utilization boosted to speed up the completion of those IO operations. 368 * The IO boost value is increased each time a task wakes up from IO, in 369 * sugov_iowait_apply(), and it's instead decreased by this function, 370 * each time an increase has not been requested (!iowait_boost_pending). 371 * 372 * A CPU which also appears to have been idle for at least one tick has also 373 * its IO boost utilization reset. 374 * 375 * This mechanism is designed to boost high frequently IO waiting tasks, while 376 * being more conservative on tasks which does sporadic IO operations. 377 */ 378 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time) 379 { 380 unsigned long boost; 381 382 /* No boost currently required */ 383 if (!sg_cpu->iowait_boost) 384 return; 385 386 /* Reset boost if the CPU appears to have been idle enough */ 387 if (sugov_iowait_reset(sg_cpu, time, false)) 388 return; 389 390 if (!sg_cpu->iowait_boost_pending) { 391 /* 392 * No boost pending; reduce the boost value. 393 */ 394 sg_cpu->iowait_boost >>= 1; 395 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) { 396 sg_cpu->iowait_boost = 0; 397 return; 398 } 399 } 400 401 sg_cpu->iowait_boost_pending = false; 402 403 /* 404 * sg_cpu->util is already in capacity scale; convert iowait_boost 405 * into the same scale so we can compare. 406 */ 407 boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT; 408 if (sg_cpu->util < boost) 409 sg_cpu->util = boost; 410 } 411 412 #ifdef CONFIG_NO_HZ_COMMON 413 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) 414 { 415 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); 416 bool ret = idle_calls == sg_cpu->saved_idle_calls; 417 418 sg_cpu->saved_idle_calls = idle_calls; 419 return ret; 420 } 421 #else 422 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; } 423 #endif /* CONFIG_NO_HZ_COMMON */ 424 425 /* 426 * Make sugov_should_update_freq() ignore the rate limit when DL 427 * has increased the utilization. 428 */ 429 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy) 430 { 431 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl) 432 sg_policy->limits_changed = true; 433 } 434 435 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu, 436 u64 time, unsigned int flags) 437 { 438 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 439 440 sugov_iowait_boost(sg_cpu, time, flags); 441 sg_cpu->last_update = time; 442 443 ignore_dl_rate_limit(sg_cpu, sg_policy); 444 445 if (!sugov_should_update_freq(sg_policy, time)) 446 return false; 447 448 sugov_get_util(sg_cpu); 449 sugov_iowait_apply(sg_cpu, time); 450 451 return true; 452 } 453 454 static void sugov_update_single_freq(struct update_util_data *hook, u64 time, 455 unsigned int flags) 456 { 457 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 458 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 459 unsigned int cached_freq = sg_policy->cached_raw_freq; 460 unsigned int next_f; 461 462 if (!sugov_update_single_common(sg_cpu, time, flags)) 463 return; 464 465 next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max); 466 /* 467 * Do not reduce the frequency if the CPU has not been idle 468 * recently, as the reduction is likely to be premature then. 469 */ 470 if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) { 471 next_f = sg_policy->next_freq; 472 473 /* Restore cached freq as next_freq has changed */ 474 sg_policy->cached_raw_freq = cached_freq; 475 } 476 477 /* 478 * This code runs under rq->lock for the target CPU, so it won't run 479 * concurrently on two different CPUs for the same target and it is not 480 * necessary to acquire the lock in the fast switch case. 481 */ 482 if (sg_policy->policy->fast_switch_enabled) { 483 sugov_fast_switch(sg_policy, time, next_f); 484 } else { 485 raw_spin_lock(&sg_policy->update_lock); 486 sugov_deferred_update(sg_policy, time, next_f); 487 raw_spin_unlock(&sg_policy->update_lock); 488 } 489 } 490 491 static void sugov_update_single_perf(struct update_util_data *hook, u64 time, 492 unsigned int flags) 493 { 494 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 495 unsigned long prev_util = sg_cpu->util; 496 497 /* 498 * Fall back to the "frequency" path if frequency invariance is not 499 * supported, because the direct mapping between the utilization and 500 * the performance levels depends on the frequency invariance. 501 */ 502 if (!arch_scale_freq_invariant()) { 503 sugov_update_single_freq(hook, time, flags); 504 return; 505 } 506 507 if (!sugov_update_single_common(sg_cpu, time, flags)) 508 return; 509 510 /* 511 * Do not reduce the target performance level if the CPU has not been 512 * idle recently, as the reduction is likely to be premature then. 513 */ 514 if (sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util) 515 sg_cpu->util = prev_util; 516 517 cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl), 518 map_util_perf(sg_cpu->util), sg_cpu->max); 519 520 sg_cpu->sg_policy->last_freq_update_time = time; 521 } 522 523 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time) 524 { 525 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 526 struct cpufreq_policy *policy = sg_policy->policy; 527 unsigned long util = 0, max = 1; 528 unsigned int j; 529 530 for_each_cpu(j, policy->cpus) { 531 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j); 532 unsigned long j_util, j_max; 533 534 sugov_get_util(j_sg_cpu); 535 sugov_iowait_apply(j_sg_cpu, time); 536 j_util = j_sg_cpu->util; 537 j_max = j_sg_cpu->max; 538 539 if (j_util * max > j_max * util) { 540 util = j_util; 541 max = j_max; 542 } 543 } 544 545 return get_next_freq(sg_policy, util, max); 546 } 547 548 static void 549 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) 550 { 551 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 552 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 553 unsigned int next_f; 554 555 raw_spin_lock(&sg_policy->update_lock); 556 557 sugov_iowait_boost(sg_cpu, time, flags); 558 sg_cpu->last_update = time; 559 560 ignore_dl_rate_limit(sg_cpu, sg_policy); 561 562 if (sugov_should_update_freq(sg_policy, time)) { 563 next_f = sugov_next_freq_shared(sg_cpu, time); 564 565 if (sg_policy->policy->fast_switch_enabled) 566 sugov_fast_switch(sg_policy, time, next_f); 567 else 568 sugov_deferred_update(sg_policy, time, next_f); 569 } 570 571 raw_spin_unlock(&sg_policy->update_lock); 572 } 573 574 static void sugov_work(struct kthread_work *work) 575 { 576 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); 577 unsigned int freq; 578 unsigned long flags; 579 580 /* 581 * Hold sg_policy->update_lock shortly to handle the case where: 582 * incase sg_policy->next_freq is read here, and then updated by 583 * sugov_deferred_update() just before work_in_progress is set to false 584 * here, we may miss queueing the new update. 585 * 586 * Note: If a work was queued after the update_lock is released, 587 * sugov_work() will just be called again by kthread_work code; and the 588 * request will be proceed before the sugov thread sleeps. 589 */ 590 raw_spin_lock_irqsave(&sg_policy->update_lock, flags); 591 freq = sg_policy->next_freq; 592 sg_policy->work_in_progress = false; 593 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags); 594 595 mutex_lock(&sg_policy->work_lock); 596 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L); 597 mutex_unlock(&sg_policy->work_lock); 598 } 599 600 static void sugov_irq_work(struct irq_work *irq_work) 601 { 602 struct sugov_policy *sg_policy; 603 604 sg_policy = container_of(irq_work, struct sugov_policy, irq_work); 605 606 kthread_queue_work(&sg_policy->worker, &sg_policy->work); 607 } 608 609 /************************** sysfs interface ************************/ 610 611 static struct sugov_tunables *global_tunables; 612 static DEFINE_MUTEX(global_tunables_lock); 613 614 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) 615 { 616 return container_of(attr_set, struct sugov_tunables, attr_set); 617 } 618 619 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) 620 { 621 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 622 623 return sprintf(buf, "%u\n", tunables->rate_limit_us); 624 } 625 626 static ssize_t 627 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) 628 { 629 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 630 struct sugov_policy *sg_policy; 631 unsigned int rate_limit_us; 632 633 if (kstrtouint(buf, 10, &rate_limit_us)) 634 return -EINVAL; 635 636 tunables->rate_limit_us = rate_limit_us; 637 638 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) 639 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; 640 641 return count; 642 } 643 644 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); 645 646 static struct attribute *sugov_attrs[] = { 647 &rate_limit_us.attr, 648 NULL 649 }; 650 ATTRIBUTE_GROUPS(sugov); 651 652 static struct kobj_type sugov_tunables_ktype = { 653 .default_groups = sugov_groups, 654 .sysfs_ops = &governor_sysfs_ops, 655 }; 656 657 /********************** cpufreq governor interface *********************/ 658 659 struct cpufreq_governor schedutil_gov; 660 661 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) 662 { 663 struct sugov_policy *sg_policy; 664 665 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); 666 if (!sg_policy) 667 return NULL; 668 669 sg_policy->policy = policy; 670 raw_spin_lock_init(&sg_policy->update_lock); 671 return sg_policy; 672 } 673 674 static void sugov_policy_free(struct sugov_policy *sg_policy) 675 { 676 kfree(sg_policy); 677 } 678 679 static int sugov_kthread_create(struct sugov_policy *sg_policy) 680 { 681 struct task_struct *thread; 682 struct sched_attr attr = { 683 .size = sizeof(struct sched_attr), 684 .sched_policy = SCHED_DEADLINE, 685 .sched_flags = SCHED_FLAG_SUGOV, 686 .sched_nice = 0, 687 .sched_priority = 0, 688 /* 689 * Fake (unused) bandwidth; workaround to "fix" 690 * priority inheritance. 691 */ 692 .sched_runtime = 1000000, 693 .sched_deadline = 10000000, 694 .sched_period = 10000000, 695 }; 696 struct cpufreq_policy *policy = sg_policy->policy; 697 int ret; 698 699 /* kthread only required for slow path */ 700 if (policy->fast_switch_enabled) 701 return 0; 702 703 kthread_init_work(&sg_policy->work, sugov_work); 704 kthread_init_worker(&sg_policy->worker); 705 thread = kthread_create(kthread_worker_fn, &sg_policy->worker, 706 "sugov:%d", 707 cpumask_first(policy->related_cpus)); 708 if (IS_ERR(thread)) { 709 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread)); 710 return PTR_ERR(thread); 711 } 712 713 ret = sched_setattr_nocheck(thread, &attr); 714 if (ret) { 715 kthread_stop(thread); 716 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__); 717 return ret; 718 } 719 720 sg_policy->thread = thread; 721 kthread_bind_mask(thread, policy->related_cpus); 722 init_irq_work(&sg_policy->irq_work, sugov_irq_work); 723 mutex_init(&sg_policy->work_lock); 724 725 wake_up_process(thread); 726 727 return 0; 728 } 729 730 static void sugov_kthread_stop(struct sugov_policy *sg_policy) 731 { 732 /* kthread only required for slow path */ 733 if (sg_policy->policy->fast_switch_enabled) 734 return; 735 736 kthread_flush_worker(&sg_policy->worker); 737 kthread_stop(sg_policy->thread); 738 mutex_destroy(&sg_policy->work_lock); 739 } 740 741 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) 742 { 743 struct sugov_tunables *tunables; 744 745 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); 746 if (tunables) { 747 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); 748 if (!have_governor_per_policy()) 749 global_tunables = tunables; 750 } 751 return tunables; 752 } 753 754 static void sugov_tunables_free(struct sugov_tunables *tunables) 755 { 756 if (!have_governor_per_policy()) 757 global_tunables = NULL; 758 759 kfree(tunables); 760 } 761 762 static int sugov_init(struct cpufreq_policy *policy) 763 { 764 struct sugov_policy *sg_policy; 765 struct sugov_tunables *tunables; 766 int ret = 0; 767 768 /* State should be equivalent to EXIT */ 769 if (policy->governor_data) 770 return -EBUSY; 771 772 cpufreq_enable_fast_switch(policy); 773 774 sg_policy = sugov_policy_alloc(policy); 775 if (!sg_policy) { 776 ret = -ENOMEM; 777 goto disable_fast_switch; 778 } 779 780 ret = sugov_kthread_create(sg_policy); 781 if (ret) 782 goto free_sg_policy; 783 784 mutex_lock(&global_tunables_lock); 785 786 if (global_tunables) { 787 if (WARN_ON(have_governor_per_policy())) { 788 ret = -EINVAL; 789 goto stop_kthread; 790 } 791 policy->governor_data = sg_policy; 792 sg_policy->tunables = global_tunables; 793 794 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); 795 goto out; 796 } 797 798 tunables = sugov_tunables_alloc(sg_policy); 799 if (!tunables) { 800 ret = -ENOMEM; 801 goto stop_kthread; 802 } 803 804 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy); 805 806 policy->governor_data = sg_policy; 807 sg_policy->tunables = tunables; 808 809 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, 810 get_governor_parent_kobj(policy), "%s", 811 schedutil_gov.name); 812 if (ret) 813 goto fail; 814 815 out: 816 mutex_unlock(&global_tunables_lock); 817 return 0; 818 819 fail: 820 kobject_put(&tunables->attr_set.kobj); 821 policy->governor_data = NULL; 822 sugov_tunables_free(tunables); 823 824 stop_kthread: 825 sugov_kthread_stop(sg_policy); 826 mutex_unlock(&global_tunables_lock); 827 828 free_sg_policy: 829 sugov_policy_free(sg_policy); 830 831 disable_fast_switch: 832 cpufreq_disable_fast_switch(policy); 833 834 pr_err("initialization failed (error %d)\n", ret); 835 return ret; 836 } 837 838 static void sugov_exit(struct cpufreq_policy *policy) 839 { 840 struct sugov_policy *sg_policy = policy->governor_data; 841 struct sugov_tunables *tunables = sg_policy->tunables; 842 unsigned int count; 843 844 mutex_lock(&global_tunables_lock); 845 846 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); 847 policy->governor_data = NULL; 848 if (!count) 849 sugov_tunables_free(tunables); 850 851 mutex_unlock(&global_tunables_lock); 852 853 sugov_kthread_stop(sg_policy); 854 sugov_policy_free(sg_policy); 855 cpufreq_disable_fast_switch(policy); 856 } 857 858 static int sugov_start(struct cpufreq_policy *policy) 859 { 860 struct sugov_policy *sg_policy = policy->governor_data; 861 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags); 862 unsigned int cpu; 863 864 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; 865 sg_policy->last_freq_update_time = 0; 866 sg_policy->next_freq = 0; 867 sg_policy->work_in_progress = false; 868 sg_policy->limits_changed = false; 869 sg_policy->cached_raw_freq = 0; 870 871 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 872 873 for_each_cpu(cpu, policy->cpus) { 874 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 875 876 memset(sg_cpu, 0, sizeof(*sg_cpu)); 877 sg_cpu->cpu = cpu; 878 sg_cpu->sg_policy = sg_policy; 879 } 880 881 if (policy_is_shared(policy)) 882 uu = sugov_update_shared; 883 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf()) 884 uu = sugov_update_single_perf; 885 else 886 uu = sugov_update_single_freq; 887 888 for_each_cpu(cpu, policy->cpus) { 889 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 890 891 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu); 892 } 893 return 0; 894 } 895 896 static void sugov_stop(struct cpufreq_policy *policy) 897 { 898 struct sugov_policy *sg_policy = policy->governor_data; 899 unsigned int cpu; 900 901 for_each_cpu(cpu, policy->cpus) 902 cpufreq_remove_update_util_hook(cpu); 903 904 synchronize_rcu(); 905 906 if (!policy->fast_switch_enabled) { 907 irq_work_sync(&sg_policy->irq_work); 908 kthread_cancel_work_sync(&sg_policy->work); 909 } 910 } 911 912 static void sugov_limits(struct cpufreq_policy *policy) 913 { 914 struct sugov_policy *sg_policy = policy->governor_data; 915 916 if (!policy->fast_switch_enabled) { 917 mutex_lock(&sg_policy->work_lock); 918 cpufreq_policy_apply_limits(policy); 919 mutex_unlock(&sg_policy->work_lock); 920 } 921 922 sg_policy->limits_changed = true; 923 } 924 925 struct cpufreq_governor schedutil_gov = { 926 .name = "schedutil", 927 .owner = THIS_MODULE, 928 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING, 929 .init = sugov_init, 930 .exit = sugov_exit, 931 .start = sugov_start, 932 .stop = sugov_stop, 933 .limits = sugov_limits, 934 }; 935 936 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL 937 struct cpufreq_governor *cpufreq_default_governor(void) 938 { 939 return &schedutil_gov; 940 } 941 #endif 942 943 cpufreq_governor_init(schedutil_gov); 944 945 #ifdef CONFIG_ENERGY_MODEL 946 static void rebuild_sd_workfn(struct work_struct *work) 947 { 948 rebuild_sched_domains_energy(); 949 } 950 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn); 951 952 /* 953 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains 954 * on governor changes to make sure the scheduler knows about it. 955 */ 956 void sched_cpufreq_governor_change(struct cpufreq_policy *policy, 957 struct cpufreq_governor *old_gov) 958 { 959 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) { 960 /* 961 * When called from the cpufreq_register_driver() path, the 962 * cpu_hotplug_lock is already held, so use a work item to 963 * avoid nested locking in rebuild_sched_domains(). 964 */ 965 schedule_work(&rebuild_sd_work); 966 } 967 968 } 969 #endif 970