1 /* 2 * CPUFreq governor based on scheduler-provided CPU utilization data. 3 * 4 * Copyright (C) 2016, Intel Corporation 5 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include "sched.h" 15 16 #include <trace/events/power.h> 17 18 struct sugov_tunables { 19 struct gov_attr_set attr_set; 20 unsigned int rate_limit_us; 21 }; 22 23 struct sugov_policy { 24 struct cpufreq_policy *policy; 25 26 struct sugov_tunables *tunables; 27 struct list_head tunables_hook; 28 29 raw_spinlock_t update_lock; /* For shared policies */ 30 u64 last_freq_update_time; 31 s64 freq_update_delay_ns; 32 unsigned int next_freq; 33 unsigned int cached_raw_freq; 34 35 /* The next fields are only needed if fast switch cannot be used: */ 36 struct irq_work irq_work; 37 struct kthread_work work; 38 struct mutex work_lock; 39 struct kthread_worker worker; 40 struct task_struct *thread; 41 bool work_in_progress; 42 43 bool need_freq_update; 44 }; 45 46 struct sugov_cpu { 47 struct update_util_data update_util; 48 struct sugov_policy *sg_policy; 49 unsigned int cpu; 50 51 bool iowait_boost_pending; 52 unsigned int iowait_boost; 53 unsigned int iowait_boost_max; 54 u64 last_update; 55 56 unsigned long bw_dl; 57 unsigned long max; 58 59 /* The field below is for single-CPU policies only: */ 60 #ifdef CONFIG_NO_HZ_COMMON 61 unsigned long saved_idle_calls; 62 #endif 63 }; 64 65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); 66 67 /************************ Governor internals ***********************/ 68 69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) 70 { 71 s64 delta_ns; 72 73 /* 74 * Since cpufreq_update_util() is called with rq->lock held for 75 * the @target_cpu, our per-CPU data is fully serialized. 76 * 77 * However, drivers cannot in general deal with cross-CPU 78 * requests, so while get_next_freq() will work, our 79 * sugov_update_commit() call may not for the fast switching platforms. 80 * 81 * Hence stop here for remote requests if they aren't supported 82 * by the hardware, as calculating the frequency is pointless if 83 * we cannot in fact act on it. 84 * 85 * For the slow switching platforms, the kthread is always scheduled on 86 * the right set of CPUs and any CPU can find the next frequency and 87 * schedule the kthread. 88 */ 89 if (sg_policy->policy->fast_switch_enabled && 90 !cpufreq_this_cpu_can_update(sg_policy->policy)) 91 return false; 92 93 if (unlikely(sg_policy->need_freq_update)) 94 return true; 95 96 delta_ns = time - sg_policy->last_freq_update_time; 97 98 return delta_ns >= sg_policy->freq_update_delay_ns; 99 } 100 101 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time, 102 unsigned int next_freq) 103 { 104 if (sg_policy->next_freq == next_freq) 105 return false; 106 107 sg_policy->next_freq = next_freq; 108 sg_policy->last_freq_update_time = time; 109 110 return true; 111 } 112 113 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time, 114 unsigned int next_freq) 115 { 116 struct cpufreq_policy *policy = sg_policy->policy; 117 118 if (!sugov_update_next_freq(sg_policy, time, next_freq)) 119 return; 120 121 next_freq = cpufreq_driver_fast_switch(policy, next_freq); 122 if (!next_freq) 123 return; 124 125 policy->cur = next_freq; 126 trace_cpu_frequency(next_freq, smp_processor_id()); 127 } 128 129 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time, 130 unsigned int next_freq) 131 { 132 if (!sugov_update_next_freq(sg_policy, time, next_freq)) 133 return; 134 135 if (!sg_policy->work_in_progress) { 136 sg_policy->work_in_progress = true; 137 irq_work_queue(&sg_policy->irq_work); 138 } 139 } 140 141 /** 142 * get_next_freq - Compute a new frequency for a given cpufreq policy. 143 * @sg_policy: schedutil policy object to compute the new frequency for. 144 * @util: Current CPU utilization. 145 * @max: CPU capacity. 146 * 147 * If the utilization is frequency-invariant, choose the new frequency to be 148 * proportional to it, that is 149 * 150 * next_freq = C * max_freq * util / max 151 * 152 * Otherwise, approximate the would-be frequency-invariant utilization by 153 * util_raw * (curr_freq / max_freq) which leads to 154 * 155 * next_freq = C * curr_freq * util_raw / max 156 * 157 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. 158 * 159 * The lowest driver-supported frequency which is equal or greater than the raw 160 * next_freq (as calculated above) is returned, subject to policy min/max and 161 * cpufreq driver limitations. 162 */ 163 static unsigned int get_next_freq(struct sugov_policy *sg_policy, 164 unsigned long util, unsigned long max) 165 { 166 struct cpufreq_policy *policy = sg_policy->policy; 167 unsigned int freq = arch_scale_freq_invariant() ? 168 policy->cpuinfo.max_freq : policy->cur; 169 170 freq = (freq + (freq >> 2)) * util / max; 171 172 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update) 173 return sg_policy->next_freq; 174 175 sg_policy->need_freq_update = false; 176 sg_policy->cached_raw_freq = freq; 177 return cpufreq_driver_resolve_freq(policy, freq); 178 } 179 180 /* 181 * This function computes an effective utilization for the given CPU, to be 182 * used for frequency selection given the linear relation: f = u * f_max. 183 * 184 * The scheduler tracks the following metrics: 185 * 186 * cpu_util_{cfs,rt,dl,irq}() 187 * cpu_bw_dl() 188 * 189 * Where the cfs,rt and dl util numbers are tracked with the same metric and 190 * synchronized windows and are thus directly comparable. 191 * 192 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 193 * which excludes things like IRQ and steal-time. These latter are then accrued 194 * in the irq utilization. 195 * 196 * The DL bandwidth number otoh is not a measured metric but a value computed 197 * based on the task model parameters and gives the minimal utilization 198 * required to meet deadlines. 199 */ 200 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu) 201 { 202 struct rq *rq = cpu_rq(sg_cpu->cpu); 203 unsigned long util, irq, max; 204 205 sg_cpu->max = max = arch_scale_cpu_capacity(NULL, sg_cpu->cpu); 206 sg_cpu->bw_dl = cpu_bw_dl(rq); 207 208 if (rt_rq_is_runnable(&rq->rt)) 209 return max; 210 211 /* 212 * Early check to see if IRQ/steal time saturates the CPU, can be 213 * because of inaccuracies in how we track these -- see 214 * update_irq_load_avg(). 215 */ 216 irq = cpu_util_irq(rq); 217 if (unlikely(irq >= max)) 218 return max; 219 220 /* 221 * Because the time spend on RT/DL tasks is visible as 'lost' time to 222 * CFS tasks and we use the same metric to track the effective 223 * utilization (PELT windows are synchronized) we can directly add them 224 * to obtain the CPU's actual utilization. 225 */ 226 util = cpu_util_cfs(rq); 227 util += cpu_util_rt(rq); 228 229 /* 230 * We do not make cpu_util_dl() a permanent part of this sum because we 231 * want to use cpu_bw_dl() later on, but we need to check if the 232 * CFS+RT+DL sum is saturated (ie. no idle time) such that we select 233 * f_max when there is no idle time. 234 * 235 * NOTE: numerical errors or stop class might cause us to not quite hit 236 * saturation when we should -- something for later. 237 */ 238 if ((util + cpu_util_dl(rq)) >= max) 239 return max; 240 241 /* 242 * There is still idle time; further improve the number by using the 243 * irq metric. Because IRQ/steal time is hidden from the task clock we 244 * need to scale the task numbers: 245 * 246 * 1 - irq 247 * U' = irq + ------- * U 248 * max 249 */ 250 util = scale_irq_capacity(util, irq, max); 251 util += irq; 252 253 /* 254 * Bandwidth required by DEADLINE must always be granted while, for 255 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 256 * to gracefully reduce the frequency when no tasks show up for longer 257 * periods of time. 258 * 259 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 260 * bw_dl as requested freq. However, cpufreq is not yet ready for such 261 * an interface. So, we only do the latter for now. 262 */ 263 return min(max, util + sg_cpu->bw_dl); 264 } 265 266 /** 267 * sugov_iowait_reset() - Reset the IO boost status of a CPU. 268 * @sg_cpu: the sugov data for the CPU to boost 269 * @time: the update time from the caller 270 * @set_iowait_boost: true if an IO boost has been requested 271 * 272 * The IO wait boost of a task is disabled after a tick since the last update 273 * of a CPU. If a new IO wait boost is requested after more then a tick, then 274 * we enable the boost starting from the minimum frequency, which improves 275 * energy efficiency by ignoring sporadic wakeups from IO. 276 */ 277 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time, 278 bool set_iowait_boost) 279 { 280 s64 delta_ns = time - sg_cpu->last_update; 281 282 /* Reset boost only if a tick has elapsed since last request */ 283 if (delta_ns <= TICK_NSEC) 284 return false; 285 286 sg_cpu->iowait_boost = set_iowait_boost 287 ? sg_cpu->sg_policy->policy->min : 0; 288 sg_cpu->iowait_boost_pending = set_iowait_boost; 289 290 return true; 291 } 292 293 /** 294 * sugov_iowait_boost() - Updates the IO boost status of a CPU. 295 * @sg_cpu: the sugov data for the CPU to boost 296 * @time: the update time from the caller 297 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait 298 * 299 * Each time a task wakes up after an IO operation, the CPU utilization can be 300 * boosted to a certain utilization which doubles at each "frequent and 301 * successive" wakeup from IO, ranging from the utilization of the minimum 302 * OPP to the utilization of the maximum OPP. 303 * To keep doubling, an IO boost has to be requested at least once per tick, 304 * otherwise we restart from the utilization of the minimum OPP. 305 */ 306 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time, 307 unsigned int flags) 308 { 309 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT; 310 311 /* Reset boost if the CPU appears to have been idle enough */ 312 if (sg_cpu->iowait_boost && 313 sugov_iowait_reset(sg_cpu, time, set_iowait_boost)) 314 return; 315 316 /* Boost only tasks waking up after IO */ 317 if (!set_iowait_boost) 318 return; 319 320 /* Ensure boost doubles only one time at each request */ 321 if (sg_cpu->iowait_boost_pending) 322 return; 323 sg_cpu->iowait_boost_pending = true; 324 325 /* Double the boost at each request */ 326 if (sg_cpu->iowait_boost) { 327 sg_cpu->iowait_boost <<= 1; 328 if (sg_cpu->iowait_boost > sg_cpu->iowait_boost_max) 329 sg_cpu->iowait_boost = sg_cpu->iowait_boost_max; 330 return; 331 } 332 333 /* First wakeup after IO: start with minimum boost */ 334 sg_cpu->iowait_boost = sg_cpu->sg_policy->policy->min; 335 } 336 337 /** 338 * sugov_iowait_apply() - Apply the IO boost to a CPU. 339 * @sg_cpu: the sugov data for the cpu to boost 340 * @time: the update time from the caller 341 * @util: the utilization to (eventually) boost 342 * @max: the maximum value the utilization can be boosted to 343 * 344 * A CPU running a task which woken up after an IO operation can have its 345 * utilization boosted to speed up the completion of those IO operations. 346 * The IO boost value is increased each time a task wakes up from IO, in 347 * sugov_iowait_apply(), and it's instead decreased by this function, 348 * each time an increase has not been requested (!iowait_boost_pending). 349 * 350 * A CPU which also appears to have been idle for at least one tick has also 351 * its IO boost utilization reset. 352 * 353 * This mechanism is designed to boost high frequently IO waiting tasks, while 354 * being more conservative on tasks which does sporadic IO operations. 355 */ 356 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time, 357 unsigned long *util, unsigned long *max) 358 { 359 unsigned int boost_util, boost_max; 360 361 /* No boost currently required */ 362 if (!sg_cpu->iowait_boost) 363 return; 364 365 /* Reset boost if the CPU appears to have been idle enough */ 366 if (sugov_iowait_reset(sg_cpu, time, false)) 367 return; 368 369 /* 370 * An IO waiting task has just woken up: 371 * allow to further double the boost value 372 */ 373 if (sg_cpu->iowait_boost_pending) { 374 sg_cpu->iowait_boost_pending = false; 375 } else { 376 /* 377 * Otherwise: reduce the boost value and disable it when we 378 * reach the minimum. 379 */ 380 sg_cpu->iowait_boost >>= 1; 381 if (sg_cpu->iowait_boost < sg_cpu->sg_policy->policy->min) { 382 sg_cpu->iowait_boost = 0; 383 return; 384 } 385 } 386 387 /* 388 * Apply the current boost value: a CPU is boosted only if its current 389 * utilization is smaller then the current IO boost level. 390 */ 391 boost_util = sg_cpu->iowait_boost; 392 boost_max = sg_cpu->iowait_boost_max; 393 if (*util * boost_max < *max * boost_util) { 394 *util = boost_util; 395 *max = boost_max; 396 } 397 } 398 399 #ifdef CONFIG_NO_HZ_COMMON 400 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) 401 { 402 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); 403 bool ret = idle_calls == sg_cpu->saved_idle_calls; 404 405 sg_cpu->saved_idle_calls = idle_calls; 406 return ret; 407 } 408 #else 409 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; } 410 #endif /* CONFIG_NO_HZ_COMMON */ 411 412 /* 413 * Make sugov_should_update_freq() ignore the rate limit when DL 414 * has increased the utilization. 415 */ 416 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy) 417 { 418 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl) 419 sg_policy->need_freq_update = true; 420 } 421 422 static void sugov_update_single(struct update_util_data *hook, u64 time, 423 unsigned int flags) 424 { 425 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 426 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 427 unsigned long util, max; 428 unsigned int next_f; 429 bool busy; 430 431 sugov_iowait_boost(sg_cpu, time, flags); 432 sg_cpu->last_update = time; 433 434 ignore_dl_rate_limit(sg_cpu, sg_policy); 435 436 if (!sugov_should_update_freq(sg_policy, time)) 437 return; 438 439 busy = sugov_cpu_is_busy(sg_cpu); 440 441 util = sugov_get_util(sg_cpu); 442 max = sg_cpu->max; 443 sugov_iowait_apply(sg_cpu, time, &util, &max); 444 next_f = get_next_freq(sg_policy, util, max); 445 /* 446 * Do not reduce the frequency if the CPU has not been idle 447 * recently, as the reduction is likely to be premature then. 448 */ 449 if (busy && next_f < sg_policy->next_freq) { 450 next_f = sg_policy->next_freq; 451 452 /* Reset cached freq as next_freq has changed */ 453 sg_policy->cached_raw_freq = 0; 454 } 455 456 /* 457 * This code runs under rq->lock for the target CPU, so it won't run 458 * concurrently on two different CPUs for the same target and it is not 459 * necessary to acquire the lock in the fast switch case. 460 */ 461 if (sg_policy->policy->fast_switch_enabled) { 462 sugov_fast_switch(sg_policy, time, next_f); 463 } else { 464 raw_spin_lock(&sg_policy->update_lock); 465 sugov_deferred_update(sg_policy, time, next_f); 466 raw_spin_unlock(&sg_policy->update_lock); 467 } 468 } 469 470 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time) 471 { 472 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 473 struct cpufreq_policy *policy = sg_policy->policy; 474 unsigned long util = 0, max = 1; 475 unsigned int j; 476 477 for_each_cpu(j, policy->cpus) { 478 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j); 479 unsigned long j_util, j_max; 480 481 j_util = sugov_get_util(j_sg_cpu); 482 j_max = j_sg_cpu->max; 483 sugov_iowait_apply(j_sg_cpu, time, &j_util, &j_max); 484 485 if (j_util * max > j_max * util) { 486 util = j_util; 487 max = j_max; 488 } 489 } 490 491 return get_next_freq(sg_policy, util, max); 492 } 493 494 static void 495 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) 496 { 497 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 498 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 499 unsigned int next_f; 500 501 raw_spin_lock(&sg_policy->update_lock); 502 503 sugov_iowait_boost(sg_cpu, time, flags); 504 sg_cpu->last_update = time; 505 506 ignore_dl_rate_limit(sg_cpu, sg_policy); 507 508 if (sugov_should_update_freq(sg_policy, time)) { 509 next_f = sugov_next_freq_shared(sg_cpu, time); 510 511 if (sg_policy->policy->fast_switch_enabled) 512 sugov_fast_switch(sg_policy, time, next_f); 513 else 514 sugov_deferred_update(sg_policy, time, next_f); 515 } 516 517 raw_spin_unlock(&sg_policy->update_lock); 518 } 519 520 static void sugov_work(struct kthread_work *work) 521 { 522 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); 523 unsigned int freq; 524 unsigned long flags; 525 526 /* 527 * Hold sg_policy->update_lock shortly to handle the case where: 528 * incase sg_policy->next_freq is read here, and then updated by 529 * sugov_deferred_update() just before work_in_progress is set to false 530 * here, we may miss queueing the new update. 531 * 532 * Note: If a work was queued after the update_lock is released, 533 * sugov_work() will just be called again by kthread_work code; and the 534 * request will be proceed before the sugov thread sleeps. 535 */ 536 raw_spin_lock_irqsave(&sg_policy->update_lock, flags); 537 freq = sg_policy->next_freq; 538 sg_policy->work_in_progress = false; 539 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags); 540 541 mutex_lock(&sg_policy->work_lock); 542 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L); 543 mutex_unlock(&sg_policy->work_lock); 544 } 545 546 static void sugov_irq_work(struct irq_work *irq_work) 547 { 548 struct sugov_policy *sg_policy; 549 550 sg_policy = container_of(irq_work, struct sugov_policy, irq_work); 551 552 kthread_queue_work(&sg_policy->worker, &sg_policy->work); 553 } 554 555 /************************** sysfs interface ************************/ 556 557 static struct sugov_tunables *global_tunables; 558 static DEFINE_MUTEX(global_tunables_lock); 559 560 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) 561 { 562 return container_of(attr_set, struct sugov_tunables, attr_set); 563 } 564 565 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) 566 { 567 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 568 569 return sprintf(buf, "%u\n", tunables->rate_limit_us); 570 } 571 572 static ssize_t 573 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) 574 { 575 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 576 struct sugov_policy *sg_policy; 577 unsigned int rate_limit_us; 578 579 if (kstrtouint(buf, 10, &rate_limit_us)) 580 return -EINVAL; 581 582 tunables->rate_limit_us = rate_limit_us; 583 584 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) 585 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; 586 587 return count; 588 } 589 590 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); 591 592 static struct attribute *sugov_attributes[] = { 593 &rate_limit_us.attr, 594 NULL 595 }; 596 597 static struct kobj_type sugov_tunables_ktype = { 598 .default_attrs = sugov_attributes, 599 .sysfs_ops = &governor_sysfs_ops, 600 }; 601 602 /********************** cpufreq governor interface *********************/ 603 604 static struct cpufreq_governor schedutil_gov; 605 606 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) 607 { 608 struct sugov_policy *sg_policy; 609 610 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); 611 if (!sg_policy) 612 return NULL; 613 614 sg_policy->policy = policy; 615 raw_spin_lock_init(&sg_policy->update_lock); 616 return sg_policy; 617 } 618 619 static void sugov_policy_free(struct sugov_policy *sg_policy) 620 { 621 kfree(sg_policy); 622 } 623 624 static int sugov_kthread_create(struct sugov_policy *sg_policy) 625 { 626 struct task_struct *thread; 627 struct sched_attr attr = { 628 .size = sizeof(struct sched_attr), 629 .sched_policy = SCHED_DEADLINE, 630 .sched_flags = SCHED_FLAG_SUGOV, 631 .sched_nice = 0, 632 .sched_priority = 0, 633 /* 634 * Fake (unused) bandwidth; workaround to "fix" 635 * priority inheritance. 636 */ 637 .sched_runtime = 1000000, 638 .sched_deadline = 10000000, 639 .sched_period = 10000000, 640 }; 641 struct cpufreq_policy *policy = sg_policy->policy; 642 int ret; 643 644 /* kthread only required for slow path */ 645 if (policy->fast_switch_enabled) 646 return 0; 647 648 kthread_init_work(&sg_policy->work, sugov_work); 649 kthread_init_worker(&sg_policy->worker); 650 thread = kthread_create(kthread_worker_fn, &sg_policy->worker, 651 "sugov:%d", 652 cpumask_first(policy->related_cpus)); 653 if (IS_ERR(thread)) { 654 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread)); 655 return PTR_ERR(thread); 656 } 657 658 ret = sched_setattr_nocheck(thread, &attr); 659 if (ret) { 660 kthread_stop(thread); 661 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__); 662 return ret; 663 } 664 665 sg_policy->thread = thread; 666 kthread_bind_mask(thread, policy->related_cpus); 667 init_irq_work(&sg_policy->irq_work, sugov_irq_work); 668 mutex_init(&sg_policy->work_lock); 669 670 wake_up_process(thread); 671 672 return 0; 673 } 674 675 static void sugov_kthread_stop(struct sugov_policy *sg_policy) 676 { 677 /* kthread only required for slow path */ 678 if (sg_policy->policy->fast_switch_enabled) 679 return; 680 681 kthread_flush_worker(&sg_policy->worker); 682 kthread_stop(sg_policy->thread); 683 mutex_destroy(&sg_policy->work_lock); 684 } 685 686 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) 687 { 688 struct sugov_tunables *tunables; 689 690 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); 691 if (tunables) { 692 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); 693 if (!have_governor_per_policy()) 694 global_tunables = tunables; 695 } 696 return tunables; 697 } 698 699 static void sugov_tunables_free(struct sugov_tunables *tunables) 700 { 701 if (!have_governor_per_policy()) 702 global_tunables = NULL; 703 704 kfree(tunables); 705 } 706 707 static int sugov_init(struct cpufreq_policy *policy) 708 { 709 struct sugov_policy *sg_policy; 710 struct sugov_tunables *tunables; 711 int ret = 0; 712 713 /* State should be equivalent to EXIT */ 714 if (policy->governor_data) 715 return -EBUSY; 716 717 cpufreq_enable_fast_switch(policy); 718 719 sg_policy = sugov_policy_alloc(policy); 720 if (!sg_policy) { 721 ret = -ENOMEM; 722 goto disable_fast_switch; 723 } 724 725 ret = sugov_kthread_create(sg_policy); 726 if (ret) 727 goto free_sg_policy; 728 729 mutex_lock(&global_tunables_lock); 730 731 if (global_tunables) { 732 if (WARN_ON(have_governor_per_policy())) { 733 ret = -EINVAL; 734 goto stop_kthread; 735 } 736 policy->governor_data = sg_policy; 737 sg_policy->tunables = global_tunables; 738 739 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); 740 goto out; 741 } 742 743 tunables = sugov_tunables_alloc(sg_policy); 744 if (!tunables) { 745 ret = -ENOMEM; 746 goto stop_kthread; 747 } 748 749 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy); 750 751 policy->governor_data = sg_policy; 752 sg_policy->tunables = tunables; 753 754 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, 755 get_governor_parent_kobj(policy), "%s", 756 schedutil_gov.name); 757 if (ret) 758 goto fail; 759 760 out: 761 mutex_unlock(&global_tunables_lock); 762 return 0; 763 764 fail: 765 policy->governor_data = NULL; 766 sugov_tunables_free(tunables); 767 768 stop_kthread: 769 sugov_kthread_stop(sg_policy); 770 mutex_unlock(&global_tunables_lock); 771 772 free_sg_policy: 773 sugov_policy_free(sg_policy); 774 775 disable_fast_switch: 776 cpufreq_disable_fast_switch(policy); 777 778 pr_err("initialization failed (error %d)\n", ret); 779 return ret; 780 } 781 782 static void sugov_exit(struct cpufreq_policy *policy) 783 { 784 struct sugov_policy *sg_policy = policy->governor_data; 785 struct sugov_tunables *tunables = sg_policy->tunables; 786 unsigned int count; 787 788 mutex_lock(&global_tunables_lock); 789 790 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); 791 policy->governor_data = NULL; 792 if (!count) 793 sugov_tunables_free(tunables); 794 795 mutex_unlock(&global_tunables_lock); 796 797 sugov_kthread_stop(sg_policy); 798 sugov_policy_free(sg_policy); 799 cpufreq_disable_fast_switch(policy); 800 } 801 802 static int sugov_start(struct cpufreq_policy *policy) 803 { 804 struct sugov_policy *sg_policy = policy->governor_data; 805 unsigned int cpu; 806 807 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; 808 sg_policy->last_freq_update_time = 0; 809 sg_policy->next_freq = 0; 810 sg_policy->work_in_progress = false; 811 sg_policy->need_freq_update = false; 812 sg_policy->cached_raw_freq = 0; 813 814 for_each_cpu(cpu, policy->cpus) { 815 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 816 817 memset(sg_cpu, 0, sizeof(*sg_cpu)); 818 sg_cpu->cpu = cpu; 819 sg_cpu->sg_policy = sg_policy; 820 sg_cpu->iowait_boost_max = policy->cpuinfo.max_freq; 821 } 822 823 for_each_cpu(cpu, policy->cpus) { 824 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 825 826 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, 827 policy_is_shared(policy) ? 828 sugov_update_shared : 829 sugov_update_single); 830 } 831 return 0; 832 } 833 834 static void sugov_stop(struct cpufreq_policy *policy) 835 { 836 struct sugov_policy *sg_policy = policy->governor_data; 837 unsigned int cpu; 838 839 for_each_cpu(cpu, policy->cpus) 840 cpufreq_remove_update_util_hook(cpu); 841 842 synchronize_sched(); 843 844 if (!policy->fast_switch_enabled) { 845 irq_work_sync(&sg_policy->irq_work); 846 kthread_cancel_work_sync(&sg_policy->work); 847 } 848 } 849 850 static void sugov_limits(struct cpufreq_policy *policy) 851 { 852 struct sugov_policy *sg_policy = policy->governor_data; 853 854 if (!policy->fast_switch_enabled) { 855 mutex_lock(&sg_policy->work_lock); 856 cpufreq_policy_apply_limits(policy); 857 mutex_unlock(&sg_policy->work_lock); 858 } 859 860 sg_policy->need_freq_update = true; 861 } 862 863 static struct cpufreq_governor schedutil_gov = { 864 .name = "schedutil", 865 .owner = THIS_MODULE, 866 .dynamic_switching = true, 867 .init = sugov_init, 868 .exit = sugov_exit, 869 .start = sugov_start, 870 .stop = sugov_stop, 871 .limits = sugov_limits, 872 }; 873 874 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL 875 struct cpufreq_governor *cpufreq_default_governor(void) 876 { 877 return &schedutil_gov; 878 } 879 #endif 880 881 static int __init sugov_register(void) 882 { 883 return cpufreq_register_governor(&schedutil_gov); 884 } 885 fs_initcall(sugov_register); 886