1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
10
11 struct sugov_tunables {
12 struct gov_attr_set attr_set;
13 unsigned int rate_limit_us;
14 };
15
16 struct sugov_policy {
17 struct cpufreq_policy *policy;
18
19 struct sugov_tunables *tunables;
20 struct list_head tunables_hook;
21
22 raw_spinlock_t update_lock;
23 u64 last_freq_update_time;
24 s64 freq_update_delay_ns;
25 unsigned int next_freq;
26 unsigned int cached_raw_freq;
27
28 /* The next fields are only needed if fast switch cannot be used: */
29 struct irq_work irq_work;
30 struct kthread_work work;
31 struct mutex work_lock;
32 struct kthread_worker worker;
33 struct task_struct *thread;
34 bool work_in_progress;
35
36 bool limits_changed;
37 bool need_freq_update;
38 };
39
40 struct sugov_cpu {
41 struct update_util_data update_util;
42 struct sugov_policy *sg_policy;
43 unsigned int cpu;
44
45 bool iowait_boost_pending;
46 unsigned int iowait_boost;
47 u64 last_update;
48
49 unsigned long util;
50 unsigned long bw_dl;
51
52 /* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54 unsigned long saved_idle_calls;
55 #endif
56 };
57
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59
60 /************************ Governor internals ***********************/
61
sugov_should_update_freq(struct sugov_policy * sg_policy,u64 time)62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64 s64 delta_ns;
65
66 /*
67 * Since cpufreq_update_util() is called with rq->lock held for
68 * the @target_cpu, our per-CPU data is fully serialized.
69 *
70 * However, drivers cannot in general deal with cross-CPU
71 * requests, so while get_next_freq() will work, our
72 * sugov_update_commit() call may not for the fast switching platforms.
73 *
74 * Hence stop here for remote requests if they aren't supported
75 * by the hardware, as calculating the frequency is pointless if
76 * we cannot in fact act on it.
77 *
78 * This is needed on the slow switching platforms too to prevent CPUs
79 * going offline from leaving stale IRQ work items behind.
80 */
81 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82 return false;
83
84 if (unlikely(sg_policy->limits_changed)) {
85 sg_policy->limits_changed = false;
86 sg_policy->need_freq_update = true;
87 return true;
88 }
89
90 delta_ns = time - sg_policy->last_freq_update_time;
91
92 return delta_ns >= sg_policy->freq_update_delay_ns;
93 }
94
sugov_update_next_freq(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96 unsigned int next_freq)
97 {
98 if (sg_policy->need_freq_update)
99 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100 else if (sg_policy->next_freq == next_freq)
101 return false;
102
103 sg_policy->next_freq = next_freq;
104 sg_policy->last_freq_update_time = time;
105
106 return true;
107 }
108
sugov_deferred_update(struct sugov_policy * sg_policy)109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
110 {
111 if (!sg_policy->work_in_progress) {
112 sg_policy->work_in_progress = true;
113 irq_work_queue(&sg_policy->irq_work);
114 }
115 }
116
117 /**
118 * get_next_freq - Compute a new frequency for a given cpufreq policy.
119 * @sg_policy: schedutil policy object to compute the new frequency for.
120 * @util: Current CPU utilization.
121 * @max: CPU capacity.
122 *
123 * If the utilization is frequency-invariant, choose the new frequency to be
124 * proportional to it, that is
125 *
126 * next_freq = C * max_freq * util / max
127 *
128 * Otherwise, approximate the would-be frequency-invariant utilization by
129 * util_raw * (curr_freq / max_freq) which leads to
130 *
131 * next_freq = C * curr_freq * util_raw / max
132 *
133 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
134 *
135 * The lowest driver-supported frequency which is equal or greater than the raw
136 * next_freq (as calculated above) is returned, subject to policy min/max and
137 * cpufreq driver limitations.
138 */
get_next_freq(struct sugov_policy * sg_policy,unsigned long util,unsigned long max)139 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
140 unsigned long util, unsigned long max)
141 {
142 struct cpufreq_policy *policy = sg_policy->policy;
143 unsigned int freq = arch_scale_freq_invariant() ?
144 policy->cpuinfo.max_freq : policy->cur;
145
146 util = map_util_perf(util);
147 freq = map_util_freq(util, freq, max);
148
149 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
150 return sg_policy->next_freq;
151
152 sg_policy->cached_raw_freq = freq;
153 return cpufreq_driver_resolve_freq(policy, freq);
154 }
155
sugov_get_util(struct sugov_cpu * sg_cpu)156 static void sugov_get_util(struct sugov_cpu *sg_cpu)
157 {
158 unsigned long util = cpu_util_cfs_boost(sg_cpu->cpu);
159 struct rq *rq = cpu_rq(sg_cpu->cpu);
160
161 sg_cpu->bw_dl = cpu_bw_dl(rq);
162 sg_cpu->util = effective_cpu_util(sg_cpu->cpu, util,
163 FREQUENCY_UTIL, NULL);
164 }
165
166 /**
167 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
168 * @sg_cpu: the sugov data for the CPU to boost
169 * @time: the update time from the caller
170 * @set_iowait_boost: true if an IO boost has been requested
171 *
172 * The IO wait boost of a task is disabled after a tick since the last update
173 * of a CPU. If a new IO wait boost is requested after more then a tick, then
174 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
175 * efficiency by ignoring sporadic wakeups from IO.
176 */
sugov_iowait_reset(struct sugov_cpu * sg_cpu,u64 time,bool set_iowait_boost)177 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
178 bool set_iowait_boost)
179 {
180 s64 delta_ns = time - sg_cpu->last_update;
181
182 /* Reset boost only if a tick has elapsed since last request */
183 if (delta_ns <= TICK_NSEC)
184 return false;
185
186 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
187 sg_cpu->iowait_boost_pending = set_iowait_boost;
188
189 return true;
190 }
191
192 /**
193 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
194 * @sg_cpu: the sugov data for the CPU to boost
195 * @time: the update time from the caller
196 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
197 *
198 * Each time a task wakes up after an IO operation, the CPU utilization can be
199 * boosted to a certain utilization which doubles at each "frequent and
200 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
201 * of the maximum OPP.
202 *
203 * To keep doubling, an IO boost has to be requested at least once per tick,
204 * otherwise we restart from the utilization of the minimum OPP.
205 */
sugov_iowait_boost(struct sugov_cpu * sg_cpu,u64 time,unsigned int flags)206 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
207 unsigned int flags)
208 {
209 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
210
211 /* Reset boost if the CPU appears to have been idle enough */
212 if (sg_cpu->iowait_boost &&
213 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
214 return;
215
216 /* Boost only tasks waking up after IO */
217 if (!set_iowait_boost)
218 return;
219
220 /* Ensure boost doubles only one time at each request */
221 if (sg_cpu->iowait_boost_pending)
222 return;
223 sg_cpu->iowait_boost_pending = true;
224
225 /* Double the boost at each request */
226 if (sg_cpu->iowait_boost) {
227 sg_cpu->iowait_boost =
228 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
229 return;
230 }
231
232 /* First wakeup after IO: start with minimum boost */
233 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
234 }
235
236 /**
237 * sugov_iowait_apply() - Apply the IO boost to a CPU.
238 * @sg_cpu: the sugov data for the cpu to boost
239 * @time: the update time from the caller
240 * @max_cap: the max CPU capacity
241 *
242 * A CPU running a task which woken up after an IO operation can have its
243 * utilization boosted to speed up the completion of those IO operations.
244 * The IO boost value is increased each time a task wakes up from IO, in
245 * sugov_iowait_apply(), and it's instead decreased by this function,
246 * each time an increase has not been requested (!iowait_boost_pending).
247 *
248 * A CPU which also appears to have been idle for at least one tick has also
249 * its IO boost utilization reset.
250 *
251 * This mechanism is designed to boost high frequently IO waiting tasks, while
252 * being more conservative on tasks which does sporadic IO operations.
253 */
sugov_iowait_apply(struct sugov_cpu * sg_cpu,u64 time,unsigned long max_cap)254 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
255 unsigned long max_cap)
256 {
257 unsigned long boost;
258
259 /* No boost currently required */
260 if (!sg_cpu->iowait_boost)
261 return;
262
263 /* Reset boost if the CPU appears to have been idle enough */
264 if (sugov_iowait_reset(sg_cpu, time, false))
265 return;
266
267 if (!sg_cpu->iowait_boost_pending) {
268 /*
269 * No boost pending; reduce the boost value.
270 */
271 sg_cpu->iowait_boost >>= 1;
272 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
273 sg_cpu->iowait_boost = 0;
274 return;
275 }
276 }
277
278 sg_cpu->iowait_boost_pending = false;
279
280 /*
281 * sg_cpu->util is already in capacity scale; convert iowait_boost
282 * into the same scale so we can compare.
283 */
284 boost = (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
285 boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
286 if (sg_cpu->util < boost)
287 sg_cpu->util = boost;
288 }
289
290 #ifdef CONFIG_NO_HZ_COMMON
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)291 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
292 {
293 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
294 bool ret = idle_calls == sg_cpu->saved_idle_calls;
295
296 sg_cpu->saved_idle_calls = idle_calls;
297 return ret;
298 }
299 #else
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)300 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
301 #endif /* CONFIG_NO_HZ_COMMON */
302
303 /*
304 * Make sugov_should_update_freq() ignore the rate limit when DL
305 * has increased the utilization.
306 */
ignore_dl_rate_limit(struct sugov_cpu * sg_cpu)307 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
308 {
309 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
310 sg_cpu->sg_policy->limits_changed = true;
311 }
312
sugov_update_single_common(struct sugov_cpu * sg_cpu,u64 time,unsigned long max_cap,unsigned int flags)313 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
314 u64 time, unsigned long max_cap,
315 unsigned int flags)
316 {
317 sugov_iowait_boost(sg_cpu, time, flags);
318 sg_cpu->last_update = time;
319
320 ignore_dl_rate_limit(sg_cpu);
321
322 if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
323 return false;
324
325 sugov_get_util(sg_cpu);
326 sugov_iowait_apply(sg_cpu, time, max_cap);
327
328 return true;
329 }
330
sugov_update_single_freq(struct update_util_data * hook,u64 time,unsigned int flags)331 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
332 unsigned int flags)
333 {
334 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
335 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
336 unsigned int cached_freq = sg_policy->cached_raw_freq;
337 unsigned long max_cap;
338 unsigned int next_f;
339
340 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
341
342 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
343 return;
344
345 next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
346 /*
347 * Do not reduce the frequency if the CPU has not been idle
348 * recently, as the reduction is likely to be premature then.
349 *
350 * Except when the rq is capped by uclamp_max.
351 */
352 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
353 sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq &&
354 !sg_policy->need_freq_update) {
355 next_f = sg_policy->next_freq;
356
357 /* Restore cached freq as next_freq has changed */
358 sg_policy->cached_raw_freq = cached_freq;
359 }
360
361 if (!sugov_update_next_freq(sg_policy, time, next_f))
362 return;
363
364 /*
365 * This code runs under rq->lock for the target CPU, so it won't run
366 * concurrently on two different CPUs for the same target and it is not
367 * necessary to acquire the lock in the fast switch case.
368 */
369 if (sg_policy->policy->fast_switch_enabled) {
370 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
371 } else {
372 raw_spin_lock(&sg_policy->update_lock);
373 sugov_deferred_update(sg_policy);
374 raw_spin_unlock(&sg_policy->update_lock);
375 }
376 }
377
sugov_update_single_perf(struct update_util_data * hook,u64 time,unsigned int flags)378 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
379 unsigned int flags)
380 {
381 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
382 unsigned long prev_util = sg_cpu->util;
383 unsigned long max_cap;
384
385 /*
386 * Fall back to the "frequency" path if frequency invariance is not
387 * supported, because the direct mapping between the utilization and
388 * the performance levels depends on the frequency invariance.
389 */
390 if (!arch_scale_freq_invariant()) {
391 sugov_update_single_freq(hook, time, flags);
392 return;
393 }
394
395 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
396
397 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
398 return;
399
400 /*
401 * Do not reduce the target performance level if the CPU has not been
402 * idle recently, as the reduction is likely to be premature then.
403 *
404 * Except when the rq is capped by uclamp_max.
405 */
406 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
407 sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
408 sg_cpu->util = prev_util;
409
410 cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
411 map_util_perf(sg_cpu->util), max_cap);
412
413 sg_cpu->sg_policy->last_freq_update_time = time;
414 }
415
sugov_next_freq_shared(struct sugov_cpu * sg_cpu,u64 time)416 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
417 {
418 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
419 struct cpufreq_policy *policy = sg_policy->policy;
420 unsigned long util = 0, max_cap;
421 unsigned int j;
422
423 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
424
425 for_each_cpu(j, policy->cpus) {
426 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
427
428 sugov_get_util(j_sg_cpu);
429 sugov_iowait_apply(j_sg_cpu, time, max_cap);
430
431 util = max(j_sg_cpu->util, util);
432 }
433
434 return get_next_freq(sg_policy, util, max_cap);
435 }
436
437 static void
sugov_update_shared(struct update_util_data * hook,u64 time,unsigned int flags)438 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
439 {
440 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
441 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
442 unsigned int next_f;
443
444 raw_spin_lock(&sg_policy->update_lock);
445
446 sugov_iowait_boost(sg_cpu, time, flags);
447 sg_cpu->last_update = time;
448
449 ignore_dl_rate_limit(sg_cpu);
450
451 if (sugov_should_update_freq(sg_policy, time)) {
452 next_f = sugov_next_freq_shared(sg_cpu, time);
453
454 if (!sugov_update_next_freq(sg_policy, time, next_f))
455 goto unlock;
456
457 if (sg_policy->policy->fast_switch_enabled)
458 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
459 else
460 sugov_deferred_update(sg_policy);
461 }
462 unlock:
463 raw_spin_unlock(&sg_policy->update_lock);
464 }
465
sugov_work(struct kthread_work * work)466 static void sugov_work(struct kthread_work *work)
467 {
468 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
469 unsigned int freq;
470 unsigned long flags;
471
472 /*
473 * Hold sg_policy->update_lock shortly to handle the case where:
474 * in case sg_policy->next_freq is read here, and then updated by
475 * sugov_deferred_update() just before work_in_progress is set to false
476 * here, we may miss queueing the new update.
477 *
478 * Note: If a work was queued after the update_lock is released,
479 * sugov_work() will just be called again by kthread_work code; and the
480 * request will be proceed before the sugov thread sleeps.
481 */
482 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
483 freq = sg_policy->next_freq;
484 sg_policy->work_in_progress = false;
485 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
486
487 mutex_lock(&sg_policy->work_lock);
488 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
489 mutex_unlock(&sg_policy->work_lock);
490 }
491
sugov_irq_work(struct irq_work * irq_work)492 static void sugov_irq_work(struct irq_work *irq_work)
493 {
494 struct sugov_policy *sg_policy;
495
496 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
497
498 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
499 }
500
501 /************************** sysfs interface ************************/
502
503 static struct sugov_tunables *global_tunables;
504 static DEFINE_MUTEX(global_tunables_lock);
505
to_sugov_tunables(struct gov_attr_set * attr_set)506 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
507 {
508 return container_of(attr_set, struct sugov_tunables, attr_set);
509 }
510
rate_limit_us_show(struct gov_attr_set * attr_set,char * buf)511 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
512 {
513 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
514
515 return sprintf(buf, "%u\n", tunables->rate_limit_us);
516 }
517
518 static ssize_t
rate_limit_us_store(struct gov_attr_set * attr_set,const char * buf,size_t count)519 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
520 {
521 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
522 struct sugov_policy *sg_policy;
523 unsigned int rate_limit_us;
524
525 if (kstrtouint(buf, 10, &rate_limit_us))
526 return -EINVAL;
527
528 tunables->rate_limit_us = rate_limit_us;
529
530 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
531 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
532
533 return count;
534 }
535
536 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
537
538 static struct attribute *sugov_attrs[] = {
539 &rate_limit_us.attr,
540 NULL
541 };
542 ATTRIBUTE_GROUPS(sugov);
543
sugov_tunables_free(struct kobject * kobj)544 static void sugov_tunables_free(struct kobject *kobj)
545 {
546 struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
547
548 kfree(to_sugov_tunables(attr_set));
549 }
550
551 static const struct kobj_type sugov_tunables_ktype = {
552 .default_groups = sugov_groups,
553 .sysfs_ops = &governor_sysfs_ops,
554 .release = &sugov_tunables_free,
555 };
556
557 /********************** cpufreq governor interface *********************/
558
559 struct cpufreq_governor schedutil_gov;
560
sugov_policy_alloc(struct cpufreq_policy * policy)561 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
562 {
563 struct sugov_policy *sg_policy;
564
565 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
566 if (!sg_policy)
567 return NULL;
568
569 sg_policy->policy = policy;
570 raw_spin_lock_init(&sg_policy->update_lock);
571 return sg_policy;
572 }
573
sugov_policy_free(struct sugov_policy * sg_policy)574 static void sugov_policy_free(struct sugov_policy *sg_policy)
575 {
576 kfree(sg_policy);
577 }
578
sugov_kthread_create(struct sugov_policy * sg_policy)579 static int sugov_kthread_create(struct sugov_policy *sg_policy)
580 {
581 struct task_struct *thread;
582 struct sched_attr attr = {
583 .size = sizeof(struct sched_attr),
584 .sched_policy = SCHED_DEADLINE,
585 .sched_flags = SCHED_FLAG_SUGOV,
586 .sched_nice = 0,
587 .sched_priority = 0,
588 /*
589 * Fake (unused) bandwidth; workaround to "fix"
590 * priority inheritance.
591 */
592 .sched_runtime = 1000000,
593 .sched_deadline = 10000000,
594 .sched_period = 10000000,
595 };
596 struct cpufreq_policy *policy = sg_policy->policy;
597 int ret;
598
599 /* kthread only required for slow path */
600 if (policy->fast_switch_enabled)
601 return 0;
602
603 kthread_init_work(&sg_policy->work, sugov_work);
604 kthread_init_worker(&sg_policy->worker);
605 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
606 "sugov:%d",
607 cpumask_first(policy->related_cpus));
608 if (IS_ERR(thread)) {
609 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
610 return PTR_ERR(thread);
611 }
612
613 ret = sched_setattr_nocheck(thread, &attr);
614 if (ret) {
615 kthread_stop(thread);
616 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
617 return ret;
618 }
619
620 sg_policy->thread = thread;
621 kthread_bind_mask(thread, policy->related_cpus);
622 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
623 mutex_init(&sg_policy->work_lock);
624
625 wake_up_process(thread);
626
627 return 0;
628 }
629
sugov_kthread_stop(struct sugov_policy * sg_policy)630 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
631 {
632 /* kthread only required for slow path */
633 if (sg_policy->policy->fast_switch_enabled)
634 return;
635
636 kthread_flush_worker(&sg_policy->worker);
637 kthread_stop(sg_policy->thread);
638 mutex_destroy(&sg_policy->work_lock);
639 }
640
sugov_tunables_alloc(struct sugov_policy * sg_policy)641 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
642 {
643 struct sugov_tunables *tunables;
644
645 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
646 if (tunables) {
647 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
648 if (!have_governor_per_policy())
649 global_tunables = tunables;
650 }
651 return tunables;
652 }
653
sugov_clear_global_tunables(void)654 static void sugov_clear_global_tunables(void)
655 {
656 if (!have_governor_per_policy())
657 global_tunables = NULL;
658 }
659
sugov_init(struct cpufreq_policy * policy)660 static int sugov_init(struct cpufreq_policy *policy)
661 {
662 struct sugov_policy *sg_policy;
663 struct sugov_tunables *tunables;
664 int ret = 0;
665
666 /* State should be equivalent to EXIT */
667 if (policy->governor_data)
668 return -EBUSY;
669
670 cpufreq_enable_fast_switch(policy);
671
672 sg_policy = sugov_policy_alloc(policy);
673 if (!sg_policy) {
674 ret = -ENOMEM;
675 goto disable_fast_switch;
676 }
677
678 ret = sugov_kthread_create(sg_policy);
679 if (ret)
680 goto free_sg_policy;
681
682 mutex_lock(&global_tunables_lock);
683
684 if (global_tunables) {
685 if (WARN_ON(have_governor_per_policy())) {
686 ret = -EINVAL;
687 goto stop_kthread;
688 }
689 policy->governor_data = sg_policy;
690 sg_policy->tunables = global_tunables;
691
692 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
693 goto out;
694 }
695
696 tunables = sugov_tunables_alloc(sg_policy);
697 if (!tunables) {
698 ret = -ENOMEM;
699 goto stop_kthread;
700 }
701
702 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
703
704 policy->governor_data = sg_policy;
705 sg_policy->tunables = tunables;
706
707 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
708 get_governor_parent_kobj(policy), "%s",
709 schedutil_gov.name);
710 if (ret)
711 goto fail;
712
713 out:
714 mutex_unlock(&global_tunables_lock);
715 return 0;
716
717 fail:
718 kobject_put(&tunables->attr_set.kobj);
719 policy->governor_data = NULL;
720 sugov_clear_global_tunables();
721
722 stop_kthread:
723 sugov_kthread_stop(sg_policy);
724 mutex_unlock(&global_tunables_lock);
725
726 free_sg_policy:
727 sugov_policy_free(sg_policy);
728
729 disable_fast_switch:
730 cpufreq_disable_fast_switch(policy);
731
732 pr_err("initialization failed (error %d)\n", ret);
733 return ret;
734 }
735
sugov_exit(struct cpufreq_policy * policy)736 static void sugov_exit(struct cpufreq_policy *policy)
737 {
738 struct sugov_policy *sg_policy = policy->governor_data;
739 struct sugov_tunables *tunables = sg_policy->tunables;
740 unsigned int count;
741
742 mutex_lock(&global_tunables_lock);
743
744 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
745 policy->governor_data = NULL;
746 if (!count)
747 sugov_clear_global_tunables();
748
749 mutex_unlock(&global_tunables_lock);
750
751 sugov_kthread_stop(sg_policy);
752 sugov_policy_free(sg_policy);
753 cpufreq_disable_fast_switch(policy);
754 }
755
sugov_start(struct cpufreq_policy * policy)756 static int sugov_start(struct cpufreq_policy *policy)
757 {
758 struct sugov_policy *sg_policy = policy->governor_data;
759 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
760 unsigned int cpu;
761
762 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
763 sg_policy->last_freq_update_time = 0;
764 sg_policy->next_freq = 0;
765 sg_policy->work_in_progress = false;
766 sg_policy->limits_changed = false;
767 sg_policy->cached_raw_freq = 0;
768
769 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
770
771 for_each_cpu(cpu, policy->cpus) {
772 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
773
774 memset(sg_cpu, 0, sizeof(*sg_cpu));
775 sg_cpu->cpu = cpu;
776 sg_cpu->sg_policy = sg_policy;
777 }
778
779 if (policy_is_shared(policy))
780 uu = sugov_update_shared;
781 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
782 uu = sugov_update_single_perf;
783 else
784 uu = sugov_update_single_freq;
785
786 for_each_cpu(cpu, policy->cpus) {
787 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
788
789 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
790 }
791 return 0;
792 }
793
sugov_stop(struct cpufreq_policy * policy)794 static void sugov_stop(struct cpufreq_policy *policy)
795 {
796 struct sugov_policy *sg_policy = policy->governor_data;
797 unsigned int cpu;
798
799 for_each_cpu(cpu, policy->cpus)
800 cpufreq_remove_update_util_hook(cpu);
801
802 synchronize_rcu();
803
804 if (!policy->fast_switch_enabled) {
805 irq_work_sync(&sg_policy->irq_work);
806 kthread_cancel_work_sync(&sg_policy->work);
807 }
808 }
809
sugov_limits(struct cpufreq_policy * policy)810 static void sugov_limits(struct cpufreq_policy *policy)
811 {
812 struct sugov_policy *sg_policy = policy->governor_data;
813
814 if (!policy->fast_switch_enabled) {
815 mutex_lock(&sg_policy->work_lock);
816 cpufreq_policy_apply_limits(policy);
817 mutex_unlock(&sg_policy->work_lock);
818 }
819
820 sg_policy->limits_changed = true;
821 }
822
823 struct cpufreq_governor schedutil_gov = {
824 .name = "schedutil",
825 .owner = THIS_MODULE,
826 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
827 .init = sugov_init,
828 .exit = sugov_exit,
829 .start = sugov_start,
830 .stop = sugov_stop,
831 .limits = sugov_limits,
832 };
833
834 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
cpufreq_default_governor(void)835 struct cpufreq_governor *cpufreq_default_governor(void)
836 {
837 return &schedutil_gov;
838 }
839 #endif
840
841 cpufreq_governor_init(schedutil_gov);
842
843 #ifdef CONFIG_ENERGY_MODEL
rebuild_sd_workfn(struct work_struct * work)844 static void rebuild_sd_workfn(struct work_struct *work)
845 {
846 rebuild_sched_domains_energy();
847 }
848 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
849
850 /*
851 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
852 * on governor changes to make sure the scheduler knows about it.
853 */
sched_cpufreq_governor_change(struct cpufreq_policy * policy,struct cpufreq_governor * old_gov)854 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
855 struct cpufreq_governor *old_gov)
856 {
857 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
858 /*
859 * When called from the cpufreq_register_driver() path, the
860 * cpu_hotplug_lock is already held, so use a work item to
861 * avoid nested locking in rebuild_sched_domains().
862 */
863 schedule_work(&rebuild_sd_work);
864 }
865
866 }
867 #endif
868