1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/kasan.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/nmi.h> 33 #include <linux/init.h> 34 #include <linux/uaccess.h> 35 #include <linux/highmem.h> 36 #include <linux/mmu_context.h> 37 #include <linux/interrupt.h> 38 #include <linux/capability.h> 39 #include <linux/completion.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/debug_locks.h> 42 #include <linux/perf_event.h> 43 #include <linux/security.h> 44 #include <linux/notifier.h> 45 #include <linux/profile.h> 46 #include <linux/freezer.h> 47 #include <linux/vmalloc.h> 48 #include <linux/blkdev.h> 49 #include <linux/delay.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/smp.h> 52 #include <linux/threads.h> 53 #include <linux/timer.h> 54 #include <linux/rcupdate.h> 55 #include <linux/cpu.h> 56 #include <linux/cpuset.h> 57 #include <linux/percpu.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/sysctl.h> 61 #include <linux/syscalls.h> 62 #include <linux/times.h> 63 #include <linux/tsacct_kern.h> 64 #include <linux/kprobes.h> 65 #include <linux/delayacct.h> 66 #include <linux/unistd.h> 67 #include <linux/pagemap.h> 68 #include <linux/hrtimer.h> 69 #include <linux/tick.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/context_tracking.h> 75 #include <linux/compiler.h> 76 #include <linux/frame.h> 77 #include <linux/prefetch.h> 78 #include <linux/mutex.h> 79 80 #include <asm/switch_to.h> 81 #include <asm/tlb.h> 82 #include <asm/irq_regs.h> 83 #ifdef CONFIG_PARAVIRT 84 #include <asm/paravirt.h> 85 #endif 86 87 #include "sched.h" 88 #include "../workqueue_internal.h" 89 #include "../smpboot.h" 90 91 #define CREATE_TRACE_POINTS 92 #include <trace/events/sched.h> 93 94 DEFINE_MUTEX(sched_domains_mutex); 95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 96 97 static void update_rq_clock_task(struct rq *rq, s64 delta); 98 99 void update_rq_clock(struct rq *rq) 100 { 101 s64 delta; 102 103 lockdep_assert_held(&rq->lock); 104 105 if (rq->clock_skip_update & RQCF_ACT_SKIP) 106 return; 107 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 109 if (delta < 0) 110 return; 111 rq->clock += delta; 112 update_rq_clock_task(rq, delta); 113 } 114 115 /* 116 * Debugging: various feature bits 117 */ 118 119 #define SCHED_FEAT(name, enabled) \ 120 (1UL << __SCHED_FEAT_##name) * enabled | 121 122 const_debug unsigned int sysctl_sched_features = 123 #include "features.h" 124 0; 125 126 #undef SCHED_FEAT 127 128 /* 129 * Number of tasks to iterate in a single balance run. 130 * Limited because this is done with IRQs disabled. 131 */ 132 const_debug unsigned int sysctl_sched_nr_migrate = 32; 133 134 /* 135 * period over which we average the RT time consumption, measured 136 * in ms. 137 * 138 * default: 1s 139 */ 140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 141 142 /* 143 * period over which we measure -rt task cpu usage in us. 144 * default: 1s 145 */ 146 unsigned int sysctl_sched_rt_period = 1000000; 147 148 __read_mostly int scheduler_running; 149 150 /* 151 * part of the period that we allow rt tasks to run in us. 152 * default: 0.95s 153 */ 154 int sysctl_sched_rt_runtime = 950000; 155 156 /* cpus with isolated domains */ 157 cpumask_var_t cpu_isolated_map; 158 159 /* 160 * this_rq_lock - lock this runqueue and disable interrupts. 161 */ 162 static struct rq *this_rq_lock(void) 163 __acquires(rq->lock) 164 { 165 struct rq *rq; 166 167 local_irq_disable(); 168 rq = this_rq(); 169 raw_spin_lock(&rq->lock); 170 171 return rq; 172 } 173 174 /* 175 * __task_rq_lock - lock the rq @p resides on. 176 */ 177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 178 __acquires(rq->lock) 179 { 180 struct rq *rq; 181 182 lockdep_assert_held(&p->pi_lock); 183 184 for (;;) { 185 rq = task_rq(p); 186 raw_spin_lock(&rq->lock); 187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 188 rf->cookie = lockdep_pin_lock(&rq->lock); 189 return rq; 190 } 191 raw_spin_unlock(&rq->lock); 192 193 while (unlikely(task_on_rq_migrating(p))) 194 cpu_relax(); 195 } 196 } 197 198 /* 199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 200 */ 201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 202 __acquires(p->pi_lock) 203 __acquires(rq->lock) 204 { 205 struct rq *rq; 206 207 for (;;) { 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 209 rq = task_rq(p); 210 raw_spin_lock(&rq->lock); 211 /* 212 * move_queued_task() task_rq_lock() 213 * 214 * ACQUIRE (rq->lock) 215 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 217 * [S] ->cpu = new_cpu [L] task_rq() 218 * [L] ->on_rq 219 * RELEASE (rq->lock) 220 * 221 * If we observe the old cpu in task_rq_lock, the acquire of 222 * the old rq->lock will fully serialize against the stores. 223 * 224 * If we observe the new cpu in task_rq_lock, the acquire will 225 * pair with the WMB to ensure we must then also see migrating. 226 */ 227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 228 rf->cookie = lockdep_pin_lock(&rq->lock); 229 return rq; 230 } 231 raw_spin_unlock(&rq->lock); 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 233 234 while (unlikely(task_on_rq_migrating(p))) 235 cpu_relax(); 236 } 237 } 238 239 #ifdef CONFIG_SCHED_HRTICK 240 /* 241 * Use HR-timers to deliver accurate preemption points. 242 */ 243 244 static void hrtick_clear(struct rq *rq) 245 { 246 if (hrtimer_active(&rq->hrtick_timer)) 247 hrtimer_cancel(&rq->hrtick_timer); 248 } 249 250 /* 251 * High-resolution timer tick. 252 * Runs from hardirq context with interrupts disabled. 253 */ 254 static enum hrtimer_restart hrtick(struct hrtimer *timer) 255 { 256 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 257 258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 259 260 raw_spin_lock(&rq->lock); 261 update_rq_clock(rq); 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 263 raw_spin_unlock(&rq->lock); 264 265 return HRTIMER_NORESTART; 266 } 267 268 #ifdef CONFIG_SMP 269 270 static void __hrtick_restart(struct rq *rq) 271 { 272 struct hrtimer *timer = &rq->hrtick_timer; 273 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 275 } 276 277 /* 278 * called from hardirq (IPI) context 279 */ 280 static void __hrtick_start(void *arg) 281 { 282 struct rq *rq = arg; 283 284 raw_spin_lock(&rq->lock); 285 __hrtick_restart(rq); 286 rq->hrtick_csd_pending = 0; 287 raw_spin_unlock(&rq->lock); 288 } 289 290 /* 291 * Called to set the hrtick timer state. 292 * 293 * called with rq->lock held and irqs disabled 294 */ 295 void hrtick_start(struct rq *rq, u64 delay) 296 { 297 struct hrtimer *timer = &rq->hrtick_timer; 298 ktime_t time; 299 s64 delta; 300 301 /* 302 * Don't schedule slices shorter than 10000ns, that just 303 * doesn't make sense and can cause timer DoS. 304 */ 305 delta = max_t(s64, delay, 10000LL); 306 time = ktime_add_ns(timer->base->get_time(), delta); 307 308 hrtimer_set_expires(timer, time); 309 310 if (rq == this_rq()) { 311 __hrtick_restart(rq); 312 } else if (!rq->hrtick_csd_pending) { 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 314 rq->hrtick_csd_pending = 1; 315 } 316 } 317 318 #else 319 /* 320 * Called to set the hrtick timer state. 321 * 322 * called with rq->lock held and irqs disabled 323 */ 324 void hrtick_start(struct rq *rq, u64 delay) 325 { 326 /* 327 * Don't schedule slices shorter than 10000ns, that just 328 * doesn't make sense. Rely on vruntime for fairness. 329 */ 330 delay = max_t(u64, delay, 10000LL); 331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 332 HRTIMER_MODE_REL_PINNED); 333 } 334 #endif /* CONFIG_SMP */ 335 336 static void init_rq_hrtick(struct rq *rq) 337 { 338 #ifdef CONFIG_SMP 339 rq->hrtick_csd_pending = 0; 340 341 rq->hrtick_csd.flags = 0; 342 rq->hrtick_csd.func = __hrtick_start; 343 rq->hrtick_csd.info = rq; 344 #endif 345 346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 347 rq->hrtick_timer.function = hrtick; 348 } 349 #else /* CONFIG_SCHED_HRTICK */ 350 static inline void hrtick_clear(struct rq *rq) 351 { 352 } 353 354 static inline void init_rq_hrtick(struct rq *rq) 355 { 356 } 357 #endif /* CONFIG_SCHED_HRTICK */ 358 359 /* 360 * cmpxchg based fetch_or, macro so it works for different integer types 361 */ 362 #define fetch_or(ptr, mask) \ 363 ({ \ 364 typeof(ptr) _ptr = (ptr); \ 365 typeof(mask) _mask = (mask); \ 366 typeof(*_ptr) _old, _val = *_ptr; \ 367 \ 368 for (;;) { \ 369 _old = cmpxchg(_ptr, _val, _val | _mask); \ 370 if (_old == _val) \ 371 break; \ 372 _val = _old; \ 373 } \ 374 _old; \ 375 }) 376 377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 378 /* 379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 380 * this avoids any races wrt polling state changes and thereby avoids 381 * spurious IPIs. 382 */ 383 static bool set_nr_and_not_polling(struct task_struct *p) 384 { 385 struct thread_info *ti = task_thread_info(p); 386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 387 } 388 389 /* 390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 391 * 392 * If this returns true, then the idle task promises to call 393 * sched_ttwu_pending() and reschedule soon. 394 */ 395 static bool set_nr_if_polling(struct task_struct *p) 396 { 397 struct thread_info *ti = task_thread_info(p); 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 399 400 for (;;) { 401 if (!(val & _TIF_POLLING_NRFLAG)) 402 return false; 403 if (val & _TIF_NEED_RESCHED) 404 return true; 405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 406 if (old == val) 407 break; 408 val = old; 409 } 410 return true; 411 } 412 413 #else 414 static bool set_nr_and_not_polling(struct task_struct *p) 415 { 416 set_tsk_need_resched(p); 417 return true; 418 } 419 420 #ifdef CONFIG_SMP 421 static bool set_nr_if_polling(struct task_struct *p) 422 { 423 return false; 424 } 425 #endif 426 #endif 427 428 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 429 { 430 struct wake_q_node *node = &task->wake_q; 431 432 /* 433 * Atomically grab the task, if ->wake_q is !nil already it means 434 * its already queued (either by us or someone else) and will get the 435 * wakeup due to that. 436 * 437 * This cmpxchg() implies a full barrier, which pairs with the write 438 * barrier implied by the wakeup in wake_up_q(). 439 */ 440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 441 return; 442 443 get_task_struct(task); 444 445 /* 446 * The head is context local, there can be no concurrency. 447 */ 448 *head->lastp = node; 449 head->lastp = &node->next; 450 } 451 452 void wake_up_q(struct wake_q_head *head) 453 { 454 struct wake_q_node *node = head->first; 455 456 while (node != WAKE_Q_TAIL) { 457 struct task_struct *task; 458 459 task = container_of(node, struct task_struct, wake_q); 460 BUG_ON(!task); 461 /* task can safely be re-inserted now */ 462 node = node->next; 463 task->wake_q.next = NULL; 464 465 /* 466 * wake_up_process() implies a wmb() to pair with the queueing 467 * in wake_q_add() so as not to miss wakeups. 468 */ 469 wake_up_process(task); 470 put_task_struct(task); 471 } 472 } 473 474 /* 475 * resched_curr - mark rq's current task 'to be rescheduled now'. 476 * 477 * On UP this means the setting of the need_resched flag, on SMP it 478 * might also involve a cross-CPU call to trigger the scheduler on 479 * the target CPU. 480 */ 481 void resched_curr(struct rq *rq) 482 { 483 struct task_struct *curr = rq->curr; 484 int cpu; 485 486 lockdep_assert_held(&rq->lock); 487 488 if (test_tsk_need_resched(curr)) 489 return; 490 491 cpu = cpu_of(rq); 492 493 if (cpu == smp_processor_id()) { 494 set_tsk_need_resched(curr); 495 set_preempt_need_resched(); 496 return; 497 } 498 499 if (set_nr_and_not_polling(curr)) 500 smp_send_reschedule(cpu); 501 else 502 trace_sched_wake_idle_without_ipi(cpu); 503 } 504 505 void resched_cpu(int cpu) 506 { 507 struct rq *rq = cpu_rq(cpu); 508 unsigned long flags; 509 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 511 return; 512 resched_curr(rq); 513 raw_spin_unlock_irqrestore(&rq->lock, flags); 514 } 515 516 #ifdef CONFIG_SMP 517 #ifdef CONFIG_NO_HZ_COMMON 518 /* 519 * In the semi idle case, use the nearest busy cpu for migrating timers 520 * from an idle cpu. This is good for power-savings. 521 * 522 * We don't do similar optimization for completely idle system, as 523 * selecting an idle cpu will add more delays to the timers than intended 524 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 525 */ 526 int get_nohz_timer_target(void) 527 { 528 int i, cpu = smp_processor_id(); 529 struct sched_domain *sd; 530 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 532 return cpu; 533 534 rcu_read_lock(); 535 for_each_domain(cpu, sd) { 536 for_each_cpu(i, sched_domain_span(sd)) { 537 if (cpu == i) 538 continue; 539 540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) { 541 cpu = i; 542 goto unlock; 543 } 544 } 545 } 546 547 if (!is_housekeeping_cpu(cpu)) 548 cpu = housekeeping_any_cpu(); 549 unlock: 550 rcu_read_unlock(); 551 return cpu; 552 } 553 /* 554 * When add_timer_on() enqueues a timer into the timer wheel of an 555 * idle CPU then this timer might expire before the next timer event 556 * which is scheduled to wake up that CPU. In case of a completely 557 * idle system the next event might even be infinite time into the 558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 559 * leaves the inner idle loop so the newly added timer is taken into 560 * account when the CPU goes back to idle and evaluates the timer 561 * wheel for the next timer event. 562 */ 563 static void wake_up_idle_cpu(int cpu) 564 { 565 struct rq *rq = cpu_rq(cpu); 566 567 if (cpu == smp_processor_id()) 568 return; 569 570 if (set_nr_and_not_polling(rq->idle)) 571 smp_send_reschedule(cpu); 572 else 573 trace_sched_wake_idle_without_ipi(cpu); 574 } 575 576 static bool wake_up_full_nohz_cpu(int cpu) 577 { 578 /* 579 * We just need the target to call irq_exit() and re-evaluate 580 * the next tick. The nohz full kick at least implies that. 581 * If needed we can still optimize that later with an 582 * empty IRQ. 583 */ 584 if (cpu_is_offline(cpu)) 585 return true; /* Don't try to wake offline CPUs. */ 586 if (tick_nohz_full_cpu(cpu)) { 587 if (cpu != smp_processor_id() || 588 tick_nohz_tick_stopped()) 589 tick_nohz_full_kick_cpu(cpu); 590 return true; 591 } 592 593 return false; 594 } 595 596 /* 597 * Wake up the specified CPU. If the CPU is going offline, it is the 598 * caller's responsibility to deal with the lost wakeup, for example, 599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 600 */ 601 void wake_up_nohz_cpu(int cpu) 602 { 603 if (!wake_up_full_nohz_cpu(cpu)) 604 wake_up_idle_cpu(cpu); 605 } 606 607 static inline bool got_nohz_idle_kick(void) 608 { 609 int cpu = smp_processor_id(); 610 611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 612 return false; 613 614 if (idle_cpu(cpu) && !need_resched()) 615 return true; 616 617 /* 618 * We can't run Idle Load Balance on this CPU for this time so we 619 * cancel it and clear NOHZ_BALANCE_KICK 620 */ 621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 622 return false; 623 } 624 625 #else /* CONFIG_NO_HZ_COMMON */ 626 627 static inline bool got_nohz_idle_kick(void) 628 { 629 return false; 630 } 631 632 #endif /* CONFIG_NO_HZ_COMMON */ 633 634 #ifdef CONFIG_NO_HZ_FULL 635 bool sched_can_stop_tick(struct rq *rq) 636 { 637 int fifo_nr_running; 638 639 /* Deadline tasks, even if single, need the tick */ 640 if (rq->dl.dl_nr_running) 641 return false; 642 643 /* 644 * If there are more than one RR tasks, we need the tick to effect the 645 * actual RR behaviour. 646 */ 647 if (rq->rt.rr_nr_running) { 648 if (rq->rt.rr_nr_running == 1) 649 return true; 650 else 651 return false; 652 } 653 654 /* 655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 656 * forced preemption between FIFO tasks. 657 */ 658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 659 if (fifo_nr_running) 660 return true; 661 662 /* 663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 664 * if there's more than one we need the tick for involuntary 665 * preemption. 666 */ 667 if (rq->nr_running > 1) 668 return false; 669 670 return true; 671 } 672 #endif /* CONFIG_NO_HZ_FULL */ 673 674 void sched_avg_update(struct rq *rq) 675 { 676 s64 period = sched_avg_period(); 677 678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 679 /* 680 * Inline assembly required to prevent the compiler 681 * optimising this loop into a divmod call. 682 * See __iter_div_u64_rem() for another example of this. 683 */ 684 asm("" : "+rm" (rq->age_stamp)); 685 rq->age_stamp += period; 686 rq->rt_avg /= 2; 687 } 688 } 689 690 #endif /* CONFIG_SMP */ 691 692 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 694 /* 695 * Iterate task_group tree rooted at *from, calling @down when first entering a 696 * node and @up when leaving it for the final time. 697 * 698 * Caller must hold rcu_lock or sufficient equivalent. 699 */ 700 int walk_tg_tree_from(struct task_group *from, 701 tg_visitor down, tg_visitor up, void *data) 702 { 703 struct task_group *parent, *child; 704 int ret; 705 706 parent = from; 707 708 down: 709 ret = (*down)(parent, data); 710 if (ret) 711 goto out; 712 list_for_each_entry_rcu(child, &parent->children, siblings) { 713 parent = child; 714 goto down; 715 716 up: 717 continue; 718 } 719 ret = (*up)(parent, data); 720 if (ret || parent == from) 721 goto out; 722 723 child = parent; 724 parent = parent->parent; 725 if (parent) 726 goto up; 727 out: 728 return ret; 729 } 730 731 int tg_nop(struct task_group *tg, void *data) 732 { 733 return 0; 734 } 735 #endif 736 737 static void set_load_weight(struct task_struct *p) 738 { 739 int prio = p->static_prio - MAX_RT_PRIO; 740 struct load_weight *load = &p->se.load; 741 742 /* 743 * SCHED_IDLE tasks get minimal weight: 744 */ 745 if (idle_policy(p->policy)) { 746 load->weight = scale_load(WEIGHT_IDLEPRIO); 747 load->inv_weight = WMULT_IDLEPRIO; 748 return; 749 } 750 751 load->weight = scale_load(sched_prio_to_weight[prio]); 752 load->inv_weight = sched_prio_to_wmult[prio]; 753 } 754 755 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 756 { 757 update_rq_clock(rq); 758 if (!(flags & ENQUEUE_RESTORE)) 759 sched_info_queued(rq, p); 760 p->sched_class->enqueue_task(rq, p, flags); 761 } 762 763 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 update_rq_clock(rq); 766 if (!(flags & DEQUEUE_SAVE)) 767 sched_info_dequeued(rq, p); 768 p->sched_class->dequeue_task(rq, p, flags); 769 } 770 771 void activate_task(struct rq *rq, struct task_struct *p, int flags) 772 { 773 if (task_contributes_to_load(p)) 774 rq->nr_uninterruptible--; 775 776 enqueue_task(rq, p, flags); 777 } 778 779 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 780 { 781 if (task_contributes_to_load(p)) 782 rq->nr_uninterruptible++; 783 784 dequeue_task(rq, p, flags); 785 } 786 787 static void update_rq_clock_task(struct rq *rq, s64 delta) 788 { 789 /* 790 * In theory, the compile should just see 0 here, and optimize out the call 791 * to sched_rt_avg_update. But I don't trust it... 792 */ 793 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 794 s64 steal = 0, irq_delta = 0; 795 #endif 796 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 798 799 /* 800 * Since irq_time is only updated on {soft,}irq_exit, we might run into 801 * this case when a previous update_rq_clock() happened inside a 802 * {soft,}irq region. 803 * 804 * When this happens, we stop ->clock_task and only update the 805 * prev_irq_time stamp to account for the part that fit, so that a next 806 * update will consume the rest. This ensures ->clock_task is 807 * monotonic. 808 * 809 * It does however cause some slight miss-attribution of {soft,}irq 810 * time, a more accurate solution would be to update the irq_time using 811 * the current rq->clock timestamp, except that would require using 812 * atomic ops. 813 */ 814 if (irq_delta > delta) 815 irq_delta = delta; 816 817 rq->prev_irq_time += irq_delta; 818 delta -= irq_delta; 819 #endif 820 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 821 if (static_key_false((¶virt_steal_rq_enabled))) { 822 steal = paravirt_steal_clock(cpu_of(rq)); 823 steal -= rq->prev_steal_time_rq; 824 825 if (unlikely(steal > delta)) 826 steal = delta; 827 828 rq->prev_steal_time_rq += steal; 829 delta -= steal; 830 } 831 #endif 832 833 rq->clock_task += delta; 834 835 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 837 sched_rt_avg_update(rq, irq_delta + steal); 838 #endif 839 } 840 841 void sched_set_stop_task(int cpu, struct task_struct *stop) 842 { 843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 844 struct task_struct *old_stop = cpu_rq(cpu)->stop; 845 846 if (stop) { 847 /* 848 * Make it appear like a SCHED_FIFO task, its something 849 * userspace knows about and won't get confused about. 850 * 851 * Also, it will make PI more or less work without too 852 * much confusion -- but then, stop work should not 853 * rely on PI working anyway. 854 */ 855 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 856 857 stop->sched_class = &stop_sched_class; 858 } 859 860 cpu_rq(cpu)->stop = stop; 861 862 if (old_stop) { 863 /* 864 * Reset it back to a normal scheduling class so that 865 * it can die in pieces. 866 */ 867 old_stop->sched_class = &rt_sched_class; 868 } 869 } 870 871 /* 872 * __normal_prio - return the priority that is based on the static prio 873 */ 874 static inline int __normal_prio(struct task_struct *p) 875 { 876 return p->static_prio; 877 } 878 879 /* 880 * Calculate the expected normal priority: i.e. priority 881 * without taking RT-inheritance into account. Might be 882 * boosted by interactivity modifiers. Changes upon fork, 883 * setprio syscalls, and whenever the interactivity 884 * estimator recalculates. 885 */ 886 static inline int normal_prio(struct task_struct *p) 887 { 888 int prio; 889 890 if (task_has_dl_policy(p)) 891 prio = MAX_DL_PRIO-1; 892 else if (task_has_rt_policy(p)) 893 prio = MAX_RT_PRIO-1 - p->rt_priority; 894 else 895 prio = __normal_prio(p); 896 return prio; 897 } 898 899 /* 900 * Calculate the current priority, i.e. the priority 901 * taken into account by the scheduler. This value might 902 * be boosted by RT tasks, or might be boosted by 903 * interactivity modifiers. Will be RT if the task got 904 * RT-boosted. If not then it returns p->normal_prio. 905 */ 906 static int effective_prio(struct task_struct *p) 907 { 908 p->normal_prio = normal_prio(p); 909 /* 910 * If we are RT tasks or we were boosted to RT priority, 911 * keep the priority unchanged. Otherwise, update priority 912 * to the normal priority: 913 */ 914 if (!rt_prio(p->prio)) 915 return p->normal_prio; 916 return p->prio; 917 } 918 919 /** 920 * task_curr - is this task currently executing on a CPU? 921 * @p: the task in question. 922 * 923 * Return: 1 if the task is currently executing. 0 otherwise. 924 */ 925 inline int task_curr(const struct task_struct *p) 926 { 927 return cpu_curr(task_cpu(p)) == p; 928 } 929 930 /* 931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 932 * use the balance_callback list if you want balancing. 933 * 934 * this means any call to check_class_changed() must be followed by a call to 935 * balance_callback(). 936 */ 937 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 938 const struct sched_class *prev_class, 939 int oldprio) 940 { 941 if (prev_class != p->sched_class) { 942 if (prev_class->switched_from) 943 prev_class->switched_from(rq, p); 944 945 p->sched_class->switched_to(rq, p); 946 } else if (oldprio != p->prio || dl_task(p)) 947 p->sched_class->prio_changed(rq, p, oldprio); 948 } 949 950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 951 { 952 const struct sched_class *class; 953 954 if (p->sched_class == rq->curr->sched_class) { 955 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 956 } else { 957 for_each_class(class) { 958 if (class == rq->curr->sched_class) 959 break; 960 if (class == p->sched_class) { 961 resched_curr(rq); 962 break; 963 } 964 } 965 } 966 967 /* 968 * A queue event has occurred, and we're going to schedule. In 969 * this case, we can save a useless back to back clock update. 970 */ 971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 972 rq_clock_skip_update(rq, true); 973 } 974 975 #ifdef CONFIG_SMP 976 /* 977 * This is how migration works: 978 * 979 * 1) we invoke migration_cpu_stop() on the target CPU using 980 * stop_one_cpu(). 981 * 2) stopper starts to run (implicitly forcing the migrated thread 982 * off the CPU) 983 * 3) it checks whether the migrated task is still in the wrong runqueue. 984 * 4) if it's in the wrong runqueue then the migration thread removes 985 * it and puts it into the right queue. 986 * 5) stopper completes and stop_one_cpu() returns and the migration 987 * is done. 988 */ 989 990 /* 991 * move_queued_task - move a queued task to new rq. 992 * 993 * Returns (locked) new rq. Old rq's lock is released. 994 */ 995 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 996 { 997 lockdep_assert_held(&rq->lock); 998 999 p->on_rq = TASK_ON_RQ_MIGRATING; 1000 dequeue_task(rq, p, 0); 1001 set_task_cpu(p, new_cpu); 1002 raw_spin_unlock(&rq->lock); 1003 1004 rq = cpu_rq(new_cpu); 1005 1006 raw_spin_lock(&rq->lock); 1007 BUG_ON(task_cpu(p) != new_cpu); 1008 enqueue_task(rq, p, 0); 1009 p->on_rq = TASK_ON_RQ_QUEUED; 1010 check_preempt_curr(rq, p, 0); 1011 1012 return rq; 1013 } 1014 1015 struct migration_arg { 1016 struct task_struct *task; 1017 int dest_cpu; 1018 }; 1019 1020 /* 1021 * Move (not current) task off this cpu, onto dest cpu. We're doing 1022 * this because either it can't run here any more (set_cpus_allowed() 1023 * away from this CPU, or CPU going down), or because we're 1024 * attempting to rebalance this task on exec (sched_exec). 1025 * 1026 * So we race with normal scheduler movements, but that's OK, as long 1027 * as the task is no longer on this CPU. 1028 */ 1029 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 1030 { 1031 if (unlikely(!cpu_active(dest_cpu))) 1032 return rq; 1033 1034 /* Affinity changed (again). */ 1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1036 return rq; 1037 1038 rq = move_queued_task(rq, p, dest_cpu); 1039 1040 return rq; 1041 } 1042 1043 /* 1044 * migration_cpu_stop - this will be executed by a highprio stopper thread 1045 * and performs thread migration by bumping thread off CPU then 1046 * 'pushing' onto another runqueue. 1047 */ 1048 static int migration_cpu_stop(void *data) 1049 { 1050 struct migration_arg *arg = data; 1051 struct task_struct *p = arg->task; 1052 struct rq *rq = this_rq(); 1053 1054 /* 1055 * The original target cpu might have gone down and we might 1056 * be on another cpu but it doesn't matter. 1057 */ 1058 local_irq_disable(); 1059 /* 1060 * We need to explicitly wake pending tasks before running 1061 * __migrate_task() such that we will not miss enforcing cpus_allowed 1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1063 */ 1064 sched_ttwu_pending(); 1065 1066 raw_spin_lock(&p->pi_lock); 1067 raw_spin_lock(&rq->lock); 1068 /* 1069 * If task_rq(p) != rq, it cannot be migrated here, because we're 1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1071 * we're holding p->pi_lock. 1072 */ 1073 if (task_rq(p) == rq) { 1074 if (task_on_rq_queued(p)) 1075 rq = __migrate_task(rq, p, arg->dest_cpu); 1076 else 1077 p->wake_cpu = arg->dest_cpu; 1078 } 1079 raw_spin_unlock(&rq->lock); 1080 raw_spin_unlock(&p->pi_lock); 1081 1082 local_irq_enable(); 1083 return 0; 1084 } 1085 1086 /* 1087 * sched_class::set_cpus_allowed must do the below, but is not required to 1088 * actually call this function. 1089 */ 1090 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1091 { 1092 cpumask_copy(&p->cpus_allowed, new_mask); 1093 p->nr_cpus_allowed = cpumask_weight(new_mask); 1094 } 1095 1096 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1097 { 1098 struct rq *rq = task_rq(p); 1099 bool queued, running; 1100 1101 lockdep_assert_held(&p->pi_lock); 1102 1103 queued = task_on_rq_queued(p); 1104 running = task_current(rq, p); 1105 1106 if (queued) { 1107 /* 1108 * Because __kthread_bind() calls this on blocked tasks without 1109 * holding rq->lock. 1110 */ 1111 lockdep_assert_held(&rq->lock); 1112 dequeue_task(rq, p, DEQUEUE_SAVE); 1113 } 1114 if (running) 1115 put_prev_task(rq, p); 1116 1117 p->sched_class->set_cpus_allowed(p, new_mask); 1118 1119 if (queued) 1120 enqueue_task(rq, p, ENQUEUE_RESTORE); 1121 if (running) 1122 set_curr_task(rq, p); 1123 } 1124 1125 /* 1126 * Change a given task's CPU affinity. Migrate the thread to a 1127 * proper CPU and schedule it away if the CPU it's executing on 1128 * is removed from the allowed bitmask. 1129 * 1130 * NOTE: the caller must have a valid reference to the task, the 1131 * task must not exit() & deallocate itself prematurely. The 1132 * call is not atomic; no spinlocks may be held. 1133 */ 1134 static int __set_cpus_allowed_ptr(struct task_struct *p, 1135 const struct cpumask *new_mask, bool check) 1136 { 1137 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1138 unsigned int dest_cpu; 1139 struct rq_flags rf; 1140 struct rq *rq; 1141 int ret = 0; 1142 1143 rq = task_rq_lock(p, &rf); 1144 1145 if (p->flags & PF_KTHREAD) { 1146 /* 1147 * Kernel threads are allowed on online && !active CPUs 1148 */ 1149 cpu_valid_mask = cpu_online_mask; 1150 } 1151 1152 /* 1153 * Must re-check here, to close a race against __kthread_bind(), 1154 * sched_setaffinity() is not guaranteed to observe the flag. 1155 */ 1156 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1157 ret = -EINVAL; 1158 goto out; 1159 } 1160 1161 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1162 goto out; 1163 1164 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1165 ret = -EINVAL; 1166 goto out; 1167 } 1168 1169 do_set_cpus_allowed(p, new_mask); 1170 1171 if (p->flags & PF_KTHREAD) { 1172 /* 1173 * For kernel threads that do indeed end up on online && 1174 * !active we want to ensure they are strict per-cpu threads. 1175 */ 1176 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1177 !cpumask_intersects(new_mask, cpu_active_mask) && 1178 p->nr_cpus_allowed != 1); 1179 } 1180 1181 /* Can the task run on the task's current CPU? If so, we're done */ 1182 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1183 goto out; 1184 1185 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1186 if (task_running(rq, p) || p->state == TASK_WAKING) { 1187 struct migration_arg arg = { p, dest_cpu }; 1188 /* Need help from migration thread: drop lock and wait. */ 1189 task_rq_unlock(rq, p, &rf); 1190 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1191 tlb_migrate_finish(p->mm); 1192 return 0; 1193 } else if (task_on_rq_queued(p)) { 1194 /* 1195 * OK, since we're going to drop the lock immediately 1196 * afterwards anyway. 1197 */ 1198 lockdep_unpin_lock(&rq->lock, rf.cookie); 1199 rq = move_queued_task(rq, p, dest_cpu); 1200 lockdep_repin_lock(&rq->lock, rf.cookie); 1201 } 1202 out: 1203 task_rq_unlock(rq, p, &rf); 1204 1205 return ret; 1206 } 1207 1208 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1209 { 1210 return __set_cpus_allowed_ptr(p, new_mask, false); 1211 } 1212 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1213 1214 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1215 { 1216 #ifdef CONFIG_SCHED_DEBUG 1217 /* 1218 * We should never call set_task_cpu() on a blocked task, 1219 * ttwu() will sort out the placement. 1220 */ 1221 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1222 !p->on_rq); 1223 1224 /* 1225 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1226 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1227 * time relying on p->on_rq. 1228 */ 1229 WARN_ON_ONCE(p->state == TASK_RUNNING && 1230 p->sched_class == &fair_sched_class && 1231 (p->on_rq && !task_on_rq_migrating(p))); 1232 1233 #ifdef CONFIG_LOCKDEP 1234 /* 1235 * The caller should hold either p->pi_lock or rq->lock, when changing 1236 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1237 * 1238 * sched_move_task() holds both and thus holding either pins the cgroup, 1239 * see task_group(). 1240 * 1241 * Furthermore, all task_rq users should acquire both locks, see 1242 * task_rq_lock(). 1243 */ 1244 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1245 lockdep_is_held(&task_rq(p)->lock))); 1246 #endif 1247 #endif 1248 1249 trace_sched_migrate_task(p, new_cpu); 1250 1251 if (task_cpu(p) != new_cpu) { 1252 if (p->sched_class->migrate_task_rq) 1253 p->sched_class->migrate_task_rq(p); 1254 p->se.nr_migrations++; 1255 perf_event_task_migrate(p); 1256 } 1257 1258 __set_task_cpu(p, new_cpu); 1259 } 1260 1261 static void __migrate_swap_task(struct task_struct *p, int cpu) 1262 { 1263 if (task_on_rq_queued(p)) { 1264 struct rq *src_rq, *dst_rq; 1265 1266 src_rq = task_rq(p); 1267 dst_rq = cpu_rq(cpu); 1268 1269 p->on_rq = TASK_ON_RQ_MIGRATING; 1270 deactivate_task(src_rq, p, 0); 1271 set_task_cpu(p, cpu); 1272 activate_task(dst_rq, p, 0); 1273 p->on_rq = TASK_ON_RQ_QUEUED; 1274 check_preempt_curr(dst_rq, p, 0); 1275 } else { 1276 /* 1277 * Task isn't running anymore; make it appear like we migrated 1278 * it before it went to sleep. This means on wakeup we make the 1279 * previous cpu our target instead of where it really is. 1280 */ 1281 p->wake_cpu = cpu; 1282 } 1283 } 1284 1285 struct migration_swap_arg { 1286 struct task_struct *src_task, *dst_task; 1287 int src_cpu, dst_cpu; 1288 }; 1289 1290 static int migrate_swap_stop(void *data) 1291 { 1292 struct migration_swap_arg *arg = data; 1293 struct rq *src_rq, *dst_rq; 1294 int ret = -EAGAIN; 1295 1296 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1297 return -EAGAIN; 1298 1299 src_rq = cpu_rq(arg->src_cpu); 1300 dst_rq = cpu_rq(arg->dst_cpu); 1301 1302 double_raw_lock(&arg->src_task->pi_lock, 1303 &arg->dst_task->pi_lock); 1304 double_rq_lock(src_rq, dst_rq); 1305 1306 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1307 goto unlock; 1308 1309 if (task_cpu(arg->src_task) != arg->src_cpu) 1310 goto unlock; 1311 1312 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1313 goto unlock; 1314 1315 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1316 goto unlock; 1317 1318 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1319 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1320 1321 ret = 0; 1322 1323 unlock: 1324 double_rq_unlock(src_rq, dst_rq); 1325 raw_spin_unlock(&arg->dst_task->pi_lock); 1326 raw_spin_unlock(&arg->src_task->pi_lock); 1327 1328 return ret; 1329 } 1330 1331 /* 1332 * Cross migrate two tasks 1333 */ 1334 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1335 { 1336 struct migration_swap_arg arg; 1337 int ret = -EINVAL; 1338 1339 arg = (struct migration_swap_arg){ 1340 .src_task = cur, 1341 .src_cpu = task_cpu(cur), 1342 .dst_task = p, 1343 .dst_cpu = task_cpu(p), 1344 }; 1345 1346 if (arg.src_cpu == arg.dst_cpu) 1347 goto out; 1348 1349 /* 1350 * These three tests are all lockless; this is OK since all of them 1351 * will be re-checked with proper locks held further down the line. 1352 */ 1353 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1354 goto out; 1355 1356 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1357 goto out; 1358 1359 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1360 goto out; 1361 1362 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1363 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1364 1365 out: 1366 return ret; 1367 } 1368 1369 /* 1370 * wait_task_inactive - wait for a thread to unschedule. 1371 * 1372 * If @match_state is nonzero, it's the @p->state value just checked and 1373 * not expected to change. If it changes, i.e. @p might have woken up, 1374 * then return zero. When we succeed in waiting for @p to be off its CPU, 1375 * we return a positive number (its total switch count). If a second call 1376 * a short while later returns the same number, the caller can be sure that 1377 * @p has remained unscheduled the whole time. 1378 * 1379 * The caller must ensure that the task *will* unschedule sometime soon, 1380 * else this function might spin for a *long* time. This function can't 1381 * be called with interrupts off, or it may introduce deadlock with 1382 * smp_call_function() if an IPI is sent by the same process we are 1383 * waiting to become inactive. 1384 */ 1385 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1386 { 1387 int running, queued; 1388 struct rq_flags rf; 1389 unsigned long ncsw; 1390 struct rq *rq; 1391 1392 for (;;) { 1393 /* 1394 * We do the initial early heuristics without holding 1395 * any task-queue locks at all. We'll only try to get 1396 * the runqueue lock when things look like they will 1397 * work out! 1398 */ 1399 rq = task_rq(p); 1400 1401 /* 1402 * If the task is actively running on another CPU 1403 * still, just relax and busy-wait without holding 1404 * any locks. 1405 * 1406 * NOTE! Since we don't hold any locks, it's not 1407 * even sure that "rq" stays as the right runqueue! 1408 * But we don't care, since "task_running()" will 1409 * return false if the runqueue has changed and p 1410 * is actually now running somewhere else! 1411 */ 1412 while (task_running(rq, p)) { 1413 if (match_state && unlikely(p->state != match_state)) 1414 return 0; 1415 cpu_relax(); 1416 } 1417 1418 /* 1419 * Ok, time to look more closely! We need the rq 1420 * lock now, to be *sure*. If we're wrong, we'll 1421 * just go back and repeat. 1422 */ 1423 rq = task_rq_lock(p, &rf); 1424 trace_sched_wait_task(p); 1425 running = task_running(rq, p); 1426 queued = task_on_rq_queued(p); 1427 ncsw = 0; 1428 if (!match_state || p->state == match_state) 1429 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1430 task_rq_unlock(rq, p, &rf); 1431 1432 /* 1433 * If it changed from the expected state, bail out now. 1434 */ 1435 if (unlikely(!ncsw)) 1436 break; 1437 1438 /* 1439 * Was it really running after all now that we 1440 * checked with the proper locks actually held? 1441 * 1442 * Oops. Go back and try again.. 1443 */ 1444 if (unlikely(running)) { 1445 cpu_relax(); 1446 continue; 1447 } 1448 1449 /* 1450 * It's not enough that it's not actively running, 1451 * it must be off the runqueue _entirely_, and not 1452 * preempted! 1453 * 1454 * So if it was still runnable (but just not actively 1455 * running right now), it's preempted, and we should 1456 * yield - it could be a while. 1457 */ 1458 if (unlikely(queued)) { 1459 ktime_t to = NSEC_PER_SEC / HZ; 1460 1461 set_current_state(TASK_UNINTERRUPTIBLE); 1462 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1463 continue; 1464 } 1465 1466 /* 1467 * Ahh, all good. It wasn't running, and it wasn't 1468 * runnable, which means that it will never become 1469 * running in the future either. We're all done! 1470 */ 1471 break; 1472 } 1473 1474 return ncsw; 1475 } 1476 1477 /*** 1478 * kick_process - kick a running thread to enter/exit the kernel 1479 * @p: the to-be-kicked thread 1480 * 1481 * Cause a process which is running on another CPU to enter 1482 * kernel-mode, without any delay. (to get signals handled.) 1483 * 1484 * NOTE: this function doesn't have to take the runqueue lock, 1485 * because all it wants to ensure is that the remote task enters 1486 * the kernel. If the IPI races and the task has been migrated 1487 * to another CPU then no harm is done and the purpose has been 1488 * achieved as well. 1489 */ 1490 void kick_process(struct task_struct *p) 1491 { 1492 int cpu; 1493 1494 preempt_disable(); 1495 cpu = task_cpu(p); 1496 if ((cpu != smp_processor_id()) && task_curr(p)) 1497 smp_send_reschedule(cpu); 1498 preempt_enable(); 1499 } 1500 EXPORT_SYMBOL_GPL(kick_process); 1501 1502 /* 1503 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1504 * 1505 * A few notes on cpu_active vs cpu_online: 1506 * 1507 * - cpu_active must be a subset of cpu_online 1508 * 1509 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1510 * see __set_cpus_allowed_ptr(). At this point the newly online 1511 * cpu isn't yet part of the sched domains, and balancing will not 1512 * see it. 1513 * 1514 * - on cpu-down we clear cpu_active() to mask the sched domains and 1515 * avoid the load balancer to place new tasks on the to be removed 1516 * cpu. Existing tasks will remain running there and will be taken 1517 * off. 1518 * 1519 * This means that fallback selection must not select !active CPUs. 1520 * And can assume that any active CPU must be online. Conversely 1521 * select_task_rq() below may allow selection of !active CPUs in order 1522 * to satisfy the above rules. 1523 */ 1524 static int select_fallback_rq(int cpu, struct task_struct *p) 1525 { 1526 int nid = cpu_to_node(cpu); 1527 const struct cpumask *nodemask = NULL; 1528 enum { cpuset, possible, fail } state = cpuset; 1529 int dest_cpu; 1530 1531 /* 1532 * If the node that the cpu is on has been offlined, cpu_to_node() 1533 * will return -1. There is no cpu on the node, and we should 1534 * select the cpu on the other node. 1535 */ 1536 if (nid != -1) { 1537 nodemask = cpumask_of_node(nid); 1538 1539 /* Look for allowed, online CPU in same node. */ 1540 for_each_cpu(dest_cpu, nodemask) { 1541 if (!cpu_active(dest_cpu)) 1542 continue; 1543 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1544 return dest_cpu; 1545 } 1546 } 1547 1548 for (;;) { 1549 /* Any allowed, online CPU? */ 1550 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1551 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1552 continue; 1553 if (!cpu_online(dest_cpu)) 1554 continue; 1555 goto out; 1556 } 1557 1558 /* No more Mr. Nice Guy. */ 1559 switch (state) { 1560 case cpuset: 1561 if (IS_ENABLED(CONFIG_CPUSETS)) { 1562 cpuset_cpus_allowed_fallback(p); 1563 state = possible; 1564 break; 1565 } 1566 /* fall-through */ 1567 case possible: 1568 do_set_cpus_allowed(p, cpu_possible_mask); 1569 state = fail; 1570 break; 1571 1572 case fail: 1573 BUG(); 1574 break; 1575 } 1576 } 1577 1578 out: 1579 if (state != cpuset) { 1580 /* 1581 * Don't tell them about moving exiting tasks or 1582 * kernel threads (both mm NULL), since they never 1583 * leave kernel. 1584 */ 1585 if (p->mm && printk_ratelimit()) { 1586 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1587 task_pid_nr(p), p->comm, cpu); 1588 } 1589 } 1590 1591 return dest_cpu; 1592 } 1593 1594 /* 1595 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1596 */ 1597 static inline 1598 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1599 { 1600 lockdep_assert_held(&p->pi_lock); 1601 1602 if (tsk_nr_cpus_allowed(p) > 1) 1603 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1604 else 1605 cpu = cpumask_any(tsk_cpus_allowed(p)); 1606 1607 /* 1608 * In order not to call set_task_cpu() on a blocking task we need 1609 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1610 * cpu. 1611 * 1612 * Since this is common to all placement strategies, this lives here. 1613 * 1614 * [ this allows ->select_task() to simply return task_cpu(p) and 1615 * not worry about this generic constraint ] 1616 */ 1617 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1618 !cpu_online(cpu))) 1619 cpu = select_fallback_rq(task_cpu(p), p); 1620 1621 return cpu; 1622 } 1623 1624 static void update_avg(u64 *avg, u64 sample) 1625 { 1626 s64 diff = sample - *avg; 1627 *avg += diff >> 3; 1628 } 1629 1630 #else 1631 1632 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1633 const struct cpumask *new_mask, bool check) 1634 { 1635 return set_cpus_allowed_ptr(p, new_mask); 1636 } 1637 1638 #endif /* CONFIG_SMP */ 1639 1640 static void 1641 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1642 { 1643 struct rq *rq; 1644 1645 if (!schedstat_enabled()) 1646 return; 1647 1648 rq = this_rq(); 1649 1650 #ifdef CONFIG_SMP 1651 if (cpu == rq->cpu) { 1652 schedstat_inc(rq->ttwu_local); 1653 schedstat_inc(p->se.statistics.nr_wakeups_local); 1654 } else { 1655 struct sched_domain *sd; 1656 1657 schedstat_inc(p->se.statistics.nr_wakeups_remote); 1658 rcu_read_lock(); 1659 for_each_domain(rq->cpu, sd) { 1660 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1661 schedstat_inc(sd->ttwu_wake_remote); 1662 break; 1663 } 1664 } 1665 rcu_read_unlock(); 1666 } 1667 1668 if (wake_flags & WF_MIGRATED) 1669 schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1670 #endif /* CONFIG_SMP */ 1671 1672 schedstat_inc(rq->ttwu_count); 1673 schedstat_inc(p->se.statistics.nr_wakeups); 1674 1675 if (wake_flags & WF_SYNC) 1676 schedstat_inc(p->se.statistics.nr_wakeups_sync); 1677 } 1678 1679 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1680 { 1681 activate_task(rq, p, en_flags); 1682 p->on_rq = TASK_ON_RQ_QUEUED; 1683 1684 /* if a worker is waking up, notify workqueue */ 1685 if (p->flags & PF_WQ_WORKER) 1686 wq_worker_waking_up(p, cpu_of(rq)); 1687 } 1688 1689 /* 1690 * Mark the task runnable and perform wakeup-preemption. 1691 */ 1692 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1693 struct pin_cookie cookie) 1694 { 1695 check_preempt_curr(rq, p, wake_flags); 1696 p->state = TASK_RUNNING; 1697 trace_sched_wakeup(p); 1698 1699 #ifdef CONFIG_SMP 1700 if (p->sched_class->task_woken) { 1701 /* 1702 * Our task @p is fully woken up and running; so its safe to 1703 * drop the rq->lock, hereafter rq is only used for statistics. 1704 */ 1705 lockdep_unpin_lock(&rq->lock, cookie); 1706 p->sched_class->task_woken(rq, p); 1707 lockdep_repin_lock(&rq->lock, cookie); 1708 } 1709 1710 if (rq->idle_stamp) { 1711 u64 delta = rq_clock(rq) - rq->idle_stamp; 1712 u64 max = 2*rq->max_idle_balance_cost; 1713 1714 update_avg(&rq->avg_idle, delta); 1715 1716 if (rq->avg_idle > max) 1717 rq->avg_idle = max; 1718 1719 rq->idle_stamp = 0; 1720 } 1721 #endif 1722 } 1723 1724 static void 1725 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1726 struct pin_cookie cookie) 1727 { 1728 int en_flags = ENQUEUE_WAKEUP; 1729 1730 lockdep_assert_held(&rq->lock); 1731 1732 #ifdef CONFIG_SMP 1733 if (p->sched_contributes_to_load) 1734 rq->nr_uninterruptible--; 1735 1736 if (wake_flags & WF_MIGRATED) 1737 en_flags |= ENQUEUE_MIGRATED; 1738 #endif 1739 1740 ttwu_activate(rq, p, en_flags); 1741 ttwu_do_wakeup(rq, p, wake_flags, cookie); 1742 } 1743 1744 /* 1745 * Called in case the task @p isn't fully descheduled from its runqueue, 1746 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1747 * since all we need to do is flip p->state to TASK_RUNNING, since 1748 * the task is still ->on_rq. 1749 */ 1750 static int ttwu_remote(struct task_struct *p, int wake_flags) 1751 { 1752 struct rq_flags rf; 1753 struct rq *rq; 1754 int ret = 0; 1755 1756 rq = __task_rq_lock(p, &rf); 1757 if (task_on_rq_queued(p)) { 1758 /* check_preempt_curr() may use rq clock */ 1759 update_rq_clock(rq); 1760 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie); 1761 ret = 1; 1762 } 1763 __task_rq_unlock(rq, &rf); 1764 1765 return ret; 1766 } 1767 1768 #ifdef CONFIG_SMP 1769 void sched_ttwu_pending(void) 1770 { 1771 struct rq *rq = this_rq(); 1772 struct llist_node *llist = llist_del_all(&rq->wake_list); 1773 struct pin_cookie cookie; 1774 struct task_struct *p; 1775 unsigned long flags; 1776 1777 if (!llist) 1778 return; 1779 1780 raw_spin_lock_irqsave(&rq->lock, flags); 1781 cookie = lockdep_pin_lock(&rq->lock); 1782 1783 while (llist) { 1784 int wake_flags = 0; 1785 1786 p = llist_entry(llist, struct task_struct, wake_entry); 1787 llist = llist_next(llist); 1788 1789 if (p->sched_remote_wakeup) 1790 wake_flags = WF_MIGRATED; 1791 1792 ttwu_do_activate(rq, p, wake_flags, cookie); 1793 } 1794 1795 lockdep_unpin_lock(&rq->lock, cookie); 1796 raw_spin_unlock_irqrestore(&rq->lock, flags); 1797 } 1798 1799 void scheduler_ipi(void) 1800 { 1801 /* 1802 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1803 * TIF_NEED_RESCHED remotely (for the first time) will also send 1804 * this IPI. 1805 */ 1806 preempt_fold_need_resched(); 1807 1808 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1809 return; 1810 1811 /* 1812 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1813 * traditionally all their work was done from the interrupt return 1814 * path. Now that we actually do some work, we need to make sure 1815 * we do call them. 1816 * 1817 * Some archs already do call them, luckily irq_enter/exit nest 1818 * properly. 1819 * 1820 * Arguably we should visit all archs and update all handlers, 1821 * however a fair share of IPIs are still resched only so this would 1822 * somewhat pessimize the simple resched case. 1823 */ 1824 irq_enter(); 1825 sched_ttwu_pending(); 1826 1827 /* 1828 * Check if someone kicked us for doing the nohz idle load balance. 1829 */ 1830 if (unlikely(got_nohz_idle_kick())) { 1831 this_rq()->idle_balance = 1; 1832 raise_softirq_irqoff(SCHED_SOFTIRQ); 1833 } 1834 irq_exit(); 1835 } 1836 1837 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1838 { 1839 struct rq *rq = cpu_rq(cpu); 1840 1841 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1842 1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1844 if (!set_nr_if_polling(rq->idle)) 1845 smp_send_reschedule(cpu); 1846 else 1847 trace_sched_wake_idle_without_ipi(cpu); 1848 } 1849 } 1850 1851 void wake_up_if_idle(int cpu) 1852 { 1853 struct rq *rq = cpu_rq(cpu); 1854 unsigned long flags; 1855 1856 rcu_read_lock(); 1857 1858 if (!is_idle_task(rcu_dereference(rq->curr))) 1859 goto out; 1860 1861 if (set_nr_if_polling(rq->idle)) { 1862 trace_sched_wake_idle_without_ipi(cpu); 1863 } else { 1864 raw_spin_lock_irqsave(&rq->lock, flags); 1865 if (is_idle_task(rq->curr)) 1866 smp_send_reschedule(cpu); 1867 /* Else cpu is not in idle, do nothing here */ 1868 raw_spin_unlock_irqrestore(&rq->lock, flags); 1869 } 1870 1871 out: 1872 rcu_read_unlock(); 1873 } 1874 1875 bool cpus_share_cache(int this_cpu, int that_cpu) 1876 { 1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1878 } 1879 #endif /* CONFIG_SMP */ 1880 1881 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1882 { 1883 struct rq *rq = cpu_rq(cpu); 1884 struct pin_cookie cookie; 1885 1886 #if defined(CONFIG_SMP) 1887 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1888 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1889 ttwu_queue_remote(p, cpu, wake_flags); 1890 return; 1891 } 1892 #endif 1893 1894 raw_spin_lock(&rq->lock); 1895 cookie = lockdep_pin_lock(&rq->lock); 1896 ttwu_do_activate(rq, p, wake_flags, cookie); 1897 lockdep_unpin_lock(&rq->lock, cookie); 1898 raw_spin_unlock(&rq->lock); 1899 } 1900 1901 /* 1902 * Notes on Program-Order guarantees on SMP systems. 1903 * 1904 * MIGRATION 1905 * 1906 * The basic program-order guarantee on SMP systems is that when a task [t] 1907 * migrates, all its activity on its old cpu [c0] happens-before any subsequent 1908 * execution on its new cpu [c1]. 1909 * 1910 * For migration (of runnable tasks) this is provided by the following means: 1911 * 1912 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1913 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1914 * rq(c1)->lock (if not at the same time, then in that order). 1915 * C) LOCK of the rq(c1)->lock scheduling in task 1916 * 1917 * Transitivity guarantees that B happens after A and C after B. 1918 * Note: we only require RCpc transitivity. 1919 * Note: the cpu doing B need not be c0 or c1 1920 * 1921 * Example: 1922 * 1923 * CPU0 CPU1 CPU2 1924 * 1925 * LOCK rq(0)->lock 1926 * sched-out X 1927 * sched-in Y 1928 * UNLOCK rq(0)->lock 1929 * 1930 * LOCK rq(0)->lock // orders against CPU0 1931 * dequeue X 1932 * UNLOCK rq(0)->lock 1933 * 1934 * LOCK rq(1)->lock 1935 * enqueue X 1936 * UNLOCK rq(1)->lock 1937 * 1938 * LOCK rq(1)->lock // orders against CPU2 1939 * sched-out Z 1940 * sched-in X 1941 * UNLOCK rq(1)->lock 1942 * 1943 * 1944 * BLOCKING -- aka. SLEEP + WAKEUP 1945 * 1946 * For blocking we (obviously) need to provide the same guarantee as for 1947 * migration. However the means are completely different as there is no lock 1948 * chain to provide order. Instead we do: 1949 * 1950 * 1) smp_store_release(X->on_cpu, 0) 1951 * 2) smp_cond_load_acquire(!X->on_cpu) 1952 * 1953 * Example: 1954 * 1955 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1956 * 1957 * LOCK rq(0)->lock LOCK X->pi_lock 1958 * dequeue X 1959 * sched-out X 1960 * smp_store_release(X->on_cpu, 0); 1961 * 1962 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1963 * X->state = WAKING 1964 * set_task_cpu(X,2) 1965 * 1966 * LOCK rq(2)->lock 1967 * enqueue X 1968 * X->state = RUNNING 1969 * UNLOCK rq(2)->lock 1970 * 1971 * LOCK rq(2)->lock // orders against CPU1 1972 * sched-out Z 1973 * sched-in X 1974 * UNLOCK rq(2)->lock 1975 * 1976 * UNLOCK X->pi_lock 1977 * UNLOCK rq(0)->lock 1978 * 1979 * 1980 * However; for wakeups there is a second guarantee we must provide, namely we 1981 * must observe the state that lead to our wakeup. That is, not only must our 1982 * task observe its own prior state, it must also observe the stores prior to 1983 * its wakeup. 1984 * 1985 * This means that any means of doing remote wakeups must order the CPU doing 1986 * the wakeup against the CPU the task is going to end up running on. This, 1987 * however, is already required for the regular Program-Order guarantee above, 1988 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1989 * 1990 */ 1991 1992 /** 1993 * try_to_wake_up - wake up a thread 1994 * @p: the thread to be awakened 1995 * @state: the mask of task states that can be woken 1996 * @wake_flags: wake modifier flags (WF_*) 1997 * 1998 * If (@state & @p->state) @p->state = TASK_RUNNING. 1999 * 2000 * If the task was not queued/runnable, also place it back on a runqueue. 2001 * 2002 * Atomic against schedule() which would dequeue a task, also see 2003 * set_current_state(). 2004 * 2005 * Return: %true if @p->state changes (an actual wakeup was done), 2006 * %false otherwise. 2007 */ 2008 static int 2009 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2010 { 2011 unsigned long flags; 2012 int cpu, success = 0; 2013 2014 /* 2015 * If we are going to wake up a thread waiting for CONDITION we 2016 * need to ensure that CONDITION=1 done by the caller can not be 2017 * reordered with p->state check below. This pairs with mb() in 2018 * set_current_state() the waiting thread does. 2019 */ 2020 smp_mb__before_spinlock(); 2021 raw_spin_lock_irqsave(&p->pi_lock, flags); 2022 if (!(p->state & state)) 2023 goto out; 2024 2025 trace_sched_waking(p); 2026 2027 success = 1; /* we're going to change ->state */ 2028 cpu = task_cpu(p); 2029 2030 /* 2031 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2032 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2033 * in smp_cond_load_acquire() below. 2034 * 2035 * sched_ttwu_pending() try_to_wake_up() 2036 * [S] p->on_rq = 1; [L] P->state 2037 * UNLOCK rq->lock -----. 2038 * \ 2039 * +--- RMB 2040 * schedule() / 2041 * LOCK rq->lock -----' 2042 * UNLOCK rq->lock 2043 * 2044 * [task p] 2045 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2046 * 2047 * Pairs with the UNLOCK+LOCK on rq->lock from the 2048 * last wakeup of our task and the schedule that got our task 2049 * current. 2050 */ 2051 smp_rmb(); 2052 if (p->on_rq && ttwu_remote(p, wake_flags)) 2053 goto stat; 2054 2055 #ifdef CONFIG_SMP 2056 /* 2057 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2058 * possible to, falsely, observe p->on_cpu == 0. 2059 * 2060 * One must be running (->on_cpu == 1) in order to remove oneself 2061 * from the runqueue. 2062 * 2063 * [S] ->on_cpu = 1; [L] ->on_rq 2064 * UNLOCK rq->lock 2065 * RMB 2066 * LOCK rq->lock 2067 * [S] ->on_rq = 0; [L] ->on_cpu 2068 * 2069 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2070 * from the consecutive calls to schedule(); the first switching to our 2071 * task, the second putting it to sleep. 2072 */ 2073 smp_rmb(); 2074 2075 /* 2076 * If the owning (remote) cpu is still in the middle of schedule() with 2077 * this task as prev, wait until its done referencing the task. 2078 * 2079 * Pairs with the smp_store_release() in finish_lock_switch(). 2080 * 2081 * This ensures that tasks getting woken will be fully ordered against 2082 * their previous state and preserve Program Order. 2083 */ 2084 smp_cond_load_acquire(&p->on_cpu, !VAL); 2085 2086 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2087 p->state = TASK_WAKING; 2088 2089 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2090 if (task_cpu(p) != cpu) { 2091 wake_flags |= WF_MIGRATED; 2092 set_task_cpu(p, cpu); 2093 } 2094 #endif /* CONFIG_SMP */ 2095 2096 ttwu_queue(p, cpu, wake_flags); 2097 stat: 2098 ttwu_stat(p, cpu, wake_flags); 2099 out: 2100 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2101 2102 return success; 2103 } 2104 2105 /** 2106 * try_to_wake_up_local - try to wake up a local task with rq lock held 2107 * @p: the thread to be awakened 2108 * @cookie: context's cookie for pinning 2109 * 2110 * Put @p on the run-queue if it's not already there. The caller must 2111 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2112 * the current task. 2113 */ 2114 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie) 2115 { 2116 struct rq *rq = task_rq(p); 2117 2118 if (WARN_ON_ONCE(rq != this_rq()) || 2119 WARN_ON_ONCE(p == current)) 2120 return; 2121 2122 lockdep_assert_held(&rq->lock); 2123 2124 if (!raw_spin_trylock(&p->pi_lock)) { 2125 /* 2126 * This is OK, because current is on_cpu, which avoids it being 2127 * picked for load-balance and preemption/IRQs are still 2128 * disabled avoiding further scheduler activity on it and we've 2129 * not yet picked a replacement task. 2130 */ 2131 lockdep_unpin_lock(&rq->lock, cookie); 2132 raw_spin_unlock(&rq->lock); 2133 raw_spin_lock(&p->pi_lock); 2134 raw_spin_lock(&rq->lock); 2135 lockdep_repin_lock(&rq->lock, cookie); 2136 } 2137 2138 if (!(p->state & TASK_NORMAL)) 2139 goto out; 2140 2141 trace_sched_waking(p); 2142 2143 if (!task_on_rq_queued(p)) 2144 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2145 2146 ttwu_do_wakeup(rq, p, 0, cookie); 2147 ttwu_stat(p, smp_processor_id(), 0); 2148 out: 2149 raw_spin_unlock(&p->pi_lock); 2150 } 2151 2152 /** 2153 * wake_up_process - Wake up a specific process 2154 * @p: The process to be woken up. 2155 * 2156 * Attempt to wake up the nominated process and move it to the set of runnable 2157 * processes. 2158 * 2159 * Return: 1 if the process was woken up, 0 if it was already running. 2160 * 2161 * It may be assumed that this function implies a write memory barrier before 2162 * changing the task state if and only if any tasks are woken up. 2163 */ 2164 int wake_up_process(struct task_struct *p) 2165 { 2166 return try_to_wake_up(p, TASK_NORMAL, 0); 2167 } 2168 EXPORT_SYMBOL(wake_up_process); 2169 2170 int wake_up_state(struct task_struct *p, unsigned int state) 2171 { 2172 return try_to_wake_up(p, state, 0); 2173 } 2174 2175 /* 2176 * This function clears the sched_dl_entity static params. 2177 */ 2178 void __dl_clear_params(struct task_struct *p) 2179 { 2180 struct sched_dl_entity *dl_se = &p->dl; 2181 2182 dl_se->dl_runtime = 0; 2183 dl_se->dl_deadline = 0; 2184 dl_se->dl_period = 0; 2185 dl_se->flags = 0; 2186 dl_se->dl_bw = 0; 2187 2188 dl_se->dl_throttled = 0; 2189 dl_se->dl_yielded = 0; 2190 } 2191 2192 /* 2193 * Perform scheduler related setup for a newly forked process p. 2194 * p is forked by current. 2195 * 2196 * __sched_fork() is basic setup used by init_idle() too: 2197 */ 2198 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2199 { 2200 p->on_rq = 0; 2201 2202 p->se.on_rq = 0; 2203 p->se.exec_start = 0; 2204 p->se.sum_exec_runtime = 0; 2205 p->se.prev_sum_exec_runtime = 0; 2206 p->se.nr_migrations = 0; 2207 p->se.vruntime = 0; 2208 INIT_LIST_HEAD(&p->se.group_node); 2209 2210 #ifdef CONFIG_FAIR_GROUP_SCHED 2211 p->se.cfs_rq = NULL; 2212 #endif 2213 2214 #ifdef CONFIG_SCHEDSTATS 2215 /* Even if schedstat is disabled, there should not be garbage */ 2216 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2217 #endif 2218 2219 RB_CLEAR_NODE(&p->dl.rb_node); 2220 init_dl_task_timer(&p->dl); 2221 __dl_clear_params(p); 2222 2223 INIT_LIST_HEAD(&p->rt.run_list); 2224 p->rt.timeout = 0; 2225 p->rt.time_slice = sched_rr_timeslice; 2226 p->rt.on_rq = 0; 2227 p->rt.on_list = 0; 2228 2229 #ifdef CONFIG_PREEMPT_NOTIFIERS 2230 INIT_HLIST_HEAD(&p->preempt_notifiers); 2231 #endif 2232 2233 #ifdef CONFIG_NUMA_BALANCING 2234 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2235 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2236 p->mm->numa_scan_seq = 0; 2237 } 2238 2239 if (clone_flags & CLONE_VM) 2240 p->numa_preferred_nid = current->numa_preferred_nid; 2241 else 2242 p->numa_preferred_nid = -1; 2243 2244 p->node_stamp = 0ULL; 2245 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2246 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2247 p->numa_work.next = &p->numa_work; 2248 p->numa_faults = NULL; 2249 p->last_task_numa_placement = 0; 2250 p->last_sum_exec_runtime = 0; 2251 2252 p->numa_group = NULL; 2253 #endif /* CONFIG_NUMA_BALANCING */ 2254 } 2255 2256 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2257 2258 #ifdef CONFIG_NUMA_BALANCING 2259 2260 void set_numabalancing_state(bool enabled) 2261 { 2262 if (enabled) 2263 static_branch_enable(&sched_numa_balancing); 2264 else 2265 static_branch_disable(&sched_numa_balancing); 2266 } 2267 2268 #ifdef CONFIG_PROC_SYSCTL 2269 int sysctl_numa_balancing(struct ctl_table *table, int write, 2270 void __user *buffer, size_t *lenp, loff_t *ppos) 2271 { 2272 struct ctl_table t; 2273 int err; 2274 int state = static_branch_likely(&sched_numa_balancing); 2275 2276 if (write && !capable(CAP_SYS_ADMIN)) 2277 return -EPERM; 2278 2279 t = *table; 2280 t.data = &state; 2281 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2282 if (err < 0) 2283 return err; 2284 if (write) 2285 set_numabalancing_state(state); 2286 return err; 2287 } 2288 #endif 2289 #endif 2290 2291 #ifdef CONFIG_SCHEDSTATS 2292 2293 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2294 static bool __initdata __sched_schedstats = false; 2295 2296 static void set_schedstats(bool enabled) 2297 { 2298 if (enabled) 2299 static_branch_enable(&sched_schedstats); 2300 else 2301 static_branch_disable(&sched_schedstats); 2302 } 2303 2304 void force_schedstat_enabled(void) 2305 { 2306 if (!schedstat_enabled()) { 2307 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2308 static_branch_enable(&sched_schedstats); 2309 } 2310 } 2311 2312 static int __init setup_schedstats(char *str) 2313 { 2314 int ret = 0; 2315 if (!str) 2316 goto out; 2317 2318 /* 2319 * This code is called before jump labels have been set up, so we can't 2320 * change the static branch directly just yet. Instead set a temporary 2321 * variable so init_schedstats() can do it later. 2322 */ 2323 if (!strcmp(str, "enable")) { 2324 __sched_schedstats = true; 2325 ret = 1; 2326 } else if (!strcmp(str, "disable")) { 2327 __sched_schedstats = false; 2328 ret = 1; 2329 } 2330 out: 2331 if (!ret) 2332 pr_warn("Unable to parse schedstats=\n"); 2333 2334 return ret; 2335 } 2336 __setup("schedstats=", setup_schedstats); 2337 2338 static void __init init_schedstats(void) 2339 { 2340 set_schedstats(__sched_schedstats); 2341 } 2342 2343 #ifdef CONFIG_PROC_SYSCTL 2344 int sysctl_schedstats(struct ctl_table *table, int write, 2345 void __user *buffer, size_t *lenp, loff_t *ppos) 2346 { 2347 struct ctl_table t; 2348 int err; 2349 int state = static_branch_likely(&sched_schedstats); 2350 2351 if (write && !capable(CAP_SYS_ADMIN)) 2352 return -EPERM; 2353 2354 t = *table; 2355 t.data = &state; 2356 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2357 if (err < 0) 2358 return err; 2359 if (write) 2360 set_schedstats(state); 2361 return err; 2362 } 2363 #endif /* CONFIG_PROC_SYSCTL */ 2364 #else /* !CONFIG_SCHEDSTATS */ 2365 static inline void init_schedstats(void) {} 2366 #endif /* CONFIG_SCHEDSTATS */ 2367 2368 /* 2369 * fork()/clone()-time setup: 2370 */ 2371 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2372 { 2373 unsigned long flags; 2374 int cpu = get_cpu(); 2375 2376 __sched_fork(clone_flags, p); 2377 /* 2378 * We mark the process as NEW here. This guarantees that 2379 * nobody will actually run it, and a signal or other external 2380 * event cannot wake it up and insert it on the runqueue either. 2381 */ 2382 p->state = TASK_NEW; 2383 2384 /* 2385 * Make sure we do not leak PI boosting priority to the child. 2386 */ 2387 p->prio = current->normal_prio; 2388 2389 /* 2390 * Revert to default priority/policy on fork if requested. 2391 */ 2392 if (unlikely(p->sched_reset_on_fork)) { 2393 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2394 p->policy = SCHED_NORMAL; 2395 p->static_prio = NICE_TO_PRIO(0); 2396 p->rt_priority = 0; 2397 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2398 p->static_prio = NICE_TO_PRIO(0); 2399 2400 p->prio = p->normal_prio = __normal_prio(p); 2401 set_load_weight(p); 2402 2403 /* 2404 * We don't need the reset flag anymore after the fork. It has 2405 * fulfilled its duty: 2406 */ 2407 p->sched_reset_on_fork = 0; 2408 } 2409 2410 if (dl_prio(p->prio)) { 2411 put_cpu(); 2412 return -EAGAIN; 2413 } else if (rt_prio(p->prio)) { 2414 p->sched_class = &rt_sched_class; 2415 } else { 2416 p->sched_class = &fair_sched_class; 2417 } 2418 2419 init_entity_runnable_average(&p->se); 2420 2421 /* 2422 * The child is not yet in the pid-hash so no cgroup attach races, 2423 * and the cgroup is pinned to this child due to cgroup_fork() 2424 * is ran before sched_fork(). 2425 * 2426 * Silence PROVE_RCU. 2427 */ 2428 raw_spin_lock_irqsave(&p->pi_lock, flags); 2429 /* 2430 * We're setting the cpu for the first time, we don't migrate, 2431 * so use __set_task_cpu(). 2432 */ 2433 __set_task_cpu(p, cpu); 2434 if (p->sched_class->task_fork) 2435 p->sched_class->task_fork(p); 2436 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2437 2438 #ifdef CONFIG_SCHED_INFO 2439 if (likely(sched_info_on())) 2440 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2441 #endif 2442 #if defined(CONFIG_SMP) 2443 p->on_cpu = 0; 2444 #endif 2445 init_task_preempt_count(p); 2446 #ifdef CONFIG_SMP 2447 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2448 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2449 #endif 2450 2451 put_cpu(); 2452 return 0; 2453 } 2454 2455 unsigned long to_ratio(u64 period, u64 runtime) 2456 { 2457 if (runtime == RUNTIME_INF) 2458 return 1ULL << 20; 2459 2460 /* 2461 * Doing this here saves a lot of checks in all 2462 * the calling paths, and returning zero seems 2463 * safe for them anyway. 2464 */ 2465 if (period == 0) 2466 return 0; 2467 2468 return div64_u64(runtime << 20, period); 2469 } 2470 2471 #ifdef CONFIG_SMP 2472 inline struct dl_bw *dl_bw_of(int i) 2473 { 2474 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2475 "sched RCU must be held"); 2476 return &cpu_rq(i)->rd->dl_bw; 2477 } 2478 2479 static inline int dl_bw_cpus(int i) 2480 { 2481 struct root_domain *rd = cpu_rq(i)->rd; 2482 int cpus = 0; 2483 2484 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2485 "sched RCU must be held"); 2486 for_each_cpu_and(i, rd->span, cpu_active_mask) 2487 cpus++; 2488 2489 return cpus; 2490 } 2491 #else 2492 inline struct dl_bw *dl_bw_of(int i) 2493 { 2494 return &cpu_rq(i)->dl.dl_bw; 2495 } 2496 2497 static inline int dl_bw_cpus(int i) 2498 { 2499 return 1; 2500 } 2501 #endif 2502 2503 /* 2504 * We must be sure that accepting a new task (or allowing changing the 2505 * parameters of an existing one) is consistent with the bandwidth 2506 * constraints. If yes, this function also accordingly updates the currently 2507 * allocated bandwidth to reflect the new situation. 2508 * 2509 * This function is called while holding p's rq->lock. 2510 * 2511 * XXX we should delay bw change until the task's 0-lag point, see 2512 * __setparam_dl(). 2513 */ 2514 static int dl_overflow(struct task_struct *p, int policy, 2515 const struct sched_attr *attr) 2516 { 2517 2518 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2519 u64 period = attr->sched_period ?: attr->sched_deadline; 2520 u64 runtime = attr->sched_runtime; 2521 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2522 int cpus, err = -1; 2523 2524 /* !deadline task may carry old deadline bandwidth */ 2525 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2526 return 0; 2527 2528 /* 2529 * Either if a task, enters, leave, or stays -deadline but changes 2530 * its parameters, we may need to update accordingly the total 2531 * allocated bandwidth of the container. 2532 */ 2533 raw_spin_lock(&dl_b->lock); 2534 cpus = dl_bw_cpus(task_cpu(p)); 2535 if (dl_policy(policy) && !task_has_dl_policy(p) && 2536 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2537 __dl_add(dl_b, new_bw); 2538 err = 0; 2539 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2540 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2541 __dl_clear(dl_b, p->dl.dl_bw); 2542 __dl_add(dl_b, new_bw); 2543 err = 0; 2544 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2545 __dl_clear(dl_b, p->dl.dl_bw); 2546 err = 0; 2547 } 2548 raw_spin_unlock(&dl_b->lock); 2549 2550 return err; 2551 } 2552 2553 extern void init_dl_bw(struct dl_bw *dl_b); 2554 2555 /* 2556 * wake_up_new_task - wake up a newly created task for the first time. 2557 * 2558 * This function will do some initial scheduler statistics housekeeping 2559 * that must be done for every newly created context, then puts the task 2560 * on the runqueue and wakes it. 2561 */ 2562 void wake_up_new_task(struct task_struct *p) 2563 { 2564 struct rq_flags rf; 2565 struct rq *rq; 2566 2567 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2568 p->state = TASK_RUNNING; 2569 #ifdef CONFIG_SMP 2570 /* 2571 * Fork balancing, do it here and not earlier because: 2572 * - cpus_allowed can change in the fork path 2573 * - any previously selected cpu might disappear through hotplug 2574 * 2575 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2576 * as we're not fully set-up yet. 2577 */ 2578 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2579 #endif 2580 rq = __task_rq_lock(p, &rf); 2581 post_init_entity_util_avg(&p->se); 2582 2583 activate_task(rq, p, 0); 2584 p->on_rq = TASK_ON_RQ_QUEUED; 2585 trace_sched_wakeup_new(p); 2586 check_preempt_curr(rq, p, WF_FORK); 2587 #ifdef CONFIG_SMP 2588 if (p->sched_class->task_woken) { 2589 /* 2590 * Nothing relies on rq->lock after this, so its fine to 2591 * drop it. 2592 */ 2593 lockdep_unpin_lock(&rq->lock, rf.cookie); 2594 p->sched_class->task_woken(rq, p); 2595 lockdep_repin_lock(&rq->lock, rf.cookie); 2596 } 2597 #endif 2598 task_rq_unlock(rq, p, &rf); 2599 } 2600 2601 #ifdef CONFIG_PREEMPT_NOTIFIERS 2602 2603 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2604 2605 void preempt_notifier_inc(void) 2606 { 2607 static_key_slow_inc(&preempt_notifier_key); 2608 } 2609 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2610 2611 void preempt_notifier_dec(void) 2612 { 2613 static_key_slow_dec(&preempt_notifier_key); 2614 } 2615 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2616 2617 /** 2618 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2619 * @notifier: notifier struct to register 2620 */ 2621 void preempt_notifier_register(struct preempt_notifier *notifier) 2622 { 2623 if (!static_key_false(&preempt_notifier_key)) 2624 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2625 2626 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2627 } 2628 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2629 2630 /** 2631 * preempt_notifier_unregister - no longer interested in preemption notifications 2632 * @notifier: notifier struct to unregister 2633 * 2634 * This is *not* safe to call from within a preemption notifier. 2635 */ 2636 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2637 { 2638 hlist_del(¬ifier->link); 2639 } 2640 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2641 2642 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2643 { 2644 struct preempt_notifier *notifier; 2645 2646 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2647 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2648 } 2649 2650 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2651 { 2652 if (static_key_false(&preempt_notifier_key)) 2653 __fire_sched_in_preempt_notifiers(curr); 2654 } 2655 2656 static void 2657 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2658 struct task_struct *next) 2659 { 2660 struct preempt_notifier *notifier; 2661 2662 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2663 notifier->ops->sched_out(notifier, next); 2664 } 2665 2666 static __always_inline void 2667 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2668 struct task_struct *next) 2669 { 2670 if (static_key_false(&preempt_notifier_key)) 2671 __fire_sched_out_preempt_notifiers(curr, next); 2672 } 2673 2674 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2675 2676 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2677 { 2678 } 2679 2680 static inline void 2681 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2682 struct task_struct *next) 2683 { 2684 } 2685 2686 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2687 2688 /** 2689 * prepare_task_switch - prepare to switch tasks 2690 * @rq: the runqueue preparing to switch 2691 * @prev: the current task that is being switched out 2692 * @next: the task we are going to switch to. 2693 * 2694 * This is called with the rq lock held and interrupts off. It must 2695 * be paired with a subsequent finish_task_switch after the context 2696 * switch. 2697 * 2698 * prepare_task_switch sets up locking and calls architecture specific 2699 * hooks. 2700 */ 2701 static inline void 2702 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2703 struct task_struct *next) 2704 { 2705 sched_info_switch(rq, prev, next); 2706 perf_event_task_sched_out(prev, next); 2707 fire_sched_out_preempt_notifiers(prev, next); 2708 prepare_lock_switch(rq, next); 2709 prepare_arch_switch(next); 2710 } 2711 2712 /** 2713 * finish_task_switch - clean up after a task-switch 2714 * @prev: the thread we just switched away from. 2715 * 2716 * finish_task_switch must be called after the context switch, paired 2717 * with a prepare_task_switch call before the context switch. 2718 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2719 * and do any other architecture-specific cleanup actions. 2720 * 2721 * Note that we may have delayed dropping an mm in context_switch(). If 2722 * so, we finish that here outside of the runqueue lock. (Doing it 2723 * with the lock held can cause deadlocks; see schedule() for 2724 * details.) 2725 * 2726 * The context switch have flipped the stack from under us and restored the 2727 * local variables which were saved when this task called schedule() in the 2728 * past. prev == current is still correct but we need to recalculate this_rq 2729 * because prev may have moved to another CPU. 2730 */ 2731 static struct rq *finish_task_switch(struct task_struct *prev) 2732 __releases(rq->lock) 2733 { 2734 struct rq *rq = this_rq(); 2735 struct mm_struct *mm = rq->prev_mm; 2736 long prev_state; 2737 2738 /* 2739 * The previous task will have left us with a preempt_count of 2 2740 * because it left us after: 2741 * 2742 * schedule() 2743 * preempt_disable(); // 1 2744 * __schedule() 2745 * raw_spin_lock_irq(&rq->lock) // 2 2746 * 2747 * Also, see FORK_PREEMPT_COUNT. 2748 */ 2749 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2750 "corrupted preempt_count: %s/%d/0x%x\n", 2751 current->comm, current->pid, preempt_count())) 2752 preempt_count_set(FORK_PREEMPT_COUNT); 2753 2754 rq->prev_mm = NULL; 2755 2756 /* 2757 * A task struct has one reference for the use as "current". 2758 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2759 * schedule one last time. The schedule call will never return, and 2760 * the scheduled task must drop that reference. 2761 * 2762 * We must observe prev->state before clearing prev->on_cpu (in 2763 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2764 * running on another CPU and we could rave with its RUNNING -> DEAD 2765 * transition, resulting in a double drop. 2766 */ 2767 prev_state = prev->state; 2768 vtime_task_switch(prev); 2769 perf_event_task_sched_in(prev, current); 2770 finish_lock_switch(rq, prev); 2771 finish_arch_post_lock_switch(); 2772 2773 fire_sched_in_preempt_notifiers(current); 2774 if (mm) 2775 mmdrop(mm); 2776 if (unlikely(prev_state == TASK_DEAD)) { 2777 if (prev->sched_class->task_dead) 2778 prev->sched_class->task_dead(prev); 2779 2780 /* 2781 * Remove function-return probe instances associated with this 2782 * task and put them back on the free list. 2783 */ 2784 kprobe_flush_task(prev); 2785 2786 /* Task is done with its stack. */ 2787 put_task_stack(prev); 2788 2789 put_task_struct(prev); 2790 } 2791 2792 tick_nohz_task_switch(); 2793 return rq; 2794 } 2795 2796 #ifdef CONFIG_SMP 2797 2798 /* rq->lock is NOT held, but preemption is disabled */ 2799 static void __balance_callback(struct rq *rq) 2800 { 2801 struct callback_head *head, *next; 2802 void (*func)(struct rq *rq); 2803 unsigned long flags; 2804 2805 raw_spin_lock_irqsave(&rq->lock, flags); 2806 head = rq->balance_callback; 2807 rq->balance_callback = NULL; 2808 while (head) { 2809 func = (void (*)(struct rq *))head->func; 2810 next = head->next; 2811 head->next = NULL; 2812 head = next; 2813 2814 func(rq); 2815 } 2816 raw_spin_unlock_irqrestore(&rq->lock, flags); 2817 } 2818 2819 static inline void balance_callback(struct rq *rq) 2820 { 2821 if (unlikely(rq->balance_callback)) 2822 __balance_callback(rq); 2823 } 2824 2825 #else 2826 2827 static inline void balance_callback(struct rq *rq) 2828 { 2829 } 2830 2831 #endif 2832 2833 /** 2834 * schedule_tail - first thing a freshly forked thread must call. 2835 * @prev: the thread we just switched away from. 2836 */ 2837 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2838 __releases(rq->lock) 2839 { 2840 struct rq *rq; 2841 2842 /* 2843 * New tasks start with FORK_PREEMPT_COUNT, see there and 2844 * finish_task_switch() for details. 2845 * 2846 * finish_task_switch() will drop rq->lock() and lower preempt_count 2847 * and the preempt_enable() will end up enabling preemption (on 2848 * PREEMPT_COUNT kernels). 2849 */ 2850 2851 rq = finish_task_switch(prev); 2852 balance_callback(rq); 2853 preempt_enable(); 2854 2855 if (current->set_child_tid) 2856 put_user(task_pid_vnr(current), current->set_child_tid); 2857 } 2858 2859 /* 2860 * context_switch - switch to the new MM and the new thread's register state. 2861 */ 2862 static __always_inline struct rq * 2863 context_switch(struct rq *rq, struct task_struct *prev, 2864 struct task_struct *next, struct pin_cookie cookie) 2865 { 2866 struct mm_struct *mm, *oldmm; 2867 2868 prepare_task_switch(rq, prev, next); 2869 2870 mm = next->mm; 2871 oldmm = prev->active_mm; 2872 /* 2873 * For paravirt, this is coupled with an exit in switch_to to 2874 * combine the page table reload and the switch backend into 2875 * one hypercall. 2876 */ 2877 arch_start_context_switch(prev); 2878 2879 if (!mm) { 2880 next->active_mm = oldmm; 2881 atomic_inc(&oldmm->mm_count); 2882 enter_lazy_tlb(oldmm, next); 2883 } else 2884 switch_mm_irqs_off(oldmm, mm, next); 2885 2886 if (!prev->mm) { 2887 prev->active_mm = NULL; 2888 rq->prev_mm = oldmm; 2889 } 2890 /* 2891 * Since the runqueue lock will be released by the next 2892 * task (which is an invalid locking op but in the case 2893 * of the scheduler it's an obvious special-case), so we 2894 * do an early lockdep release here: 2895 */ 2896 lockdep_unpin_lock(&rq->lock, cookie); 2897 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2898 2899 /* Here we just switch the register state and the stack. */ 2900 switch_to(prev, next, prev); 2901 barrier(); 2902 2903 return finish_task_switch(prev); 2904 } 2905 2906 /* 2907 * nr_running and nr_context_switches: 2908 * 2909 * externally visible scheduler statistics: current number of runnable 2910 * threads, total number of context switches performed since bootup. 2911 */ 2912 unsigned long nr_running(void) 2913 { 2914 unsigned long i, sum = 0; 2915 2916 for_each_online_cpu(i) 2917 sum += cpu_rq(i)->nr_running; 2918 2919 return sum; 2920 } 2921 2922 /* 2923 * Check if only the current task is running on the cpu. 2924 * 2925 * Caution: this function does not check that the caller has disabled 2926 * preemption, thus the result might have a time-of-check-to-time-of-use 2927 * race. The caller is responsible to use it correctly, for example: 2928 * 2929 * - from a non-preemptable section (of course) 2930 * 2931 * - from a thread that is bound to a single CPU 2932 * 2933 * - in a loop with very short iterations (e.g. a polling loop) 2934 */ 2935 bool single_task_running(void) 2936 { 2937 return raw_rq()->nr_running == 1; 2938 } 2939 EXPORT_SYMBOL(single_task_running); 2940 2941 unsigned long long nr_context_switches(void) 2942 { 2943 int i; 2944 unsigned long long sum = 0; 2945 2946 for_each_possible_cpu(i) 2947 sum += cpu_rq(i)->nr_switches; 2948 2949 return sum; 2950 } 2951 2952 unsigned long nr_iowait(void) 2953 { 2954 unsigned long i, sum = 0; 2955 2956 for_each_possible_cpu(i) 2957 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2958 2959 return sum; 2960 } 2961 2962 unsigned long nr_iowait_cpu(int cpu) 2963 { 2964 struct rq *this = cpu_rq(cpu); 2965 return atomic_read(&this->nr_iowait); 2966 } 2967 2968 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2969 { 2970 struct rq *rq = this_rq(); 2971 *nr_waiters = atomic_read(&rq->nr_iowait); 2972 *load = rq->load.weight; 2973 } 2974 2975 #ifdef CONFIG_SMP 2976 2977 /* 2978 * sched_exec - execve() is a valuable balancing opportunity, because at 2979 * this point the task has the smallest effective memory and cache footprint. 2980 */ 2981 void sched_exec(void) 2982 { 2983 struct task_struct *p = current; 2984 unsigned long flags; 2985 int dest_cpu; 2986 2987 raw_spin_lock_irqsave(&p->pi_lock, flags); 2988 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2989 if (dest_cpu == smp_processor_id()) 2990 goto unlock; 2991 2992 if (likely(cpu_active(dest_cpu))) { 2993 struct migration_arg arg = { p, dest_cpu }; 2994 2995 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2996 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2997 return; 2998 } 2999 unlock: 3000 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3001 } 3002 3003 #endif 3004 3005 DEFINE_PER_CPU(struct kernel_stat, kstat); 3006 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3007 3008 EXPORT_PER_CPU_SYMBOL(kstat); 3009 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3010 3011 /* 3012 * The function fair_sched_class.update_curr accesses the struct curr 3013 * and its field curr->exec_start; when called from task_sched_runtime(), 3014 * we observe a high rate of cache misses in practice. 3015 * Prefetching this data results in improved performance. 3016 */ 3017 static inline void prefetch_curr_exec_start(struct task_struct *p) 3018 { 3019 #ifdef CONFIG_FAIR_GROUP_SCHED 3020 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3021 #else 3022 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3023 #endif 3024 prefetch(curr); 3025 prefetch(&curr->exec_start); 3026 } 3027 3028 /* 3029 * Return accounted runtime for the task. 3030 * In case the task is currently running, return the runtime plus current's 3031 * pending runtime that have not been accounted yet. 3032 */ 3033 unsigned long long task_sched_runtime(struct task_struct *p) 3034 { 3035 struct rq_flags rf; 3036 struct rq *rq; 3037 u64 ns; 3038 3039 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3040 /* 3041 * 64-bit doesn't need locks to atomically read a 64bit value. 3042 * So we have a optimization chance when the task's delta_exec is 0. 3043 * Reading ->on_cpu is racy, but this is ok. 3044 * 3045 * If we race with it leaving cpu, we'll take a lock. So we're correct. 3046 * If we race with it entering cpu, unaccounted time is 0. This is 3047 * indistinguishable from the read occurring a few cycles earlier. 3048 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3049 * been accounted, so we're correct here as well. 3050 */ 3051 if (!p->on_cpu || !task_on_rq_queued(p)) 3052 return p->se.sum_exec_runtime; 3053 #endif 3054 3055 rq = task_rq_lock(p, &rf); 3056 /* 3057 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3058 * project cycles that may never be accounted to this 3059 * thread, breaking clock_gettime(). 3060 */ 3061 if (task_current(rq, p) && task_on_rq_queued(p)) { 3062 prefetch_curr_exec_start(p); 3063 update_rq_clock(rq); 3064 p->sched_class->update_curr(rq); 3065 } 3066 ns = p->se.sum_exec_runtime; 3067 task_rq_unlock(rq, p, &rf); 3068 3069 return ns; 3070 } 3071 3072 /* 3073 * This function gets called by the timer code, with HZ frequency. 3074 * We call it with interrupts disabled. 3075 */ 3076 void scheduler_tick(void) 3077 { 3078 int cpu = smp_processor_id(); 3079 struct rq *rq = cpu_rq(cpu); 3080 struct task_struct *curr = rq->curr; 3081 3082 sched_clock_tick(); 3083 3084 raw_spin_lock(&rq->lock); 3085 update_rq_clock(rq); 3086 curr->sched_class->task_tick(rq, curr, 0); 3087 cpu_load_update_active(rq); 3088 calc_global_load_tick(rq); 3089 raw_spin_unlock(&rq->lock); 3090 3091 perf_event_task_tick(); 3092 3093 #ifdef CONFIG_SMP 3094 rq->idle_balance = idle_cpu(cpu); 3095 trigger_load_balance(rq); 3096 #endif 3097 rq_last_tick_reset(rq); 3098 } 3099 3100 #ifdef CONFIG_NO_HZ_FULL 3101 /** 3102 * scheduler_tick_max_deferment 3103 * 3104 * Keep at least one tick per second when a single 3105 * active task is running because the scheduler doesn't 3106 * yet completely support full dynticks environment. 3107 * 3108 * This makes sure that uptime, CFS vruntime, load 3109 * balancing, etc... continue to move forward, even 3110 * with a very low granularity. 3111 * 3112 * Return: Maximum deferment in nanoseconds. 3113 */ 3114 u64 scheduler_tick_max_deferment(void) 3115 { 3116 struct rq *rq = this_rq(); 3117 unsigned long next, now = READ_ONCE(jiffies); 3118 3119 next = rq->last_sched_tick + HZ; 3120 3121 if (time_before_eq(next, now)) 3122 return 0; 3123 3124 return jiffies_to_nsecs(next - now); 3125 } 3126 #endif 3127 3128 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3129 defined(CONFIG_PREEMPT_TRACER)) 3130 /* 3131 * If the value passed in is equal to the current preempt count 3132 * then we just disabled preemption. Start timing the latency. 3133 */ 3134 static inline void preempt_latency_start(int val) 3135 { 3136 if (preempt_count() == val) { 3137 unsigned long ip = get_lock_parent_ip(); 3138 #ifdef CONFIG_DEBUG_PREEMPT 3139 current->preempt_disable_ip = ip; 3140 #endif 3141 trace_preempt_off(CALLER_ADDR0, ip); 3142 } 3143 } 3144 3145 void preempt_count_add(int val) 3146 { 3147 #ifdef CONFIG_DEBUG_PREEMPT 3148 /* 3149 * Underflow? 3150 */ 3151 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3152 return; 3153 #endif 3154 __preempt_count_add(val); 3155 #ifdef CONFIG_DEBUG_PREEMPT 3156 /* 3157 * Spinlock count overflowing soon? 3158 */ 3159 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3160 PREEMPT_MASK - 10); 3161 #endif 3162 preempt_latency_start(val); 3163 } 3164 EXPORT_SYMBOL(preempt_count_add); 3165 NOKPROBE_SYMBOL(preempt_count_add); 3166 3167 /* 3168 * If the value passed in equals to the current preempt count 3169 * then we just enabled preemption. Stop timing the latency. 3170 */ 3171 static inline void preempt_latency_stop(int val) 3172 { 3173 if (preempt_count() == val) 3174 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3175 } 3176 3177 void preempt_count_sub(int val) 3178 { 3179 #ifdef CONFIG_DEBUG_PREEMPT 3180 /* 3181 * Underflow? 3182 */ 3183 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3184 return; 3185 /* 3186 * Is the spinlock portion underflowing? 3187 */ 3188 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3189 !(preempt_count() & PREEMPT_MASK))) 3190 return; 3191 #endif 3192 3193 preempt_latency_stop(val); 3194 __preempt_count_sub(val); 3195 } 3196 EXPORT_SYMBOL(preempt_count_sub); 3197 NOKPROBE_SYMBOL(preempt_count_sub); 3198 3199 #else 3200 static inline void preempt_latency_start(int val) { } 3201 static inline void preempt_latency_stop(int val) { } 3202 #endif 3203 3204 /* 3205 * Print scheduling while atomic bug: 3206 */ 3207 static noinline void __schedule_bug(struct task_struct *prev) 3208 { 3209 /* Save this before calling printk(), since that will clobber it */ 3210 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3211 3212 if (oops_in_progress) 3213 return; 3214 3215 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3216 prev->comm, prev->pid, preempt_count()); 3217 3218 debug_show_held_locks(prev); 3219 print_modules(); 3220 if (irqs_disabled()) 3221 print_irqtrace_events(prev); 3222 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3223 && in_atomic_preempt_off()) { 3224 pr_err("Preemption disabled at:"); 3225 print_ip_sym(preempt_disable_ip); 3226 pr_cont("\n"); 3227 } 3228 if (panic_on_warn) 3229 panic("scheduling while atomic\n"); 3230 3231 dump_stack(); 3232 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3233 } 3234 3235 /* 3236 * Various schedule()-time debugging checks and statistics: 3237 */ 3238 static inline void schedule_debug(struct task_struct *prev) 3239 { 3240 #ifdef CONFIG_SCHED_STACK_END_CHECK 3241 if (task_stack_end_corrupted(prev)) 3242 panic("corrupted stack end detected inside scheduler\n"); 3243 #endif 3244 3245 if (unlikely(in_atomic_preempt_off())) { 3246 __schedule_bug(prev); 3247 preempt_count_set(PREEMPT_DISABLED); 3248 } 3249 rcu_sleep_check(); 3250 3251 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3252 3253 schedstat_inc(this_rq()->sched_count); 3254 } 3255 3256 /* 3257 * Pick up the highest-prio task: 3258 */ 3259 static inline struct task_struct * 3260 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) 3261 { 3262 const struct sched_class *class = &fair_sched_class; 3263 struct task_struct *p; 3264 3265 /* 3266 * Optimization: we know that if all tasks are in 3267 * the fair class we can call that function directly: 3268 */ 3269 if (likely(prev->sched_class == class && 3270 rq->nr_running == rq->cfs.h_nr_running)) { 3271 p = fair_sched_class.pick_next_task(rq, prev, cookie); 3272 if (unlikely(p == RETRY_TASK)) 3273 goto again; 3274 3275 /* assumes fair_sched_class->next == idle_sched_class */ 3276 if (unlikely(!p)) 3277 p = idle_sched_class.pick_next_task(rq, prev, cookie); 3278 3279 return p; 3280 } 3281 3282 again: 3283 for_each_class(class) { 3284 p = class->pick_next_task(rq, prev, cookie); 3285 if (p) { 3286 if (unlikely(p == RETRY_TASK)) 3287 goto again; 3288 return p; 3289 } 3290 } 3291 3292 BUG(); /* the idle class will always have a runnable task */ 3293 } 3294 3295 /* 3296 * __schedule() is the main scheduler function. 3297 * 3298 * The main means of driving the scheduler and thus entering this function are: 3299 * 3300 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3301 * 3302 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3303 * paths. For example, see arch/x86/entry_64.S. 3304 * 3305 * To drive preemption between tasks, the scheduler sets the flag in timer 3306 * interrupt handler scheduler_tick(). 3307 * 3308 * 3. Wakeups don't really cause entry into schedule(). They add a 3309 * task to the run-queue and that's it. 3310 * 3311 * Now, if the new task added to the run-queue preempts the current 3312 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3313 * called on the nearest possible occasion: 3314 * 3315 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3316 * 3317 * - in syscall or exception context, at the next outmost 3318 * preempt_enable(). (this might be as soon as the wake_up()'s 3319 * spin_unlock()!) 3320 * 3321 * - in IRQ context, return from interrupt-handler to 3322 * preemptible context 3323 * 3324 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3325 * then at the next: 3326 * 3327 * - cond_resched() call 3328 * - explicit schedule() call 3329 * - return from syscall or exception to user-space 3330 * - return from interrupt-handler to user-space 3331 * 3332 * WARNING: must be called with preemption disabled! 3333 */ 3334 static void __sched notrace __schedule(bool preempt) 3335 { 3336 struct task_struct *prev, *next; 3337 unsigned long *switch_count; 3338 struct pin_cookie cookie; 3339 struct rq *rq; 3340 int cpu; 3341 3342 cpu = smp_processor_id(); 3343 rq = cpu_rq(cpu); 3344 prev = rq->curr; 3345 3346 schedule_debug(prev); 3347 3348 if (sched_feat(HRTICK)) 3349 hrtick_clear(rq); 3350 3351 local_irq_disable(); 3352 rcu_note_context_switch(); 3353 3354 /* 3355 * Make sure that signal_pending_state()->signal_pending() below 3356 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3357 * done by the caller to avoid the race with signal_wake_up(). 3358 */ 3359 smp_mb__before_spinlock(); 3360 raw_spin_lock(&rq->lock); 3361 cookie = lockdep_pin_lock(&rq->lock); 3362 3363 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3364 3365 switch_count = &prev->nivcsw; 3366 if (!preempt && prev->state) { 3367 if (unlikely(signal_pending_state(prev->state, prev))) { 3368 prev->state = TASK_RUNNING; 3369 } else { 3370 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3371 prev->on_rq = 0; 3372 3373 /* 3374 * If a worker went to sleep, notify and ask workqueue 3375 * whether it wants to wake up a task to maintain 3376 * concurrency. 3377 */ 3378 if (prev->flags & PF_WQ_WORKER) { 3379 struct task_struct *to_wakeup; 3380 3381 to_wakeup = wq_worker_sleeping(prev); 3382 if (to_wakeup) 3383 try_to_wake_up_local(to_wakeup, cookie); 3384 } 3385 } 3386 switch_count = &prev->nvcsw; 3387 } 3388 3389 if (task_on_rq_queued(prev)) 3390 update_rq_clock(rq); 3391 3392 next = pick_next_task(rq, prev, cookie); 3393 clear_tsk_need_resched(prev); 3394 clear_preempt_need_resched(); 3395 rq->clock_skip_update = 0; 3396 3397 if (likely(prev != next)) { 3398 rq->nr_switches++; 3399 rq->curr = next; 3400 ++*switch_count; 3401 3402 trace_sched_switch(preempt, prev, next); 3403 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */ 3404 } else { 3405 lockdep_unpin_lock(&rq->lock, cookie); 3406 raw_spin_unlock_irq(&rq->lock); 3407 } 3408 3409 balance_callback(rq); 3410 } 3411 3412 void __noreturn do_task_dead(void) 3413 { 3414 /* 3415 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 3416 * when the following two conditions become true. 3417 * - There is race condition of mmap_sem (It is acquired by 3418 * exit_mm()), and 3419 * - SMI occurs before setting TASK_RUNINNG. 3420 * (or hypervisor of virtual machine switches to other guest) 3421 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 3422 * 3423 * To avoid it, we have to wait for releasing tsk->pi_lock which 3424 * is held by try_to_wake_up() 3425 */ 3426 smp_mb(); 3427 raw_spin_unlock_wait(¤t->pi_lock); 3428 3429 /* causes final put_task_struct in finish_task_switch(). */ 3430 __set_current_state(TASK_DEAD); 3431 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 3432 __schedule(false); 3433 BUG(); 3434 /* Avoid "noreturn function does return". */ 3435 for (;;) 3436 cpu_relax(); /* For when BUG is null */ 3437 } 3438 3439 static inline void sched_submit_work(struct task_struct *tsk) 3440 { 3441 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3442 return; 3443 /* 3444 * If we are going to sleep and we have plugged IO queued, 3445 * make sure to submit it to avoid deadlocks. 3446 */ 3447 if (blk_needs_flush_plug(tsk)) 3448 blk_schedule_flush_plug(tsk); 3449 } 3450 3451 asmlinkage __visible void __sched schedule(void) 3452 { 3453 struct task_struct *tsk = current; 3454 3455 sched_submit_work(tsk); 3456 do { 3457 preempt_disable(); 3458 __schedule(false); 3459 sched_preempt_enable_no_resched(); 3460 } while (need_resched()); 3461 } 3462 EXPORT_SYMBOL(schedule); 3463 3464 #ifdef CONFIG_CONTEXT_TRACKING 3465 asmlinkage __visible void __sched schedule_user(void) 3466 { 3467 /* 3468 * If we come here after a random call to set_need_resched(), 3469 * or we have been woken up remotely but the IPI has not yet arrived, 3470 * we haven't yet exited the RCU idle mode. Do it here manually until 3471 * we find a better solution. 3472 * 3473 * NB: There are buggy callers of this function. Ideally we 3474 * should warn if prev_state != CONTEXT_USER, but that will trigger 3475 * too frequently to make sense yet. 3476 */ 3477 enum ctx_state prev_state = exception_enter(); 3478 schedule(); 3479 exception_exit(prev_state); 3480 } 3481 #endif 3482 3483 /** 3484 * schedule_preempt_disabled - called with preemption disabled 3485 * 3486 * Returns with preemption disabled. Note: preempt_count must be 1 3487 */ 3488 void __sched schedule_preempt_disabled(void) 3489 { 3490 sched_preempt_enable_no_resched(); 3491 schedule(); 3492 preempt_disable(); 3493 } 3494 3495 static void __sched notrace preempt_schedule_common(void) 3496 { 3497 do { 3498 /* 3499 * Because the function tracer can trace preempt_count_sub() 3500 * and it also uses preempt_enable/disable_notrace(), if 3501 * NEED_RESCHED is set, the preempt_enable_notrace() called 3502 * by the function tracer will call this function again and 3503 * cause infinite recursion. 3504 * 3505 * Preemption must be disabled here before the function 3506 * tracer can trace. Break up preempt_disable() into two 3507 * calls. One to disable preemption without fear of being 3508 * traced. The other to still record the preemption latency, 3509 * which can also be traced by the function tracer. 3510 */ 3511 preempt_disable_notrace(); 3512 preempt_latency_start(1); 3513 __schedule(true); 3514 preempt_latency_stop(1); 3515 preempt_enable_no_resched_notrace(); 3516 3517 /* 3518 * Check again in case we missed a preemption opportunity 3519 * between schedule and now. 3520 */ 3521 } while (need_resched()); 3522 } 3523 3524 #ifdef CONFIG_PREEMPT 3525 /* 3526 * this is the entry point to schedule() from in-kernel preemption 3527 * off of preempt_enable. Kernel preemptions off return from interrupt 3528 * occur there and call schedule directly. 3529 */ 3530 asmlinkage __visible void __sched notrace preempt_schedule(void) 3531 { 3532 /* 3533 * If there is a non-zero preempt_count or interrupts are disabled, 3534 * we do not want to preempt the current task. Just return.. 3535 */ 3536 if (likely(!preemptible())) 3537 return; 3538 3539 preempt_schedule_common(); 3540 } 3541 NOKPROBE_SYMBOL(preempt_schedule); 3542 EXPORT_SYMBOL(preempt_schedule); 3543 3544 /** 3545 * preempt_schedule_notrace - preempt_schedule called by tracing 3546 * 3547 * The tracing infrastructure uses preempt_enable_notrace to prevent 3548 * recursion and tracing preempt enabling caused by the tracing 3549 * infrastructure itself. But as tracing can happen in areas coming 3550 * from userspace or just about to enter userspace, a preempt enable 3551 * can occur before user_exit() is called. This will cause the scheduler 3552 * to be called when the system is still in usermode. 3553 * 3554 * To prevent this, the preempt_enable_notrace will use this function 3555 * instead of preempt_schedule() to exit user context if needed before 3556 * calling the scheduler. 3557 */ 3558 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3559 { 3560 enum ctx_state prev_ctx; 3561 3562 if (likely(!preemptible())) 3563 return; 3564 3565 do { 3566 /* 3567 * Because the function tracer can trace preempt_count_sub() 3568 * and it also uses preempt_enable/disable_notrace(), if 3569 * NEED_RESCHED is set, the preempt_enable_notrace() called 3570 * by the function tracer will call this function again and 3571 * cause infinite recursion. 3572 * 3573 * Preemption must be disabled here before the function 3574 * tracer can trace. Break up preempt_disable() into two 3575 * calls. One to disable preemption without fear of being 3576 * traced. The other to still record the preemption latency, 3577 * which can also be traced by the function tracer. 3578 */ 3579 preempt_disable_notrace(); 3580 preempt_latency_start(1); 3581 /* 3582 * Needs preempt disabled in case user_exit() is traced 3583 * and the tracer calls preempt_enable_notrace() causing 3584 * an infinite recursion. 3585 */ 3586 prev_ctx = exception_enter(); 3587 __schedule(true); 3588 exception_exit(prev_ctx); 3589 3590 preempt_latency_stop(1); 3591 preempt_enable_no_resched_notrace(); 3592 } while (need_resched()); 3593 } 3594 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3595 3596 #endif /* CONFIG_PREEMPT */ 3597 3598 /* 3599 * this is the entry point to schedule() from kernel preemption 3600 * off of irq context. 3601 * Note, that this is called and return with irqs disabled. This will 3602 * protect us against recursive calling from irq. 3603 */ 3604 asmlinkage __visible void __sched preempt_schedule_irq(void) 3605 { 3606 enum ctx_state prev_state; 3607 3608 /* Catch callers which need to be fixed */ 3609 BUG_ON(preempt_count() || !irqs_disabled()); 3610 3611 prev_state = exception_enter(); 3612 3613 do { 3614 preempt_disable(); 3615 local_irq_enable(); 3616 __schedule(true); 3617 local_irq_disable(); 3618 sched_preempt_enable_no_resched(); 3619 } while (need_resched()); 3620 3621 exception_exit(prev_state); 3622 } 3623 3624 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3625 void *key) 3626 { 3627 return try_to_wake_up(curr->private, mode, wake_flags); 3628 } 3629 EXPORT_SYMBOL(default_wake_function); 3630 3631 #ifdef CONFIG_RT_MUTEXES 3632 3633 /* 3634 * rt_mutex_setprio - set the current priority of a task 3635 * @p: task 3636 * @prio: prio value (kernel-internal form) 3637 * 3638 * This function changes the 'effective' priority of a task. It does 3639 * not touch ->normal_prio like __setscheduler(). 3640 * 3641 * Used by the rt_mutex code to implement priority inheritance 3642 * logic. Call site only calls if the priority of the task changed. 3643 */ 3644 void rt_mutex_setprio(struct task_struct *p, int prio) 3645 { 3646 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE; 3647 const struct sched_class *prev_class; 3648 struct rq_flags rf; 3649 struct rq *rq; 3650 3651 BUG_ON(prio > MAX_PRIO); 3652 3653 rq = __task_rq_lock(p, &rf); 3654 3655 /* 3656 * Idle task boosting is a nono in general. There is one 3657 * exception, when PREEMPT_RT and NOHZ is active: 3658 * 3659 * The idle task calls get_next_timer_interrupt() and holds 3660 * the timer wheel base->lock on the CPU and another CPU wants 3661 * to access the timer (probably to cancel it). We can safely 3662 * ignore the boosting request, as the idle CPU runs this code 3663 * with interrupts disabled and will complete the lock 3664 * protected section without being interrupted. So there is no 3665 * real need to boost. 3666 */ 3667 if (unlikely(p == rq->idle)) { 3668 WARN_ON(p != rq->curr); 3669 WARN_ON(p->pi_blocked_on); 3670 goto out_unlock; 3671 } 3672 3673 trace_sched_pi_setprio(p, prio); 3674 oldprio = p->prio; 3675 3676 if (oldprio == prio) 3677 queue_flag &= ~DEQUEUE_MOVE; 3678 3679 prev_class = p->sched_class; 3680 queued = task_on_rq_queued(p); 3681 running = task_current(rq, p); 3682 if (queued) 3683 dequeue_task(rq, p, queue_flag); 3684 if (running) 3685 put_prev_task(rq, p); 3686 3687 /* 3688 * Boosting condition are: 3689 * 1. -rt task is running and holds mutex A 3690 * --> -dl task blocks on mutex A 3691 * 3692 * 2. -dl task is running and holds mutex A 3693 * --> -dl task blocks on mutex A and could preempt the 3694 * running task 3695 */ 3696 if (dl_prio(prio)) { 3697 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3698 if (!dl_prio(p->normal_prio) || 3699 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3700 p->dl.dl_boosted = 1; 3701 queue_flag |= ENQUEUE_REPLENISH; 3702 } else 3703 p->dl.dl_boosted = 0; 3704 p->sched_class = &dl_sched_class; 3705 } else if (rt_prio(prio)) { 3706 if (dl_prio(oldprio)) 3707 p->dl.dl_boosted = 0; 3708 if (oldprio < prio) 3709 queue_flag |= ENQUEUE_HEAD; 3710 p->sched_class = &rt_sched_class; 3711 } else { 3712 if (dl_prio(oldprio)) 3713 p->dl.dl_boosted = 0; 3714 if (rt_prio(oldprio)) 3715 p->rt.timeout = 0; 3716 p->sched_class = &fair_sched_class; 3717 } 3718 3719 p->prio = prio; 3720 3721 if (queued) 3722 enqueue_task(rq, p, queue_flag); 3723 if (running) 3724 set_curr_task(rq, p); 3725 3726 check_class_changed(rq, p, prev_class, oldprio); 3727 out_unlock: 3728 preempt_disable(); /* avoid rq from going away on us */ 3729 __task_rq_unlock(rq, &rf); 3730 3731 balance_callback(rq); 3732 preempt_enable(); 3733 } 3734 #endif 3735 3736 void set_user_nice(struct task_struct *p, long nice) 3737 { 3738 bool queued, running; 3739 int old_prio, delta; 3740 struct rq_flags rf; 3741 struct rq *rq; 3742 3743 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3744 return; 3745 /* 3746 * We have to be careful, if called from sys_setpriority(), 3747 * the task might be in the middle of scheduling on another CPU. 3748 */ 3749 rq = task_rq_lock(p, &rf); 3750 /* 3751 * The RT priorities are set via sched_setscheduler(), but we still 3752 * allow the 'normal' nice value to be set - but as expected 3753 * it wont have any effect on scheduling until the task is 3754 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3755 */ 3756 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3757 p->static_prio = NICE_TO_PRIO(nice); 3758 goto out_unlock; 3759 } 3760 queued = task_on_rq_queued(p); 3761 running = task_current(rq, p); 3762 if (queued) 3763 dequeue_task(rq, p, DEQUEUE_SAVE); 3764 if (running) 3765 put_prev_task(rq, p); 3766 3767 p->static_prio = NICE_TO_PRIO(nice); 3768 set_load_weight(p); 3769 old_prio = p->prio; 3770 p->prio = effective_prio(p); 3771 delta = p->prio - old_prio; 3772 3773 if (queued) { 3774 enqueue_task(rq, p, ENQUEUE_RESTORE); 3775 /* 3776 * If the task increased its priority or is running and 3777 * lowered its priority, then reschedule its CPU: 3778 */ 3779 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3780 resched_curr(rq); 3781 } 3782 if (running) 3783 set_curr_task(rq, p); 3784 out_unlock: 3785 task_rq_unlock(rq, p, &rf); 3786 } 3787 EXPORT_SYMBOL(set_user_nice); 3788 3789 /* 3790 * can_nice - check if a task can reduce its nice value 3791 * @p: task 3792 * @nice: nice value 3793 */ 3794 int can_nice(const struct task_struct *p, const int nice) 3795 { 3796 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3797 int nice_rlim = nice_to_rlimit(nice); 3798 3799 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3800 capable(CAP_SYS_NICE)); 3801 } 3802 3803 #ifdef __ARCH_WANT_SYS_NICE 3804 3805 /* 3806 * sys_nice - change the priority of the current process. 3807 * @increment: priority increment 3808 * 3809 * sys_setpriority is a more generic, but much slower function that 3810 * does similar things. 3811 */ 3812 SYSCALL_DEFINE1(nice, int, increment) 3813 { 3814 long nice, retval; 3815 3816 /* 3817 * Setpriority might change our priority at the same moment. 3818 * We don't have to worry. Conceptually one call occurs first 3819 * and we have a single winner. 3820 */ 3821 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3822 nice = task_nice(current) + increment; 3823 3824 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3825 if (increment < 0 && !can_nice(current, nice)) 3826 return -EPERM; 3827 3828 retval = security_task_setnice(current, nice); 3829 if (retval) 3830 return retval; 3831 3832 set_user_nice(current, nice); 3833 return 0; 3834 } 3835 3836 #endif 3837 3838 /** 3839 * task_prio - return the priority value of a given task. 3840 * @p: the task in question. 3841 * 3842 * Return: The priority value as seen by users in /proc. 3843 * RT tasks are offset by -200. Normal tasks are centered 3844 * around 0, value goes from -16 to +15. 3845 */ 3846 int task_prio(const struct task_struct *p) 3847 { 3848 return p->prio - MAX_RT_PRIO; 3849 } 3850 3851 /** 3852 * idle_cpu - is a given cpu idle currently? 3853 * @cpu: the processor in question. 3854 * 3855 * Return: 1 if the CPU is currently idle. 0 otherwise. 3856 */ 3857 int idle_cpu(int cpu) 3858 { 3859 struct rq *rq = cpu_rq(cpu); 3860 3861 if (rq->curr != rq->idle) 3862 return 0; 3863 3864 if (rq->nr_running) 3865 return 0; 3866 3867 #ifdef CONFIG_SMP 3868 if (!llist_empty(&rq->wake_list)) 3869 return 0; 3870 #endif 3871 3872 return 1; 3873 } 3874 3875 /** 3876 * idle_task - return the idle task for a given cpu. 3877 * @cpu: the processor in question. 3878 * 3879 * Return: The idle task for the cpu @cpu. 3880 */ 3881 struct task_struct *idle_task(int cpu) 3882 { 3883 return cpu_rq(cpu)->idle; 3884 } 3885 3886 /** 3887 * find_process_by_pid - find a process with a matching PID value. 3888 * @pid: the pid in question. 3889 * 3890 * The task of @pid, if found. %NULL otherwise. 3891 */ 3892 static struct task_struct *find_process_by_pid(pid_t pid) 3893 { 3894 return pid ? find_task_by_vpid(pid) : current; 3895 } 3896 3897 /* 3898 * This function initializes the sched_dl_entity of a newly becoming 3899 * SCHED_DEADLINE task. 3900 * 3901 * Only the static values are considered here, the actual runtime and the 3902 * absolute deadline will be properly calculated when the task is enqueued 3903 * for the first time with its new policy. 3904 */ 3905 static void 3906 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3907 { 3908 struct sched_dl_entity *dl_se = &p->dl; 3909 3910 dl_se->dl_runtime = attr->sched_runtime; 3911 dl_se->dl_deadline = attr->sched_deadline; 3912 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3913 dl_se->flags = attr->sched_flags; 3914 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3915 3916 /* 3917 * Changing the parameters of a task is 'tricky' and we're not doing 3918 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3919 * 3920 * What we SHOULD do is delay the bandwidth release until the 0-lag 3921 * point. This would include retaining the task_struct until that time 3922 * and change dl_overflow() to not immediately decrement the current 3923 * amount. 3924 * 3925 * Instead we retain the current runtime/deadline and let the new 3926 * parameters take effect after the current reservation period lapses. 3927 * This is safe (albeit pessimistic) because the 0-lag point is always 3928 * before the current scheduling deadline. 3929 * 3930 * We can still have temporary overloads because we do not delay the 3931 * change in bandwidth until that time; so admission control is 3932 * not on the safe side. It does however guarantee tasks will never 3933 * consume more than promised. 3934 */ 3935 } 3936 3937 /* 3938 * sched_setparam() passes in -1 for its policy, to let the functions 3939 * it calls know not to change it. 3940 */ 3941 #define SETPARAM_POLICY -1 3942 3943 static void __setscheduler_params(struct task_struct *p, 3944 const struct sched_attr *attr) 3945 { 3946 int policy = attr->sched_policy; 3947 3948 if (policy == SETPARAM_POLICY) 3949 policy = p->policy; 3950 3951 p->policy = policy; 3952 3953 if (dl_policy(policy)) 3954 __setparam_dl(p, attr); 3955 else if (fair_policy(policy)) 3956 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3957 3958 /* 3959 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3960 * !rt_policy. Always setting this ensures that things like 3961 * getparam()/getattr() don't report silly values for !rt tasks. 3962 */ 3963 p->rt_priority = attr->sched_priority; 3964 p->normal_prio = normal_prio(p); 3965 set_load_weight(p); 3966 } 3967 3968 /* Actually do priority change: must hold pi & rq lock. */ 3969 static void __setscheduler(struct rq *rq, struct task_struct *p, 3970 const struct sched_attr *attr, bool keep_boost) 3971 { 3972 __setscheduler_params(p, attr); 3973 3974 /* 3975 * Keep a potential priority boosting if called from 3976 * sched_setscheduler(). 3977 */ 3978 if (keep_boost) 3979 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3980 else 3981 p->prio = normal_prio(p); 3982 3983 if (dl_prio(p->prio)) 3984 p->sched_class = &dl_sched_class; 3985 else if (rt_prio(p->prio)) 3986 p->sched_class = &rt_sched_class; 3987 else 3988 p->sched_class = &fair_sched_class; 3989 } 3990 3991 static void 3992 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3993 { 3994 struct sched_dl_entity *dl_se = &p->dl; 3995 3996 attr->sched_priority = p->rt_priority; 3997 attr->sched_runtime = dl_se->dl_runtime; 3998 attr->sched_deadline = dl_se->dl_deadline; 3999 attr->sched_period = dl_se->dl_period; 4000 attr->sched_flags = dl_se->flags; 4001 } 4002 4003 /* 4004 * This function validates the new parameters of a -deadline task. 4005 * We ask for the deadline not being zero, and greater or equal 4006 * than the runtime, as well as the period of being zero or 4007 * greater than deadline. Furthermore, we have to be sure that 4008 * user parameters are above the internal resolution of 1us (we 4009 * check sched_runtime only since it is always the smaller one) and 4010 * below 2^63 ns (we have to check both sched_deadline and 4011 * sched_period, as the latter can be zero). 4012 */ 4013 static bool 4014 __checkparam_dl(const struct sched_attr *attr) 4015 { 4016 /* deadline != 0 */ 4017 if (attr->sched_deadline == 0) 4018 return false; 4019 4020 /* 4021 * Since we truncate DL_SCALE bits, make sure we're at least 4022 * that big. 4023 */ 4024 if (attr->sched_runtime < (1ULL << DL_SCALE)) 4025 return false; 4026 4027 /* 4028 * Since we use the MSB for wrap-around and sign issues, make 4029 * sure it's not set (mind that period can be equal to zero). 4030 */ 4031 if (attr->sched_deadline & (1ULL << 63) || 4032 attr->sched_period & (1ULL << 63)) 4033 return false; 4034 4035 /* runtime <= deadline <= period (if period != 0) */ 4036 if ((attr->sched_period != 0 && 4037 attr->sched_period < attr->sched_deadline) || 4038 attr->sched_deadline < attr->sched_runtime) 4039 return false; 4040 4041 return true; 4042 } 4043 4044 /* 4045 * check the target process has a UID that matches the current process's 4046 */ 4047 static bool check_same_owner(struct task_struct *p) 4048 { 4049 const struct cred *cred = current_cred(), *pcred; 4050 bool match; 4051 4052 rcu_read_lock(); 4053 pcred = __task_cred(p); 4054 match = (uid_eq(cred->euid, pcred->euid) || 4055 uid_eq(cred->euid, pcred->uid)); 4056 rcu_read_unlock(); 4057 return match; 4058 } 4059 4060 static bool dl_param_changed(struct task_struct *p, 4061 const struct sched_attr *attr) 4062 { 4063 struct sched_dl_entity *dl_se = &p->dl; 4064 4065 if (dl_se->dl_runtime != attr->sched_runtime || 4066 dl_se->dl_deadline != attr->sched_deadline || 4067 dl_se->dl_period != attr->sched_period || 4068 dl_se->flags != attr->sched_flags) 4069 return true; 4070 4071 return false; 4072 } 4073 4074 static int __sched_setscheduler(struct task_struct *p, 4075 const struct sched_attr *attr, 4076 bool user, bool pi) 4077 { 4078 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4079 MAX_RT_PRIO - 1 - attr->sched_priority; 4080 int retval, oldprio, oldpolicy = -1, queued, running; 4081 int new_effective_prio, policy = attr->sched_policy; 4082 const struct sched_class *prev_class; 4083 struct rq_flags rf; 4084 int reset_on_fork; 4085 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 4086 struct rq *rq; 4087 4088 /* may grab non-irq protected spin_locks */ 4089 BUG_ON(in_interrupt()); 4090 recheck: 4091 /* double check policy once rq lock held */ 4092 if (policy < 0) { 4093 reset_on_fork = p->sched_reset_on_fork; 4094 policy = oldpolicy = p->policy; 4095 } else { 4096 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4097 4098 if (!valid_policy(policy)) 4099 return -EINVAL; 4100 } 4101 4102 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 4103 return -EINVAL; 4104 4105 /* 4106 * Valid priorities for SCHED_FIFO and SCHED_RR are 4107 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4108 * SCHED_BATCH and SCHED_IDLE is 0. 4109 */ 4110 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4111 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4112 return -EINVAL; 4113 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4114 (rt_policy(policy) != (attr->sched_priority != 0))) 4115 return -EINVAL; 4116 4117 /* 4118 * Allow unprivileged RT tasks to decrease priority: 4119 */ 4120 if (user && !capable(CAP_SYS_NICE)) { 4121 if (fair_policy(policy)) { 4122 if (attr->sched_nice < task_nice(p) && 4123 !can_nice(p, attr->sched_nice)) 4124 return -EPERM; 4125 } 4126 4127 if (rt_policy(policy)) { 4128 unsigned long rlim_rtprio = 4129 task_rlimit(p, RLIMIT_RTPRIO); 4130 4131 /* can't set/change the rt policy */ 4132 if (policy != p->policy && !rlim_rtprio) 4133 return -EPERM; 4134 4135 /* can't increase priority */ 4136 if (attr->sched_priority > p->rt_priority && 4137 attr->sched_priority > rlim_rtprio) 4138 return -EPERM; 4139 } 4140 4141 /* 4142 * Can't set/change SCHED_DEADLINE policy at all for now 4143 * (safest behavior); in the future we would like to allow 4144 * unprivileged DL tasks to increase their relative deadline 4145 * or reduce their runtime (both ways reducing utilization) 4146 */ 4147 if (dl_policy(policy)) 4148 return -EPERM; 4149 4150 /* 4151 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4152 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4153 */ 4154 if (idle_policy(p->policy) && !idle_policy(policy)) { 4155 if (!can_nice(p, task_nice(p))) 4156 return -EPERM; 4157 } 4158 4159 /* can't change other user's priorities */ 4160 if (!check_same_owner(p)) 4161 return -EPERM; 4162 4163 /* Normal users shall not reset the sched_reset_on_fork flag */ 4164 if (p->sched_reset_on_fork && !reset_on_fork) 4165 return -EPERM; 4166 } 4167 4168 if (user) { 4169 retval = security_task_setscheduler(p); 4170 if (retval) 4171 return retval; 4172 } 4173 4174 /* 4175 * make sure no PI-waiters arrive (or leave) while we are 4176 * changing the priority of the task: 4177 * 4178 * To be able to change p->policy safely, the appropriate 4179 * runqueue lock must be held. 4180 */ 4181 rq = task_rq_lock(p, &rf); 4182 4183 /* 4184 * Changing the policy of the stop threads its a very bad idea 4185 */ 4186 if (p == rq->stop) { 4187 task_rq_unlock(rq, p, &rf); 4188 return -EINVAL; 4189 } 4190 4191 /* 4192 * If not changing anything there's no need to proceed further, 4193 * but store a possible modification of reset_on_fork. 4194 */ 4195 if (unlikely(policy == p->policy)) { 4196 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4197 goto change; 4198 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4199 goto change; 4200 if (dl_policy(policy) && dl_param_changed(p, attr)) 4201 goto change; 4202 4203 p->sched_reset_on_fork = reset_on_fork; 4204 task_rq_unlock(rq, p, &rf); 4205 return 0; 4206 } 4207 change: 4208 4209 if (user) { 4210 #ifdef CONFIG_RT_GROUP_SCHED 4211 /* 4212 * Do not allow realtime tasks into groups that have no runtime 4213 * assigned. 4214 */ 4215 if (rt_bandwidth_enabled() && rt_policy(policy) && 4216 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4217 !task_group_is_autogroup(task_group(p))) { 4218 task_rq_unlock(rq, p, &rf); 4219 return -EPERM; 4220 } 4221 #endif 4222 #ifdef CONFIG_SMP 4223 if (dl_bandwidth_enabled() && dl_policy(policy)) { 4224 cpumask_t *span = rq->rd->span; 4225 4226 /* 4227 * Don't allow tasks with an affinity mask smaller than 4228 * the entire root_domain to become SCHED_DEADLINE. We 4229 * will also fail if there's no bandwidth available. 4230 */ 4231 if (!cpumask_subset(span, &p->cpus_allowed) || 4232 rq->rd->dl_bw.bw == 0) { 4233 task_rq_unlock(rq, p, &rf); 4234 return -EPERM; 4235 } 4236 } 4237 #endif 4238 } 4239 4240 /* recheck policy now with rq lock held */ 4241 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4242 policy = oldpolicy = -1; 4243 task_rq_unlock(rq, p, &rf); 4244 goto recheck; 4245 } 4246 4247 /* 4248 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4249 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4250 * is available. 4251 */ 4252 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 4253 task_rq_unlock(rq, p, &rf); 4254 return -EBUSY; 4255 } 4256 4257 p->sched_reset_on_fork = reset_on_fork; 4258 oldprio = p->prio; 4259 4260 if (pi) { 4261 /* 4262 * Take priority boosted tasks into account. If the new 4263 * effective priority is unchanged, we just store the new 4264 * normal parameters and do not touch the scheduler class and 4265 * the runqueue. This will be done when the task deboost 4266 * itself. 4267 */ 4268 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 4269 if (new_effective_prio == oldprio) 4270 queue_flags &= ~DEQUEUE_MOVE; 4271 } 4272 4273 queued = task_on_rq_queued(p); 4274 running = task_current(rq, p); 4275 if (queued) 4276 dequeue_task(rq, p, queue_flags); 4277 if (running) 4278 put_prev_task(rq, p); 4279 4280 prev_class = p->sched_class; 4281 __setscheduler(rq, p, attr, pi); 4282 4283 if (queued) { 4284 /* 4285 * We enqueue to tail when the priority of a task is 4286 * increased (user space view). 4287 */ 4288 if (oldprio < p->prio) 4289 queue_flags |= ENQUEUE_HEAD; 4290 4291 enqueue_task(rq, p, queue_flags); 4292 } 4293 if (running) 4294 set_curr_task(rq, p); 4295 4296 check_class_changed(rq, p, prev_class, oldprio); 4297 preempt_disable(); /* avoid rq from going away on us */ 4298 task_rq_unlock(rq, p, &rf); 4299 4300 if (pi) 4301 rt_mutex_adjust_pi(p); 4302 4303 /* 4304 * Run balance callbacks after we've adjusted the PI chain. 4305 */ 4306 balance_callback(rq); 4307 preempt_enable(); 4308 4309 return 0; 4310 } 4311 4312 static int _sched_setscheduler(struct task_struct *p, int policy, 4313 const struct sched_param *param, bool check) 4314 { 4315 struct sched_attr attr = { 4316 .sched_policy = policy, 4317 .sched_priority = param->sched_priority, 4318 .sched_nice = PRIO_TO_NICE(p->static_prio), 4319 }; 4320 4321 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4322 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4323 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4324 policy &= ~SCHED_RESET_ON_FORK; 4325 attr.sched_policy = policy; 4326 } 4327 4328 return __sched_setscheduler(p, &attr, check, true); 4329 } 4330 /** 4331 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4332 * @p: the task in question. 4333 * @policy: new policy. 4334 * @param: structure containing the new RT priority. 4335 * 4336 * Return: 0 on success. An error code otherwise. 4337 * 4338 * NOTE that the task may be already dead. 4339 */ 4340 int sched_setscheduler(struct task_struct *p, int policy, 4341 const struct sched_param *param) 4342 { 4343 return _sched_setscheduler(p, policy, param, true); 4344 } 4345 EXPORT_SYMBOL_GPL(sched_setscheduler); 4346 4347 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4348 { 4349 return __sched_setscheduler(p, attr, true, true); 4350 } 4351 EXPORT_SYMBOL_GPL(sched_setattr); 4352 4353 /** 4354 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4355 * @p: the task in question. 4356 * @policy: new policy. 4357 * @param: structure containing the new RT priority. 4358 * 4359 * Just like sched_setscheduler, only don't bother checking if the 4360 * current context has permission. For example, this is needed in 4361 * stop_machine(): we create temporary high priority worker threads, 4362 * but our caller might not have that capability. 4363 * 4364 * Return: 0 on success. An error code otherwise. 4365 */ 4366 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4367 const struct sched_param *param) 4368 { 4369 return _sched_setscheduler(p, policy, param, false); 4370 } 4371 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4372 4373 static int 4374 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4375 { 4376 struct sched_param lparam; 4377 struct task_struct *p; 4378 int retval; 4379 4380 if (!param || pid < 0) 4381 return -EINVAL; 4382 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4383 return -EFAULT; 4384 4385 rcu_read_lock(); 4386 retval = -ESRCH; 4387 p = find_process_by_pid(pid); 4388 if (p != NULL) 4389 retval = sched_setscheduler(p, policy, &lparam); 4390 rcu_read_unlock(); 4391 4392 return retval; 4393 } 4394 4395 /* 4396 * Mimics kernel/events/core.c perf_copy_attr(). 4397 */ 4398 static int sched_copy_attr(struct sched_attr __user *uattr, 4399 struct sched_attr *attr) 4400 { 4401 u32 size; 4402 int ret; 4403 4404 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4405 return -EFAULT; 4406 4407 /* 4408 * zero the full structure, so that a short copy will be nice. 4409 */ 4410 memset(attr, 0, sizeof(*attr)); 4411 4412 ret = get_user(size, &uattr->size); 4413 if (ret) 4414 return ret; 4415 4416 if (size > PAGE_SIZE) /* silly large */ 4417 goto err_size; 4418 4419 if (!size) /* abi compat */ 4420 size = SCHED_ATTR_SIZE_VER0; 4421 4422 if (size < SCHED_ATTR_SIZE_VER0) 4423 goto err_size; 4424 4425 /* 4426 * If we're handed a bigger struct than we know of, 4427 * ensure all the unknown bits are 0 - i.e. new 4428 * user-space does not rely on any kernel feature 4429 * extensions we dont know about yet. 4430 */ 4431 if (size > sizeof(*attr)) { 4432 unsigned char __user *addr; 4433 unsigned char __user *end; 4434 unsigned char val; 4435 4436 addr = (void __user *)uattr + sizeof(*attr); 4437 end = (void __user *)uattr + size; 4438 4439 for (; addr < end; addr++) { 4440 ret = get_user(val, addr); 4441 if (ret) 4442 return ret; 4443 if (val) 4444 goto err_size; 4445 } 4446 size = sizeof(*attr); 4447 } 4448 4449 ret = copy_from_user(attr, uattr, size); 4450 if (ret) 4451 return -EFAULT; 4452 4453 /* 4454 * XXX: do we want to be lenient like existing syscalls; or do we want 4455 * to be strict and return an error on out-of-bounds values? 4456 */ 4457 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4458 4459 return 0; 4460 4461 err_size: 4462 put_user(sizeof(*attr), &uattr->size); 4463 return -E2BIG; 4464 } 4465 4466 /** 4467 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4468 * @pid: the pid in question. 4469 * @policy: new policy. 4470 * @param: structure containing the new RT priority. 4471 * 4472 * Return: 0 on success. An error code otherwise. 4473 */ 4474 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4475 struct sched_param __user *, param) 4476 { 4477 /* negative values for policy are not valid */ 4478 if (policy < 0) 4479 return -EINVAL; 4480 4481 return do_sched_setscheduler(pid, policy, param); 4482 } 4483 4484 /** 4485 * sys_sched_setparam - set/change the RT priority of a thread 4486 * @pid: the pid in question. 4487 * @param: structure containing the new RT priority. 4488 * 4489 * Return: 0 on success. An error code otherwise. 4490 */ 4491 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4492 { 4493 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4494 } 4495 4496 /** 4497 * sys_sched_setattr - same as above, but with extended sched_attr 4498 * @pid: the pid in question. 4499 * @uattr: structure containing the extended parameters. 4500 * @flags: for future extension. 4501 */ 4502 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4503 unsigned int, flags) 4504 { 4505 struct sched_attr attr; 4506 struct task_struct *p; 4507 int retval; 4508 4509 if (!uattr || pid < 0 || flags) 4510 return -EINVAL; 4511 4512 retval = sched_copy_attr(uattr, &attr); 4513 if (retval) 4514 return retval; 4515 4516 if ((int)attr.sched_policy < 0) 4517 return -EINVAL; 4518 4519 rcu_read_lock(); 4520 retval = -ESRCH; 4521 p = find_process_by_pid(pid); 4522 if (p != NULL) 4523 retval = sched_setattr(p, &attr); 4524 rcu_read_unlock(); 4525 4526 return retval; 4527 } 4528 4529 /** 4530 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4531 * @pid: the pid in question. 4532 * 4533 * Return: On success, the policy of the thread. Otherwise, a negative error 4534 * code. 4535 */ 4536 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4537 { 4538 struct task_struct *p; 4539 int retval; 4540 4541 if (pid < 0) 4542 return -EINVAL; 4543 4544 retval = -ESRCH; 4545 rcu_read_lock(); 4546 p = find_process_by_pid(pid); 4547 if (p) { 4548 retval = security_task_getscheduler(p); 4549 if (!retval) 4550 retval = p->policy 4551 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4552 } 4553 rcu_read_unlock(); 4554 return retval; 4555 } 4556 4557 /** 4558 * sys_sched_getparam - get the RT priority of a thread 4559 * @pid: the pid in question. 4560 * @param: structure containing the RT priority. 4561 * 4562 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4563 * code. 4564 */ 4565 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4566 { 4567 struct sched_param lp = { .sched_priority = 0 }; 4568 struct task_struct *p; 4569 int retval; 4570 4571 if (!param || pid < 0) 4572 return -EINVAL; 4573 4574 rcu_read_lock(); 4575 p = find_process_by_pid(pid); 4576 retval = -ESRCH; 4577 if (!p) 4578 goto out_unlock; 4579 4580 retval = security_task_getscheduler(p); 4581 if (retval) 4582 goto out_unlock; 4583 4584 if (task_has_rt_policy(p)) 4585 lp.sched_priority = p->rt_priority; 4586 rcu_read_unlock(); 4587 4588 /* 4589 * This one might sleep, we cannot do it with a spinlock held ... 4590 */ 4591 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4592 4593 return retval; 4594 4595 out_unlock: 4596 rcu_read_unlock(); 4597 return retval; 4598 } 4599 4600 static int sched_read_attr(struct sched_attr __user *uattr, 4601 struct sched_attr *attr, 4602 unsigned int usize) 4603 { 4604 int ret; 4605 4606 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4607 return -EFAULT; 4608 4609 /* 4610 * If we're handed a smaller struct than we know of, 4611 * ensure all the unknown bits are 0 - i.e. old 4612 * user-space does not get uncomplete information. 4613 */ 4614 if (usize < sizeof(*attr)) { 4615 unsigned char *addr; 4616 unsigned char *end; 4617 4618 addr = (void *)attr + usize; 4619 end = (void *)attr + sizeof(*attr); 4620 4621 for (; addr < end; addr++) { 4622 if (*addr) 4623 return -EFBIG; 4624 } 4625 4626 attr->size = usize; 4627 } 4628 4629 ret = copy_to_user(uattr, attr, attr->size); 4630 if (ret) 4631 return -EFAULT; 4632 4633 return 0; 4634 } 4635 4636 /** 4637 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4638 * @pid: the pid in question. 4639 * @uattr: structure containing the extended parameters. 4640 * @size: sizeof(attr) for fwd/bwd comp. 4641 * @flags: for future extension. 4642 */ 4643 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4644 unsigned int, size, unsigned int, flags) 4645 { 4646 struct sched_attr attr = { 4647 .size = sizeof(struct sched_attr), 4648 }; 4649 struct task_struct *p; 4650 int retval; 4651 4652 if (!uattr || pid < 0 || size > PAGE_SIZE || 4653 size < SCHED_ATTR_SIZE_VER0 || flags) 4654 return -EINVAL; 4655 4656 rcu_read_lock(); 4657 p = find_process_by_pid(pid); 4658 retval = -ESRCH; 4659 if (!p) 4660 goto out_unlock; 4661 4662 retval = security_task_getscheduler(p); 4663 if (retval) 4664 goto out_unlock; 4665 4666 attr.sched_policy = p->policy; 4667 if (p->sched_reset_on_fork) 4668 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4669 if (task_has_dl_policy(p)) 4670 __getparam_dl(p, &attr); 4671 else if (task_has_rt_policy(p)) 4672 attr.sched_priority = p->rt_priority; 4673 else 4674 attr.sched_nice = task_nice(p); 4675 4676 rcu_read_unlock(); 4677 4678 retval = sched_read_attr(uattr, &attr, size); 4679 return retval; 4680 4681 out_unlock: 4682 rcu_read_unlock(); 4683 return retval; 4684 } 4685 4686 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4687 { 4688 cpumask_var_t cpus_allowed, new_mask; 4689 struct task_struct *p; 4690 int retval; 4691 4692 rcu_read_lock(); 4693 4694 p = find_process_by_pid(pid); 4695 if (!p) { 4696 rcu_read_unlock(); 4697 return -ESRCH; 4698 } 4699 4700 /* Prevent p going away */ 4701 get_task_struct(p); 4702 rcu_read_unlock(); 4703 4704 if (p->flags & PF_NO_SETAFFINITY) { 4705 retval = -EINVAL; 4706 goto out_put_task; 4707 } 4708 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4709 retval = -ENOMEM; 4710 goto out_put_task; 4711 } 4712 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4713 retval = -ENOMEM; 4714 goto out_free_cpus_allowed; 4715 } 4716 retval = -EPERM; 4717 if (!check_same_owner(p)) { 4718 rcu_read_lock(); 4719 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4720 rcu_read_unlock(); 4721 goto out_free_new_mask; 4722 } 4723 rcu_read_unlock(); 4724 } 4725 4726 retval = security_task_setscheduler(p); 4727 if (retval) 4728 goto out_free_new_mask; 4729 4730 4731 cpuset_cpus_allowed(p, cpus_allowed); 4732 cpumask_and(new_mask, in_mask, cpus_allowed); 4733 4734 /* 4735 * Since bandwidth control happens on root_domain basis, 4736 * if admission test is enabled, we only admit -deadline 4737 * tasks allowed to run on all the CPUs in the task's 4738 * root_domain. 4739 */ 4740 #ifdef CONFIG_SMP 4741 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4742 rcu_read_lock(); 4743 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4744 retval = -EBUSY; 4745 rcu_read_unlock(); 4746 goto out_free_new_mask; 4747 } 4748 rcu_read_unlock(); 4749 } 4750 #endif 4751 again: 4752 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4753 4754 if (!retval) { 4755 cpuset_cpus_allowed(p, cpus_allowed); 4756 if (!cpumask_subset(new_mask, cpus_allowed)) { 4757 /* 4758 * We must have raced with a concurrent cpuset 4759 * update. Just reset the cpus_allowed to the 4760 * cpuset's cpus_allowed 4761 */ 4762 cpumask_copy(new_mask, cpus_allowed); 4763 goto again; 4764 } 4765 } 4766 out_free_new_mask: 4767 free_cpumask_var(new_mask); 4768 out_free_cpus_allowed: 4769 free_cpumask_var(cpus_allowed); 4770 out_put_task: 4771 put_task_struct(p); 4772 return retval; 4773 } 4774 4775 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4776 struct cpumask *new_mask) 4777 { 4778 if (len < cpumask_size()) 4779 cpumask_clear(new_mask); 4780 else if (len > cpumask_size()) 4781 len = cpumask_size(); 4782 4783 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4784 } 4785 4786 /** 4787 * sys_sched_setaffinity - set the cpu affinity of a process 4788 * @pid: pid of the process 4789 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4790 * @user_mask_ptr: user-space pointer to the new cpu mask 4791 * 4792 * Return: 0 on success. An error code otherwise. 4793 */ 4794 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4795 unsigned long __user *, user_mask_ptr) 4796 { 4797 cpumask_var_t new_mask; 4798 int retval; 4799 4800 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4801 return -ENOMEM; 4802 4803 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4804 if (retval == 0) 4805 retval = sched_setaffinity(pid, new_mask); 4806 free_cpumask_var(new_mask); 4807 return retval; 4808 } 4809 4810 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4811 { 4812 struct task_struct *p; 4813 unsigned long flags; 4814 int retval; 4815 4816 rcu_read_lock(); 4817 4818 retval = -ESRCH; 4819 p = find_process_by_pid(pid); 4820 if (!p) 4821 goto out_unlock; 4822 4823 retval = security_task_getscheduler(p); 4824 if (retval) 4825 goto out_unlock; 4826 4827 raw_spin_lock_irqsave(&p->pi_lock, flags); 4828 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4829 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4830 4831 out_unlock: 4832 rcu_read_unlock(); 4833 4834 return retval; 4835 } 4836 4837 /** 4838 * sys_sched_getaffinity - get the cpu affinity of a process 4839 * @pid: pid of the process 4840 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4841 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4842 * 4843 * Return: size of CPU mask copied to user_mask_ptr on success. An 4844 * error code otherwise. 4845 */ 4846 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4847 unsigned long __user *, user_mask_ptr) 4848 { 4849 int ret; 4850 cpumask_var_t mask; 4851 4852 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4853 return -EINVAL; 4854 if (len & (sizeof(unsigned long)-1)) 4855 return -EINVAL; 4856 4857 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4858 return -ENOMEM; 4859 4860 ret = sched_getaffinity(pid, mask); 4861 if (ret == 0) { 4862 size_t retlen = min_t(size_t, len, cpumask_size()); 4863 4864 if (copy_to_user(user_mask_ptr, mask, retlen)) 4865 ret = -EFAULT; 4866 else 4867 ret = retlen; 4868 } 4869 free_cpumask_var(mask); 4870 4871 return ret; 4872 } 4873 4874 /** 4875 * sys_sched_yield - yield the current processor to other threads. 4876 * 4877 * This function yields the current CPU to other tasks. If there are no 4878 * other threads running on this CPU then this function will return. 4879 * 4880 * Return: 0. 4881 */ 4882 SYSCALL_DEFINE0(sched_yield) 4883 { 4884 struct rq *rq = this_rq_lock(); 4885 4886 schedstat_inc(rq->yld_count); 4887 current->sched_class->yield_task(rq); 4888 4889 /* 4890 * Since we are going to call schedule() anyway, there's 4891 * no need to preempt or enable interrupts: 4892 */ 4893 __release(rq->lock); 4894 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4895 do_raw_spin_unlock(&rq->lock); 4896 sched_preempt_enable_no_resched(); 4897 4898 schedule(); 4899 4900 return 0; 4901 } 4902 4903 #ifndef CONFIG_PREEMPT 4904 int __sched _cond_resched(void) 4905 { 4906 if (should_resched(0)) { 4907 preempt_schedule_common(); 4908 return 1; 4909 } 4910 return 0; 4911 } 4912 EXPORT_SYMBOL(_cond_resched); 4913 #endif 4914 4915 /* 4916 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4917 * call schedule, and on return reacquire the lock. 4918 * 4919 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4920 * operations here to prevent schedule() from being called twice (once via 4921 * spin_unlock(), once by hand). 4922 */ 4923 int __cond_resched_lock(spinlock_t *lock) 4924 { 4925 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4926 int ret = 0; 4927 4928 lockdep_assert_held(lock); 4929 4930 if (spin_needbreak(lock) || resched) { 4931 spin_unlock(lock); 4932 if (resched) 4933 preempt_schedule_common(); 4934 else 4935 cpu_relax(); 4936 ret = 1; 4937 spin_lock(lock); 4938 } 4939 return ret; 4940 } 4941 EXPORT_SYMBOL(__cond_resched_lock); 4942 4943 int __sched __cond_resched_softirq(void) 4944 { 4945 BUG_ON(!in_softirq()); 4946 4947 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4948 local_bh_enable(); 4949 preempt_schedule_common(); 4950 local_bh_disable(); 4951 return 1; 4952 } 4953 return 0; 4954 } 4955 EXPORT_SYMBOL(__cond_resched_softirq); 4956 4957 /** 4958 * yield - yield the current processor to other threads. 4959 * 4960 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4961 * 4962 * The scheduler is at all times free to pick the calling task as the most 4963 * eligible task to run, if removing the yield() call from your code breaks 4964 * it, its already broken. 4965 * 4966 * Typical broken usage is: 4967 * 4968 * while (!event) 4969 * yield(); 4970 * 4971 * where one assumes that yield() will let 'the other' process run that will 4972 * make event true. If the current task is a SCHED_FIFO task that will never 4973 * happen. Never use yield() as a progress guarantee!! 4974 * 4975 * If you want to use yield() to wait for something, use wait_event(). 4976 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4977 * If you still want to use yield(), do not! 4978 */ 4979 void __sched yield(void) 4980 { 4981 set_current_state(TASK_RUNNING); 4982 sys_sched_yield(); 4983 } 4984 EXPORT_SYMBOL(yield); 4985 4986 /** 4987 * yield_to - yield the current processor to another thread in 4988 * your thread group, or accelerate that thread toward the 4989 * processor it's on. 4990 * @p: target task 4991 * @preempt: whether task preemption is allowed or not 4992 * 4993 * It's the caller's job to ensure that the target task struct 4994 * can't go away on us before we can do any checks. 4995 * 4996 * Return: 4997 * true (>0) if we indeed boosted the target task. 4998 * false (0) if we failed to boost the target. 4999 * -ESRCH if there's no task to yield to. 5000 */ 5001 int __sched yield_to(struct task_struct *p, bool preempt) 5002 { 5003 struct task_struct *curr = current; 5004 struct rq *rq, *p_rq; 5005 unsigned long flags; 5006 int yielded = 0; 5007 5008 local_irq_save(flags); 5009 rq = this_rq(); 5010 5011 again: 5012 p_rq = task_rq(p); 5013 /* 5014 * If we're the only runnable task on the rq and target rq also 5015 * has only one task, there's absolutely no point in yielding. 5016 */ 5017 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5018 yielded = -ESRCH; 5019 goto out_irq; 5020 } 5021 5022 double_rq_lock(rq, p_rq); 5023 if (task_rq(p) != p_rq) { 5024 double_rq_unlock(rq, p_rq); 5025 goto again; 5026 } 5027 5028 if (!curr->sched_class->yield_to_task) 5029 goto out_unlock; 5030 5031 if (curr->sched_class != p->sched_class) 5032 goto out_unlock; 5033 5034 if (task_running(p_rq, p) || p->state) 5035 goto out_unlock; 5036 5037 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5038 if (yielded) { 5039 schedstat_inc(rq->yld_count); 5040 /* 5041 * Make p's CPU reschedule; pick_next_entity takes care of 5042 * fairness. 5043 */ 5044 if (preempt && rq != p_rq) 5045 resched_curr(p_rq); 5046 } 5047 5048 out_unlock: 5049 double_rq_unlock(rq, p_rq); 5050 out_irq: 5051 local_irq_restore(flags); 5052 5053 if (yielded > 0) 5054 schedule(); 5055 5056 return yielded; 5057 } 5058 EXPORT_SYMBOL_GPL(yield_to); 5059 5060 /* 5061 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5062 * that process accounting knows that this is a task in IO wait state. 5063 */ 5064 long __sched io_schedule_timeout(long timeout) 5065 { 5066 int old_iowait = current->in_iowait; 5067 struct rq *rq; 5068 long ret; 5069 5070 current->in_iowait = 1; 5071 blk_schedule_flush_plug(current); 5072 5073 delayacct_blkio_start(); 5074 rq = raw_rq(); 5075 atomic_inc(&rq->nr_iowait); 5076 ret = schedule_timeout(timeout); 5077 current->in_iowait = old_iowait; 5078 atomic_dec(&rq->nr_iowait); 5079 delayacct_blkio_end(); 5080 5081 return ret; 5082 } 5083 EXPORT_SYMBOL(io_schedule_timeout); 5084 5085 /** 5086 * sys_sched_get_priority_max - return maximum RT priority. 5087 * @policy: scheduling class. 5088 * 5089 * Return: On success, this syscall returns the maximum 5090 * rt_priority that can be used by a given scheduling class. 5091 * On failure, a negative error code is returned. 5092 */ 5093 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5094 { 5095 int ret = -EINVAL; 5096 5097 switch (policy) { 5098 case SCHED_FIFO: 5099 case SCHED_RR: 5100 ret = MAX_USER_RT_PRIO-1; 5101 break; 5102 case SCHED_DEADLINE: 5103 case SCHED_NORMAL: 5104 case SCHED_BATCH: 5105 case SCHED_IDLE: 5106 ret = 0; 5107 break; 5108 } 5109 return ret; 5110 } 5111 5112 /** 5113 * sys_sched_get_priority_min - return minimum RT priority. 5114 * @policy: scheduling class. 5115 * 5116 * Return: On success, this syscall returns the minimum 5117 * rt_priority that can be used by a given scheduling class. 5118 * On failure, a negative error code is returned. 5119 */ 5120 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5121 { 5122 int ret = -EINVAL; 5123 5124 switch (policy) { 5125 case SCHED_FIFO: 5126 case SCHED_RR: 5127 ret = 1; 5128 break; 5129 case SCHED_DEADLINE: 5130 case SCHED_NORMAL: 5131 case SCHED_BATCH: 5132 case SCHED_IDLE: 5133 ret = 0; 5134 } 5135 return ret; 5136 } 5137 5138 /** 5139 * sys_sched_rr_get_interval - return the default timeslice of a process. 5140 * @pid: pid of the process. 5141 * @interval: userspace pointer to the timeslice value. 5142 * 5143 * this syscall writes the default timeslice value of a given process 5144 * into the user-space timespec buffer. A value of '0' means infinity. 5145 * 5146 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5147 * an error code. 5148 */ 5149 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5150 struct timespec __user *, interval) 5151 { 5152 struct task_struct *p; 5153 unsigned int time_slice; 5154 struct rq_flags rf; 5155 struct timespec t; 5156 struct rq *rq; 5157 int retval; 5158 5159 if (pid < 0) 5160 return -EINVAL; 5161 5162 retval = -ESRCH; 5163 rcu_read_lock(); 5164 p = find_process_by_pid(pid); 5165 if (!p) 5166 goto out_unlock; 5167 5168 retval = security_task_getscheduler(p); 5169 if (retval) 5170 goto out_unlock; 5171 5172 rq = task_rq_lock(p, &rf); 5173 time_slice = 0; 5174 if (p->sched_class->get_rr_interval) 5175 time_slice = p->sched_class->get_rr_interval(rq, p); 5176 task_rq_unlock(rq, p, &rf); 5177 5178 rcu_read_unlock(); 5179 jiffies_to_timespec(time_slice, &t); 5180 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5181 return retval; 5182 5183 out_unlock: 5184 rcu_read_unlock(); 5185 return retval; 5186 } 5187 5188 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 5189 5190 void sched_show_task(struct task_struct *p) 5191 { 5192 unsigned long free = 0; 5193 int ppid; 5194 unsigned long state = p->state; 5195 5196 if (!try_get_task_stack(p)) 5197 return; 5198 if (state) 5199 state = __ffs(state) + 1; 5200 printk(KERN_INFO "%-15.15s %c", p->comm, 5201 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 5202 if (state == TASK_RUNNING) 5203 printk(KERN_CONT " running task "); 5204 #ifdef CONFIG_DEBUG_STACK_USAGE 5205 free = stack_not_used(p); 5206 #endif 5207 ppid = 0; 5208 rcu_read_lock(); 5209 if (pid_alive(p)) 5210 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5211 rcu_read_unlock(); 5212 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5213 task_pid_nr(p), ppid, 5214 (unsigned long)task_thread_info(p)->flags); 5215 5216 print_worker_info(KERN_INFO, p); 5217 show_stack(p, NULL); 5218 put_task_stack(p); 5219 } 5220 5221 void show_state_filter(unsigned long state_filter) 5222 { 5223 struct task_struct *g, *p; 5224 5225 #if BITS_PER_LONG == 32 5226 printk(KERN_INFO 5227 " task PC stack pid father\n"); 5228 #else 5229 printk(KERN_INFO 5230 " task PC stack pid father\n"); 5231 #endif 5232 rcu_read_lock(); 5233 for_each_process_thread(g, p) { 5234 /* 5235 * reset the NMI-timeout, listing all files on a slow 5236 * console might take a lot of time: 5237 * Also, reset softlockup watchdogs on all CPUs, because 5238 * another CPU might be blocked waiting for us to process 5239 * an IPI. 5240 */ 5241 touch_nmi_watchdog(); 5242 touch_all_softlockup_watchdogs(); 5243 if (!state_filter || (p->state & state_filter)) 5244 sched_show_task(p); 5245 } 5246 5247 #ifdef CONFIG_SCHED_DEBUG 5248 if (!state_filter) 5249 sysrq_sched_debug_show(); 5250 #endif 5251 rcu_read_unlock(); 5252 /* 5253 * Only show locks if all tasks are dumped: 5254 */ 5255 if (!state_filter) 5256 debug_show_all_locks(); 5257 } 5258 5259 void init_idle_bootup_task(struct task_struct *idle) 5260 { 5261 idle->sched_class = &idle_sched_class; 5262 } 5263 5264 /** 5265 * init_idle - set up an idle thread for a given CPU 5266 * @idle: task in question 5267 * @cpu: cpu the idle task belongs to 5268 * 5269 * NOTE: this function does not set the idle thread's NEED_RESCHED 5270 * flag, to make booting more robust. 5271 */ 5272 void init_idle(struct task_struct *idle, int cpu) 5273 { 5274 struct rq *rq = cpu_rq(cpu); 5275 unsigned long flags; 5276 5277 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5278 raw_spin_lock(&rq->lock); 5279 5280 __sched_fork(0, idle); 5281 idle->state = TASK_RUNNING; 5282 idle->se.exec_start = sched_clock(); 5283 idle->flags |= PF_IDLE; 5284 5285 kasan_unpoison_task_stack(idle); 5286 5287 #ifdef CONFIG_SMP 5288 /* 5289 * Its possible that init_idle() gets called multiple times on a task, 5290 * in that case do_set_cpus_allowed() will not do the right thing. 5291 * 5292 * And since this is boot we can forgo the serialization. 5293 */ 5294 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5295 #endif 5296 /* 5297 * We're having a chicken and egg problem, even though we are 5298 * holding rq->lock, the cpu isn't yet set to this cpu so the 5299 * lockdep check in task_group() will fail. 5300 * 5301 * Similar case to sched_fork(). / Alternatively we could 5302 * use task_rq_lock() here and obtain the other rq->lock. 5303 * 5304 * Silence PROVE_RCU 5305 */ 5306 rcu_read_lock(); 5307 __set_task_cpu(idle, cpu); 5308 rcu_read_unlock(); 5309 5310 rq->curr = rq->idle = idle; 5311 idle->on_rq = TASK_ON_RQ_QUEUED; 5312 #ifdef CONFIG_SMP 5313 idle->on_cpu = 1; 5314 #endif 5315 raw_spin_unlock(&rq->lock); 5316 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5317 5318 /* Set the preempt count _outside_ the spinlocks! */ 5319 init_idle_preempt_count(idle, cpu); 5320 5321 /* 5322 * The idle tasks have their own, simple scheduling class: 5323 */ 5324 idle->sched_class = &idle_sched_class; 5325 ftrace_graph_init_idle_task(idle, cpu); 5326 vtime_init_idle(idle, cpu); 5327 #ifdef CONFIG_SMP 5328 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5329 #endif 5330 } 5331 5332 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5333 const struct cpumask *trial) 5334 { 5335 int ret = 1, trial_cpus; 5336 struct dl_bw *cur_dl_b; 5337 unsigned long flags; 5338 5339 if (!cpumask_weight(cur)) 5340 return ret; 5341 5342 rcu_read_lock_sched(); 5343 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5344 trial_cpus = cpumask_weight(trial); 5345 5346 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5347 if (cur_dl_b->bw != -1 && 5348 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5349 ret = 0; 5350 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5351 rcu_read_unlock_sched(); 5352 5353 return ret; 5354 } 5355 5356 int task_can_attach(struct task_struct *p, 5357 const struct cpumask *cs_cpus_allowed) 5358 { 5359 int ret = 0; 5360 5361 /* 5362 * Kthreads which disallow setaffinity shouldn't be moved 5363 * to a new cpuset; we don't want to change their cpu 5364 * affinity and isolating such threads by their set of 5365 * allowed nodes is unnecessary. Thus, cpusets are not 5366 * applicable for such threads. This prevents checking for 5367 * success of set_cpus_allowed_ptr() on all attached tasks 5368 * before cpus_allowed may be changed. 5369 */ 5370 if (p->flags & PF_NO_SETAFFINITY) { 5371 ret = -EINVAL; 5372 goto out; 5373 } 5374 5375 #ifdef CONFIG_SMP 5376 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5377 cs_cpus_allowed)) { 5378 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5379 cs_cpus_allowed); 5380 struct dl_bw *dl_b; 5381 bool overflow; 5382 int cpus; 5383 unsigned long flags; 5384 5385 rcu_read_lock_sched(); 5386 dl_b = dl_bw_of(dest_cpu); 5387 raw_spin_lock_irqsave(&dl_b->lock, flags); 5388 cpus = dl_bw_cpus(dest_cpu); 5389 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5390 if (overflow) 5391 ret = -EBUSY; 5392 else { 5393 /* 5394 * We reserve space for this task in the destination 5395 * root_domain, as we can't fail after this point. 5396 * We will free resources in the source root_domain 5397 * later on (see set_cpus_allowed_dl()). 5398 */ 5399 __dl_add(dl_b, p->dl.dl_bw); 5400 } 5401 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5402 rcu_read_unlock_sched(); 5403 5404 } 5405 #endif 5406 out: 5407 return ret; 5408 } 5409 5410 #ifdef CONFIG_SMP 5411 5412 static bool sched_smp_initialized __read_mostly; 5413 5414 #ifdef CONFIG_NUMA_BALANCING 5415 /* Migrate current task p to target_cpu */ 5416 int migrate_task_to(struct task_struct *p, int target_cpu) 5417 { 5418 struct migration_arg arg = { p, target_cpu }; 5419 int curr_cpu = task_cpu(p); 5420 5421 if (curr_cpu == target_cpu) 5422 return 0; 5423 5424 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5425 return -EINVAL; 5426 5427 /* TODO: This is not properly updating schedstats */ 5428 5429 trace_sched_move_numa(p, curr_cpu, target_cpu); 5430 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5431 } 5432 5433 /* 5434 * Requeue a task on a given node and accurately track the number of NUMA 5435 * tasks on the runqueues 5436 */ 5437 void sched_setnuma(struct task_struct *p, int nid) 5438 { 5439 bool queued, running; 5440 struct rq_flags rf; 5441 struct rq *rq; 5442 5443 rq = task_rq_lock(p, &rf); 5444 queued = task_on_rq_queued(p); 5445 running = task_current(rq, p); 5446 5447 if (queued) 5448 dequeue_task(rq, p, DEQUEUE_SAVE); 5449 if (running) 5450 put_prev_task(rq, p); 5451 5452 p->numa_preferred_nid = nid; 5453 5454 if (queued) 5455 enqueue_task(rq, p, ENQUEUE_RESTORE); 5456 if (running) 5457 set_curr_task(rq, p); 5458 task_rq_unlock(rq, p, &rf); 5459 } 5460 #endif /* CONFIG_NUMA_BALANCING */ 5461 5462 #ifdef CONFIG_HOTPLUG_CPU 5463 /* 5464 * Ensures that the idle task is using init_mm right before its cpu goes 5465 * offline. 5466 */ 5467 void idle_task_exit(void) 5468 { 5469 struct mm_struct *mm = current->active_mm; 5470 5471 BUG_ON(cpu_online(smp_processor_id())); 5472 5473 if (mm != &init_mm) { 5474 switch_mm_irqs_off(mm, &init_mm, current); 5475 finish_arch_post_lock_switch(); 5476 } 5477 mmdrop(mm); 5478 } 5479 5480 /* 5481 * Since this CPU is going 'away' for a while, fold any nr_active delta 5482 * we might have. Assumes we're called after migrate_tasks() so that the 5483 * nr_active count is stable. We need to take the teardown thread which 5484 * is calling this into account, so we hand in adjust = 1 to the load 5485 * calculation. 5486 * 5487 * Also see the comment "Global load-average calculations". 5488 */ 5489 static void calc_load_migrate(struct rq *rq) 5490 { 5491 long delta = calc_load_fold_active(rq, 1); 5492 if (delta) 5493 atomic_long_add(delta, &calc_load_tasks); 5494 } 5495 5496 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5497 { 5498 } 5499 5500 static const struct sched_class fake_sched_class = { 5501 .put_prev_task = put_prev_task_fake, 5502 }; 5503 5504 static struct task_struct fake_task = { 5505 /* 5506 * Avoid pull_{rt,dl}_task() 5507 */ 5508 .prio = MAX_PRIO + 1, 5509 .sched_class = &fake_sched_class, 5510 }; 5511 5512 /* 5513 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5514 * try_to_wake_up()->select_task_rq(). 5515 * 5516 * Called with rq->lock held even though we'er in stop_machine() and 5517 * there's no concurrency possible, we hold the required locks anyway 5518 * because of lock validation efforts. 5519 */ 5520 static void migrate_tasks(struct rq *dead_rq) 5521 { 5522 struct rq *rq = dead_rq; 5523 struct task_struct *next, *stop = rq->stop; 5524 struct pin_cookie cookie; 5525 int dest_cpu; 5526 5527 /* 5528 * Fudge the rq selection such that the below task selection loop 5529 * doesn't get stuck on the currently eligible stop task. 5530 * 5531 * We're currently inside stop_machine() and the rq is either stuck 5532 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5533 * either way we should never end up calling schedule() until we're 5534 * done here. 5535 */ 5536 rq->stop = NULL; 5537 5538 /* 5539 * put_prev_task() and pick_next_task() sched 5540 * class method both need to have an up-to-date 5541 * value of rq->clock[_task] 5542 */ 5543 update_rq_clock(rq); 5544 5545 for (;;) { 5546 /* 5547 * There's this thread running, bail when that's the only 5548 * remaining thread. 5549 */ 5550 if (rq->nr_running == 1) 5551 break; 5552 5553 /* 5554 * pick_next_task assumes pinned rq->lock. 5555 */ 5556 cookie = lockdep_pin_lock(&rq->lock); 5557 next = pick_next_task(rq, &fake_task, cookie); 5558 BUG_ON(!next); 5559 next->sched_class->put_prev_task(rq, next); 5560 5561 /* 5562 * Rules for changing task_struct::cpus_allowed are holding 5563 * both pi_lock and rq->lock, such that holding either 5564 * stabilizes the mask. 5565 * 5566 * Drop rq->lock is not quite as disastrous as it usually is 5567 * because !cpu_active at this point, which means load-balance 5568 * will not interfere. Also, stop-machine. 5569 */ 5570 lockdep_unpin_lock(&rq->lock, cookie); 5571 raw_spin_unlock(&rq->lock); 5572 raw_spin_lock(&next->pi_lock); 5573 raw_spin_lock(&rq->lock); 5574 5575 /* 5576 * Since we're inside stop-machine, _nothing_ should have 5577 * changed the task, WARN if weird stuff happened, because in 5578 * that case the above rq->lock drop is a fail too. 5579 */ 5580 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5581 raw_spin_unlock(&next->pi_lock); 5582 continue; 5583 } 5584 5585 /* Find suitable destination for @next, with force if needed. */ 5586 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5587 5588 rq = __migrate_task(rq, next, dest_cpu); 5589 if (rq != dead_rq) { 5590 raw_spin_unlock(&rq->lock); 5591 rq = dead_rq; 5592 raw_spin_lock(&rq->lock); 5593 } 5594 raw_spin_unlock(&next->pi_lock); 5595 } 5596 5597 rq->stop = stop; 5598 } 5599 #endif /* CONFIG_HOTPLUG_CPU */ 5600 5601 static void set_rq_online(struct rq *rq) 5602 { 5603 if (!rq->online) { 5604 const struct sched_class *class; 5605 5606 cpumask_set_cpu(rq->cpu, rq->rd->online); 5607 rq->online = 1; 5608 5609 for_each_class(class) { 5610 if (class->rq_online) 5611 class->rq_online(rq); 5612 } 5613 } 5614 } 5615 5616 static void set_rq_offline(struct rq *rq) 5617 { 5618 if (rq->online) { 5619 const struct sched_class *class; 5620 5621 for_each_class(class) { 5622 if (class->rq_offline) 5623 class->rq_offline(rq); 5624 } 5625 5626 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5627 rq->online = 0; 5628 } 5629 } 5630 5631 static void set_cpu_rq_start_time(unsigned int cpu) 5632 { 5633 struct rq *rq = cpu_rq(cpu); 5634 5635 rq->age_stamp = sched_clock_cpu(cpu); 5636 } 5637 5638 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5639 5640 #ifdef CONFIG_SCHED_DEBUG 5641 5642 static __read_mostly int sched_debug_enabled; 5643 5644 static int __init sched_debug_setup(char *str) 5645 { 5646 sched_debug_enabled = 1; 5647 5648 return 0; 5649 } 5650 early_param("sched_debug", sched_debug_setup); 5651 5652 static inline bool sched_debug(void) 5653 { 5654 return sched_debug_enabled; 5655 } 5656 5657 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5658 struct cpumask *groupmask) 5659 { 5660 struct sched_group *group = sd->groups; 5661 5662 cpumask_clear(groupmask); 5663 5664 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5665 5666 if (!(sd->flags & SD_LOAD_BALANCE)) { 5667 printk("does not load-balance\n"); 5668 if (sd->parent) 5669 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5670 " has parent"); 5671 return -1; 5672 } 5673 5674 printk(KERN_CONT "span %*pbl level %s\n", 5675 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5676 5677 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5678 printk(KERN_ERR "ERROR: domain->span does not contain " 5679 "CPU%d\n", cpu); 5680 } 5681 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5682 printk(KERN_ERR "ERROR: domain->groups does not contain" 5683 " CPU%d\n", cpu); 5684 } 5685 5686 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5687 do { 5688 if (!group) { 5689 printk("\n"); 5690 printk(KERN_ERR "ERROR: group is NULL\n"); 5691 break; 5692 } 5693 5694 if (!cpumask_weight(sched_group_cpus(group))) { 5695 printk(KERN_CONT "\n"); 5696 printk(KERN_ERR "ERROR: empty group\n"); 5697 break; 5698 } 5699 5700 if (!(sd->flags & SD_OVERLAP) && 5701 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5702 printk(KERN_CONT "\n"); 5703 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5704 break; 5705 } 5706 5707 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5708 5709 printk(KERN_CONT " %*pbl", 5710 cpumask_pr_args(sched_group_cpus(group))); 5711 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5712 printk(KERN_CONT " (cpu_capacity = %lu)", 5713 group->sgc->capacity); 5714 } 5715 5716 group = group->next; 5717 } while (group != sd->groups); 5718 printk(KERN_CONT "\n"); 5719 5720 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5721 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5722 5723 if (sd->parent && 5724 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5725 printk(KERN_ERR "ERROR: parent span is not a superset " 5726 "of domain->span\n"); 5727 return 0; 5728 } 5729 5730 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5731 { 5732 int level = 0; 5733 5734 if (!sched_debug_enabled) 5735 return; 5736 5737 if (!sd) { 5738 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5739 return; 5740 } 5741 5742 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5743 5744 for (;;) { 5745 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5746 break; 5747 level++; 5748 sd = sd->parent; 5749 if (!sd) 5750 break; 5751 } 5752 } 5753 #else /* !CONFIG_SCHED_DEBUG */ 5754 5755 # define sched_debug_enabled 0 5756 # define sched_domain_debug(sd, cpu) do { } while (0) 5757 static inline bool sched_debug(void) 5758 { 5759 return false; 5760 } 5761 #endif /* CONFIG_SCHED_DEBUG */ 5762 5763 static int sd_degenerate(struct sched_domain *sd) 5764 { 5765 if (cpumask_weight(sched_domain_span(sd)) == 1) 5766 return 1; 5767 5768 /* Following flags need at least 2 groups */ 5769 if (sd->flags & (SD_LOAD_BALANCE | 5770 SD_BALANCE_NEWIDLE | 5771 SD_BALANCE_FORK | 5772 SD_BALANCE_EXEC | 5773 SD_SHARE_CPUCAPACITY | 5774 SD_ASYM_CPUCAPACITY | 5775 SD_SHARE_PKG_RESOURCES | 5776 SD_SHARE_POWERDOMAIN)) { 5777 if (sd->groups != sd->groups->next) 5778 return 0; 5779 } 5780 5781 /* Following flags don't use groups */ 5782 if (sd->flags & (SD_WAKE_AFFINE)) 5783 return 0; 5784 5785 return 1; 5786 } 5787 5788 static int 5789 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5790 { 5791 unsigned long cflags = sd->flags, pflags = parent->flags; 5792 5793 if (sd_degenerate(parent)) 5794 return 1; 5795 5796 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5797 return 0; 5798 5799 /* Flags needing groups don't count if only 1 group in parent */ 5800 if (parent->groups == parent->groups->next) { 5801 pflags &= ~(SD_LOAD_BALANCE | 5802 SD_BALANCE_NEWIDLE | 5803 SD_BALANCE_FORK | 5804 SD_BALANCE_EXEC | 5805 SD_ASYM_CPUCAPACITY | 5806 SD_SHARE_CPUCAPACITY | 5807 SD_SHARE_PKG_RESOURCES | 5808 SD_PREFER_SIBLING | 5809 SD_SHARE_POWERDOMAIN); 5810 if (nr_node_ids == 1) 5811 pflags &= ~SD_SERIALIZE; 5812 } 5813 if (~cflags & pflags) 5814 return 0; 5815 5816 return 1; 5817 } 5818 5819 static void free_rootdomain(struct rcu_head *rcu) 5820 { 5821 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5822 5823 cpupri_cleanup(&rd->cpupri); 5824 cpudl_cleanup(&rd->cpudl); 5825 free_cpumask_var(rd->dlo_mask); 5826 free_cpumask_var(rd->rto_mask); 5827 free_cpumask_var(rd->online); 5828 free_cpumask_var(rd->span); 5829 kfree(rd); 5830 } 5831 5832 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5833 { 5834 struct root_domain *old_rd = NULL; 5835 unsigned long flags; 5836 5837 raw_spin_lock_irqsave(&rq->lock, flags); 5838 5839 if (rq->rd) { 5840 old_rd = rq->rd; 5841 5842 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5843 set_rq_offline(rq); 5844 5845 cpumask_clear_cpu(rq->cpu, old_rd->span); 5846 5847 /* 5848 * If we dont want to free the old_rd yet then 5849 * set old_rd to NULL to skip the freeing later 5850 * in this function: 5851 */ 5852 if (!atomic_dec_and_test(&old_rd->refcount)) 5853 old_rd = NULL; 5854 } 5855 5856 atomic_inc(&rd->refcount); 5857 rq->rd = rd; 5858 5859 cpumask_set_cpu(rq->cpu, rd->span); 5860 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5861 set_rq_online(rq); 5862 5863 raw_spin_unlock_irqrestore(&rq->lock, flags); 5864 5865 if (old_rd) 5866 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5867 } 5868 5869 static int init_rootdomain(struct root_domain *rd) 5870 { 5871 memset(rd, 0, sizeof(*rd)); 5872 5873 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 5874 goto out; 5875 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 5876 goto free_span; 5877 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5878 goto free_online; 5879 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5880 goto free_dlo_mask; 5881 5882 init_dl_bw(&rd->dl_bw); 5883 if (cpudl_init(&rd->cpudl) != 0) 5884 goto free_dlo_mask; 5885 5886 if (cpupri_init(&rd->cpupri) != 0) 5887 goto free_rto_mask; 5888 return 0; 5889 5890 free_rto_mask: 5891 free_cpumask_var(rd->rto_mask); 5892 free_dlo_mask: 5893 free_cpumask_var(rd->dlo_mask); 5894 free_online: 5895 free_cpumask_var(rd->online); 5896 free_span: 5897 free_cpumask_var(rd->span); 5898 out: 5899 return -ENOMEM; 5900 } 5901 5902 /* 5903 * By default the system creates a single root-domain with all cpus as 5904 * members (mimicking the global state we have today). 5905 */ 5906 struct root_domain def_root_domain; 5907 5908 static void init_defrootdomain(void) 5909 { 5910 init_rootdomain(&def_root_domain); 5911 5912 atomic_set(&def_root_domain.refcount, 1); 5913 } 5914 5915 static struct root_domain *alloc_rootdomain(void) 5916 { 5917 struct root_domain *rd; 5918 5919 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5920 if (!rd) 5921 return NULL; 5922 5923 if (init_rootdomain(rd) != 0) { 5924 kfree(rd); 5925 return NULL; 5926 } 5927 5928 return rd; 5929 } 5930 5931 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5932 { 5933 struct sched_group *tmp, *first; 5934 5935 if (!sg) 5936 return; 5937 5938 first = sg; 5939 do { 5940 tmp = sg->next; 5941 5942 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5943 kfree(sg->sgc); 5944 5945 kfree(sg); 5946 sg = tmp; 5947 } while (sg != first); 5948 } 5949 5950 static void destroy_sched_domain(struct sched_domain *sd) 5951 { 5952 /* 5953 * If its an overlapping domain it has private groups, iterate and 5954 * nuke them all. 5955 */ 5956 if (sd->flags & SD_OVERLAP) { 5957 free_sched_groups(sd->groups, 1); 5958 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5959 kfree(sd->groups->sgc); 5960 kfree(sd->groups); 5961 } 5962 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 5963 kfree(sd->shared); 5964 kfree(sd); 5965 } 5966 5967 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 5968 { 5969 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5970 5971 while (sd) { 5972 struct sched_domain *parent = sd->parent; 5973 destroy_sched_domain(sd); 5974 sd = parent; 5975 } 5976 } 5977 5978 static void destroy_sched_domains(struct sched_domain *sd) 5979 { 5980 if (sd) 5981 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 5982 } 5983 5984 /* 5985 * Keep a special pointer to the highest sched_domain that has 5986 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5987 * allows us to avoid some pointer chasing select_idle_sibling(). 5988 * 5989 * Also keep a unique ID per domain (we use the first cpu number in 5990 * the cpumask of the domain), this allows us to quickly tell if 5991 * two cpus are in the same cache domain, see cpus_share_cache(). 5992 */ 5993 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5994 DEFINE_PER_CPU(int, sd_llc_size); 5995 DEFINE_PER_CPU(int, sd_llc_id); 5996 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 5997 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5998 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5999 6000 static void update_top_cache_domain(int cpu) 6001 { 6002 struct sched_domain_shared *sds = NULL; 6003 struct sched_domain *sd; 6004 int id = cpu; 6005 int size = 1; 6006 6007 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 6008 if (sd) { 6009 id = cpumask_first(sched_domain_span(sd)); 6010 size = cpumask_weight(sched_domain_span(sd)); 6011 sds = sd->shared; 6012 } 6013 6014 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 6015 per_cpu(sd_llc_size, cpu) = size; 6016 per_cpu(sd_llc_id, cpu) = id; 6017 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 6018 6019 sd = lowest_flag_domain(cpu, SD_NUMA); 6020 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 6021 6022 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 6023 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 6024 } 6025 6026 /* 6027 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 6028 * hold the hotplug lock. 6029 */ 6030 static void 6031 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 6032 { 6033 struct rq *rq = cpu_rq(cpu); 6034 struct sched_domain *tmp; 6035 6036 /* Remove the sched domains which do not contribute to scheduling. */ 6037 for (tmp = sd; tmp; ) { 6038 struct sched_domain *parent = tmp->parent; 6039 if (!parent) 6040 break; 6041 6042 if (sd_parent_degenerate(tmp, parent)) { 6043 tmp->parent = parent->parent; 6044 if (parent->parent) 6045 parent->parent->child = tmp; 6046 /* 6047 * Transfer SD_PREFER_SIBLING down in case of a 6048 * degenerate parent; the spans match for this 6049 * so the property transfers. 6050 */ 6051 if (parent->flags & SD_PREFER_SIBLING) 6052 tmp->flags |= SD_PREFER_SIBLING; 6053 destroy_sched_domain(parent); 6054 } else 6055 tmp = tmp->parent; 6056 } 6057 6058 if (sd && sd_degenerate(sd)) { 6059 tmp = sd; 6060 sd = sd->parent; 6061 destroy_sched_domain(tmp); 6062 if (sd) 6063 sd->child = NULL; 6064 } 6065 6066 sched_domain_debug(sd, cpu); 6067 6068 rq_attach_root(rq, rd); 6069 tmp = rq->sd; 6070 rcu_assign_pointer(rq->sd, sd); 6071 destroy_sched_domains(tmp); 6072 6073 update_top_cache_domain(cpu); 6074 } 6075 6076 /* Setup the mask of cpus configured for isolated domains */ 6077 static int __init isolated_cpu_setup(char *str) 6078 { 6079 int ret; 6080 6081 alloc_bootmem_cpumask_var(&cpu_isolated_map); 6082 ret = cpulist_parse(str, cpu_isolated_map); 6083 if (ret) { 6084 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 6085 return 0; 6086 } 6087 return 1; 6088 } 6089 __setup("isolcpus=", isolated_cpu_setup); 6090 6091 struct s_data { 6092 struct sched_domain ** __percpu sd; 6093 struct root_domain *rd; 6094 }; 6095 6096 enum s_alloc { 6097 sa_rootdomain, 6098 sa_sd, 6099 sa_sd_storage, 6100 sa_none, 6101 }; 6102 6103 /* 6104 * Build an iteration mask that can exclude certain CPUs from the upwards 6105 * domain traversal. 6106 * 6107 * Asymmetric node setups can result in situations where the domain tree is of 6108 * unequal depth, make sure to skip domains that already cover the entire 6109 * range. 6110 * 6111 * In that case build_sched_domains() will have terminated the iteration early 6112 * and our sibling sd spans will be empty. Domains should always include the 6113 * cpu they're built on, so check that. 6114 * 6115 */ 6116 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 6117 { 6118 const struct cpumask *span = sched_domain_span(sd); 6119 struct sd_data *sdd = sd->private; 6120 struct sched_domain *sibling; 6121 int i; 6122 6123 for_each_cpu(i, span) { 6124 sibling = *per_cpu_ptr(sdd->sd, i); 6125 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6126 continue; 6127 6128 cpumask_set_cpu(i, sched_group_mask(sg)); 6129 } 6130 } 6131 6132 /* 6133 * Return the canonical balance cpu for this group, this is the first cpu 6134 * of this group that's also in the iteration mask. 6135 */ 6136 int group_balance_cpu(struct sched_group *sg) 6137 { 6138 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 6139 } 6140 6141 static int 6142 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6143 { 6144 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6145 const struct cpumask *span = sched_domain_span(sd); 6146 struct cpumask *covered = sched_domains_tmpmask; 6147 struct sd_data *sdd = sd->private; 6148 struct sched_domain *sibling; 6149 int i; 6150 6151 cpumask_clear(covered); 6152 6153 for_each_cpu(i, span) { 6154 struct cpumask *sg_span; 6155 6156 if (cpumask_test_cpu(i, covered)) 6157 continue; 6158 6159 sibling = *per_cpu_ptr(sdd->sd, i); 6160 6161 /* See the comment near build_group_mask(). */ 6162 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6163 continue; 6164 6165 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6166 GFP_KERNEL, cpu_to_node(cpu)); 6167 6168 if (!sg) 6169 goto fail; 6170 6171 sg_span = sched_group_cpus(sg); 6172 if (sibling->child) 6173 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 6174 else 6175 cpumask_set_cpu(i, sg_span); 6176 6177 cpumask_or(covered, covered, sg_span); 6178 6179 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6180 if (atomic_inc_return(&sg->sgc->ref) == 1) 6181 build_group_mask(sd, sg); 6182 6183 /* 6184 * Initialize sgc->capacity such that even if we mess up the 6185 * domains and no possible iteration will get us here, we won't 6186 * die on a /0 trap. 6187 */ 6188 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6189 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 6190 6191 /* 6192 * Make sure the first group of this domain contains the 6193 * canonical balance cpu. Otherwise the sched_domain iteration 6194 * breaks. See update_sg_lb_stats(). 6195 */ 6196 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6197 group_balance_cpu(sg) == cpu) 6198 groups = sg; 6199 6200 if (!first) 6201 first = sg; 6202 if (last) 6203 last->next = sg; 6204 last = sg; 6205 last->next = first; 6206 } 6207 sd->groups = groups; 6208 6209 return 0; 6210 6211 fail: 6212 free_sched_groups(first, 0); 6213 6214 return -ENOMEM; 6215 } 6216 6217 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6218 { 6219 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6220 struct sched_domain *child = sd->child; 6221 6222 if (child) 6223 cpu = cpumask_first(sched_domain_span(child)); 6224 6225 if (sg) { 6226 *sg = *per_cpu_ptr(sdd->sg, cpu); 6227 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6228 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6229 } 6230 6231 return cpu; 6232 } 6233 6234 /* 6235 * build_sched_groups will build a circular linked list of the groups 6236 * covered by the given span, and will set each group's ->cpumask correctly, 6237 * and ->cpu_capacity to 0. 6238 * 6239 * Assumes the sched_domain tree is fully constructed 6240 */ 6241 static int 6242 build_sched_groups(struct sched_domain *sd, int cpu) 6243 { 6244 struct sched_group *first = NULL, *last = NULL; 6245 struct sd_data *sdd = sd->private; 6246 const struct cpumask *span = sched_domain_span(sd); 6247 struct cpumask *covered; 6248 int i; 6249 6250 get_group(cpu, sdd, &sd->groups); 6251 atomic_inc(&sd->groups->ref); 6252 6253 if (cpu != cpumask_first(span)) 6254 return 0; 6255 6256 lockdep_assert_held(&sched_domains_mutex); 6257 covered = sched_domains_tmpmask; 6258 6259 cpumask_clear(covered); 6260 6261 for_each_cpu(i, span) { 6262 struct sched_group *sg; 6263 int group, j; 6264 6265 if (cpumask_test_cpu(i, covered)) 6266 continue; 6267 6268 group = get_group(i, sdd, &sg); 6269 cpumask_setall(sched_group_mask(sg)); 6270 6271 for_each_cpu(j, span) { 6272 if (get_group(j, sdd, NULL) != group) 6273 continue; 6274 6275 cpumask_set_cpu(j, covered); 6276 cpumask_set_cpu(j, sched_group_cpus(sg)); 6277 } 6278 6279 if (!first) 6280 first = sg; 6281 if (last) 6282 last->next = sg; 6283 last = sg; 6284 } 6285 last->next = first; 6286 6287 return 0; 6288 } 6289 6290 /* 6291 * Initialize sched groups cpu_capacity. 6292 * 6293 * cpu_capacity indicates the capacity of sched group, which is used while 6294 * distributing the load between different sched groups in a sched domain. 6295 * Typically cpu_capacity for all the groups in a sched domain will be same 6296 * unless there are asymmetries in the topology. If there are asymmetries, 6297 * group having more cpu_capacity will pickup more load compared to the 6298 * group having less cpu_capacity. 6299 */ 6300 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6301 { 6302 struct sched_group *sg = sd->groups; 6303 6304 WARN_ON(!sg); 6305 6306 do { 6307 int cpu, max_cpu = -1; 6308 6309 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6310 6311 if (!(sd->flags & SD_ASYM_PACKING)) 6312 goto next; 6313 6314 for_each_cpu(cpu, sched_group_cpus(sg)) { 6315 if (max_cpu < 0) 6316 max_cpu = cpu; 6317 else if (sched_asym_prefer(cpu, max_cpu)) 6318 max_cpu = cpu; 6319 } 6320 sg->asym_prefer_cpu = max_cpu; 6321 6322 next: 6323 sg = sg->next; 6324 } while (sg != sd->groups); 6325 6326 if (cpu != group_balance_cpu(sg)) 6327 return; 6328 6329 update_group_capacity(sd, cpu); 6330 } 6331 6332 /* 6333 * Initializers for schedule domains 6334 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6335 */ 6336 6337 static int default_relax_domain_level = -1; 6338 int sched_domain_level_max; 6339 6340 static int __init setup_relax_domain_level(char *str) 6341 { 6342 if (kstrtoint(str, 0, &default_relax_domain_level)) 6343 pr_warn("Unable to set relax_domain_level\n"); 6344 6345 return 1; 6346 } 6347 __setup("relax_domain_level=", setup_relax_domain_level); 6348 6349 static void set_domain_attribute(struct sched_domain *sd, 6350 struct sched_domain_attr *attr) 6351 { 6352 int request; 6353 6354 if (!attr || attr->relax_domain_level < 0) { 6355 if (default_relax_domain_level < 0) 6356 return; 6357 else 6358 request = default_relax_domain_level; 6359 } else 6360 request = attr->relax_domain_level; 6361 if (request < sd->level) { 6362 /* turn off idle balance on this domain */ 6363 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6364 } else { 6365 /* turn on idle balance on this domain */ 6366 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6367 } 6368 } 6369 6370 static void __sdt_free(const struct cpumask *cpu_map); 6371 static int __sdt_alloc(const struct cpumask *cpu_map); 6372 6373 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6374 const struct cpumask *cpu_map) 6375 { 6376 switch (what) { 6377 case sa_rootdomain: 6378 if (!atomic_read(&d->rd->refcount)) 6379 free_rootdomain(&d->rd->rcu); /* fall through */ 6380 case sa_sd: 6381 free_percpu(d->sd); /* fall through */ 6382 case sa_sd_storage: 6383 __sdt_free(cpu_map); /* fall through */ 6384 case sa_none: 6385 break; 6386 } 6387 } 6388 6389 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6390 const struct cpumask *cpu_map) 6391 { 6392 memset(d, 0, sizeof(*d)); 6393 6394 if (__sdt_alloc(cpu_map)) 6395 return sa_sd_storage; 6396 d->sd = alloc_percpu(struct sched_domain *); 6397 if (!d->sd) 6398 return sa_sd_storage; 6399 d->rd = alloc_rootdomain(); 6400 if (!d->rd) 6401 return sa_sd; 6402 return sa_rootdomain; 6403 } 6404 6405 /* 6406 * NULL the sd_data elements we've used to build the sched_domain and 6407 * sched_group structure so that the subsequent __free_domain_allocs() 6408 * will not free the data we're using. 6409 */ 6410 static void claim_allocations(int cpu, struct sched_domain *sd) 6411 { 6412 struct sd_data *sdd = sd->private; 6413 6414 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6415 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6416 6417 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 6418 *per_cpu_ptr(sdd->sds, cpu) = NULL; 6419 6420 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6421 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6422 6423 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6424 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6425 } 6426 6427 #ifdef CONFIG_NUMA 6428 static int sched_domains_numa_levels; 6429 enum numa_topology_type sched_numa_topology_type; 6430 static int *sched_domains_numa_distance; 6431 int sched_max_numa_distance; 6432 static struct cpumask ***sched_domains_numa_masks; 6433 static int sched_domains_curr_level; 6434 #endif 6435 6436 /* 6437 * SD_flags allowed in topology descriptions. 6438 * 6439 * These flags are purely descriptive of the topology and do not prescribe 6440 * behaviour. Behaviour is artificial and mapped in the below sd_init() 6441 * function: 6442 * 6443 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6444 * SD_SHARE_PKG_RESOURCES - describes shared caches 6445 * SD_NUMA - describes NUMA topologies 6446 * SD_SHARE_POWERDOMAIN - describes shared power domain 6447 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies 6448 * 6449 * Odd one out, which beside describing the topology has a quirk also 6450 * prescribes the desired behaviour that goes along with it: 6451 * 6452 * SD_ASYM_PACKING - describes SMT quirks 6453 */ 6454 #define TOPOLOGY_SD_FLAGS \ 6455 (SD_SHARE_CPUCAPACITY | \ 6456 SD_SHARE_PKG_RESOURCES | \ 6457 SD_NUMA | \ 6458 SD_ASYM_PACKING | \ 6459 SD_ASYM_CPUCAPACITY | \ 6460 SD_SHARE_POWERDOMAIN) 6461 6462 static struct sched_domain * 6463 sd_init(struct sched_domain_topology_level *tl, 6464 const struct cpumask *cpu_map, 6465 struct sched_domain *child, int cpu) 6466 { 6467 struct sd_data *sdd = &tl->data; 6468 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6469 int sd_id, sd_weight, sd_flags = 0; 6470 6471 #ifdef CONFIG_NUMA 6472 /* 6473 * Ugly hack to pass state to sd_numa_mask()... 6474 */ 6475 sched_domains_curr_level = tl->numa_level; 6476 #endif 6477 6478 sd_weight = cpumask_weight(tl->mask(cpu)); 6479 6480 if (tl->sd_flags) 6481 sd_flags = (*tl->sd_flags)(); 6482 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6483 "wrong sd_flags in topology description\n")) 6484 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6485 6486 *sd = (struct sched_domain){ 6487 .min_interval = sd_weight, 6488 .max_interval = 2*sd_weight, 6489 .busy_factor = 32, 6490 .imbalance_pct = 125, 6491 6492 .cache_nice_tries = 0, 6493 .busy_idx = 0, 6494 .idle_idx = 0, 6495 .newidle_idx = 0, 6496 .wake_idx = 0, 6497 .forkexec_idx = 0, 6498 6499 .flags = 1*SD_LOAD_BALANCE 6500 | 1*SD_BALANCE_NEWIDLE 6501 | 1*SD_BALANCE_EXEC 6502 | 1*SD_BALANCE_FORK 6503 | 0*SD_BALANCE_WAKE 6504 | 1*SD_WAKE_AFFINE 6505 | 0*SD_SHARE_CPUCAPACITY 6506 | 0*SD_SHARE_PKG_RESOURCES 6507 | 0*SD_SERIALIZE 6508 | 0*SD_PREFER_SIBLING 6509 | 0*SD_NUMA 6510 | sd_flags 6511 , 6512 6513 .last_balance = jiffies, 6514 .balance_interval = sd_weight, 6515 .smt_gain = 0, 6516 .max_newidle_lb_cost = 0, 6517 .next_decay_max_lb_cost = jiffies, 6518 .child = child, 6519 #ifdef CONFIG_SCHED_DEBUG 6520 .name = tl->name, 6521 #endif 6522 }; 6523 6524 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6525 sd_id = cpumask_first(sched_domain_span(sd)); 6526 6527 /* 6528 * Convert topological properties into behaviour. 6529 */ 6530 6531 if (sd->flags & SD_ASYM_CPUCAPACITY) { 6532 struct sched_domain *t = sd; 6533 6534 for_each_lower_domain(t) 6535 t->flags |= SD_BALANCE_WAKE; 6536 } 6537 6538 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6539 sd->flags |= SD_PREFER_SIBLING; 6540 sd->imbalance_pct = 110; 6541 sd->smt_gain = 1178; /* ~15% */ 6542 6543 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6544 sd->imbalance_pct = 117; 6545 sd->cache_nice_tries = 1; 6546 sd->busy_idx = 2; 6547 6548 #ifdef CONFIG_NUMA 6549 } else if (sd->flags & SD_NUMA) { 6550 sd->cache_nice_tries = 2; 6551 sd->busy_idx = 3; 6552 sd->idle_idx = 2; 6553 6554 sd->flags |= SD_SERIALIZE; 6555 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6556 sd->flags &= ~(SD_BALANCE_EXEC | 6557 SD_BALANCE_FORK | 6558 SD_WAKE_AFFINE); 6559 } 6560 6561 #endif 6562 } else { 6563 sd->flags |= SD_PREFER_SIBLING; 6564 sd->cache_nice_tries = 1; 6565 sd->busy_idx = 2; 6566 sd->idle_idx = 1; 6567 } 6568 6569 /* 6570 * For all levels sharing cache; connect a sched_domain_shared 6571 * instance. 6572 */ 6573 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6574 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 6575 atomic_inc(&sd->shared->ref); 6576 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 6577 } 6578 6579 sd->private = sdd; 6580 6581 return sd; 6582 } 6583 6584 /* 6585 * Topology list, bottom-up. 6586 */ 6587 static struct sched_domain_topology_level default_topology[] = { 6588 #ifdef CONFIG_SCHED_SMT 6589 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6590 #endif 6591 #ifdef CONFIG_SCHED_MC 6592 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6593 #endif 6594 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6595 { NULL, }, 6596 }; 6597 6598 static struct sched_domain_topology_level *sched_domain_topology = 6599 default_topology; 6600 6601 #define for_each_sd_topology(tl) \ 6602 for (tl = sched_domain_topology; tl->mask; tl++) 6603 6604 void set_sched_topology(struct sched_domain_topology_level *tl) 6605 { 6606 if (WARN_ON_ONCE(sched_smp_initialized)) 6607 return; 6608 6609 sched_domain_topology = tl; 6610 } 6611 6612 #ifdef CONFIG_NUMA 6613 6614 static const struct cpumask *sd_numa_mask(int cpu) 6615 { 6616 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6617 } 6618 6619 static void sched_numa_warn(const char *str) 6620 { 6621 static int done = false; 6622 int i,j; 6623 6624 if (done) 6625 return; 6626 6627 done = true; 6628 6629 printk(KERN_WARNING "ERROR: %s\n\n", str); 6630 6631 for (i = 0; i < nr_node_ids; i++) { 6632 printk(KERN_WARNING " "); 6633 for (j = 0; j < nr_node_ids; j++) 6634 printk(KERN_CONT "%02d ", node_distance(i,j)); 6635 printk(KERN_CONT "\n"); 6636 } 6637 printk(KERN_WARNING "\n"); 6638 } 6639 6640 bool find_numa_distance(int distance) 6641 { 6642 int i; 6643 6644 if (distance == node_distance(0, 0)) 6645 return true; 6646 6647 for (i = 0; i < sched_domains_numa_levels; i++) { 6648 if (sched_domains_numa_distance[i] == distance) 6649 return true; 6650 } 6651 6652 return false; 6653 } 6654 6655 /* 6656 * A system can have three types of NUMA topology: 6657 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6658 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6659 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6660 * 6661 * The difference between a glueless mesh topology and a backplane 6662 * topology lies in whether communication between not directly 6663 * connected nodes goes through intermediary nodes (where programs 6664 * could run), or through backplane controllers. This affects 6665 * placement of programs. 6666 * 6667 * The type of topology can be discerned with the following tests: 6668 * - If the maximum distance between any nodes is 1 hop, the system 6669 * is directly connected. 6670 * - If for two nodes A and B, located N > 1 hops away from each other, 6671 * there is an intermediary node C, which is < N hops away from both 6672 * nodes A and B, the system is a glueless mesh. 6673 */ 6674 static void init_numa_topology_type(void) 6675 { 6676 int a, b, c, n; 6677 6678 n = sched_max_numa_distance; 6679 6680 if (sched_domains_numa_levels <= 1) { 6681 sched_numa_topology_type = NUMA_DIRECT; 6682 return; 6683 } 6684 6685 for_each_online_node(a) { 6686 for_each_online_node(b) { 6687 /* Find two nodes furthest removed from each other. */ 6688 if (node_distance(a, b) < n) 6689 continue; 6690 6691 /* Is there an intermediary node between a and b? */ 6692 for_each_online_node(c) { 6693 if (node_distance(a, c) < n && 6694 node_distance(b, c) < n) { 6695 sched_numa_topology_type = 6696 NUMA_GLUELESS_MESH; 6697 return; 6698 } 6699 } 6700 6701 sched_numa_topology_type = NUMA_BACKPLANE; 6702 return; 6703 } 6704 } 6705 } 6706 6707 static void sched_init_numa(void) 6708 { 6709 int next_distance, curr_distance = node_distance(0, 0); 6710 struct sched_domain_topology_level *tl; 6711 int level = 0; 6712 int i, j, k; 6713 6714 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6715 if (!sched_domains_numa_distance) 6716 return; 6717 6718 /* 6719 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6720 * unique distances in the node_distance() table. 6721 * 6722 * Assumes node_distance(0,j) includes all distances in 6723 * node_distance(i,j) in order to avoid cubic time. 6724 */ 6725 next_distance = curr_distance; 6726 for (i = 0; i < nr_node_ids; i++) { 6727 for (j = 0; j < nr_node_ids; j++) { 6728 for (k = 0; k < nr_node_ids; k++) { 6729 int distance = node_distance(i, k); 6730 6731 if (distance > curr_distance && 6732 (distance < next_distance || 6733 next_distance == curr_distance)) 6734 next_distance = distance; 6735 6736 /* 6737 * While not a strong assumption it would be nice to know 6738 * about cases where if node A is connected to B, B is not 6739 * equally connected to A. 6740 */ 6741 if (sched_debug() && node_distance(k, i) != distance) 6742 sched_numa_warn("Node-distance not symmetric"); 6743 6744 if (sched_debug() && i && !find_numa_distance(distance)) 6745 sched_numa_warn("Node-0 not representative"); 6746 } 6747 if (next_distance != curr_distance) { 6748 sched_domains_numa_distance[level++] = next_distance; 6749 sched_domains_numa_levels = level; 6750 curr_distance = next_distance; 6751 } else break; 6752 } 6753 6754 /* 6755 * In case of sched_debug() we verify the above assumption. 6756 */ 6757 if (!sched_debug()) 6758 break; 6759 } 6760 6761 if (!level) 6762 return; 6763 6764 /* 6765 * 'level' contains the number of unique distances, excluding the 6766 * identity distance node_distance(i,i). 6767 * 6768 * The sched_domains_numa_distance[] array includes the actual distance 6769 * numbers. 6770 */ 6771 6772 /* 6773 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6774 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6775 * the array will contain less then 'level' members. This could be 6776 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6777 * in other functions. 6778 * 6779 * We reset it to 'level' at the end of this function. 6780 */ 6781 sched_domains_numa_levels = 0; 6782 6783 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6784 if (!sched_domains_numa_masks) 6785 return; 6786 6787 /* 6788 * Now for each level, construct a mask per node which contains all 6789 * cpus of nodes that are that many hops away from us. 6790 */ 6791 for (i = 0; i < level; i++) { 6792 sched_domains_numa_masks[i] = 6793 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6794 if (!sched_domains_numa_masks[i]) 6795 return; 6796 6797 for (j = 0; j < nr_node_ids; j++) { 6798 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6799 if (!mask) 6800 return; 6801 6802 sched_domains_numa_masks[i][j] = mask; 6803 6804 for_each_node(k) { 6805 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6806 continue; 6807 6808 cpumask_or(mask, mask, cpumask_of_node(k)); 6809 } 6810 } 6811 } 6812 6813 /* Compute default topology size */ 6814 for (i = 0; sched_domain_topology[i].mask; i++); 6815 6816 tl = kzalloc((i + level + 1) * 6817 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6818 if (!tl) 6819 return; 6820 6821 /* 6822 * Copy the default topology bits.. 6823 */ 6824 for (i = 0; sched_domain_topology[i].mask; i++) 6825 tl[i] = sched_domain_topology[i]; 6826 6827 /* 6828 * .. and append 'j' levels of NUMA goodness. 6829 */ 6830 for (j = 0; j < level; i++, j++) { 6831 tl[i] = (struct sched_domain_topology_level){ 6832 .mask = sd_numa_mask, 6833 .sd_flags = cpu_numa_flags, 6834 .flags = SDTL_OVERLAP, 6835 .numa_level = j, 6836 SD_INIT_NAME(NUMA) 6837 }; 6838 } 6839 6840 sched_domain_topology = tl; 6841 6842 sched_domains_numa_levels = level; 6843 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6844 6845 init_numa_topology_type(); 6846 } 6847 6848 static void sched_domains_numa_masks_set(unsigned int cpu) 6849 { 6850 int node = cpu_to_node(cpu); 6851 int i, j; 6852 6853 for (i = 0; i < sched_domains_numa_levels; i++) { 6854 for (j = 0; j < nr_node_ids; j++) { 6855 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6856 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6857 } 6858 } 6859 } 6860 6861 static void sched_domains_numa_masks_clear(unsigned int cpu) 6862 { 6863 int i, j; 6864 6865 for (i = 0; i < sched_domains_numa_levels; i++) { 6866 for (j = 0; j < nr_node_ids; j++) 6867 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6868 } 6869 } 6870 6871 #else 6872 static inline void sched_init_numa(void) { } 6873 static void sched_domains_numa_masks_set(unsigned int cpu) { } 6874 static void sched_domains_numa_masks_clear(unsigned int cpu) { } 6875 #endif /* CONFIG_NUMA */ 6876 6877 static int __sdt_alloc(const struct cpumask *cpu_map) 6878 { 6879 struct sched_domain_topology_level *tl; 6880 int j; 6881 6882 for_each_sd_topology(tl) { 6883 struct sd_data *sdd = &tl->data; 6884 6885 sdd->sd = alloc_percpu(struct sched_domain *); 6886 if (!sdd->sd) 6887 return -ENOMEM; 6888 6889 sdd->sds = alloc_percpu(struct sched_domain_shared *); 6890 if (!sdd->sds) 6891 return -ENOMEM; 6892 6893 sdd->sg = alloc_percpu(struct sched_group *); 6894 if (!sdd->sg) 6895 return -ENOMEM; 6896 6897 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6898 if (!sdd->sgc) 6899 return -ENOMEM; 6900 6901 for_each_cpu(j, cpu_map) { 6902 struct sched_domain *sd; 6903 struct sched_domain_shared *sds; 6904 struct sched_group *sg; 6905 struct sched_group_capacity *sgc; 6906 6907 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6908 GFP_KERNEL, cpu_to_node(j)); 6909 if (!sd) 6910 return -ENOMEM; 6911 6912 *per_cpu_ptr(sdd->sd, j) = sd; 6913 6914 sds = kzalloc_node(sizeof(struct sched_domain_shared), 6915 GFP_KERNEL, cpu_to_node(j)); 6916 if (!sds) 6917 return -ENOMEM; 6918 6919 *per_cpu_ptr(sdd->sds, j) = sds; 6920 6921 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6922 GFP_KERNEL, cpu_to_node(j)); 6923 if (!sg) 6924 return -ENOMEM; 6925 6926 sg->next = sg; 6927 6928 *per_cpu_ptr(sdd->sg, j) = sg; 6929 6930 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6931 GFP_KERNEL, cpu_to_node(j)); 6932 if (!sgc) 6933 return -ENOMEM; 6934 6935 *per_cpu_ptr(sdd->sgc, j) = sgc; 6936 } 6937 } 6938 6939 return 0; 6940 } 6941 6942 static void __sdt_free(const struct cpumask *cpu_map) 6943 { 6944 struct sched_domain_topology_level *tl; 6945 int j; 6946 6947 for_each_sd_topology(tl) { 6948 struct sd_data *sdd = &tl->data; 6949 6950 for_each_cpu(j, cpu_map) { 6951 struct sched_domain *sd; 6952 6953 if (sdd->sd) { 6954 sd = *per_cpu_ptr(sdd->sd, j); 6955 if (sd && (sd->flags & SD_OVERLAP)) 6956 free_sched_groups(sd->groups, 0); 6957 kfree(*per_cpu_ptr(sdd->sd, j)); 6958 } 6959 6960 if (sdd->sds) 6961 kfree(*per_cpu_ptr(sdd->sds, j)); 6962 if (sdd->sg) 6963 kfree(*per_cpu_ptr(sdd->sg, j)); 6964 if (sdd->sgc) 6965 kfree(*per_cpu_ptr(sdd->sgc, j)); 6966 } 6967 free_percpu(sdd->sd); 6968 sdd->sd = NULL; 6969 free_percpu(sdd->sds); 6970 sdd->sds = NULL; 6971 free_percpu(sdd->sg); 6972 sdd->sg = NULL; 6973 free_percpu(sdd->sgc); 6974 sdd->sgc = NULL; 6975 } 6976 } 6977 6978 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6979 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6980 struct sched_domain *child, int cpu) 6981 { 6982 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 6983 6984 if (child) { 6985 sd->level = child->level + 1; 6986 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6987 child->parent = sd; 6988 6989 if (!cpumask_subset(sched_domain_span(child), 6990 sched_domain_span(sd))) { 6991 pr_err("BUG: arch topology borken\n"); 6992 #ifdef CONFIG_SCHED_DEBUG 6993 pr_err(" the %s domain not a subset of the %s domain\n", 6994 child->name, sd->name); 6995 #endif 6996 /* Fixup, ensure @sd has at least @child cpus. */ 6997 cpumask_or(sched_domain_span(sd), 6998 sched_domain_span(sd), 6999 sched_domain_span(child)); 7000 } 7001 7002 } 7003 set_domain_attribute(sd, attr); 7004 7005 return sd; 7006 } 7007 7008 /* 7009 * Build sched domains for a given set of cpus and attach the sched domains 7010 * to the individual cpus 7011 */ 7012 static int build_sched_domains(const struct cpumask *cpu_map, 7013 struct sched_domain_attr *attr) 7014 { 7015 enum s_alloc alloc_state; 7016 struct sched_domain *sd; 7017 struct s_data d; 7018 struct rq *rq = NULL; 7019 int i, ret = -ENOMEM; 7020 7021 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 7022 if (alloc_state != sa_rootdomain) 7023 goto error; 7024 7025 /* Set up domains for cpus specified by the cpu_map. */ 7026 for_each_cpu(i, cpu_map) { 7027 struct sched_domain_topology_level *tl; 7028 7029 sd = NULL; 7030 for_each_sd_topology(tl) { 7031 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 7032 if (tl == sched_domain_topology) 7033 *per_cpu_ptr(d.sd, i) = sd; 7034 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 7035 sd->flags |= SD_OVERLAP; 7036 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 7037 break; 7038 } 7039 } 7040 7041 /* Build the groups for the domains */ 7042 for_each_cpu(i, cpu_map) { 7043 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 7044 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 7045 if (sd->flags & SD_OVERLAP) { 7046 if (build_overlap_sched_groups(sd, i)) 7047 goto error; 7048 } else { 7049 if (build_sched_groups(sd, i)) 7050 goto error; 7051 } 7052 } 7053 } 7054 7055 /* Calculate CPU capacity for physical packages and nodes */ 7056 for (i = nr_cpumask_bits-1; i >= 0; i--) { 7057 if (!cpumask_test_cpu(i, cpu_map)) 7058 continue; 7059 7060 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 7061 claim_allocations(i, sd); 7062 init_sched_groups_capacity(i, sd); 7063 } 7064 } 7065 7066 /* Attach the domains */ 7067 rcu_read_lock(); 7068 for_each_cpu(i, cpu_map) { 7069 rq = cpu_rq(i); 7070 sd = *per_cpu_ptr(d.sd, i); 7071 7072 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 7073 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 7074 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 7075 7076 cpu_attach_domain(sd, d.rd, i); 7077 } 7078 rcu_read_unlock(); 7079 7080 if (rq && sched_debug_enabled) { 7081 pr_info("span: %*pbl (max cpu_capacity = %lu)\n", 7082 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 7083 } 7084 7085 ret = 0; 7086 error: 7087 __free_domain_allocs(&d, alloc_state, cpu_map); 7088 return ret; 7089 } 7090 7091 static cpumask_var_t *doms_cur; /* current sched domains */ 7092 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 7093 static struct sched_domain_attr *dattr_cur; 7094 /* attribues of custom domains in 'doms_cur' */ 7095 7096 /* 7097 * Special case: If a kmalloc of a doms_cur partition (array of 7098 * cpumask) fails, then fallback to a single sched domain, 7099 * as determined by the single cpumask fallback_doms. 7100 */ 7101 static cpumask_var_t fallback_doms; 7102 7103 /* 7104 * arch_update_cpu_topology lets virtualized architectures update the 7105 * cpu core maps. It is supposed to return 1 if the topology changed 7106 * or 0 if it stayed the same. 7107 */ 7108 int __weak arch_update_cpu_topology(void) 7109 { 7110 return 0; 7111 } 7112 7113 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 7114 { 7115 int i; 7116 cpumask_var_t *doms; 7117 7118 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 7119 if (!doms) 7120 return NULL; 7121 for (i = 0; i < ndoms; i++) { 7122 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 7123 free_sched_domains(doms, i); 7124 return NULL; 7125 } 7126 } 7127 return doms; 7128 } 7129 7130 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 7131 { 7132 unsigned int i; 7133 for (i = 0; i < ndoms; i++) 7134 free_cpumask_var(doms[i]); 7135 kfree(doms); 7136 } 7137 7138 /* 7139 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 7140 * For now this just excludes isolated cpus, but could be used to 7141 * exclude other special cases in the future. 7142 */ 7143 static int init_sched_domains(const struct cpumask *cpu_map) 7144 { 7145 int err; 7146 7147 arch_update_cpu_topology(); 7148 ndoms_cur = 1; 7149 doms_cur = alloc_sched_domains(ndoms_cur); 7150 if (!doms_cur) 7151 doms_cur = &fallback_doms; 7152 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 7153 err = build_sched_domains(doms_cur[0], NULL); 7154 register_sched_domain_sysctl(); 7155 7156 return err; 7157 } 7158 7159 /* 7160 * Detach sched domains from a group of cpus specified in cpu_map 7161 * These cpus will now be attached to the NULL domain 7162 */ 7163 static void detach_destroy_domains(const struct cpumask *cpu_map) 7164 { 7165 int i; 7166 7167 rcu_read_lock(); 7168 for_each_cpu(i, cpu_map) 7169 cpu_attach_domain(NULL, &def_root_domain, i); 7170 rcu_read_unlock(); 7171 } 7172 7173 /* handle null as "default" */ 7174 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 7175 struct sched_domain_attr *new, int idx_new) 7176 { 7177 struct sched_domain_attr tmp; 7178 7179 /* fast path */ 7180 if (!new && !cur) 7181 return 1; 7182 7183 tmp = SD_ATTR_INIT; 7184 return !memcmp(cur ? (cur + idx_cur) : &tmp, 7185 new ? (new + idx_new) : &tmp, 7186 sizeof(struct sched_domain_attr)); 7187 } 7188 7189 /* 7190 * Partition sched domains as specified by the 'ndoms_new' 7191 * cpumasks in the array doms_new[] of cpumasks. This compares 7192 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7193 * It destroys each deleted domain and builds each new domain. 7194 * 7195 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7196 * The masks don't intersect (don't overlap.) We should setup one 7197 * sched domain for each mask. CPUs not in any of the cpumasks will 7198 * not be load balanced. If the same cpumask appears both in the 7199 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7200 * it as it is. 7201 * 7202 * The passed in 'doms_new' should be allocated using 7203 * alloc_sched_domains. This routine takes ownership of it and will 7204 * free_sched_domains it when done with it. If the caller failed the 7205 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7206 * and partition_sched_domains() will fallback to the single partition 7207 * 'fallback_doms', it also forces the domains to be rebuilt. 7208 * 7209 * If doms_new == NULL it will be replaced with cpu_online_mask. 7210 * ndoms_new == 0 is a special case for destroying existing domains, 7211 * and it will not create the default domain. 7212 * 7213 * Call with hotplug lock held 7214 */ 7215 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7216 struct sched_domain_attr *dattr_new) 7217 { 7218 int i, j, n; 7219 int new_topology; 7220 7221 mutex_lock(&sched_domains_mutex); 7222 7223 /* always unregister in case we don't destroy any domains */ 7224 unregister_sched_domain_sysctl(); 7225 7226 /* Let architecture update cpu core mappings. */ 7227 new_topology = arch_update_cpu_topology(); 7228 7229 n = doms_new ? ndoms_new : 0; 7230 7231 /* Destroy deleted domains */ 7232 for (i = 0; i < ndoms_cur; i++) { 7233 for (j = 0; j < n && !new_topology; j++) { 7234 if (cpumask_equal(doms_cur[i], doms_new[j]) 7235 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7236 goto match1; 7237 } 7238 /* no match - a current sched domain not in new doms_new[] */ 7239 detach_destroy_domains(doms_cur[i]); 7240 match1: 7241 ; 7242 } 7243 7244 n = ndoms_cur; 7245 if (doms_new == NULL) { 7246 n = 0; 7247 doms_new = &fallback_doms; 7248 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7249 WARN_ON_ONCE(dattr_new); 7250 } 7251 7252 /* Build new domains */ 7253 for (i = 0; i < ndoms_new; i++) { 7254 for (j = 0; j < n && !new_topology; j++) { 7255 if (cpumask_equal(doms_new[i], doms_cur[j]) 7256 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7257 goto match2; 7258 } 7259 /* no match - add a new doms_new */ 7260 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7261 match2: 7262 ; 7263 } 7264 7265 /* Remember the new sched domains */ 7266 if (doms_cur != &fallback_doms) 7267 free_sched_domains(doms_cur, ndoms_cur); 7268 kfree(dattr_cur); /* kfree(NULL) is safe */ 7269 doms_cur = doms_new; 7270 dattr_cur = dattr_new; 7271 ndoms_cur = ndoms_new; 7272 7273 register_sched_domain_sysctl(); 7274 7275 mutex_unlock(&sched_domains_mutex); 7276 } 7277 7278 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7279 7280 /* 7281 * Update cpusets according to cpu_active mask. If cpusets are 7282 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7283 * around partition_sched_domains(). 7284 * 7285 * If we come here as part of a suspend/resume, don't touch cpusets because we 7286 * want to restore it back to its original state upon resume anyway. 7287 */ 7288 static void cpuset_cpu_active(void) 7289 { 7290 if (cpuhp_tasks_frozen) { 7291 /* 7292 * num_cpus_frozen tracks how many CPUs are involved in suspend 7293 * resume sequence. As long as this is not the last online 7294 * operation in the resume sequence, just build a single sched 7295 * domain, ignoring cpusets. 7296 */ 7297 num_cpus_frozen--; 7298 if (likely(num_cpus_frozen)) { 7299 partition_sched_domains(1, NULL, NULL); 7300 return; 7301 } 7302 /* 7303 * This is the last CPU online operation. So fall through and 7304 * restore the original sched domains by considering the 7305 * cpuset configurations. 7306 */ 7307 } 7308 cpuset_update_active_cpus(true); 7309 } 7310 7311 static int cpuset_cpu_inactive(unsigned int cpu) 7312 { 7313 unsigned long flags; 7314 struct dl_bw *dl_b; 7315 bool overflow; 7316 int cpus; 7317 7318 if (!cpuhp_tasks_frozen) { 7319 rcu_read_lock_sched(); 7320 dl_b = dl_bw_of(cpu); 7321 7322 raw_spin_lock_irqsave(&dl_b->lock, flags); 7323 cpus = dl_bw_cpus(cpu); 7324 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7325 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7326 7327 rcu_read_unlock_sched(); 7328 7329 if (overflow) 7330 return -EBUSY; 7331 cpuset_update_active_cpus(false); 7332 } else { 7333 num_cpus_frozen++; 7334 partition_sched_domains(1, NULL, NULL); 7335 } 7336 return 0; 7337 } 7338 7339 int sched_cpu_activate(unsigned int cpu) 7340 { 7341 struct rq *rq = cpu_rq(cpu); 7342 unsigned long flags; 7343 7344 set_cpu_active(cpu, true); 7345 7346 if (sched_smp_initialized) { 7347 sched_domains_numa_masks_set(cpu); 7348 cpuset_cpu_active(); 7349 } 7350 7351 /* 7352 * Put the rq online, if not already. This happens: 7353 * 7354 * 1) In the early boot process, because we build the real domains 7355 * after all cpus have been brought up. 7356 * 7357 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7358 * domains. 7359 */ 7360 raw_spin_lock_irqsave(&rq->lock, flags); 7361 if (rq->rd) { 7362 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7363 set_rq_online(rq); 7364 } 7365 raw_spin_unlock_irqrestore(&rq->lock, flags); 7366 7367 update_max_interval(); 7368 7369 return 0; 7370 } 7371 7372 int sched_cpu_deactivate(unsigned int cpu) 7373 { 7374 int ret; 7375 7376 set_cpu_active(cpu, false); 7377 /* 7378 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 7379 * users of this state to go away such that all new such users will 7380 * observe it. 7381 * 7382 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might 7383 * not imply sync_sched(), so wait for both. 7384 * 7385 * Do sync before park smpboot threads to take care the rcu boost case. 7386 */ 7387 if (IS_ENABLED(CONFIG_PREEMPT)) 7388 synchronize_rcu_mult(call_rcu, call_rcu_sched); 7389 else 7390 synchronize_rcu(); 7391 7392 if (!sched_smp_initialized) 7393 return 0; 7394 7395 ret = cpuset_cpu_inactive(cpu); 7396 if (ret) { 7397 set_cpu_active(cpu, true); 7398 return ret; 7399 } 7400 sched_domains_numa_masks_clear(cpu); 7401 return 0; 7402 } 7403 7404 static void sched_rq_cpu_starting(unsigned int cpu) 7405 { 7406 struct rq *rq = cpu_rq(cpu); 7407 7408 rq->calc_load_update = calc_load_update; 7409 update_max_interval(); 7410 } 7411 7412 int sched_cpu_starting(unsigned int cpu) 7413 { 7414 set_cpu_rq_start_time(cpu); 7415 sched_rq_cpu_starting(cpu); 7416 return 0; 7417 } 7418 7419 #ifdef CONFIG_HOTPLUG_CPU 7420 int sched_cpu_dying(unsigned int cpu) 7421 { 7422 struct rq *rq = cpu_rq(cpu); 7423 unsigned long flags; 7424 7425 /* Handle pending wakeups and then migrate everything off */ 7426 sched_ttwu_pending(); 7427 raw_spin_lock_irqsave(&rq->lock, flags); 7428 if (rq->rd) { 7429 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7430 set_rq_offline(rq); 7431 } 7432 migrate_tasks(rq); 7433 BUG_ON(rq->nr_running != 1); 7434 raw_spin_unlock_irqrestore(&rq->lock, flags); 7435 calc_load_migrate(rq); 7436 update_max_interval(); 7437 nohz_balance_exit_idle(cpu); 7438 hrtick_clear(rq); 7439 return 0; 7440 } 7441 #endif 7442 7443 #ifdef CONFIG_SCHED_SMT 7444 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7445 7446 static void sched_init_smt(void) 7447 { 7448 /* 7449 * We've enumerated all CPUs and will assume that if any CPU 7450 * has SMT siblings, CPU0 will too. 7451 */ 7452 if (cpumask_weight(cpu_smt_mask(0)) > 1) 7453 static_branch_enable(&sched_smt_present); 7454 } 7455 #else 7456 static inline void sched_init_smt(void) { } 7457 #endif 7458 7459 void __init sched_init_smp(void) 7460 { 7461 cpumask_var_t non_isolated_cpus; 7462 7463 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7464 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7465 7466 sched_init_numa(); 7467 7468 /* 7469 * There's no userspace yet to cause hotplug operations; hence all the 7470 * cpu masks are stable and all blatant races in the below code cannot 7471 * happen. 7472 */ 7473 mutex_lock(&sched_domains_mutex); 7474 init_sched_domains(cpu_active_mask); 7475 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7476 if (cpumask_empty(non_isolated_cpus)) 7477 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7478 mutex_unlock(&sched_domains_mutex); 7479 7480 /* Move init over to a non-isolated CPU */ 7481 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7482 BUG(); 7483 sched_init_granularity(); 7484 free_cpumask_var(non_isolated_cpus); 7485 7486 init_sched_rt_class(); 7487 init_sched_dl_class(); 7488 7489 sched_init_smt(); 7490 7491 sched_smp_initialized = true; 7492 } 7493 7494 static int __init migration_init(void) 7495 { 7496 sched_rq_cpu_starting(smp_processor_id()); 7497 return 0; 7498 } 7499 early_initcall(migration_init); 7500 7501 #else 7502 void __init sched_init_smp(void) 7503 { 7504 sched_init_granularity(); 7505 } 7506 #endif /* CONFIG_SMP */ 7507 7508 int in_sched_functions(unsigned long addr) 7509 { 7510 return in_lock_functions(addr) || 7511 (addr >= (unsigned long)__sched_text_start 7512 && addr < (unsigned long)__sched_text_end); 7513 } 7514 7515 #ifdef CONFIG_CGROUP_SCHED 7516 /* 7517 * Default task group. 7518 * Every task in system belongs to this group at bootup. 7519 */ 7520 struct task_group root_task_group; 7521 LIST_HEAD(task_groups); 7522 7523 /* Cacheline aligned slab cache for task_group */ 7524 static struct kmem_cache *task_group_cache __read_mostly; 7525 #endif 7526 7527 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7528 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 7529 7530 #define WAIT_TABLE_BITS 8 7531 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS) 7532 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned; 7533 7534 wait_queue_head_t *bit_waitqueue(void *word, int bit) 7535 { 7536 const int shift = BITS_PER_LONG == 32 ? 5 : 6; 7537 unsigned long val = (unsigned long)word << shift | bit; 7538 7539 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS); 7540 } 7541 EXPORT_SYMBOL(bit_waitqueue); 7542 7543 void __init sched_init(void) 7544 { 7545 int i, j; 7546 unsigned long alloc_size = 0, ptr; 7547 7548 for (i = 0; i < WAIT_TABLE_SIZE; i++) 7549 init_waitqueue_head(bit_wait_table + i); 7550 7551 #ifdef CONFIG_FAIR_GROUP_SCHED 7552 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7553 #endif 7554 #ifdef CONFIG_RT_GROUP_SCHED 7555 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7556 #endif 7557 if (alloc_size) { 7558 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7559 7560 #ifdef CONFIG_FAIR_GROUP_SCHED 7561 root_task_group.se = (struct sched_entity **)ptr; 7562 ptr += nr_cpu_ids * sizeof(void **); 7563 7564 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7565 ptr += nr_cpu_ids * sizeof(void **); 7566 7567 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7568 #ifdef CONFIG_RT_GROUP_SCHED 7569 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7570 ptr += nr_cpu_ids * sizeof(void **); 7571 7572 root_task_group.rt_rq = (struct rt_rq **)ptr; 7573 ptr += nr_cpu_ids * sizeof(void **); 7574 7575 #endif /* CONFIG_RT_GROUP_SCHED */ 7576 } 7577 #ifdef CONFIG_CPUMASK_OFFSTACK 7578 for_each_possible_cpu(i) { 7579 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7580 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7581 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 7582 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7583 } 7584 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7585 7586 init_rt_bandwidth(&def_rt_bandwidth, 7587 global_rt_period(), global_rt_runtime()); 7588 init_dl_bandwidth(&def_dl_bandwidth, 7589 global_rt_period(), global_rt_runtime()); 7590 7591 #ifdef CONFIG_SMP 7592 init_defrootdomain(); 7593 #endif 7594 7595 #ifdef CONFIG_RT_GROUP_SCHED 7596 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7597 global_rt_period(), global_rt_runtime()); 7598 #endif /* CONFIG_RT_GROUP_SCHED */ 7599 7600 #ifdef CONFIG_CGROUP_SCHED 7601 task_group_cache = KMEM_CACHE(task_group, 0); 7602 7603 list_add(&root_task_group.list, &task_groups); 7604 INIT_LIST_HEAD(&root_task_group.children); 7605 INIT_LIST_HEAD(&root_task_group.siblings); 7606 autogroup_init(&init_task); 7607 #endif /* CONFIG_CGROUP_SCHED */ 7608 7609 for_each_possible_cpu(i) { 7610 struct rq *rq; 7611 7612 rq = cpu_rq(i); 7613 raw_spin_lock_init(&rq->lock); 7614 rq->nr_running = 0; 7615 rq->calc_load_active = 0; 7616 rq->calc_load_update = jiffies + LOAD_FREQ; 7617 init_cfs_rq(&rq->cfs); 7618 init_rt_rq(&rq->rt); 7619 init_dl_rq(&rq->dl); 7620 #ifdef CONFIG_FAIR_GROUP_SCHED 7621 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7622 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7623 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 7624 /* 7625 * How much cpu bandwidth does root_task_group get? 7626 * 7627 * In case of task-groups formed thr' the cgroup filesystem, it 7628 * gets 100% of the cpu resources in the system. This overall 7629 * system cpu resource is divided among the tasks of 7630 * root_task_group and its child task-groups in a fair manner, 7631 * based on each entity's (task or task-group's) weight 7632 * (se->load.weight). 7633 * 7634 * In other words, if root_task_group has 10 tasks of weight 7635 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7636 * then A0's share of the cpu resource is: 7637 * 7638 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7639 * 7640 * We achieve this by letting root_task_group's tasks sit 7641 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7642 */ 7643 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7644 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7645 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7646 7647 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7648 #ifdef CONFIG_RT_GROUP_SCHED 7649 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7650 #endif 7651 7652 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7653 rq->cpu_load[j] = 0; 7654 7655 #ifdef CONFIG_SMP 7656 rq->sd = NULL; 7657 rq->rd = NULL; 7658 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7659 rq->balance_callback = NULL; 7660 rq->active_balance = 0; 7661 rq->next_balance = jiffies; 7662 rq->push_cpu = 0; 7663 rq->cpu = i; 7664 rq->online = 0; 7665 rq->idle_stamp = 0; 7666 rq->avg_idle = 2*sysctl_sched_migration_cost; 7667 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7668 7669 INIT_LIST_HEAD(&rq->cfs_tasks); 7670 7671 rq_attach_root(rq, &def_root_domain); 7672 #ifdef CONFIG_NO_HZ_COMMON 7673 rq->last_load_update_tick = jiffies; 7674 rq->nohz_flags = 0; 7675 #endif 7676 #ifdef CONFIG_NO_HZ_FULL 7677 rq->last_sched_tick = 0; 7678 #endif 7679 #endif /* CONFIG_SMP */ 7680 init_rq_hrtick(rq); 7681 atomic_set(&rq->nr_iowait, 0); 7682 } 7683 7684 set_load_weight(&init_task); 7685 7686 /* 7687 * The boot idle thread does lazy MMU switching as well: 7688 */ 7689 atomic_inc(&init_mm.mm_count); 7690 enter_lazy_tlb(&init_mm, current); 7691 7692 /* 7693 * Make us the idle thread. Technically, schedule() should not be 7694 * called from this thread, however somewhere below it might be, 7695 * but because we are the idle thread, we just pick up running again 7696 * when this runqueue becomes "idle". 7697 */ 7698 init_idle(current, smp_processor_id()); 7699 7700 calc_load_update = jiffies + LOAD_FREQ; 7701 7702 #ifdef CONFIG_SMP 7703 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7704 /* May be allocated at isolcpus cmdline parse time */ 7705 if (cpu_isolated_map == NULL) 7706 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7707 idle_thread_set_boot_cpu(); 7708 set_cpu_rq_start_time(smp_processor_id()); 7709 #endif 7710 init_sched_fair_class(); 7711 7712 init_schedstats(); 7713 7714 scheduler_running = 1; 7715 } 7716 7717 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7718 static inline int preempt_count_equals(int preempt_offset) 7719 { 7720 int nested = preempt_count() + rcu_preempt_depth(); 7721 7722 return (nested == preempt_offset); 7723 } 7724 7725 void __might_sleep(const char *file, int line, int preempt_offset) 7726 { 7727 /* 7728 * Blocking primitives will set (and therefore destroy) current->state, 7729 * since we will exit with TASK_RUNNING make sure we enter with it, 7730 * otherwise we will destroy state. 7731 */ 7732 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7733 "do not call blocking ops when !TASK_RUNNING; " 7734 "state=%lx set at [<%p>] %pS\n", 7735 current->state, 7736 (void *)current->task_state_change, 7737 (void *)current->task_state_change); 7738 7739 ___might_sleep(file, line, preempt_offset); 7740 } 7741 EXPORT_SYMBOL(__might_sleep); 7742 7743 void ___might_sleep(const char *file, int line, int preempt_offset) 7744 { 7745 static unsigned long prev_jiffy; /* ratelimiting */ 7746 unsigned long preempt_disable_ip; 7747 7748 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7749 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7750 !is_idle_task(current)) || 7751 system_state != SYSTEM_RUNNING || oops_in_progress) 7752 return; 7753 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7754 return; 7755 prev_jiffy = jiffies; 7756 7757 /* Save this before calling printk(), since that will clobber it */ 7758 preempt_disable_ip = get_preempt_disable_ip(current); 7759 7760 printk(KERN_ERR 7761 "BUG: sleeping function called from invalid context at %s:%d\n", 7762 file, line); 7763 printk(KERN_ERR 7764 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7765 in_atomic(), irqs_disabled(), 7766 current->pid, current->comm); 7767 7768 if (task_stack_end_corrupted(current)) 7769 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7770 7771 debug_show_held_locks(current); 7772 if (irqs_disabled()) 7773 print_irqtrace_events(current); 7774 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 7775 && !preempt_count_equals(preempt_offset)) { 7776 pr_err("Preemption disabled at:"); 7777 print_ip_sym(preempt_disable_ip); 7778 pr_cont("\n"); 7779 } 7780 dump_stack(); 7781 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 7782 } 7783 EXPORT_SYMBOL(___might_sleep); 7784 #endif 7785 7786 #ifdef CONFIG_MAGIC_SYSRQ 7787 void normalize_rt_tasks(void) 7788 { 7789 struct task_struct *g, *p; 7790 struct sched_attr attr = { 7791 .sched_policy = SCHED_NORMAL, 7792 }; 7793 7794 read_lock(&tasklist_lock); 7795 for_each_process_thread(g, p) { 7796 /* 7797 * Only normalize user tasks: 7798 */ 7799 if (p->flags & PF_KTHREAD) 7800 continue; 7801 7802 p->se.exec_start = 0; 7803 schedstat_set(p->se.statistics.wait_start, 0); 7804 schedstat_set(p->se.statistics.sleep_start, 0); 7805 schedstat_set(p->se.statistics.block_start, 0); 7806 7807 if (!dl_task(p) && !rt_task(p)) { 7808 /* 7809 * Renice negative nice level userspace 7810 * tasks back to 0: 7811 */ 7812 if (task_nice(p) < 0) 7813 set_user_nice(p, 0); 7814 continue; 7815 } 7816 7817 __sched_setscheduler(p, &attr, false, false); 7818 } 7819 read_unlock(&tasklist_lock); 7820 } 7821 7822 #endif /* CONFIG_MAGIC_SYSRQ */ 7823 7824 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7825 /* 7826 * These functions are only useful for the IA64 MCA handling, or kdb. 7827 * 7828 * They can only be called when the whole system has been 7829 * stopped - every CPU needs to be quiescent, and no scheduling 7830 * activity can take place. Using them for anything else would 7831 * be a serious bug, and as a result, they aren't even visible 7832 * under any other configuration. 7833 */ 7834 7835 /** 7836 * curr_task - return the current task for a given cpu. 7837 * @cpu: the processor in question. 7838 * 7839 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7840 * 7841 * Return: The current task for @cpu. 7842 */ 7843 struct task_struct *curr_task(int cpu) 7844 { 7845 return cpu_curr(cpu); 7846 } 7847 7848 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7849 7850 #ifdef CONFIG_IA64 7851 /** 7852 * set_curr_task - set the current task for a given cpu. 7853 * @cpu: the processor in question. 7854 * @p: the task pointer to set. 7855 * 7856 * Description: This function must only be used when non-maskable interrupts 7857 * are serviced on a separate stack. It allows the architecture to switch the 7858 * notion of the current task on a cpu in a non-blocking manner. This function 7859 * must be called with all CPU's synchronized, and interrupts disabled, the 7860 * and caller must save the original value of the current task (see 7861 * curr_task() above) and restore that value before reenabling interrupts and 7862 * re-starting the system. 7863 * 7864 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7865 */ 7866 void ia64_set_curr_task(int cpu, struct task_struct *p) 7867 { 7868 cpu_curr(cpu) = p; 7869 } 7870 7871 #endif 7872 7873 #ifdef CONFIG_CGROUP_SCHED 7874 /* task_group_lock serializes the addition/removal of task groups */ 7875 static DEFINE_SPINLOCK(task_group_lock); 7876 7877 static void sched_free_group(struct task_group *tg) 7878 { 7879 free_fair_sched_group(tg); 7880 free_rt_sched_group(tg); 7881 autogroup_free(tg); 7882 kmem_cache_free(task_group_cache, tg); 7883 } 7884 7885 /* allocate runqueue etc for a new task group */ 7886 struct task_group *sched_create_group(struct task_group *parent) 7887 { 7888 struct task_group *tg; 7889 7890 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7891 if (!tg) 7892 return ERR_PTR(-ENOMEM); 7893 7894 if (!alloc_fair_sched_group(tg, parent)) 7895 goto err; 7896 7897 if (!alloc_rt_sched_group(tg, parent)) 7898 goto err; 7899 7900 return tg; 7901 7902 err: 7903 sched_free_group(tg); 7904 return ERR_PTR(-ENOMEM); 7905 } 7906 7907 void sched_online_group(struct task_group *tg, struct task_group *parent) 7908 { 7909 unsigned long flags; 7910 7911 spin_lock_irqsave(&task_group_lock, flags); 7912 list_add_rcu(&tg->list, &task_groups); 7913 7914 WARN_ON(!parent); /* root should already exist */ 7915 7916 tg->parent = parent; 7917 INIT_LIST_HEAD(&tg->children); 7918 list_add_rcu(&tg->siblings, &parent->children); 7919 spin_unlock_irqrestore(&task_group_lock, flags); 7920 7921 online_fair_sched_group(tg); 7922 } 7923 7924 /* rcu callback to free various structures associated with a task group */ 7925 static void sched_free_group_rcu(struct rcu_head *rhp) 7926 { 7927 /* now it should be safe to free those cfs_rqs */ 7928 sched_free_group(container_of(rhp, struct task_group, rcu)); 7929 } 7930 7931 void sched_destroy_group(struct task_group *tg) 7932 { 7933 /* wait for possible concurrent references to cfs_rqs complete */ 7934 call_rcu(&tg->rcu, sched_free_group_rcu); 7935 } 7936 7937 void sched_offline_group(struct task_group *tg) 7938 { 7939 unsigned long flags; 7940 7941 /* end participation in shares distribution */ 7942 unregister_fair_sched_group(tg); 7943 7944 spin_lock_irqsave(&task_group_lock, flags); 7945 list_del_rcu(&tg->list); 7946 list_del_rcu(&tg->siblings); 7947 spin_unlock_irqrestore(&task_group_lock, flags); 7948 } 7949 7950 static void sched_change_group(struct task_struct *tsk, int type) 7951 { 7952 struct task_group *tg; 7953 7954 /* 7955 * All callers are synchronized by task_rq_lock(); we do not use RCU 7956 * which is pointless here. Thus, we pass "true" to task_css_check() 7957 * to prevent lockdep warnings. 7958 */ 7959 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7960 struct task_group, css); 7961 tg = autogroup_task_group(tsk, tg); 7962 tsk->sched_task_group = tg; 7963 7964 #ifdef CONFIG_FAIR_GROUP_SCHED 7965 if (tsk->sched_class->task_change_group) 7966 tsk->sched_class->task_change_group(tsk, type); 7967 else 7968 #endif 7969 set_task_rq(tsk, task_cpu(tsk)); 7970 } 7971 7972 /* 7973 * Change task's runqueue when it moves between groups. 7974 * 7975 * The caller of this function should have put the task in its new group by 7976 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7977 * its new group. 7978 */ 7979 void sched_move_task(struct task_struct *tsk) 7980 { 7981 int queued, running; 7982 struct rq_flags rf; 7983 struct rq *rq; 7984 7985 rq = task_rq_lock(tsk, &rf); 7986 7987 running = task_current(rq, tsk); 7988 queued = task_on_rq_queued(tsk); 7989 7990 if (queued) 7991 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE); 7992 if (unlikely(running)) 7993 put_prev_task(rq, tsk); 7994 7995 sched_change_group(tsk, TASK_MOVE_GROUP); 7996 7997 if (queued) 7998 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE); 7999 if (unlikely(running)) 8000 set_curr_task(rq, tsk); 8001 8002 task_rq_unlock(rq, tsk, &rf); 8003 } 8004 #endif /* CONFIG_CGROUP_SCHED */ 8005 8006 #ifdef CONFIG_RT_GROUP_SCHED 8007 /* 8008 * Ensure that the real time constraints are schedulable. 8009 */ 8010 static DEFINE_MUTEX(rt_constraints_mutex); 8011 8012 /* Must be called with tasklist_lock held */ 8013 static inline int tg_has_rt_tasks(struct task_group *tg) 8014 { 8015 struct task_struct *g, *p; 8016 8017 /* 8018 * Autogroups do not have RT tasks; see autogroup_create(). 8019 */ 8020 if (task_group_is_autogroup(tg)) 8021 return 0; 8022 8023 for_each_process_thread(g, p) { 8024 if (rt_task(p) && task_group(p) == tg) 8025 return 1; 8026 } 8027 8028 return 0; 8029 } 8030 8031 struct rt_schedulable_data { 8032 struct task_group *tg; 8033 u64 rt_period; 8034 u64 rt_runtime; 8035 }; 8036 8037 static int tg_rt_schedulable(struct task_group *tg, void *data) 8038 { 8039 struct rt_schedulable_data *d = data; 8040 struct task_group *child; 8041 unsigned long total, sum = 0; 8042 u64 period, runtime; 8043 8044 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 8045 runtime = tg->rt_bandwidth.rt_runtime; 8046 8047 if (tg == d->tg) { 8048 period = d->rt_period; 8049 runtime = d->rt_runtime; 8050 } 8051 8052 /* 8053 * Cannot have more runtime than the period. 8054 */ 8055 if (runtime > period && runtime != RUNTIME_INF) 8056 return -EINVAL; 8057 8058 /* 8059 * Ensure we don't starve existing RT tasks. 8060 */ 8061 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 8062 return -EBUSY; 8063 8064 total = to_ratio(period, runtime); 8065 8066 /* 8067 * Nobody can have more than the global setting allows. 8068 */ 8069 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 8070 return -EINVAL; 8071 8072 /* 8073 * The sum of our children's runtime should not exceed our own. 8074 */ 8075 list_for_each_entry_rcu(child, &tg->children, siblings) { 8076 period = ktime_to_ns(child->rt_bandwidth.rt_period); 8077 runtime = child->rt_bandwidth.rt_runtime; 8078 8079 if (child == d->tg) { 8080 period = d->rt_period; 8081 runtime = d->rt_runtime; 8082 } 8083 8084 sum += to_ratio(period, runtime); 8085 } 8086 8087 if (sum > total) 8088 return -EINVAL; 8089 8090 return 0; 8091 } 8092 8093 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 8094 { 8095 int ret; 8096 8097 struct rt_schedulable_data data = { 8098 .tg = tg, 8099 .rt_period = period, 8100 .rt_runtime = runtime, 8101 }; 8102 8103 rcu_read_lock(); 8104 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 8105 rcu_read_unlock(); 8106 8107 return ret; 8108 } 8109 8110 static int tg_set_rt_bandwidth(struct task_group *tg, 8111 u64 rt_period, u64 rt_runtime) 8112 { 8113 int i, err = 0; 8114 8115 /* 8116 * Disallowing the root group RT runtime is BAD, it would disallow the 8117 * kernel creating (and or operating) RT threads. 8118 */ 8119 if (tg == &root_task_group && rt_runtime == 0) 8120 return -EINVAL; 8121 8122 /* No period doesn't make any sense. */ 8123 if (rt_period == 0) 8124 return -EINVAL; 8125 8126 mutex_lock(&rt_constraints_mutex); 8127 read_lock(&tasklist_lock); 8128 err = __rt_schedulable(tg, rt_period, rt_runtime); 8129 if (err) 8130 goto unlock; 8131 8132 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 8133 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 8134 tg->rt_bandwidth.rt_runtime = rt_runtime; 8135 8136 for_each_possible_cpu(i) { 8137 struct rt_rq *rt_rq = tg->rt_rq[i]; 8138 8139 raw_spin_lock(&rt_rq->rt_runtime_lock); 8140 rt_rq->rt_runtime = rt_runtime; 8141 raw_spin_unlock(&rt_rq->rt_runtime_lock); 8142 } 8143 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 8144 unlock: 8145 read_unlock(&tasklist_lock); 8146 mutex_unlock(&rt_constraints_mutex); 8147 8148 return err; 8149 } 8150 8151 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 8152 { 8153 u64 rt_runtime, rt_period; 8154 8155 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 8156 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 8157 if (rt_runtime_us < 0) 8158 rt_runtime = RUNTIME_INF; 8159 8160 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 8161 } 8162 8163 static long sched_group_rt_runtime(struct task_group *tg) 8164 { 8165 u64 rt_runtime_us; 8166 8167 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 8168 return -1; 8169 8170 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 8171 do_div(rt_runtime_us, NSEC_PER_USEC); 8172 return rt_runtime_us; 8173 } 8174 8175 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 8176 { 8177 u64 rt_runtime, rt_period; 8178 8179 rt_period = rt_period_us * NSEC_PER_USEC; 8180 rt_runtime = tg->rt_bandwidth.rt_runtime; 8181 8182 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 8183 } 8184 8185 static long sched_group_rt_period(struct task_group *tg) 8186 { 8187 u64 rt_period_us; 8188 8189 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 8190 do_div(rt_period_us, NSEC_PER_USEC); 8191 return rt_period_us; 8192 } 8193 #endif /* CONFIG_RT_GROUP_SCHED */ 8194 8195 #ifdef CONFIG_RT_GROUP_SCHED 8196 static int sched_rt_global_constraints(void) 8197 { 8198 int ret = 0; 8199 8200 mutex_lock(&rt_constraints_mutex); 8201 read_lock(&tasklist_lock); 8202 ret = __rt_schedulable(NULL, 0, 0); 8203 read_unlock(&tasklist_lock); 8204 mutex_unlock(&rt_constraints_mutex); 8205 8206 return ret; 8207 } 8208 8209 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 8210 { 8211 /* Don't accept realtime tasks when there is no way for them to run */ 8212 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 8213 return 0; 8214 8215 return 1; 8216 } 8217 8218 #else /* !CONFIG_RT_GROUP_SCHED */ 8219 static int sched_rt_global_constraints(void) 8220 { 8221 unsigned long flags; 8222 int i; 8223 8224 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 8225 for_each_possible_cpu(i) { 8226 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 8227 8228 raw_spin_lock(&rt_rq->rt_runtime_lock); 8229 rt_rq->rt_runtime = global_rt_runtime(); 8230 raw_spin_unlock(&rt_rq->rt_runtime_lock); 8231 } 8232 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 8233 8234 return 0; 8235 } 8236 #endif /* CONFIG_RT_GROUP_SCHED */ 8237 8238 static int sched_dl_global_validate(void) 8239 { 8240 u64 runtime = global_rt_runtime(); 8241 u64 period = global_rt_period(); 8242 u64 new_bw = to_ratio(period, runtime); 8243 struct dl_bw *dl_b; 8244 int cpu, ret = 0; 8245 unsigned long flags; 8246 8247 /* 8248 * Here we want to check the bandwidth not being set to some 8249 * value smaller than the currently allocated bandwidth in 8250 * any of the root_domains. 8251 * 8252 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 8253 * cycling on root_domains... Discussion on different/better 8254 * solutions is welcome! 8255 */ 8256 for_each_possible_cpu(cpu) { 8257 rcu_read_lock_sched(); 8258 dl_b = dl_bw_of(cpu); 8259 8260 raw_spin_lock_irqsave(&dl_b->lock, flags); 8261 if (new_bw < dl_b->total_bw) 8262 ret = -EBUSY; 8263 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8264 8265 rcu_read_unlock_sched(); 8266 8267 if (ret) 8268 break; 8269 } 8270 8271 return ret; 8272 } 8273 8274 static void sched_dl_do_global(void) 8275 { 8276 u64 new_bw = -1; 8277 struct dl_bw *dl_b; 8278 int cpu; 8279 unsigned long flags; 8280 8281 def_dl_bandwidth.dl_period = global_rt_period(); 8282 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 8283 8284 if (global_rt_runtime() != RUNTIME_INF) 8285 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 8286 8287 /* 8288 * FIXME: As above... 8289 */ 8290 for_each_possible_cpu(cpu) { 8291 rcu_read_lock_sched(); 8292 dl_b = dl_bw_of(cpu); 8293 8294 raw_spin_lock_irqsave(&dl_b->lock, flags); 8295 dl_b->bw = new_bw; 8296 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8297 8298 rcu_read_unlock_sched(); 8299 } 8300 } 8301 8302 static int sched_rt_global_validate(void) 8303 { 8304 if (sysctl_sched_rt_period <= 0) 8305 return -EINVAL; 8306 8307 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 8308 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 8309 return -EINVAL; 8310 8311 return 0; 8312 } 8313 8314 static void sched_rt_do_global(void) 8315 { 8316 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 8317 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 8318 } 8319 8320 int sched_rt_handler(struct ctl_table *table, int write, 8321 void __user *buffer, size_t *lenp, 8322 loff_t *ppos) 8323 { 8324 int old_period, old_runtime; 8325 static DEFINE_MUTEX(mutex); 8326 int ret; 8327 8328 mutex_lock(&mutex); 8329 old_period = sysctl_sched_rt_period; 8330 old_runtime = sysctl_sched_rt_runtime; 8331 8332 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8333 8334 if (!ret && write) { 8335 ret = sched_rt_global_validate(); 8336 if (ret) 8337 goto undo; 8338 8339 ret = sched_dl_global_validate(); 8340 if (ret) 8341 goto undo; 8342 8343 ret = sched_rt_global_constraints(); 8344 if (ret) 8345 goto undo; 8346 8347 sched_rt_do_global(); 8348 sched_dl_do_global(); 8349 } 8350 if (0) { 8351 undo: 8352 sysctl_sched_rt_period = old_period; 8353 sysctl_sched_rt_runtime = old_runtime; 8354 } 8355 mutex_unlock(&mutex); 8356 8357 return ret; 8358 } 8359 8360 int sched_rr_handler(struct ctl_table *table, int write, 8361 void __user *buffer, size_t *lenp, 8362 loff_t *ppos) 8363 { 8364 int ret; 8365 static DEFINE_MUTEX(mutex); 8366 8367 mutex_lock(&mutex); 8368 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8369 /* make sure that internally we keep jiffies */ 8370 /* also, writing zero resets timeslice to default */ 8371 if (!ret && write) { 8372 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8373 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8374 } 8375 mutex_unlock(&mutex); 8376 return ret; 8377 } 8378 8379 #ifdef CONFIG_CGROUP_SCHED 8380 8381 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8382 { 8383 return css ? container_of(css, struct task_group, css) : NULL; 8384 } 8385 8386 static struct cgroup_subsys_state * 8387 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8388 { 8389 struct task_group *parent = css_tg(parent_css); 8390 struct task_group *tg; 8391 8392 if (!parent) { 8393 /* This is early initialization for the top cgroup */ 8394 return &root_task_group.css; 8395 } 8396 8397 tg = sched_create_group(parent); 8398 if (IS_ERR(tg)) 8399 return ERR_PTR(-ENOMEM); 8400 8401 sched_online_group(tg, parent); 8402 8403 return &tg->css; 8404 } 8405 8406 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8407 { 8408 struct task_group *tg = css_tg(css); 8409 8410 sched_offline_group(tg); 8411 } 8412 8413 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8414 { 8415 struct task_group *tg = css_tg(css); 8416 8417 /* 8418 * Relies on the RCU grace period between css_released() and this. 8419 */ 8420 sched_free_group(tg); 8421 } 8422 8423 /* 8424 * This is called before wake_up_new_task(), therefore we really only 8425 * have to set its group bits, all the other stuff does not apply. 8426 */ 8427 static void cpu_cgroup_fork(struct task_struct *task) 8428 { 8429 struct rq_flags rf; 8430 struct rq *rq; 8431 8432 rq = task_rq_lock(task, &rf); 8433 8434 sched_change_group(task, TASK_SET_GROUP); 8435 8436 task_rq_unlock(rq, task, &rf); 8437 } 8438 8439 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8440 { 8441 struct task_struct *task; 8442 struct cgroup_subsys_state *css; 8443 int ret = 0; 8444 8445 cgroup_taskset_for_each(task, css, tset) { 8446 #ifdef CONFIG_RT_GROUP_SCHED 8447 if (!sched_rt_can_attach(css_tg(css), task)) 8448 return -EINVAL; 8449 #else 8450 /* We don't support RT-tasks being in separate groups */ 8451 if (task->sched_class != &fair_sched_class) 8452 return -EINVAL; 8453 #endif 8454 /* 8455 * Serialize against wake_up_new_task() such that if its 8456 * running, we're sure to observe its full state. 8457 */ 8458 raw_spin_lock_irq(&task->pi_lock); 8459 /* 8460 * Avoid calling sched_move_task() before wake_up_new_task() 8461 * has happened. This would lead to problems with PELT, due to 8462 * move wanting to detach+attach while we're not attached yet. 8463 */ 8464 if (task->state == TASK_NEW) 8465 ret = -EINVAL; 8466 raw_spin_unlock_irq(&task->pi_lock); 8467 8468 if (ret) 8469 break; 8470 } 8471 return ret; 8472 } 8473 8474 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8475 { 8476 struct task_struct *task; 8477 struct cgroup_subsys_state *css; 8478 8479 cgroup_taskset_for_each(task, css, tset) 8480 sched_move_task(task); 8481 } 8482 8483 #ifdef CONFIG_FAIR_GROUP_SCHED 8484 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8485 struct cftype *cftype, u64 shareval) 8486 { 8487 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8488 } 8489 8490 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8491 struct cftype *cft) 8492 { 8493 struct task_group *tg = css_tg(css); 8494 8495 return (u64) scale_load_down(tg->shares); 8496 } 8497 8498 #ifdef CONFIG_CFS_BANDWIDTH 8499 static DEFINE_MUTEX(cfs_constraints_mutex); 8500 8501 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8502 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8503 8504 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8505 8506 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8507 { 8508 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8509 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8510 8511 if (tg == &root_task_group) 8512 return -EINVAL; 8513 8514 /* 8515 * Ensure we have at some amount of bandwidth every period. This is 8516 * to prevent reaching a state of large arrears when throttled via 8517 * entity_tick() resulting in prolonged exit starvation. 8518 */ 8519 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8520 return -EINVAL; 8521 8522 /* 8523 * Likewise, bound things on the otherside by preventing insane quota 8524 * periods. This also allows us to normalize in computing quota 8525 * feasibility. 8526 */ 8527 if (period > max_cfs_quota_period) 8528 return -EINVAL; 8529 8530 /* 8531 * Prevent race between setting of cfs_rq->runtime_enabled and 8532 * unthrottle_offline_cfs_rqs(). 8533 */ 8534 get_online_cpus(); 8535 mutex_lock(&cfs_constraints_mutex); 8536 ret = __cfs_schedulable(tg, period, quota); 8537 if (ret) 8538 goto out_unlock; 8539 8540 runtime_enabled = quota != RUNTIME_INF; 8541 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8542 /* 8543 * If we need to toggle cfs_bandwidth_used, off->on must occur 8544 * before making related changes, and on->off must occur afterwards 8545 */ 8546 if (runtime_enabled && !runtime_was_enabled) 8547 cfs_bandwidth_usage_inc(); 8548 raw_spin_lock_irq(&cfs_b->lock); 8549 cfs_b->period = ns_to_ktime(period); 8550 cfs_b->quota = quota; 8551 8552 __refill_cfs_bandwidth_runtime(cfs_b); 8553 /* restart the period timer (if active) to handle new period expiry */ 8554 if (runtime_enabled) 8555 start_cfs_bandwidth(cfs_b); 8556 raw_spin_unlock_irq(&cfs_b->lock); 8557 8558 for_each_online_cpu(i) { 8559 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8560 struct rq *rq = cfs_rq->rq; 8561 8562 raw_spin_lock_irq(&rq->lock); 8563 cfs_rq->runtime_enabled = runtime_enabled; 8564 cfs_rq->runtime_remaining = 0; 8565 8566 if (cfs_rq->throttled) 8567 unthrottle_cfs_rq(cfs_rq); 8568 raw_spin_unlock_irq(&rq->lock); 8569 } 8570 if (runtime_was_enabled && !runtime_enabled) 8571 cfs_bandwidth_usage_dec(); 8572 out_unlock: 8573 mutex_unlock(&cfs_constraints_mutex); 8574 put_online_cpus(); 8575 8576 return ret; 8577 } 8578 8579 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8580 { 8581 u64 quota, period; 8582 8583 period = ktime_to_ns(tg->cfs_bandwidth.period); 8584 if (cfs_quota_us < 0) 8585 quota = RUNTIME_INF; 8586 else 8587 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8588 8589 return tg_set_cfs_bandwidth(tg, period, quota); 8590 } 8591 8592 long tg_get_cfs_quota(struct task_group *tg) 8593 { 8594 u64 quota_us; 8595 8596 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8597 return -1; 8598 8599 quota_us = tg->cfs_bandwidth.quota; 8600 do_div(quota_us, NSEC_PER_USEC); 8601 8602 return quota_us; 8603 } 8604 8605 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8606 { 8607 u64 quota, period; 8608 8609 period = (u64)cfs_period_us * NSEC_PER_USEC; 8610 quota = tg->cfs_bandwidth.quota; 8611 8612 return tg_set_cfs_bandwidth(tg, period, quota); 8613 } 8614 8615 long tg_get_cfs_period(struct task_group *tg) 8616 { 8617 u64 cfs_period_us; 8618 8619 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8620 do_div(cfs_period_us, NSEC_PER_USEC); 8621 8622 return cfs_period_us; 8623 } 8624 8625 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8626 struct cftype *cft) 8627 { 8628 return tg_get_cfs_quota(css_tg(css)); 8629 } 8630 8631 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8632 struct cftype *cftype, s64 cfs_quota_us) 8633 { 8634 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8635 } 8636 8637 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8638 struct cftype *cft) 8639 { 8640 return tg_get_cfs_period(css_tg(css)); 8641 } 8642 8643 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8644 struct cftype *cftype, u64 cfs_period_us) 8645 { 8646 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8647 } 8648 8649 struct cfs_schedulable_data { 8650 struct task_group *tg; 8651 u64 period, quota; 8652 }; 8653 8654 /* 8655 * normalize group quota/period to be quota/max_period 8656 * note: units are usecs 8657 */ 8658 static u64 normalize_cfs_quota(struct task_group *tg, 8659 struct cfs_schedulable_data *d) 8660 { 8661 u64 quota, period; 8662 8663 if (tg == d->tg) { 8664 period = d->period; 8665 quota = d->quota; 8666 } else { 8667 period = tg_get_cfs_period(tg); 8668 quota = tg_get_cfs_quota(tg); 8669 } 8670 8671 /* note: these should typically be equivalent */ 8672 if (quota == RUNTIME_INF || quota == -1) 8673 return RUNTIME_INF; 8674 8675 return to_ratio(period, quota); 8676 } 8677 8678 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8679 { 8680 struct cfs_schedulable_data *d = data; 8681 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8682 s64 quota = 0, parent_quota = -1; 8683 8684 if (!tg->parent) { 8685 quota = RUNTIME_INF; 8686 } else { 8687 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8688 8689 quota = normalize_cfs_quota(tg, d); 8690 parent_quota = parent_b->hierarchical_quota; 8691 8692 /* 8693 * ensure max(child_quota) <= parent_quota, inherit when no 8694 * limit is set 8695 */ 8696 if (quota == RUNTIME_INF) 8697 quota = parent_quota; 8698 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8699 return -EINVAL; 8700 } 8701 cfs_b->hierarchical_quota = quota; 8702 8703 return 0; 8704 } 8705 8706 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8707 { 8708 int ret; 8709 struct cfs_schedulable_data data = { 8710 .tg = tg, 8711 .period = period, 8712 .quota = quota, 8713 }; 8714 8715 if (quota != RUNTIME_INF) { 8716 do_div(data.period, NSEC_PER_USEC); 8717 do_div(data.quota, NSEC_PER_USEC); 8718 } 8719 8720 rcu_read_lock(); 8721 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8722 rcu_read_unlock(); 8723 8724 return ret; 8725 } 8726 8727 static int cpu_stats_show(struct seq_file *sf, void *v) 8728 { 8729 struct task_group *tg = css_tg(seq_css(sf)); 8730 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8731 8732 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8733 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8734 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8735 8736 return 0; 8737 } 8738 #endif /* CONFIG_CFS_BANDWIDTH */ 8739 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8740 8741 #ifdef CONFIG_RT_GROUP_SCHED 8742 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8743 struct cftype *cft, s64 val) 8744 { 8745 return sched_group_set_rt_runtime(css_tg(css), val); 8746 } 8747 8748 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8749 struct cftype *cft) 8750 { 8751 return sched_group_rt_runtime(css_tg(css)); 8752 } 8753 8754 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8755 struct cftype *cftype, u64 rt_period_us) 8756 { 8757 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8758 } 8759 8760 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8761 struct cftype *cft) 8762 { 8763 return sched_group_rt_period(css_tg(css)); 8764 } 8765 #endif /* CONFIG_RT_GROUP_SCHED */ 8766 8767 static struct cftype cpu_files[] = { 8768 #ifdef CONFIG_FAIR_GROUP_SCHED 8769 { 8770 .name = "shares", 8771 .read_u64 = cpu_shares_read_u64, 8772 .write_u64 = cpu_shares_write_u64, 8773 }, 8774 #endif 8775 #ifdef CONFIG_CFS_BANDWIDTH 8776 { 8777 .name = "cfs_quota_us", 8778 .read_s64 = cpu_cfs_quota_read_s64, 8779 .write_s64 = cpu_cfs_quota_write_s64, 8780 }, 8781 { 8782 .name = "cfs_period_us", 8783 .read_u64 = cpu_cfs_period_read_u64, 8784 .write_u64 = cpu_cfs_period_write_u64, 8785 }, 8786 { 8787 .name = "stat", 8788 .seq_show = cpu_stats_show, 8789 }, 8790 #endif 8791 #ifdef CONFIG_RT_GROUP_SCHED 8792 { 8793 .name = "rt_runtime_us", 8794 .read_s64 = cpu_rt_runtime_read, 8795 .write_s64 = cpu_rt_runtime_write, 8796 }, 8797 { 8798 .name = "rt_period_us", 8799 .read_u64 = cpu_rt_period_read_uint, 8800 .write_u64 = cpu_rt_period_write_uint, 8801 }, 8802 #endif 8803 { } /* terminate */ 8804 }; 8805 8806 struct cgroup_subsys cpu_cgrp_subsys = { 8807 .css_alloc = cpu_cgroup_css_alloc, 8808 .css_released = cpu_cgroup_css_released, 8809 .css_free = cpu_cgroup_css_free, 8810 .fork = cpu_cgroup_fork, 8811 .can_attach = cpu_cgroup_can_attach, 8812 .attach = cpu_cgroup_attach, 8813 .legacy_cftypes = cpu_files, 8814 .early_init = true, 8815 }; 8816 8817 #endif /* CONFIG_CGROUP_SCHED */ 8818 8819 void dump_cpu_task(int cpu) 8820 { 8821 pr_info("Task dump for CPU %d:\n", cpu); 8822 sched_show_task(cpu_curr(cpu)); 8823 } 8824 8825 /* 8826 * Nice levels are multiplicative, with a gentle 10% change for every 8827 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8828 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8829 * that remained on nice 0. 8830 * 8831 * The "10% effect" is relative and cumulative: from _any_ nice level, 8832 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8833 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8834 * If a task goes up by ~10% and another task goes down by ~10% then 8835 * the relative distance between them is ~25%.) 8836 */ 8837 const int sched_prio_to_weight[40] = { 8838 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8839 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8840 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8841 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8842 /* 0 */ 1024, 820, 655, 526, 423, 8843 /* 5 */ 335, 272, 215, 172, 137, 8844 /* 10 */ 110, 87, 70, 56, 45, 8845 /* 15 */ 36, 29, 23, 18, 15, 8846 }; 8847 8848 /* 8849 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8850 * 8851 * In cases where the weight does not change often, we can use the 8852 * precalculated inverse to speed up arithmetics by turning divisions 8853 * into multiplications: 8854 */ 8855 const u32 sched_prio_to_wmult[40] = { 8856 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8857 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8858 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8859 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8860 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8861 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8862 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8863 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8864 }; 8865