1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #undef CREATE_TRACE_POINTS 84 85 #include "sched.h" 86 #include "stats.h" 87 #include "autogroup.h" 88 89 #include "autogroup.h" 90 #include "pelt.h" 91 #include "smp.h" 92 #include "stats.h" 93 94 #include "../workqueue_internal.h" 95 #include "../../io_uring/io-wq.h" 96 #include "../smpboot.h" 97 98 /* 99 * Export tracepoints that act as a bare tracehook (ie: have no trace event 100 * associated with them) to allow external modules to probe them. 101 */ 102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 113 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 #ifdef CONFIG_SCHED_DEBUG 117 /* 118 * Debugging: various feature bits 119 * 120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 121 * sysctl_sched_features, defined in sched.h, to allow constants propagation 122 * at compile time and compiler optimization based on features default. 123 */ 124 #define SCHED_FEAT(name, enabled) \ 125 (1UL << __SCHED_FEAT_##name) * enabled | 126 const_debug unsigned int sysctl_sched_features = 127 #include "features.h" 128 0; 129 #undef SCHED_FEAT 130 131 /* 132 * Print a warning if need_resched is set for the given duration (if 133 * LATENCY_WARN is enabled). 134 * 135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 136 * per boot. 137 */ 138 __read_mostly int sysctl_resched_latency_warn_ms = 100; 139 __read_mostly int sysctl_resched_latency_warn_once = 1; 140 #endif /* CONFIG_SCHED_DEBUG */ 141 142 /* 143 * Number of tasks to iterate in a single balance run. 144 * Limited because this is done with IRQs disabled. 145 */ 146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 147 148 __read_mostly int scheduler_running; 149 150 #ifdef CONFIG_SCHED_CORE 151 152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 153 154 /* kernel prio, less is more */ 155 static inline int __task_prio(struct task_struct *p) 156 { 157 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 158 return -2; 159 160 if (rt_prio(p->prio)) /* includes deadline */ 161 return p->prio; /* [-1, 99] */ 162 163 if (p->sched_class == &idle_sched_class) 164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 165 166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 167 } 168 169 /* 170 * l(a,b) 171 * le(a,b) := !l(b,a) 172 * g(a,b) := l(b,a) 173 * ge(a,b) := !l(a,b) 174 */ 175 176 /* real prio, less is less */ 177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 178 { 179 180 int pa = __task_prio(a), pb = __task_prio(b); 181 182 if (-pa < -pb) 183 return true; 184 185 if (-pb < -pa) 186 return false; 187 188 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 189 return !dl_time_before(a->dl.deadline, b->dl.deadline); 190 191 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 192 return cfs_prio_less(a, b, in_fi); 193 194 return false; 195 } 196 197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 198 { 199 if (a->core_cookie < b->core_cookie) 200 return true; 201 202 if (a->core_cookie > b->core_cookie) 203 return false; 204 205 /* flip prio, so high prio is leftmost */ 206 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 207 return true; 208 209 return false; 210 } 211 212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 213 214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 215 { 216 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 217 } 218 219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 220 { 221 const struct task_struct *p = __node_2_sc(node); 222 unsigned long cookie = (unsigned long)key; 223 224 if (cookie < p->core_cookie) 225 return -1; 226 227 if (cookie > p->core_cookie) 228 return 1; 229 230 return 0; 231 } 232 233 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 234 { 235 rq->core->core_task_seq++; 236 237 if (!p->core_cookie) 238 return; 239 240 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 241 } 242 243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 244 { 245 rq->core->core_task_seq++; 246 247 if (sched_core_enqueued(p)) { 248 rb_erase(&p->core_node, &rq->core_tree); 249 RB_CLEAR_NODE(&p->core_node); 250 } 251 252 /* 253 * Migrating the last task off the cpu, with the cpu in forced idle 254 * state. Reschedule to create an accounting edge for forced idle, 255 * and re-examine whether the core is still in forced idle state. 256 */ 257 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 258 rq->core->core_forceidle_count && rq->curr == rq->idle) 259 resched_curr(rq); 260 } 261 262 /* 263 * Find left-most (aka, highest priority) task matching @cookie. 264 */ 265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 266 { 267 struct rb_node *node; 268 269 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 270 /* 271 * The idle task always matches any cookie! 272 */ 273 if (!node) 274 return idle_sched_class.pick_task(rq); 275 276 return __node_2_sc(node); 277 } 278 279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 280 { 281 struct rb_node *node = &p->core_node; 282 283 node = rb_next(node); 284 if (!node) 285 return NULL; 286 287 p = container_of(node, struct task_struct, core_node); 288 if (p->core_cookie != cookie) 289 return NULL; 290 291 return p; 292 } 293 294 /* 295 * Magic required such that: 296 * 297 * raw_spin_rq_lock(rq); 298 * ... 299 * raw_spin_rq_unlock(rq); 300 * 301 * ends up locking and unlocking the _same_ lock, and all CPUs 302 * always agree on what rq has what lock. 303 * 304 * XXX entirely possible to selectively enable cores, don't bother for now. 305 */ 306 307 static DEFINE_MUTEX(sched_core_mutex); 308 static atomic_t sched_core_count; 309 static struct cpumask sched_core_mask; 310 311 static void sched_core_lock(int cpu, unsigned long *flags) 312 { 313 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 314 int t, i = 0; 315 316 local_irq_save(*flags); 317 for_each_cpu(t, smt_mask) 318 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 319 } 320 321 static void sched_core_unlock(int cpu, unsigned long *flags) 322 { 323 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 324 int t; 325 326 for_each_cpu(t, smt_mask) 327 raw_spin_unlock(&cpu_rq(t)->__lock); 328 local_irq_restore(*flags); 329 } 330 331 static void __sched_core_flip(bool enabled) 332 { 333 unsigned long flags; 334 int cpu, t; 335 336 cpus_read_lock(); 337 338 /* 339 * Toggle the online cores, one by one. 340 */ 341 cpumask_copy(&sched_core_mask, cpu_online_mask); 342 for_each_cpu(cpu, &sched_core_mask) { 343 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 344 345 sched_core_lock(cpu, &flags); 346 347 for_each_cpu(t, smt_mask) 348 cpu_rq(t)->core_enabled = enabled; 349 350 cpu_rq(cpu)->core->core_forceidle_start = 0; 351 352 sched_core_unlock(cpu, &flags); 353 354 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 355 } 356 357 /* 358 * Toggle the offline CPUs. 359 */ 360 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 361 cpu_rq(cpu)->core_enabled = enabled; 362 363 cpus_read_unlock(); 364 } 365 366 static void sched_core_assert_empty(void) 367 { 368 int cpu; 369 370 for_each_possible_cpu(cpu) 371 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 372 } 373 374 static void __sched_core_enable(void) 375 { 376 static_branch_enable(&__sched_core_enabled); 377 /* 378 * Ensure all previous instances of raw_spin_rq_*lock() have finished 379 * and future ones will observe !sched_core_disabled(). 380 */ 381 synchronize_rcu(); 382 __sched_core_flip(true); 383 sched_core_assert_empty(); 384 } 385 386 static void __sched_core_disable(void) 387 { 388 sched_core_assert_empty(); 389 __sched_core_flip(false); 390 static_branch_disable(&__sched_core_enabled); 391 } 392 393 void sched_core_get(void) 394 { 395 if (atomic_inc_not_zero(&sched_core_count)) 396 return; 397 398 mutex_lock(&sched_core_mutex); 399 if (!atomic_read(&sched_core_count)) 400 __sched_core_enable(); 401 402 smp_mb__before_atomic(); 403 atomic_inc(&sched_core_count); 404 mutex_unlock(&sched_core_mutex); 405 } 406 407 static void __sched_core_put(struct work_struct *work) 408 { 409 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 410 __sched_core_disable(); 411 mutex_unlock(&sched_core_mutex); 412 } 413 } 414 415 void sched_core_put(void) 416 { 417 static DECLARE_WORK(_work, __sched_core_put); 418 419 /* 420 * "There can be only one" 421 * 422 * Either this is the last one, or we don't actually need to do any 423 * 'work'. If it is the last *again*, we rely on 424 * WORK_STRUCT_PENDING_BIT. 425 */ 426 if (!atomic_add_unless(&sched_core_count, -1, 1)) 427 schedule_work(&_work); 428 } 429 430 #else /* !CONFIG_SCHED_CORE */ 431 432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 433 static inline void 434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 435 436 #endif /* CONFIG_SCHED_CORE */ 437 438 /* 439 * Serialization rules: 440 * 441 * Lock order: 442 * 443 * p->pi_lock 444 * rq->lock 445 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 446 * 447 * rq1->lock 448 * rq2->lock where: rq1 < rq2 449 * 450 * Regular state: 451 * 452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 453 * local CPU's rq->lock, it optionally removes the task from the runqueue and 454 * always looks at the local rq data structures to find the most eligible task 455 * to run next. 456 * 457 * Task enqueue is also under rq->lock, possibly taken from another CPU. 458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 459 * the local CPU to avoid bouncing the runqueue state around [ see 460 * ttwu_queue_wakelist() ] 461 * 462 * Task wakeup, specifically wakeups that involve migration, are horribly 463 * complicated to avoid having to take two rq->locks. 464 * 465 * Special state: 466 * 467 * System-calls and anything external will use task_rq_lock() which acquires 468 * both p->pi_lock and rq->lock. As a consequence the state they change is 469 * stable while holding either lock: 470 * 471 * - sched_setaffinity()/ 472 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 473 * - set_user_nice(): p->se.load, p->*prio 474 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 475 * p->se.load, p->rt_priority, 476 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 477 * - sched_setnuma(): p->numa_preferred_nid 478 * - sched_move_task(): p->sched_task_group 479 * - uclamp_update_active() p->uclamp* 480 * 481 * p->state <- TASK_*: 482 * 483 * is changed locklessly using set_current_state(), __set_current_state() or 484 * set_special_state(), see their respective comments, or by 485 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 486 * concurrent self. 487 * 488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 489 * 490 * is set by activate_task() and cleared by deactivate_task(), under 491 * rq->lock. Non-zero indicates the task is runnable, the special 492 * ON_RQ_MIGRATING state is used for migration without holding both 493 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 494 * 495 * p->on_cpu <- { 0, 1 }: 496 * 497 * is set by prepare_task() and cleared by finish_task() such that it will be 498 * set before p is scheduled-in and cleared after p is scheduled-out, both 499 * under rq->lock. Non-zero indicates the task is running on its CPU. 500 * 501 * [ The astute reader will observe that it is possible for two tasks on one 502 * CPU to have ->on_cpu = 1 at the same time. ] 503 * 504 * task_cpu(p): is changed by set_task_cpu(), the rules are: 505 * 506 * - Don't call set_task_cpu() on a blocked task: 507 * 508 * We don't care what CPU we're not running on, this simplifies hotplug, 509 * the CPU assignment of blocked tasks isn't required to be valid. 510 * 511 * - for try_to_wake_up(), called under p->pi_lock: 512 * 513 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 514 * 515 * - for migration called under rq->lock: 516 * [ see task_on_rq_migrating() in task_rq_lock() ] 517 * 518 * o move_queued_task() 519 * o detach_task() 520 * 521 * - for migration called under double_rq_lock(): 522 * 523 * o __migrate_swap_task() 524 * o push_rt_task() / pull_rt_task() 525 * o push_dl_task() / pull_dl_task() 526 * o dl_task_offline_migration() 527 * 528 */ 529 530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 531 { 532 raw_spinlock_t *lock; 533 534 /* Matches synchronize_rcu() in __sched_core_enable() */ 535 preempt_disable(); 536 if (sched_core_disabled()) { 537 raw_spin_lock_nested(&rq->__lock, subclass); 538 /* preempt_count *MUST* be > 1 */ 539 preempt_enable_no_resched(); 540 return; 541 } 542 543 for (;;) { 544 lock = __rq_lockp(rq); 545 raw_spin_lock_nested(lock, subclass); 546 if (likely(lock == __rq_lockp(rq))) { 547 /* preempt_count *MUST* be > 1 */ 548 preempt_enable_no_resched(); 549 return; 550 } 551 raw_spin_unlock(lock); 552 } 553 } 554 555 bool raw_spin_rq_trylock(struct rq *rq) 556 { 557 raw_spinlock_t *lock; 558 bool ret; 559 560 /* Matches synchronize_rcu() in __sched_core_enable() */ 561 preempt_disable(); 562 if (sched_core_disabled()) { 563 ret = raw_spin_trylock(&rq->__lock); 564 preempt_enable(); 565 return ret; 566 } 567 568 for (;;) { 569 lock = __rq_lockp(rq); 570 ret = raw_spin_trylock(lock); 571 if (!ret || (likely(lock == __rq_lockp(rq)))) { 572 preempt_enable(); 573 return ret; 574 } 575 raw_spin_unlock(lock); 576 } 577 } 578 579 void raw_spin_rq_unlock(struct rq *rq) 580 { 581 raw_spin_unlock(rq_lockp(rq)); 582 } 583 584 #ifdef CONFIG_SMP 585 /* 586 * double_rq_lock - safely lock two runqueues 587 */ 588 void double_rq_lock(struct rq *rq1, struct rq *rq2) 589 { 590 lockdep_assert_irqs_disabled(); 591 592 if (rq_order_less(rq2, rq1)) 593 swap(rq1, rq2); 594 595 raw_spin_rq_lock(rq1); 596 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 597 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 598 599 double_rq_clock_clear_update(rq1, rq2); 600 } 601 #endif 602 603 /* 604 * __task_rq_lock - lock the rq @p resides on. 605 */ 606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 607 __acquires(rq->lock) 608 { 609 struct rq *rq; 610 611 lockdep_assert_held(&p->pi_lock); 612 613 for (;;) { 614 rq = task_rq(p); 615 raw_spin_rq_lock(rq); 616 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 617 rq_pin_lock(rq, rf); 618 return rq; 619 } 620 raw_spin_rq_unlock(rq); 621 622 while (unlikely(task_on_rq_migrating(p))) 623 cpu_relax(); 624 } 625 } 626 627 /* 628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 629 */ 630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 631 __acquires(p->pi_lock) 632 __acquires(rq->lock) 633 { 634 struct rq *rq; 635 636 for (;;) { 637 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 638 rq = task_rq(p); 639 raw_spin_rq_lock(rq); 640 /* 641 * move_queued_task() task_rq_lock() 642 * 643 * ACQUIRE (rq->lock) 644 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 645 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 646 * [S] ->cpu = new_cpu [L] task_rq() 647 * [L] ->on_rq 648 * RELEASE (rq->lock) 649 * 650 * If we observe the old CPU in task_rq_lock(), the acquire of 651 * the old rq->lock will fully serialize against the stores. 652 * 653 * If we observe the new CPU in task_rq_lock(), the address 654 * dependency headed by '[L] rq = task_rq()' and the acquire 655 * will pair with the WMB to ensure we then also see migrating. 656 */ 657 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 658 rq_pin_lock(rq, rf); 659 return rq; 660 } 661 raw_spin_rq_unlock(rq); 662 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 663 664 while (unlikely(task_on_rq_migrating(p))) 665 cpu_relax(); 666 } 667 } 668 669 /* 670 * RQ-clock updating methods: 671 */ 672 673 static void update_rq_clock_task(struct rq *rq, s64 delta) 674 { 675 /* 676 * In theory, the compile should just see 0 here, and optimize out the call 677 * to sched_rt_avg_update. But I don't trust it... 678 */ 679 s64 __maybe_unused steal = 0, irq_delta = 0; 680 681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 682 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 683 684 /* 685 * Since irq_time is only updated on {soft,}irq_exit, we might run into 686 * this case when a previous update_rq_clock() happened inside a 687 * {soft,}irq region. 688 * 689 * When this happens, we stop ->clock_task and only update the 690 * prev_irq_time stamp to account for the part that fit, so that a next 691 * update will consume the rest. This ensures ->clock_task is 692 * monotonic. 693 * 694 * It does however cause some slight miss-attribution of {soft,}irq 695 * time, a more accurate solution would be to update the irq_time using 696 * the current rq->clock timestamp, except that would require using 697 * atomic ops. 698 */ 699 if (irq_delta > delta) 700 irq_delta = delta; 701 702 rq->prev_irq_time += irq_delta; 703 delta -= irq_delta; 704 psi_account_irqtime(rq->curr, irq_delta); 705 #endif 706 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 707 if (static_key_false((¶virt_steal_rq_enabled))) { 708 steal = paravirt_steal_clock(cpu_of(rq)); 709 steal -= rq->prev_steal_time_rq; 710 711 if (unlikely(steal > delta)) 712 steal = delta; 713 714 rq->prev_steal_time_rq += steal; 715 delta -= steal; 716 } 717 #endif 718 719 rq->clock_task += delta; 720 721 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 722 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 723 update_irq_load_avg(rq, irq_delta + steal); 724 #endif 725 update_rq_clock_pelt(rq, delta); 726 } 727 728 void update_rq_clock(struct rq *rq) 729 { 730 s64 delta; 731 732 lockdep_assert_rq_held(rq); 733 734 if (rq->clock_update_flags & RQCF_ACT_SKIP) 735 return; 736 737 #ifdef CONFIG_SCHED_DEBUG 738 if (sched_feat(WARN_DOUBLE_CLOCK)) 739 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 740 rq->clock_update_flags |= RQCF_UPDATED; 741 #endif 742 743 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 744 if (delta < 0) 745 return; 746 rq->clock += delta; 747 update_rq_clock_task(rq, delta); 748 } 749 750 #ifdef CONFIG_SCHED_HRTICK 751 /* 752 * Use HR-timers to deliver accurate preemption points. 753 */ 754 755 static void hrtick_clear(struct rq *rq) 756 { 757 if (hrtimer_active(&rq->hrtick_timer)) 758 hrtimer_cancel(&rq->hrtick_timer); 759 } 760 761 /* 762 * High-resolution timer tick. 763 * Runs from hardirq context with interrupts disabled. 764 */ 765 static enum hrtimer_restart hrtick(struct hrtimer *timer) 766 { 767 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 768 struct rq_flags rf; 769 770 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 771 772 rq_lock(rq, &rf); 773 update_rq_clock(rq); 774 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 775 rq_unlock(rq, &rf); 776 777 return HRTIMER_NORESTART; 778 } 779 780 #ifdef CONFIG_SMP 781 782 static void __hrtick_restart(struct rq *rq) 783 { 784 struct hrtimer *timer = &rq->hrtick_timer; 785 ktime_t time = rq->hrtick_time; 786 787 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 788 } 789 790 /* 791 * called from hardirq (IPI) context 792 */ 793 static void __hrtick_start(void *arg) 794 { 795 struct rq *rq = arg; 796 struct rq_flags rf; 797 798 rq_lock(rq, &rf); 799 __hrtick_restart(rq); 800 rq_unlock(rq, &rf); 801 } 802 803 /* 804 * Called to set the hrtick timer state. 805 * 806 * called with rq->lock held and irqs disabled 807 */ 808 void hrtick_start(struct rq *rq, u64 delay) 809 { 810 struct hrtimer *timer = &rq->hrtick_timer; 811 s64 delta; 812 813 /* 814 * Don't schedule slices shorter than 10000ns, that just 815 * doesn't make sense and can cause timer DoS. 816 */ 817 delta = max_t(s64, delay, 10000LL); 818 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 819 820 if (rq == this_rq()) 821 __hrtick_restart(rq); 822 else 823 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 824 } 825 826 #else 827 /* 828 * Called to set the hrtick timer state. 829 * 830 * called with rq->lock held and irqs disabled 831 */ 832 void hrtick_start(struct rq *rq, u64 delay) 833 { 834 /* 835 * Don't schedule slices shorter than 10000ns, that just 836 * doesn't make sense. Rely on vruntime for fairness. 837 */ 838 delay = max_t(u64, delay, 10000LL); 839 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 840 HRTIMER_MODE_REL_PINNED_HARD); 841 } 842 843 #endif /* CONFIG_SMP */ 844 845 static void hrtick_rq_init(struct rq *rq) 846 { 847 #ifdef CONFIG_SMP 848 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 849 #endif 850 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 851 rq->hrtick_timer.function = hrtick; 852 } 853 #else /* CONFIG_SCHED_HRTICK */ 854 static inline void hrtick_clear(struct rq *rq) 855 { 856 } 857 858 static inline void hrtick_rq_init(struct rq *rq) 859 { 860 } 861 #endif /* CONFIG_SCHED_HRTICK */ 862 863 /* 864 * cmpxchg based fetch_or, macro so it works for different integer types 865 */ 866 #define fetch_or(ptr, mask) \ 867 ({ \ 868 typeof(ptr) _ptr = (ptr); \ 869 typeof(mask) _mask = (mask); \ 870 typeof(*_ptr) _val = *_ptr; \ 871 \ 872 do { \ 873 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 874 _val; \ 875 }) 876 877 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 878 /* 879 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 880 * this avoids any races wrt polling state changes and thereby avoids 881 * spurious IPIs. 882 */ 883 static inline bool set_nr_and_not_polling(struct task_struct *p) 884 { 885 struct thread_info *ti = task_thread_info(p); 886 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 887 } 888 889 /* 890 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 891 * 892 * If this returns true, then the idle task promises to call 893 * sched_ttwu_pending() and reschedule soon. 894 */ 895 static bool set_nr_if_polling(struct task_struct *p) 896 { 897 struct thread_info *ti = task_thread_info(p); 898 typeof(ti->flags) val = READ_ONCE(ti->flags); 899 900 for (;;) { 901 if (!(val & _TIF_POLLING_NRFLAG)) 902 return false; 903 if (val & _TIF_NEED_RESCHED) 904 return true; 905 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 906 break; 907 } 908 return true; 909 } 910 911 #else 912 static inline bool set_nr_and_not_polling(struct task_struct *p) 913 { 914 set_tsk_need_resched(p); 915 return true; 916 } 917 918 #ifdef CONFIG_SMP 919 static inline bool set_nr_if_polling(struct task_struct *p) 920 { 921 return false; 922 } 923 #endif 924 #endif 925 926 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 927 { 928 struct wake_q_node *node = &task->wake_q; 929 930 /* 931 * Atomically grab the task, if ->wake_q is !nil already it means 932 * it's already queued (either by us or someone else) and will get the 933 * wakeup due to that. 934 * 935 * In order to ensure that a pending wakeup will observe our pending 936 * state, even in the failed case, an explicit smp_mb() must be used. 937 */ 938 smp_mb__before_atomic(); 939 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 940 return false; 941 942 /* 943 * The head is context local, there can be no concurrency. 944 */ 945 *head->lastp = node; 946 head->lastp = &node->next; 947 return true; 948 } 949 950 /** 951 * wake_q_add() - queue a wakeup for 'later' waking. 952 * @head: the wake_q_head to add @task to 953 * @task: the task to queue for 'later' wakeup 954 * 955 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 956 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 957 * instantly. 958 * 959 * This function must be used as-if it were wake_up_process(); IOW the task 960 * must be ready to be woken at this location. 961 */ 962 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 963 { 964 if (__wake_q_add(head, task)) 965 get_task_struct(task); 966 } 967 968 /** 969 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 970 * @head: the wake_q_head to add @task to 971 * @task: the task to queue for 'later' wakeup 972 * 973 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 974 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 975 * instantly. 976 * 977 * This function must be used as-if it were wake_up_process(); IOW the task 978 * must be ready to be woken at this location. 979 * 980 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 981 * that already hold reference to @task can call the 'safe' version and trust 982 * wake_q to do the right thing depending whether or not the @task is already 983 * queued for wakeup. 984 */ 985 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 986 { 987 if (!__wake_q_add(head, task)) 988 put_task_struct(task); 989 } 990 991 void wake_up_q(struct wake_q_head *head) 992 { 993 struct wake_q_node *node = head->first; 994 995 while (node != WAKE_Q_TAIL) { 996 struct task_struct *task; 997 998 task = container_of(node, struct task_struct, wake_q); 999 /* Task can safely be re-inserted now: */ 1000 node = node->next; 1001 task->wake_q.next = NULL; 1002 1003 /* 1004 * wake_up_process() executes a full barrier, which pairs with 1005 * the queueing in wake_q_add() so as not to miss wakeups. 1006 */ 1007 wake_up_process(task); 1008 put_task_struct(task); 1009 } 1010 } 1011 1012 /* 1013 * resched_curr - mark rq's current task 'to be rescheduled now'. 1014 * 1015 * On UP this means the setting of the need_resched flag, on SMP it 1016 * might also involve a cross-CPU call to trigger the scheduler on 1017 * the target CPU. 1018 */ 1019 void resched_curr(struct rq *rq) 1020 { 1021 struct task_struct *curr = rq->curr; 1022 int cpu; 1023 1024 lockdep_assert_rq_held(rq); 1025 1026 if (test_tsk_need_resched(curr)) 1027 return; 1028 1029 cpu = cpu_of(rq); 1030 1031 if (cpu == smp_processor_id()) { 1032 set_tsk_need_resched(curr); 1033 set_preempt_need_resched(); 1034 return; 1035 } 1036 1037 if (set_nr_and_not_polling(curr)) 1038 smp_send_reschedule(cpu); 1039 else 1040 trace_sched_wake_idle_without_ipi(cpu); 1041 } 1042 1043 void resched_cpu(int cpu) 1044 { 1045 struct rq *rq = cpu_rq(cpu); 1046 unsigned long flags; 1047 1048 raw_spin_rq_lock_irqsave(rq, flags); 1049 if (cpu_online(cpu) || cpu == smp_processor_id()) 1050 resched_curr(rq); 1051 raw_spin_rq_unlock_irqrestore(rq, flags); 1052 } 1053 1054 #ifdef CONFIG_SMP 1055 #ifdef CONFIG_NO_HZ_COMMON 1056 /* 1057 * In the semi idle case, use the nearest busy CPU for migrating timers 1058 * from an idle CPU. This is good for power-savings. 1059 * 1060 * We don't do similar optimization for completely idle system, as 1061 * selecting an idle CPU will add more delays to the timers than intended 1062 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1063 */ 1064 int get_nohz_timer_target(void) 1065 { 1066 int i, cpu = smp_processor_id(), default_cpu = -1; 1067 struct sched_domain *sd; 1068 const struct cpumask *hk_mask; 1069 1070 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1071 if (!idle_cpu(cpu)) 1072 return cpu; 1073 default_cpu = cpu; 1074 } 1075 1076 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1077 1078 rcu_read_lock(); 1079 for_each_domain(cpu, sd) { 1080 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1081 if (cpu == i) 1082 continue; 1083 1084 if (!idle_cpu(i)) { 1085 cpu = i; 1086 goto unlock; 1087 } 1088 } 1089 } 1090 1091 if (default_cpu == -1) 1092 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1093 cpu = default_cpu; 1094 unlock: 1095 rcu_read_unlock(); 1096 return cpu; 1097 } 1098 1099 /* 1100 * When add_timer_on() enqueues a timer into the timer wheel of an 1101 * idle CPU then this timer might expire before the next timer event 1102 * which is scheduled to wake up that CPU. In case of a completely 1103 * idle system the next event might even be infinite time into the 1104 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1105 * leaves the inner idle loop so the newly added timer is taken into 1106 * account when the CPU goes back to idle and evaluates the timer 1107 * wheel for the next timer event. 1108 */ 1109 static void wake_up_idle_cpu(int cpu) 1110 { 1111 struct rq *rq = cpu_rq(cpu); 1112 1113 if (cpu == smp_processor_id()) 1114 return; 1115 1116 if (set_nr_and_not_polling(rq->idle)) 1117 smp_send_reschedule(cpu); 1118 else 1119 trace_sched_wake_idle_without_ipi(cpu); 1120 } 1121 1122 static bool wake_up_full_nohz_cpu(int cpu) 1123 { 1124 /* 1125 * We just need the target to call irq_exit() and re-evaluate 1126 * the next tick. The nohz full kick at least implies that. 1127 * If needed we can still optimize that later with an 1128 * empty IRQ. 1129 */ 1130 if (cpu_is_offline(cpu)) 1131 return true; /* Don't try to wake offline CPUs. */ 1132 if (tick_nohz_full_cpu(cpu)) { 1133 if (cpu != smp_processor_id() || 1134 tick_nohz_tick_stopped()) 1135 tick_nohz_full_kick_cpu(cpu); 1136 return true; 1137 } 1138 1139 return false; 1140 } 1141 1142 /* 1143 * Wake up the specified CPU. If the CPU is going offline, it is the 1144 * caller's responsibility to deal with the lost wakeup, for example, 1145 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1146 */ 1147 void wake_up_nohz_cpu(int cpu) 1148 { 1149 if (!wake_up_full_nohz_cpu(cpu)) 1150 wake_up_idle_cpu(cpu); 1151 } 1152 1153 static void nohz_csd_func(void *info) 1154 { 1155 struct rq *rq = info; 1156 int cpu = cpu_of(rq); 1157 unsigned int flags; 1158 1159 /* 1160 * Release the rq::nohz_csd. 1161 */ 1162 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1163 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1164 1165 rq->idle_balance = idle_cpu(cpu); 1166 if (rq->idle_balance && !need_resched()) { 1167 rq->nohz_idle_balance = flags; 1168 raise_softirq_irqoff(SCHED_SOFTIRQ); 1169 } 1170 } 1171 1172 #endif /* CONFIG_NO_HZ_COMMON */ 1173 1174 #ifdef CONFIG_NO_HZ_FULL 1175 bool sched_can_stop_tick(struct rq *rq) 1176 { 1177 int fifo_nr_running; 1178 1179 /* Deadline tasks, even if single, need the tick */ 1180 if (rq->dl.dl_nr_running) 1181 return false; 1182 1183 /* 1184 * If there are more than one RR tasks, we need the tick to affect the 1185 * actual RR behaviour. 1186 */ 1187 if (rq->rt.rr_nr_running) { 1188 if (rq->rt.rr_nr_running == 1) 1189 return true; 1190 else 1191 return false; 1192 } 1193 1194 /* 1195 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1196 * forced preemption between FIFO tasks. 1197 */ 1198 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1199 if (fifo_nr_running) 1200 return true; 1201 1202 /* 1203 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1204 * if there's more than one we need the tick for involuntary 1205 * preemption. 1206 */ 1207 if (rq->nr_running > 1) 1208 return false; 1209 1210 return true; 1211 } 1212 #endif /* CONFIG_NO_HZ_FULL */ 1213 #endif /* CONFIG_SMP */ 1214 1215 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1216 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1217 /* 1218 * Iterate task_group tree rooted at *from, calling @down when first entering a 1219 * node and @up when leaving it for the final time. 1220 * 1221 * Caller must hold rcu_lock or sufficient equivalent. 1222 */ 1223 int walk_tg_tree_from(struct task_group *from, 1224 tg_visitor down, tg_visitor up, void *data) 1225 { 1226 struct task_group *parent, *child; 1227 int ret; 1228 1229 parent = from; 1230 1231 down: 1232 ret = (*down)(parent, data); 1233 if (ret) 1234 goto out; 1235 list_for_each_entry_rcu(child, &parent->children, siblings) { 1236 parent = child; 1237 goto down; 1238 1239 up: 1240 continue; 1241 } 1242 ret = (*up)(parent, data); 1243 if (ret || parent == from) 1244 goto out; 1245 1246 child = parent; 1247 parent = parent->parent; 1248 if (parent) 1249 goto up; 1250 out: 1251 return ret; 1252 } 1253 1254 int tg_nop(struct task_group *tg, void *data) 1255 { 1256 return 0; 1257 } 1258 #endif 1259 1260 static void set_load_weight(struct task_struct *p, bool update_load) 1261 { 1262 int prio = p->static_prio - MAX_RT_PRIO; 1263 struct load_weight *load = &p->se.load; 1264 1265 /* 1266 * SCHED_IDLE tasks get minimal weight: 1267 */ 1268 if (task_has_idle_policy(p)) { 1269 load->weight = scale_load(WEIGHT_IDLEPRIO); 1270 load->inv_weight = WMULT_IDLEPRIO; 1271 return; 1272 } 1273 1274 /* 1275 * SCHED_OTHER tasks have to update their load when changing their 1276 * weight 1277 */ 1278 if (update_load && p->sched_class == &fair_sched_class) { 1279 reweight_task(p, prio); 1280 } else { 1281 load->weight = scale_load(sched_prio_to_weight[prio]); 1282 load->inv_weight = sched_prio_to_wmult[prio]; 1283 } 1284 } 1285 1286 #ifdef CONFIG_UCLAMP_TASK 1287 /* 1288 * Serializes updates of utilization clamp values 1289 * 1290 * The (slow-path) user-space triggers utilization clamp value updates which 1291 * can require updates on (fast-path) scheduler's data structures used to 1292 * support enqueue/dequeue operations. 1293 * While the per-CPU rq lock protects fast-path update operations, user-space 1294 * requests are serialized using a mutex to reduce the risk of conflicting 1295 * updates or API abuses. 1296 */ 1297 static DEFINE_MUTEX(uclamp_mutex); 1298 1299 /* Max allowed minimum utilization */ 1300 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1301 1302 /* Max allowed maximum utilization */ 1303 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1304 1305 /* 1306 * By default RT tasks run at the maximum performance point/capacity of the 1307 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1308 * SCHED_CAPACITY_SCALE. 1309 * 1310 * This knob allows admins to change the default behavior when uclamp is being 1311 * used. In battery powered devices, particularly, running at the maximum 1312 * capacity and frequency will increase energy consumption and shorten the 1313 * battery life. 1314 * 1315 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1316 * 1317 * This knob will not override the system default sched_util_clamp_min defined 1318 * above. 1319 */ 1320 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1321 1322 /* All clamps are required to be less or equal than these values */ 1323 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1324 1325 /* 1326 * This static key is used to reduce the uclamp overhead in the fast path. It 1327 * primarily disables the call to uclamp_rq_{inc, dec}() in 1328 * enqueue/dequeue_task(). 1329 * 1330 * This allows users to continue to enable uclamp in their kernel config with 1331 * minimum uclamp overhead in the fast path. 1332 * 1333 * As soon as userspace modifies any of the uclamp knobs, the static key is 1334 * enabled, since we have an actual users that make use of uclamp 1335 * functionality. 1336 * 1337 * The knobs that would enable this static key are: 1338 * 1339 * * A task modifying its uclamp value with sched_setattr(). 1340 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1341 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1342 */ 1343 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1344 1345 /* Integer rounded range for each bucket */ 1346 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1347 1348 #define for_each_clamp_id(clamp_id) \ 1349 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1350 1351 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1352 { 1353 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1354 } 1355 1356 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1357 { 1358 if (clamp_id == UCLAMP_MIN) 1359 return 0; 1360 return SCHED_CAPACITY_SCALE; 1361 } 1362 1363 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1364 unsigned int value, bool user_defined) 1365 { 1366 uc_se->value = value; 1367 uc_se->bucket_id = uclamp_bucket_id(value); 1368 uc_se->user_defined = user_defined; 1369 } 1370 1371 static inline unsigned int 1372 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1373 unsigned int clamp_value) 1374 { 1375 /* 1376 * Avoid blocked utilization pushing up the frequency when we go 1377 * idle (which drops the max-clamp) by retaining the last known 1378 * max-clamp. 1379 */ 1380 if (clamp_id == UCLAMP_MAX) { 1381 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1382 return clamp_value; 1383 } 1384 1385 return uclamp_none(UCLAMP_MIN); 1386 } 1387 1388 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1389 unsigned int clamp_value) 1390 { 1391 /* Reset max-clamp retention only on idle exit */ 1392 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1393 return; 1394 1395 uclamp_rq_set(rq, clamp_id, clamp_value); 1396 } 1397 1398 static inline 1399 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1400 unsigned int clamp_value) 1401 { 1402 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1403 int bucket_id = UCLAMP_BUCKETS - 1; 1404 1405 /* 1406 * Since both min and max clamps are max aggregated, find the 1407 * top most bucket with tasks in. 1408 */ 1409 for ( ; bucket_id >= 0; bucket_id--) { 1410 if (!bucket[bucket_id].tasks) 1411 continue; 1412 return bucket[bucket_id].value; 1413 } 1414 1415 /* No tasks -- default clamp values */ 1416 return uclamp_idle_value(rq, clamp_id, clamp_value); 1417 } 1418 1419 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1420 { 1421 unsigned int default_util_min; 1422 struct uclamp_se *uc_se; 1423 1424 lockdep_assert_held(&p->pi_lock); 1425 1426 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1427 1428 /* Only sync if user didn't override the default */ 1429 if (uc_se->user_defined) 1430 return; 1431 1432 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1433 uclamp_se_set(uc_se, default_util_min, false); 1434 } 1435 1436 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1437 { 1438 struct rq_flags rf; 1439 struct rq *rq; 1440 1441 if (!rt_task(p)) 1442 return; 1443 1444 /* Protect updates to p->uclamp_* */ 1445 rq = task_rq_lock(p, &rf); 1446 __uclamp_update_util_min_rt_default(p); 1447 task_rq_unlock(rq, p, &rf); 1448 } 1449 1450 static inline struct uclamp_se 1451 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1452 { 1453 /* Copy by value as we could modify it */ 1454 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1455 #ifdef CONFIG_UCLAMP_TASK_GROUP 1456 unsigned int tg_min, tg_max, value; 1457 1458 /* 1459 * Tasks in autogroups or root task group will be 1460 * restricted by system defaults. 1461 */ 1462 if (task_group_is_autogroup(task_group(p))) 1463 return uc_req; 1464 if (task_group(p) == &root_task_group) 1465 return uc_req; 1466 1467 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1468 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1469 value = uc_req.value; 1470 value = clamp(value, tg_min, tg_max); 1471 uclamp_se_set(&uc_req, value, false); 1472 #endif 1473 1474 return uc_req; 1475 } 1476 1477 /* 1478 * The effective clamp bucket index of a task depends on, by increasing 1479 * priority: 1480 * - the task specific clamp value, when explicitly requested from userspace 1481 * - the task group effective clamp value, for tasks not either in the root 1482 * group or in an autogroup 1483 * - the system default clamp value, defined by the sysadmin 1484 */ 1485 static inline struct uclamp_se 1486 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1487 { 1488 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1489 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1490 1491 /* System default restrictions always apply */ 1492 if (unlikely(uc_req.value > uc_max.value)) 1493 return uc_max; 1494 1495 return uc_req; 1496 } 1497 1498 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1499 { 1500 struct uclamp_se uc_eff; 1501 1502 /* Task currently refcounted: use back-annotated (effective) value */ 1503 if (p->uclamp[clamp_id].active) 1504 return (unsigned long)p->uclamp[clamp_id].value; 1505 1506 uc_eff = uclamp_eff_get(p, clamp_id); 1507 1508 return (unsigned long)uc_eff.value; 1509 } 1510 1511 /* 1512 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1513 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1514 * updates the rq's clamp value if required. 1515 * 1516 * Tasks can have a task-specific value requested from user-space, track 1517 * within each bucket the maximum value for tasks refcounted in it. 1518 * This "local max aggregation" allows to track the exact "requested" value 1519 * for each bucket when all its RUNNABLE tasks require the same clamp. 1520 */ 1521 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1522 enum uclamp_id clamp_id) 1523 { 1524 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1525 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1526 struct uclamp_bucket *bucket; 1527 1528 lockdep_assert_rq_held(rq); 1529 1530 /* Update task effective clamp */ 1531 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1532 1533 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1534 bucket->tasks++; 1535 uc_se->active = true; 1536 1537 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1538 1539 /* 1540 * Local max aggregation: rq buckets always track the max 1541 * "requested" clamp value of its RUNNABLE tasks. 1542 */ 1543 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1544 bucket->value = uc_se->value; 1545 1546 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1547 uclamp_rq_set(rq, clamp_id, uc_se->value); 1548 } 1549 1550 /* 1551 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1552 * is released. If this is the last task reference counting the rq's max 1553 * active clamp value, then the rq's clamp value is updated. 1554 * 1555 * Both refcounted tasks and rq's cached clamp values are expected to be 1556 * always valid. If it's detected they are not, as defensive programming, 1557 * enforce the expected state and warn. 1558 */ 1559 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1560 enum uclamp_id clamp_id) 1561 { 1562 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1563 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1564 struct uclamp_bucket *bucket; 1565 unsigned int bkt_clamp; 1566 unsigned int rq_clamp; 1567 1568 lockdep_assert_rq_held(rq); 1569 1570 /* 1571 * If sched_uclamp_used was enabled after task @p was enqueued, 1572 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1573 * 1574 * In this case the uc_se->active flag should be false since no uclamp 1575 * accounting was performed at enqueue time and we can just return 1576 * here. 1577 * 1578 * Need to be careful of the following enqueue/dequeue ordering 1579 * problem too 1580 * 1581 * enqueue(taskA) 1582 * // sched_uclamp_used gets enabled 1583 * enqueue(taskB) 1584 * dequeue(taskA) 1585 * // Must not decrement bucket->tasks here 1586 * dequeue(taskB) 1587 * 1588 * where we could end up with stale data in uc_se and 1589 * bucket[uc_se->bucket_id]. 1590 * 1591 * The following check here eliminates the possibility of such race. 1592 */ 1593 if (unlikely(!uc_se->active)) 1594 return; 1595 1596 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1597 1598 SCHED_WARN_ON(!bucket->tasks); 1599 if (likely(bucket->tasks)) 1600 bucket->tasks--; 1601 1602 uc_se->active = false; 1603 1604 /* 1605 * Keep "local max aggregation" simple and accept to (possibly) 1606 * overboost some RUNNABLE tasks in the same bucket. 1607 * The rq clamp bucket value is reset to its base value whenever 1608 * there are no more RUNNABLE tasks refcounting it. 1609 */ 1610 if (likely(bucket->tasks)) 1611 return; 1612 1613 rq_clamp = uclamp_rq_get(rq, clamp_id); 1614 /* 1615 * Defensive programming: this should never happen. If it happens, 1616 * e.g. due to future modification, warn and fixup the expected value. 1617 */ 1618 SCHED_WARN_ON(bucket->value > rq_clamp); 1619 if (bucket->value >= rq_clamp) { 1620 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1621 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1622 } 1623 } 1624 1625 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1626 { 1627 enum uclamp_id clamp_id; 1628 1629 /* 1630 * Avoid any overhead until uclamp is actually used by the userspace. 1631 * 1632 * The condition is constructed such that a NOP is generated when 1633 * sched_uclamp_used is disabled. 1634 */ 1635 if (!static_branch_unlikely(&sched_uclamp_used)) 1636 return; 1637 1638 if (unlikely(!p->sched_class->uclamp_enabled)) 1639 return; 1640 1641 for_each_clamp_id(clamp_id) 1642 uclamp_rq_inc_id(rq, p, clamp_id); 1643 1644 /* Reset clamp idle holding when there is one RUNNABLE task */ 1645 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1646 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1647 } 1648 1649 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1650 { 1651 enum uclamp_id clamp_id; 1652 1653 /* 1654 * Avoid any overhead until uclamp is actually used by the userspace. 1655 * 1656 * The condition is constructed such that a NOP is generated when 1657 * sched_uclamp_used is disabled. 1658 */ 1659 if (!static_branch_unlikely(&sched_uclamp_used)) 1660 return; 1661 1662 if (unlikely(!p->sched_class->uclamp_enabled)) 1663 return; 1664 1665 for_each_clamp_id(clamp_id) 1666 uclamp_rq_dec_id(rq, p, clamp_id); 1667 } 1668 1669 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1670 enum uclamp_id clamp_id) 1671 { 1672 if (!p->uclamp[clamp_id].active) 1673 return; 1674 1675 uclamp_rq_dec_id(rq, p, clamp_id); 1676 uclamp_rq_inc_id(rq, p, clamp_id); 1677 1678 /* 1679 * Make sure to clear the idle flag if we've transiently reached 0 1680 * active tasks on rq. 1681 */ 1682 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1683 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1684 } 1685 1686 static inline void 1687 uclamp_update_active(struct task_struct *p) 1688 { 1689 enum uclamp_id clamp_id; 1690 struct rq_flags rf; 1691 struct rq *rq; 1692 1693 /* 1694 * Lock the task and the rq where the task is (or was) queued. 1695 * 1696 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1697 * price to pay to safely serialize util_{min,max} updates with 1698 * enqueues, dequeues and migration operations. 1699 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1700 */ 1701 rq = task_rq_lock(p, &rf); 1702 1703 /* 1704 * Setting the clamp bucket is serialized by task_rq_lock(). 1705 * If the task is not yet RUNNABLE and its task_struct is not 1706 * affecting a valid clamp bucket, the next time it's enqueued, 1707 * it will already see the updated clamp bucket value. 1708 */ 1709 for_each_clamp_id(clamp_id) 1710 uclamp_rq_reinc_id(rq, p, clamp_id); 1711 1712 task_rq_unlock(rq, p, &rf); 1713 } 1714 1715 #ifdef CONFIG_UCLAMP_TASK_GROUP 1716 static inline void 1717 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1718 { 1719 struct css_task_iter it; 1720 struct task_struct *p; 1721 1722 css_task_iter_start(css, 0, &it); 1723 while ((p = css_task_iter_next(&it))) 1724 uclamp_update_active(p); 1725 css_task_iter_end(&it); 1726 } 1727 1728 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1729 #endif 1730 1731 #ifdef CONFIG_SYSCTL 1732 #ifdef CONFIG_UCLAMP_TASK 1733 #ifdef CONFIG_UCLAMP_TASK_GROUP 1734 static void uclamp_update_root_tg(void) 1735 { 1736 struct task_group *tg = &root_task_group; 1737 1738 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1739 sysctl_sched_uclamp_util_min, false); 1740 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1741 sysctl_sched_uclamp_util_max, false); 1742 1743 rcu_read_lock(); 1744 cpu_util_update_eff(&root_task_group.css); 1745 rcu_read_unlock(); 1746 } 1747 #else 1748 static void uclamp_update_root_tg(void) { } 1749 #endif 1750 1751 static void uclamp_sync_util_min_rt_default(void) 1752 { 1753 struct task_struct *g, *p; 1754 1755 /* 1756 * copy_process() sysctl_uclamp 1757 * uclamp_min_rt = X; 1758 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1759 * // link thread smp_mb__after_spinlock() 1760 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1761 * sched_post_fork() for_each_process_thread() 1762 * __uclamp_sync_rt() __uclamp_sync_rt() 1763 * 1764 * Ensures that either sched_post_fork() will observe the new 1765 * uclamp_min_rt or for_each_process_thread() will observe the new 1766 * task. 1767 */ 1768 read_lock(&tasklist_lock); 1769 smp_mb__after_spinlock(); 1770 read_unlock(&tasklist_lock); 1771 1772 rcu_read_lock(); 1773 for_each_process_thread(g, p) 1774 uclamp_update_util_min_rt_default(p); 1775 rcu_read_unlock(); 1776 } 1777 1778 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1779 void *buffer, size_t *lenp, loff_t *ppos) 1780 { 1781 bool update_root_tg = false; 1782 int old_min, old_max, old_min_rt; 1783 int result; 1784 1785 mutex_lock(&uclamp_mutex); 1786 old_min = sysctl_sched_uclamp_util_min; 1787 old_max = sysctl_sched_uclamp_util_max; 1788 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1789 1790 result = proc_dointvec(table, write, buffer, lenp, ppos); 1791 if (result) 1792 goto undo; 1793 if (!write) 1794 goto done; 1795 1796 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1797 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1798 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1799 1800 result = -EINVAL; 1801 goto undo; 1802 } 1803 1804 if (old_min != sysctl_sched_uclamp_util_min) { 1805 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1806 sysctl_sched_uclamp_util_min, false); 1807 update_root_tg = true; 1808 } 1809 if (old_max != sysctl_sched_uclamp_util_max) { 1810 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1811 sysctl_sched_uclamp_util_max, false); 1812 update_root_tg = true; 1813 } 1814 1815 if (update_root_tg) { 1816 static_branch_enable(&sched_uclamp_used); 1817 uclamp_update_root_tg(); 1818 } 1819 1820 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1821 static_branch_enable(&sched_uclamp_used); 1822 uclamp_sync_util_min_rt_default(); 1823 } 1824 1825 /* 1826 * We update all RUNNABLE tasks only when task groups are in use. 1827 * Otherwise, keep it simple and do just a lazy update at each next 1828 * task enqueue time. 1829 */ 1830 1831 goto done; 1832 1833 undo: 1834 sysctl_sched_uclamp_util_min = old_min; 1835 sysctl_sched_uclamp_util_max = old_max; 1836 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1837 done: 1838 mutex_unlock(&uclamp_mutex); 1839 1840 return result; 1841 } 1842 #endif 1843 #endif 1844 1845 static int uclamp_validate(struct task_struct *p, 1846 const struct sched_attr *attr) 1847 { 1848 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1849 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1850 1851 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1852 util_min = attr->sched_util_min; 1853 1854 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1855 return -EINVAL; 1856 } 1857 1858 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1859 util_max = attr->sched_util_max; 1860 1861 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1862 return -EINVAL; 1863 } 1864 1865 if (util_min != -1 && util_max != -1 && util_min > util_max) 1866 return -EINVAL; 1867 1868 /* 1869 * We have valid uclamp attributes; make sure uclamp is enabled. 1870 * 1871 * We need to do that here, because enabling static branches is a 1872 * blocking operation which obviously cannot be done while holding 1873 * scheduler locks. 1874 */ 1875 static_branch_enable(&sched_uclamp_used); 1876 1877 return 0; 1878 } 1879 1880 static bool uclamp_reset(const struct sched_attr *attr, 1881 enum uclamp_id clamp_id, 1882 struct uclamp_se *uc_se) 1883 { 1884 /* Reset on sched class change for a non user-defined clamp value. */ 1885 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1886 !uc_se->user_defined) 1887 return true; 1888 1889 /* Reset on sched_util_{min,max} == -1. */ 1890 if (clamp_id == UCLAMP_MIN && 1891 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1892 attr->sched_util_min == -1) { 1893 return true; 1894 } 1895 1896 if (clamp_id == UCLAMP_MAX && 1897 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1898 attr->sched_util_max == -1) { 1899 return true; 1900 } 1901 1902 return false; 1903 } 1904 1905 static void __setscheduler_uclamp(struct task_struct *p, 1906 const struct sched_attr *attr) 1907 { 1908 enum uclamp_id clamp_id; 1909 1910 for_each_clamp_id(clamp_id) { 1911 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1912 unsigned int value; 1913 1914 if (!uclamp_reset(attr, clamp_id, uc_se)) 1915 continue; 1916 1917 /* 1918 * RT by default have a 100% boost value that could be modified 1919 * at runtime. 1920 */ 1921 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1922 value = sysctl_sched_uclamp_util_min_rt_default; 1923 else 1924 value = uclamp_none(clamp_id); 1925 1926 uclamp_se_set(uc_se, value, false); 1927 1928 } 1929 1930 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1931 return; 1932 1933 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1934 attr->sched_util_min != -1) { 1935 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1936 attr->sched_util_min, true); 1937 } 1938 1939 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1940 attr->sched_util_max != -1) { 1941 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1942 attr->sched_util_max, true); 1943 } 1944 } 1945 1946 static void uclamp_fork(struct task_struct *p) 1947 { 1948 enum uclamp_id clamp_id; 1949 1950 /* 1951 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1952 * as the task is still at its early fork stages. 1953 */ 1954 for_each_clamp_id(clamp_id) 1955 p->uclamp[clamp_id].active = false; 1956 1957 if (likely(!p->sched_reset_on_fork)) 1958 return; 1959 1960 for_each_clamp_id(clamp_id) { 1961 uclamp_se_set(&p->uclamp_req[clamp_id], 1962 uclamp_none(clamp_id), false); 1963 } 1964 } 1965 1966 static void uclamp_post_fork(struct task_struct *p) 1967 { 1968 uclamp_update_util_min_rt_default(p); 1969 } 1970 1971 static void __init init_uclamp_rq(struct rq *rq) 1972 { 1973 enum uclamp_id clamp_id; 1974 struct uclamp_rq *uc_rq = rq->uclamp; 1975 1976 for_each_clamp_id(clamp_id) { 1977 uc_rq[clamp_id] = (struct uclamp_rq) { 1978 .value = uclamp_none(clamp_id) 1979 }; 1980 } 1981 1982 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1983 } 1984 1985 static void __init init_uclamp(void) 1986 { 1987 struct uclamp_se uc_max = {}; 1988 enum uclamp_id clamp_id; 1989 int cpu; 1990 1991 for_each_possible_cpu(cpu) 1992 init_uclamp_rq(cpu_rq(cpu)); 1993 1994 for_each_clamp_id(clamp_id) { 1995 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1996 uclamp_none(clamp_id), false); 1997 } 1998 1999 /* System defaults allow max clamp values for both indexes */ 2000 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2001 for_each_clamp_id(clamp_id) { 2002 uclamp_default[clamp_id] = uc_max; 2003 #ifdef CONFIG_UCLAMP_TASK_GROUP 2004 root_task_group.uclamp_req[clamp_id] = uc_max; 2005 root_task_group.uclamp[clamp_id] = uc_max; 2006 #endif 2007 } 2008 } 2009 2010 #else /* CONFIG_UCLAMP_TASK */ 2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2013 static inline int uclamp_validate(struct task_struct *p, 2014 const struct sched_attr *attr) 2015 { 2016 return -EOPNOTSUPP; 2017 } 2018 static void __setscheduler_uclamp(struct task_struct *p, 2019 const struct sched_attr *attr) { } 2020 static inline void uclamp_fork(struct task_struct *p) { } 2021 static inline void uclamp_post_fork(struct task_struct *p) { } 2022 static inline void init_uclamp(void) { } 2023 #endif /* CONFIG_UCLAMP_TASK */ 2024 2025 bool sched_task_on_rq(struct task_struct *p) 2026 { 2027 return task_on_rq_queued(p); 2028 } 2029 2030 unsigned long get_wchan(struct task_struct *p) 2031 { 2032 unsigned long ip = 0; 2033 unsigned int state; 2034 2035 if (!p || p == current) 2036 return 0; 2037 2038 /* Only get wchan if task is blocked and we can keep it that way. */ 2039 raw_spin_lock_irq(&p->pi_lock); 2040 state = READ_ONCE(p->__state); 2041 smp_rmb(); /* see try_to_wake_up() */ 2042 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2043 ip = __get_wchan(p); 2044 raw_spin_unlock_irq(&p->pi_lock); 2045 2046 return ip; 2047 } 2048 2049 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2050 { 2051 if (!(flags & ENQUEUE_NOCLOCK)) 2052 update_rq_clock(rq); 2053 2054 if (!(flags & ENQUEUE_RESTORE)) { 2055 sched_info_enqueue(rq, p); 2056 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 2057 } 2058 2059 uclamp_rq_inc(rq, p); 2060 p->sched_class->enqueue_task(rq, p, flags); 2061 2062 if (sched_core_enabled(rq)) 2063 sched_core_enqueue(rq, p); 2064 } 2065 2066 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2067 { 2068 if (sched_core_enabled(rq)) 2069 sched_core_dequeue(rq, p, flags); 2070 2071 if (!(flags & DEQUEUE_NOCLOCK)) 2072 update_rq_clock(rq); 2073 2074 if (!(flags & DEQUEUE_SAVE)) { 2075 sched_info_dequeue(rq, p); 2076 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2077 } 2078 2079 uclamp_rq_dec(rq, p); 2080 p->sched_class->dequeue_task(rq, p, flags); 2081 } 2082 2083 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2084 { 2085 enqueue_task(rq, p, flags); 2086 2087 p->on_rq = TASK_ON_RQ_QUEUED; 2088 } 2089 2090 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2091 { 2092 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2093 2094 dequeue_task(rq, p, flags); 2095 } 2096 2097 static inline int __normal_prio(int policy, int rt_prio, int nice) 2098 { 2099 int prio; 2100 2101 if (dl_policy(policy)) 2102 prio = MAX_DL_PRIO - 1; 2103 else if (rt_policy(policy)) 2104 prio = MAX_RT_PRIO - 1 - rt_prio; 2105 else 2106 prio = NICE_TO_PRIO(nice); 2107 2108 return prio; 2109 } 2110 2111 /* 2112 * Calculate the expected normal priority: i.e. priority 2113 * without taking RT-inheritance into account. Might be 2114 * boosted by interactivity modifiers. Changes upon fork, 2115 * setprio syscalls, and whenever the interactivity 2116 * estimator recalculates. 2117 */ 2118 static inline int normal_prio(struct task_struct *p) 2119 { 2120 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2121 } 2122 2123 /* 2124 * Calculate the current priority, i.e. the priority 2125 * taken into account by the scheduler. This value might 2126 * be boosted by RT tasks, or might be boosted by 2127 * interactivity modifiers. Will be RT if the task got 2128 * RT-boosted. If not then it returns p->normal_prio. 2129 */ 2130 static int effective_prio(struct task_struct *p) 2131 { 2132 p->normal_prio = normal_prio(p); 2133 /* 2134 * If we are RT tasks or we were boosted to RT priority, 2135 * keep the priority unchanged. Otherwise, update priority 2136 * to the normal priority: 2137 */ 2138 if (!rt_prio(p->prio)) 2139 return p->normal_prio; 2140 return p->prio; 2141 } 2142 2143 /** 2144 * task_curr - is this task currently executing on a CPU? 2145 * @p: the task in question. 2146 * 2147 * Return: 1 if the task is currently executing. 0 otherwise. 2148 */ 2149 inline int task_curr(const struct task_struct *p) 2150 { 2151 return cpu_curr(task_cpu(p)) == p; 2152 } 2153 2154 /* 2155 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2156 * use the balance_callback list if you want balancing. 2157 * 2158 * this means any call to check_class_changed() must be followed by a call to 2159 * balance_callback(). 2160 */ 2161 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2162 const struct sched_class *prev_class, 2163 int oldprio) 2164 { 2165 if (prev_class != p->sched_class) { 2166 if (prev_class->switched_from) 2167 prev_class->switched_from(rq, p); 2168 2169 p->sched_class->switched_to(rq, p); 2170 } else if (oldprio != p->prio || dl_task(p)) 2171 p->sched_class->prio_changed(rq, p, oldprio); 2172 } 2173 2174 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2175 { 2176 if (p->sched_class == rq->curr->sched_class) 2177 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2178 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2179 resched_curr(rq); 2180 2181 /* 2182 * A queue event has occurred, and we're going to schedule. In 2183 * this case, we can save a useless back to back clock update. 2184 */ 2185 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2186 rq_clock_skip_update(rq); 2187 } 2188 2189 #ifdef CONFIG_SMP 2190 2191 static void 2192 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2193 2194 static int __set_cpus_allowed_ptr(struct task_struct *p, 2195 struct affinity_context *ctx); 2196 2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2198 { 2199 struct affinity_context ac = { 2200 .new_mask = cpumask_of(rq->cpu), 2201 .flags = SCA_MIGRATE_DISABLE, 2202 }; 2203 2204 if (likely(!p->migration_disabled)) 2205 return; 2206 2207 if (p->cpus_ptr != &p->cpus_mask) 2208 return; 2209 2210 /* 2211 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2212 */ 2213 __do_set_cpus_allowed(p, &ac); 2214 } 2215 2216 void migrate_disable(void) 2217 { 2218 struct task_struct *p = current; 2219 2220 if (p->migration_disabled) { 2221 p->migration_disabled++; 2222 return; 2223 } 2224 2225 preempt_disable(); 2226 this_rq()->nr_pinned++; 2227 p->migration_disabled = 1; 2228 preempt_enable(); 2229 } 2230 EXPORT_SYMBOL_GPL(migrate_disable); 2231 2232 void migrate_enable(void) 2233 { 2234 struct task_struct *p = current; 2235 struct affinity_context ac = { 2236 .new_mask = &p->cpus_mask, 2237 .flags = SCA_MIGRATE_ENABLE, 2238 }; 2239 2240 if (p->migration_disabled > 1) { 2241 p->migration_disabled--; 2242 return; 2243 } 2244 2245 if (WARN_ON_ONCE(!p->migration_disabled)) 2246 return; 2247 2248 /* 2249 * Ensure stop_task runs either before or after this, and that 2250 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2251 */ 2252 preempt_disable(); 2253 if (p->cpus_ptr != &p->cpus_mask) 2254 __set_cpus_allowed_ptr(p, &ac); 2255 /* 2256 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2257 * regular cpus_mask, otherwise things that race (eg. 2258 * select_fallback_rq) get confused. 2259 */ 2260 barrier(); 2261 p->migration_disabled = 0; 2262 this_rq()->nr_pinned--; 2263 preempt_enable(); 2264 } 2265 EXPORT_SYMBOL_GPL(migrate_enable); 2266 2267 static inline bool rq_has_pinned_tasks(struct rq *rq) 2268 { 2269 return rq->nr_pinned; 2270 } 2271 2272 /* 2273 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2274 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2275 */ 2276 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2277 { 2278 /* When not in the task's cpumask, no point in looking further. */ 2279 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2280 return false; 2281 2282 /* migrate_disabled() must be allowed to finish. */ 2283 if (is_migration_disabled(p)) 2284 return cpu_online(cpu); 2285 2286 /* Non kernel threads are not allowed during either online or offline. */ 2287 if (!(p->flags & PF_KTHREAD)) 2288 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2289 2290 /* KTHREAD_IS_PER_CPU is always allowed. */ 2291 if (kthread_is_per_cpu(p)) 2292 return cpu_online(cpu); 2293 2294 /* Regular kernel threads don't get to stay during offline. */ 2295 if (cpu_dying(cpu)) 2296 return false; 2297 2298 /* But are allowed during online. */ 2299 return cpu_online(cpu); 2300 } 2301 2302 /* 2303 * This is how migration works: 2304 * 2305 * 1) we invoke migration_cpu_stop() on the target CPU using 2306 * stop_one_cpu(). 2307 * 2) stopper starts to run (implicitly forcing the migrated thread 2308 * off the CPU) 2309 * 3) it checks whether the migrated task is still in the wrong runqueue. 2310 * 4) if it's in the wrong runqueue then the migration thread removes 2311 * it and puts it into the right queue. 2312 * 5) stopper completes and stop_one_cpu() returns and the migration 2313 * is done. 2314 */ 2315 2316 /* 2317 * move_queued_task - move a queued task to new rq. 2318 * 2319 * Returns (locked) new rq. Old rq's lock is released. 2320 */ 2321 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2322 struct task_struct *p, int new_cpu) 2323 { 2324 lockdep_assert_rq_held(rq); 2325 2326 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2327 set_task_cpu(p, new_cpu); 2328 rq_unlock(rq, rf); 2329 2330 rq = cpu_rq(new_cpu); 2331 2332 rq_lock(rq, rf); 2333 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2334 activate_task(rq, p, 0); 2335 check_preempt_curr(rq, p, 0); 2336 2337 return rq; 2338 } 2339 2340 struct migration_arg { 2341 struct task_struct *task; 2342 int dest_cpu; 2343 struct set_affinity_pending *pending; 2344 }; 2345 2346 /* 2347 * @refs: number of wait_for_completion() 2348 * @stop_pending: is @stop_work in use 2349 */ 2350 struct set_affinity_pending { 2351 refcount_t refs; 2352 unsigned int stop_pending; 2353 struct completion done; 2354 struct cpu_stop_work stop_work; 2355 struct migration_arg arg; 2356 }; 2357 2358 /* 2359 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2360 * this because either it can't run here any more (set_cpus_allowed() 2361 * away from this CPU, or CPU going down), or because we're 2362 * attempting to rebalance this task on exec (sched_exec). 2363 * 2364 * So we race with normal scheduler movements, but that's OK, as long 2365 * as the task is no longer on this CPU. 2366 */ 2367 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2368 struct task_struct *p, int dest_cpu) 2369 { 2370 /* Affinity changed (again). */ 2371 if (!is_cpu_allowed(p, dest_cpu)) 2372 return rq; 2373 2374 update_rq_clock(rq); 2375 rq = move_queued_task(rq, rf, p, dest_cpu); 2376 2377 return rq; 2378 } 2379 2380 /* 2381 * migration_cpu_stop - this will be executed by a highprio stopper thread 2382 * and performs thread migration by bumping thread off CPU then 2383 * 'pushing' onto another runqueue. 2384 */ 2385 static int migration_cpu_stop(void *data) 2386 { 2387 struct migration_arg *arg = data; 2388 struct set_affinity_pending *pending = arg->pending; 2389 struct task_struct *p = arg->task; 2390 struct rq *rq = this_rq(); 2391 bool complete = false; 2392 struct rq_flags rf; 2393 2394 /* 2395 * The original target CPU might have gone down and we might 2396 * be on another CPU but it doesn't matter. 2397 */ 2398 local_irq_save(rf.flags); 2399 /* 2400 * We need to explicitly wake pending tasks before running 2401 * __migrate_task() such that we will not miss enforcing cpus_ptr 2402 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2403 */ 2404 flush_smp_call_function_queue(); 2405 2406 raw_spin_lock(&p->pi_lock); 2407 rq_lock(rq, &rf); 2408 2409 /* 2410 * If we were passed a pending, then ->stop_pending was set, thus 2411 * p->migration_pending must have remained stable. 2412 */ 2413 WARN_ON_ONCE(pending && pending != p->migration_pending); 2414 2415 /* 2416 * If task_rq(p) != rq, it cannot be migrated here, because we're 2417 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2418 * we're holding p->pi_lock. 2419 */ 2420 if (task_rq(p) == rq) { 2421 if (is_migration_disabled(p)) 2422 goto out; 2423 2424 if (pending) { 2425 p->migration_pending = NULL; 2426 complete = true; 2427 2428 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2429 goto out; 2430 } 2431 2432 if (task_on_rq_queued(p)) 2433 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2434 else 2435 p->wake_cpu = arg->dest_cpu; 2436 2437 /* 2438 * XXX __migrate_task() can fail, at which point we might end 2439 * up running on a dodgy CPU, AFAICT this can only happen 2440 * during CPU hotplug, at which point we'll get pushed out 2441 * anyway, so it's probably not a big deal. 2442 */ 2443 2444 } else if (pending) { 2445 /* 2446 * This happens when we get migrated between migrate_enable()'s 2447 * preempt_enable() and scheduling the stopper task. At that 2448 * point we're a regular task again and not current anymore. 2449 * 2450 * A !PREEMPT kernel has a giant hole here, which makes it far 2451 * more likely. 2452 */ 2453 2454 /* 2455 * The task moved before the stopper got to run. We're holding 2456 * ->pi_lock, so the allowed mask is stable - if it got 2457 * somewhere allowed, we're done. 2458 */ 2459 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2460 p->migration_pending = NULL; 2461 complete = true; 2462 goto out; 2463 } 2464 2465 /* 2466 * When migrate_enable() hits a rq mis-match we can't reliably 2467 * determine is_migration_disabled() and so have to chase after 2468 * it. 2469 */ 2470 WARN_ON_ONCE(!pending->stop_pending); 2471 task_rq_unlock(rq, p, &rf); 2472 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2473 &pending->arg, &pending->stop_work); 2474 return 0; 2475 } 2476 out: 2477 if (pending) 2478 pending->stop_pending = false; 2479 task_rq_unlock(rq, p, &rf); 2480 2481 if (complete) 2482 complete_all(&pending->done); 2483 2484 return 0; 2485 } 2486 2487 int push_cpu_stop(void *arg) 2488 { 2489 struct rq *lowest_rq = NULL, *rq = this_rq(); 2490 struct task_struct *p = arg; 2491 2492 raw_spin_lock_irq(&p->pi_lock); 2493 raw_spin_rq_lock(rq); 2494 2495 if (task_rq(p) != rq) 2496 goto out_unlock; 2497 2498 if (is_migration_disabled(p)) { 2499 p->migration_flags |= MDF_PUSH; 2500 goto out_unlock; 2501 } 2502 2503 p->migration_flags &= ~MDF_PUSH; 2504 2505 if (p->sched_class->find_lock_rq) 2506 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2507 2508 if (!lowest_rq) 2509 goto out_unlock; 2510 2511 // XXX validate p is still the highest prio task 2512 if (task_rq(p) == rq) { 2513 deactivate_task(rq, p, 0); 2514 set_task_cpu(p, lowest_rq->cpu); 2515 activate_task(lowest_rq, p, 0); 2516 resched_curr(lowest_rq); 2517 } 2518 2519 double_unlock_balance(rq, lowest_rq); 2520 2521 out_unlock: 2522 rq->push_busy = false; 2523 raw_spin_rq_unlock(rq); 2524 raw_spin_unlock_irq(&p->pi_lock); 2525 2526 put_task_struct(p); 2527 return 0; 2528 } 2529 2530 /* 2531 * sched_class::set_cpus_allowed must do the below, but is not required to 2532 * actually call this function. 2533 */ 2534 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2535 { 2536 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2537 p->cpus_ptr = ctx->new_mask; 2538 return; 2539 } 2540 2541 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2542 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2543 2544 /* 2545 * Swap in a new user_cpus_ptr if SCA_USER flag set 2546 */ 2547 if (ctx->flags & SCA_USER) 2548 swap(p->user_cpus_ptr, ctx->user_mask); 2549 } 2550 2551 static void 2552 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2553 { 2554 struct rq *rq = task_rq(p); 2555 bool queued, running; 2556 2557 /* 2558 * This here violates the locking rules for affinity, since we're only 2559 * supposed to change these variables while holding both rq->lock and 2560 * p->pi_lock. 2561 * 2562 * HOWEVER, it magically works, because ttwu() is the only code that 2563 * accesses these variables under p->pi_lock and only does so after 2564 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2565 * before finish_task(). 2566 * 2567 * XXX do further audits, this smells like something putrid. 2568 */ 2569 if (ctx->flags & SCA_MIGRATE_DISABLE) 2570 SCHED_WARN_ON(!p->on_cpu); 2571 else 2572 lockdep_assert_held(&p->pi_lock); 2573 2574 queued = task_on_rq_queued(p); 2575 running = task_current(rq, p); 2576 2577 if (queued) { 2578 /* 2579 * Because __kthread_bind() calls this on blocked tasks without 2580 * holding rq->lock. 2581 */ 2582 lockdep_assert_rq_held(rq); 2583 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2584 } 2585 if (running) 2586 put_prev_task(rq, p); 2587 2588 p->sched_class->set_cpus_allowed(p, ctx); 2589 2590 if (queued) 2591 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2592 if (running) 2593 set_next_task(rq, p); 2594 } 2595 2596 /* 2597 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2598 * affinity (if any) should be destroyed too. 2599 */ 2600 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2601 { 2602 struct affinity_context ac = { 2603 .new_mask = new_mask, 2604 .user_mask = NULL, 2605 .flags = SCA_USER, /* clear the user requested mask */ 2606 }; 2607 union cpumask_rcuhead { 2608 cpumask_t cpumask; 2609 struct rcu_head rcu; 2610 }; 2611 2612 __do_set_cpus_allowed(p, &ac); 2613 2614 /* 2615 * Because this is called with p->pi_lock held, it is not possible 2616 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2617 * kfree_rcu(). 2618 */ 2619 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2620 } 2621 2622 static cpumask_t *alloc_user_cpus_ptr(int node) 2623 { 2624 /* 2625 * See do_set_cpus_allowed() above for the rcu_head usage. 2626 */ 2627 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2628 2629 return kmalloc_node(size, GFP_KERNEL, node); 2630 } 2631 2632 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2633 int node) 2634 { 2635 cpumask_t *user_mask; 2636 unsigned long flags; 2637 2638 /* 2639 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2640 * may differ by now due to racing. 2641 */ 2642 dst->user_cpus_ptr = NULL; 2643 2644 /* 2645 * This check is racy and losing the race is a valid situation. 2646 * It is not worth the extra overhead of taking the pi_lock on 2647 * every fork/clone. 2648 */ 2649 if (data_race(!src->user_cpus_ptr)) 2650 return 0; 2651 2652 user_mask = alloc_user_cpus_ptr(node); 2653 if (!user_mask) 2654 return -ENOMEM; 2655 2656 /* 2657 * Use pi_lock to protect content of user_cpus_ptr 2658 * 2659 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2660 * do_set_cpus_allowed(). 2661 */ 2662 raw_spin_lock_irqsave(&src->pi_lock, flags); 2663 if (src->user_cpus_ptr) { 2664 swap(dst->user_cpus_ptr, user_mask); 2665 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2666 } 2667 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2668 2669 if (unlikely(user_mask)) 2670 kfree(user_mask); 2671 2672 return 0; 2673 } 2674 2675 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2676 { 2677 struct cpumask *user_mask = NULL; 2678 2679 swap(p->user_cpus_ptr, user_mask); 2680 2681 return user_mask; 2682 } 2683 2684 void release_user_cpus_ptr(struct task_struct *p) 2685 { 2686 kfree(clear_user_cpus_ptr(p)); 2687 } 2688 2689 /* 2690 * This function is wildly self concurrent; here be dragons. 2691 * 2692 * 2693 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2694 * designated task is enqueued on an allowed CPU. If that task is currently 2695 * running, we have to kick it out using the CPU stopper. 2696 * 2697 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2698 * Consider: 2699 * 2700 * Initial conditions: P0->cpus_mask = [0, 1] 2701 * 2702 * P0@CPU0 P1 2703 * 2704 * migrate_disable(); 2705 * <preempted> 2706 * set_cpus_allowed_ptr(P0, [1]); 2707 * 2708 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2709 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2710 * This means we need the following scheme: 2711 * 2712 * P0@CPU0 P1 2713 * 2714 * migrate_disable(); 2715 * <preempted> 2716 * set_cpus_allowed_ptr(P0, [1]); 2717 * <blocks> 2718 * <resumes> 2719 * migrate_enable(); 2720 * __set_cpus_allowed_ptr(); 2721 * <wakes local stopper> 2722 * `--> <woken on migration completion> 2723 * 2724 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2725 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2726 * task p are serialized by p->pi_lock, which we can leverage: the one that 2727 * should come into effect at the end of the Migrate-Disable region is the last 2728 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2729 * but we still need to properly signal those waiting tasks at the appropriate 2730 * moment. 2731 * 2732 * This is implemented using struct set_affinity_pending. The first 2733 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2734 * setup an instance of that struct and install it on the targeted task_struct. 2735 * Any and all further callers will reuse that instance. Those then wait for 2736 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2737 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2738 * 2739 * 2740 * (1) In the cases covered above. There is one more where the completion is 2741 * signaled within affine_move_task() itself: when a subsequent affinity request 2742 * occurs after the stopper bailed out due to the targeted task still being 2743 * Migrate-Disable. Consider: 2744 * 2745 * Initial conditions: P0->cpus_mask = [0, 1] 2746 * 2747 * CPU0 P1 P2 2748 * <P0> 2749 * migrate_disable(); 2750 * <preempted> 2751 * set_cpus_allowed_ptr(P0, [1]); 2752 * <blocks> 2753 * <migration/0> 2754 * migration_cpu_stop() 2755 * is_migration_disabled() 2756 * <bails> 2757 * set_cpus_allowed_ptr(P0, [0, 1]); 2758 * <signal completion> 2759 * <awakes> 2760 * 2761 * Note that the above is safe vs a concurrent migrate_enable(), as any 2762 * pending affinity completion is preceded by an uninstallation of 2763 * p->migration_pending done with p->pi_lock held. 2764 */ 2765 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2766 int dest_cpu, unsigned int flags) 2767 __releases(rq->lock) 2768 __releases(p->pi_lock) 2769 { 2770 struct set_affinity_pending my_pending = { }, *pending = NULL; 2771 bool stop_pending, complete = false; 2772 2773 /* Can the task run on the task's current CPU? If so, we're done */ 2774 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2775 struct task_struct *push_task = NULL; 2776 2777 if ((flags & SCA_MIGRATE_ENABLE) && 2778 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2779 rq->push_busy = true; 2780 push_task = get_task_struct(p); 2781 } 2782 2783 /* 2784 * If there are pending waiters, but no pending stop_work, 2785 * then complete now. 2786 */ 2787 pending = p->migration_pending; 2788 if (pending && !pending->stop_pending) { 2789 p->migration_pending = NULL; 2790 complete = true; 2791 } 2792 2793 task_rq_unlock(rq, p, rf); 2794 2795 if (push_task) { 2796 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2797 p, &rq->push_work); 2798 } 2799 2800 if (complete) 2801 complete_all(&pending->done); 2802 2803 return 0; 2804 } 2805 2806 if (!(flags & SCA_MIGRATE_ENABLE)) { 2807 /* serialized by p->pi_lock */ 2808 if (!p->migration_pending) { 2809 /* Install the request */ 2810 refcount_set(&my_pending.refs, 1); 2811 init_completion(&my_pending.done); 2812 my_pending.arg = (struct migration_arg) { 2813 .task = p, 2814 .dest_cpu = dest_cpu, 2815 .pending = &my_pending, 2816 }; 2817 2818 p->migration_pending = &my_pending; 2819 } else { 2820 pending = p->migration_pending; 2821 refcount_inc(&pending->refs); 2822 /* 2823 * Affinity has changed, but we've already installed a 2824 * pending. migration_cpu_stop() *must* see this, else 2825 * we risk a completion of the pending despite having a 2826 * task on a disallowed CPU. 2827 * 2828 * Serialized by p->pi_lock, so this is safe. 2829 */ 2830 pending->arg.dest_cpu = dest_cpu; 2831 } 2832 } 2833 pending = p->migration_pending; 2834 /* 2835 * - !MIGRATE_ENABLE: 2836 * we'll have installed a pending if there wasn't one already. 2837 * 2838 * - MIGRATE_ENABLE: 2839 * we're here because the current CPU isn't matching anymore, 2840 * the only way that can happen is because of a concurrent 2841 * set_cpus_allowed_ptr() call, which should then still be 2842 * pending completion. 2843 * 2844 * Either way, we really should have a @pending here. 2845 */ 2846 if (WARN_ON_ONCE(!pending)) { 2847 task_rq_unlock(rq, p, rf); 2848 return -EINVAL; 2849 } 2850 2851 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2852 /* 2853 * MIGRATE_ENABLE gets here because 'p == current', but for 2854 * anything else we cannot do is_migration_disabled(), punt 2855 * and have the stopper function handle it all race-free. 2856 */ 2857 stop_pending = pending->stop_pending; 2858 if (!stop_pending) 2859 pending->stop_pending = true; 2860 2861 if (flags & SCA_MIGRATE_ENABLE) 2862 p->migration_flags &= ~MDF_PUSH; 2863 2864 task_rq_unlock(rq, p, rf); 2865 2866 if (!stop_pending) { 2867 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2868 &pending->arg, &pending->stop_work); 2869 } 2870 2871 if (flags & SCA_MIGRATE_ENABLE) 2872 return 0; 2873 } else { 2874 2875 if (!is_migration_disabled(p)) { 2876 if (task_on_rq_queued(p)) 2877 rq = move_queued_task(rq, rf, p, dest_cpu); 2878 2879 if (!pending->stop_pending) { 2880 p->migration_pending = NULL; 2881 complete = true; 2882 } 2883 } 2884 task_rq_unlock(rq, p, rf); 2885 2886 if (complete) 2887 complete_all(&pending->done); 2888 } 2889 2890 wait_for_completion(&pending->done); 2891 2892 if (refcount_dec_and_test(&pending->refs)) 2893 wake_up_var(&pending->refs); /* No UaF, just an address */ 2894 2895 /* 2896 * Block the original owner of &pending until all subsequent callers 2897 * have seen the completion and decremented the refcount 2898 */ 2899 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2900 2901 /* ARGH */ 2902 WARN_ON_ONCE(my_pending.stop_pending); 2903 2904 return 0; 2905 } 2906 2907 /* 2908 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2909 */ 2910 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2911 struct affinity_context *ctx, 2912 struct rq *rq, 2913 struct rq_flags *rf) 2914 __releases(rq->lock) 2915 __releases(p->pi_lock) 2916 { 2917 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2918 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2919 bool kthread = p->flags & PF_KTHREAD; 2920 unsigned int dest_cpu; 2921 int ret = 0; 2922 2923 update_rq_clock(rq); 2924 2925 if (kthread || is_migration_disabled(p)) { 2926 /* 2927 * Kernel threads are allowed on online && !active CPUs, 2928 * however, during cpu-hot-unplug, even these might get pushed 2929 * away if not KTHREAD_IS_PER_CPU. 2930 * 2931 * Specifically, migration_disabled() tasks must not fail the 2932 * cpumask_any_and_distribute() pick below, esp. so on 2933 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2934 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2935 */ 2936 cpu_valid_mask = cpu_online_mask; 2937 } 2938 2939 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2940 ret = -EINVAL; 2941 goto out; 2942 } 2943 2944 /* 2945 * Must re-check here, to close a race against __kthread_bind(), 2946 * sched_setaffinity() is not guaranteed to observe the flag. 2947 */ 2948 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2949 ret = -EINVAL; 2950 goto out; 2951 } 2952 2953 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2954 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 2955 if (ctx->flags & SCA_USER) 2956 swap(p->user_cpus_ptr, ctx->user_mask); 2957 goto out; 2958 } 2959 2960 if (WARN_ON_ONCE(p == current && 2961 is_migration_disabled(p) && 2962 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2963 ret = -EBUSY; 2964 goto out; 2965 } 2966 } 2967 2968 /* 2969 * Picking a ~random cpu helps in cases where we are changing affinity 2970 * for groups of tasks (ie. cpuset), so that load balancing is not 2971 * immediately required to distribute the tasks within their new mask. 2972 */ 2973 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 2974 if (dest_cpu >= nr_cpu_ids) { 2975 ret = -EINVAL; 2976 goto out; 2977 } 2978 2979 __do_set_cpus_allowed(p, ctx); 2980 2981 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 2982 2983 out: 2984 task_rq_unlock(rq, p, rf); 2985 2986 return ret; 2987 } 2988 2989 /* 2990 * Change a given task's CPU affinity. Migrate the thread to a 2991 * proper CPU and schedule it away if the CPU it's executing on 2992 * is removed from the allowed bitmask. 2993 * 2994 * NOTE: the caller must have a valid reference to the task, the 2995 * task must not exit() & deallocate itself prematurely. The 2996 * call is not atomic; no spinlocks may be held. 2997 */ 2998 static int __set_cpus_allowed_ptr(struct task_struct *p, 2999 struct affinity_context *ctx) 3000 { 3001 struct rq_flags rf; 3002 struct rq *rq; 3003 3004 rq = task_rq_lock(p, &rf); 3005 /* 3006 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3007 * flags are set. 3008 */ 3009 if (p->user_cpus_ptr && 3010 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3011 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3012 ctx->new_mask = rq->scratch_mask; 3013 3014 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3015 } 3016 3017 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3018 { 3019 struct affinity_context ac = { 3020 .new_mask = new_mask, 3021 .flags = 0, 3022 }; 3023 3024 return __set_cpus_allowed_ptr(p, &ac); 3025 } 3026 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3027 3028 /* 3029 * Change a given task's CPU affinity to the intersection of its current 3030 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3031 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3032 * affinity or use cpu_online_mask instead. 3033 * 3034 * If the resulting mask is empty, leave the affinity unchanged and return 3035 * -EINVAL. 3036 */ 3037 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3038 struct cpumask *new_mask, 3039 const struct cpumask *subset_mask) 3040 { 3041 struct affinity_context ac = { 3042 .new_mask = new_mask, 3043 .flags = 0, 3044 }; 3045 struct rq_flags rf; 3046 struct rq *rq; 3047 int err; 3048 3049 rq = task_rq_lock(p, &rf); 3050 3051 /* 3052 * Forcefully restricting the affinity of a deadline task is 3053 * likely to cause problems, so fail and noisily override the 3054 * mask entirely. 3055 */ 3056 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3057 err = -EPERM; 3058 goto err_unlock; 3059 } 3060 3061 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3062 err = -EINVAL; 3063 goto err_unlock; 3064 } 3065 3066 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3067 3068 err_unlock: 3069 task_rq_unlock(rq, p, &rf); 3070 return err; 3071 } 3072 3073 /* 3074 * Restrict the CPU affinity of task @p so that it is a subset of 3075 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3076 * old affinity mask. If the resulting mask is empty, we warn and walk 3077 * up the cpuset hierarchy until we find a suitable mask. 3078 */ 3079 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3080 { 3081 cpumask_var_t new_mask; 3082 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3083 3084 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3085 3086 /* 3087 * __migrate_task() can fail silently in the face of concurrent 3088 * offlining of the chosen destination CPU, so take the hotplug 3089 * lock to ensure that the migration succeeds. 3090 */ 3091 cpus_read_lock(); 3092 if (!cpumask_available(new_mask)) 3093 goto out_set_mask; 3094 3095 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3096 goto out_free_mask; 3097 3098 /* 3099 * We failed to find a valid subset of the affinity mask for the 3100 * task, so override it based on its cpuset hierarchy. 3101 */ 3102 cpuset_cpus_allowed(p, new_mask); 3103 override_mask = new_mask; 3104 3105 out_set_mask: 3106 if (printk_ratelimit()) { 3107 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3108 task_pid_nr(p), p->comm, 3109 cpumask_pr_args(override_mask)); 3110 } 3111 3112 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3113 out_free_mask: 3114 cpus_read_unlock(); 3115 free_cpumask_var(new_mask); 3116 } 3117 3118 static int 3119 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3120 3121 /* 3122 * Restore the affinity of a task @p which was previously restricted by a 3123 * call to force_compatible_cpus_allowed_ptr(). 3124 * 3125 * It is the caller's responsibility to serialise this with any calls to 3126 * force_compatible_cpus_allowed_ptr(@p). 3127 */ 3128 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3129 { 3130 struct affinity_context ac = { 3131 .new_mask = task_user_cpus(p), 3132 .flags = 0, 3133 }; 3134 int ret; 3135 3136 /* 3137 * Try to restore the old affinity mask with __sched_setaffinity(). 3138 * Cpuset masking will be done there too. 3139 */ 3140 ret = __sched_setaffinity(p, &ac); 3141 WARN_ON_ONCE(ret); 3142 } 3143 3144 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3145 { 3146 #ifdef CONFIG_SCHED_DEBUG 3147 unsigned int state = READ_ONCE(p->__state); 3148 3149 /* 3150 * We should never call set_task_cpu() on a blocked task, 3151 * ttwu() will sort out the placement. 3152 */ 3153 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3154 3155 /* 3156 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3157 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3158 * time relying on p->on_rq. 3159 */ 3160 WARN_ON_ONCE(state == TASK_RUNNING && 3161 p->sched_class == &fair_sched_class && 3162 (p->on_rq && !task_on_rq_migrating(p))); 3163 3164 #ifdef CONFIG_LOCKDEP 3165 /* 3166 * The caller should hold either p->pi_lock or rq->lock, when changing 3167 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3168 * 3169 * sched_move_task() holds both and thus holding either pins the cgroup, 3170 * see task_group(). 3171 * 3172 * Furthermore, all task_rq users should acquire both locks, see 3173 * task_rq_lock(). 3174 */ 3175 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3176 lockdep_is_held(__rq_lockp(task_rq(p))))); 3177 #endif 3178 /* 3179 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3180 */ 3181 WARN_ON_ONCE(!cpu_online(new_cpu)); 3182 3183 WARN_ON_ONCE(is_migration_disabled(p)); 3184 #endif 3185 3186 trace_sched_migrate_task(p, new_cpu); 3187 3188 if (task_cpu(p) != new_cpu) { 3189 if (p->sched_class->migrate_task_rq) 3190 p->sched_class->migrate_task_rq(p, new_cpu); 3191 p->se.nr_migrations++; 3192 rseq_migrate(p); 3193 perf_event_task_migrate(p); 3194 } 3195 3196 __set_task_cpu(p, new_cpu); 3197 } 3198 3199 #ifdef CONFIG_NUMA_BALANCING 3200 static void __migrate_swap_task(struct task_struct *p, int cpu) 3201 { 3202 if (task_on_rq_queued(p)) { 3203 struct rq *src_rq, *dst_rq; 3204 struct rq_flags srf, drf; 3205 3206 src_rq = task_rq(p); 3207 dst_rq = cpu_rq(cpu); 3208 3209 rq_pin_lock(src_rq, &srf); 3210 rq_pin_lock(dst_rq, &drf); 3211 3212 deactivate_task(src_rq, p, 0); 3213 set_task_cpu(p, cpu); 3214 activate_task(dst_rq, p, 0); 3215 check_preempt_curr(dst_rq, p, 0); 3216 3217 rq_unpin_lock(dst_rq, &drf); 3218 rq_unpin_lock(src_rq, &srf); 3219 3220 } else { 3221 /* 3222 * Task isn't running anymore; make it appear like we migrated 3223 * it before it went to sleep. This means on wakeup we make the 3224 * previous CPU our target instead of where it really is. 3225 */ 3226 p->wake_cpu = cpu; 3227 } 3228 } 3229 3230 struct migration_swap_arg { 3231 struct task_struct *src_task, *dst_task; 3232 int src_cpu, dst_cpu; 3233 }; 3234 3235 static int migrate_swap_stop(void *data) 3236 { 3237 struct migration_swap_arg *arg = data; 3238 struct rq *src_rq, *dst_rq; 3239 int ret = -EAGAIN; 3240 3241 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3242 return -EAGAIN; 3243 3244 src_rq = cpu_rq(arg->src_cpu); 3245 dst_rq = cpu_rq(arg->dst_cpu); 3246 3247 double_raw_lock(&arg->src_task->pi_lock, 3248 &arg->dst_task->pi_lock); 3249 double_rq_lock(src_rq, dst_rq); 3250 3251 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3252 goto unlock; 3253 3254 if (task_cpu(arg->src_task) != arg->src_cpu) 3255 goto unlock; 3256 3257 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3258 goto unlock; 3259 3260 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3261 goto unlock; 3262 3263 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3264 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3265 3266 ret = 0; 3267 3268 unlock: 3269 double_rq_unlock(src_rq, dst_rq); 3270 raw_spin_unlock(&arg->dst_task->pi_lock); 3271 raw_spin_unlock(&arg->src_task->pi_lock); 3272 3273 return ret; 3274 } 3275 3276 /* 3277 * Cross migrate two tasks 3278 */ 3279 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3280 int target_cpu, int curr_cpu) 3281 { 3282 struct migration_swap_arg arg; 3283 int ret = -EINVAL; 3284 3285 arg = (struct migration_swap_arg){ 3286 .src_task = cur, 3287 .src_cpu = curr_cpu, 3288 .dst_task = p, 3289 .dst_cpu = target_cpu, 3290 }; 3291 3292 if (arg.src_cpu == arg.dst_cpu) 3293 goto out; 3294 3295 /* 3296 * These three tests are all lockless; this is OK since all of them 3297 * will be re-checked with proper locks held further down the line. 3298 */ 3299 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3300 goto out; 3301 3302 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3303 goto out; 3304 3305 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3306 goto out; 3307 3308 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3309 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3310 3311 out: 3312 return ret; 3313 } 3314 #endif /* CONFIG_NUMA_BALANCING */ 3315 3316 /* 3317 * wait_task_inactive - wait for a thread to unschedule. 3318 * 3319 * Wait for the thread to block in any of the states set in @match_state. 3320 * If it changes, i.e. @p might have woken up, then return zero. When we 3321 * succeed in waiting for @p to be off its CPU, we return a positive number 3322 * (its total switch count). If a second call a short while later returns the 3323 * same number, the caller can be sure that @p has remained unscheduled the 3324 * whole time. 3325 * 3326 * The caller must ensure that the task *will* unschedule sometime soon, 3327 * else this function might spin for a *long* time. This function can't 3328 * be called with interrupts off, or it may introduce deadlock with 3329 * smp_call_function() if an IPI is sent by the same process we are 3330 * waiting to become inactive. 3331 */ 3332 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3333 { 3334 int running, queued; 3335 struct rq_flags rf; 3336 unsigned long ncsw; 3337 struct rq *rq; 3338 3339 for (;;) { 3340 /* 3341 * We do the initial early heuristics without holding 3342 * any task-queue locks at all. We'll only try to get 3343 * the runqueue lock when things look like they will 3344 * work out! 3345 */ 3346 rq = task_rq(p); 3347 3348 /* 3349 * If the task is actively running on another CPU 3350 * still, just relax and busy-wait without holding 3351 * any locks. 3352 * 3353 * NOTE! Since we don't hold any locks, it's not 3354 * even sure that "rq" stays as the right runqueue! 3355 * But we don't care, since "task_on_cpu()" will 3356 * return false if the runqueue has changed and p 3357 * is actually now running somewhere else! 3358 */ 3359 while (task_on_cpu(rq, p)) { 3360 if (!(READ_ONCE(p->__state) & match_state)) 3361 return 0; 3362 cpu_relax(); 3363 } 3364 3365 /* 3366 * Ok, time to look more closely! We need the rq 3367 * lock now, to be *sure*. If we're wrong, we'll 3368 * just go back and repeat. 3369 */ 3370 rq = task_rq_lock(p, &rf); 3371 trace_sched_wait_task(p); 3372 running = task_on_cpu(rq, p); 3373 queued = task_on_rq_queued(p); 3374 ncsw = 0; 3375 if (READ_ONCE(p->__state) & match_state) 3376 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3377 task_rq_unlock(rq, p, &rf); 3378 3379 /* 3380 * If it changed from the expected state, bail out now. 3381 */ 3382 if (unlikely(!ncsw)) 3383 break; 3384 3385 /* 3386 * Was it really running after all now that we 3387 * checked with the proper locks actually held? 3388 * 3389 * Oops. Go back and try again.. 3390 */ 3391 if (unlikely(running)) { 3392 cpu_relax(); 3393 continue; 3394 } 3395 3396 /* 3397 * It's not enough that it's not actively running, 3398 * it must be off the runqueue _entirely_, and not 3399 * preempted! 3400 * 3401 * So if it was still runnable (but just not actively 3402 * running right now), it's preempted, and we should 3403 * yield - it could be a while. 3404 */ 3405 if (unlikely(queued)) { 3406 ktime_t to = NSEC_PER_SEC / HZ; 3407 3408 set_current_state(TASK_UNINTERRUPTIBLE); 3409 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3410 continue; 3411 } 3412 3413 /* 3414 * Ahh, all good. It wasn't running, and it wasn't 3415 * runnable, which means that it will never become 3416 * running in the future either. We're all done! 3417 */ 3418 break; 3419 } 3420 3421 return ncsw; 3422 } 3423 3424 /*** 3425 * kick_process - kick a running thread to enter/exit the kernel 3426 * @p: the to-be-kicked thread 3427 * 3428 * Cause a process which is running on another CPU to enter 3429 * kernel-mode, without any delay. (to get signals handled.) 3430 * 3431 * NOTE: this function doesn't have to take the runqueue lock, 3432 * because all it wants to ensure is that the remote task enters 3433 * the kernel. If the IPI races and the task has been migrated 3434 * to another CPU then no harm is done and the purpose has been 3435 * achieved as well. 3436 */ 3437 void kick_process(struct task_struct *p) 3438 { 3439 int cpu; 3440 3441 preempt_disable(); 3442 cpu = task_cpu(p); 3443 if ((cpu != smp_processor_id()) && task_curr(p)) 3444 smp_send_reschedule(cpu); 3445 preempt_enable(); 3446 } 3447 EXPORT_SYMBOL_GPL(kick_process); 3448 3449 /* 3450 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3451 * 3452 * A few notes on cpu_active vs cpu_online: 3453 * 3454 * - cpu_active must be a subset of cpu_online 3455 * 3456 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3457 * see __set_cpus_allowed_ptr(). At this point the newly online 3458 * CPU isn't yet part of the sched domains, and balancing will not 3459 * see it. 3460 * 3461 * - on CPU-down we clear cpu_active() to mask the sched domains and 3462 * avoid the load balancer to place new tasks on the to be removed 3463 * CPU. Existing tasks will remain running there and will be taken 3464 * off. 3465 * 3466 * This means that fallback selection must not select !active CPUs. 3467 * And can assume that any active CPU must be online. Conversely 3468 * select_task_rq() below may allow selection of !active CPUs in order 3469 * to satisfy the above rules. 3470 */ 3471 static int select_fallback_rq(int cpu, struct task_struct *p) 3472 { 3473 int nid = cpu_to_node(cpu); 3474 const struct cpumask *nodemask = NULL; 3475 enum { cpuset, possible, fail } state = cpuset; 3476 int dest_cpu; 3477 3478 /* 3479 * If the node that the CPU is on has been offlined, cpu_to_node() 3480 * will return -1. There is no CPU on the node, and we should 3481 * select the CPU on the other node. 3482 */ 3483 if (nid != -1) { 3484 nodemask = cpumask_of_node(nid); 3485 3486 /* Look for allowed, online CPU in same node. */ 3487 for_each_cpu(dest_cpu, nodemask) { 3488 if (is_cpu_allowed(p, dest_cpu)) 3489 return dest_cpu; 3490 } 3491 } 3492 3493 for (;;) { 3494 /* Any allowed, online CPU? */ 3495 for_each_cpu(dest_cpu, p->cpus_ptr) { 3496 if (!is_cpu_allowed(p, dest_cpu)) 3497 continue; 3498 3499 goto out; 3500 } 3501 3502 /* No more Mr. Nice Guy. */ 3503 switch (state) { 3504 case cpuset: 3505 if (cpuset_cpus_allowed_fallback(p)) { 3506 state = possible; 3507 break; 3508 } 3509 fallthrough; 3510 case possible: 3511 /* 3512 * XXX When called from select_task_rq() we only 3513 * hold p->pi_lock and again violate locking order. 3514 * 3515 * More yuck to audit. 3516 */ 3517 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3518 state = fail; 3519 break; 3520 case fail: 3521 BUG(); 3522 break; 3523 } 3524 } 3525 3526 out: 3527 if (state != cpuset) { 3528 /* 3529 * Don't tell them about moving exiting tasks or 3530 * kernel threads (both mm NULL), since they never 3531 * leave kernel. 3532 */ 3533 if (p->mm && printk_ratelimit()) { 3534 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3535 task_pid_nr(p), p->comm, cpu); 3536 } 3537 } 3538 3539 return dest_cpu; 3540 } 3541 3542 /* 3543 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3544 */ 3545 static inline 3546 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3547 { 3548 lockdep_assert_held(&p->pi_lock); 3549 3550 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3551 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3552 else 3553 cpu = cpumask_any(p->cpus_ptr); 3554 3555 /* 3556 * In order not to call set_task_cpu() on a blocking task we need 3557 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3558 * CPU. 3559 * 3560 * Since this is common to all placement strategies, this lives here. 3561 * 3562 * [ this allows ->select_task() to simply return task_cpu(p) and 3563 * not worry about this generic constraint ] 3564 */ 3565 if (unlikely(!is_cpu_allowed(p, cpu))) 3566 cpu = select_fallback_rq(task_cpu(p), p); 3567 3568 return cpu; 3569 } 3570 3571 void sched_set_stop_task(int cpu, struct task_struct *stop) 3572 { 3573 static struct lock_class_key stop_pi_lock; 3574 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3575 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3576 3577 if (stop) { 3578 /* 3579 * Make it appear like a SCHED_FIFO task, its something 3580 * userspace knows about and won't get confused about. 3581 * 3582 * Also, it will make PI more or less work without too 3583 * much confusion -- but then, stop work should not 3584 * rely on PI working anyway. 3585 */ 3586 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3587 3588 stop->sched_class = &stop_sched_class; 3589 3590 /* 3591 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3592 * adjust the effective priority of a task. As a result, 3593 * rt_mutex_setprio() can trigger (RT) balancing operations, 3594 * which can then trigger wakeups of the stop thread to push 3595 * around the current task. 3596 * 3597 * The stop task itself will never be part of the PI-chain, it 3598 * never blocks, therefore that ->pi_lock recursion is safe. 3599 * Tell lockdep about this by placing the stop->pi_lock in its 3600 * own class. 3601 */ 3602 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3603 } 3604 3605 cpu_rq(cpu)->stop = stop; 3606 3607 if (old_stop) { 3608 /* 3609 * Reset it back to a normal scheduling class so that 3610 * it can die in pieces. 3611 */ 3612 old_stop->sched_class = &rt_sched_class; 3613 } 3614 } 3615 3616 #else /* CONFIG_SMP */ 3617 3618 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3619 struct affinity_context *ctx) 3620 { 3621 return set_cpus_allowed_ptr(p, ctx->new_mask); 3622 } 3623 3624 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3625 3626 static inline bool rq_has_pinned_tasks(struct rq *rq) 3627 { 3628 return false; 3629 } 3630 3631 static inline cpumask_t *alloc_user_cpus_ptr(int node) 3632 { 3633 return NULL; 3634 } 3635 3636 #endif /* !CONFIG_SMP */ 3637 3638 static void 3639 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3640 { 3641 struct rq *rq; 3642 3643 if (!schedstat_enabled()) 3644 return; 3645 3646 rq = this_rq(); 3647 3648 #ifdef CONFIG_SMP 3649 if (cpu == rq->cpu) { 3650 __schedstat_inc(rq->ttwu_local); 3651 __schedstat_inc(p->stats.nr_wakeups_local); 3652 } else { 3653 struct sched_domain *sd; 3654 3655 __schedstat_inc(p->stats.nr_wakeups_remote); 3656 rcu_read_lock(); 3657 for_each_domain(rq->cpu, sd) { 3658 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3659 __schedstat_inc(sd->ttwu_wake_remote); 3660 break; 3661 } 3662 } 3663 rcu_read_unlock(); 3664 } 3665 3666 if (wake_flags & WF_MIGRATED) 3667 __schedstat_inc(p->stats.nr_wakeups_migrate); 3668 #endif /* CONFIG_SMP */ 3669 3670 __schedstat_inc(rq->ttwu_count); 3671 __schedstat_inc(p->stats.nr_wakeups); 3672 3673 if (wake_flags & WF_SYNC) 3674 __schedstat_inc(p->stats.nr_wakeups_sync); 3675 } 3676 3677 /* 3678 * Mark the task runnable and perform wakeup-preemption. 3679 */ 3680 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3681 struct rq_flags *rf) 3682 { 3683 check_preempt_curr(rq, p, wake_flags); 3684 WRITE_ONCE(p->__state, TASK_RUNNING); 3685 trace_sched_wakeup(p); 3686 3687 #ifdef CONFIG_SMP 3688 if (p->sched_class->task_woken) { 3689 /* 3690 * Our task @p is fully woken up and running; so it's safe to 3691 * drop the rq->lock, hereafter rq is only used for statistics. 3692 */ 3693 rq_unpin_lock(rq, rf); 3694 p->sched_class->task_woken(rq, p); 3695 rq_repin_lock(rq, rf); 3696 } 3697 3698 if (rq->idle_stamp) { 3699 u64 delta = rq_clock(rq) - rq->idle_stamp; 3700 u64 max = 2*rq->max_idle_balance_cost; 3701 3702 update_avg(&rq->avg_idle, delta); 3703 3704 if (rq->avg_idle > max) 3705 rq->avg_idle = max; 3706 3707 rq->wake_stamp = jiffies; 3708 rq->wake_avg_idle = rq->avg_idle / 2; 3709 3710 rq->idle_stamp = 0; 3711 } 3712 #endif 3713 } 3714 3715 static void 3716 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3717 struct rq_flags *rf) 3718 { 3719 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3720 3721 lockdep_assert_rq_held(rq); 3722 3723 if (p->sched_contributes_to_load) 3724 rq->nr_uninterruptible--; 3725 3726 #ifdef CONFIG_SMP 3727 if (wake_flags & WF_MIGRATED) 3728 en_flags |= ENQUEUE_MIGRATED; 3729 else 3730 #endif 3731 if (p->in_iowait) { 3732 delayacct_blkio_end(p); 3733 atomic_dec(&task_rq(p)->nr_iowait); 3734 } 3735 3736 activate_task(rq, p, en_flags); 3737 ttwu_do_wakeup(rq, p, wake_flags, rf); 3738 } 3739 3740 /* 3741 * Consider @p being inside a wait loop: 3742 * 3743 * for (;;) { 3744 * set_current_state(TASK_UNINTERRUPTIBLE); 3745 * 3746 * if (CONDITION) 3747 * break; 3748 * 3749 * schedule(); 3750 * } 3751 * __set_current_state(TASK_RUNNING); 3752 * 3753 * between set_current_state() and schedule(). In this case @p is still 3754 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3755 * an atomic manner. 3756 * 3757 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3758 * then schedule() must still happen and p->state can be changed to 3759 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3760 * need to do a full wakeup with enqueue. 3761 * 3762 * Returns: %true when the wakeup is done, 3763 * %false otherwise. 3764 */ 3765 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3766 { 3767 struct rq_flags rf; 3768 struct rq *rq; 3769 int ret = 0; 3770 3771 rq = __task_rq_lock(p, &rf); 3772 if (task_on_rq_queued(p)) { 3773 /* check_preempt_curr() may use rq clock */ 3774 update_rq_clock(rq); 3775 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3776 ret = 1; 3777 } 3778 __task_rq_unlock(rq, &rf); 3779 3780 return ret; 3781 } 3782 3783 #ifdef CONFIG_SMP 3784 void sched_ttwu_pending(void *arg) 3785 { 3786 struct llist_node *llist = arg; 3787 struct rq *rq = this_rq(); 3788 struct task_struct *p, *t; 3789 struct rq_flags rf; 3790 3791 if (!llist) 3792 return; 3793 3794 rq_lock_irqsave(rq, &rf); 3795 update_rq_clock(rq); 3796 3797 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3798 if (WARN_ON_ONCE(p->on_cpu)) 3799 smp_cond_load_acquire(&p->on_cpu, !VAL); 3800 3801 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3802 set_task_cpu(p, cpu_of(rq)); 3803 3804 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3805 } 3806 3807 /* 3808 * Must be after enqueueing at least once task such that 3809 * idle_cpu() does not observe a false-negative -- if it does, 3810 * it is possible for select_idle_siblings() to stack a number 3811 * of tasks on this CPU during that window. 3812 * 3813 * It is ok to clear ttwu_pending when another task pending. 3814 * We will receive IPI after local irq enabled and then enqueue it. 3815 * Since now nr_running > 0, idle_cpu() will always get correct result. 3816 */ 3817 WRITE_ONCE(rq->ttwu_pending, 0); 3818 rq_unlock_irqrestore(rq, &rf); 3819 } 3820 3821 void send_call_function_single_ipi(int cpu) 3822 { 3823 struct rq *rq = cpu_rq(cpu); 3824 3825 if (!set_nr_if_polling(rq->idle)) 3826 arch_send_call_function_single_ipi(cpu); 3827 else 3828 trace_sched_wake_idle_without_ipi(cpu); 3829 } 3830 3831 /* 3832 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3833 * necessary. The wakee CPU on receipt of the IPI will queue the task 3834 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3835 * of the wakeup instead of the waker. 3836 */ 3837 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3838 { 3839 struct rq *rq = cpu_rq(cpu); 3840 3841 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3842 3843 WRITE_ONCE(rq->ttwu_pending, 1); 3844 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3845 } 3846 3847 void wake_up_if_idle(int cpu) 3848 { 3849 struct rq *rq = cpu_rq(cpu); 3850 struct rq_flags rf; 3851 3852 rcu_read_lock(); 3853 3854 if (!is_idle_task(rcu_dereference(rq->curr))) 3855 goto out; 3856 3857 rq_lock_irqsave(rq, &rf); 3858 if (is_idle_task(rq->curr)) 3859 resched_curr(rq); 3860 /* Else CPU is not idle, do nothing here: */ 3861 rq_unlock_irqrestore(rq, &rf); 3862 3863 out: 3864 rcu_read_unlock(); 3865 } 3866 3867 bool cpus_share_cache(int this_cpu, int that_cpu) 3868 { 3869 if (this_cpu == that_cpu) 3870 return true; 3871 3872 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3873 } 3874 3875 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3876 { 3877 /* 3878 * Do not complicate things with the async wake_list while the CPU is 3879 * in hotplug state. 3880 */ 3881 if (!cpu_active(cpu)) 3882 return false; 3883 3884 /* Ensure the task will still be allowed to run on the CPU. */ 3885 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3886 return false; 3887 3888 /* 3889 * If the CPU does not share cache, then queue the task on the 3890 * remote rqs wakelist to avoid accessing remote data. 3891 */ 3892 if (!cpus_share_cache(smp_processor_id(), cpu)) 3893 return true; 3894 3895 if (cpu == smp_processor_id()) 3896 return false; 3897 3898 /* 3899 * If the wakee cpu is idle, or the task is descheduling and the 3900 * only running task on the CPU, then use the wakelist to offload 3901 * the task activation to the idle (or soon-to-be-idle) CPU as 3902 * the current CPU is likely busy. nr_running is checked to 3903 * avoid unnecessary task stacking. 3904 * 3905 * Note that we can only get here with (wakee) p->on_rq=0, 3906 * p->on_cpu can be whatever, we've done the dequeue, so 3907 * the wakee has been accounted out of ->nr_running. 3908 */ 3909 if (!cpu_rq(cpu)->nr_running) 3910 return true; 3911 3912 return false; 3913 } 3914 3915 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3916 { 3917 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3918 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3919 __ttwu_queue_wakelist(p, cpu, wake_flags); 3920 return true; 3921 } 3922 3923 return false; 3924 } 3925 3926 #else /* !CONFIG_SMP */ 3927 3928 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3929 { 3930 return false; 3931 } 3932 3933 #endif /* CONFIG_SMP */ 3934 3935 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3936 { 3937 struct rq *rq = cpu_rq(cpu); 3938 struct rq_flags rf; 3939 3940 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3941 return; 3942 3943 rq_lock(rq, &rf); 3944 update_rq_clock(rq); 3945 ttwu_do_activate(rq, p, wake_flags, &rf); 3946 rq_unlock(rq, &rf); 3947 } 3948 3949 /* 3950 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3951 * 3952 * The caller holds p::pi_lock if p != current or has preemption 3953 * disabled when p == current. 3954 * 3955 * The rules of PREEMPT_RT saved_state: 3956 * 3957 * The related locking code always holds p::pi_lock when updating 3958 * p::saved_state, which means the code is fully serialized in both cases. 3959 * 3960 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3961 * bits set. This allows to distinguish all wakeup scenarios. 3962 */ 3963 static __always_inline 3964 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3965 { 3966 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3967 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3968 state != TASK_RTLOCK_WAIT); 3969 } 3970 3971 if (READ_ONCE(p->__state) & state) { 3972 *success = 1; 3973 return true; 3974 } 3975 3976 #ifdef CONFIG_PREEMPT_RT 3977 /* 3978 * Saved state preserves the task state across blocking on 3979 * an RT lock. If the state matches, set p::saved_state to 3980 * TASK_RUNNING, but do not wake the task because it waits 3981 * for a lock wakeup. Also indicate success because from 3982 * the regular waker's point of view this has succeeded. 3983 * 3984 * After acquiring the lock the task will restore p::__state 3985 * from p::saved_state which ensures that the regular 3986 * wakeup is not lost. The restore will also set 3987 * p::saved_state to TASK_RUNNING so any further tests will 3988 * not result in false positives vs. @success 3989 */ 3990 if (p->saved_state & state) { 3991 p->saved_state = TASK_RUNNING; 3992 *success = 1; 3993 } 3994 #endif 3995 return false; 3996 } 3997 3998 /* 3999 * Notes on Program-Order guarantees on SMP systems. 4000 * 4001 * MIGRATION 4002 * 4003 * The basic program-order guarantee on SMP systems is that when a task [t] 4004 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4005 * execution on its new CPU [c1]. 4006 * 4007 * For migration (of runnable tasks) this is provided by the following means: 4008 * 4009 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4010 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4011 * rq(c1)->lock (if not at the same time, then in that order). 4012 * C) LOCK of the rq(c1)->lock scheduling in task 4013 * 4014 * Release/acquire chaining guarantees that B happens after A and C after B. 4015 * Note: the CPU doing B need not be c0 or c1 4016 * 4017 * Example: 4018 * 4019 * CPU0 CPU1 CPU2 4020 * 4021 * LOCK rq(0)->lock 4022 * sched-out X 4023 * sched-in Y 4024 * UNLOCK rq(0)->lock 4025 * 4026 * LOCK rq(0)->lock // orders against CPU0 4027 * dequeue X 4028 * UNLOCK rq(0)->lock 4029 * 4030 * LOCK rq(1)->lock 4031 * enqueue X 4032 * UNLOCK rq(1)->lock 4033 * 4034 * LOCK rq(1)->lock // orders against CPU2 4035 * sched-out Z 4036 * sched-in X 4037 * UNLOCK rq(1)->lock 4038 * 4039 * 4040 * BLOCKING -- aka. SLEEP + WAKEUP 4041 * 4042 * For blocking we (obviously) need to provide the same guarantee as for 4043 * migration. However the means are completely different as there is no lock 4044 * chain to provide order. Instead we do: 4045 * 4046 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4047 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4048 * 4049 * Example: 4050 * 4051 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4052 * 4053 * LOCK rq(0)->lock LOCK X->pi_lock 4054 * dequeue X 4055 * sched-out X 4056 * smp_store_release(X->on_cpu, 0); 4057 * 4058 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4059 * X->state = WAKING 4060 * set_task_cpu(X,2) 4061 * 4062 * LOCK rq(2)->lock 4063 * enqueue X 4064 * X->state = RUNNING 4065 * UNLOCK rq(2)->lock 4066 * 4067 * LOCK rq(2)->lock // orders against CPU1 4068 * sched-out Z 4069 * sched-in X 4070 * UNLOCK rq(2)->lock 4071 * 4072 * UNLOCK X->pi_lock 4073 * UNLOCK rq(0)->lock 4074 * 4075 * 4076 * However, for wakeups there is a second guarantee we must provide, namely we 4077 * must ensure that CONDITION=1 done by the caller can not be reordered with 4078 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4079 */ 4080 4081 /** 4082 * try_to_wake_up - wake up a thread 4083 * @p: the thread to be awakened 4084 * @state: the mask of task states that can be woken 4085 * @wake_flags: wake modifier flags (WF_*) 4086 * 4087 * Conceptually does: 4088 * 4089 * If (@state & @p->state) @p->state = TASK_RUNNING. 4090 * 4091 * If the task was not queued/runnable, also place it back on a runqueue. 4092 * 4093 * This function is atomic against schedule() which would dequeue the task. 4094 * 4095 * It issues a full memory barrier before accessing @p->state, see the comment 4096 * with set_current_state(). 4097 * 4098 * Uses p->pi_lock to serialize against concurrent wake-ups. 4099 * 4100 * Relies on p->pi_lock stabilizing: 4101 * - p->sched_class 4102 * - p->cpus_ptr 4103 * - p->sched_task_group 4104 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4105 * 4106 * Tries really hard to only take one task_rq(p)->lock for performance. 4107 * Takes rq->lock in: 4108 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4109 * - ttwu_queue() -- new rq, for enqueue of the task; 4110 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4111 * 4112 * As a consequence we race really badly with just about everything. See the 4113 * many memory barriers and their comments for details. 4114 * 4115 * Return: %true if @p->state changes (an actual wakeup was done), 4116 * %false otherwise. 4117 */ 4118 static int 4119 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4120 { 4121 unsigned long flags; 4122 int cpu, success = 0; 4123 4124 preempt_disable(); 4125 if (p == current) { 4126 /* 4127 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4128 * == smp_processor_id()'. Together this means we can special 4129 * case the whole 'p->on_rq && ttwu_runnable()' case below 4130 * without taking any locks. 4131 * 4132 * In particular: 4133 * - we rely on Program-Order guarantees for all the ordering, 4134 * - we're serialized against set_special_state() by virtue of 4135 * it disabling IRQs (this allows not taking ->pi_lock). 4136 */ 4137 if (!ttwu_state_match(p, state, &success)) 4138 goto out; 4139 4140 trace_sched_waking(p); 4141 WRITE_ONCE(p->__state, TASK_RUNNING); 4142 trace_sched_wakeup(p); 4143 goto out; 4144 } 4145 4146 /* 4147 * If we are going to wake up a thread waiting for CONDITION we 4148 * need to ensure that CONDITION=1 done by the caller can not be 4149 * reordered with p->state check below. This pairs with smp_store_mb() 4150 * in set_current_state() that the waiting thread does. 4151 */ 4152 raw_spin_lock_irqsave(&p->pi_lock, flags); 4153 smp_mb__after_spinlock(); 4154 if (!ttwu_state_match(p, state, &success)) 4155 goto unlock; 4156 4157 trace_sched_waking(p); 4158 4159 /* 4160 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4161 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4162 * in smp_cond_load_acquire() below. 4163 * 4164 * sched_ttwu_pending() try_to_wake_up() 4165 * STORE p->on_rq = 1 LOAD p->state 4166 * UNLOCK rq->lock 4167 * 4168 * __schedule() (switch to task 'p') 4169 * LOCK rq->lock smp_rmb(); 4170 * smp_mb__after_spinlock(); 4171 * UNLOCK rq->lock 4172 * 4173 * [task p] 4174 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4175 * 4176 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4177 * __schedule(). See the comment for smp_mb__after_spinlock(). 4178 * 4179 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4180 */ 4181 smp_rmb(); 4182 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4183 goto unlock; 4184 4185 #ifdef CONFIG_SMP 4186 /* 4187 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4188 * possible to, falsely, observe p->on_cpu == 0. 4189 * 4190 * One must be running (->on_cpu == 1) in order to remove oneself 4191 * from the runqueue. 4192 * 4193 * __schedule() (switch to task 'p') try_to_wake_up() 4194 * STORE p->on_cpu = 1 LOAD p->on_rq 4195 * UNLOCK rq->lock 4196 * 4197 * __schedule() (put 'p' to sleep) 4198 * LOCK rq->lock smp_rmb(); 4199 * smp_mb__after_spinlock(); 4200 * STORE p->on_rq = 0 LOAD p->on_cpu 4201 * 4202 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4203 * __schedule(). See the comment for smp_mb__after_spinlock(). 4204 * 4205 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4206 * schedule()'s deactivate_task() has 'happened' and p will no longer 4207 * care about it's own p->state. See the comment in __schedule(). 4208 */ 4209 smp_acquire__after_ctrl_dep(); 4210 4211 /* 4212 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4213 * == 0), which means we need to do an enqueue, change p->state to 4214 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4215 * enqueue, such as ttwu_queue_wakelist(). 4216 */ 4217 WRITE_ONCE(p->__state, TASK_WAKING); 4218 4219 /* 4220 * If the owning (remote) CPU is still in the middle of schedule() with 4221 * this task as prev, considering queueing p on the remote CPUs wake_list 4222 * which potentially sends an IPI instead of spinning on p->on_cpu to 4223 * let the waker make forward progress. This is safe because IRQs are 4224 * disabled and the IPI will deliver after on_cpu is cleared. 4225 * 4226 * Ensure we load task_cpu(p) after p->on_cpu: 4227 * 4228 * set_task_cpu(p, cpu); 4229 * STORE p->cpu = @cpu 4230 * __schedule() (switch to task 'p') 4231 * LOCK rq->lock 4232 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4233 * STORE p->on_cpu = 1 LOAD p->cpu 4234 * 4235 * to ensure we observe the correct CPU on which the task is currently 4236 * scheduling. 4237 */ 4238 if (smp_load_acquire(&p->on_cpu) && 4239 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4240 goto unlock; 4241 4242 /* 4243 * If the owning (remote) CPU is still in the middle of schedule() with 4244 * this task as prev, wait until it's done referencing the task. 4245 * 4246 * Pairs with the smp_store_release() in finish_task(). 4247 * 4248 * This ensures that tasks getting woken will be fully ordered against 4249 * their previous state and preserve Program Order. 4250 */ 4251 smp_cond_load_acquire(&p->on_cpu, !VAL); 4252 4253 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4254 if (task_cpu(p) != cpu) { 4255 if (p->in_iowait) { 4256 delayacct_blkio_end(p); 4257 atomic_dec(&task_rq(p)->nr_iowait); 4258 } 4259 4260 wake_flags |= WF_MIGRATED; 4261 psi_ttwu_dequeue(p); 4262 set_task_cpu(p, cpu); 4263 } 4264 #else 4265 cpu = task_cpu(p); 4266 #endif /* CONFIG_SMP */ 4267 4268 ttwu_queue(p, cpu, wake_flags); 4269 unlock: 4270 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4271 out: 4272 if (success) 4273 ttwu_stat(p, task_cpu(p), wake_flags); 4274 preempt_enable(); 4275 4276 return success; 4277 } 4278 4279 static bool __task_needs_rq_lock(struct task_struct *p) 4280 { 4281 unsigned int state = READ_ONCE(p->__state); 4282 4283 /* 4284 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4285 * the task is blocked. Make sure to check @state since ttwu() can drop 4286 * locks at the end, see ttwu_queue_wakelist(). 4287 */ 4288 if (state == TASK_RUNNING || state == TASK_WAKING) 4289 return true; 4290 4291 /* 4292 * Ensure we load p->on_rq after p->__state, otherwise it would be 4293 * possible to, falsely, observe p->on_rq == 0. 4294 * 4295 * See try_to_wake_up() for a longer comment. 4296 */ 4297 smp_rmb(); 4298 if (p->on_rq) 4299 return true; 4300 4301 #ifdef CONFIG_SMP 4302 /* 4303 * Ensure the task has finished __schedule() and will not be referenced 4304 * anymore. Again, see try_to_wake_up() for a longer comment. 4305 */ 4306 smp_rmb(); 4307 smp_cond_load_acquire(&p->on_cpu, !VAL); 4308 #endif 4309 4310 return false; 4311 } 4312 4313 /** 4314 * task_call_func - Invoke a function on task in fixed state 4315 * @p: Process for which the function is to be invoked, can be @current. 4316 * @func: Function to invoke. 4317 * @arg: Argument to function. 4318 * 4319 * Fix the task in it's current state by avoiding wakeups and or rq operations 4320 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4321 * to work out what the state is, if required. Given that @func can be invoked 4322 * with a runqueue lock held, it had better be quite lightweight. 4323 * 4324 * Returns: 4325 * Whatever @func returns 4326 */ 4327 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4328 { 4329 struct rq *rq = NULL; 4330 struct rq_flags rf; 4331 int ret; 4332 4333 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4334 4335 if (__task_needs_rq_lock(p)) 4336 rq = __task_rq_lock(p, &rf); 4337 4338 /* 4339 * At this point the task is pinned; either: 4340 * - blocked and we're holding off wakeups (pi->lock) 4341 * - woken, and we're holding off enqueue (rq->lock) 4342 * - queued, and we're holding off schedule (rq->lock) 4343 * - running, and we're holding off de-schedule (rq->lock) 4344 * 4345 * The called function (@func) can use: task_curr(), p->on_rq and 4346 * p->__state to differentiate between these states. 4347 */ 4348 ret = func(p, arg); 4349 4350 if (rq) 4351 rq_unlock(rq, &rf); 4352 4353 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4354 return ret; 4355 } 4356 4357 /** 4358 * cpu_curr_snapshot - Return a snapshot of the currently running task 4359 * @cpu: The CPU on which to snapshot the task. 4360 * 4361 * Returns the task_struct pointer of the task "currently" running on 4362 * the specified CPU. If the same task is running on that CPU throughout, 4363 * the return value will be a pointer to that task's task_struct structure. 4364 * If the CPU did any context switches even vaguely concurrently with the 4365 * execution of this function, the return value will be a pointer to the 4366 * task_struct structure of a randomly chosen task that was running on 4367 * that CPU somewhere around the time that this function was executing. 4368 * 4369 * If the specified CPU was offline, the return value is whatever it 4370 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4371 * task, but there is no guarantee. Callers wishing a useful return 4372 * value must take some action to ensure that the specified CPU remains 4373 * online throughout. 4374 * 4375 * This function executes full memory barriers before and after fetching 4376 * the pointer, which permits the caller to confine this function's fetch 4377 * with respect to the caller's accesses to other shared variables. 4378 */ 4379 struct task_struct *cpu_curr_snapshot(int cpu) 4380 { 4381 struct task_struct *t; 4382 4383 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4384 t = rcu_dereference(cpu_curr(cpu)); 4385 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4386 return t; 4387 } 4388 4389 /** 4390 * wake_up_process - Wake up a specific process 4391 * @p: The process to be woken up. 4392 * 4393 * Attempt to wake up the nominated process and move it to the set of runnable 4394 * processes. 4395 * 4396 * Return: 1 if the process was woken up, 0 if it was already running. 4397 * 4398 * This function executes a full memory barrier before accessing the task state. 4399 */ 4400 int wake_up_process(struct task_struct *p) 4401 { 4402 return try_to_wake_up(p, TASK_NORMAL, 0); 4403 } 4404 EXPORT_SYMBOL(wake_up_process); 4405 4406 int wake_up_state(struct task_struct *p, unsigned int state) 4407 { 4408 return try_to_wake_up(p, state, 0); 4409 } 4410 4411 /* 4412 * Perform scheduler related setup for a newly forked process p. 4413 * p is forked by current. 4414 * 4415 * __sched_fork() is basic setup used by init_idle() too: 4416 */ 4417 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4418 { 4419 p->on_rq = 0; 4420 4421 p->se.on_rq = 0; 4422 p->se.exec_start = 0; 4423 p->se.sum_exec_runtime = 0; 4424 p->se.prev_sum_exec_runtime = 0; 4425 p->se.nr_migrations = 0; 4426 p->se.vruntime = 0; 4427 INIT_LIST_HEAD(&p->se.group_node); 4428 4429 #ifdef CONFIG_FAIR_GROUP_SCHED 4430 p->se.cfs_rq = NULL; 4431 #endif 4432 4433 #ifdef CONFIG_SCHEDSTATS 4434 /* Even if schedstat is disabled, there should not be garbage */ 4435 memset(&p->stats, 0, sizeof(p->stats)); 4436 #endif 4437 4438 RB_CLEAR_NODE(&p->dl.rb_node); 4439 init_dl_task_timer(&p->dl); 4440 init_dl_inactive_task_timer(&p->dl); 4441 __dl_clear_params(p); 4442 4443 INIT_LIST_HEAD(&p->rt.run_list); 4444 p->rt.timeout = 0; 4445 p->rt.time_slice = sched_rr_timeslice; 4446 p->rt.on_rq = 0; 4447 p->rt.on_list = 0; 4448 4449 #ifdef CONFIG_PREEMPT_NOTIFIERS 4450 INIT_HLIST_HEAD(&p->preempt_notifiers); 4451 #endif 4452 4453 #ifdef CONFIG_COMPACTION 4454 p->capture_control = NULL; 4455 #endif 4456 init_numa_balancing(clone_flags, p); 4457 #ifdef CONFIG_SMP 4458 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4459 p->migration_pending = NULL; 4460 #endif 4461 } 4462 4463 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4464 4465 #ifdef CONFIG_NUMA_BALANCING 4466 4467 int sysctl_numa_balancing_mode; 4468 4469 static void __set_numabalancing_state(bool enabled) 4470 { 4471 if (enabled) 4472 static_branch_enable(&sched_numa_balancing); 4473 else 4474 static_branch_disable(&sched_numa_balancing); 4475 } 4476 4477 void set_numabalancing_state(bool enabled) 4478 { 4479 if (enabled) 4480 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4481 else 4482 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4483 __set_numabalancing_state(enabled); 4484 } 4485 4486 #ifdef CONFIG_PROC_SYSCTL 4487 static void reset_memory_tiering(void) 4488 { 4489 struct pglist_data *pgdat; 4490 4491 for_each_online_pgdat(pgdat) { 4492 pgdat->nbp_threshold = 0; 4493 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4494 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4495 } 4496 } 4497 4498 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4499 void *buffer, size_t *lenp, loff_t *ppos) 4500 { 4501 struct ctl_table t; 4502 int err; 4503 int state = sysctl_numa_balancing_mode; 4504 4505 if (write && !capable(CAP_SYS_ADMIN)) 4506 return -EPERM; 4507 4508 t = *table; 4509 t.data = &state; 4510 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4511 if (err < 0) 4512 return err; 4513 if (write) { 4514 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4515 (state & NUMA_BALANCING_MEMORY_TIERING)) 4516 reset_memory_tiering(); 4517 sysctl_numa_balancing_mode = state; 4518 __set_numabalancing_state(state); 4519 } 4520 return err; 4521 } 4522 #endif 4523 #endif 4524 4525 #ifdef CONFIG_SCHEDSTATS 4526 4527 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4528 4529 static void set_schedstats(bool enabled) 4530 { 4531 if (enabled) 4532 static_branch_enable(&sched_schedstats); 4533 else 4534 static_branch_disable(&sched_schedstats); 4535 } 4536 4537 void force_schedstat_enabled(void) 4538 { 4539 if (!schedstat_enabled()) { 4540 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4541 static_branch_enable(&sched_schedstats); 4542 } 4543 } 4544 4545 static int __init setup_schedstats(char *str) 4546 { 4547 int ret = 0; 4548 if (!str) 4549 goto out; 4550 4551 if (!strcmp(str, "enable")) { 4552 set_schedstats(true); 4553 ret = 1; 4554 } else if (!strcmp(str, "disable")) { 4555 set_schedstats(false); 4556 ret = 1; 4557 } 4558 out: 4559 if (!ret) 4560 pr_warn("Unable to parse schedstats=\n"); 4561 4562 return ret; 4563 } 4564 __setup("schedstats=", setup_schedstats); 4565 4566 #ifdef CONFIG_PROC_SYSCTL 4567 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4568 size_t *lenp, loff_t *ppos) 4569 { 4570 struct ctl_table t; 4571 int err; 4572 int state = static_branch_likely(&sched_schedstats); 4573 4574 if (write && !capable(CAP_SYS_ADMIN)) 4575 return -EPERM; 4576 4577 t = *table; 4578 t.data = &state; 4579 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4580 if (err < 0) 4581 return err; 4582 if (write) 4583 set_schedstats(state); 4584 return err; 4585 } 4586 #endif /* CONFIG_PROC_SYSCTL */ 4587 #endif /* CONFIG_SCHEDSTATS */ 4588 4589 #ifdef CONFIG_SYSCTL 4590 static struct ctl_table sched_core_sysctls[] = { 4591 #ifdef CONFIG_SCHEDSTATS 4592 { 4593 .procname = "sched_schedstats", 4594 .data = NULL, 4595 .maxlen = sizeof(unsigned int), 4596 .mode = 0644, 4597 .proc_handler = sysctl_schedstats, 4598 .extra1 = SYSCTL_ZERO, 4599 .extra2 = SYSCTL_ONE, 4600 }, 4601 #endif /* CONFIG_SCHEDSTATS */ 4602 #ifdef CONFIG_UCLAMP_TASK 4603 { 4604 .procname = "sched_util_clamp_min", 4605 .data = &sysctl_sched_uclamp_util_min, 4606 .maxlen = sizeof(unsigned int), 4607 .mode = 0644, 4608 .proc_handler = sysctl_sched_uclamp_handler, 4609 }, 4610 { 4611 .procname = "sched_util_clamp_max", 4612 .data = &sysctl_sched_uclamp_util_max, 4613 .maxlen = sizeof(unsigned int), 4614 .mode = 0644, 4615 .proc_handler = sysctl_sched_uclamp_handler, 4616 }, 4617 { 4618 .procname = "sched_util_clamp_min_rt_default", 4619 .data = &sysctl_sched_uclamp_util_min_rt_default, 4620 .maxlen = sizeof(unsigned int), 4621 .mode = 0644, 4622 .proc_handler = sysctl_sched_uclamp_handler, 4623 }, 4624 #endif /* CONFIG_UCLAMP_TASK */ 4625 #ifdef CONFIG_NUMA_BALANCING 4626 { 4627 .procname = "numa_balancing", 4628 .data = NULL, /* filled in by handler */ 4629 .maxlen = sizeof(unsigned int), 4630 .mode = 0644, 4631 .proc_handler = sysctl_numa_balancing, 4632 .extra1 = SYSCTL_ZERO, 4633 .extra2 = SYSCTL_FOUR, 4634 }, 4635 #endif /* CONFIG_NUMA_BALANCING */ 4636 {} 4637 }; 4638 static int __init sched_core_sysctl_init(void) 4639 { 4640 register_sysctl_init("kernel", sched_core_sysctls); 4641 return 0; 4642 } 4643 late_initcall(sched_core_sysctl_init); 4644 #endif /* CONFIG_SYSCTL */ 4645 4646 /* 4647 * fork()/clone()-time setup: 4648 */ 4649 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4650 { 4651 __sched_fork(clone_flags, p); 4652 /* 4653 * We mark the process as NEW here. This guarantees that 4654 * nobody will actually run it, and a signal or other external 4655 * event cannot wake it up and insert it on the runqueue either. 4656 */ 4657 p->__state = TASK_NEW; 4658 4659 /* 4660 * Make sure we do not leak PI boosting priority to the child. 4661 */ 4662 p->prio = current->normal_prio; 4663 4664 uclamp_fork(p); 4665 4666 /* 4667 * Revert to default priority/policy on fork if requested. 4668 */ 4669 if (unlikely(p->sched_reset_on_fork)) { 4670 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4671 p->policy = SCHED_NORMAL; 4672 p->static_prio = NICE_TO_PRIO(0); 4673 p->rt_priority = 0; 4674 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4675 p->static_prio = NICE_TO_PRIO(0); 4676 4677 p->prio = p->normal_prio = p->static_prio; 4678 set_load_weight(p, false); 4679 4680 /* 4681 * We don't need the reset flag anymore after the fork. It has 4682 * fulfilled its duty: 4683 */ 4684 p->sched_reset_on_fork = 0; 4685 } 4686 4687 if (dl_prio(p->prio)) 4688 return -EAGAIN; 4689 else if (rt_prio(p->prio)) 4690 p->sched_class = &rt_sched_class; 4691 else 4692 p->sched_class = &fair_sched_class; 4693 4694 init_entity_runnable_average(&p->se); 4695 4696 4697 #ifdef CONFIG_SCHED_INFO 4698 if (likely(sched_info_on())) 4699 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4700 #endif 4701 #if defined(CONFIG_SMP) 4702 p->on_cpu = 0; 4703 #endif 4704 init_task_preempt_count(p); 4705 #ifdef CONFIG_SMP 4706 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4707 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4708 #endif 4709 return 0; 4710 } 4711 4712 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4713 { 4714 unsigned long flags; 4715 4716 /* 4717 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4718 * required yet, but lockdep gets upset if rules are violated. 4719 */ 4720 raw_spin_lock_irqsave(&p->pi_lock, flags); 4721 #ifdef CONFIG_CGROUP_SCHED 4722 if (1) { 4723 struct task_group *tg; 4724 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4725 struct task_group, css); 4726 tg = autogroup_task_group(p, tg); 4727 p->sched_task_group = tg; 4728 } 4729 #endif 4730 rseq_migrate(p); 4731 /* 4732 * We're setting the CPU for the first time, we don't migrate, 4733 * so use __set_task_cpu(). 4734 */ 4735 __set_task_cpu(p, smp_processor_id()); 4736 if (p->sched_class->task_fork) 4737 p->sched_class->task_fork(p); 4738 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4739 } 4740 4741 void sched_post_fork(struct task_struct *p) 4742 { 4743 uclamp_post_fork(p); 4744 } 4745 4746 unsigned long to_ratio(u64 period, u64 runtime) 4747 { 4748 if (runtime == RUNTIME_INF) 4749 return BW_UNIT; 4750 4751 /* 4752 * Doing this here saves a lot of checks in all 4753 * the calling paths, and returning zero seems 4754 * safe for them anyway. 4755 */ 4756 if (period == 0) 4757 return 0; 4758 4759 return div64_u64(runtime << BW_SHIFT, period); 4760 } 4761 4762 /* 4763 * wake_up_new_task - wake up a newly created task for the first time. 4764 * 4765 * This function will do some initial scheduler statistics housekeeping 4766 * that must be done for every newly created context, then puts the task 4767 * on the runqueue and wakes it. 4768 */ 4769 void wake_up_new_task(struct task_struct *p) 4770 { 4771 struct rq_flags rf; 4772 struct rq *rq; 4773 4774 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4775 WRITE_ONCE(p->__state, TASK_RUNNING); 4776 #ifdef CONFIG_SMP 4777 /* 4778 * Fork balancing, do it here and not earlier because: 4779 * - cpus_ptr can change in the fork path 4780 * - any previously selected CPU might disappear through hotplug 4781 * 4782 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4783 * as we're not fully set-up yet. 4784 */ 4785 p->recent_used_cpu = task_cpu(p); 4786 rseq_migrate(p); 4787 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4788 #endif 4789 rq = __task_rq_lock(p, &rf); 4790 update_rq_clock(rq); 4791 post_init_entity_util_avg(p); 4792 4793 activate_task(rq, p, ENQUEUE_NOCLOCK); 4794 trace_sched_wakeup_new(p); 4795 check_preempt_curr(rq, p, WF_FORK); 4796 #ifdef CONFIG_SMP 4797 if (p->sched_class->task_woken) { 4798 /* 4799 * Nothing relies on rq->lock after this, so it's fine to 4800 * drop it. 4801 */ 4802 rq_unpin_lock(rq, &rf); 4803 p->sched_class->task_woken(rq, p); 4804 rq_repin_lock(rq, &rf); 4805 } 4806 #endif 4807 task_rq_unlock(rq, p, &rf); 4808 } 4809 4810 #ifdef CONFIG_PREEMPT_NOTIFIERS 4811 4812 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4813 4814 void preempt_notifier_inc(void) 4815 { 4816 static_branch_inc(&preempt_notifier_key); 4817 } 4818 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4819 4820 void preempt_notifier_dec(void) 4821 { 4822 static_branch_dec(&preempt_notifier_key); 4823 } 4824 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4825 4826 /** 4827 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4828 * @notifier: notifier struct to register 4829 */ 4830 void preempt_notifier_register(struct preempt_notifier *notifier) 4831 { 4832 if (!static_branch_unlikely(&preempt_notifier_key)) 4833 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4834 4835 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4836 } 4837 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4838 4839 /** 4840 * preempt_notifier_unregister - no longer interested in preemption notifications 4841 * @notifier: notifier struct to unregister 4842 * 4843 * This is *not* safe to call from within a preemption notifier. 4844 */ 4845 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4846 { 4847 hlist_del(¬ifier->link); 4848 } 4849 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4850 4851 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4852 { 4853 struct preempt_notifier *notifier; 4854 4855 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4856 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4857 } 4858 4859 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4860 { 4861 if (static_branch_unlikely(&preempt_notifier_key)) 4862 __fire_sched_in_preempt_notifiers(curr); 4863 } 4864 4865 static void 4866 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4867 struct task_struct *next) 4868 { 4869 struct preempt_notifier *notifier; 4870 4871 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4872 notifier->ops->sched_out(notifier, next); 4873 } 4874 4875 static __always_inline void 4876 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4877 struct task_struct *next) 4878 { 4879 if (static_branch_unlikely(&preempt_notifier_key)) 4880 __fire_sched_out_preempt_notifiers(curr, next); 4881 } 4882 4883 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4884 4885 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4886 { 4887 } 4888 4889 static inline void 4890 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4891 struct task_struct *next) 4892 { 4893 } 4894 4895 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4896 4897 static inline void prepare_task(struct task_struct *next) 4898 { 4899 #ifdef CONFIG_SMP 4900 /* 4901 * Claim the task as running, we do this before switching to it 4902 * such that any running task will have this set. 4903 * 4904 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4905 * its ordering comment. 4906 */ 4907 WRITE_ONCE(next->on_cpu, 1); 4908 #endif 4909 } 4910 4911 static inline void finish_task(struct task_struct *prev) 4912 { 4913 #ifdef CONFIG_SMP 4914 /* 4915 * This must be the very last reference to @prev from this CPU. After 4916 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4917 * must ensure this doesn't happen until the switch is completely 4918 * finished. 4919 * 4920 * In particular, the load of prev->state in finish_task_switch() must 4921 * happen before this. 4922 * 4923 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4924 */ 4925 smp_store_release(&prev->on_cpu, 0); 4926 #endif 4927 } 4928 4929 #ifdef CONFIG_SMP 4930 4931 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4932 { 4933 void (*func)(struct rq *rq); 4934 struct balance_callback *next; 4935 4936 lockdep_assert_rq_held(rq); 4937 4938 while (head) { 4939 func = (void (*)(struct rq *))head->func; 4940 next = head->next; 4941 head->next = NULL; 4942 head = next; 4943 4944 func(rq); 4945 } 4946 } 4947 4948 static void balance_push(struct rq *rq); 4949 4950 /* 4951 * balance_push_callback is a right abuse of the callback interface and plays 4952 * by significantly different rules. 4953 * 4954 * Where the normal balance_callback's purpose is to be ran in the same context 4955 * that queued it (only later, when it's safe to drop rq->lock again), 4956 * balance_push_callback is specifically targeted at __schedule(). 4957 * 4958 * This abuse is tolerated because it places all the unlikely/odd cases behind 4959 * a single test, namely: rq->balance_callback == NULL. 4960 */ 4961 struct balance_callback balance_push_callback = { 4962 .next = NULL, 4963 .func = balance_push, 4964 }; 4965 4966 static inline struct balance_callback * 4967 __splice_balance_callbacks(struct rq *rq, bool split) 4968 { 4969 struct balance_callback *head = rq->balance_callback; 4970 4971 if (likely(!head)) 4972 return NULL; 4973 4974 lockdep_assert_rq_held(rq); 4975 /* 4976 * Must not take balance_push_callback off the list when 4977 * splice_balance_callbacks() and balance_callbacks() are not 4978 * in the same rq->lock section. 4979 * 4980 * In that case it would be possible for __schedule() to interleave 4981 * and observe the list empty. 4982 */ 4983 if (split && head == &balance_push_callback) 4984 head = NULL; 4985 else 4986 rq->balance_callback = NULL; 4987 4988 return head; 4989 } 4990 4991 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 4992 { 4993 return __splice_balance_callbacks(rq, true); 4994 } 4995 4996 static void __balance_callbacks(struct rq *rq) 4997 { 4998 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4999 } 5000 5001 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5002 { 5003 unsigned long flags; 5004 5005 if (unlikely(head)) { 5006 raw_spin_rq_lock_irqsave(rq, flags); 5007 do_balance_callbacks(rq, head); 5008 raw_spin_rq_unlock_irqrestore(rq, flags); 5009 } 5010 } 5011 5012 #else 5013 5014 static inline void __balance_callbacks(struct rq *rq) 5015 { 5016 } 5017 5018 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 5019 { 5020 return NULL; 5021 } 5022 5023 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5024 { 5025 } 5026 5027 #endif 5028 5029 static inline void 5030 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5031 { 5032 /* 5033 * Since the runqueue lock will be released by the next 5034 * task (which is an invalid locking op but in the case 5035 * of the scheduler it's an obvious special-case), so we 5036 * do an early lockdep release here: 5037 */ 5038 rq_unpin_lock(rq, rf); 5039 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5040 #ifdef CONFIG_DEBUG_SPINLOCK 5041 /* this is a valid case when another task releases the spinlock */ 5042 rq_lockp(rq)->owner = next; 5043 #endif 5044 } 5045 5046 static inline void finish_lock_switch(struct rq *rq) 5047 { 5048 /* 5049 * If we are tracking spinlock dependencies then we have to 5050 * fix up the runqueue lock - which gets 'carried over' from 5051 * prev into current: 5052 */ 5053 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5054 __balance_callbacks(rq); 5055 raw_spin_rq_unlock_irq(rq); 5056 } 5057 5058 /* 5059 * NOP if the arch has not defined these: 5060 */ 5061 5062 #ifndef prepare_arch_switch 5063 # define prepare_arch_switch(next) do { } while (0) 5064 #endif 5065 5066 #ifndef finish_arch_post_lock_switch 5067 # define finish_arch_post_lock_switch() do { } while (0) 5068 #endif 5069 5070 static inline void kmap_local_sched_out(void) 5071 { 5072 #ifdef CONFIG_KMAP_LOCAL 5073 if (unlikely(current->kmap_ctrl.idx)) 5074 __kmap_local_sched_out(); 5075 #endif 5076 } 5077 5078 static inline void kmap_local_sched_in(void) 5079 { 5080 #ifdef CONFIG_KMAP_LOCAL 5081 if (unlikely(current->kmap_ctrl.idx)) 5082 __kmap_local_sched_in(); 5083 #endif 5084 } 5085 5086 /** 5087 * prepare_task_switch - prepare to switch tasks 5088 * @rq: the runqueue preparing to switch 5089 * @prev: the current task that is being switched out 5090 * @next: the task we are going to switch to. 5091 * 5092 * This is called with the rq lock held and interrupts off. It must 5093 * be paired with a subsequent finish_task_switch after the context 5094 * switch. 5095 * 5096 * prepare_task_switch sets up locking and calls architecture specific 5097 * hooks. 5098 */ 5099 static inline void 5100 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5101 struct task_struct *next) 5102 { 5103 kcov_prepare_switch(prev); 5104 sched_info_switch(rq, prev, next); 5105 perf_event_task_sched_out(prev, next); 5106 rseq_preempt(prev); 5107 fire_sched_out_preempt_notifiers(prev, next); 5108 kmap_local_sched_out(); 5109 prepare_task(next); 5110 prepare_arch_switch(next); 5111 } 5112 5113 /** 5114 * finish_task_switch - clean up after a task-switch 5115 * @prev: the thread we just switched away from. 5116 * 5117 * finish_task_switch must be called after the context switch, paired 5118 * with a prepare_task_switch call before the context switch. 5119 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5120 * and do any other architecture-specific cleanup actions. 5121 * 5122 * Note that we may have delayed dropping an mm in context_switch(). If 5123 * so, we finish that here outside of the runqueue lock. (Doing it 5124 * with the lock held can cause deadlocks; see schedule() for 5125 * details.) 5126 * 5127 * The context switch have flipped the stack from under us and restored the 5128 * local variables which were saved when this task called schedule() in the 5129 * past. prev == current is still correct but we need to recalculate this_rq 5130 * because prev may have moved to another CPU. 5131 */ 5132 static struct rq *finish_task_switch(struct task_struct *prev) 5133 __releases(rq->lock) 5134 { 5135 struct rq *rq = this_rq(); 5136 struct mm_struct *mm = rq->prev_mm; 5137 unsigned int prev_state; 5138 5139 /* 5140 * The previous task will have left us with a preempt_count of 2 5141 * because it left us after: 5142 * 5143 * schedule() 5144 * preempt_disable(); // 1 5145 * __schedule() 5146 * raw_spin_lock_irq(&rq->lock) // 2 5147 * 5148 * Also, see FORK_PREEMPT_COUNT. 5149 */ 5150 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5151 "corrupted preempt_count: %s/%d/0x%x\n", 5152 current->comm, current->pid, preempt_count())) 5153 preempt_count_set(FORK_PREEMPT_COUNT); 5154 5155 rq->prev_mm = NULL; 5156 5157 /* 5158 * A task struct has one reference for the use as "current". 5159 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5160 * schedule one last time. The schedule call will never return, and 5161 * the scheduled task must drop that reference. 5162 * 5163 * We must observe prev->state before clearing prev->on_cpu (in 5164 * finish_task), otherwise a concurrent wakeup can get prev 5165 * running on another CPU and we could rave with its RUNNING -> DEAD 5166 * transition, resulting in a double drop. 5167 */ 5168 prev_state = READ_ONCE(prev->__state); 5169 vtime_task_switch(prev); 5170 perf_event_task_sched_in(prev, current); 5171 finish_task(prev); 5172 tick_nohz_task_switch(); 5173 finish_lock_switch(rq); 5174 finish_arch_post_lock_switch(); 5175 kcov_finish_switch(current); 5176 /* 5177 * kmap_local_sched_out() is invoked with rq::lock held and 5178 * interrupts disabled. There is no requirement for that, but the 5179 * sched out code does not have an interrupt enabled section. 5180 * Restoring the maps on sched in does not require interrupts being 5181 * disabled either. 5182 */ 5183 kmap_local_sched_in(); 5184 5185 fire_sched_in_preempt_notifiers(current); 5186 /* 5187 * When switching through a kernel thread, the loop in 5188 * membarrier_{private,global}_expedited() may have observed that 5189 * kernel thread and not issued an IPI. It is therefore possible to 5190 * schedule between user->kernel->user threads without passing though 5191 * switch_mm(). Membarrier requires a barrier after storing to 5192 * rq->curr, before returning to userspace, so provide them here: 5193 * 5194 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5195 * provided by mmdrop(), 5196 * - a sync_core for SYNC_CORE. 5197 */ 5198 if (mm) { 5199 membarrier_mm_sync_core_before_usermode(mm); 5200 mmdrop_sched(mm); 5201 } 5202 if (unlikely(prev_state == TASK_DEAD)) { 5203 if (prev->sched_class->task_dead) 5204 prev->sched_class->task_dead(prev); 5205 5206 /* Task is done with its stack. */ 5207 put_task_stack(prev); 5208 5209 put_task_struct_rcu_user(prev); 5210 } 5211 5212 return rq; 5213 } 5214 5215 /** 5216 * schedule_tail - first thing a freshly forked thread must call. 5217 * @prev: the thread we just switched away from. 5218 */ 5219 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5220 __releases(rq->lock) 5221 { 5222 /* 5223 * New tasks start with FORK_PREEMPT_COUNT, see there and 5224 * finish_task_switch() for details. 5225 * 5226 * finish_task_switch() will drop rq->lock() and lower preempt_count 5227 * and the preempt_enable() will end up enabling preemption (on 5228 * PREEMPT_COUNT kernels). 5229 */ 5230 5231 finish_task_switch(prev); 5232 preempt_enable(); 5233 5234 if (current->set_child_tid) 5235 put_user(task_pid_vnr(current), current->set_child_tid); 5236 5237 calculate_sigpending(); 5238 } 5239 5240 /* 5241 * context_switch - switch to the new MM and the new thread's register state. 5242 */ 5243 static __always_inline struct rq * 5244 context_switch(struct rq *rq, struct task_struct *prev, 5245 struct task_struct *next, struct rq_flags *rf) 5246 { 5247 prepare_task_switch(rq, prev, next); 5248 5249 /* 5250 * For paravirt, this is coupled with an exit in switch_to to 5251 * combine the page table reload and the switch backend into 5252 * one hypercall. 5253 */ 5254 arch_start_context_switch(prev); 5255 5256 /* 5257 * kernel -> kernel lazy + transfer active 5258 * user -> kernel lazy + mmgrab() active 5259 * 5260 * kernel -> user switch + mmdrop() active 5261 * user -> user switch 5262 */ 5263 if (!next->mm) { // to kernel 5264 enter_lazy_tlb(prev->active_mm, next); 5265 5266 next->active_mm = prev->active_mm; 5267 if (prev->mm) // from user 5268 mmgrab(prev->active_mm); 5269 else 5270 prev->active_mm = NULL; 5271 } else { // to user 5272 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5273 /* 5274 * sys_membarrier() requires an smp_mb() between setting 5275 * rq->curr / membarrier_switch_mm() and returning to userspace. 5276 * 5277 * The below provides this either through switch_mm(), or in 5278 * case 'prev->active_mm == next->mm' through 5279 * finish_task_switch()'s mmdrop(). 5280 */ 5281 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5282 lru_gen_use_mm(next->mm); 5283 5284 if (!prev->mm) { // from kernel 5285 /* will mmdrop() in finish_task_switch(). */ 5286 rq->prev_mm = prev->active_mm; 5287 prev->active_mm = NULL; 5288 } 5289 } 5290 5291 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5292 5293 prepare_lock_switch(rq, next, rf); 5294 5295 /* Here we just switch the register state and the stack. */ 5296 switch_to(prev, next, prev); 5297 barrier(); 5298 5299 return finish_task_switch(prev); 5300 } 5301 5302 /* 5303 * nr_running and nr_context_switches: 5304 * 5305 * externally visible scheduler statistics: current number of runnable 5306 * threads, total number of context switches performed since bootup. 5307 */ 5308 unsigned int nr_running(void) 5309 { 5310 unsigned int i, sum = 0; 5311 5312 for_each_online_cpu(i) 5313 sum += cpu_rq(i)->nr_running; 5314 5315 return sum; 5316 } 5317 5318 /* 5319 * Check if only the current task is running on the CPU. 5320 * 5321 * Caution: this function does not check that the caller has disabled 5322 * preemption, thus the result might have a time-of-check-to-time-of-use 5323 * race. The caller is responsible to use it correctly, for example: 5324 * 5325 * - from a non-preemptible section (of course) 5326 * 5327 * - from a thread that is bound to a single CPU 5328 * 5329 * - in a loop with very short iterations (e.g. a polling loop) 5330 */ 5331 bool single_task_running(void) 5332 { 5333 return raw_rq()->nr_running == 1; 5334 } 5335 EXPORT_SYMBOL(single_task_running); 5336 5337 unsigned long long nr_context_switches(void) 5338 { 5339 int i; 5340 unsigned long long sum = 0; 5341 5342 for_each_possible_cpu(i) 5343 sum += cpu_rq(i)->nr_switches; 5344 5345 return sum; 5346 } 5347 5348 /* 5349 * Consumers of these two interfaces, like for example the cpuidle menu 5350 * governor, are using nonsensical data. Preferring shallow idle state selection 5351 * for a CPU that has IO-wait which might not even end up running the task when 5352 * it does become runnable. 5353 */ 5354 5355 unsigned int nr_iowait_cpu(int cpu) 5356 { 5357 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5358 } 5359 5360 /* 5361 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5362 * 5363 * The idea behind IO-wait account is to account the idle time that we could 5364 * have spend running if it were not for IO. That is, if we were to improve the 5365 * storage performance, we'd have a proportional reduction in IO-wait time. 5366 * 5367 * This all works nicely on UP, where, when a task blocks on IO, we account 5368 * idle time as IO-wait, because if the storage were faster, it could've been 5369 * running and we'd not be idle. 5370 * 5371 * This has been extended to SMP, by doing the same for each CPU. This however 5372 * is broken. 5373 * 5374 * Imagine for instance the case where two tasks block on one CPU, only the one 5375 * CPU will have IO-wait accounted, while the other has regular idle. Even 5376 * though, if the storage were faster, both could've ran at the same time, 5377 * utilising both CPUs. 5378 * 5379 * This means, that when looking globally, the current IO-wait accounting on 5380 * SMP is a lower bound, by reason of under accounting. 5381 * 5382 * Worse, since the numbers are provided per CPU, they are sometimes 5383 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5384 * associated with any one particular CPU, it can wake to another CPU than it 5385 * blocked on. This means the per CPU IO-wait number is meaningless. 5386 * 5387 * Task CPU affinities can make all that even more 'interesting'. 5388 */ 5389 5390 unsigned int nr_iowait(void) 5391 { 5392 unsigned int i, sum = 0; 5393 5394 for_each_possible_cpu(i) 5395 sum += nr_iowait_cpu(i); 5396 5397 return sum; 5398 } 5399 5400 #ifdef CONFIG_SMP 5401 5402 /* 5403 * sched_exec - execve() is a valuable balancing opportunity, because at 5404 * this point the task has the smallest effective memory and cache footprint. 5405 */ 5406 void sched_exec(void) 5407 { 5408 struct task_struct *p = current; 5409 unsigned long flags; 5410 int dest_cpu; 5411 5412 raw_spin_lock_irqsave(&p->pi_lock, flags); 5413 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5414 if (dest_cpu == smp_processor_id()) 5415 goto unlock; 5416 5417 if (likely(cpu_active(dest_cpu))) { 5418 struct migration_arg arg = { p, dest_cpu }; 5419 5420 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5421 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5422 return; 5423 } 5424 unlock: 5425 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5426 } 5427 5428 #endif 5429 5430 DEFINE_PER_CPU(struct kernel_stat, kstat); 5431 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5432 5433 EXPORT_PER_CPU_SYMBOL(kstat); 5434 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5435 5436 /* 5437 * The function fair_sched_class.update_curr accesses the struct curr 5438 * and its field curr->exec_start; when called from task_sched_runtime(), 5439 * we observe a high rate of cache misses in practice. 5440 * Prefetching this data results in improved performance. 5441 */ 5442 static inline void prefetch_curr_exec_start(struct task_struct *p) 5443 { 5444 #ifdef CONFIG_FAIR_GROUP_SCHED 5445 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5446 #else 5447 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5448 #endif 5449 prefetch(curr); 5450 prefetch(&curr->exec_start); 5451 } 5452 5453 /* 5454 * Return accounted runtime for the task. 5455 * In case the task is currently running, return the runtime plus current's 5456 * pending runtime that have not been accounted yet. 5457 */ 5458 unsigned long long task_sched_runtime(struct task_struct *p) 5459 { 5460 struct rq_flags rf; 5461 struct rq *rq; 5462 u64 ns; 5463 5464 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5465 /* 5466 * 64-bit doesn't need locks to atomically read a 64-bit value. 5467 * So we have a optimization chance when the task's delta_exec is 0. 5468 * Reading ->on_cpu is racy, but this is ok. 5469 * 5470 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5471 * If we race with it entering CPU, unaccounted time is 0. This is 5472 * indistinguishable from the read occurring a few cycles earlier. 5473 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5474 * been accounted, so we're correct here as well. 5475 */ 5476 if (!p->on_cpu || !task_on_rq_queued(p)) 5477 return p->se.sum_exec_runtime; 5478 #endif 5479 5480 rq = task_rq_lock(p, &rf); 5481 /* 5482 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5483 * project cycles that may never be accounted to this 5484 * thread, breaking clock_gettime(). 5485 */ 5486 if (task_current(rq, p) && task_on_rq_queued(p)) { 5487 prefetch_curr_exec_start(p); 5488 update_rq_clock(rq); 5489 p->sched_class->update_curr(rq); 5490 } 5491 ns = p->se.sum_exec_runtime; 5492 task_rq_unlock(rq, p, &rf); 5493 5494 return ns; 5495 } 5496 5497 #ifdef CONFIG_SCHED_DEBUG 5498 static u64 cpu_resched_latency(struct rq *rq) 5499 { 5500 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5501 u64 resched_latency, now = rq_clock(rq); 5502 static bool warned_once; 5503 5504 if (sysctl_resched_latency_warn_once && warned_once) 5505 return 0; 5506 5507 if (!need_resched() || !latency_warn_ms) 5508 return 0; 5509 5510 if (system_state == SYSTEM_BOOTING) 5511 return 0; 5512 5513 if (!rq->last_seen_need_resched_ns) { 5514 rq->last_seen_need_resched_ns = now; 5515 rq->ticks_without_resched = 0; 5516 return 0; 5517 } 5518 5519 rq->ticks_without_resched++; 5520 resched_latency = now - rq->last_seen_need_resched_ns; 5521 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5522 return 0; 5523 5524 warned_once = true; 5525 5526 return resched_latency; 5527 } 5528 5529 static int __init setup_resched_latency_warn_ms(char *str) 5530 { 5531 long val; 5532 5533 if ((kstrtol(str, 0, &val))) { 5534 pr_warn("Unable to set resched_latency_warn_ms\n"); 5535 return 1; 5536 } 5537 5538 sysctl_resched_latency_warn_ms = val; 5539 return 1; 5540 } 5541 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5542 #else 5543 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5544 #endif /* CONFIG_SCHED_DEBUG */ 5545 5546 /* 5547 * This function gets called by the timer code, with HZ frequency. 5548 * We call it with interrupts disabled. 5549 */ 5550 void scheduler_tick(void) 5551 { 5552 int cpu = smp_processor_id(); 5553 struct rq *rq = cpu_rq(cpu); 5554 struct task_struct *curr = rq->curr; 5555 struct rq_flags rf; 5556 unsigned long thermal_pressure; 5557 u64 resched_latency; 5558 5559 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5560 arch_scale_freq_tick(); 5561 5562 sched_clock_tick(); 5563 5564 rq_lock(rq, &rf); 5565 5566 update_rq_clock(rq); 5567 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5568 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5569 curr->sched_class->task_tick(rq, curr, 0); 5570 if (sched_feat(LATENCY_WARN)) 5571 resched_latency = cpu_resched_latency(rq); 5572 calc_global_load_tick(rq); 5573 sched_core_tick(rq); 5574 5575 rq_unlock(rq, &rf); 5576 5577 if (sched_feat(LATENCY_WARN) && resched_latency) 5578 resched_latency_warn(cpu, resched_latency); 5579 5580 perf_event_task_tick(); 5581 5582 #ifdef CONFIG_SMP 5583 rq->idle_balance = idle_cpu(cpu); 5584 trigger_load_balance(rq); 5585 #endif 5586 } 5587 5588 #ifdef CONFIG_NO_HZ_FULL 5589 5590 struct tick_work { 5591 int cpu; 5592 atomic_t state; 5593 struct delayed_work work; 5594 }; 5595 /* Values for ->state, see diagram below. */ 5596 #define TICK_SCHED_REMOTE_OFFLINE 0 5597 #define TICK_SCHED_REMOTE_OFFLINING 1 5598 #define TICK_SCHED_REMOTE_RUNNING 2 5599 5600 /* 5601 * State diagram for ->state: 5602 * 5603 * 5604 * TICK_SCHED_REMOTE_OFFLINE 5605 * | ^ 5606 * | | 5607 * | | sched_tick_remote() 5608 * | | 5609 * | | 5610 * +--TICK_SCHED_REMOTE_OFFLINING 5611 * | ^ 5612 * | | 5613 * sched_tick_start() | | sched_tick_stop() 5614 * | | 5615 * V | 5616 * TICK_SCHED_REMOTE_RUNNING 5617 * 5618 * 5619 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5620 * and sched_tick_start() are happy to leave the state in RUNNING. 5621 */ 5622 5623 static struct tick_work __percpu *tick_work_cpu; 5624 5625 static void sched_tick_remote(struct work_struct *work) 5626 { 5627 struct delayed_work *dwork = to_delayed_work(work); 5628 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5629 int cpu = twork->cpu; 5630 struct rq *rq = cpu_rq(cpu); 5631 struct task_struct *curr; 5632 struct rq_flags rf; 5633 u64 delta; 5634 int os; 5635 5636 /* 5637 * Handle the tick only if it appears the remote CPU is running in full 5638 * dynticks mode. The check is racy by nature, but missing a tick or 5639 * having one too much is no big deal because the scheduler tick updates 5640 * statistics and checks timeslices in a time-independent way, regardless 5641 * of when exactly it is running. 5642 */ 5643 if (!tick_nohz_tick_stopped_cpu(cpu)) 5644 goto out_requeue; 5645 5646 rq_lock_irq(rq, &rf); 5647 curr = rq->curr; 5648 if (cpu_is_offline(cpu)) 5649 goto out_unlock; 5650 5651 update_rq_clock(rq); 5652 5653 if (!is_idle_task(curr)) { 5654 /* 5655 * Make sure the next tick runs within a reasonable 5656 * amount of time. 5657 */ 5658 delta = rq_clock_task(rq) - curr->se.exec_start; 5659 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5660 } 5661 curr->sched_class->task_tick(rq, curr, 0); 5662 5663 calc_load_nohz_remote(rq); 5664 out_unlock: 5665 rq_unlock_irq(rq, &rf); 5666 out_requeue: 5667 5668 /* 5669 * Run the remote tick once per second (1Hz). This arbitrary 5670 * frequency is large enough to avoid overload but short enough 5671 * to keep scheduler internal stats reasonably up to date. But 5672 * first update state to reflect hotplug activity if required. 5673 */ 5674 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5675 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5676 if (os == TICK_SCHED_REMOTE_RUNNING) 5677 queue_delayed_work(system_unbound_wq, dwork, HZ); 5678 } 5679 5680 static void sched_tick_start(int cpu) 5681 { 5682 int os; 5683 struct tick_work *twork; 5684 5685 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5686 return; 5687 5688 WARN_ON_ONCE(!tick_work_cpu); 5689 5690 twork = per_cpu_ptr(tick_work_cpu, cpu); 5691 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5692 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5693 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5694 twork->cpu = cpu; 5695 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5696 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5697 } 5698 } 5699 5700 #ifdef CONFIG_HOTPLUG_CPU 5701 static void sched_tick_stop(int cpu) 5702 { 5703 struct tick_work *twork; 5704 int os; 5705 5706 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5707 return; 5708 5709 WARN_ON_ONCE(!tick_work_cpu); 5710 5711 twork = per_cpu_ptr(tick_work_cpu, cpu); 5712 /* There cannot be competing actions, but don't rely on stop-machine. */ 5713 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5714 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5715 /* Don't cancel, as this would mess up the state machine. */ 5716 } 5717 #endif /* CONFIG_HOTPLUG_CPU */ 5718 5719 int __init sched_tick_offload_init(void) 5720 { 5721 tick_work_cpu = alloc_percpu(struct tick_work); 5722 BUG_ON(!tick_work_cpu); 5723 return 0; 5724 } 5725 5726 #else /* !CONFIG_NO_HZ_FULL */ 5727 static inline void sched_tick_start(int cpu) { } 5728 static inline void sched_tick_stop(int cpu) { } 5729 #endif 5730 5731 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5732 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5733 /* 5734 * If the value passed in is equal to the current preempt count 5735 * then we just disabled preemption. Start timing the latency. 5736 */ 5737 static inline void preempt_latency_start(int val) 5738 { 5739 if (preempt_count() == val) { 5740 unsigned long ip = get_lock_parent_ip(); 5741 #ifdef CONFIG_DEBUG_PREEMPT 5742 current->preempt_disable_ip = ip; 5743 #endif 5744 trace_preempt_off(CALLER_ADDR0, ip); 5745 } 5746 } 5747 5748 void preempt_count_add(int val) 5749 { 5750 #ifdef CONFIG_DEBUG_PREEMPT 5751 /* 5752 * Underflow? 5753 */ 5754 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5755 return; 5756 #endif 5757 __preempt_count_add(val); 5758 #ifdef CONFIG_DEBUG_PREEMPT 5759 /* 5760 * Spinlock count overflowing soon? 5761 */ 5762 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5763 PREEMPT_MASK - 10); 5764 #endif 5765 preempt_latency_start(val); 5766 } 5767 EXPORT_SYMBOL(preempt_count_add); 5768 NOKPROBE_SYMBOL(preempt_count_add); 5769 5770 /* 5771 * If the value passed in equals to the current preempt count 5772 * then we just enabled preemption. Stop timing the latency. 5773 */ 5774 static inline void preempt_latency_stop(int val) 5775 { 5776 if (preempt_count() == val) 5777 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5778 } 5779 5780 void preempt_count_sub(int val) 5781 { 5782 #ifdef CONFIG_DEBUG_PREEMPT 5783 /* 5784 * Underflow? 5785 */ 5786 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5787 return; 5788 /* 5789 * Is the spinlock portion underflowing? 5790 */ 5791 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5792 !(preempt_count() & PREEMPT_MASK))) 5793 return; 5794 #endif 5795 5796 preempt_latency_stop(val); 5797 __preempt_count_sub(val); 5798 } 5799 EXPORT_SYMBOL(preempt_count_sub); 5800 NOKPROBE_SYMBOL(preempt_count_sub); 5801 5802 #else 5803 static inline void preempt_latency_start(int val) { } 5804 static inline void preempt_latency_stop(int val) { } 5805 #endif 5806 5807 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5808 { 5809 #ifdef CONFIG_DEBUG_PREEMPT 5810 return p->preempt_disable_ip; 5811 #else 5812 return 0; 5813 #endif 5814 } 5815 5816 /* 5817 * Print scheduling while atomic bug: 5818 */ 5819 static noinline void __schedule_bug(struct task_struct *prev) 5820 { 5821 /* Save this before calling printk(), since that will clobber it */ 5822 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5823 5824 if (oops_in_progress) 5825 return; 5826 5827 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5828 prev->comm, prev->pid, preempt_count()); 5829 5830 debug_show_held_locks(prev); 5831 print_modules(); 5832 if (irqs_disabled()) 5833 print_irqtrace_events(prev); 5834 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5835 && in_atomic_preempt_off()) { 5836 pr_err("Preemption disabled at:"); 5837 print_ip_sym(KERN_ERR, preempt_disable_ip); 5838 } 5839 check_panic_on_warn("scheduling while atomic"); 5840 5841 dump_stack(); 5842 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5843 } 5844 5845 /* 5846 * Various schedule()-time debugging checks and statistics: 5847 */ 5848 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5849 { 5850 #ifdef CONFIG_SCHED_STACK_END_CHECK 5851 if (task_stack_end_corrupted(prev)) 5852 panic("corrupted stack end detected inside scheduler\n"); 5853 5854 if (task_scs_end_corrupted(prev)) 5855 panic("corrupted shadow stack detected inside scheduler\n"); 5856 #endif 5857 5858 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5859 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5860 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5861 prev->comm, prev->pid, prev->non_block_count); 5862 dump_stack(); 5863 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5864 } 5865 #endif 5866 5867 if (unlikely(in_atomic_preempt_off())) { 5868 __schedule_bug(prev); 5869 preempt_count_set(PREEMPT_DISABLED); 5870 } 5871 rcu_sleep_check(); 5872 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5873 5874 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5875 5876 schedstat_inc(this_rq()->sched_count); 5877 } 5878 5879 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5880 struct rq_flags *rf) 5881 { 5882 #ifdef CONFIG_SMP 5883 const struct sched_class *class; 5884 /* 5885 * We must do the balancing pass before put_prev_task(), such 5886 * that when we release the rq->lock the task is in the same 5887 * state as before we took rq->lock. 5888 * 5889 * We can terminate the balance pass as soon as we know there is 5890 * a runnable task of @class priority or higher. 5891 */ 5892 for_class_range(class, prev->sched_class, &idle_sched_class) { 5893 if (class->balance(rq, prev, rf)) 5894 break; 5895 } 5896 #endif 5897 5898 put_prev_task(rq, prev); 5899 } 5900 5901 /* 5902 * Pick up the highest-prio task: 5903 */ 5904 static inline struct task_struct * 5905 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5906 { 5907 const struct sched_class *class; 5908 struct task_struct *p; 5909 5910 /* 5911 * Optimization: we know that if all tasks are in the fair class we can 5912 * call that function directly, but only if the @prev task wasn't of a 5913 * higher scheduling class, because otherwise those lose the 5914 * opportunity to pull in more work from other CPUs. 5915 */ 5916 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5917 rq->nr_running == rq->cfs.h_nr_running)) { 5918 5919 p = pick_next_task_fair(rq, prev, rf); 5920 if (unlikely(p == RETRY_TASK)) 5921 goto restart; 5922 5923 /* Assume the next prioritized class is idle_sched_class */ 5924 if (!p) { 5925 put_prev_task(rq, prev); 5926 p = pick_next_task_idle(rq); 5927 } 5928 5929 return p; 5930 } 5931 5932 restart: 5933 put_prev_task_balance(rq, prev, rf); 5934 5935 for_each_class(class) { 5936 p = class->pick_next_task(rq); 5937 if (p) 5938 return p; 5939 } 5940 5941 BUG(); /* The idle class should always have a runnable task. */ 5942 } 5943 5944 #ifdef CONFIG_SCHED_CORE 5945 static inline bool is_task_rq_idle(struct task_struct *t) 5946 { 5947 return (task_rq(t)->idle == t); 5948 } 5949 5950 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5951 { 5952 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5953 } 5954 5955 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5956 { 5957 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5958 return true; 5959 5960 return a->core_cookie == b->core_cookie; 5961 } 5962 5963 static inline struct task_struct *pick_task(struct rq *rq) 5964 { 5965 const struct sched_class *class; 5966 struct task_struct *p; 5967 5968 for_each_class(class) { 5969 p = class->pick_task(rq); 5970 if (p) 5971 return p; 5972 } 5973 5974 BUG(); /* The idle class should always have a runnable task. */ 5975 } 5976 5977 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5978 5979 static void queue_core_balance(struct rq *rq); 5980 5981 static struct task_struct * 5982 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5983 { 5984 struct task_struct *next, *p, *max = NULL; 5985 const struct cpumask *smt_mask; 5986 bool fi_before = false; 5987 bool core_clock_updated = (rq == rq->core); 5988 unsigned long cookie; 5989 int i, cpu, occ = 0; 5990 struct rq *rq_i; 5991 bool need_sync; 5992 5993 if (!sched_core_enabled(rq)) 5994 return __pick_next_task(rq, prev, rf); 5995 5996 cpu = cpu_of(rq); 5997 5998 /* Stopper task is switching into idle, no need core-wide selection. */ 5999 if (cpu_is_offline(cpu)) { 6000 /* 6001 * Reset core_pick so that we don't enter the fastpath when 6002 * coming online. core_pick would already be migrated to 6003 * another cpu during offline. 6004 */ 6005 rq->core_pick = NULL; 6006 return __pick_next_task(rq, prev, rf); 6007 } 6008 6009 /* 6010 * If there were no {en,de}queues since we picked (IOW, the task 6011 * pointers are all still valid), and we haven't scheduled the last 6012 * pick yet, do so now. 6013 * 6014 * rq->core_pick can be NULL if no selection was made for a CPU because 6015 * it was either offline or went offline during a sibling's core-wide 6016 * selection. In this case, do a core-wide selection. 6017 */ 6018 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6019 rq->core->core_pick_seq != rq->core_sched_seq && 6020 rq->core_pick) { 6021 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6022 6023 next = rq->core_pick; 6024 if (next != prev) { 6025 put_prev_task(rq, prev); 6026 set_next_task(rq, next); 6027 } 6028 6029 rq->core_pick = NULL; 6030 goto out; 6031 } 6032 6033 put_prev_task_balance(rq, prev, rf); 6034 6035 smt_mask = cpu_smt_mask(cpu); 6036 need_sync = !!rq->core->core_cookie; 6037 6038 /* reset state */ 6039 rq->core->core_cookie = 0UL; 6040 if (rq->core->core_forceidle_count) { 6041 if (!core_clock_updated) { 6042 update_rq_clock(rq->core); 6043 core_clock_updated = true; 6044 } 6045 sched_core_account_forceidle(rq); 6046 /* reset after accounting force idle */ 6047 rq->core->core_forceidle_start = 0; 6048 rq->core->core_forceidle_count = 0; 6049 rq->core->core_forceidle_occupation = 0; 6050 need_sync = true; 6051 fi_before = true; 6052 } 6053 6054 /* 6055 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6056 * 6057 * @task_seq guards the task state ({en,de}queues) 6058 * @pick_seq is the @task_seq we did a selection on 6059 * @sched_seq is the @pick_seq we scheduled 6060 * 6061 * However, preemptions can cause multiple picks on the same task set. 6062 * 'Fix' this by also increasing @task_seq for every pick. 6063 */ 6064 rq->core->core_task_seq++; 6065 6066 /* 6067 * Optimize for common case where this CPU has no cookies 6068 * and there are no cookied tasks running on siblings. 6069 */ 6070 if (!need_sync) { 6071 next = pick_task(rq); 6072 if (!next->core_cookie) { 6073 rq->core_pick = NULL; 6074 /* 6075 * For robustness, update the min_vruntime_fi for 6076 * unconstrained picks as well. 6077 */ 6078 WARN_ON_ONCE(fi_before); 6079 task_vruntime_update(rq, next, false); 6080 goto out_set_next; 6081 } 6082 } 6083 6084 /* 6085 * For each thread: do the regular task pick and find the max prio task 6086 * amongst them. 6087 * 6088 * Tie-break prio towards the current CPU 6089 */ 6090 for_each_cpu_wrap(i, smt_mask, cpu) { 6091 rq_i = cpu_rq(i); 6092 6093 /* 6094 * Current cpu always has its clock updated on entrance to 6095 * pick_next_task(). If the current cpu is not the core, 6096 * the core may also have been updated above. 6097 */ 6098 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6099 update_rq_clock(rq_i); 6100 6101 p = rq_i->core_pick = pick_task(rq_i); 6102 if (!max || prio_less(max, p, fi_before)) 6103 max = p; 6104 } 6105 6106 cookie = rq->core->core_cookie = max->core_cookie; 6107 6108 /* 6109 * For each thread: try and find a runnable task that matches @max or 6110 * force idle. 6111 */ 6112 for_each_cpu(i, smt_mask) { 6113 rq_i = cpu_rq(i); 6114 p = rq_i->core_pick; 6115 6116 if (!cookie_equals(p, cookie)) { 6117 p = NULL; 6118 if (cookie) 6119 p = sched_core_find(rq_i, cookie); 6120 if (!p) 6121 p = idle_sched_class.pick_task(rq_i); 6122 } 6123 6124 rq_i->core_pick = p; 6125 6126 if (p == rq_i->idle) { 6127 if (rq_i->nr_running) { 6128 rq->core->core_forceidle_count++; 6129 if (!fi_before) 6130 rq->core->core_forceidle_seq++; 6131 } 6132 } else { 6133 occ++; 6134 } 6135 } 6136 6137 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6138 rq->core->core_forceidle_start = rq_clock(rq->core); 6139 rq->core->core_forceidle_occupation = occ; 6140 } 6141 6142 rq->core->core_pick_seq = rq->core->core_task_seq; 6143 next = rq->core_pick; 6144 rq->core_sched_seq = rq->core->core_pick_seq; 6145 6146 /* Something should have been selected for current CPU */ 6147 WARN_ON_ONCE(!next); 6148 6149 /* 6150 * Reschedule siblings 6151 * 6152 * NOTE: L1TF -- at this point we're no longer running the old task and 6153 * sending an IPI (below) ensures the sibling will no longer be running 6154 * their task. This ensures there is no inter-sibling overlap between 6155 * non-matching user state. 6156 */ 6157 for_each_cpu(i, smt_mask) { 6158 rq_i = cpu_rq(i); 6159 6160 /* 6161 * An online sibling might have gone offline before a task 6162 * could be picked for it, or it might be offline but later 6163 * happen to come online, but its too late and nothing was 6164 * picked for it. That's Ok - it will pick tasks for itself, 6165 * so ignore it. 6166 */ 6167 if (!rq_i->core_pick) 6168 continue; 6169 6170 /* 6171 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6172 * fi_before fi update? 6173 * 0 0 1 6174 * 0 1 1 6175 * 1 0 1 6176 * 1 1 0 6177 */ 6178 if (!(fi_before && rq->core->core_forceidle_count)) 6179 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6180 6181 rq_i->core_pick->core_occupation = occ; 6182 6183 if (i == cpu) { 6184 rq_i->core_pick = NULL; 6185 continue; 6186 } 6187 6188 /* Did we break L1TF mitigation requirements? */ 6189 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6190 6191 if (rq_i->curr == rq_i->core_pick) { 6192 rq_i->core_pick = NULL; 6193 continue; 6194 } 6195 6196 resched_curr(rq_i); 6197 } 6198 6199 out_set_next: 6200 set_next_task(rq, next); 6201 out: 6202 if (rq->core->core_forceidle_count && next == rq->idle) 6203 queue_core_balance(rq); 6204 6205 return next; 6206 } 6207 6208 static bool try_steal_cookie(int this, int that) 6209 { 6210 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6211 struct task_struct *p; 6212 unsigned long cookie; 6213 bool success = false; 6214 6215 local_irq_disable(); 6216 double_rq_lock(dst, src); 6217 6218 cookie = dst->core->core_cookie; 6219 if (!cookie) 6220 goto unlock; 6221 6222 if (dst->curr != dst->idle) 6223 goto unlock; 6224 6225 p = sched_core_find(src, cookie); 6226 if (p == src->idle) 6227 goto unlock; 6228 6229 do { 6230 if (p == src->core_pick || p == src->curr) 6231 goto next; 6232 6233 if (!is_cpu_allowed(p, this)) 6234 goto next; 6235 6236 if (p->core_occupation > dst->idle->core_occupation) 6237 goto next; 6238 6239 deactivate_task(src, p, 0); 6240 set_task_cpu(p, this); 6241 activate_task(dst, p, 0); 6242 6243 resched_curr(dst); 6244 6245 success = true; 6246 break; 6247 6248 next: 6249 p = sched_core_next(p, cookie); 6250 } while (p); 6251 6252 unlock: 6253 double_rq_unlock(dst, src); 6254 local_irq_enable(); 6255 6256 return success; 6257 } 6258 6259 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6260 { 6261 int i; 6262 6263 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 6264 if (i == cpu) 6265 continue; 6266 6267 if (need_resched()) 6268 break; 6269 6270 if (try_steal_cookie(cpu, i)) 6271 return true; 6272 } 6273 6274 return false; 6275 } 6276 6277 static void sched_core_balance(struct rq *rq) 6278 { 6279 struct sched_domain *sd; 6280 int cpu = cpu_of(rq); 6281 6282 preempt_disable(); 6283 rcu_read_lock(); 6284 raw_spin_rq_unlock_irq(rq); 6285 for_each_domain(cpu, sd) { 6286 if (need_resched()) 6287 break; 6288 6289 if (steal_cookie_task(cpu, sd)) 6290 break; 6291 } 6292 raw_spin_rq_lock_irq(rq); 6293 rcu_read_unlock(); 6294 preempt_enable(); 6295 } 6296 6297 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6298 6299 static void queue_core_balance(struct rq *rq) 6300 { 6301 if (!sched_core_enabled(rq)) 6302 return; 6303 6304 if (!rq->core->core_cookie) 6305 return; 6306 6307 if (!rq->nr_running) /* not forced idle */ 6308 return; 6309 6310 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6311 } 6312 6313 static void sched_core_cpu_starting(unsigned int cpu) 6314 { 6315 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6316 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6317 unsigned long flags; 6318 int t; 6319 6320 sched_core_lock(cpu, &flags); 6321 6322 WARN_ON_ONCE(rq->core != rq); 6323 6324 /* if we're the first, we'll be our own leader */ 6325 if (cpumask_weight(smt_mask) == 1) 6326 goto unlock; 6327 6328 /* find the leader */ 6329 for_each_cpu(t, smt_mask) { 6330 if (t == cpu) 6331 continue; 6332 rq = cpu_rq(t); 6333 if (rq->core == rq) { 6334 core_rq = rq; 6335 break; 6336 } 6337 } 6338 6339 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6340 goto unlock; 6341 6342 /* install and validate core_rq */ 6343 for_each_cpu(t, smt_mask) { 6344 rq = cpu_rq(t); 6345 6346 if (t == cpu) 6347 rq->core = core_rq; 6348 6349 WARN_ON_ONCE(rq->core != core_rq); 6350 } 6351 6352 unlock: 6353 sched_core_unlock(cpu, &flags); 6354 } 6355 6356 static void sched_core_cpu_deactivate(unsigned int cpu) 6357 { 6358 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6359 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6360 unsigned long flags; 6361 int t; 6362 6363 sched_core_lock(cpu, &flags); 6364 6365 /* if we're the last man standing, nothing to do */ 6366 if (cpumask_weight(smt_mask) == 1) { 6367 WARN_ON_ONCE(rq->core != rq); 6368 goto unlock; 6369 } 6370 6371 /* if we're not the leader, nothing to do */ 6372 if (rq->core != rq) 6373 goto unlock; 6374 6375 /* find a new leader */ 6376 for_each_cpu(t, smt_mask) { 6377 if (t == cpu) 6378 continue; 6379 core_rq = cpu_rq(t); 6380 break; 6381 } 6382 6383 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6384 goto unlock; 6385 6386 /* copy the shared state to the new leader */ 6387 core_rq->core_task_seq = rq->core_task_seq; 6388 core_rq->core_pick_seq = rq->core_pick_seq; 6389 core_rq->core_cookie = rq->core_cookie; 6390 core_rq->core_forceidle_count = rq->core_forceidle_count; 6391 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6392 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6393 6394 /* 6395 * Accounting edge for forced idle is handled in pick_next_task(). 6396 * Don't need another one here, since the hotplug thread shouldn't 6397 * have a cookie. 6398 */ 6399 core_rq->core_forceidle_start = 0; 6400 6401 /* install new leader */ 6402 for_each_cpu(t, smt_mask) { 6403 rq = cpu_rq(t); 6404 rq->core = core_rq; 6405 } 6406 6407 unlock: 6408 sched_core_unlock(cpu, &flags); 6409 } 6410 6411 static inline void sched_core_cpu_dying(unsigned int cpu) 6412 { 6413 struct rq *rq = cpu_rq(cpu); 6414 6415 if (rq->core != rq) 6416 rq->core = rq; 6417 } 6418 6419 #else /* !CONFIG_SCHED_CORE */ 6420 6421 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6422 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6423 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6424 6425 static struct task_struct * 6426 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6427 { 6428 return __pick_next_task(rq, prev, rf); 6429 } 6430 6431 #endif /* CONFIG_SCHED_CORE */ 6432 6433 /* 6434 * Constants for the sched_mode argument of __schedule(). 6435 * 6436 * The mode argument allows RT enabled kernels to differentiate a 6437 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6438 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6439 * optimize the AND operation out and just check for zero. 6440 */ 6441 #define SM_NONE 0x0 6442 #define SM_PREEMPT 0x1 6443 #define SM_RTLOCK_WAIT 0x2 6444 6445 #ifndef CONFIG_PREEMPT_RT 6446 # define SM_MASK_PREEMPT (~0U) 6447 #else 6448 # define SM_MASK_PREEMPT SM_PREEMPT 6449 #endif 6450 6451 /* 6452 * __schedule() is the main scheduler function. 6453 * 6454 * The main means of driving the scheduler and thus entering this function are: 6455 * 6456 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6457 * 6458 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6459 * paths. For example, see arch/x86/entry_64.S. 6460 * 6461 * To drive preemption between tasks, the scheduler sets the flag in timer 6462 * interrupt handler scheduler_tick(). 6463 * 6464 * 3. Wakeups don't really cause entry into schedule(). They add a 6465 * task to the run-queue and that's it. 6466 * 6467 * Now, if the new task added to the run-queue preempts the current 6468 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6469 * called on the nearest possible occasion: 6470 * 6471 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6472 * 6473 * - in syscall or exception context, at the next outmost 6474 * preempt_enable(). (this might be as soon as the wake_up()'s 6475 * spin_unlock()!) 6476 * 6477 * - in IRQ context, return from interrupt-handler to 6478 * preemptible context 6479 * 6480 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6481 * then at the next: 6482 * 6483 * - cond_resched() call 6484 * - explicit schedule() call 6485 * - return from syscall or exception to user-space 6486 * - return from interrupt-handler to user-space 6487 * 6488 * WARNING: must be called with preemption disabled! 6489 */ 6490 static void __sched notrace __schedule(unsigned int sched_mode) 6491 { 6492 struct task_struct *prev, *next; 6493 unsigned long *switch_count; 6494 unsigned long prev_state; 6495 struct rq_flags rf; 6496 struct rq *rq; 6497 int cpu; 6498 6499 cpu = smp_processor_id(); 6500 rq = cpu_rq(cpu); 6501 prev = rq->curr; 6502 6503 schedule_debug(prev, !!sched_mode); 6504 6505 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6506 hrtick_clear(rq); 6507 6508 local_irq_disable(); 6509 rcu_note_context_switch(!!sched_mode); 6510 6511 /* 6512 * Make sure that signal_pending_state()->signal_pending() below 6513 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6514 * done by the caller to avoid the race with signal_wake_up(): 6515 * 6516 * __set_current_state(@state) signal_wake_up() 6517 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6518 * wake_up_state(p, state) 6519 * LOCK rq->lock LOCK p->pi_state 6520 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6521 * if (signal_pending_state()) if (p->state & @state) 6522 * 6523 * Also, the membarrier system call requires a full memory barrier 6524 * after coming from user-space, before storing to rq->curr. 6525 */ 6526 rq_lock(rq, &rf); 6527 smp_mb__after_spinlock(); 6528 6529 /* Promote REQ to ACT */ 6530 rq->clock_update_flags <<= 1; 6531 update_rq_clock(rq); 6532 6533 switch_count = &prev->nivcsw; 6534 6535 /* 6536 * We must load prev->state once (task_struct::state is volatile), such 6537 * that we form a control dependency vs deactivate_task() below. 6538 */ 6539 prev_state = READ_ONCE(prev->__state); 6540 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6541 if (signal_pending_state(prev_state, prev)) { 6542 WRITE_ONCE(prev->__state, TASK_RUNNING); 6543 } else { 6544 prev->sched_contributes_to_load = 6545 (prev_state & TASK_UNINTERRUPTIBLE) && 6546 !(prev_state & TASK_NOLOAD) && 6547 !(prev_state & TASK_FROZEN); 6548 6549 if (prev->sched_contributes_to_load) 6550 rq->nr_uninterruptible++; 6551 6552 /* 6553 * __schedule() ttwu() 6554 * prev_state = prev->state; if (p->on_rq && ...) 6555 * if (prev_state) goto out; 6556 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6557 * p->state = TASK_WAKING 6558 * 6559 * Where __schedule() and ttwu() have matching control dependencies. 6560 * 6561 * After this, schedule() must not care about p->state any more. 6562 */ 6563 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6564 6565 if (prev->in_iowait) { 6566 atomic_inc(&rq->nr_iowait); 6567 delayacct_blkio_start(); 6568 } 6569 } 6570 switch_count = &prev->nvcsw; 6571 } 6572 6573 next = pick_next_task(rq, prev, &rf); 6574 clear_tsk_need_resched(prev); 6575 clear_preempt_need_resched(); 6576 #ifdef CONFIG_SCHED_DEBUG 6577 rq->last_seen_need_resched_ns = 0; 6578 #endif 6579 6580 if (likely(prev != next)) { 6581 rq->nr_switches++; 6582 /* 6583 * RCU users of rcu_dereference(rq->curr) may not see 6584 * changes to task_struct made by pick_next_task(). 6585 */ 6586 RCU_INIT_POINTER(rq->curr, next); 6587 /* 6588 * The membarrier system call requires each architecture 6589 * to have a full memory barrier after updating 6590 * rq->curr, before returning to user-space. 6591 * 6592 * Here are the schemes providing that barrier on the 6593 * various architectures: 6594 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6595 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6596 * - finish_lock_switch() for weakly-ordered 6597 * architectures where spin_unlock is a full barrier, 6598 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6599 * is a RELEASE barrier), 6600 */ 6601 ++*switch_count; 6602 6603 migrate_disable_switch(rq, prev); 6604 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6605 6606 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6607 6608 /* Also unlocks the rq: */ 6609 rq = context_switch(rq, prev, next, &rf); 6610 } else { 6611 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6612 6613 rq_unpin_lock(rq, &rf); 6614 __balance_callbacks(rq); 6615 raw_spin_rq_unlock_irq(rq); 6616 } 6617 } 6618 6619 void __noreturn do_task_dead(void) 6620 { 6621 /* Causes final put_task_struct in finish_task_switch(): */ 6622 set_special_state(TASK_DEAD); 6623 6624 /* Tell freezer to ignore us: */ 6625 current->flags |= PF_NOFREEZE; 6626 6627 __schedule(SM_NONE); 6628 BUG(); 6629 6630 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6631 for (;;) 6632 cpu_relax(); 6633 } 6634 6635 static inline void sched_submit_work(struct task_struct *tsk) 6636 { 6637 unsigned int task_flags; 6638 6639 if (task_is_running(tsk)) 6640 return; 6641 6642 task_flags = tsk->flags; 6643 /* 6644 * If a worker goes to sleep, notify and ask workqueue whether it 6645 * wants to wake up a task to maintain concurrency. 6646 */ 6647 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6648 if (task_flags & PF_WQ_WORKER) 6649 wq_worker_sleeping(tsk); 6650 else 6651 io_wq_worker_sleeping(tsk); 6652 } 6653 6654 /* 6655 * spinlock and rwlock must not flush block requests. This will 6656 * deadlock if the callback attempts to acquire a lock which is 6657 * already acquired. 6658 */ 6659 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6660 6661 /* 6662 * If we are going to sleep and we have plugged IO queued, 6663 * make sure to submit it to avoid deadlocks. 6664 */ 6665 blk_flush_plug(tsk->plug, true); 6666 } 6667 6668 static void sched_update_worker(struct task_struct *tsk) 6669 { 6670 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6671 if (tsk->flags & PF_WQ_WORKER) 6672 wq_worker_running(tsk); 6673 else 6674 io_wq_worker_running(tsk); 6675 } 6676 } 6677 6678 asmlinkage __visible void __sched schedule(void) 6679 { 6680 struct task_struct *tsk = current; 6681 6682 sched_submit_work(tsk); 6683 do { 6684 preempt_disable(); 6685 __schedule(SM_NONE); 6686 sched_preempt_enable_no_resched(); 6687 } while (need_resched()); 6688 sched_update_worker(tsk); 6689 } 6690 EXPORT_SYMBOL(schedule); 6691 6692 /* 6693 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6694 * state (have scheduled out non-voluntarily) by making sure that all 6695 * tasks have either left the run queue or have gone into user space. 6696 * As idle tasks do not do either, they must not ever be preempted 6697 * (schedule out non-voluntarily). 6698 * 6699 * schedule_idle() is similar to schedule_preempt_disable() except that it 6700 * never enables preemption because it does not call sched_submit_work(). 6701 */ 6702 void __sched schedule_idle(void) 6703 { 6704 /* 6705 * As this skips calling sched_submit_work(), which the idle task does 6706 * regardless because that function is a nop when the task is in a 6707 * TASK_RUNNING state, make sure this isn't used someplace that the 6708 * current task can be in any other state. Note, idle is always in the 6709 * TASK_RUNNING state. 6710 */ 6711 WARN_ON_ONCE(current->__state); 6712 do { 6713 __schedule(SM_NONE); 6714 } while (need_resched()); 6715 } 6716 6717 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6718 asmlinkage __visible void __sched schedule_user(void) 6719 { 6720 /* 6721 * If we come here after a random call to set_need_resched(), 6722 * or we have been woken up remotely but the IPI has not yet arrived, 6723 * we haven't yet exited the RCU idle mode. Do it here manually until 6724 * we find a better solution. 6725 * 6726 * NB: There are buggy callers of this function. Ideally we 6727 * should warn if prev_state != CONTEXT_USER, but that will trigger 6728 * too frequently to make sense yet. 6729 */ 6730 enum ctx_state prev_state = exception_enter(); 6731 schedule(); 6732 exception_exit(prev_state); 6733 } 6734 #endif 6735 6736 /** 6737 * schedule_preempt_disabled - called with preemption disabled 6738 * 6739 * Returns with preemption disabled. Note: preempt_count must be 1 6740 */ 6741 void __sched schedule_preempt_disabled(void) 6742 { 6743 sched_preempt_enable_no_resched(); 6744 schedule(); 6745 preempt_disable(); 6746 } 6747 6748 #ifdef CONFIG_PREEMPT_RT 6749 void __sched notrace schedule_rtlock(void) 6750 { 6751 do { 6752 preempt_disable(); 6753 __schedule(SM_RTLOCK_WAIT); 6754 sched_preempt_enable_no_resched(); 6755 } while (need_resched()); 6756 } 6757 NOKPROBE_SYMBOL(schedule_rtlock); 6758 #endif 6759 6760 static void __sched notrace preempt_schedule_common(void) 6761 { 6762 do { 6763 /* 6764 * Because the function tracer can trace preempt_count_sub() 6765 * and it also uses preempt_enable/disable_notrace(), if 6766 * NEED_RESCHED is set, the preempt_enable_notrace() called 6767 * by the function tracer will call this function again and 6768 * cause infinite recursion. 6769 * 6770 * Preemption must be disabled here before the function 6771 * tracer can trace. Break up preempt_disable() into two 6772 * calls. One to disable preemption without fear of being 6773 * traced. The other to still record the preemption latency, 6774 * which can also be traced by the function tracer. 6775 */ 6776 preempt_disable_notrace(); 6777 preempt_latency_start(1); 6778 __schedule(SM_PREEMPT); 6779 preempt_latency_stop(1); 6780 preempt_enable_no_resched_notrace(); 6781 6782 /* 6783 * Check again in case we missed a preemption opportunity 6784 * between schedule and now. 6785 */ 6786 } while (need_resched()); 6787 } 6788 6789 #ifdef CONFIG_PREEMPTION 6790 /* 6791 * This is the entry point to schedule() from in-kernel preemption 6792 * off of preempt_enable. 6793 */ 6794 asmlinkage __visible void __sched notrace preempt_schedule(void) 6795 { 6796 /* 6797 * If there is a non-zero preempt_count or interrupts are disabled, 6798 * we do not want to preempt the current task. Just return.. 6799 */ 6800 if (likely(!preemptible())) 6801 return; 6802 preempt_schedule_common(); 6803 } 6804 NOKPROBE_SYMBOL(preempt_schedule); 6805 EXPORT_SYMBOL(preempt_schedule); 6806 6807 #ifdef CONFIG_PREEMPT_DYNAMIC 6808 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6809 #ifndef preempt_schedule_dynamic_enabled 6810 #define preempt_schedule_dynamic_enabled preempt_schedule 6811 #define preempt_schedule_dynamic_disabled NULL 6812 #endif 6813 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6814 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6815 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6816 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6817 void __sched notrace dynamic_preempt_schedule(void) 6818 { 6819 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6820 return; 6821 preempt_schedule(); 6822 } 6823 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6824 EXPORT_SYMBOL(dynamic_preempt_schedule); 6825 #endif 6826 #endif 6827 6828 /** 6829 * preempt_schedule_notrace - preempt_schedule called by tracing 6830 * 6831 * The tracing infrastructure uses preempt_enable_notrace to prevent 6832 * recursion and tracing preempt enabling caused by the tracing 6833 * infrastructure itself. But as tracing can happen in areas coming 6834 * from userspace or just about to enter userspace, a preempt enable 6835 * can occur before user_exit() is called. This will cause the scheduler 6836 * to be called when the system is still in usermode. 6837 * 6838 * To prevent this, the preempt_enable_notrace will use this function 6839 * instead of preempt_schedule() to exit user context if needed before 6840 * calling the scheduler. 6841 */ 6842 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6843 { 6844 enum ctx_state prev_ctx; 6845 6846 if (likely(!preemptible())) 6847 return; 6848 6849 do { 6850 /* 6851 * Because the function tracer can trace preempt_count_sub() 6852 * and it also uses preempt_enable/disable_notrace(), if 6853 * NEED_RESCHED is set, the preempt_enable_notrace() called 6854 * by the function tracer will call this function again and 6855 * cause infinite recursion. 6856 * 6857 * Preemption must be disabled here before the function 6858 * tracer can trace. Break up preempt_disable() into two 6859 * calls. One to disable preemption without fear of being 6860 * traced. The other to still record the preemption latency, 6861 * which can also be traced by the function tracer. 6862 */ 6863 preempt_disable_notrace(); 6864 preempt_latency_start(1); 6865 /* 6866 * Needs preempt disabled in case user_exit() is traced 6867 * and the tracer calls preempt_enable_notrace() causing 6868 * an infinite recursion. 6869 */ 6870 prev_ctx = exception_enter(); 6871 __schedule(SM_PREEMPT); 6872 exception_exit(prev_ctx); 6873 6874 preempt_latency_stop(1); 6875 preempt_enable_no_resched_notrace(); 6876 } while (need_resched()); 6877 } 6878 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6879 6880 #ifdef CONFIG_PREEMPT_DYNAMIC 6881 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6882 #ifndef preempt_schedule_notrace_dynamic_enabled 6883 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6884 #define preempt_schedule_notrace_dynamic_disabled NULL 6885 #endif 6886 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6887 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6888 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6889 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6890 void __sched notrace dynamic_preempt_schedule_notrace(void) 6891 { 6892 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6893 return; 6894 preempt_schedule_notrace(); 6895 } 6896 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6897 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6898 #endif 6899 #endif 6900 6901 #endif /* CONFIG_PREEMPTION */ 6902 6903 /* 6904 * This is the entry point to schedule() from kernel preemption 6905 * off of irq context. 6906 * Note, that this is called and return with irqs disabled. This will 6907 * protect us against recursive calling from irq. 6908 */ 6909 asmlinkage __visible void __sched preempt_schedule_irq(void) 6910 { 6911 enum ctx_state prev_state; 6912 6913 /* Catch callers which need to be fixed */ 6914 BUG_ON(preempt_count() || !irqs_disabled()); 6915 6916 prev_state = exception_enter(); 6917 6918 do { 6919 preempt_disable(); 6920 local_irq_enable(); 6921 __schedule(SM_PREEMPT); 6922 local_irq_disable(); 6923 sched_preempt_enable_no_resched(); 6924 } while (need_resched()); 6925 6926 exception_exit(prev_state); 6927 } 6928 6929 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6930 void *key) 6931 { 6932 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6933 return try_to_wake_up(curr->private, mode, wake_flags); 6934 } 6935 EXPORT_SYMBOL(default_wake_function); 6936 6937 static void __setscheduler_prio(struct task_struct *p, int prio) 6938 { 6939 if (dl_prio(prio)) 6940 p->sched_class = &dl_sched_class; 6941 else if (rt_prio(prio)) 6942 p->sched_class = &rt_sched_class; 6943 else 6944 p->sched_class = &fair_sched_class; 6945 6946 p->prio = prio; 6947 } 6948 6949 #ifdef CONFIG_RT_MUTEXES 6950 6951 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6952 { 6953 if (pi_task) 6954 prio = min(prio, pi_task->prio); 6955 6956 return prio; 6957 } 6958 6959 static inline int rt_effective_prio(struct task_struct *p, int prio) 6960 { 6961 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6962 6963 return __rt_effective_prio(pi_task, prio); 6964 } 6965 6966 /* 6967 * rt_mutex_setprio - set the current priority of a task 6968 * @p: task to boost 6969 * @pi_task: donor task 6970 * 6971 * This function changes the 'effective' priority of a task. It does 6972 * not touch ->normal_prio like __setscheduler(). 6973 * 6974 * Used by the rt_mutex code to implement priority inheritance 6975 * logic. Call site only calls if the priority of the task changed. 6976 */ 6977 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6978 { 6979 int prio, oldprio, queued, running, queue_flag = 6980 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6981 const struct sched_class *prev_class; 6982 struct rq_flags rf; 6983 struct rq *rq; 6984 6985 /* XXX used to be waiter->prio, not waiter->task->prio */ 6986 prio = __rt_effective_prio(pi_task, p->normal_prio); 6987 6988 /* 6989 * If nothing changed; bail early. 6990 */ 6991 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6992 return; 6993 6994 rq = __task_rq_lock(p, &rf); 6995 update_rq_clock(rq); 6996 /* 6997 * Set under pi_lock && rq->lock, such that the value can be used under 6998 * either lock. 6999 * 7000 * Note that there is loads of tricky to make this pointer cache work 7001 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7002 * ensure a task is de-boosted (pi_task is set to NULL) before the 7003 * task is allowed to run again (and can exit). This ensures the pointer 7004 * points to a blocked task -- which guarantees the task is present. 7005 */ 7006 p->pi_top_task = pi_task; 7007 7008 /* 7009 * For FIFO/RR we only need to set prio, if that matches we're done. 7010 */ 7011 if (prio == p->prio && !dl_prio(prio)) 7012 goto out_unlock; 7013 7014 /* 7015 * Idle task boosting is a nono in general. There is one 7016 * exception, when PREEMPT_RT and NOHZ is active: 7017 * 7018 * The idle task calls get_next_timer_interrupt() and holds 7019 * the timer wheel base->lock on the CPU and another CPU wants 7020 * to access the timer (probably to cancel it). We can safely 7021 * ignore the boosting request, as the idle CPU runs this code 7022 * with interrupts disabled and will complete the lock 7023 * protected section without being interrupted. So there is no 7024 * real need to boost. 7025 */ 7026 if (unlikely(p == rq->idle)) { 7027 WARN_ON(p != rq->curr); 7028 WARN_ON(p->pi_blocked_on); 7029 goto out_unlock; 7030 } 7031 7032 trace_sched_pi_setprio(p, pi_task); 7033 oldprio = p->prio; 7034 7035 if (oldprio == prio) 7036 queue_flag &= ~DEQUEUE_MOVE; 7037 7038 prev_class = p->sched_class; 7039 queued = task_on_rq_queued(p); 7040 running = task_current(rq, p); 7041 if (queued) 7042 dequeue_task(rq, p, queue_flag); 7043 if (running) 7044 put_prev_task(rq, p); 7045 7046 /* 7047 * Boosting condition are: 7048 * 1. -rt task is running and holds mutex A 7049 * --> -dl task blocks on mutex A 7050 * 7051 * 2. -dl task is running and holds mutex A 7052 * --> -dl task blocks on mutex A and could preempt the 7053 * running task 7054 */ 7055 if (dl_prio(prio)) { 7056 if (!dl_prio(p->normal_prio) || 7057 (pi_task && dl_prio(pi_task->prio) && 7058 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7059 p->dl.pi_se = pi_task->dl.pi_se; 7060 queue_flag |= ENQUEUE_REPLENISH; 7061 } else { 7062 p->dl.pi_se = &p->dl; 7063 } 7064 } else if (rt_prio(prio)) { 7065 if (dl_prio(oldprio)) 7066 p->dl.pi_se = &p->dl; 7067 if (oldprio < prio) 7068 queue_flag |= ENQUEUE_HEAD; 7069 } else { 7070 if (dl_prio(oldprio)) 7071 p->dl.pi_se = &p->dl; 7072 if (rt_prio(oldprio)) 7073 p->rt.timeout = 0; 7074 } 7075 7076 __setscheduler_prio(p, prio); 7077 7078 if (queued) 7079 enqueue_task(rq, p, queue_flag); 7080 if (running) 7081 set_next_task(rq, p); 7082 7083 check_class_changed(rq, p, prev_class, oldprio); 7084 out_unlock: 7085 /* Avoid rq from going away on us: */ 7086 preempt_disable(); 7087 7088 rq_unpin_lock(rq, &rf); 7089 __balance_callbacks(rq); 7090 raw_spin_rq_unlock(rq); 7091 7092 preempt_enable(); 7093 } 7094 #else 7095 static inline int rt_effective_prio(struct task_struct *p, int prio) 7096 { 7097 return prio; 7098 } 7099 #endif 7100 7101 void set_user_nice(struct task_struct *p, long nice) 7102 { 7103 bool queued, running; 7104 int old_prio; 7105 struct rq_flags rf; 7106 struct rq *rq; 7107 7108 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 7109 return; 7110 /* 7111 * We have to be careful, if called from sys_setpriority(), 7112 * the task might be in the middle of scheduling on another CPU. 7113 */ 7114 rq = task_rq_lock(p, &rf); 7115 update_rq_clock(rq); 7116 7117 /* 7118 * The RT priorities are set via sched_setscheduler(), but we still 7119 * allow the 'normal' nice value to be set - but as expected 7120 * it won't have any effect on scheduling until the task is 7121 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7122 */ 7123 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7124 p->static_prio = NICE_TO_PRIO(nice); 7125 goto out_unlock; 7126 } 7127 queued = task_on_rq_queued(p); 7128 running = task_current(rq, p); 7129 if (queued) 7130 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7131 if (running) 7132 put_prev_task(rq, p); 7133 7134 p->static_prio = NICE_TO_PRIO(nice); 7135 set_load_weight(p, true); 7136 old_prio = p->prio; 7137 p->prio = effective_prio(p); 7138 7139 if (queued) 7140 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7141 if (running) 7142 set_next_task(rq, p); 7143 7144 /* 7145 * If the task increased its priority or is running and 7146 * lowered its priority, then reschedule its CPU: 7147 */ 7148 p->sched_class->prio_changed(rq, p, old_prio); 7149 7150 out_unlock: 7151 task_rq_unlock(rq, p, &rf); 7152 } 7153 EXPORT_SYMBOL(set_user_nice); 7154 7155 /* 7156 * is_nice_reduction - check if nice value is an actual reduction 7157 * 7158 * Similar to can_nice() but does not perform a capability check. 7159 * 7160 * @p: task 7161 * @nice: nice value 7162 */ 7163 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7164 { 7165 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7166 int nice_rlim = nice_to_rlimit(nice); 7167 7168 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7169 } 7170 7171 /* 7172 * can_nice - check if a task can reduce its nice value 7173 * @p: task 7174 * @nice: nice value 7175 */ 7176 int can_nice(const struct task_struct *p, const int nice) 7177 { 7178 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7179 } 7180 7181 #ifdef __ARCH_WANT_SYS_NICE 7182 7183 /* 7184 * sys_nice - change the priority of the current process. 7185 * @increment: priority increment 7186 * 7187 * sys_setpriority is a more generic, but much slower function that 7188 * does similar things. 7189 */ 7190 SYSCALL_DEFINE1(nice, int, increment) 7191 { 7192 long nice, retval; 7193 7194 /* 7195 * Setpriority might change our priority at the same moment. 7196 * We don't have to worry. Conceptually one call occurs first 7197 * and we have a single winner. 7198 */ 7199 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7200 nice = task_nice(current) + increment; 7201 7202 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7203 if (increment < 0 && !can_nice(current, nice)) 7204 return -EPERM; 7205 7206 retval = security_task_setnice(current, nice); 7207 if (retval) 7208 return retval; 7209 7210 set_user_nice(current, nice); 7211 return 0; 7212 } 7213 7214 #endif 7215 7216 /** 7217 * task_prio - return the priority value of a given task. 7218 * @p: the task in question. 7219 * 7220 * Return: The priority value as seen by users in /proc. 7221 * 7222 * sched policy return value kernel prio user prio/nice 7223 * 7224 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7225 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7226 * deadline -101 -1 0 7227 */ 7228 int task_prio(const struct task_struct *p) 7229 { 7230 return p->prio - MAX_RT_PRIO; 7231 } 7232 7233 /** 7234 * idle_cpu - is a given CPU idle currently? 7235 * @cpu: the processor in question. 7236 * 7237 * Return: 1 if the CPU is currently idle. 0 otherwise. 7238 */ 7239 int idle_cpu(int cpu) 7240 { 7241 struct rq *rq = cpu_rq(cpu); 7242 7243 if (rq->curr != rq->idle) 7244 return 0; 7245 7246 if (rq->nr_running) 7247 return 0; 7248 7249 #ifdef CONFIG_SMP 7250 if (rq->ttwu_pending) 7251 return 0; 7252 #endif 7253 7254 return 1; 7255 } 7256 7257 /** 7258 * available_idle_cpu - is a given CPU idle for enqueuing work. 7259 * @cpu: the CPU in question. 7260 * 7261 * Return: 1 if the CPU is currently idle. 0 otherwise. 7262 */ 7263 int available_idle_cpu(int cpu) 7264 { 7265 if (!idle_cpu(cpu)) 7266 return 0; 7267 7268 if (vcpu_is_preempted(cpu)) 7269 return 0; 7270 7271 return 1; 7272 } 7273 7274 /** 7275 * idle_task - return the idle task for a given CPU. 7276 * @cpu: the processor in question. 7277 * 7278 * Return: The idle task for the CPU @cpu. 7279 */ 7280 struct task_struct *idle_task(int cpu) 7281 { 7282 return cpu_rq(cpu)->idle; 7283 } 7284 7285 #ifdef CONFIG_SMP 7286 /* 7287 * This function computes an effective utilization for the given CPU, to be 7288 * used for frequency selection given the linear relation: f = u * f_max. 7289 * 7290 * The scheduler tracks the following metrics: 7291 * 7292 * cpu_util_{cfs,rt,dl,irq}() 7293 * cpu_bw_dl() 7294 * 7295 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7296 * synchronized windows and are thus directly comparable. 7297 * 7298 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7299 * which excludes things like IRQ and steal-time. These latter are then accrued 7300 * in the irq utilization. 7301 * 7302 * The DL bandwidth number otoh is not a measured metric but a value computed 7303 * based on the task model parameters and gives the minimal utilization 7304 * required to meet deadlines. 7305 */ 7306 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7307 enum cpu_util_type type, 7308 struct task_struct *p) 7309 { 7310 unsigned long dl_util, util, irq, max; 7311 struct rq *rq = cpu_rq(cpu); 7312 7313 max = arch_scale_cpu_capacity(cpu); 7314 7315 if (!uclamp_is_used() && 7316 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7317 return max; 7318 } 7319 7320 /* 7321 * Early check to see if IRQ/steal time saturates the CPU, can be 7322 * because of inaccuracies in how we track these -- see 7323 * update_irq_load_avg(). 7324 */ 7325 irq = cpu_util_irq(rq); 7326 if (unlikely(irq >= max)) 7327 return max; 7328 7329 /* 7330 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7331 * CFS tasks and we use the same metric to track the effective 7332 * utilization (PELT windows are synchronized) we can directly add them 7333 * to obtain the CPU's actual utilization. 7334 * 7335 * CFS and RT utilization can be boosted or capped, depending on 7336 * utilization clamp constraints requested by currently RUNNABLE 7337 * tasks. 7338 * When there are no CFS RUNNABLE tasks, clamps are released and 7339 * frequency will be gracefully reduced with the utilization decay. 7340 */ 7341 util = util_cfs + cpu_util_rt(rq); 7342 if (type == FREQUENCY_UTIL) 7343 util = uclamp_rq_util_with(rq, util, p); 7344 7345 dl_util = cpu_util_dl(rq); 7346 7347 /* 7348 * For frequency selection we do not make cpu_util_dl() a permanent part 7349 * of this sum because we want to use cpu_bw_dl() later on, but we need 7350 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7351 * that we select f_max when there is no idle time. 7352 * 7353 * NOTE: numerical errors or stop class might cause us to not quite hit 7354 * saturation when we should -- something for later. 7355 */ 7356 if (util + dl_util >= max) 7357 return max; 7358 7359 /* 7360 * OTOH, for energy computation we need the estimated running time, so 7361 * include util_dl and ignore dl_bw. 7362 */ 7363 if (type == ENERGY_UTIL) 7364 util += dl_util; 7365 7366 /* 7367 * There is still idle time; further improve the number by using the 7368 * irq metric. Because IRQ/steal time is hidden from the task clock we 7369 * need to scale the task numbers: 7370 * 7371 * max - irq 7372 * U' = irq + --------- * U 7373 * max 7374 */ 7375 util = scale_irq_capacity(util, irq, max); 7376 util += irq; 7377 7378 /* 7379 * Bandwidth required by DEADLINE must always be granted while, for 7380 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7381 * to gracefully reduce the frequency when no tasks show up for longer 7382 * periods of time. 7383 * 7384 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7385 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7386 * an interface. So, we only do the latter for now. 7387 */ 7388 if (type == FREQUENCY_UTIL) 7389 util += cpu_bw_dl(rq); 7390 7391 return min(max, util); 7392 } 7393 7394 unsigned long sched_cpu_util(int cpu) 7395 { 7396 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7397 } 7398 #endif /* CONFIG_SMP */ 7399 7400 /** 7401 * find_process_by_pid - find a process with a matching PID value. 7402 * @pid: the pid in question. 7403 * 7404 * The task of @pid, if found. %NULL otherwise. 7405 */ 7406 static struct task_struct *find_process_by_pid(pid_t pid) 7407 { 7408 return pid ? find_task_by_vpid(pid) : current; 7409 } 7410 7411 /* 7412 * sched_setparam() passes in -1 for its policy, to let the functions 7413 * it calls know not to change it. 7414 */ 7415 #define SETPARAM_POLICY -1 7416 7417 static void __setscheduler_params(struct task_struct *p, 7418 const struct sched_attr *attr) 7419 { 7420 int policy = attr->sched_policy; 7421 7422 if (policy == SETPARAM_POLICY) 7423 policy = p->policy; 7424 7425 p->policy = policy; 7426 7427 if (dl_policy(policy)) 7428 __setparam_dl(p, attr); 7429 else if (fair_policy(policy)) 7430 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7431 7432 /* 7433 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7434 * !rt_policy. Always setting this ensures that things like 7435 * getparam()/getattr() don't report silly values for !rt tasks. 7436 */ 7437 p->rt_priority = attr->sched_priority; 7438 p->normal_prio = normal_prio(p); 7439 set_load_weight(p, true); 7440 } 7441 7442 /* 7443 * Check the target process has a UID that matches the current process's: 7444 */ 7445 static bool check_same_owner(struct task_struct *p) 7446 { 7447 const struct cred *cred = current_cred(), *pcred; 7448 bool match; 7449 7450 rcu_read_lock(); 7451 pcred = __task_cred(p); 7452 match = (uid_eq(cred->euid, pcred->euid) || 7453 uid_eq(cred->euid, pcred->uid)); 7454 rcu_read_unlock(); 7455 return match; 7456 } 7457 7458 /* 7459 * Allow unprivileged RT tasks to decrease priority. 7460 * Only issue a capable test if needed and only once to avoid an audit 7461 * event on permitted non-privileged operations: 7462 */ 7463 static int user_check_sched_setscheduler(struct task_struct *p, 7464 const struct sched_attr *attr, 7465 int policy, int reset_on_fork) 7466 { 7467 if (fair_policy(policy)) { 7468 if (attr->sched_nice < task_nice(p) && 7469 !is_nice_reduction(p, attr->sched_nice)) 7470 goto req_priv; 7471 } 7472 7473 if (rt_policy(policy)) { 7474 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7475 7476 /* Can't set/change the rt policy: */ 7477 if (policy != p->policy && !rlim_rtprio) 7478 goto req_priv; 7479 7480 /* Can't increase priority: */ 7481 if (attr->sched_priority > p->rt_priority && 7482 attr->sched_priority > rlim_rtprio) 7483 goto req_priv; 7484 } 7485 7486 /* 7487 * Can't set/change SCHED_DEADLINE policy at all for now 7488 * (safest behavior); in the future we would like to allow 7489 * unprivileged DL tasks to increase their relative deadline 7490 * or reduce their runtime (both ways reducing utilization) 7491 */ 7492 if (dl_policy(policy)) 7493 goto req_priv; 7494 7495 /* 7496 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7497 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7498 */ 7499 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7500 if (!is_nice_reduction(p, task_nice(p))) 7501 goto req_priv; 7502 } 7503 7504 /* Can't change other user's priorities: */ 7505 if (!check_same_owner(p)) 7506 goto req_priv; 7507 7508 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7509 if (p->sched_reset_on_fork && !reset_on_fork) 7510 goto req_priv; 7511 7512 return 0; 7513 7514 req_priv: 7515 if (!capable(CAP_SYS_NICE)) 7516 return -EPERM; 7517 7518 return 0; 7519 } 7520 7521 static int __sched_setscheduler(struct task_struct *p, 7522 const struct sched_attr *attr, 7523 bool user, bool pi) 7524 { 7525 int oldpolicy = -1, policy = attr->sched_policy; 7526 int retval, oldprio, newprio, queued, running; 7527 const struct sched_class *prev_class; 7528 struct balance_callback *head; 7529 struct rq_flags rf; 7530 int reset_on_fork; 7531 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7532 struct rq *rq; 7533 7534 /* The pi code expects interrupts enabled */ 7535 BUG_ON(pi && in_interrupt()); 7536 recheck: 7537 /* Double check policy once rq lock held: */ 7538 if (policy < 0) { 7539 reset_on_fork = p->sched_reset_on_fork; 7540 policy = oldpolicy = p->policy; 7541 } else { 7542 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7543 7544 if (!valid_policy(policy)) 7545 return -EINVAL; 7546 } 7547 7548 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7549 return -EINVAL; 7550 7551 /* 7552 * Valid priorities for SCHED_FIFO and SCHED_RR are 7553 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7554 * SCHED_BATCH and SCHED_IDLE is 0. 7555 */ 7556 if (attr->sched_priority > MAX_RT_PRIO-1) 7557 return -EINVAL; 7558 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7559 (rt_policy(policy) != (attr->sched_priority != 0))) 7560 return -EINVAL; 7561 7562 if (user) { 7563 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7564 if (retval) 7565 return retval; 7566 7567 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7568 return -EINVAL; 7569 7570 retval = security_task_setscheduler(p); 7571 if (retval) 7572 return retval; 7573 } 7574 7575 /* Update task specific "requested" clamps */ 7576 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7577 retval = uclamp_validate(p, attr); 7578 if (retval) 7579 return retval; 7580 } 7581 7582 if (pi) 7583 cpuset_read_lock(); 7584 7585 /* 7586 * Make sure no PI-waiters arrive (or leave) while we are 7587 * changing the priority of the task: 7588 * 7589 * To be able to change p->policy safely, the appropriate 7590 * runqueue lock must be held. 7591 */ 7592 rq = task_rq_lock(p, &rf); 7593 update_rq_clock(rq); 7594 7595 /* 7596 * Changing the policy of the stop threads its a very bad idea: 7597 */ 7598 if (p == rq->stop) { 7599 retval = -EINVAL; 7600 goto unlock; 7601 } 7602 7603 /* 7604 * If not changing anything there's no need to proceed further, 7605 * but store a possible modification of reset_on_fork. 7606 */ 7607 if (unlikely(policy == p->policy)) { 7608 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7609 goto change; 7610 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7611 goto change; 7612 if (dl_policy(policy) && dl_param_changed(p, attr)) 7613 goto change; 7614 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7615 goto change; 7616 7617 p->sched_reset_on_fork = reset_on_fork; 7618 retval = 0; 7619 goto unlock; 7620 } 7621 change: 7622 7623 if (user) { 7624 #ifdef CONFIG_RT_GROUP_SCHED 7625 /* 7626 * Do not allow realtime tasks into groups that have no runtime 7627 * assigned. 7628 */ 7629 if (rt_bandwidth_enabled() && rt_policy(policy) && 7630 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7631 !task_group_is_autogroup(task_group(p))) { 7632 retval = -EPERM; 7633 goto unlock; 7634 } 7635 #endif 7636 #ifdef CONFIG_SMP 7637 if (dl_bandwidth_enabled() && dl_policy(policy) && 7638 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7639 cpumask_t *span = rq->rd->span; 7640 7641 /* 7642 * Don't allow tasks with an affinity mask smaller than 7643 * the entire root_domain to become SCHED_DEADLINE. We 7644 * will also fail if there's no bandwidth available. 7645 */ 7646 if (!cpumask_subset(span, p->cpus_ptr) || 7647 rq->rd->dl_bw.bw == 0) { 7648 retval = -EPERM; 7649 goto unlock; 7650 } 7651 } 7652 #endif 7653 } 7654 7655 /* Re-check policy now with rq lock held: */ 7656 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7657 policy = oldpolicy = -1; 7658 task_rq_unlock(rq, p, &rf); 7659 if (pi) 7660 cpuset_read_unlock(); 7661 goto recheck; 7662 } 7663 7664 /* 7665 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7666 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7667 * is available. 7668 */ 7669 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7670 retval = -EBUSY; 7671 goto unlock; 7672 } 7673 7674 p->sched_reset_on_fork = reset_on_fork; 7675 oldprio = p->prio; 7676 7677 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7678 if (pi) { 7679 /* 7680 * Take priority boosted tasks into account. If the new 7681 * effective priority is unchanged, we just store the new 7682 * normal parameters and do not touch the scheduler class and 7683 * the runqueue. This will be done when the task deboost 7684 * itself. 7685 */ 7686 newprio = rt_effective_prio(p, newprio); 7687 if (newprio == oldprio) 7688 queue_flags &= ~DEQUEUE_MOVE; 7689 } 7690 7691 queued = task_on_rq_queued(p); 7692 running = task_current(rq, p); 7693 if (queued) 7694 dequeue_task(rq, p, queue_flags); 7695 if (running) 7696 put_prev_task(rq, p); 7697 7698 prev_class = p->sched_class; 7699 7700 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7701 __setscheduler_params(p, attr); 7702 __setscheduler_prio(p, newprio); 7703 } 7704 __setscheduler_uclamp(p, attr); 7705 7706 if (queued) { 7707 /* 7708 * We enqueue to tail when the priority of a task is 7709 * increased (user space view). 7710 */ 7711 if (oldprio < p->prio) 7712 queue_flags |= ENQUEUE_HEAD; 7713 7714 enqueue_task(rq, p, queue_flags); 7715 } 7716 if (running) 7717 set_next_task(rq, p); 7718 7719 check_class_changed(rq, p, prev_class, oldprio); 7720 7721 /* Avoid rq from going away on us: */ 7722 preempt_disable(); 7723 head = splice_balance_callbacks(rq); 7724 task_rq_unlock(rq, p, &rf); 7725 7726 if (pi) { 7727 cpuset_read_unlock(); 7728 rt_mutex_adjust_pi(p); 7729 } 7730 7731 /* Run balance callbacks after we've adjusted the PI chain: */ 7732 balance_callbacks(rq, head); 7733 preempt_enable(); 7734 7735 return 0; 7736 7737 unlock: 7738 task_rq_unlock(rq, p, &rf); 7739 if (pi) 7740 cpuset_read_unlock(); 7741 return retval; 7742 } 7743 7744 static int _sched_setscheduler(struct task_struct *p, int policy, 7745 const struct sched_param *param, bool check) 7746 { 7747 struct sched_attr attr = { 7748 .sched_policy = policy, 7749 .sched_priority = param->sched_priority, 7750 .sched_nice = PRIO_TO_NICE(p->static_prio), 7751 }; 7752 7753 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7754 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7755 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7756 policy &= ~SCHED_RESET_ON_FORK; 7757 attr.sched_policy = policy; 7758 } 7759 7760 return __sched_setscheduler(p, &attr, check, true); 7761 } 7762 /** 7763 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7764 * @p: the task in question. 7765 * @policy: new policy. 7766 * @param: structure containing the new RT priority. 7767 * 7768 * Use sched_set_fifo(), read its comment. 7769 * 7770 * Return: 0 on success. An error code otherwise. 7771 * 7772 * NOTE that the task may be already dead. 7773 */ 7774 int sched_setscheduler(struct task_struct *p, int policy, 7775 const struct sched_param *param) 7776 { 7777 return _sched_setscheduler(p, policy, param, true); 7778 } 7779 7780 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7781 { 7782 return __sched_setscheduler(p, attr, true, true); 7783 } 7784 7785 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7786 { 7787 return __sched_setscheduler(p, attr, false, true); 7788 } 7789 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7790 7791 /** 7792 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7793 * @p: the task in question. 7794 * @policy: new policy. 7795 * @param: structure containing the new RT priority. 7796 * 7797 * Just like sched_setscheduler, only don't bother checking if the 7798 * current context has permission. For example, this is needed in 7799 * stop_machine(): we create temporary high priority worker threads, 7800 * but our caller might not have that capability. 7801 * 7802 * Return: 0 on success. An error code otherwise. 7803 */ 7804 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7805 const struct sched_param *param) 7806 { 7807 return _sched_setscheduler(p, policy, param, false); 7808 } 7809 7810 /* 7811 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7812 * incapable of resource management, which is the one thing an OS really should 7813 * be doing. 7814 * 7815 * This is of course the reason it is limited to privileged users only. 7816 * 7817 * Worse still; it is fundamentally impossible to compose static priority 7818 * workloads. You cannot take two correctly working static prio workloads 7819 * and smash them together and still expect them to work. 7820 * 7821 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7822 * 7823 * MAX_RT_PRIO / 2 7824 * 7825 * The administrator _MUST_ configure the system, the kernel simply doesn't 7826 * know enough information to make a sensible choice. 7827 */ 7828 void sched_set_fifo(struct task_struct *p) 7829 { 7830 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7831 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7832 } 7833 EXPORT_SYMBOL_GPL(sched_set_fifo); 7834 7835 /* 7836 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7837 */ 7838 void sched_set_fifo_low(struct task_struct *p) 7839 { 7840 struct sched_param sp = { .sched_priority = 1 }; 7841 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7842 } 7843 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7844 7845 void sched_set_normal(struct task_struct *p, int nice) 7846 { 7847 struct sched_attr attr = { 7848 .sched_policy = SCHED_NORMAL, 7849 .sched_nice = nice, 7850 }; 7851 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7852 } 7853 EXPORT_SYMBOL_GPL(sched_set_normal); 7854 7855 static int 7856 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7857 { 7858 struct sched_param lparam; 7859 struct task_struct *p; 7860 int retval; 7861 7862 if (!param || pid < 0) 7863 return -EINVAL; 7864 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7865 return -EFAULT; 7866 7867 rcu_read_lock(); 7868 retval = -ESRCH; 7869 p = find_process_by_pid(pid); 7870 if (likely(p)) 7871 get_task_struct(p); 7872 rcu_read_unlock(); 7873 7874 if (likely(p)) { 7875 retval = sched_setscheduler(p, policy, &lparam); 7876 put_task_struct(p); 7877 } 7878 7879 return retval; 7880 } 7881 7882 /* 7883 * Mimics kernel/events/core.c perf_copy_attr(). 7884 */ 7885 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7886 { 7887 u32 size; 7888 int ret; 7889 7890 /* Zero the full structure, so that a short copy will be nice: */ 7891 memset(attr, 0, sizeof(*attr)); 7892 7893 ret = get_user(size, &uattr->size); 7894 if (ret) 7895 return ret; 7896 7897 /* ABI compatibility quirk: */ 7898 if (!size) 7899 size = SCHED_ATTR_SIZE_VER0; 7900 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7901 goto err_size; 7902 7903 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7904 if (ret) { 7905 if (ret == -E2BIG) 7906 goto err_size; 7907 return ret; 7908 } 7909 7910 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7911 size < SCHED_ATTR_SIZE_VER1) 7912 return -EINVAL; 7913 7914 /* 7915 * XXX: Do we want to be lenient like existing syscalls; or do we want 7916 * to be strict and return an error on out-of-bounds values? 7917 */ 7918 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7919 7920 return 0; 7921 7922 err_size: 7923 put_user(sizeof(*attr), &uattr->size); 7924 return -E2BIG; 7925 } 7926 7927 static void get_params(struct task_struct *p, struct sched_attr *attr) 7928 { 7929 if (task_has_dl_policy(p)) 7930 __getparam_dl(p, attr); 7931 else if (task_has_rt_policy(p)) 7932 attr->sched_priority = p->rt_priority; 7933 else 7934 attr->sched_nice = task_nice(p); 7935 } 7936 7937 /** 7938 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7939 * @pid: the pid in question. 7940 * @policy: new policy. 7941 * @param: structure containing the new RT priority. 7942 * 7943 * Return: 0 on success. An error code otherwise. 7944 */ 7945 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7946 { 7947 if (policy < 0) 7948 return -EINVAL; 7949 7950 return do_sched_setscheduler(pid, policy, param); 7951 } 7952 7953 /** 7954 * sys_sched_setparam - set/change the RT priority of a thread 7955 * @pid: the pid in question. 7956 * @param: structure containing the new RT priority. 7957 * 7958 * Return: 0 on success. An error code otherwise. 7959 */ 7960 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7961 { 7962 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7963 } 7964 7965 /** 7966 * sys_sched_setattr - same as above, but with extended sched_attr 7967 * @pid: the pid in question. 7968 * @uattr: structure containing the extended parameters. 7969 * @flags: for future extension. 7970 */ 7971 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7972 unsigned int, flags) 7973 { 7974 struct sched_attr attr; 7975 struct task_struct *p; 7976 int retval; 7977 7978 if (!uattr || pid < 0 || flags) 7979 return -EINVAL; 7980 7981 retval = sched_copy_attr(uattr, &attr); 7982 if (retval) 7983 return retval; 7984 7985 if ((int)attr.sched_policy < 0) 7986 return -EINVAL; 7987 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7988 attr.sched_policy = SETPARAM_POLICY; 7989 7990 rcu_read_lock(); 7991 retval = -ESRCH; 7992 p = find_process_by_pid(pid); 7993 if (likely(p)) 7994 get_task_struct(p); 7995 rcu_read_unlock(); 7996 7997 if (likely(p)) { 7998 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7999 get_params(p, &attr); 8000 retval = sched_setattr(p, &attr); 8001 put_task_struct(p); 8002 } 8003 8004 return retval; 8005 } 8006 8007 /** 8008 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 8009 * @pid: the pid in question. 8010 * 8011 * Return: On success, the policy of the thread. Otherwise, a negative error 8012 * code. 8013 */ 8014 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 8015 { 8016 struct task_struct *p; 8017 int retval; 8018 8019 if (pid < 0) 8020 return -EINVAL; 8021 8022 retval = -ESRCH; 8023 rcu_read_lock(); 8024 p = find_process_by_pid(pid); 8025 if (p) { 8026 retval = security_task_getscheduler(p); 8027 if (!retval) 8028 retval = p->policy 8029 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 8030 } 8031 rcu_read_unlock(); 8032 return retval; 8033 } 8034 8035 /** 8036 * sys_sched_getparam - get the RT priority of a thread 8037 * @pid: the pid in question. 8038 * @param: structure containing the RT priority. 8039 * 8040 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 8041 * code. 8042 */ 8043 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 8044 { 8045 struct sched_param lp = { .sched_priority = 0 }; 8046 struct task_struct *p; 8047 int retval; 8048 8049 if (!param || pid < 0) 8050 return -EINVAL; 8051 8052 rcu_read_lock(); 8053 p = find_process_by_pid(pid); 8054 retval = -ESRCH; 8055 if (!p) 8056 goto out_unlock; 8057 8058 retval = security_task_getscheduler(p); 8059 if (retval) 8060 goto out_unlock; 8061 8062 if (task_has_rt_policy(p)) 8063 lp.sched_priority = p->rt_priority; 8064 rcu_read_unlock(); 8065 8066 /* 8067 * This one might sleep, we cannot do it with a spinlock held ... 8068 */ 8069 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 8070 8071 return retval; 8072 8073 out_unlock: 8074 rcu_read_unlock(); 8075 return retval; 8076 } 8077 8078 /* 8079 * Copy the kernel size attribute structure (which might be larger 8080 * than what user-space knows about) to user-space. 8081 * 8082 * Note that all cases are valid: user-space buffer can be larger or 8083 * smaller than the kernel-space buffer. The usual case is that both 8084 * have the same size. 8085 */ 8086 static int 8087 sched_attr_copy_to_user(struct sched_attr __user *uattr, 8088 struct sched_attr *kattr, 8089 unsigned int usize) 8090 { 8091 unsigned int ksize = sizeof(*kattr); 8092 8093 if (!access_ok(uattr, usize)) 8094 return -EFAULT; 8095 8096 /* 8097 * sched_getattr() ABI forwards and backwards compatibility: 8098 * 8099 * If usize == ksize then we just copy everything to user-space and all is good. 8100 * 8101 * If usize < ksize then we only copy as much as user-space has space for, 8102 * this keeps ABI compatibility as well. We skip the rest. 8103 * 8104 * If usize > ksize then user-space is using a newer version of the ABI, 8105 * which part the kernel doesn't know about. Just ignore it - tooling can 8106 * detect the kernel's knowledge of attributes from the attr->size value 8107 * which is set to ksize in this case. 8108 */ 8109 kattr->size = min(usize, ksize); 8110 8111 if (copy_to_user(uattr, kattr, kattr->size)) 8112 return -EFAULT; 8113 8114 return 0; 8115 } 8116 8117 /** 8118 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8119 * @pid: the pid in question. 8120 * @uattr: structure containing the extended parameters. 8121 * @usize: sizeof(attr) for fwd/bwd comp. 8122 * @flags: for future extension. 8123 */ 8124 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8125 unsigned int, usize, unsigned int, flags) 8126 { 8127 struct sched_attr kattr = { }; 8128 struct task_struct *p; 8129 int retval; 8130 8131 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8132 usize < SCHED_ATTR_SIZE_VER0 || flags) 8133 return -EINVAL; 8134 8135 rcu_read_lock(); 8136 p = find_process_by_pid(pid); 8137 retval = -ESRCH; 8138 if (!p) 8139 goto out_unlock; 8140 8141 retval = security_task_getscheduler(p); 8142 if (retval) 8143 goto out_unlock; 8144 8145 kattr.sched_policy = p->policy; 8146 if (p->sched_reset_on_fork) 8147 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8148 get_params(p, &kattr); 8149 kattr.sched_flags &= SCHED_FLAG_ALL; 8150 8151 #ifdef CONFIG_UCLAMP_TASK 8152 /* 8153 * This could race with another potential updater, but this is fine 8154 * because it'll correctly read the old or the new value. We don't need 8155 * to guarantee who wins the race as long as it doesn't return garbage. 8156 */ 8157 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8158 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8159 #endif 8160 8161 rcu_read_unlock(); 8162 8163 return sched_attr_copy_to_user(uattr, &kattr, usize); 8164 8165 out_unlock: 8166 rcu_read_unlock(); 8167 return retval; 8168 } 8169 8170 #ifdef CONFIG_SMP 8171 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8172 { 8173 int ret = 0; 8174 8175 /* 8176 * If the task isn't a deadline task or admission control is 8177 * disabled then we don't care about affinity changes. 8178 */ 8179 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8180 return 0; 8181 8182 /* 8183 * Since bandwidth control happens on root_domain basis, 8184 * if admission test is enabled, we only admit -deadline 8185 * tasks allowed to run on all the CPUs in the task's 8186 * root_domain. 8187 */ 8188 rcu_read_lock(); 8189 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8190 ret = -EBUSY; 8191 rcu_read_unlock(); 8192 return ret; 8193 } 8194 #endif 8195 8196 static int 8197 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 8198 { 8199 int retval; 8200 cpumask_var_t cpus_allowed, new_mask; 8201 8202 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8203 return -ENOMEM; 8204 8205 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8206 retval = -ENOMEM; 8207 goto out_free_cpus_allowed; 8208 } 8209 8210 cpuset_cpus_allowed(p, cpus_allowed); 8211 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 8212 8213 ctx->new_mask = new_mask; 8214 ctx->flags |= SCA_CHECK; 8215 8216 retval = dl_task_check_affinity(p, new_mask); 8217 if (retval) 8218 goto out_free_new_mask; 8219 8220 retval = __set_cpus_allowed_ptr(p, ctx); 8221 if (retval) 8222 goto out_free_new_mask; 8223 8224 cpuset_cpus_allowed(p, cpus_allowed); 8225 if (!cpumask_subset(new_mask, cpus_allowed)) { 8226 /* 8227 * We must have raced with a concurrent cpuset update. 8228 * Just reset the cpumask to the cpuset's cpus_allowed. 8229 */ 8230 cpumask_copy(new_mask, cpus_allowed); 8231 8232 /* 8233 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 8234 * will restore the previous user_cpus_ptr value. 8235 * 8236 * In the unlikely event a previous user_cpus_ptr exists, 8237 * we need to further restrict the mask to what is allowed 8238 * by that old user_cpus_ptr. 8239 */ 8240 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 8241 bool empty = !cpumask_and(new_mask, new_mask, 8242 ctx->user_mask); 8243 8244 if (WARN_ON_ONCE(empty)) 8245 cpumask_copy(new_mask, cpus_allowed); 8246 } 8247 __set_cpus_allowed_ptr(p, ctx); 8248 retval = -EINVAL; 8249 } 8250 8251 out_free_new_mask: 8252 free_cpumask_var(new_mask); 8253 out_free_cpus_allowed: 8254 free_cpumask_var(cpus_allowed); 8255 return retval; 8256 } 8257 8258 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8259 { 8260 struct affinity_context ac; 8261 struct cpumask *user_mask; 8262 struct task_struct *p; 8263 int retval; 8264 8265 rcu_read_lock(); 8266 8267 p = find_process_by_pid(pid); 8268 if (!p) { 8269 rcu_read_unlock(); 8270 return -ESRCH; 8271 } 8272 8273 /* Prevent p going away */ 8274 get_task_struct(p); 8275 rcu_read_unlock(); 8276 8277 if (p->flags & PF_NO_SETAFFINITY) { 8278 retval = -EINVAL; 8279 goto out_put_task; 8280 } 8281 8282 if (!check_same_owner(p)) { 8283 rcu_read_lock(); 8284 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8285 rcu_read_unlock(); 8286 retval = -EPERM; 8287 goto out_put_task; 8288 } 8289 rcu_read_unlock(); 8290 } 8291 8292 retval = security_task_setscheduler(p); 8293 if (retval) 8294 goto out_put_task; 8295 8296 /* 8297 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and 8298 * alloc_user_cpus_ptr() returns NULL. 8299 */ 8300 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); 8301 if (user_mask) { 8302 cpumask_copy(user_mask, in_mask); 8303 } else if (IS_ENABLED(CONFIG_SMP)) { 8304 retval = -ENOMEM; 8305 goto out_put_task; 8306 } 8307 8308 ac = (struct affinity_context){ 8309 .new_mask = in_mask, 8310 .user_mask = user_mask, 8311 .flags = SCA_USER, 8312 }; 8313 8314 retval = __sched_setaffinity(p, &ac); 8315 kfree(ac.user_mask); 8316 8317 out_put_task: 8318 put_task_struct(p); 8319 return retval; 8320 } 8321 8322 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8323 struct cpumask *new_mask) 8324 { 8325 if (len < cpumask_size()) 8326 cpumask_clear(new_mask); 8327 else if (len > cpumask_size()) 8328 len = cpumask_size(); 8329 8330 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8331 } 8332 8333 /** 8334 * sys_sched_setaffinity - set the CPU affinity of a process 8335 * @pid: pid of the process 8336 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8337 * @user_mask_ptr: user-space pointer to the new CPU mask 8338 * 8339 * Return: 0 on success. An error code otherwise. 8340 */ 8341 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8342 unsigned long __user *, user_mask_ptr) 8343 { 8344 cpumask_var_t new_mask; 8345 int retval; 8346 8347 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8348 return -ENOMEM; 8349 8350 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8351 if (retval == 0) 8352 retval = sched_setaffinity(pid, new_mask); 8353 free_cpumask_var(new_mask); 8354 return retval; 8355 } 8356 8357 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8358 { 8359 struct task_struct *p; 8360 unsigned long flags; 8361 int retval; 8362 8363 rcu_read_lock(); 8364 8365 retval = -ESRCH; 8366 p = find_process_by_pid(pid); 8367 if (!p) 8368 goto out_unlock; 8369 8370 retval = security_task_getscheduler(p); 8371 if (retval) 8372 goto out_unlock; 8373 8374 raw_spin_lock_irqsave(&p->pi_lock, flags); 8375 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8376 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8377 8378 out_unlock: 8379 rcu_read_unlock(); 8380 8381 return retval; 8382 } 8383 8384 /** 8385 * sys_sched_getaffinity - get the CPU affinity of a process 8386 * @pid: pid of the process 8387 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8388 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8389 * 8390 * Return: size of CPU mask copied to user_mask_ptr on success. An 8391 * error code otherwise. 8392 */ 8393 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8394 unsigned long __user *, user_mask_ptr) 8395 { 8396 int ret; 8397 cpumask_var_t mask; 8398 8399 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8400 return -EINVAL; 8401 if (len & (sizeof(unsigned long)-1)) 8402 return -EINVAL; 8403 8404 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8405 return -ENOMEM; 8406 8407 ret = sched_getaffinity(pid, mask); 8408 if (ret == 0) { 8409 unsigned int retlen = min(len, cpumask_size()); 8410 8411 if (copy_to_user(user_mask_ptr, mask, retlen)) 8412 ret = -EFAULT; 8413 else 8414 ret = retlen; 8415 } 8416 free_cpumask_var(mask); 8417 8418 return ret; 8419 } 8420 8421 static void do_sched_yield(void) 8422 { 8423 struct rq_flags rf; 8424 struct rq *rq; 8425 8426 rq = this_rq_lock_irq(&rf); 8427 8428 schedstat_inc(rq->yld_count); 8429 current->sched_class->yield_task(rq); 8430 8431 preempt_disable(); 8432 rq_unlock_irq(rq, &rf); 8433 sched_preempt_enable_no_resched(); 8434 8435 schedule(); 8436 } 8437 8438 /** 8439 * sys_sched_yield - yield the current processor to other threads. 8440 * 8441 * This function yields the current CPU to other tasks. If there are no 8442 * other threads running on this CPU then this function will return. 8443 * 8444 * Return: 0. 8445 */ 8446 SYSCALL_DEFINE0(sched_yield) 8447 { 8448 do_sched_yield(); 8449 return 0; 8450 } 8451 8452 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8453 int __sched __cond_resched(void) 8454 { 8455 if (should_resched(0)) { 8456 preempt_schedule_common(); 8457 return 1; 8458 } 8459 /* 8460 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8461 * whether the current CPU is in an RCU read-side critical section, 8462 * so the tick can report quiescent states even for CPUs looping 8463 * in kernel context. In contrast, in non-preemptible kernels, 8464 * RCU readers leave no in-memory hints, which means that CPU-bound 8465 * processes executing in kernel context might never report an 8466 * RCU quiescent state. Therefore, the following code causes 8467 * cond_resched() to report a quiescent state, but only when RCU 8468 * is in urgent need of one. 8469 */ 8470 #ifndef CONFIG_PREEMPT_RCU 8471 rcu_all_qs(); 8472 #endif 8473 return 0; 8474 } 8475 EXPORT_SYMBOL(__cond_resched); 8476 #endif 8477 8478 #ifdef CONFIG_PREEMPT_DYNAMIC 8479 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8480 #define cond_resched_dynamic_enabled __cond_resched 8481 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8482 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8483 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8484 8485 #define might_resched_dynamic_enabled __cond_resched 8486 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8487 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8488 EXPORT_STATIC_CALL_TRAMP(might_resched); 8489 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8490 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8491 int __sched dynamic_cond_resched(void) 8492 { 8493 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8494 return 0; 8495 return __cond_resched(); 8496 } 8497 EXPORT_SYMBOL(dynamic_cond_resched); 8498 8499 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8500 int __sched dynamic_might_resched(void) 8501 { 8502 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8503 return 0; 8504 return __cond_resched(); 8505 } 8506 EXPORT_SYMBOL(dynamic_might_resched); 8507 #endif 8508 #endif 8509 8510 /* 8511 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8512 * call schedule, and on return reacquire the lock. 8513 * 8514 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8515 * operations here to prevent schedule() from being called twice (once via 8516 * spin_unlock(), once by hand). 8517 */ 8518 int __cond_resched_lock(spinlock_t *lock) 8519 { 8520 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8521 int ret = 0; 8522 8523 lockdep_assert_held(lock); 8524 8525 if (spin_needbreak(lock) || resched) { 8526 spin_unlock(lock); 8527 if (!_cond_resched()) 8528 cpu_relax(); 8529 ret = 1; 8530 spin_lock(lock); 8531 } 8532 return ret; 8533 } 8534 EXPORT_SYMBOL(__cond_resched_lock); 8535 8536 int __cond_resched_rwlock_read(rwlock_t *lock) 8537 { 8538 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8539 int ret = 0; 8540 8541 lockdep_assert_held_read(lock); 8542 8543 if (rwlock_needbreak(lock) || resched) { 8544 read_unlock(lock); 8545 if (!_cond_resched()) 8546 cpu_relax(); 8547 ret = 1; 8548 read_lock(lock); 8549 } 8550 return ret; 8551 } 8552 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8553 8554 int __cond_resched_rwlock_write(rwlock_t *lock) 8555 { 8556 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8557 int ret = 0; 8558 8559 lockdep_assert_held_write(lock); 8560 8561 if (rwlock_needbreak(lock) || resched) { 8562 write_unlock(lock); 8563 if (!_cond_resched()) 8564 cpu_relax(); 8565 ret = 1; 8566 write_lock(lock); 8567 } 8568 return ret; 8569 } 8570 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8571 8572 #ifdef CONFIG_PREEMPT_DYNAMIC 8573 8574 #ifdef CONFIG_GENERIC_ENTRY 8575 #include <linux/entry-common.h> 8576 #endif 8577 8578 /* 8579 * SC:cond_resched 8580 * SC:might_resched 8581 * SC:preempt_schedule 8582 * SC:preempt_schedule_notrace 8583 * SC:irqentry_exit_cond_resched 8584 * 8585 * 8586 * NONE: 8587 * cond_resched <- __cond_resched 8588 * might_resched <- RET0 8589 * preempt_schedule <- NOP 8590 * preempt_schedule_notrace <- NOP 8591 * irqentry_exit_cond_resched <- NOP 8592 * 8593 * VOLUNTARY: 8594 * cond_resched <- __cond_resched 8595 * might_resched <- __cond_resched 8596 * preempt_schedule <- NOP 8597 * preempt_schedule_notrace <- NOP 8598 * irqentry_exit_cond_resched <- NOP 8599 * 8600 * FULL: 8601 * cond_resched <- RET0 8602 * might_resched <- RET0 8603 * preempt_schedule <- preempt_schedule 8604 * preempt_schedule_notrace <- preempt_schedule_notrace 8605 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8606 */ 8607 8608 enum { 8609 preempt_dynamic_undefined = -1, 8610 preempt_dynamic_none, 8611 preempt_dynamic_voluntary, 8612 preempt_dynamic_full, 8613 }; 8614 8615 int preempt_dynamic_mode = preempt_dynamic_undefined; 8616 8617 int sched_dynamic_mode(const char *str) 8618 { 8619 if (!strcmp(str, "none")) 8620 return preempt_dynamic_none; 8621 8622 if (!strcmp(str, "voluntary")) 8623 return preempt_dynamic_voluntary; 8624 8625 if (!strcmp(str, "full")) 8626 return preempt_dynamic_full; 8627 8628 return -EINVAL; 8629 } 8630 8631 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8632 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8633 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8634 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8635 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8636 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8637 #else 8638 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8639 #endif 8640 8641 void sched_dynamic_update(int mode) 8642 { 8643 /* 8644 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8645 * the ZERO state, which is invalid. 8646 */ 8647 preempt_dynamic_enable(cond_resched); 8648 preempt_dynamic_enable(might_resched); 8649 preempt_dynamic_enable(preempt_schedule); 8650 preempt_dynamic_enable(preempt_schedule_notrace); 8651 preempt_dynamic_enable(irqentry_exit_cond_resched); 8652 8653 switch (mode) { 8654 case preempt_dynamic_none: 8655 preempt_dynamic_enable(cond_resched); 8656 preempt_dynamic_disable(might_resched); 8657 preempt_dynamic_disable(preempt_schedule); 8658 preempt_dynamic_disable(preempt_schedule_notrace); 8659 preempt_dynamic_disable(irqentry_exit_cond_resched); 8660 pr_info("Dynamic Preempt: none\n"); 8661 break; 8662 8663 case preempt_dynamic_voluntary: 8664 preempt_dynamic_enable(cond_resched); 8665 preempt_dynamic_enable(might_resched); 8666 preempt_dynamic_disable(preempt_schedule); 8667 preempt_dynamic_disable(preempt_schedule_notrace); 8668 preempt_dynamic_disable(irqentry_exit_cond_resched); 8669 pr_info("Dynamic Preempt: voluntary\n"); 8670 break; 8671 8672 case preempt_dynamic_full: 8673 preempt_dynamic_disable(cond_resched); 8674 preempt_dynamic_disable(might_resched); 8675 preempt_dynamic_enable(preempt_schedule); 8676 preempt_dynamic_enable(preempt_schedule_notrace); 8677 preempt_dynamic_enable(irqentry_exit_cond_resched); 8678 pr_info("Dynamic Preempt: full\n"); 8679 break; 8680 } 8681 8682 preempt_dynamic_mode = mode; 8683 } 8684 8685 static int __init setup_preempt_mode(char *str) 8686 { 8687 int mode = sched_dynamic_mode(str); 8688 if (mode < 0) { 8689 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8690 return 0; 8691 } 8692 8693 sched_dynamic_update(mode); 8694 return 1; 8695 } 8696 __setup("preempt=", setup_preempt_mode); 8697 8698 static void __init preempt_dynamic_init(void) 8699 { 8700 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8701 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8702 sched_dynamic_update(preempt_dynamic_none); 8703 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8704 sched_dynamic_update(preempt_dynamic_voluntary); 8705 } else { 8706 /* Default static call setting, nothing to do */ 8707 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8708 preempt_dynamic_mode = preempt_dynamic_full; 8709 pr_info("Dynamic Preempt: full\n"); 8710 } 8711 } 8712 } 8713 8714 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8715 bool preempt_model_##mode(void) \ 8716 { \ 8717 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8718 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8719 } \ 8720 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8721 8722 PREEMPT_MODEL_ACCESSOR(none); 8723 PREEMPT_MODEL_ACCESSOR(voluntary); 8724 PREEMPT_MODEL_ACCESSOR(full); 8725 8726 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8727 8728 static inline void preempt_dynamic_init(void) { } 8729 8730 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8731 8732 /** 8733 * yield - yield the current processor to other threads. 8734 * 8735 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8736 * 8737 * The scheduler is at all times free to pick the calling task as the most 8738 * eligible task to run, if removing the yield() call from your code breaks 8739 * it, it's already broken. 8740 * 8741 * Typical broken usage is: 8742 * 8743 * while (!event) 8744 * yield(); 8745 * 8746 * where one assumes that yield() will let 'the other' process run that will 8747 * make event true. If the current task is a SCHED_FIFO task that will never 8748 * happen. Never use yield() as a progress guarantee!! 8749 * 8750 * If you want to use yield() to wait for something, use wait_event(). 8751 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8752 * If you still want to use yield(), do not! 8753 */ 8754 void __sched yield(void) 8755 { 8756 set_current_state(TASK_RUNNING); 8757 do_sched_yield(); 8758 } 8759 EXPORT_SYMBOL(yield); 8760 8761 /** 8762 * yield_to - yield the current processor to another thread in 8763 * your thread group, or accelerate that thread toward the 8764 * processor it's on. 8765 * @p: target task 8766 * @preempt: whether task preemption is allowed or not 8767 * 8768 * It's the caller's job to ensure that the target task struct 8769 * can't go away on us before we can do any checks. 8770 * 8771 * Return: 8772 * true (>0) if we indeed boosted the target task. 8773 * false (0) if we failed to boost the target. 8774 * -ESRCH if there's no task to yield to. 8775 */ 8776 int __sched yield_to(struct task_struct *p, bool preempt) 8777 { 8778 struct task_struct *curr = current; 8779 struct rq *rq, *p_rq; 8780 unsigned long flags; 8781 int yielded = 0; 8782 8783 local_irq_save(flags); 8784 rq = this_rq(); 8785 8786 again: 8787 p_rq = task_rq(p); 8788 /* 8789 * If we're the only runnable task on the rq and target rq also 8790 * has only one task, there's absolutely no point in yielding. 8791 */ 8792 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8793 yielded = -ESRCH; 8794 goto out_irq; 8795 } 8796 8797 double_rq_lock(rq, p_rq); 8798 if (task_rq(p) != p_rq) { 8799 double_rq_unlock(rq, p_rq); 8800 goto again; 8801 } 8802 8803 if (!curr->sched_class->yield_to_task) 8804 goto out_unlock; 8805 8806 if (curr->sched_class != p->sched_class) 8807 goto out_unlock; 8808 8809 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8810 goto out_unlock; 8811 8812 yielded = curr->sched_class->yield_to_task(rq, p); 8813 if (yielded) { 8814 schedstat_inc(rq->yld_count); 8815 /* 8816 * Make p's CPU reschedule; pick_next_entity takes care of 8817 * fairness. 8818 */ 8819 if (preempt && rq != p_rq) 8820 resched_curr(p_rq); 8821 } 8822 8823 out_unlock: 8824 double_rq_unlock(rq, p_rq); 8825 out_irq: 8826 local_irq_restore(flags); 8827 8828 if (yielded > 0) 8829 schedule(); 8830 8831 return yielded; 8832 } 8833 EXPORT_SYMBOL_GPL(yield_to); 8834 8835 int io_schedule_prepare(void) 8836 { 8837 int old_iowait = current->in_iowait; 8838 8839 current->in_iowait = 1; 8840 blk_flush_plug(current->plug, true); 8841 return old_iowait; 8842 } 8843 8844 void io_schedule_finish(int token) 8845 { 8846 current->in_iowait = token; 8847 } 8848 8849 /* 8850 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8851 * that process accounting knows that this is a task in IO wait state. 8852 */ 8853 long __sched io_schedule_timeout(long timeout) 8854 { 8855 int token; 8856 long ret; 8857 8858 token = io_schedule_prepare(); 8859 ret = schedule_timeout(timeout); 8860 io_schedule_finish(token); 8861 8862 return ret; 8863 } 8864 EXPORT_SYMBOL(io_schedule_timeout); 8865 8866 void __sched io_schedule(void) 8867 { 8868 int token; 8869 8870 token = io_schedule_prepare(); 8871 schedule(); 8872 io_schedule_finish(token); 8873 } 8874 EXPORT_SYMBOL(io_schedule); 8875 8876 /** 8877 * sys_sched_get_priority_max - return maximum RT priority. 8878 * @policy: scheduling class. 8879 * 8880 * Return: On success, this syscall returns the maximum 8881 * rt_priority that can be used by a given scheduling class. 8882 * On failure, a negative error code is returned. 8883 */ 8884 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8885 { 8886 int ret = -EINVAL; 8887 8888 switch (policy) { 8889 case SCHED_FIFO: 8890 case SCHED_RR: 8891 ret = MAX_RT_PRIO-1; 8892 break; 8893 case SCHED_DEADLINE: 8894 case SCHED_NORMAL: 8895 case SCHED_BATCH: 8896 case SCHED_IDLE: 8897 ret = 0; 8898 break; 8899 } 8900 return ret; 8901 } 8902 8903 /** 8904 * sys_sched_get_priority_min - return minimum RT priority. 8905 * @policy: scheduling class. 8906 * 8907 * Return: On success, this syscall returns the minimum 8908 * rt_priority that can be used by a given scheduling class. 8909 * On failure, a negative error code is returned. 8910 */ 8911 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8912 { 8913 int ret = -EINVAL; 8914 8915 switch (policy) { 8916 case SCHED_FIFO: 8917 case SCHED_RR: 8918 ret = 1; 8919 break; 8920 case SCHED_DEADLINE: 8921 case SCHED_NORMAL: 8922 case SCHED_BATCH: 8923 case SCHED_IDLE: 8924 ret = 0; 8925 } 8926 return ret; 8927 } 8928 8929 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8930 { 8931 struct task_struct *p; 8932 unsigned int time_slice; 8933 struct rq_flags rf; 8934 struct rq *rq; 8935 int retval; 8936 8937 if (pid < 0) 8938 return -EINVAL; 8939 8940 retval = -ESRCH; 8941 rcu_read_lock(); 8942 p = find_process_by_pid(pid); 8943 if (!p) 8944 goto out_unlock; 8945 8946 retval = security_task_getscheduler(p); 8947 if (retval) 8948 goto out_unlock; 8949 8950 rq = task_rq_lock(p, &rf); 8951 time_slice = 0; 8952 if (p->sched_class->get_rr_interval) 8953 time_slice = p->sched_class->get_rr_interval(rq, p); 8954 task_rq_unlock(rq, p, &rf); 8955 8956 rcu_read_unlock(); 8957 jiffies_to_timespec64(time_slice, t); 8958 return 0; 8959 8960 out_unlock: 8961 rcu_read_unlock(); 8962 return retval; 8963 } 8964 8965 /** 8966 * sys_sched_rr_get_interval - return the default timeslice of a process. 8967 * @pid: pid of the process. 8968 * @interval: userspace pointer to the timeslice value. 8969 * 8970 * this syscall writes the default timeslice value of a given process 8971 * into the user-space timespec buffer. A value of '0' means infinity. 8972 * 8973 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8974 * an error code. 8975 */ 8976 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8977 struct __kernel_timespec __user *, interval) 8978 { 8979 struct timespec64 t; 8980 int retval = sched_rr_get_interval(pid, &t); 8981 8982 if (retval == 0) 8983 retval = put_timespec64(&t, interval); 8984 8985 return retval; 8986 } 8987 8988 #ifdef CONFIG_COMPAT_32BIT_TIME 8989 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8990 struct old_timespec32 __user *, interval) 8991 { 8992 struct timespec64 t; 8993 int retval = sched_rr_get_interval(pid, &t); 8994 8995 if (retval == 0) 8996 retval = put_old_timespec32(&t, interval); 8997 return retval; 8998 } 8999 #endif 9000 9001 void sched_show_task(struct task_struct *p) 9002 { 9003 unsigned long free = 0; 9004 int ppid; 9005 9006 if (!try_get_task_stack(p)) 9007 return; 9008 9009 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 9010 9011 if (task_is_running(p)) 9012 pr_cont(" running task "); 9013 #ifdef CONFIG_DEBUG_STACK_USAGE 9014 free = stack_not_used(p); 9015 #endif 9016 ppid = 0; 9017 rcu_read_lock(); 9018 if (pid_alive(p)) 9019 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 9020 rcu_read_unlock(); 9021 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", 9022 free, task_pid_nr(p), ppid, 9023 read_task_thread_flags(p)); 9024 9025 print_worker_info(KERN_INFO, p); 9026 print_stop_info(KERN_INFO, p); 9027 show_stack(p, NULL, KERN_INFO); 9028 put_task_stack(p); 9029 } 9030 EXPORT_SYMBOL_GPL(sched_show_task); 9031 9032 static inline bool 9033 state_filter_match(unsigned long state_filter, struct task_struct *p) 9034 { 9035 unsigned int state = READ_ONCE(p->__state); 9036 9037 /* no filter, everything matches */ 9038 if (!state_filter) 9039 return true; 9040 9041 /* filter, but doesn't match */ 9042 if (!(state & state_filter)) 9043 return false; 9044 9045 /* 9046 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 9047 * TASK_KILLABLE). 9048 */ 9049 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 9050 return false; 9051 9052 return true; 9053 } 9054 9055 9056 void show_state_filter(unsigned int state_filter) 9057 { 9058 struct task_struct *g, *p; 9059 9060 rcu_read_lock(); 9061 for_each_process_thread(g, p) { 9062 /* 9063 * reset the NMI-timeout, listing all files on a slow 9064 * console might take a lot of time: 9065 * Also, reset softlockup watchdogs on all CPUs, because 9066 * another CPU might be blocked waiting for us to process 9067 * an IPI. 9068 */ 9069 touch_nmi_watchdog(); 9070 touch_all_softlockup_watchdogs(); 9071 if (state_filter_match(state_filter, p)) 9072 sched_show_task(p); 9073 } 9074 9075 #ifdef CONFIG_SCHED_DEBUG 9076 if (!state_filter) 9077 sysrq_sched_debug_show(); 9078 #endif 9079 rcu_read_unlock(); 9080 /* 9081 * Only show locks if all tasks are dumped: 9082 */ 9083 if (!state_filter) 9084 debug_show_all_locks(); 9085 } 9086 9087 /** 9088 * init_idle - set up an idle thread for a given CPU 9089 * @idle: task in question 9090 * @cpu: CPU the idle task belongs to 9091 * 9092 * NOTE: this function does not set the idle thread's NEED_RESCHED 9093 * flag, to make booting more robust. 9094 */ 9095 void __init init_idle(struct task_struct *idle, int cpu) 9096 { 9097 #ifdef CONFIG_SMP 9098 struct affinity_context ac = (struct affinity_context) { 9099 .new_mask = cpumask_of(cpu), 9100 .flags = 0, 9101 }; 9102 #endif 9103 struct rq *rq = cpu_rq(cpu); 9104 unsigned long flags; 9105 9106 __sched_fork(0, idle); 9107 9108 raw_spin_lock_irqsave(&idle->pi_lock, flags); 9109 raw_spin_rq_lock(rq); 9110 9111 idle->__state = TASK_RUNNING; 9112 idle->se.exec_start = sched_clock(); 9113 /* 9114 * PF_KTHREAD should already be set at this point; regardless, make it 9115 * look like a proper per-CPU kthread. 9116 */ 9117 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 9118 kthread_set_per_cpu(idle, cpu); 9119 9120 #ifdef CONFIG_SMP 9121 /* 9122 * It's possible that init_idle() gets called multiple times on a task, 9123 * in that case do_set_cpus_allowed() will not do the right thing. 9124 * 9125 * And since this is boot we can forgo the serialization. 9126 */ 9127 set_cpus_allowed_common(idle, &ac); 9128 #endif 9129 /* 9130 * We're having a chicken and egg problem, even though we are 9131 * holding rq->lock, the CPU isn't yet set to this CPU so the 9132 * lockdep check in task_group() will fail. 9133 * 9134 * Similar case to sched_fork(). / Alternatively we could 9135 * use task_rq_lock() here and obtain the other rq->lock. 9136 * 9137 * Silence PROVE_RCU 9138 */ 9139 rcu_read_lock(); 9140 __set_task_cpu(idle, cpu); 9141 rcu_read_unlock(); 9142 9143 rq->idle = idle; 9144 rcu_assign_pointer(rq->curr, idle); 9145 idle->on_rq = TASK_ON_RQ_QUEUED; 9146 #ifdef CONFIG_SMP 9147 idle->on_cpu = 1; 9148 #endif 9149 raw_spin_rq_unlock(rq); 9150 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 9151 9152 /* Set the preempt count _outside_ the spinlocks! */ 9153 init_idle_preempt_count(idle, cpu); 9154 9155 /* 9156 * The idle tasks have their own, simple scheduling class: 9157 */ 9158 idle->sched_class = &idle_sched_class; 9159 ftrace_graph_init_idle_task(idle, cpu); 9160 vtime_init_idle(idle, cpu); 9161 #ifdef CONFIG_SMP 9162 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9163 #endif 9164 } 9165 9166 #ifdef CONFIG_SMP 9167 9168 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9169 const struct cpumask *trial) 9170 { 9171 int ret = 1; 9172 9173 if (cpumask_empty(cur)) 9174 return ret; 9175 9176 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9177 9178 return ret; 9179 } 9180 9181 int task_can_attach(struct task_struct *p, 9182 const struct cpumask *cs_effective_cpus) 9183 { 9184 int ret = 0; 9185 9186 /* 9187 * Kthreads which disallow setaffinity shouldn't be moved 9188 * to a new cpuset; we don't want to change their CPU 9189 * affinity and isolating such threads by their set of 9190 * allowed nodes is unnecessary. Thus, cpusets are not 9191 * applicable for such threads. This prevents checking for 9192 * success of set_cpus_allowed_ptr() on all attached tasks 9193 * before cpus_mask may be changed. 9194 */ 9195 if (p->flags & PF_NO_SETAFFINITY) { 9196 ret = -EINVAL; 9197 goto out; 9198 } 9199 9200 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 9201 cs_effective_cpus)) { 9202 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus); 9203 9204 if (unlikely(cpu >= nr_cpu_ids)) 9205 return -EINVAL; 9206 ret = dl_cpu_busy(cpu, p); 9207 } 9208 9209 out: 9210 return ret; 9211 } 9212 9213 bool sched_smp_initialized __read_mostly; 9214 9215 #ifdef CONFIG_NUMA_BALANCING 9216 /* Migrate current task p to target_cpu */ 9217 int migrate_task_to(struct task_struct *p, int target_cpu) 9218 { 9219 struct migration_arg arg = { p, target_cpu }; 9220 int curr_cpu = task_cpu(p); 9221 9222 if (curr_cpu == target_cpu) 9223 return 0; 9224 9225 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9226 return -EINVAL; 9227 9228 /* TODO: This is not properly updating schedstats */ 9229 9230 trace_sched_move_numa(p, curr_cpu, target_cpu); 9231 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9232 } 9233 9234 /* 9235 * Requeue a task on a given node and accurately track the number of NUMA 9236 * tasks on the runqueues 9237 */ 9238 void sched_setnuma(struct task_struct *p, int nid) 9239 { 9240 bool queued, running; 9241 struct rq_flags rf; 9242 struct rq *rq; 9243 9244 rq = task_rq_lock(p, &rf); 9245 queued = task_on_rq_queued(p); 9246 running = task_current(rq, p); 9247 9248 if (queued) 9249 dequeue_task(rq, p, DEQUEUE_SAVE); 9250 if (running) 9251 put_prev_task(rq, p); 9252 9253 p->numa_preferred_nid = nid; 9254 9255 if (queued) 9256 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9257 if (running) 9258 set_next_task(rq, p); 9259 task_rq_unlock(rq, p, &rf); 9260 } 9261 #endif /* CONFIG_NUMA_BALANCING */ 9262 9263 #ifdef CONFIG_HOTPLUG_CPU 9264 /* 9265 * Ensure that the idle task is using init_mm right before its CPU goes 9266 * offline. 9267 */ 9268 void idle_task_exit(void) 9269 { 9270 struct mm_struct *mm = current->active_mm; 9271 9272 BUG_ON(cpu_online(smp_processor_id())); 9273 BUG_ON(current != this_rq()->idle); 9274 9275 if (mm != &init_mm) { 9276 switch_mm(mm, &init_mm, current); 9277 finish_arch_post_lock_switch(); 9278 } 9279 9280 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9281 } 9282 9283 static int __balance_push_cpu_stop(void *arg) 9284 { 9285 struct task_struct *p = arg; 9286 struct rq *rq = this_rq(); 9287 struct rq_flags rf; 9288 int cpu; 9289 9290 raw_spin_lock_irq(&p->pi_lock); 9291 rq_lock(rq, &rf); 9292 9293 update_rq_clock(rq); 9294 9295 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9296 cpu = select_fallback_rq(rq->cpu, p); 9297 rq = __migrate_task(rq, &rf, p, cpu); 9298 } 9299 9300 rq_unlock(rq, &rf); 9301 raw_spin_unlock_irq(&p->pi_lock); 9302 9303 put_task_struct(p); 9304 9305 return 0; 9306 } 9307 9308 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9309 9310 /* 9311 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9312 * 9313 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9314 * effective when the hotplug motion is down. 9315 */ 9316 static void balance_push(struct rq *rq) 9317 { 9318 struct task_struct *push_task = rq->curr; 9319 9320 lockdep_assert_rq_held(rq); 9321 9322 /* 9323 * Ensure the thing is persistent until balance_push_set(.on = false); 9324 */ 9325 rq->balance_callback = &balance_push_callback; 9326 9327 /* 9328 * Only active while going offline and when invoked on the outgoing 9329 * CPU. 9330 */ 9331 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9332 return; 9333 9334 /* 9335 * Both the cpu-hotplug and stop task are in this case and are 9336 * required to complete the hotplug process. 9337 */ 9338 if (kthread_is_per_cpu(push_task) || 9339 is_migration_disabled(push_task)) { 9340 9341 /* 9342 * If this is the idle task on the outgoing CPU try to wake 9343 * up the hotplug control thread which might wait for the 9344 * last task to vanish. The rcuwait_active() check is 9345 * accurate here because the waiter is pinned on this CPU 9346 * and can't obviously be running in parallel. 9347 * 9348 * On RT kernels this also has to check whether there are 9349 * pinned and scheduled out tasks on the runqueue. They 9350 * need to leave the migrate disabled section first. 9351 */ 9352 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9353 rcuwait_active(&rq->hotplug_wait)) { 9354 raw_spin_rq_unlock(rq); 9355 rcuwait_wake_up(&rq->hotplug_wait); 9356 raw_spin_rq_lock(rq); 9357 } 9358 return; 9359 } 9360 9361 get_task_struct(push_task); 9362 /* 9363 * Temporarily drop rq->lock such that we can wake-up the stop task. 9364 * Both preemption and IRQs are still disabled. 9365 */ 9366 raw_spin_rq_unlock(rq); 9367 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9368 this_cpu_ptr(&push_work)); 9369 /* 9370 * At this point need_resched() is true and we'll take the loop in 9371 * schedule(). The next pick is obviously going to be the stop task 9372 * which kthread_is_per_cpu() and will push this task away. 9373 */ 9374 raw_spin_rq_lock(rq); 9375 } 9376 9377 static void balance_push_set(int cpu, bool on) 9378 { 9379 struct rq *rq = cpu_rq(cpu); 9380 struct rq_flags rf; 9381 9382 rq_lock_irqsave(rq, &rf); 9383 if (on) { 9384 WARN_ON_ONCE(rq->balance_callback); 9385 rq->balance_callback = &balance_push_callback; 9386 } else if (rq->balance_callback == &balance_push_callback) { 9387 rq->balance_callback = NULL; 9388 } 9389 rq_unlock_irqrestore(rq, &rf); 9390 } 9391 9392 /* 9393 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9394 * inactive. All tasks which are not per CPU kernel threads are either 9395 * pushed off this CPU now via balance_push() or placed on a different CPU 9396 * during wakeup. Wait until the CPU is quiescent. 9397 */ 9398 static void balance_hotplug_wait(void) 9399 { 9400 struct rq *rq = this_rq(); 9401 9402 rcuwait_wait_event(&rq->hotplug_wait, 9403 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9404 TASK_UNINTERRUPTIBLE); 9405 } 9406 9407 #else 9408 9409 static inline void balance_push(struct rq *rq) 9410 { 9411 } 9412 9413 static inline void balance_push_set(int cpu, bool on) 9414 { 9415 } 9416 9417 static inline void balance_hotplug_wait(void) 9418 { 9419 } 9420 9421 #endif /* CONFIG_HOTPLUG_CPU */ 9422 9423 void set_rq_online(struct rq *rq) 9424 { 9425 if (!rq->online) { 9426 const struct sched_class *class; 9427 9428 cpumask_set_cpu(rq->cpu, rq->rd->online); 9429 rq->online = 1; 9430 9431 for_each_class(class) { 9432 if (class->rq_online) 9433 class->rq_online(rq); 9434 } 9435 } 9436 } 9437 9438 void set_rq_offline(struct rq *rq) 9439 { 9440 if (rq->online) { 9441 const struct sched_class *class; 9442 9443 for_each_class(class) { 9444 if (class->rq_offline) 9445 class->rq_offline(rq); 9446 } 9447 9448 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9449 rq->online = 0; 9450 } 9451 } 9452 9453 /* 9454 * used to mark begin/end of suspend/resume: 9455 */ 9456 static int num_cpus_frozen; 9457 9458 /* 9459 * Update cpusets according to cpu_active mask. If cpusets are 9460 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9461 * around partition_sched_domains(). 9462 * 9463 * If we come here as part of a suspend/resume, don't touch cpusets because we 9464 * want to restore it back to its original state upon resume anyway. 9465 */ 9466 static void cpuset_cpu_active(void) 9467 { 9468 if (cpuhp_tasks_frozen) { 9469 /* 9470 * num_cpus_frozen tracks how many CPUs are involved in suspend 9471 * resume sequence. As long as this is not the last online 9472 * operation in the resume sequence, just build a single sched 9473 * domain, ignoring cpusets. 9474 */ 9475 partition_sched_domains(1, NULL, NULL); 9476 if (--num_cpus_frozen) 9477 return; 9478 /* 9479 * This is the last CPU online operation. So fall through and 9480 * restore the original sched domains by considering the 9481 * cpuset configurations. 9482 */ 9483 cpuset_force_rebuild(); 9484 } 9485 cpuset_update_active_cpus(); 9486 } 9487 9488 static int cpuset_cpu_inactive(unsigned int cpu) 9489 { 9490 if (!cpuhp_tasks_frozen) { 9491 int ret = dl_cpu_busy(cpu, NULL); 9492 9493 if (ret) 9494 return ret; 9495 cpuset_update_active_cpus(); 9496 } else { 9497 num_cpus_frozen++; 9498 partition_sched_domains(1, NULL, NULL); 9499 } 9500 return 0; 9501 } 9502 9503 int sched_cpu_activate(unsigned int cpu) 9504 { 9505 struct rq *rq = cpu_rq(cpu); 9506 struct rq_flags rf; 9507 9508 /* 9509 * Clear the balance_push callback and prepare to schedule 9510 * regular tasks. 9511 */ 9512 balance_push_set(cpu, false); 9513 9514 #ifdef CONFIG_SCHED_SMT 9515 /* 9516 * When going up, increment the number of cores with SMT present. 9517 */ 9518 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9519 static_branch_inc_cpuslocked(&sched_smt_present); 9520 #endif 9521 set_cpu_active(cpu, true); 9522 9523 if (sched_smp_initialized) { 9524 sched_update_numa(cpu, true); 9525 sched_domains_numa_masks_set(cpu); 9526 cpuset_cpu_active(); 9527 } 9528 9529 /* 9530 * Put the rq online, if not already. This happens: 9531 * 9532 * 1) In the early boot process, because we build the real domains 9533 * after all CPUs have been brought up. 9534 * 9535 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9536 * domains. 9537 */ 9538 rq_lock_irqsave(rq, &rf); 9539 if (rq->rd) { 9540 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9541 set_rq_online(rq); 9542 } 9543 rq_unlock_irqrestore(rq, &rf); 9544 9545 return 0; 9546 } 9547 9548 int sched_cpu_deactivate(unsigned int cpu) 9549 { 9550 struct rq *rq = cpu_rq(cpu); 9551 struct rq_flags rf; 9552 int ret; 9553 9554 /* 9555 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9556 * load balancing when not active 9557 */ 9558 nohz_balance_exit_idle(rq); 9559 9560 set_cpu_active(cpu, false); 9561 9562 /* 9563 * From this point forward, this CPU will refuse to run any task that 9564 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9565 * push those tasks away until this gets cleared, see 9566 * sched_cpu_dying(). 9567 */ 9568 balance_push_set(cpu, true); 9569 9570 /* 9571 * We've cleared cpu_active_mask / set balance_push, wait for all 9572 * preempt-disabled and RCU users of this state to go away such that 9573 * all new such users will observe it. 9574 * 9575 * Specifically, we rely on ttwu to no longer target this CPU, see 9576 * ttwu_queue_cond() and is_cpu_allowed(). 9577 * 9578 * Do sync before park smpboot threads to take care the rcu boost case. 9579 */ 9580 synchronize_rcu(); 9581 9582 rq_lock_irqsave(rq, &rf); 9583 if (rq->rd) { 9584 update_rq_clock(rq); 9585 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9586 set_rq_offline(rq); 9587 } 9588 rq_unlock_irqrestore(rq, &rf); 9589 9590 #ifdef CONFIG_SCHED_SMT 9591 /* 9592 * When going down, decrement the number of cores with SMT present. 9593 */ 9594 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9595 static_branch_dec_cpuslocked(&sched_smt_present); 9596 9597 sched_core_cpu_deactivate(cpu); 9598 #endif 9599 9600 if (!sched_smp_initialized) 9601 return 0; 9602 9603 sched_update_numa(cpu, false); 9604 ret = cpuset_cpu_inactive(cpu); 9605 if (ret) { 9606 balance_push_set(cpu, false); 9607 set_cpu_active(cpu, true); 9608 sched_update_numa(cpu, true); 9609 return ret; 9610 } 9611 sched_domains_numa_masks_clear(cpu); 9612 return 0; 9613 } 9614 9615 static void sched_rq_cpu_starting(unsigned int cpu) 9616 { 9617 struct rq *rq = cpu_rq(cpu); 9618 9619 rq->calc_load_update = calc_load_update; 9620 update_max_interval(); 9621 } 9622 9623 int sched_cpu_starting(unsigned int cpu) 9624 { 9625 sched_core_cpu_starting(cpu); 9626 sched_rq_cpu_starting(cpu); 9627 sched_tick_start(cpu); 9628 return 0; 9629 } 9630 9631 #ifdef CONFIG_HOTPLUG_CPU 9632 9633 /* 9634 * Invoked immediately before the stopper thread is invoked to bring the 9635 * CPU down completely. At this point all per CPU kthreads except the 9636 * hotplug thread (current) and the stopper thread (inactive) have been 9637 * either parked or have been unbound from the outgoing CPU. Ensure that 9638 * any of those which might be on the way out are gone. 9639 * 9640 * If after this point a bound task is being woken on this CPU then the 9641 * responsible hotplug callback has failed to do it's job. 9642 * sched_cpu_dying() will catch it with the appropriate fireworks. 9643 */ 9644 int sched_cpu_wait_empty(unsigned int cpu) 9645 { 9646 balance_hotplug_wait(); 9647 return 0; 9648 } 9649 9650 /* 9651 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9652 * might have. Called from the CPU stopper task after ensuring that the 9653 * stopper is the last running task on the CPU, so nr_active count is 9654 * stable. We need to take the teardown thread which is calling this into 9655 * account, so we hand in adjust = 1 to the load calculation. 9656 * 9657 * Also see the comment "Global load-average calculations". 9658 */ 9659 static void calc_load_migrate(struct rq *rq) 9660 { 9661 long delta = calc_load_fold_active(rq, 1); 9662 9663 if (delta) 9664 atomic_long_add(delta, &calc_load_tasks); 9665 } 9666 9667 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9668 { 9669 struct task_struct *g, *p; 9670 int cpu = cpu_of(rq); 9671 9672 lockdep_assert_rq_held(rq); 9673 9674 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9675 for_each_process_thread(g, p) { 9676 if (task_cpu(p) != cpu) 9677 continue; 9678 9679 if (!task_on_rq_queued(p)) 9680 continue; 9681 9682 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9683 } 9684 } 9685 9686 int sched_cpu_dying(unsigned int cpu) 9687 { 9688 struct rq *rq = cpu_rq(cpu); 9689 struct rq_flags rf; 9690 9691 /* Handle pending wakeups and then migrate everything off */ 9692 sched_tick_stop(cpu); 9693 9694 rq_lock_irqsave(rq, &rf); 9695 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9696 WARN(true, "Dying CPU not properly vacated!"); 9697 dump_rq_tasks(rq, KERN_WARNING); 9698 } 9699 rq_unlock_irqrestore(rq, &rf); 9700 9701 calc_load_migrate(rq); 9702 update_max_interval(); 9703 hrtick_clear(rq); 9704 sched_core_cpu_dying(cpu); 9705 return 0; 9706 } 9707 #endif 9708 9709 void __init sched_init_smp(void) 9710 { 9711 sched_init_numa(NUMA_NO_NODE); 9712 9713 /* 9714 * There's no userspace yet to cause hotplug operations; hence all the 9715 * CPU masks are stable and all blatant races in the below code cannot 9716 * happen. 9717 */ 9718 mutex_lock(&sched_domains_mutex); 9719 sched_init_domains(cpu_active_mask); 9720 mutex_unlock(&sched_domains_mutex); 9721 9722 /* Move init over to a non-isolated CPU */ 9723 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9724 BUG(); 9725 current->flags &= ~PF_NO_SETAFFINITY; 9726 sched_init_granularity(); 9727 9728 init_sched_rt_class(); 9729 init_sched_dl_class(); 9730 9731 sched_smp_initialized = true; 9732 } 9733 9734 static int __init migration_init(void) 9735 { 9736 sched_cpu_starting(smp_processor_id()); 9737 return 0; 9738 } 9739 early_initcall(migration_init); 9740 9741 #else 9742 void __init sched_init_smp(void) 9743 { 9744 sched_init_granularity(); 9745 } 9746 #endif /* CONFIG_SMP */ 9747 9748 int in_sched_functions(unsigned long addr) 9749 { 9750 return in_lock_functions(addr) || 9751 (addr >= (unsigned long)__sched_text_start 9752 && addr < (unsigned long)__sched_text_end); 9753 } 9754 9755 #ifdef CONFIG_CGROUP_SCHED 9756 /* 9757 * Default task group. 9758 * Every task in system belongs to this group at bootup. 9759 */ 9760 struct task_group root_task_group; 9761 LIST_HEAD(task_groups); 9762 9763 /* Cacheline aligned slab cache for task_group */ 9764 static struct kmem_cache *task_group_cache __read_mostly; 9765 #endif 9766 9767 void __init sched_init(void) 9768 { 9769 unsigned long ptr = 0; 9770 int i; 9771 9772 /* Make sure the linker didn't screw up */ 9773 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9774 &fair_sched_class != &rt_sched_class + 1 || 9775 &rt_sched_class != &dl_sched_class + 1); 9776 #ifdef CONFIG_SMP 9777 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9778 #endif 9779 9780 wait_bit_init(); 9781 9782 #ifdef CONFIG_FAIR_GROUP_SCHED 9783 ptr += 2 * nr_cpu_ids * sizeof(void **); 9784 #endif 9785 #ifdef CONFIG_RT_GROUP_SCHED 9786 ptr += 2 * nr_cpu_ids * sizeof(void **); 9787 #endif 9788 if (ptr) { 9789 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9790 9791 #ifdef CONFIG_FAIR_GROUP_SCHED 9792 root_task_group.se = (struct sched_entity **)ptr; 9793 ptr += nr_cpu_ids * sizeof(void **); 9794 9795 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9796 ptr += nr_cpu_ids * sizeof(void **); 9797 9798 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9799 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9800 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9801 #ifdef CONFIG_RT_GROUP_SCHED 9802 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9803 ptr += nr_cpu_ids * sizeof(void **); 9804 9805 root_task_group.rt_rq = (struct rt_rq **)ptr; 9806 ptr += nr_cpu_ids * sizeof(void **); 9807 9808 #endif /* CONFIG_RT_GROUP_SCHED */ 9809 } 9810 9811 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9812 9813 #ifdef CONFIG_SMP 9814 init_defrootdomain(); 9815 #endif 9816 9817 #ifdef CONFIG_RT_GROUP_SCHED 9818 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9819 global_rt_period(), global_rt_runtime()); 9820 #endif /* CONFIG_RT_GROUP_SCHED */ 9821 9822 #ifdef CONFIG_CGROUP_SCHED 9823 task_group_cache = KMEM_CACHE(task_group, 0); 9824 9825 list_add(&root_task_group.list, &task_groups); 9826 INIT_LIST_HEAD(&root_task_group.children); 9827 INIT_LIST_HEAD(&root_task_group.siblings); 9828 autogroup_init(&init_task); 9829 #endif /* CONFIG_CGROUP_SCHED */ 9830 9831 for_each_possible_cpu(i) { 9832 struct rq *rq; 9833 9834 rq = cpu_rq(i); 9835 raw_spin_lock_init(&rq->__lock); 9836 rq->nr_running = 0; 9837 rq->calc_load_active = 0; 9838 rq->calc_load_update = jiffies + LOAD_FREQ; 9839 init_cfs_rq(&rq->cfs); 9840 init_rt_rq(&rq->rt); 9841 init_dl_rq(&rq->dl); 9842 #ifdef CONFIG_FAIR_GROUP_SCHED 9843 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9844 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9845 /* 9846 * How much CPU bandwidth does root_task_group get? 9847 * 9848 * In case of task-groups formed thr' the cgroup filesystem, it 9849 * gets 100% of the CPU resources in the system. This overall 9850 * system CPU resource is divided among the tasks of 9851 * root_task_group and its child task-groups in a fair manner, 9852 * based on each entity's (task or task-group's) weight 9853 * (se->load.weight). 9854 * 9855 * In other words, if root_task_group has 10 tasks of weight 9856 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9857 * then A0's share of the CPU resource is: 9858 * 9859 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9860 * 9861 * We achieve this by letting root_task_group's tasks sit 9862 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9863 */ 9864 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9865 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9866 9867 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9868 #ifdef CONFIG_RT_GROUP_SCHED 9869 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9870 #endif 9871 #ifdef CONFIG_SMP 9872 rq->sd = NULL; 9873 rq->rd = NULL; 9874 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9875 rq->balance_callback = &balance_push_callback; 9876 rq->active_balance = 0; 9877 rq->next_balance = jiffies; 9878 rq->push_cpu = 0; 9879 rq->cpu = i; 9880 rq->online = 0; 9881 rq->idle_stamp = 0; 9882 rq->avg_idle = 2*sysctl_sched_migration_cost; 9883 rq->wake_stamp = jiffies; 9884 rq->wake_avg_idle = rq->avg_idle; 9885 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9886 9887 INIT_LIST_HEAD(&rq->cfs_tasks); 9888 9889 rq_attach_root(rq, &def_root_domain); 9890 #ifdef CONFIG_NO_HZ_COMMON 9891 rq->last_blocked_load_update_tick = jiffies; 9892 atomic_set(&rq->nohz_flags, 0); 9893 9894 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9895 #endif 9896 #ifdef CONFIG_HOTPLUG_CPU 9897 rcuwait_init(&rq->hotplug_wait); 9898 #endif 9899 #endif /* CONFIG_SMP */ 9900 hrtick_rq_init(rq); 9901 atomic_set(&rq->nr_iowait, 0); 9902 9903 #ifdef CONFIG_SCHED_CORE 9904 rq->core = rq; 9905 rq->core_pick = NULL; 9906 rq->core_enabled = 0; 9907 rq->core_tree = RB_ROOT; 9908 rq->core_forceidle_count = 0; 9909 rq->core_forceidle_occupation = 0; 9910 rq->core_forceidle_start = 0; 9911 9912 rq->core_cookie = 0UL; 9913 #endif 9914 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 9915 } 9916 9917 set_load_weight(&init_task, false); 9918 9919 /* 9920 * The boot idle thread does lazy MMU switching as well: 9921 */ 9922 mmgrab(&init_mm); 9923 enter_lazy_tlb(&init_mm, current); 9924 9925 /* 9926 * The idle task doesn't need the kthread struct to function, but it 9927 * is dressed up as a per-CPU kthread and thus needs to play the part 9928 * if we want to avoid special-casing it in code that deals with per-CPU 9929 * kthreads. 9930 */ 9931 WARN_ON(!set_kthread_struct(current)); 9932 9933 /* 9934 * Make us the idle thread. Technically, schedule() should not be 9935 * called from this thread, however somewhere below it might be, 9936 * but because we are the idle thread, we just pick up running again 9937 * when this runqueue becomes "idle". 9938 */ 9939 init_idle(current, smp_processor_id()); 9940 9941 calc_load_update = jiffies + LOAD_FREQ; 9942 9943 #ifdef CONFIG_SMP 9944 idle_thread_set_boot_cpu(); 9945 balance_push_set(smp_processor_id(), false); 9946 #endif 9947 init_sched_fair_class(); 9948 9949 psi_init(); 9950 9951 init_uclamp(); 9952 9953 preempt_dynamic_init(); 9954 9955 scheduler_running = 1; 9956 } 9957 9958 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9959 9960 void __might_sleep(const char *file, int line) 9961 { 9962 unsigned int state = get_current_state(); 9963 /* 9964 * Blocking primitives will set (and therefore destroy) current->state, 9965 * since we will exit with TASK_RUNNING make sure we enter with it, 9966 * otherwise we will destroy state. 9967 */ 9968 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9969 "do not call blocking ops when !TASK_RUNNING; " 9970 "state=%x set at [<%p>] %pS\n", state, 9971 (void *)current->task_state_change, 9972 (void *)current->task_state_change); 9973 9974 __might_resched(file, line, 0); 9975 } 9976 EXPORT_SYMBOL(__might_sleep); 9977 9978 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9979 { 9980 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9981 return; 9982 9983 if (preempt_count() == preempt_offset) 9984 return; 9985 9986 pr_err("Preemption disabled at:"); 9987 print_ip_sym(KERN_ERR, ip); 9988 } 9989 9990 static inline bool resched_offsets_ok(unsigned int offsets) 9991 { 9992 unsigned int nested = preempt_count(); 9993 9994 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9995 9996 return nested == offsets; 9997 } 9998 9999 void __might_resched(const char *file, int line, unsigned int offsets) 10000 { 10001 /* Ratelimiting timestamp: */ 10002 static unsigned long prev_jiffy; 10003 10004 unsigned long preempt_disable_ip; 10005 10006 /* WARN_ON_ONCE() by default, no rate limit required: */ 10007 rcu_sleep_check(); 10008 10009 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 10010 !is_idle_task(current) && !current->non_block_count) || 10011 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 10012 oops_in_progress) 10013 return; 10014 10015 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10016 return; 10017 prev_jiffy = jiffies; 10018 10019 /* Save this before calling printk(), since that will clobber it: */ 10020 preempt_disable_ip = get_preempt_disable_ip(current); 10021 10022 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 10023 file, line); 10024 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 10025 in_atomic(), irqs_disabled(), current->non_block_count, 10026 current->pid, current->comm); 10027 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 10028 offsets & MIGHT_RESCHED_PREEMPT_MASK); 10029 10030 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 10031 pr_err("RCU nest depth: %d, expected: %u\n", 10032 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 10033 } 10034 10035 if (task_stack_end_corrupted(current)) 10036 pr_emerg("Thread overran stack, or stack corrupted\n"); 10037 10038 debug_show_held_locks(current); 10039 if (irqs_disabled()) 10040 print_irqtrace_events(current); 10041 10042 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 10043 preempt_disable_ip); 10044 10045 dump_stack(); 10046 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10047 } 10048 EXPORT_SYMBOL(__might_resched); 10049 10050 void __cant_sleep(const char *file, int line, int preempt_offset) 10051 { 10052 static unsigned long prev_jiffy; 10053 10054 if (irqs_disabled()) 10055 return; 10056 10057 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10058 return; 10059 10060 if (preempt_count() > preempt_offset) 10061 return; 10062 10063 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10064 return; 10065 prev_jiffy = jiffies; 10066 10067 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 10068 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 10069 in_atomic(), irqs_disabled(), 10070 current->pid, current->comm); 10071 10072 debug_show_held_locks(current); 10073 dump_stack(); 10074 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10075 } 10076 EXPORT_SYMBOL_GPL(__cant_sleep); 10077 10078 #ifdef CONFIG_SMP 10079 void __cant_migrate(const char *file, int line) 10080 { 10081 static unsigned long prev_jiffy; 10082 10083 if (irqs_disabled()) 10084 return; 10085 10086 if (is_migration_disabled(current)) 10087 return; 10088 10089 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10090 return; 10091 10092 if (preempt_count() > 0) 10093 return; 10094 10095 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10096 return; 10097 prev_jiffy = jiffies; 10098 10099 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 10100 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 10101 in_atomic(), irqs_disabled(), is_migration_disabled(current), 10102 current->pid, current->comm); 10103 10104 debug_show_held_locks(current); 10105 dump_stack(); 10106 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10107 } 10108 EXPORT_SYMBOL_GPL(__cant_migrate); 10109 #endif 10110 #endif 10111 10112 #ifdef CONFIG_MAGIC_SYSRQ 10113 void normalize_rt_tasks(void) 10114 { 10115 struct task_struct *g, *p; 10116 struct sched_attr attr = { 10117 .sched_policy = SCHED_NORMAL, 10118 }; 10119 10120 read_lock(&tasklist_lock); 10121 for_each_process_thread(g, p) { 10122 /* 10123 * Only normalize user tasks: 10124 */ 10125 if (p->flags & PF_KTHREAD) 10126 continue; 10127 10128 p->se.exec_start = 0; 10129 schedstat_set(p->stats.wait_start, 0); 10130 schedstat_set(p->stats.sleep_start, 0); 10131 schedstat_set(p->stats.block_start, 0); 10132 10133 if (!dl_task(p) && !rt_task(p)) { 10134 /* 10135 * Renice negative nice level userspace 10136 * tasks back to 0: 10137 */ 10138 if (task_nice(p) < 0) 10139 set_user_nice(p, 0); 10140 continue; 10141 } 10142 10143 __sched_setscheduler(p, &attr, false, false); 10144 } 10145 read_unlock(&tasklist_lock); 10146 } 10147 10148 #endif /* CONFIG_MAGIC_SYSRQ */ 10149 10150 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 10151 /* 10152 * These functions are only useful for the IA64 MCA handling, or kdb. 10153 * 10154 * They can only be called when the whole system has been 10155 * stopped - every CPU needs to be quiescent, and no scheduling 10156 * activity can take place. Using them for anything else would 10157 * be a serious bug, and as a result, they aren't even visible 10158 * under any other configuration. 10159 */ 10160 10161 /** 10162 * curr_task - return the current task for a given CPU. 10163 * @cpu: the processor in question. 10164 * 10165 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10166 * 10167 * Return: The current task for @cpu. 10168 */ 10169 struct task_struct *curr_task(int cpu) 10170 { 10171 return cpu_curr(cpu); 10172 } 10173 10174 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10175 10176 #ifdef CONFIG_IA64 10177 /** 10178 * ia64_set_curr_task - set the current task for a given CPU. 10179 * @cpu: the processor in question. 10180 * @p: the task pointer to set. 10181 * 10182 * Description: This function must only be used when non-maskable interrupts 10183 * are serviced on a separate stack. It allows the architecture to switch the 10184 * notion of the current task on a CPU in a non-blocking manner. This function 10185 * must be called with all CPU's synchronized, and interrupts disabled, the 10186 * and caller must save the original value of the current task (see 10187 * curr_task() above) and restore that value before reenabling interrupts and 10188 * re-starting the system. 10189 * 10190 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10191 */ 10192 void ia64_set_curr_task(int cpu, struct task_struct *p) 10193 { 10194 cpu_curr(cpu) = p; 10195 } 10196 10197 #endif 10198 10199 #ifdef CONFIG_CGROUP_SCHED 10200 /* task_group_lock serializes the addition/removal of task groups */ 10201 static DEFINE_SPINLOCK(task_group_lock); 10202 10203 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10204 struct task_group *parent) 10205 { 10206 #ifdef CONFIG_UCLAMP_TASK_GROUP 10207 enum uclamp_id clamp_id; 10208 10209 for_each_clamp_id(clamp_id) { 10210 uclamp_se_set(&tg->uclamp_req[clamp_id], 10211 uclamp_none(clamp_id), false); 10212 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10213 } 10214 #endif 10215 } 10216 10217 static void sched_free_group(struct task_group *tg) 10218 { 10219 free_fair_sched_group(tg); 10220 free_rt_sched_group(tg); 10221 autogroup_free(tg); 10222 kmem_cache_free(task_group_cache, tg); 10223 } 10224 10225 static void sched_free_group_rcu(struct rcu_head *rcu) 10226 { 10227 sched_free_group(container_of(rcu, struct task_group, rcu)); 10228 } 10229 10230 static void sched_unregister_group(struct task_group *tg) 10231 { 10232 unregister_fair_sched_group(tg); 10233 unregister_rt_sched_group(tg); 10234 /* 10235 * We have to wait for yet another RCU grace period to expire, as 10236 * print_cfs_stats() might run concurrently. 10237 */ 10238 call_rcu(&tg->rcu, sched_free_group_rcu); 10239 } 10240 10241 /* allocate runqueue etc for a new task group */ 10242 struct task_group *sched_create_group(struct task_group *parent) 10243 { 10244 struct task_group *tg; 10245 10246 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10247 if (!tg) 10248 return ERR_PTR(-ENOMEM); 10249 10250 if (!alloc_fair_sched_group(tg, parent)) 10251 goto err; 10252 10253 if (!alloc_rt_sched_group(tg, parent)) 10254 goto err; 10255 10256 alloc_uclamp_sched_group(tg, parent); 10257 10258 return tg; 10259 10260 err: 10261 sched_free_group(tg); 10262 return ERR_PTR(-ENOMEM); 10263 } 10264 10265 void sched_online_group(struct task_group *tg, struct task_group *parent) 10266 { 10267 unsigned long flags; 10268 10269 spin_lock_irqsave(&task_group_lock, flags); 10270 list_add_rcu(&tg->list, &task_groups); 10271 10272 /* Root should already exist: */ 10273 WARN_ON(!parent); 10274 10275 tg->parent = parent; 10276 INIT_LIST_HEAD(&tg->children); 10277 list_add_rcu(&tg->siblings, &parent->children); 10278 spin_unlock_irqrestore(&task_group_lock, flags); 10279 10280 online_fair_sched_group(tg); 10281 } 10282 10283 /* rcu callback to free various structures associated with a task group */ 10284 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10285 { 10286 /* Now it should be safe to free those cfs_rqs: */ 10287 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10288 } 10289 10290 void sched_destroy_group(struct task_group *tg) 10291 { 10292 /* Wait for possible concurrent references to cfs_rqs complete: */ 10293 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10294 } 10295 10296 void sched_release_group(struct task_group *tg) 10297 { 10298 unsigned long flags; 10299 10300 /* 10301 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10302 * sched_cfs_period_timer()). 10303 * 10304 * For this to be effective, we have to wait for all pending users of 10305 * this task group to leave their RCU critical section to ensure no new 10306 * user will see our dying task group any more. Specifically ensure 10307 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10308 * 10309 * We therefore defer calling unregister_fair_sched_group() to 10310 * sched_unregister_group() which is guarantied to get called only after the 10311 * current RCU grace period has expired. 10312 */ 10313 spin_lock_irqsave(&task_group_lock, flags); 10314 list_del_rcu(&tg->list); 10315 list_del_rcu(&tg->siblings); 10316 spin_unlock_irqrestore(&task_group_lock, flags); 10317 } 10318 10319 static void sched_change_group(struct task_struct *tsk) 10320 { 10321 struct task_group *tg; 10322 10323 /* 10324 * All callers are synchronized by task_rq_lock(); we do not use RCU 10325 * which is pointless here. Thus, we pass "true" to task_css_check() 10326 * to prevent lockdep warnings. 10327 */ 10328 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10329 struct task_group, css); 10330 tg = autogroup_task_group(tsk, tg); 10331 tsk->sched_task_group = tg; 10332 10333 #ifdef CONFIG_FAIR_GROUP_SCHED 10334 if (tsk->sched_class->task_change_group) 10335 tsk->sched_class->task_change_group(tsk); 10336 else 10337 #endif 10338 set_task_rq(tsk, task_cpu(tsk)); 10339 } 10340 10341 /* 10342 * Change task's runqueue when it moves between groups. 10343 * 10344 * The caller of this function should have put the task in its new group by 10345 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10346 * its new group. 10347 */ 10348 void sched_move_task(struct task_struct *tsk) 10349 { 10350 int queued, running, queue_flags = 10351 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10352 struct rq_flags rf; 10353 struct rq *rq; 10354 10355 rq = task_rq_lock(tsk, &rf); 10356 update_rq_clock(rq); 10357 10358 running = task_current(rq, tsk); 10359 queued = task_on_rq_queued(tsk); 10360 10361 if (queued) 10362 dequeue_task(rq, tsk, queue_flags); 10363 if (running) 10364 put_prev_task(rq, tsk); 10365 10366 sched_change_group(tsk); 10367 10368 if (queued) 10369 enqueue_task(rq, tsk, queue_flags); 10370 if (running) { 10371 set_next_task(rq, tsk); 10372 /* 10373 * After changing group, the running task may have joined a 10374 * throttled one but it's still the running task. Trigger a 10375 * resched to make sure that task can still run. 10376 */ 10377 resched_curr(rq); 10378 } 10379 10380 task_rq_unlock(rq, tsk, &rf); 10381 } 10382 10383 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10384 { 10385 return css ? container_of(css, struct task_group, css) : NULL; 10386 } 10387 10388 static struct cgroup_subsys_state * 10389 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10390 { 10391 struct task_group *parent = css_tg(parent_css); 10392 struct task_group *tg; 10393 10394 if (!parent) { 10395 /* This is early initialization for the top cgroup */ 10396 return &root_task_group.css; 10397 } 10398 10399 tg = sched_create_group(parent); 10400 if (IS_ERR(tg)) 10401 return ERR_PTR(-ENOMEM); 10402 10403 return &tg->css; 10404 } 10405 10406 /* Expose task group only after completing cgroup initialization */ 10407 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10408 { 10409 struct task_group *tg = css_tg(css); 10410 struct task_group *parent = css_tg(css->parent); 10411 10412 if (parent) 10413 sched_online_group(tg, parent); 10414 10415 #ifdef CONFIG_UCLAMP_TASK_GROUP 10416 /* Propagate the effective uclamp value for the new group */ 10417 mutex_lock(&uclamp_mutex); 10418 rcu_read_lock(); 10419 cpu_util_update_eff(css); 10420 rcu_read_unlock(); 10421 mutex_unlock(&uclamp_mutex); 10422 #endif 10423 10424 return 0; 10425 } 10426 10427 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10428 { 10429 struct task_group *tg = css_tg(css); 10430 10431 sched_release_group(tg); 10432 } 10433 10434 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10435 { 10436 struct task_group *tg = css_tg(css); 10437 10438 /* 10439 * Relies on the RCU grace period between css_released() and this. 10440 */ 10441 sched_unregister_group(tg); 10442 } 10443 10444 #ifdef CONFIG_RT_GROUP_SCHED 10445 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10446 { 10447 struct task_struct *task; 10448 struct cgroup_subsys_state *css; 10449 10450 cgroup_taskset_for_each(task, css, tset) { 10451 if (!sched_rt_can_attach(css_tg(css), task)) 10452 return -EINVAL; 10453 } 10454 return 0; 10455 } 10456 #endif 10457 10458 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10459 { 10460 struct task_struct *task; 10461 struct cgroup_subsys_state *css; 10462 10463 cgroup_taskset_for_each(task, css, tset) 10464 sched_move_task(task); 10465 } 10466 10467 #ifdef CONFIG_UCLAMP_TASK_GROUP 10468 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10469 { 10470 struct cgroup_subsys_state *top_css = css; 10471 struct uclamp_se *uc_parent = NULL; 10472 struct uclamp_se *uc_se = NULL; 10473 unsigned int eff[UCLAMP_CNT]; 10474 enum uclamp_id clamp_id; 10475 unsigned int clamps; 10476 10477 lockdep_assert_held(&uclamp_mutex); 10478 SCHED_WARN_ON(!rcu_read_lock_held()); 10479 10480 css_for_each_descendant_pre(css, top_css) { 10481 uc_parent = css_tg(css)->parent 10482 ? css_tg(css)->parent->uclamp : NULL; 10483 10484 for_each_clamp_id(clamp_id) { 10485 /* Assume effective clamps matches requested clamps */ 10486 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10487 /* Cap effective clamps with parent's effective clamps */ 10488 if (uc_parent && 10489 eff[clamp_id] > uc_parent[clamp_id].value) { 10490 eff[clamp_id] = uc_parent[clamp_id].value; 10491 } 10492 } 10493 /* Ensure protection is always capped by limit */ 10494 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10495 10496 /* Propagate most restrictive effective clamps */ 10497 clamps = 0x0; 10498 uc_se = css_tg(css)->uclamp; 10499 for_each_clamp_id(clamp_id) { 10500 if (eff[clamp_id] == uc_se[clamp_id].value) 10501 continue; 10502 uc_se[clamp_id].value = eff[clamp_id]; 10503 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10504 clamps |= (0x1 << clamp_id); 10505 } 10506 if (!clamps) { 10507 css = css_rightmost_descendant(css); 10508 continue; 10509 } 10510 10511 /* Immediately update descendants RUNNABLE tasks */ 10512 uclamp_update_active_tasks(css); 10513 } 10514 } 10515 10516 /* 10517 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10518 * C expression. Since there is no way to convert a macro argument (N) into a 10519 * character constant, use two levels of macros. 10520 */ 10521 #define _POW10(exp) ((unsigned int)1e##exp) 10522 #define POW10(exp) _POW10(exp) 10523 10524 struct uclamp_request { 10525 #define UCLAMP_PERCENT_SHIFT 2 10526 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10527 s64 percent; 10528 u64 util; 10529 int ret; 10530 }; 10531 10532 static inline struct uclamp_request 10533 capacity_from_percent(char *buf) 10534 { 10535 struct uclamp_request req = { 10536 .percent = UCLAMP_PERCENT_SCALE, 10537 .util = SCHED_CAPACITY_SCALE, 10538 .ret = 0, 10539 }; 10540 10541 buf = strim(buf); 10542 if (strcmp(buf, "max")) { 10543 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10544 &req.percent); 10545 if (req.ret) 10546 return req; 10547 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10548 req.ret = -ERANGE; 10549 return req; 10550 } 10551 10552 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10553 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10554 } 10555 10556 return req; 10557 } 10558 10559 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10560 size_t nbytes, loff_t off, 10561 enum uclamp_id clamp_id) 10562 { 10563 struct uclamp_request req; 10564 struct task_group *tg; 10565 10566 req = capacity_from_percent(buf); 10567 if (req.ret) 10568 return req.ret; 10569 10570 static_branch_enable(&sched_uclamp_used); 10571 10572 mutex_lock(&uclamp_mutex); 10573 rcu_read_lock(); 10574 10575 tg = css_tg(of_css(of)); 10576 if (tg->uclamp_req[clamp_id].value != req.util) 10577 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10578 10579 /* 10580 * Because of not recoverable conversion rounding we keep track of the 10581 * exact requested value 10582 */ 10583 tg->uclamp_pct[clamp_id] = req.percent; 10584 10585 /* Update effective clamps to track the most restrictive value */ 10586 cpu_util_update_eff(of_css(of)); 10587 10588 rcu_read_unlock(); 10589 mutex_unlock(&uclamp_mutex); 10590 10591 return nbytes; 10592 } 10593 10594 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10595 char *buf, size_t nbytes, 10596 loff_t off) 10597 { 10598 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10599 } 10600 10601 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10602 char *buf, size_t nbytes, 10603 loff_t off) 10604 { 10605 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10606 } 10607 10608 static inline void cpu_uclamp_print(struct seq_file *sf, 10609 enum uclamp_id clamp_id) 10610 { 10611 struct task_group *tg; 10612 u64 util_clamp; 10613 u64 percent; 10614 u32 rem; 10615 10616 rcu_read_lock(); 10617 tg = css_tg(seq_css(sf)); 10618 util_clamp = tg->uclamp_req[clamp_id].value; 10619 rcu_read_unlock(); 10620 10621 if (util_clamp == SCHED_CAPACITY_SCALE) { 10622 seq_puts(sf, "max\n"); 10623 return; 10624 } 10625 10626 percent = tg->uclamp_pct[clamp_id]; 10627 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10628 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10629 } 10630 10631 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10632 { 10633 cpu_uclamp_print(sf, UCLAMP_MIN); 10634 return 0; 10635 } 10636 10637 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10638 { 10639 cpu_uclamp_print(sf, UCLAMP_MAX); 10640 return 0; 10641 } 10642 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10643 10644 #ifdef CONFIG_FAIR_GROUP_SCHED 10645 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10646 struct cftype *cftype, u64 shareval) 10647 { 10648 if (shareval > scale_load_down(ULONG_MAX)) 10649 shareval = MAX_SHARES; 10650 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10651 } 10652 10653 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10654 struct cftype *cft) 10655 { 10656 struct task_group *tg = css_tg(css); 10657 10658 return (u64) scale_load_down(tg->shares); 10659 } 10660 10661 #ifdef CONFIG_CFS_BANDWIDTH 10662 static DEFINE_MUTEX(cfs_constraints_mutex); 10663 10664 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10665 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10666 /* More than 203 days if BW_SHIFT equals 20. */ 10667 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10668 10669 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10670 10671 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10672 u64 burst) 10673 { 10674 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10675 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10676 10677 if (tg == &root_task_group) 10678 return -EINVAL; 10679 10680 /* 10681 * Ensure we have at some amount of bandwidth every period. This is 10682 * to prevent reaching a state of large arrears when throttled via 10683 * entity_tick() resulting in prolonged exit starvation. 10684 */ 10685 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10686 return -EINVAL; 10687 10688 /* 10689 * Likewise, bound things on the other side by preventing insane quota 10690 * periods. This also allows us to normalize in computing quota 10691 * feasibility. 10692 */ 10693 if (period > max_cfs_quota_period) 10694 return -EINVAL; 10695 10696 /* 10697 * Bound quota to defend quota against overflow during bandwidth shift. 10698 */ 10699 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10700 return -EINVAL; 10701 10702 if (quota != RUNTIME_INF && (burst > quota || 10703 burst + quota > max_cfs_runtime)) 10704 return -EINVAL; 10705 10706 /* 10707 * Prevent race between setting of cfs_rq->runtime_enabled and 10708 * unthrottle_offline_cfs_rqs(). 10709 */ 10710 cpus_read_lock(); 10711 mutex_lock(&cfs_constraints_mutex); 10712 ret = __cfs_schedulable(tg, period, quota); 10713 if (ret) 10714 goto out_unlock; 10715 10716 runtime_enabled = quota != RUNTIME_INF; 10717 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10718 /* 10719 * If we need to toggle cfs_bandwidth_used, off->on must occur 10720 * before making related changes, and on->off must occur afterwards 10721 */ 10722 if (runtime_enabled && !runtime_was_enabled) 10723 cfs_bandwidth_usage_inc(); 10724 raw_spin_lock_irq(&cfs_b->lock); 10725 cfs_b->period = ns_to_ktime(period); 10726 cfs_b->quota = quota; 10727 cfs_b->burst = burst; 10728 10729 __refill_cfs_bandwidth_runtime(cfs_b); 10730 10731 /* Restart the period timer (if active) to handle new period expiry: */ 10732 if (runtime_enabled) 10733 start_cfs_bandwidth(cfs_b); 10734 10735 raw_spin_unlock_irq(&cfs_b->lock); 10736 10737 for_each_online_cpu(i) { 10738 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10739 struct rq *rq = cfs_rq->rq; 10740 struct rq_flags rf; 10741 10742 rq_lock_irq(rq, &rf); 10743 cfs_rq->runtime_enabled = runtime_enabled; 10744 cfs_rq->runtime_remaining = 0; 10745 10746 if (cfs_rq->throttled) 10747 unthrottle_cfs_rq(cfs_rq); 10748 rq_unlock_irq(rq, &rf); 10749 } 10750 if (runtime_was_enabled && !runtime_enabled) 10751 cfs_bandwidth_usage_dec(); 10752 out_unlock: 10753 mutex_unlock(&cfs_constraints_mutex); 10754 cpus_read_unlock(); 10755 10756 return ret; 10757 } 10758 10759 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10760 { 10761 u64 quota, period, burst; 10762 10763 period = ktime_to_ns(tg->cfs_bandwidth.period); 10764 burst = tg->cfs_bandwidth.burst; 10765 if (cfs_quota_us < 0) 10766 quota = RUNTIME_INF; 10767 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10768 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10769 else 10770 return -EINVAL; 10771 10772 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10773 } 10774 10775 static long tg_get_cfs_quota(struct task_group *tg) 10776 { 10777 u64 quota_us; 10778 10779 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10780 return -1; 10781 10782 quota_us = tg->cfs_bandwidth.quota; 10783 do_div(quota_us, NSEC_PER_USEC); 10784 10785 return quota_us; 10786 } 10787 10788 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10789 { 10790 u64 quota, period, burst; 10791 10792 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10793 return -EINVAL; 10794 10795 period = (u64)cfs_period_us * NSEC_PER_USEC; 10796 quota = tg->cfs_bandwidth.quota; 10797 burst = tg->cfs_bandwidth.burst; 10798 10799 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10800 } 10801 10802 static long tg_get_cfs_period(struct task_group *tg) 10803 { 10804 u64 cfs_period_us; 10805 10806 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10807 do_div(cfs_period_us, NSEC_PER_USEC); 10808 10809 return cfs_period_us; 10810 } 10811 10812 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10813 { 10814 u64 quota, period, burst; 10815 10816 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10817 return -EINVAL; 10818 10819 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10820 period = ktime_to_ns(tg->cfs_bandwidth.period); 10821 quota = tg->cfs_bandwidth.quota; 10822 10823 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10824 } 10825 10826 static long tg_get_cfs_burst(struct task_group *tg) 10827 { 10828 u64 burst_us; 10829 10830 burst_us = tg->cfs_bandwidth.burst; 10831 do_div(burst_us, NSEC_PER_USEC); 10832 10833 return burst_us; 10834 } 10835 10836 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10837 struct cftype *cft) 10838 { 10839 return tg_get_cfs_quota(css_tg(css)); 10840 } 10841 10842 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10843 struct cftype *cftype, s64 cfs_quota_us) 10844 { 10845 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10846 } 10847 10848 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10849 struct cftype *cft) 10850 { 10851 return tg_get_cfs_period(css_tg(css)); 10852 } 10853 10854 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10855 struct cftype *cftype, u64 cfs_period_us) 10856 { 10857 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10858 } 10859 10860 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10861 struct cftype *cft) 10862 { 10863 return tg_get_cfs_burst(css_tg(css)); 10864 } 10865 10866 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10867 struct cftype *cftype, u64 cfs_burst_us) 10868 { 10869 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10870 } 10871 10872 struct cfs_schedulable_data { 10873 struct task_group *tg; 10874 u64 period, quota; 10875 }; 10876 10877 /* 10878 * normalize group quota/period to be quota/max_period 10879 * note: units are usecs 10880 */ 10881 static u64 normalize_cfs_quota(struct task_group *tg, 10882 struct cfs_schedulable_data *d) 10883 { 10884 u64 quota, period; 10885 10886 if (tg == d->tg) { 10887 period = d->period; 10888 quota = d->quota; 10889 } else { 10890 period = tg_get_cfs_period(tg); 10891 quota = tg_get_cfs_quota(tg); 10892 } 10893 10894 /* note: these should typically be equivalent */ 10895 if (quota == RUNTIME_INF || quota == -1) 10896 return RUNTIME_INF; 10897 10898 return to_ratio(period, quota); 10899 } 10900 10901 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10902 { 10903 struct cfs_schedulable_data *d = data; 10904 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10905 s64 quota = 0, parent_quota = -1; 10906 10907 if (!tg->parent) { 10908 quota = RUNTIME_INF; 10909 } else { 10910 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10911 10912 quota = normalize_cfs_quota(tg, d); 10913 parent_quota = parent_b->hierarchical_quota; 10914 10915 /* 10916 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10917 * always take the min. On cgroup1, only inherit when no 10918 * limit is set: 10919 */ 10920 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10921 quota = min(quota, parent_quota); 10922 } else { 10923 if (quota == RUNTIME_INF) 10924 quota = parent_quota; 10925 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10926 return -EINVAL; 10927 } 10928 } 10929 cfs_b->hierarchical_quota = quota; 10930 10931 return 0; 10932 } 10933 10934 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10935 { 10936 int ret; 10937 struct cfs_schedulable_data data = { 10938 .tg = tg, 10939 .period = period, 10940 .quota = quota, 10941 }; 10942 10943 if (quota != RUNTIME_INF) { 10944 do_div(data.period, NSEC_PER_USEC); 10945 do_div(data.quota, NSEC_PER_USEC); 10946 } 10947 10948 rcu_read_lock(); 10949 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10950 rcu_read_unlock(); 10951 10952 return ret; 10953 } 10954 10955 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10956 { 10957 struct task_group *tg = css_tg(seq_css(sf)); 10958 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10959 10960 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10961 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10962 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10963 10964 if (schedstat_enabled() && tg != &root_task_group) { 10965 struct sched_statistics *stats; 10966 u64 ws = 0; 10967 int i; 10968 10969 for_each_possible_cpu(i) { 10970 stats = __schedstats_from_se(tg->se[i]); 10971 ws += schedstat_val(stats->wait_sum); 10972 } 10973 10974 seq_printf(sf, "wait_sum %llu\n", ws); 10975 } 10976 10977 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10978 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10979 10980 return 0; 10981 } 10982 #endif /* CONFIG_CFS_BANDWIDTH */ 10983 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10984 10985 #ifdef CONFIG_RT_GROUP_SCHED 10986 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10987 struct cftype *cft, s64 val) 10988 { 10989 return sched_group_set_rt_runtime(css_tg(css), val); 10990 } 10991 10992 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10993 struct cftype *cft) 10994 { 10995 return sched_group_rt_runtime(css_tg(css)); 10996 } 10997 10998 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10999 struct cftype *cftype, u64 rt_period_us) 11000 { 11001 return sched_group_set_rt_period(css_tg(css), rt_period_us); 11002 } 11003 11004 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 11005 struct cftype *cft) 11006 { 11007 return sched_group_rt_period(css_tg(css)); 11008 } 11009 #endif /* CONFIG_RT_GROUP_SCHED */ 11010 11011 #ifdef CONFIG_FAIR_GROUP_SCHED 11012 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 11013 struct cftype *cft) 11014 { 11015 return css_tg(css)->idle; 11016 } 11017 11018 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 11019 struct cftype *cft, s64 idle) 11020 { 11021 return sched_group_set_idle(css_tg(css), idle); 11022 } 11023 #endif 11024 11025 static struct cftype cpu_legacy_files[] = { 11026 #ifdef CONFIG_FAIR_GROUP_SCHED 11027 { 11028 .name = "shares", 11029 .read_u64 = cpu_shares_read_u64, 11030 .write_u64 = cpu_shares_write_u64, 11031 }, 11032 { 11033 .name = "idle", 11034 .read_s64 = cpu_idle_read_s64, 11035 .write_s64 = cpu_idle_write_s64, 11036 }, 11037 #endif 11038 #ifdef CONFIG_CFS_BANDWIDTH 11039 { 11040 .name = "cfs_quota_us", 11041 .read_s64 = cpu_cfs_quota_read_s64, 11042 .write_s64 = cpu_cfs_quota_write_s64, 11043 }, 11044 { 11045 .name = "cfs_period_us", 11046 .read_u64 = cpu_cfs_period_read_u64, 11047 .write_u64 = cpu_cfs_period_write_u64, 11048 }, 11049 { 11050 .name = "cfs_burst_us", 11051 .read_u64 = cpu_cfs_burst_read_u64, 11052 .write_u64 = cpu_cfs_burst_write_u64, 11053 }, 11054 { 11055 .name = "stat", 11056 .seq_show = cpu_cfs_stat_show, 11057 }, 11058 #endif 11059 #ifdef CONFIG_RT_GROUP_SCHED 11060 { 11061 .name = "rt_runtime_us", 11062 .read_s64 = cpu_rt_runtime_read, 11063 .write_s64 = cpu_rt_runtime_write, 11064 }, 11065 { 11066 .name = "rt_period_us", 11067 .read_u64 = cpu_rt_period_read_uint, 11068 .write_u64 = cpu_rt_period_write_uint, 11069 }, 11070 #endif 11071 #ifdef CONFIG_UCLAMP_TASK_GROUP 11072 { 11073 .name = "uclamp.min", 11074 .flags = CFTYPE_NOT_ON_ROOT, 11075 .seq_show = cpu_uclamp_min_show, 11076 .write = cpu_uclamp_min_write, 11077 }, 11078 { 11079 .name = "uclamp.max", 11080 .flags = CFTYPE_NOT_ON_ROOT, 11081 .seq_show = cpu_uclamp_max_show, 11082 .write = cpu_uclamp_max_write, 11083 }, 11084 #endif 11085 { } /* Terminate */ 11086 }; 11087 11088 static int cpu_extra_stat_show(struct seq_file *sf, 11089 struct cgroup_subsys_state *css) 11090 { 11091 #ifdef CONFIG_CFS_BANDWIDTH 11092 { 11093 struct task_group *tg = css_tg(css); 11094 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11095 u64 throttled_usec, burst_usec; 11096 11097 throttled_usec = cfs_b->throttled_time; 11098 do_div(throttled_usec, NSEC_PER_USEC); 11099 burst_usec = cfs_b->burst_time; 11100 do_div(burst_usec, NSEC_PER_USEC); 11101 11102 seq_printf(sf, "nr_periods %d\n" 11103 "nr_throttled %d\n" 11104 "throttled_usec %llu\n" 11105 "nr_bursts %d\n" 11106 "burst_usec %llu\n", 11107 cfs_b->nr_periods, cfs_b->nr_throttled, 11108 throttled_usec, cfs_b->nr_burst, burst_usec); 11109 } 11110 #endif 11111 return 0; 11112 } 11113 11114 #ifdef CONFIG_FAIR_GROUP_SCHED 11115 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 11116 struct cftype *cft) 11117 { 11118 struct task_group *tg = css_tg(css); 11119 u64 weight = scale_load_down(tg->shares); 11120 11121 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 11122 } 11123 11124 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 11125 struct cftype *cft, u64 weight) 11126 { 11127 /* 11128 * cgroup weight knobs should use the common MIN, DFL and MAX 11129 * values which are 1, 100 and 10000 respectively. While it loses 11130 * a bit of range on both ends, it maps pretty well onto the shares 11131 * value used by scheduler and the round-trip conversions preserve 11132 * the original value over the entire range. 11133 */ 11134 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 11135 return -ERANGE; 11136 11137 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 11138 11139 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11140 } 11141 11142 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 11143 struct cftype *cft) 11144 { 11145 unsigned long weight = scale_load_down(css_tg(css)->shares); 11146 int last_delta = INT_MAX; 11147 int prio, delta; 11148 11149 /* find the closest nice value to the current weight */ 11150 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 11151 delta = abs(sched_prio_to_weight[prio] - weight); 11152 if (delta >= last_delta) 11153 break; 11154 last_delta = delta; 11155 } 11156 11157 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11158 } 11159 11160 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11161 struct cftype *cft, s64 nice) 11162 { 11163 unsigned long weight; 11164 int idx; 11165 11166 if (nice < MIN_NICE || nice > MAX_NICE) 11167 return -ERANGE; 11168 11169 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11170 idx = array_index_nospec(idx, 40); 11171 weight = sched_prio_to_weight[idx]; 11172 11173 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11174 } 11175 #endif 11176 11177 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11178 long period, long quota) 11179 { 11180 if (quota < 0) 11181 seq_puts(sf, "max"); 11182 else 11183 seq_printf(sf, "%ld", quota); 11184 11185 seq_printf(sf, " %ld\n", period); 11186 } 11187 11188 /* caller should put the current value in *@periodp before calling */ 11189 static int __maybe_unused cpu_period_quota_parse(char *buf, 11190 u64 *periodp, u64 *quotap) 11191 { 11192 char tok[21]; /* U64_MAX */ 11193 11194 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11195 return -EINVAL; 11196 11197 *periodp *= NSEC_PER_USEC; 11198 11199 if (sscanf(tok, "%llu", quotap)) 11200 *quotap *= NSEC_PER_USEC; 11201 else if (!strcmp(tok, "max")) 11202 *quotap = RUNTIME_INF; 11203 else 11204 return -EINVAL; 11205 11206 return 0; 11207 } 11208 11209 #ifdef CONFIG_CFS_BANDWIDTH 11210 static int cpu_max_show(struct seq_file *sf, void *v) 11211 { 11212 struct task_group *tg = css_tg(seq_css(sf)); 11213 11214 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11215 return 0; 11216 } 11217 11218 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11219 char *buf, size_t nbytes, loff_t off) 11220 { 11221 struct task_group *tg = css_tg(of_css(of)); 11222 u64 period = tg_get_cfs_period(tg); 11223 u64 burst = tg_get_cfs_burst(tg); 11224 u64 quota; 11225 int ret; 11226 11227 ret = cpu_period_quota_parse(buf, &period, "a); 11228 if (!ret) 11229 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11230 return ret ?: nbytes; 11231 } 11232 #endif 11233 11234 static struct cftype cpu_files[] = { 11235 #ifdef CONFIG_FAIR_GROUP_SCHED 11236 { 11237 .name = "weight", 11238 .flags = CFTYPE_NOT_ON_ROOT, 11239 .read_u64 = cpu_weight_read_u64, 11240 .write_u64 = cpu_weight_write_u64, 11241 }, 11242 { 11243 .name = "weight.nice", 11244 .flags = CFTYPE_NOT_ON_ROOT, 11245 .read_s64 = cpu_weight_nice_read_s64, 11246 .write_s64 = cpu_weight_nice_write_s64, 11247 }, 11248 { 11249 .name = "idle", 11250 .flags = CFTYPE_NOT_ON_ROOT, 11251 .read_s64 = cpu_idle_read_s64, 11252 .write_s64 = cpu_idle_write_s64, 11253 }, 11254 #endif 11255 #ifdef CONFIG_CFS_BANDWIDTH 11256 { 11257 .name = "max", 11258 .flags = CFTYPE_NOT_ON_ROOT, 11259 .seq_show = cpu_max_show, 11260 .write = cpu_max_write, 11261 }, 11262 { 11263 .name = "max.burst", 11264 .flags = CFTYPE_NOT_ON_ROOT, 11265 .read_u64 = cpu_cfs_burst_read_u64, 11266 .write_u64 = cpu_cfs_burst_write_u64, 11267 }, 11268 #endif 11269 #ifdef CONFIG_UCLAMP_TASK_GROUP 11270 { 11271 .name = "uclamp.min", 11272 .flags = CFTYPE_NOT_ON_ROOT, 11273 .seq_show = cpu_uclamp_min_show, 11274 .write = cpu_uclamp_min_write, 11275 }, 11276 { 11277 .name = "uclamp.max", 11278 .flags = CFTYPE_NOT_ON_ROOT, 11279 .seq_show = cpu_uclamp_max_show, 11280 .write = cpu_uclamp_max_write, 11281 }, 11282 #endif 11283 { } /* terminate */ 11284 }; 11285 11286 struct cgroup_subsys cpu_cgrp_subsys = { 11287 .css_alloc = cpu_cgroup_css_alloc, 11288 .css_online = cpu_cgroup_css_online, 11289 .css_released = cpu_cgroup_css_released, 11290 .css_free = cpu_cgroup_css_free, 11291 .css_extra_stat_show = cpu_extra_stat_show, 11292 #ifdef CONFIG_RT_GROUP_SCHED 11293 .can_attach = cpu_cgroup_can_attach, 11294 #endif 11295 .attach = cpu_cgroup_attach, 11296 .legacy_cftypes = cpu_legacy_files, 11297 .dfl_cftypes = cpu_files, 11298 .early_init = true, 11299 .threaded = true, 11300 }; 11301 11302 #endif /* CONFIG_CGROUP_SCHED */ 11303 11304 void dump_cpu_task(int cpu) 11305 { 11306 if (cpu == smp_processor_id() && in_hardirq()) { 11307 struct pt_regs *regs; 11308 11309 regs = get_irq_regs(); 11310 if (regs) { 11311 show_regs(regs); 11312 return; 11313 } 11314 } 11315 11316 if (trigger_single_cpu_backtrace(cpu)) 11317 return; 11318 11319 pr_info("Task dump for CPU %d:\n", cpu); 11320 sched_show_task(cpu_curr(cpu)); 11321 } 11322 11323 /* 11324 * Nice levels are multiplicative, with a gentle 10% change for every 11325 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11326 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11327 * that remained on nice 0. 11328 * 11329 * The "10% effect" is relative and cumulative: from _any_ nice level, 11330 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11331 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11332 * If a task goes up by ~10% and another task goes down by ~10% then 11333 * the relative distance between them is ~25%.) 11334 */ 11335 const int sched_prio_to_weight[40] = { 11336 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11337 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11338 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11339 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11340 /* 0 */ 1024, 820, 655, 526, 423, 11341 /* 5 */ 335, 272, 215, 172, 137, 11342 /* 10 */ 110, 87, 70, 56, 45, 11343 /* 15 */ 36, 29, 23, 18, 15, 11344 }; 11345 11346 /* 11347 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11348 * 11349 * In cases where the weight does not change often, we can use the 11350 * precalculated inverse to speed up arithmetics by turning divisions 11351 * into multiplications: 11352 */ 11353 const u32 sched_prio_to_wmult[40] = { 11354 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11355 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11356 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11357 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11358 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11359 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11360 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11361 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11362 }; 11363 11364 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11365 { 11366 trace_sched_update_nr_running_tp(rq, count); 11367 } 11368