xref: /openbmc/linux/kernel/sched/core.c (revision f8502fba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #undef CREATE_TRACE_POINTS
84 
85 #include "sched.h"
86 #include "stats.h"
87 #include "autogroup.h"
88 
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93 
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97 
98 /*
99  * Export tracepoints that act as a bare tracehook (ie: have no trace event
100  * associated with them) to allow external modules to probe them.
101  */
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
113 
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 #ifdef CONFIG_SCHED_DEBUG
117 /*
118  * Debugging: various feature bits
119  *
120  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121  * sysctl_sched_features, defined in sched.h, to allow constants propagation
122  * at compile time and compiler optimization based on features default.
123  */
124 #define SCHED_FEAT(name, enabled)	\
125 	(1UL << __SCHED_FEAT_##name) * enabled |
126 const_debug unsigned int sysctl_sched_features =
127 #include "features.h"
128 	0;
129 #undef SCHED_FEAT
130 
131 /*
132  * Print a warning if need_resched is set for the given duration (if
133  * LATENCY_WARN is enabled).
134  *
135  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136  * per boot.
137  */
138 __read_mostly int sysctl_resched_latency_warn_ms = 100;
139 __read_mostly int sysctl_resched_latency_warn_once = 1;
140 #endif /* CONFIG_SCHED_DEBUG */
141 
142 /*
143  * Number of tasks to iterate in a single balance run.
144  * Limited because this is done with IRQs disabled.
145  */
146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
147 
148 __read_mostly int scheduler_running;
149 
150 #ifdef CONFIG_SCHED_CORE
151 
152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
153 
154 /* kernel prio, less is more */
155 static inline int __task_prio(struct task_struct *p)
156 {
157 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
158 		return -2;
159 
160 	if (rt_prio(p->prio)) /* includes deadline */
161 		return p->prio; /* [-1, 99] */
162 
163 	if (p->sched_class == &idle_sched_class)
164 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
165 
166 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
167 }
168 
169 /*
170  * l(a,b)
171  * le(a,b) := !l(b,a)
172  * g(a,b)  := l(b,a)
173  * ge(a,b) := !l(a,b)
174  */
175 
176 /* real prio, less is less */
177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
178 {
179 
180 	int pa = __task_prio(a), pb = __task_prio(b);
181 
182 	if (-pa < -pb)
183 		return true;
184 
185 	if (-pb < -pa)
186 		return false;
187 
188 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
189 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
190 
191 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
192 		return cfs_prio_less(a, b, in_fi);
193 
194 	return false;
195 }
196 
197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
198 {
199 	if (a->core_cookie < b->core_cookie)
200 		return true;
201 
202 	if (a->core_cookie > b->core_cookie)
203 		return false;
204 
205 	/* flip prio, so high prio is leftmost */
206 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
207 		return true;
208 
209 	return false;
210 }
211 
212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
213 
214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
215 {
216 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
217 }
218 
219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
220 {
221 	const struct task_struct *p = __node_2_sc(node);
222 	unsigned long cookie = (unsigned long)key;
223 
224 	if (cookie < p->core_cookie)
225 		return -1;
226 
227 	if (cookie > p->core_cookie)
228 		return 1;
229 
230 	return 0;
231 }
232 
233 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
234 {
235 	rq->core->core_task_seq++;
236 
237 	if (!p->core_cookie)
238 		return;
239 
240 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
241 }
242 
243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
244 {
245 	rq->core->core_task_seq++;
246 
247 	if (sched_core_enqueued(p)) {
248 		rb_erase(&p->core_node, &rq->core_tree);
249 		RB_CLEAR_NODE(&p->core_node);
250 	}
251 
252 	/*
253 	 * Migrating the last task off the cpu, with the cpu in forced idle
254 	 * state. Reschedule to create an accounting edge for forced idle,
255 	 * and re-examine whether the core is still in forced idle state.
256 	 */
257 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
258 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
259 		resched_curr(rq);
260 }
261 
262 /*
263  * Find left-most (aka, highest priority) task matching @cookie.
264  */
265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
266 {
267 	struct rb_node *node;
268 
269 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
270 	/*
271 	 * The idle task always matches any cookie!
272 	 */
273 	if (!node)
274 		return idle_sched_class.pick_task(rq);
275 
276 	return __node_2_sc(node);
277 }
278 
279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
280 {
281 	struct rb_node *node = &p->core_node;
282 
283 	node = rb_next(node);
284 	if (!node)
285 		return NULL;
286 
287 	p = container_of(node, struct task_struct, core_node);
288 	if (p->core_cookie != cookie)
289 		return NULL;
290 
291 	return p;
292 }
293 
294 /*
295  * Magic required such that:
296  *
297  *	raw_spin_rq_lock(rq);
298  *	...
299  *	raw_spin_rq_unlock(rq);
300  *
301  * ends up locking and unlocking the _same_ lock, and all CPUs
302  * always agree on what rq has what lock.
303  *
304  * XXX entirely possible to selectively enable cores, don't bother for now.
305  */
306 
307 static DEFINE_MUTEX(sched_core_mutex);
308 static atomic_t sched_core_count;
309 static struct cpumask sched_core_mask;
310 
311 static void sched_core_lock(int cpu, unsigned long *flags)
312 {
313 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
314 	int t, i = 0;
315 
316 	local_irq_save(*flags);
317 	for_each_cpu(t, smt_mask)
318 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
319 }
320 
321 static void sched_core_unlock(int cpu, unsigned long *flags)
322 {
323 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
324 	int t;
325 
326 	for_each_cpu(t, smt_mask)
327 		raw_spin_unlock(&cpu_rq(t)->__lock);
328 	local_irq_restore(*flags);
329 }
330 
331 static void __sched_core_flip(bool enabled)
332 {
333 	unsigned long flags;
334 	int cpu, t;
335 
336 	cpus_read_lock();
337 
338 	/*
339 	 * Toggle the online cores, one by one.
340 	 */
341 	cpumask_copy(&sched_core_mask, cpu_online_mask);
342 	for_each_cpu(cpu, &sched_core_mask) {
343 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
344 
345 		sched_core_lock(cpu, &flags);
346 
347 		for_each_cpu(t, smt_mask)
348 			cpu_rq(t)->core_enabled = enabled;
349 
350 		cpu_rq(cpu)->core->core_forceidle_start = 0;
351 
352 		sched_core_unlock(cpu, &flags);
353 
354 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
355 	}
356 
357 	/*
358 	 * Toggle the offline CPUs.
359 	 */
360 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
361 		cpu_rq(cpu)->core_enabled = enabled;
362 
363 	cpus_read_unlock();
364 }
365 
366 static void sched_core_assert_empty(void)
367 {
368 	int cpu;
369 
370 	for_each_possible_cpu(cpu)
371 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
372 }
373 
374 static void __sched_core_enable(void)
375 {
376 	static_branch_enable(&__sched_core_enabled);
377 	/*
378 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
379 	 * and future ones will observe !sched_core_disabled().
380 	 */
381 	synchronize_rcu();
382 	__sched_core_flip(true);
383 	sched_core_assert_empty();
384 }
385 
386 static void __sched_core_disable(void)
387 {
388 	sched_core_assert_empty();
389 	__sched_core_flip(false);
390 	static_branch_disable(&__sched_core_enabled);
391 }
392 
393 void sched_core_get(void)
394 {
395 	if (atomic_inc_not_zero(&sched_core_count))
396 		return;
397 
398 	mutex_lock(&sched_core_mutex);
399 	if (!atomic_read(&sched_core_count))
400 		__sched_core_enable();
401 
402 	smp_mb__before_atomic();
403 	atomic_inc(&sched_core_count);
404 	mutex_unlock(&sched_core_mutex);
405 }
406 
407 static void __sched_core_put(struct work_struct *work)
408 {
409 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
410 		__sched_core_disable();
411 		mutex_unlock(&sched_core_mutex);
412 	}
413 }
414 
415 void sched_core_put(void)
416 {
417 	static DECLARE_WORK(_work, __sched_core_put);
418 
419 	/*
420 	 * "There can be only one"
421 	 *
422 	 * Either this is the last one, or we don't actually need to do any
423 	 * 'work'. If it is the last *again*, we rely on
424 	 * WORK_STRUCT_PENDING_BIT.
425 	 */
426 	if (!atomic_add_unless(&sched_core_count, -1, 1))
427 		schedule_work(&_work);
428 }
429 
430 #else /* !CONFIG_SCHED_CORE */
431 
432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
433 static inline void
434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
435 
436 #endif /* CONFIG_SCHED_CORE */
437 
438 /*
439  * Serialization rules:
440  *
441  * Lock order:
442  *
443  *   p->pi_lock
444  *     rq->lock
445  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
446  *
447  *  rq1->lock
448  *    rq2->lock  where: rq1 < rq2
449  *
450  * Regular state:
451  *
452  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
453  * local CPU's rq->lock, it optionally removes the task from the runqueue and
454  * always looks at the local rq data structures to find the most eligible task
455  * to run next.
456  *
457  * Task enqueue is also under rq->lock, possibly taken from another CPU.
458  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
459  * the local CPU to avoid bouncing the runqueue state around [ see
460  * ttwu_queue_wakelist() ]
461  *
462  * Task wakeup, specifically wakeups that involve migration, are horribly
463  * complicated to avoid having to take two rq->locks.
464  *
465  * Special state:
466  *
467  * System-calls and anything external will use task_rq_lock() which acquires
468  * both p->pi_lock and rq->lock. As a consequence the state they change is
469  * stable while holding either lock:
470  *
471  *  - sched_setaffinity()/
472  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
473  *  - set_user_nice():		p->se.load, p->*prio
474  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
475  *				p->se.load, p->rt_priority,
476  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
477  *  - sched_setnuma():		p->numa_preferred_nid
478  *  - sched_move_task():	p->sched_task_group
479  *  - uclamp_update_active()	p->uclamp*
480  *
481  * p->state <- TASK_*:
482  *
483  *   is changed locklessly using set_current_state(), __set_current_state() or
484  *   set_special_state(), see their respective comments, or by
485  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
486  *   concurrent self.
487  *
488  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
489  *
490  *   is set by activate_task() and cleared by deactivate_task(), under
491  *   rq->lock. Non-zero indicates the task is runnable, the special
492  *   ON_RQ_MIGRATING state is used for migration without holding both
493  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
494  *
495  * p->on_cpu <- { 0, 1 }:
496  *
497  *   is set by prepare_task() and cleared by finish_task() such that it will be
498  *   set before p is scheduled-in and cleared after p is scheduled-out, both
499  *   under rq->lock. Non-zero indicates the task is running on its CPU.
500  *
501  *   [ The astute reader will observe that it is possible for two tasks on one
502  *     CPU to have ->on_cpu = 1 at the same time. ]
503  *
504  * task_cpu(p): is changed by set_task_cpu(), the rules are:
505  *
506  *  - Don't call set_task_cpu() on a blocked task:
507  *
508  *    We don't care what CPU we're not running on, this simplifies hotplug,
509  *    the CPU assignment of blocked tasks isn't required to be valid.
510  *
511  *  - for try_to_wake_up(), called under p->pi_lock:
512  *
513  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
514  *
515  *  - for migration called under rq->lock:
516  *    [ see task_on_rq_migrating() in task_rq_lock() ]
517  *
518  *    o move_queued_task()
519  *    o detach_task()
520  *
521  *  - for migration called under double_rq_lock():
522  *
523  *    o __migrate_swap_task()
524  *    o push_rt_task() / pull_rt_task()
525  *    o push_dl_task() / pull_dl_task()
526  *    o dl_task_offline_migration()
527  *
528  */
529 
530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
531 {
532 	raw_spinlock_t *lock;
533 
534 	/* Matches synchronize_rcu() in __sched_core_enable() */
535 	preempt_disable();
536 	if (sched_core_disabled()) {
537 		raw_spin_lock_nested(&rq->__lock, subclass);
538 		/* preempt_count *MUST* be > 1 */
539 		preempt_enable_no_resched();
540 		return;
541 	}
542 
543 	for (;;) {
544 		lock = __rq_lockp(rq);
545 		raw_spin_lock_nested(lock, subclass);
546 		if (likely(lock == __rq_lockp(rq))) {
547 			/* preempt_count *MUST* be > 1 */
548 			preempt_enable_no_resched();
549 			return;
550 		}
551 		raw_spin_unlock(lock);
552 	}
553 }
554 
555 bool raw_spin_rq_trylock(struct rq *rq)
556 {
557 	raw_spinlock_t *lock;
558 	bool ret;
559 
560 	/* Matches synchronize_rcu() in __sched_core_enable() */
561 	preempt_disable();
562 	if (sched_core_disabled()) {
563 		ret = raw_spin_trylock(&rq->__lock);
564 		preempt_enable();
565 		return ret;
566 	}
567 
568 	for (;;) {
569 		lock = __rq_lockp(rq);
570 		ret = raw_spin_trylock(lock);
571 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
572 			preempt_enable();
573 			return ret;
574 		}
575 		raw_spin_unlock(lock);
576 	}
577 }
578 
579 void raw_spin_rq_unlock(struct rq *rq)
580 {
581 	raw_spin_unlock(rq_lockp(rq));
582 }
583 
584 #ifdef CONFIG_SMP
585 /*
586  * double_rq_lock - safely lock two runqueues
587  */
588 void double_rq_lock(struct rq *rq1, struct rq *rq2)
589 {
590 	lockdep_assert_irqs_disabled();
591 
592 	if (rq_order_less(rq2, rq1))
593 		swap(rq1, rq2);
594 
595 	raw_spin_rq_lock(rq1);
596 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
597 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
598 
599 	double_rq_clock_clear_update(rq1, rq2);
600 }
601 #endif
602 
603 /*
604  * __task_rq_lock - lock the rq @p resides on.
605  */
606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
607 	__acquires(rq->lock)
608 {
609 	struct rq *rq;
610 
611 	lockdep_assert_held(&p->pi_lock);
612 
613 	for (;;) {
614 		rq = task_rq(p);
615 		raw_spin_rq_lock(rq);
616 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
617 			rq_pin_lock(rq, rf);
618 			return rq;
619 		}
620 		raw_spin_rq_unlock(rq);
621 
622 		while (unlikely(task_on_rq_migrating(p)))
623 			cpu_relax();
624 	}
625 }
626 
627 /*
628  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
629  */
630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
631 	__acquires(p->pi_lock)
632 	__acquires(rq->lock)
633 {
634 	struct rq *rq;
635 
636 	for (;;) {
637 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
638 		rq = task_rq(p);
639 		raw_spin_rq_lock(rq);
640 		/*
641 		 *	move_queued_task()		task_rq_lock()
642 		 *
643 		 *	ACQUIRE (rq->lock)
644 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
645 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
646 		 *	[S] ->cpu = new_cpu		[L] task_rq()
647 		 *					[L] ->on_rq
648 		 *	RELEASE (rq->lock)
649 		 *
650 		 * If we observe the old CPU in task_rq_lock(), the acquire of
651 		 * the old rq->lock will fully serialize against the stores.
652 		 *
653 		 * If we observe the new CPU in task_rq_lock(), the address
654 		 * dependency headed by '[L] rq = task_rq()' and the acquire
655 		 * will pair with the WMB to ensure we then also see migrating.
656 		 */
657 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
658 			rq_pin_lock(rq, rf);
659 			return rq;
660 		}
661 		raw_spin_rq_unlock(rq);
662 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
663 
664 		while (unlikely(task_on_rq_migrating(p)))
665 			cpu_relax();
666 	}
667 }
668 
669 /*
670  * RQ-clock updating methods:
671  */
672 
673 static void update_rq_clock_task(struct rq *rq, s64 delta)
674 {
675 /*
676  * In theory, the compile should just see 0 here, and optimize out the call
677  * to sched_rt_avg_update. But I don't trust it...
678  */
679 	s64 __maybe_unused steal = 0, irq_delta = 0;
680 
681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
682 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
683 
684 	/*
685 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
686 	 * this case when a previous update_rq_clock() happened inside a
687 	 * {soft,}irq region.
688 	 *
689 	 * When this happens, we stop ->clock_task and only update the
690 	 * prev_irq_time stamp to account for the part that fit, so that a next
691 	 * update will consume the rest. This ensures ->clock_task is
692 	 * monotonic.
693 	 *
694 	 * It does however cause some slight miss-attribution of {soft,}irq
695 	 * time, a more accurate solution would be to update the irq_time using
696 	 * the current rq->clock timestamp, except that would require using
697 	 * atomic ops.
698 	 */
699 	if (irq_delta > delta)
700 		irq_delta = delta;
701 
702 	rq->prev_irq_time += irq_delta;
703 	delta -= irq_delta;
704 	psi_account_irqtime(rq->curr, irq_delta);
705 #endif
706 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
707 	if (static_key_false((&paravirt_steal_rq_enabled))) {
708 		steal = paravirt_steal_clock(cpu_of(rq));
709 		steal -= rq->prev_steal_time_rq;
710 
711 		if (unlikely(steal > delta))
712 			steal = delta;
713 
714 		rq->prev_steal_time_rq += steal;
715 		delta -= steal;
716 	}
717 #endif
718 
719 	rq->clock_task += delta;
720 
721 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
722 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
723 		update_irq_load_avg(rq, irq_delta + steal);
724 #endif
725 	update_rq_clock_pelt(rq, delta);
726 }
727 
728 void update_rq_clock(struct rq *rq)
729 {
730 	s64 delta;
731 
732 	lockdep_assert_rq_held(rq);
733 
734 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
735 		return;
736 
737 #ifdef CONFIG_SCHED_DEBUG
738 	if (sched_feat(WARN_DOUBLE_CLOCK))
739 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
740 	rq->clock_update_flags |= RQCF_UPDATED;
741 #endif
742 
743 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
744 	if (delta < 0)
745 		return;
746 	rq->clock += delta;
747 	update_rq_clock_task(rq, delta);
748 }
749 
750 #ifdef CONFIG_SCHED_HRTICK
751 /*
752  * Use HR-timers to deliver accurate preemption points.
753  */
754 
755 static void hrtick_clear(struct rq *rq)
756 {
757 	if (hrtimer_active(&rq->hrtick_timer))
758 		hrtimer_cancel(&rq->hrtick_timer);
759 }
760 
761 /*
762  * High-resolution timer tick.
763  * Runs from hardirq context with interrupts disabled.
764  */
765 static enum hrtimer_restart hrtick(struct hrtimer *timer)
766 {
767 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
768 	struct rq_flags rf;
769 
770 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
771 
772 	rq_lock(rq, &rf);
773 	update_rq_clock(rq);
774 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
775 	rq_unlock(rq, &rf);
776 
777 	return HRTIMER_NORESTART;
778 }
779 
780 #ifdef CONFIG_SMP
781 
782 static void __hrtick_restart(struct rq *rq)
783 {
784 	struct hrtimer *timer = &rq->hrtick_timer;
785 	ktime_t time = rq->hrtick_time;
786 
787 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
788 }
789 
790 /*
791  * called from hardirq (IPI) context
792  */
793 static void __hrtick_start(void *arg)
794 {
795 	struct rq *rq = arg;
796 	struct rq_flags rf;
797 
798 	rq_lock(rq, &rf);
799 	__hrtick_restart(rq);
800 	rq_unlock(rq, &rf);
801 }
802 
803 /*
804  * Called to set the hrtick timer state.
805  *
806  * called with rq->lock held and irqs disabled
807  */
808 void hrtick_start(struct rq *rq, u64 delay)
809 {
810 	struct hrtimer *timer = &rq->hrtick_timer;
811 	s64 delta;
812 
813 	/*
814 	 * Don't schedule slices shorter than 10000ns, that just
815 	 * doesn't make sense and can cause timer DoS.
816 	 */
817 	delta = max_t(s64, delay, 10000LL);
818 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
819 
820 	if (rq == this_rq())
821 		__hrtick_restart(rq);
822 	else
823 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
824 }
825 
826 #else
827 /*
828  * Called to set the hrtick timer state.
829  *
830  * called with rq->lock held and irqs disabled
831  */
832 void hrtick_start(struct rq *rq, u64 delay)
833 {
834 	/*
835 	 * Don't schedule slices shorter than 10000ns, that just
836 	 * doesn't make sense. Rely on vruntime for fairness.
837 	 */
838 	delay = max_t(u64, delay, 10000LL);
839 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
840 		      HRTIMER_MODE_REL_PINNED_HARD);
841 }
842 
843 #endif /* CONFIG_SMP */
844 
845 static void hrtick_rq_init(struct rq *rq)
846 {
847 #ifdef CONFIG_SMP
848 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
849 #endif
850 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
851 	rq->hrtick_timer.function = hrtick;
852 }
853 #else	/* CONFIG_SCHED_HRTICK */
854 static inline void hrtick_clear(struct rq *rq)
855 {
856 }
857 
858 static inline void hrtick_rq_init(struct rq *rq)
859 {
860 }
861 #endif	/* CONFIG_SCHED_HRTICK */
862 
863 /*
864  * cmpxchg based fetch_or, macro so it works for different integer types
865  */
866 #define fetch_or(ptr, mask)						\
867 	({								\
868 		typeof(ptr) _ptr = (ptr);				\
869 		typeof(mask) _mask = (mask);				\
870 		typeof(*_ptr) _val = *_ptr;				\
871 									\
872 		do {							\
873 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
874 	_val;								\
875 })
876 
877 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
878 /*
879  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
880  * this avoids any races wrt polling state changes and thereby avoids
881  * spurious IPIs.
882  */
883 static inline bool set_nr_and_not_polling(struct task_struct *p)
884 {
885 	struct thread_info *ti = task_thread_info(p);
886 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
887 }
888 
889 /*
890  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
891  *
892  * If this returns true, then the idle task promises to call
893  * sched_ttwu_pending() and reschedule soon.
894  */
895 static bool set_nr_if_polling(struct task_struct *p)
896 {
897 	struct thread_info *ti = task_thread_info(p);
898 	typeof(ti->flags) val = READ_ONCE(ti->flags);
899 
900 	for (;;) {
901 		if (!(val & _TIF_POLLING_NRFLAG))
902 			return false;
903 		if (val & _TIF_NEED_RESCHED)
904 			return true;
905 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
906 			break;
907 	}
908 	return true;
909 }
910 
911 #else
912 static inline bool set_nr_and_not_polling(struct task_struct *p)
913 {
914 	set_tsk_need_resched(p);
915 	return true;
916 }
917 
918 #ifdef CONFIG_SMP
919 static inline bool set_nr_if_polling(struct task_struct *p)
920 {
921 	return false;
922 }
923 #endif
924 #endif
925 
926 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
927 {
928 	struct wake_q_node *node = &task->wake_q;
929 
930 	/*
931 	 * Atomically grab the task, if ->wake_q is !nil already it means
932 	 * it's already queued (either by us or someone else) and will get the
933 	 * wakeup due to that.
934 	 *
935 	 * In order to ensure that a pending wakeup will observe our pending
936 	 * state, even in the failed case, an explicit smp_mb() must be used.
937 	 */
938 	smp_mb__before_atomic();
939 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
940 		return false;
941 
942 	/*
943 	 * The head is context local, there can be no concurrency.
944 	 */
945 	*head->lastp = node;
946 	head->lastp = &node->next;
947 	return true;
948 }
949 
950 /**
951  * wake_q_add() - queue a wakeup for 'later' waking.
952  * @head: the wake_q_head to add @task to
953  * @task: the task to queue for 'later' wakeup
954  *
955  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
956  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
957  * instantly.
958  *
959  * This function must be used as-if it were wake_up_process(); IOW the task
960  * must be ready to be woken at this location.
961  */
962 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
963 {
964 	if (__wake_q_add(head, task))
965 		get_task_struct(task);
966 }
967 
968 /**
969  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
970  * @head: the wake_q_head to add @task to
971  * @task: the task to queue for 'later' wakeup
972  *
973  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
974  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
975  * instantly.
976  *
977  * This function must be used as-if it were wake_up_process(); IOW the task
978  * must be ready to be woken at this location.
979  *
980  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
981  * that already hold reference to @task can call the 'safe' version and trust
982  * wake_q to do the right thing depending whether or not the @task is already
983  * queued for wakeup.
984  */
985 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
986 {
987 	if (!__wake_q_add(head, task))
988 		put_task_struct(task);
989 }
990 
991 void wake_up_q(struct wake_q_head *head)
992 {
993 	struct wake_q_node *node = head->first;
994 
995 	while (node != WAKE_Q_TAIL) {
996 		struct task_struct *task;
997 
998 		task = container_of(node, struct task_struct, wake_q);
999 		/* Task can safely be re-inserted now: */
1000 		node = node->next;
1001 		task->wake_q.next = NULL;
1002 
1003 		/*
1004 		 * wake_up_process() executes a full barrier, which pairs with
1005 		 * the queueing in wake_q_add() so as not to miss wakeups.
1006 		 */
1007 		wake_up_process(task);
1008 		put_task_struct(task);
1009 	}
1010 }
1011 
1012 /*
1013  * resched_curr - mark rq's current task 'to be rescheduled now'.
1014  *
1015  * On UP this means the setting of the need_resched flag, on SMP it
1016  * might also involve a cross-CPU call to trigger the scheduler on
1017  * the target CPU.
1018  */
1019 void resched_curr(struct rq *rq)
1020 {
1021 	struct task_struct *curr = rq->curr;
1022 	int cpu;
1023 
1024 	lockdep_assert_rq_held(rq);
1025 
1026 	if (test_tsk_need_resched(curr))
1027 		return;
1028 
1029 	cpu = cpu_of(rq);
1030 
1031 	if (cpu == smp_processor_id()) {
1032 		set_tsk_need_resched(curr);
1033 		set_preempt_need_resched();
1034 		return;
1035 	}
1036 
1037 	if (set_nr_and_not_polling(curr))
1038 		smp_send_reschedule(cpu);
1039 	else
1040 		trace_sched_wake_idle_without_ipi(cpu);
1041 }
1042 
1043 void resched_cpu(int cpu)
1044 {
1045 	struct rq *rq = cpu_rq(cpu);
1046 	unsigned long flags;
1047 
1048 	raw_spin_rq_lock_irqsave(rq, flags);
1049 	if (cpu_online(cpu) || cpu == smp_processor_id())
1050 		resched_curr(rq);
1051 	raw_spin_rq_unlock_irqrestore(rq, flags);
1052 }
1053 
1054 #ifdef CONFIG_SMP
1055 #ifdef CONFIG_NO_HZ_COMMON
1056 /*
1057  * In the semi idle case, use the nearest busy CPU for migrating timers
1058  * from an idle CPU.  This is good for power-savings.
1059  *
1060  * We don't do similar optimization for completely idle system, as
1061  * selecting an idle CPU will add more delays to the timers than intended
1062  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1063  */
1064 int get_nohz_timer_target(void)
1065 {
1066 	int i, cpu = smp_processor_id(), default_cpu = -1;
1067 	struct sched_domain *sd;
1068 	const struct cpumask *hk_mask;
1069 
1070 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1071 		if (!idle_cpu(cpu))
1072 			return cpu;
1073 		default_cpu = cpu;
1074 	}
1075 
1076 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1077 
1078 	rcu_read_lock();
1079 	for_each_domain(cpu, sd) {
1080 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1081 			if (cpu == i)
1082 				continue;
1083 
1084 			if (!idle_cpu(i)) {
1085 				cpu = i;
1086 				goto unlock;
1087 			}
1088 		}
1089 	}
1090 
1091 	if (default_cpu == -1)
1092 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1093 	cpu = default_cpu;
1094 unlock:
1095 	rcu_read_unlock();
1096 	return cpu;
1097 }
1098 
1099 /*
1100  * When add_timer_on() enqueues a timer into the timer wheel of an
1101  * idle CPU then this timer might expire before the next timer event
1102  * which is scheduled to wake up that CPU. In case of a completely
1103  * idle system the next event might even be infinite time into the
1104  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1105  * leaves the inner idle loop so the newly added timer is taken into
1106  * account when the CPU goes back to idle and evaluates the timer
1107  * wheel for the next timer event.
1108  */
1109 static void wake_up_idle_cpu(int cpu)
1110 {
1111 	struct rq *rq = cpu_rq(cpu);
1112 
1113 	if (cpu == smp_processor_id())
1114 		return;
1115 
1116 	if (set_nr_and_not_polling(rq->idle))
1117 		smp_send_reschedule(cpu);
1118 	else
1119 		trace_sched_wake_idle_without_ipi(cpu);
1120 }
1121 
1122 static bool wake_up_full_nohz_cpu(int cpu)
1123 {
1124 	/*
1125 	 * We just need the target to call irq_exit() and re-evaluate
1126 	 * the next tick. The nohz full kick at least implies that.
1127 	 * If needed we can still optimize that later with an
1128 	 * empty IRQ.
1129 	 */
1130 	if (cpu_is_offline(cpu))
1131 		return true;  /* Don't try to wake offline CPUs. */
1132 	if (tick_nohz_full_cpu(cpu)) {
1133 		if (cpu != smp_processor_id() ||
1134 		    tick_nohz_tick_stopped())
1135 			tick_nohz_full_kick_cpu(cpu);
1136 		return true;
1137 	}
1138 
1139 	return false;
1140 }
1141 
1142 /*
1143  * Wake up the specified CPU.  If the CPU is going offline, it is the
1144  * caller's responsibility to deal with the lost wakeup, for example,
1145  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1146  */
1147 void wake_up_nohz_cpu(int cpu)
1148 {
1149 	if (!wake_up_full_nohz_cpu(cpu))
1150 		wake_up_idle_cpu(cpu);
1151 }
1152 
1153 static void nohz_csd_func(void *info)
1154 {
1155 	struct rq *rq = info;
1156 	int cpu = cpu_of(rq);
1157 	unsigned int flags;
1158 
1159 	/*
1160 	 * Release the rq::nohz_csd.
1161 	 */
1162 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1163 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1164 
1165 	rq->idle_balance = idle_cpu(cpu);
1166 	if (rq->idle_balance && !need_resched()) {
1167 		rq->nohz_idle_balance = flags;
1168 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1169 	}
1170 }
1171 
1172 #endif /* CONFIG_NO_HZ_COMMON */
1173 
1174 #ifdef CONFIG_NO_HZ_FULL
1175 bool sched_can_stop_tick(struct rq *rq)
1176 {
1177 	int fifo_nr_running;
1178 
1179 	/* Deadline tasks, even if single, need the tick */
1180 	if (rq->dl.dl_nr_running)
1181 		return false;
1182 
1183 	/*
1184 	 * If there are more than one RR tasks, we need the tick to affect the
1185 	 * actual RR behaviour.
1186 	 */
1187 	if (rq->rt.rr_nr_running) {
1188 		if (rq->rt.rr_nr_running == 1)
1189 			return true;
1190 		else
1191 			return false;
1192 	}
1193 
1194 	/*
1195 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1196 	 * forced preemption between FIFO tasks.
1197 	 */
1198 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1199 	if (fifo_nr_running)
1200 		return true;
1201 
1202 	/*
1203 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1204 	 * if there's more than one we need the tick for involuntary
1205 	 * preemption.
1206 	 */
1207 	if (rq->nr_running > 1)
1208 		return false;
1209 
1210 	return true;
1211 }
1212 #endif /* CONFIG_NO_HZ_FULL */
1213 #endif /* CONFIG_SMP */
1214 
1215 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1216 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1217 /*
1218  * Iterate task_group tree rooted at *from, calling @down when first entering a
1219  * node and @up when leaving it for the final time.
1220  *
1221  * Caller must hold rcu_lock or sufficient equivalent.
1222  */
1223 int walk_tg_tree_from(struct task_group *from,
1224 			     tg_visitor down, tg_visitor up, void *data)
1225 {
1226 	struct task_group *parent, *child;
1227 	int ret;
1228 
1229 	parent = from;
1230 
1231 down:
1232 	ret = (*down)(parent, data);
1233 	if (ret)
1234 		goto out;
1235 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1236 		parent = child;
1237 		goto down;
1238 
1239 up:
1240 		continue;
1241 	}
1242 	ret = (*up)(parent, data);
1243 	if (ret || parent == from)
1244 		goto out;
1245 
1246 	child = parent;
1247 	parent = parent->parent;
1248 	if (parent)
1249 		goto up;
1250 out:
1251 	return ret;
1252 }
1253 
1254 int tg_nop(struct task_group *tg, void *data)
1255 {
1256 	return 0;
1257 }
1258 #endif
1259 
1260 static void set_load_weight(struct task_struct *p, bool update_load)
1261 {
1262 	int prio = p->static_prio - MAX_RT_PRIO;
1263 	struct load_weight *load = &p->se.load;
1264 
1265 	/*
1266 	 * SCHED_IDLE tasks get minimal weight:
1267 	 */
1268 	if (task_has_idle_policy(p)) {
1269 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1270 		load->inv_weight = WMULT_IDLEPRIO;
1271 		return;
1272 	}
1273 
1274 	/*
1275 	 * SCHED_OTHER tasks have to update their load when changing their
1276 	 * weight
1277 	 */
1278 	if (update_load && p->sched_class == &fair_sched_class) {
1279 		reweight_task(p, prio);
1280 	} else {
1281 		load->weight = scale_load(sched_prio_to_weight[prio]);
1282 		load->inv_weight = sched_prio_to_wmult[prio];
1283 	}
1284 }
1285 
1286 #ifdef CONFIG_UCLAMP_TASK
1287 /*
1288  * Serializes updates of utilization clamp values
1289  *
1290  * The (slow-path) user-space triggers utilization clamp value updates which
1291  * can require updates on (fast-path) scheduler's data structures used to
1292  * support enqueue/dequeue operations.
1293  * While the per-CPU rq lock protects fast-path update operations, user-space
1294  * requests are serialized using a mutex to reduce the risk of conflicting
1295  * updates or API abuses.
1296  */
1297 static DEFINE_MUTEX(uclamp_mutex);
1298 
1299 /* Max allowed minimum utilization */
1300 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1301 
1302 /* Max allowed maximum utilization */
1303 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1304 
1305 /*
1306  * By default RT tasks run at the maximum performance point/capacity of the
1307  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1308  * SCHED_CAPACITY_SCALE.
1309  *
1310  * This knob allows admins to change the default behavior when uclamp is being
1311  * used. In battery powered devices, particularly, running at the maximum
1312  * capacity and frequency will increase energy consumption and shorten the
1313  * battery life.
1314  *
1315  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1316  *
1317  * This knob will not override the system default sched_util_clamp_min defined
1318  * above.
1319  */
1320 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1321 
1322 /* All clamps are required to be less or equal than these values */
1323 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1324 
1325 /*
1326  * This static key is used to reduce the uclamp overhead in the fast path. It
1327  * primarily disables the call to uclamp_rq_{inc, dec}() in
1328  * enqueue/dequeue_task().
1329  *
1330  * This allows users to continue to enable uclamp in their kernel config with
1331  * minimum uclamp overhead in the fast path.
1332  *
1333  * As soon as userspace modifies any of the uclamp knobs, the static key is
1334  * enabled, since we have an actual users that make use of uclamp
1335  * functionality.
1336  *
1337  * The knobs that would enable this static key are:
1338  *
1339  *   * A task modifying its uclamp value with sched_setattr().
1340  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1341  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1342  */
1343 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1344 
1345 /* Integer rounded range for each bucket */
1346 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1347 
1348 #define for_each_clamp_id(clamp_id) \
1349 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1350 
1351 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1352 {
1353 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1354 }
1355 
1356 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1357 {
1358 	if (clamp_id == UCLAMP_MIN)
1359 		return 0;
1360 	return SCHED_CAPACITY_SCALE;
1361 }
1362 
1363 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1364 				 unsigned int value, bool user_defined)
1365 {
1366 	uc_se->value = value;
1367 	uc_se->bucket_id = uclamp_bucket_id(value);
1368 	uc_se->user_defined = user_defined;
1369 }
1370 
1371 static inline unsigned int
1372 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1373 		  unsigned int clamp_value)
1374 {
1375 	/*
1376 	 * Avoid blocked utilization pushing up the frequency when we go
1377 	 * idle (which drops the max-clamp) by retaining the last known
1378 	 * max-clamp.
1379 	 */
1380 	if (clamp_id == UCLAMP_MAX) {
1381 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1382 		return clamp_value;
1383 	}
1384 
1385 	return uclamp_none(UCLAMP_MIN);
1386 }
1387 
1388 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1389 				     unsigned int clamp_value)
1390 {
1391 	/* Reset max-clamp retention only on idle exit */
1392 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1393 		return;
1394 
1395 	uclamp_rq_set(rq, clamp_id, clamp_value);
1396 }
1397 
1398 static inline
1399 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1400 				   unsigned int clamp_value)
1401 {
1402 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1403 	int bucket_id = UCLAMP_BUCKETS - 1;
1404 
1405 	/*
1406 	 * Since both min and max clamps are max aggregated, find the
1407 	 * top most bucket with tasks in.
1408 	 */
1409 	for ( ; bucket_id >= 0; bucket_id--) {
1410 		if (!bucket[bucket_id].tasks)
1411 			continue;
1412 		return bucket[bucket_id].value;
1413 	}
1414 
1415 	/* No tasks -- default clamp values */
1416 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1417 }
1418 
1419 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1420 {
1421 	unsigned int default_util_min;
1422 	struct uclamp_se *uc_se;
1423 
1424 	lockdep_assert_held(&p->pi_lock);
1425 
1426 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1427 
1428 	/* Only sync if user didn't override the default */
1429 	if (uc_se->user_defined)
1430 		return;
1431 
1432 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1433 	uclamp_se_set(uc_se, default_util_min, false);
1434 }
1435 
1436 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1437 {
1438 	struct rq_flags rf;
1439 	struct rq *rq;
1440 
1441 	if (!rt_task(p))
1442 		return;
1443 
1444 	/* Protect updates to p->uclamp_* */
1445 	rq = task_rq_lock(p, &rf);
1446 	__uclamp_update_util_min_rt_default(p);
1447 	task_rq_unlock(rq, p, &rf);
1448 }
1449 
1450 static inline struct uclamp_se
1451 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1452 {
1453 	/* Copy by value as we could modify it */
1454 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1455 #ifdef CONFIG_UCLAMP_TASK_GROUP
1456 	unsigned int tg_min, tg_max, value;
1457 
1458 	/*
1459 	 * Tasks in autogroups or root task group will be
1460 	 * restricted by system defaults.
1461 	 */
1462 	if (task_group_is_autogroup(task_group(p)))
1463 		return uc_req;
1464 	if (task_group(p) == &root_task_group)
1465 		return uc_req;
1466 
1467 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1468 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1469 	value = uc_req.value;
1470 	value = clamp(value, tg_min, tg_max);
1471 	uclamp_se_set(&uc_req, value, false);
1472 #endif
1473 
1474 	return uc_req;
1475 }
1476 
1477 /*
1478  * The effective clamp bucket index of a task depends on, by increasing
1479  * priority:
1480  * - the task specific clamp value, when explicitly requested from userspace
1481  * - the task group effective clamp value, for tasks not either in the root
1482  *   group or in an autogroup
1483  * - the system default clamp value, defined by the sysadmin
1484  */
1485 static inline struct uclamp_se
1486 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1487 {
1488 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1489 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1490 
1491 	/* System default restrictions always apply */
1492 	if (unlikely(uc_req.value > uc_max.value))
1493 		return uc_max;
1494 
1495 	return uc_req;
1496 }
1497 
1498 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1499 {
1500 	struct uclamp_se uc_eff;
1501 
1502 	/* Task currently refcounted: use back-annotated (effective) value */
1503 	if (p->uclamp[clamp_id].active)
1504 		return (unsigned long)p->uclamp[clamp_id].value;
1505 
1506 	uc_eff = uclamp_eff_get(p, clamp_id);
1507 
1508 	return (unsigned long)uc_eff.value;
1509 }
1510 
1511 /*
1512  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1513  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1514  * updates the rq's clamp value if required.
1515  *
1516  * Tasks can have a task-specific value requested from user-space, track
1517  * within each bucket the maximum value for tasks refcounted in it.
1518  * This "local max aggregation" allows to track the exact "requested" value
1519  * for each bucket when all its RUNNABLE tasks require the same clamp.
1520  */
1521 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1522 				    enum uclamp_id clamp_id)
1523 {
1524 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1525 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1526 	struct uclamp_bucket *bucket;
1527 
1528 	lockdep_assert_rq_held(rq);
1529 
1530 	/* Update task effective clamp */
1531 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1532 
1533 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1534 	bucket->tasks++;
1535 	uc_se->active = true;
1536 
1537 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1538 
1539 	/*
1540 	 * Local max aggregation: rq buckets always track the max
1541 	 * "requested" clamp value of its RUNNABLE tasks.
1542 	 */
1543 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1544 		bucket->value = uc_se->value;
1545 
1546 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1547 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1548 }
1549 
1550 /*
1551  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1552  * is released. If this is the last task reference counting the rq's max
1553  * active clamp value, then the rq's clamp value is updated.
1554  *
1555  * Both refcounted tasks and rq's cached clamp values are expected to be
1556  * always valid. If it's detected they are not, as defensive programming,
1557  * enforce the expected state and warn.
1558  */
1559 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1560 				    enum uclamp_id clamp_id)
1561 {
1562 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1563 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1564 	struct uclamp_bucket *bucket;
1565 	unsigned int bkt_clamp;
1566 	unsigned int rq_clamp;
1567 
1568 	lockdep_assert_rq_held(rq);
1569 
1570 	/*
1571 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1572 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1573 	 *
1574 	 * In this case the uc_se->active flag should be false since no uclamp
1575 	 * accounting was performed at enqueue time and we can just return
1576 	 * here.
1577 	 *
1578 	 * Need to be careful of the following enqueue/dequeue ordering
1579 	 * problem too
1580 	 *
1581 	 *	enqueue(taskA)
1582 	 *	// sched_uclamp_used gets enabled
1583 	 *	enqueue(taskB)
1584 	 *	dequeue(taskA)
1585 	 *	// Must not decrement bucket->tasks here
1586 	 *	dequeue(taskB)
1587 	 *
1588 	 * where we could end up with stale data in uc_se and
1589 	 * bucket[uc_se->bucket_id].
1590 	 *
1591 	 * The following check here eliminates the possibility of such race.
1592 	 */
1593 	if (unlikely(!uc_se->active))
1594 		return;
1595 
1596 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1597 
1598 	SCHED_WARN_ON(!bucket->tasks);
1599 	if (likely(bucket->tasks))
1600 		bucket->tasks--;
1601 
1602 	uc_se->active = false;
1603 
1604 	/*
1605 	 * Keep "local max aggregation" simple and accept to (possibly)
1606 	 * overboost some RUNNABLE tasks in the same bucket.
1607 	 * The rq clamp bucket value is reset to its base value whenever
1608 	 * there are no more RUNNABLE tasks refcounting it.
1609 	 */
1610 	if (likely(bucket->tasks))
1611 		return;
1612 
1613 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1614 	/*
1615 	 * Defensive programming: this should never happen. If it happens,
1616 	 * e.g. due to future modification, warn and fixup the expected value.
1617 	 */
1618 	SCHED_WARN_ON(bucket->value > rq_clamp);
1619 	if (bucket->value >= rq_clamp) {
1620 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1621 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1622 	}
1623 }
1624 
1625 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1626 {
1627 	enum uclamp_id clamp_id;
1628 
1629 	/*
1630 	 * Avoid any overhead until uclamp is actually used by the userspace.
1631 	 *
1632 	 * The condition is constructed such that a NOP is generated when
1633 	 * sched_uclamp_used is disabled.
1634 	 */
1635 	if (!static_branch_unlikely(&sched_uclamp_used))
1636 		return;
1637 
1638 	if (unlikely(!p->sched_class->uclamp_enabled))
1639 		return;
1640 
1641 	for_each_clamp_id(clamp_id)
1642 		uclamp_rq_inc_id(rq, p, clamp_id);
1643 
1644 	/* Reset clamp idle holding when there is one RUNNABLE task */
1645 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1646 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1647 }
1648 
1649 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1650 {
1651 	enum uclamp_id clamp_id;
1652 
1653 	/*
1654 	 * Avoid any overhead until uclamp is actually used by the userspace.
1655 	 *
1656 	 * The condition is constructed such that a NOP is generated when
1657 	 * sched_uclamp_used is disabled.
1658 	 */
1659 	if (!static_branch_unlikely(&sched_uclamp_used))
1660 		return;
1661 
1662 	if (unlikely(!p->sched_class->uclamp_enabled))
1663 		return;
1664 
1665 	for_each_clamp_id(clamp_id)
1666 		uclamp_rq_dec_id(rq, p, clamp_id);
1667 }
1668 
1669 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1670 				      enum uclamp_id clamp_id)
1671 {
1672 	if (!p->uclamp[clamp_id].active)
1673 		return;
1674 
1675 	uclamp_rq_dec_id(rq, p, clamp_id);
1676 	uclamp_rq_inc_id(rq, p, clamp_id);
1677 
1678 	/*
1679 	 * Make sure to clear the idle flag if we've transiently reached 0
1680 	 * active tasks on rq.
1681 	 */
1682 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1683 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1684 }
1685 
1686 static inline void
1687 uclamp_update_active(struct task_struct *p)
1688 {
1689 	enum uclamp_id clamp_id;
1690 	struct rq_flags rf;
1691 	struct rq *rq;
1692 
1693 	/*
1694 	 * Lock the task and the rq where the task is (or was) queued.
1695 	 *
1696 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1697 	 * price to pay to safely serialize util_{min,max} updates with
1698 	 * enqueues, dequeues and migration operations.
1699 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1700 	 */
1701 	rq = task_rq_lock(p, &rf);
1702 
1703 	/*
1704 	 * Setting the clamp bucket is serialized by task_rq_lock().
1705 	 * If the task is not yet RUNNABLE and its task_struct is not
1706 	 * affecting a valid clamp bucket, the next time it's enqueued,
1707 	 * it will already see the updated clamp bucket value.
1708 	 */
1709 	for_each_clamp_id(clamp_id)
1710 		uclamp_rq_reinc_id(rq, p, clamp_id);
1711 
1712 	task_rq_unlock(rq, p, &rf);
1713 }
1714 
1715 #ifdef CONFIG_UCLAMP_TASK_GROUP
1716 static inline void
1717 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1718 {
1719 	struct css_task_iter it;
1720 	struct task_struct *p;
1721 
1722 	css_task_iter_start(css, 0, &it);
1723 	while ((p = css_task_iter_next(&it)))
1724 		uclamp_update_active(p);
1725 	css_task_iter_end(&it);
1726 }
1727 
1728 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1729 #endif
1730 
1731 #ifdef CONFIG_SYSCTL
1732 #ifdef CONFIG_UCLAMP_TASK
1733 #ifdef CONFIG_UCLAMP_TASK_GROUP
1734 static void uclamp_update_root_tg(void)
1735 {
1736 	struct task_group *tg = &root_task_group;
1737 
1738 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1739 		      sysctl_sched_uclamp_util_min, false);
1740 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1741 		      sysctl_sched_uclamp_util_max, false);
1742 
1743 	rcu_read_lock();
1744 	cpu_util_update_eff(&root_task_group.css);
1745 	rcu_read_unlock();
1746 }
1747 #else
1748 static void uclamp_update_root_tg(void) { }
1749 #endif
1750 
1751 static void uclamp_sync_util_min_rt_default(void)
1752 {
1753 	struct task_struct *g, *p;
1754 
1755 	/*
1756 	 * copy_process()			sysctl_uclamp
1757 	 *					  uclamp_min_rt = X;
1758 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1759 	 *   // link thread			  smp_mb__after_spinlock()
1760 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1761 	 *   sched_post_fork()			  for_each_process_thread()
1762 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1763 	 *
1764 	 * Ensures that either sched_post_fork() will observe the new
1765 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1766 	 * task.
1767 	 */
1768 	read_lock(&tasklist_lock);
1769 	smp_mb__after_spinlock();
1770 	read_unlock(&tasklist_lock);
1771 
1772 	rcu_read_lock();
1773 	for_each_process_thread(g, p)
1774 		uclamp_update_util_min_rt_default(p);
1775 	rcu_read_unlock();
1776 }
1777 
1778 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1779 				void *buffer, size_t *lenp, loff_t *ppos)
1780 {
1781 	bool update_root_tg = false;
1782 	int old_min, old_max, old_min_rt;
1783 	int result;
1784 
1785 	mutex_lock(&uclamp_mutex);
1786 	old_min = sysctl_sched_uclamp_util_min;
1787 	old_max = sysctl_sched_uclamp_util_max;
1788 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1789 
1790 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1791 	if (result)
1792 		goto undo;
1793 	if (!write)
1794 		goto done;
1795 
1796 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1797 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1798 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1799 
1800 		result = -EINVAL;
1801 		goto undo;
1802 	}
1803 
1804 	if (old_min != sysctl_sched_uclamp_util_min) {
1805 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1806 			      sysctl_sched_uclamp_util_min, false);
1807 		update_root_tg = true;
1808 	}
1809 	if (old_max != sysctl_sched_uclamp_util_max) {
1810 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1811 			      sysctl_sched_uclamp_util_max, false);
1812 		update_root_tg = true;
1813 	}
1814 
1815 	if (update_root_tg) {
1816 		static_branch_enable(&sched_uclamp_used);
1817 		uclamp_update_root_tg();
1818 	}
1819 
1820 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1821 		static_branch_enable(&sched_uclamp_used);
1822 		uclamp_sync_util_min_rt_default();
1823 	}
1824 
1825 	/*
1826 	 * We update all RUNNABLE tasks only when task groups are in use.
1827 	 * Otherwise, keep it simple and do just a lazy update at each next
1828 	 * task enqueue time.
1829 	 */
1830 
1831 	goto done;
1832 
1833 undo:
1834 	sysctl_sched_uclamp_util_min = old_min;
1835 	sysctl_sched_uclamp_util_max = old_max;
1836 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1837 done:
1838 	mutex_unlock(&uclamp_mutex);
1839 
1840 	return result;
1841 }
1842 #endif
1843 #endif
1844 
1845 static int uclamp_validate(struct task_struct *p,
1846 			   const struct sched_attr *attr)
1847 {
1848 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1849 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1850 
1851 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1852 		util_min = attr->sched_util_min;
1853 
1854 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1855 			return -EINVAL;
1856 	}
1857 
1858 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1859 		util_max = attr->sched_util_max;
1860 
1861 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1862 			return -EINVAL;
1863 	}
1864 
1865 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1866 		return -EINVAL;
1867 
1868 	/*
1869 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1870 	 *
1871 	 * We need to do that here, because enabling static branches is a
1872 	 * blocking operation which obviously cannot be done while holding
1873 	 * scheduler locks.
1874 	 */
1875 	static_branch_enable(&sched_uclamp_used);
1876 
1877 	return 0;
1878 }
1879 
1880 static bool uclamp_reset(const struct sched_attr *attr,
1881 			 enum uclamp_id clamp_id,
1882 			 struct uclamp_se *uc_se)
1883 {
1884 	/* Reset on sched class change for a non user-defined clamp value. */
1885 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1886 	    !uc_se->user_defined)
1887 		return true;
1888 
1889 	/* Reset on sched_util_{min,max} == -1. */
1890 	if (clamp_id == UCLAMP_MIN &&
1891 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1892 	    attr->sched_util_min == -1) {
1893 		return true;
1894 	}
1895 
1896 	if (clamp_id == UCLAMP_MAX &&
1897 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1898 	    attr->sched_util_max == -1) {
1899 		return true;
1900 	}
1901 
1902 	return false;
1903 }
1904 
1905 static void __setscheduler_uclamp(struct task_struct *p,
1906 				  const struct sched_attr *attr)
1907 {
1908 	enum uclamp_id clamp_id;
1909 
1910 	for_each_clamp_id(clamp_id) {
1911 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1912 		unsigned int value;
1913 
1914 		if (!uclamp_reset(attr, clamp_id, uc_se))
1915 			continue;
1916 
1917 		/*
1918 		 * RT by default have a 100% boost value that could be modified
1919 		 * at runtime.
1920 		 */
1921 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1922 			value = sysctl_sched_uclamp_util_min_rt_default;
1923 		else
1924 			value = uclamp_none(clamp_id);
1925 
1926 		uclamp_se_set(uc_se, value, false);
1927 
1928 	}
1929 
1930 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1931 		return;
1932 
1933 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1934 	    attr->sched_util_min != -1) {
1935 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1936 			      attr->sched_util_min, true);
1937 	}
1938 
1939 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1940 	    attr->sched_util_max != -1) {
1941 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1942 			      attr->sched_util_max, true);
1943 	}
1944 }
1945 
1946 static void uclamp_fork(struct task_struct *p)
1947 {
1948 	enum uclamp_id clamp_id;
1949 
1950 	/*
1951 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1952 	 * as the task is still at its early fork stages.
1953 	 */
1954 	for_each_clamp_id(clamp_id)
1955 		p->uclamp[clamp_id].active = false;
1956 
1957 	if (likely(!p->sched_reset_on_fork))
1958 		return;
1959 
1960 	for_each_clamp_id(clamp_id) {
1961 		uclamp_se_set(&p->uclamp_req[clamp_id],
1962 			      uclamp_none(clamp_id), false);
1963 	}
1964 }
1965 
1966 static void uclamp_post_fork(struct task_struct *p)
1967 {
1968 	uclamp_update_util_min_rt_default(p);
1969 }
1970 
1971 static void __init init_uclamp_rq(struct rq *rq)
1972 {
1973 	enum uclamp_id clamp_id;
1974 	struct uclamp_rq *uc_rq = rq->uclamp;
1975 
1976 	for_each_clamp_id(clamp_id) {
1977 		uc_rq[clamp_id] = (struct uclamp_rq) {
1978 			.value = uclamp_none(clamp_id)
1979 		};
1980 	}
1981 
1982 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1983 }
1984 
1985 static void __init init_uclamp(void)
1986 {
1987 	struct uclamp_se uc_max = {};
1988 	enum uclamp_id clamp_id;
1989 	int cpu;
1990 
1991 	for_each_possible_cpu(cpu)
1992 		init_uclamp_rq(cpu_rq(cpu));
1993 
1994 	for_each_clamp_id(clamp_id) {
1995 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1996 			      uclamp_none(clamp_id), false);
1997 	}
1998 
1999 	/* System defaults allow max clamp values for both indexes */
2000 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2001 	for_each_clamp_id(clamp_id) {
2002 		uclamp_default[clamp_id] = uc_max;
2003 #ifdef CONFIG_UCLAMP_TASK_GROUP
2004 		root_task_group.uclamp_req[clamp_id] = uc_max;
2005 		root_task_group.uclamp[clamp_id] = uc_max;
2006 #endif
2007 	}
2008 }
2009 
2010 #else /* CONFIG_UCLAMP_TASK */
2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2013 static inline int uclamp_validate(struct task_struct *p,
2014 				  const struct sched_attr *attr)
2015 {
2016 	return -EOPNOTSUPP;
2017 }
2018 static void __setscheduler_uclamp(struct task_struct *p,
2019 				  const struct sched_attr *attr) { }
2020 static inline void uclamp_fork(struct task_struct *p) { }
2021 static inline void uclamp_post_fork(struct task_struct *p) { }
2022 static inline void init_uclamp(void) { }
2023 #endif /* CONFIG_UCLAMP_TASK */
2024 
2025 bool sched_task_on_rq(struct task_struct *p)
2026 {
2027 	return task_on_rq_queued(p);
2028 }
2029 
2030 unsigned long get_wchan(struct task_struct *p)
2031 {
2032 	unsigned long ip = 0;
2033 	unsigned int state;
2034 
2035 	if (!p || p == current)
2036 		return 0;
2037 
2038 	/* Only get wchan if task is blocked and we can keep it that way. */
2039 	raw_spin_lock_irq(&p->pi_lock);
2040 	state = READ_ONCE(p->__state);
2041 	smp_rmb(); /* see try_to_wake_up() */
2042 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2043 		ip = __get_wchan(p);
2044 	raw_spin_unlock_irq(&p->pi_lock);
2045 
2046 	return ip;
2047 }
2048 
2049 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2050 {
2051 	if (!(flags & ENQUEUE_NOCLOCK))
2052 		update_rq_clock(rq);
2053 
2054 	if (!(flags & ENQUEUE_RESTORE)) {
2055 		sched_info_enqueue(rq, p);
2056 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2057 	}
2058 
2059 	uclamp_rq_inc(rq, p);
2060 	p->sched_class->enqueue_task(rq, p, flags);
2061 
2062 	if (sched_core_enabled(rq))
2063 		sched_core_enqueue(rq, p);
2064 }
2065 
2066 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2067 {
2068 	if (sched_core_enabled(rq))
2069 		sched_core_dequeue(rq, p, flags);
2070 
2071 	if (!(flags & DEQUEUE_NOCLOCK))
2072 		update_rq_clock(rq);
2073 
2074 	if (!(flags & DEQUEUE_SAVE)) {
2075 		sched_info_dequeue(rq, p);
2076 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2077 	}
2078 
2079 	uclamp_rq_dec(rq, p);
2080 	p->sched_class->dequeue_task(rq, p, flags);
2081 }
2082 
2083 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2084 {
2085 	enqueue_task(rq, p, flags);
2086 
2087 	p->on_rq = TASK_ON_RQ_QUEUED;
2088 }
2089 
2090 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2091 {
2092 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2093 
2094 	dequeue_task(rq, p, flags);
2095 }
2096 
2097 static inline int __normal_prio(int policy, int rt_prio, int nice)
2098 {
2099 	int prio;
2100 
2101 	if (dl_policy(policy))
2102 		prio = MAX_DL_PRIO - 1;
2103 	else if (rt_policy(policy))
2104 		prio = MAX_RT_PRIO - 1 - rt_prio;
2105 	else
2106 		prio = NICE_TO_PRIO(nice);
2107 
2108 	return prio;
2109 }
2110 
2111 /*
2112  * Calculate the expected normal priority: i.e. priority
2113  * without taking RT-inheritance into account. Might be
2114  * boosted by interactivity modifiers. Changes upon fork,
2115  * setprio syscalls, and whenever the interactivity
2116  * estimator recalculates.
2117  */
2118 static inline int normal_prio(struct task_struct *p)
2119 {
2120 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2121 }
2122 
2123 /*
2124  * Calculate the current priority, i.e. the priority
2125  * taken into account by the scheduler. This value might
2126  * be boosted by RT tasks, or might be boosted by
2127  * interactivity modifiers. Will be RT if the task got
2128  * RT-boosted. If not then it returns p->normal_prio.
2129  */
2130 static int effective_prio(struct task_struct *p)
2131 {
2132 	p->normal_prio = normal_prio(p);
2133 	/*
2134 	 * If we are RT tasks or we were boosted to RT priority,
2135 	 * keep the priority unchanged. Otherwise, update priority
2136 	 * to the normal priority:
2137 	 */
2138 	if (!rt_prio(p->prio))
2139 		return p->normal_prio;
2140 	return p->prio;
2141 }
2142 
2143 /**
2144  * task_curr - is this task currently executing on a CPU?
2145  * @p: the task in question.
2146  *
2147  * Return: 1 if the task is currently executing. 0 otherwise.
2148  */
2149 inline int task_curr(const struct task_struct *p)
2150 {
2151 	return cpu_curr(task_cpu(p)) == p;
2152 }
2153 
2154 /*
2155  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2156  * use the balance_callback list if you want balancing.
2157  *
2158  * this means any call to check_class_changed() must be followed by a call to
2159  * balance_callback().
2160  */
2161 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2162 				       const struct sched_class *prev_class,
2163 				       int oldprio)
2164 {
2165 	if (prev_class != p->sched_class) {
2166 		if (prev_class->switched_from)
2167 			prev_class->switched_from(rq, p);
2168 
2169 		p->sched_class->switched_to(rq, p);
2170 	} else if (oldprio != p->prio || dl_task(p))
2171 		p->sched_class->prio_changed(rq, p, oldprio);
2172 }
2173 
2174 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2175 {
2176 	if (p->sched_class == rq->curr->sched_class)
2177 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2178 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2179 		resched_curr(rq);
2180 
2181 	/*
2182 	 * A queue event has occurred, and we're going to schedule.  In
2183 	 * this case, we can save a useless back to back clock update.
2184 	 */
2185 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2186 		rq_clock_skip_update(rq);
2187 }
2188 
2189 #ifdef CONFIG_SMP
2190 
2191 static void
2192 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2193 
2194 static int __set_cpus_allowed_ptr(struct task_struct *p,
2195 				  struct affinity_context *ctx);
2196 
2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2198 {
2199 	struct affinity_context ac = {
2200 		.new_mask  = cpumask_of(rq->cpu),
2201 		.flags     = SCA_MIGRATE_DISABLE,
2202 	};
2203 
2204 	if (likely(!p->migration_disabled))
2205 		return;
2206 
2207 	if (p->cpus_ptr != &p->cpus_mask)
2208 		return;
2209 
2210 	/*
2211 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2212 	 */
2213 	__do_set_cpus_allowed(p, &ac);
2214 }
2215 
2216 void migrate_disable(void)
2217 {
2218 	struct task_struct *p = current;
2219 
2220 	if (p->migration_disabled) {
2221 		p->migration_disabled++;
2222 		return;
2223 	}
2224 
2225 	preempt_disable();
2226 	this_rq()->nr_pinned++;
2227 	p->migration_disabled = 1;
2228 	preempt_enable();
2229 }
2230 EXPORT_SYMBOL_GPL(migrate_disable);
2231 
2232 void migrate_enable(void)
2233 {
2234 	struct task_struct *p = current;
2235 	struct affinity_context ac = {
2236 		.new_mask  = &p->cpus_mask,
2237 		.flags     = SCA_MIGRATE_ENABLE,
2238 	};
2239 
2240 	if (p->migration_disabled > 1) {
2241 		p->migration_disabled--;
2242 		return;
2243 	}
2244 
2245 	if (WARN_ON_ONCE(!p->migration_disabled))
2246 		return;
2247 
2248 	/*
2249 	 * Ensure stop_task runs either before or after this, and that
2250 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2251 	 */
2252 	preempt_disable();
2253 	if (p->cpus_ptr != &p->cpus_mask)
2254 		__set_cpus_allowed_ptr(p, &ac);
2255 	/*
2256 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2257 	 * regular cpus_mask, otherwise things that race (eg.
2258 	 * select_fallback_rq) get confused.
2259 	 */
2260 	barrier();
2261 	p->migration_disabled = 0;
2262 	this_rq()->nr_pinned--;
2263 	preempt_enable();
2264 }
2265 EXPORT_SYMBOL_GPL(migrate_enable);
2266 
2267 static inline bool rq_has_pinned_tasks(struct rq *rq)
2268 {
2269 	return rq->nr_pinned;
2270 }
2271 
2272 /*
2273  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2274  * __set_cpus_allowed_ptr() and select_fallback_rq().
2275  */
2276 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2277 {
2278 	/* When not in the task's cpumask, no point in looking further. */
2279 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2280 		return false;
2281 
2282 	/* migrate_disabled() must be allowed to finish. */
2283 	if (is_migration_disabled(p))
2284 		return cpu_online(cpu);
2285 
2286 	/* Non kernel threads are not allowed during either online or offline. */
2287 	if (!(p->flags & PF_KTHREAD))
2288 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2289 
2290 	/* KTHREAD_IS_PER_CPU is always allowed. */
2291 	if (kthread_is_per_cpu(p))
2292 		return cpu_online(cpu);
2293 
2294 	/* Regular kernel threads don't get to stay during offline. */
2295 	if (cpu_dying(cpu))
2296 		return false;
2297 
2298 	/* But are allowed during online. */
2299 	return cpu_online(cpu);
2300 }
2301 
2302 /*
2303  * This is how migration works:
2304  *
2305  * 1) we invoke migration_cpu_stop() on the target CPU using
2306  *    stop_one_cpu().
2307  * 2) stopper starts to run (implicitly forcing the migrated thread
2308  *    off the CPU)
2309  * 3) it checks whether the migrated task is still in the wrong runqueue.
2310  * 4) if it's in the wrong runqueue then the migration thread removes
2311  *    it and puts it into the right queue.
2312  * 5) stopper completes and stop_one_cpu() returns and the migration
2313  *    is done.
2314  */
2315 
2316 /*
2317  * move_queued_task - move a queued task to new rq.
2318  *
2319  * Returns (locked) new rq. Old rq's lock is released.
2320  */
2321 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2322 				   struct task_struct *p, int new_cpu)
2323 {
2324 	lockdep_assert_rq_held(rq);
2325 
2326 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2327 	set_task_cpu(p, new_cpu);
2328 	rq_unlock(rq, rf);
2329 
2330 	rq = cpu_rq(new_cpu);
2331 
2332 	rq_lock(rq, rf);
2333 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2334 	activate_task(rq, p, 0);
2335 	check_preempt_curr(rq, p, 0);
2336 
2337 	return rq;
2338 }
2339 
2340 struct migration_arg {
2341 	struct task_struct		*task;
2342 	int				dest_cpu;
2343 	struct set_affinity_pending	*pending;
2344 };
2345 
2346 /*
2347  * @refs: number of wait_for_completion()
2348  * @stop_pending: is @stop_work in use
2349  */
2350 struct set_affinity_pending {
2351 	refcount_t		refs;
2352 	unsigned int		stop_pending;
2353 	struct completion	done;
2354 	struct cpu_stop_work	stop_work;
2355 	struct migration_arg	arg;
2356 };
2357 
2358 /*
2359  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2360  * this because either it can't run here any more (set_cpus_allowed()
2361  * away from this CPU, or CPU going down), or because we're
2362  * attempting to rebalance this task on exec (sched_exec).
2363  *
2364  * So we race with normal scheduler movements, but that's OK, as long
2365  * as the task is no longer on this CPU.
2366  */
2367 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2368 				 struct task_struct *p, int dest_cpu)
2369 {
2370 	/* Affinity changed (again). */
2371 	if (!is_cpu_allowed(p, dest_cpu))
2372 		return rq;
2373 
2374 	update_rq_clock(rq);
2375 	rq = move_queued_task(rq, rf, p, dest_cpu);
2376 
2377 	return rq;
2378 }
2379 
2380 /*
2381  * migration_cpu_stop - this will be executed by a highprio stopper thread
2382  * and performs thread migration by bumping thread off CPU then
2383  * 'pushing' onto another runqueue.
2384  */
2385 static int migration_cpu_stop(void *data)
2386 {
2387 	struct migration_arg *arg = data;
2388 	struct set_affinity_pending *pending = arg->pending;
2389 	struct task_struct *p = arg->task;
2390 	struct rq *rq = this_rq();
2391 	bool complete = false;
2392 	struct rq_flags rf;
2393 
2394 	/*
2395 	 * The original target CPU might have gone down and we might
2396 	 * be on another CPU but it doesn't matter.
2397 	 */
2398 	local_irq_save(rf.flags);
2399 	/*
2400 	 * We need to explicitly wake pending tasks before running
2401 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2402 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2403 	 */
2404 	flush_smp_call_function_queue();
2405 
2406 	raw_spin_lock(&p->pi_lock);
2407 	rq_lock(rq, &rf);
2408 
2409 	/*
2410 	 * If we were passed a pending, then ->stop_pending was set, thus
2411 	 * p->migration_pending must have remained stable.
2412 	 */
2413 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2414 
2415 	/*
2416 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2417 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2418 	 * we're holding p->pi_lock.
2419 	 */
2420 	if (task_rq(p) == rq) {
2421 		if (is_migration_disabled(p))
2422 			goto out;
2423 
2424 		if (pending) {
2425 			p->migration_pending = NULL;
2426 			complete = true;
2427 
2428 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2429 				goto out;
2430 		}
2431 
2432 		if (task_on_rq_queued(p))
2433 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2434 		else
2435 			p->wake_cpu = arg->dest_cpu;
2436 
2437 		/*
2438 		 * XXX __migrate_task() can fail, at which point we might end
2439 		 * up running on a dodgy CPU, AFAICT this can only happen
2440 		 * during CPU hotplug, at which point we'll get pushed out
2441 		 * anyway, so it's probably not a big deal.
2442 		 */
2443 
2444 	} else if (pending) {
2445 		/*
2446 		 * This happens when we get migrated between migrate_enable()'s
2447 		 * preempt_enable() and scheduling the stopper task. At that
2448 		 * point we're a regular task again and not current anymore.
2449 		 *
2450 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2451 		 * more likely.
2452 		 */
2453 
2454 		/*
2455 		 * The task moved before the stopper got to run. We're holding
2456 		 * ->pi_lock, so the allowed mask is stable - if it got
2457 		 * somewhere allowed, we're done.
2458 		 */
2459 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2460 			p->migration_pending = NULL;
2461 			complete = true;
2462 			goto out;
2463 		}
2464 
2465 		/*
2466 		 * When migrate_enable() hits a rq mis-match we can't reliably
2467 		 * determine is_migration_disabled() and so have to chase after
2468 		 * it.
2469 		 */
2470 		WARN_ON_ONCE(!pending->stop_pending);
2471 		task_rq_unlock(rq, p, &rf);
2472 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2473 				    &pending->arg, &pending->stop_work);
2474 		return 0;
2475 	}
2476 out:
2477 	if (pending)
2478 		pending->stop_pending = false;
2479 	task_rq_unlock(rq, p, &rf);
2480 
2481 	if (complete)
2482 		complete_all(&pending->done);
2483 
2484 	return 0;
2485 }
2486 
2487 int push_cpu_stop(void *arg)
2488 {
2489 	struct rq *lowest_rq = NULL, *rq = this_rq();
2490 	struct task_struct *p = arg;
2491 
2492 	raw_spin_lock_irq(&p->pi_lock);
2493 	raw_spin_rq_lock(rq);
2494 
2495 	if (task_rq(p) != rq)
2496 		goto out_unlock;
2497 
2498 	if (is_migration_disabled(p)) {
2499 		p->migration_flags |= MDF_PUSH;
2500 		goto out_unlock;
2501 	}
2502 
2503 	p->migration_flags &= ~MDF_PUSH;
2504 
2505 	if (p->sched_class->find_lock_rq)
2506 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2507 
2508 	if (!lowest_rq)
2509 		goto out_unlock;
2510 
2511 	// XXX validate p is still the highest prio task
2512 	if (task_rq(p) == rq) {
2513 		deactivate_task(rq, p, 0);
2514 		set_task_cpu(p, lowest_rq->cpu);
2515 		activate_task(lowest_rq, p, 0);
2516 		resched_curr(lowest_rq);
2517 	}
2518 
2519 	double_unlock_balance(rq, lowest_rq);
2520 
2521 out_unlock:
2522 	rq->push_busy = false;
2523 	raw_spin_rq_unlock(rq);
2524 	raw_spin_unlock_irq(&p->pi_lock);
2525 
2526 	put_task_struct(p);
2527 	return 0;
2528 }
2529 
2530 /*
2531  * sched_class::set_cpus_allowed must do the below, but is not required to
2532  * actually call this function.
2533  */
2534 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2535 {
2536 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2537 		p->cpus_ptr = ctx->new_mask;
2538 		return;
2539 	}
2540 
2541 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2542 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2543 
2544 	/*
2545 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2546 	 */
2547 	if (ctx->flags & SCA_USER)
2548 		swap(p->user_cpus_ptr, ctx->user_mask);
2549 }
2550 
2551 static void
2552 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2553 {
2554 	struct rq *rq = task_rq(p);
2555 	bool queued, running;
2556 
2557 	/*
2558 	 * This here violates the locking rules for affinity, since we're only
2559 	 * supposed to change these variables while holding both rq->lock and
2560 	 * p->pi_lock.
2561 	 *
2562 	 * HOWEVER, it magically works, because ttwu() is the only code that
2563 	 * accesses these variables under p->pi_lock and only does so after
2564 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2565 	 * before finish_task().
2566 	 *
2567 	 * XXX do further audits, this smells like something putrid.
2568 	 */
2569 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2570 		SCHED_WARN_ON(!p->on_cpu);
2571 	else
2572 		lockdep_assert_held(&p->pi_lock);
2573 
2574 	queued = task_on_rq_queued(p);
2575 	running = task_current(rq, p);
2576 
2577 	if (queued) {
2578 		/*
2579 		 * Because __kthread_bind() calls this on blocked tasks without
2580 		 * holding rq->lock.
2581 		 */
2582 		lockdep_assert_rq_held(rq);
2583 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2584 	}
2585 	if (running)
2586 		put_prev_task(rq, p);
2587 
2588 	p->sched_class->set_cpus_allowed(p, ctx);
2589 
2590 	if (queued)
2591 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2592 	if (running)
2593 		set_next_task(rq, p);
2594 }
2595 
2596 /*
2597  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2598  * affinity (if any) should be destroyed too.
2599  */
2600 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2601 {
2602 	struct affinity_context ac = {
2603 		.new_mask  = new_mask,
2604 		.user_mask = NULL,
2605 		.flags     = SCA_USER,	/* clear the user requested mask */
2606 	};
2607 	union cpumask_rcuhead {
2608 		cpumask_t cpumask;
2609 		struct rcu_head rcu;
2610 	};
2611 
2612 	__do_set_cpus_allowed(p, &ac);
2613 
2614 	/*
2615 	 * Because this is called with p->pi_lock held, it is not possible
2616 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2617 	 * kfree_rcu().
2618 	 */
2619 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2620 }
2621 
2622 static cpumask_t *alloc_user_cpus_ptr(int node)
2623 {
2624 	/*
2625 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2626 	 */
2627 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2628 
2629 	return kmalloc_node(size, GFP_KERNEL, node);
2630 }
2631 
2632 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2633 		      int node)
2634 {
2635 	cpumask_t *user_mask;
2636 	unsigned long flags;
2637 
2638 	/*
2639 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2640 	 * may differ by now due to racing.
2641 	 */
2642 	dst->user_cpus_ptr = NULL;
2643 
2644 	/*
2645 	 * This check is racy and losing the race is a valid situation.
2646 	 * It is not worth the extra overhead of taking the pi_lock on
2647 	 * every fork/clone.
2648 	 */
2649 	if (data_race(!src->user_cpus_ptr))
2650 		return 0;
2651 
2652 	user_mask = alloc_user_cpus_ptr(node);
2653 	if (!user_mask)
2654 		return -ENOMEM;
2655 
2656 	/*
2657 	 * Use pi_lock to protect content of user_cpus_ptr
2658 	 *
2659 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2660 	 * do_set_cpus_allowed().
2661 	 */
2662 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2663 	if (src->user_cpus_ptr) {
2664 		swap(dst->user_cpus_ptr, user_mask);
2665 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2666 	}
2667 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2668 
2669 	if (unlikely(user_mask))
2670 		kfree(user_mask);
2671 
2672 	return 0;
2673 }
2674 
2675 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2676 {
2677 	struct cpumask *user_mask = NULL;
2678 
2679 	swap(p->user_cpus_ptr, user_mask);
2680 
2681 	return user_mask;
2682 }
2683 
2684 void release_user_cpus_ptr(struct task_struct *p)
2685 {
2686 	kfree(clear_user_cpus_ptr(p));
2687 }
2688 
2689 /*
2690  * This function is wildly self concurrent; here be dragons.
2691  *
2692  *
2693  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2694  * designated task is enqueued on an allowed CPU. If that task is currently
2695  * running, we have to kick it out using the CPU stopper.
2696  *
2697  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2698  * Consider:
2699  *
2700  *     Initial conditions: P0->cpus_mask = [0, 1]
2701  *
2702  *     P0@CPU0                  P1
2703  *
2704  *     migrate_disable();
2705  *     <preempted>
2706  *                              set_cpus_allowed_ptr(P0, [1]);
2707  *
2708  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2709  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2710  * This means we need the following scheme:
2711  *
2712  *     P0@CPU0                  P1
2713  *
2714  *     migrate_disable();
2715  *     <preempted>
2716  *                              set_cpus_allowed_ptr(P0, [1]);
2717  *                                <blocks>
2718  *     <resumes>
2719  *     migrate_enable();
2720  *       __set_cpus_allowed_ptr();
2721  *       <wakes local stopper>
2722  *                         `--> <woken on migration completion>
2723  *
2724  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2725  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2726  * task p are serialized by p->pi_lock, which we can leverage: the one that
2727  * should come into effect at the end of the Migrate-Disable region is the last
2728  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2729  * but we still need to properly signal those waiting tasks at the appropriate
2730  * moment.
2731  *
2732  * This is implemented using struct set_affinity_pending. The first
2733  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2734  * setup an instance of that struct and install it on the targeted task_struct.
2735  * Any and all further callers will reuse that instance. Those then wait for
2736  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2737  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2738  *
2739  *
2740  * (1) In the cases covered above. There is one more where the completion is
2741  * signaled within affine_move_task() itself: when a subsequent affinity request
2742  * occurs after the stopper bailed out due to the targeted task still being
2743  * Migrate-Disable. Consider:
2744  *
2745  *     Initial conditions: P0->cpus_mask = [0, 1]
2746  *
2747  *     CPU0		  P1				P2
2748  *     <P0>
2749  *       migrate_disable();
2750  *       <preempted>
2751  *                        set_cpus_allowed_ptr(P0, [1]);
2752  *                          <blocks>
2753  *     <migration/0>
2754  *       migration_cpu_stop()
2755  *         is_migration_disabled()
2756  *           <bails>
2757  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2758  *                                                         <signal completion>
2759  *                          <awakes>
2760  *
2761  * Note that the above is safe vs a concurrent migrate_enable(), as any
2762  * pending affinity completion is preceded by an uninstallation of
2763  * p->migration_pending done with p->pi_lock held.
2764  */
2765 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2766 			    int dest_cpu, unsigned int flags)
2767 	__releases(rq->lock)
2768 	__releases(p->pi_lock)
2769 {
2770 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2771 	bool stop_pending, complete = false;
2772 
2773 	/* Can the task run on the task's current CPU? If so, we're done */
2774 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2775 		struct task_struct *push_task = NULL;
2776 
2777 		if ((flags & SCA_MIGRATE_ENABLE) &&
2778 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2779 			rq->push_busy = true;
2780 			push_task = get_task_struct(p);
2781 		}
2782 
2783 		/*
2784 		 * If there are pending waiters, but no pending stop_work,
2785 		 * then complete now.
2786 		 */
2787 		pending = p->migration_pending;
2788 		if (pending && !pending->stop_pending) {
2789 			p->migration_pending = NULL;
2790 			complete = true;
2791 		}
2792 
2793 		task_rq_unlock(rq, p, rf);
2794 
2795 		if (push_task) {
2796 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2797 					    p, &rq->push_work);
2798 		}
2799 
2800 		if (complete)
2801 			complete_all(&pending->done);
2802 
2803 		return 0;
2804 	}
2805 
2806 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2807 		/* serialized by p->pi_lock */
2808 		if (!p->migration_pending) {
2809 			/* Install the request */
2810 			refcount_set(&my_pending.refs, 1);
2811 			init_completion(&my_pending.done);
2812 			my_pending.arg = (struct migration_arg) {
2813 				.task = p,
2814 				.dest_cpu = dest_cpu,
2815 				.pending = &my_pending,
2816 			};
2817 
2818 			p->migration_pending = &my_pending;
2819 		} else {
2820 			pending = p->migration_pending;
2821 			refcount_inc(&pending->refs);
2822 			/*
2823 			 * Affinity has changed, but we've already installed a
2824 			 * pending. migration_cpu_stop() *must* see this, else
2825 			 * we risk a completion of the pending despite having a
2826 			 * task on a disallowed CPU.
2827 			 *
2828 			 * Serialized by p->pi_lock, so this is safe.
2829 			 */
2830 			pending->arg.dest_cpu = dest_cpu;
2831 		}
2832 	}
2833 	pending = p->migration_pending;
2834 	/*
2835 	 * - !MIGRATE_ENABLE:
2836 	 *   we'll have installed a pending if there wasn't one already.
2837 	 *
2838 	 * - MIGRATE_ENABLE:
2839 	 *   we're here because the current CPU isn't matching anymore,
2840 	 *   the only way that can happen is because of a concurrent
2841 	 *   set_cpus_allowed_ptr() call, which should then still be
2842 	 *   pending completion.
2843 	 *
2844 	 * Either way, we really should have a @pending here.
2845 	 */
2846 	if (WARN_ON_ONCE(!pending)) {
2847 		task_rq_unlock(rq, p, rf);
2848 		return -EINVAL;
2849 	}
2850 
2851 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2852 		/*
2853 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2854 		 * anything else we cannot do is_migration_disabled(), punt
2855 		 * and have the stopper function handle it all race-free.
2856 		 */
2857 		stop_pending = pending->stop_pending;
2858 		if (!stop_pending)
2859 			pending->stop_pending = true;
2860 
2861 		if (flags & SCA_MIGRATE_ENABLE)
2862 			p->migration_flags &= ~MDF_PUSH;
2863 
2864 		task_rq_unlock(rq, p, rf);
2865 
2866 		if (!stop_pending) {
2867 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2868 					    &pending->arg, &pending->stop_work);
2869 		}
2870 
2871 		if (flags & SCA_MIGRATE_ENABLE)
2872 			return 0;
2873 	} else {
2874 
2875 		if (!is_migration_disabled(p)) {
2876 			if (task_on_rq_queued(p))
2877 				rq = move_queued_task(rq, rf, p, dest_cpu);
2878 
2879 			if (!pending->stop_pending) {
2880 				p->migration_pending = NULL;
2881 				complete = true;
2882 			}
2883 		}
2884 		task_rq_unlock(rq, p, rf);
2885 
2886 		if (complete)
2887 			complete_all(&pending->done);
2888 	}
2889 
2890 	wait_for_completion(&pending->done);
2891 
2892 	if (refcount_dec_and_test(&pending->refs))
2893 		wake_up_var(&pending->refs); /* No UaF, just an address */
2894 
2895 	/*
2896 	 * Block the original owner of &pending until all subsequent callers
2897 	 * have seen the completion and decremented the refcount
2898 	 */
2899 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2900 
2901 	/* ARGH */
2902 	WARN_ON_ONCE(my_pending.stop_pending);
2903 
2904 	return 0;
2905 }
2906 
2907 /*
2908  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2909  */
2910 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2911 					 struct affinity_context *ctx,
2912 					 struct rq *rq,
2913 					 struct rq_flags *rf)
2914 	__releases(rq->lock)
2915 	__releases(p->pi_lock)
2916 {
2917 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2918 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2919 	bool kthread = p->flags & PF_KTHREAD;
2920 	unsigned int dest_cpu;
2921 	int ret = 0;
2922 
2923 	update_rq_clock(rq);
2924 
2925 	if (kthread || is_migration_disabled(p)) {
2926 		/*
2927 		 * Kernel threads are allowed on online && !active CPUs,
2928 		 * however, during cpu-hot-unplug, even these might get pushed
2929 		 * away if not KTHREAD_IS_PER_CPU.
2930 		 *
2931 		 * Specifically, migration_disabled() tasks must not fail the
2932 		 * cpumask_any_and_distribute() pick below, esp. so on
2933 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2934 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2935 		 */
2936 		cpu_valid_mask = cpu_online_mask;
2937 	}
2938 
2939 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
2940 		ret = -EINVAL;
2941 		goto out;
2942 	}
2943 
2944 	/*
2945 	 * Must re-check here, to close a race against __kthread_bind(),
2946 	 * sched_setaffinity() is not guaranteed to observe the flag.
2947 	 */
2948 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2949 		ret = -EINVAL;
2950 		goto out;
2951 	}
2952 
2953 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
2954 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
2955 			if (ctx->flags & SCA_USER)
2956 				swap(p->user_cpus_ptr, ctx->user_mask);
2957 			goto out;
2958 		}
2959 
2960 		if (WARN_ON_ONCE(p == current &&
2961 				 is_migration_disabled(p) &&
2962 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
2963 			ret = -EBUSY;
2964 			goto out;
2965 		}
2966 	}
2967 
2968 	/*
2969 	 * Picking a ~random cpu helps in cases where we are changing affinity
2970 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2971 	 * immediately required to distribute the tasks within their new mask.
2972 	 */
2973 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
2974 	if (dest_cpu >= nr_cpu_ids) {
2975 		ret = -EINVAL;
2976 		goto out;
2977 	}
2978 
2979 	__do_set_cpus_allowed(p, ctx);
2980 
2981 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
2982 
2983 out:
2984 	task_rq_unlock(rq, p, rf);
2985 
2986 	return ret;
2987 }
2988 
2989 /*
2990  * Change a given task's CPU affinity. Migrate the thread to a
2991  * proper CPU and schedule it away if the CPU it's executing on
2992  * is removed from the allowed bitmask.
2993  *
2994  * NOTE: the caller must have a valid reference to the task, the
2995  * task must not exit() & deallocate itself prematurely. The
2996  * call is not atomic; no spinlocks may be held.
2997  */
2998 static int __set_cpus_allowed_ptr(struct task_struct *p,
2999 				  struct affinity_context *ctx)
3000 {
3001 	struct rq_flags rf;
3002 	struct rq *rq;
3003 
3004 	rq = task_rq_lock(p, &rf);
3005 	/*
3006 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3007 	 * flags are set.
3008 	 */
3009 	if (p->user_cpus_ptr &&
3010 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3011 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3012 		ctx->new_mask = rq->scratch_mask;
3013 
3014 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3015 }
3016 
3017 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3018 {
3019 	struct affinity_context ac = {
3020 		.new_mask  = new_mask,
3021 		.flags     = 0,
3022 	};
3023 
3024 	return __set_cpus_allowed_ptr(p, &ac);
3025 }
3026 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3027 
3028 /*
3029  * Change a given task's CPU affinity to the intersection of its current
3030  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3031  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3032  * affinity or use cpu_online_mask instead.
3033  *
3034  * If the resulting mask is empty, leave the affinity unchanged and return
3035  * -EINVAL.
3036  */
3037 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3038 				     struct cpumask *new_mask,
3039 				     const struct cpumask *subset_mask)
3040 {
3041 	struct affinity_context ac = {
3042 		.new_mask  = new_mask,
3043 		.flags     = 0,
3044 	};
3045 	struct rq_flags rf;
3046 	struct rq *rq;
3047 	int err;
3048 
3049 	rq = task_rq_lock(p, &rf);
3050 
3051 	/*
3052 	 * Forcefully restricting the affinity of a deadline task is
3053 	 * likely to cause problems, so fail and noisily override the
3054 	 * mask entirely.
3055 	 */
3056 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3057 		err = -EPERM;
3058 		goto err_unlock;
3059 	}
3060 
3061 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3062 		err = -EINVAL;
3063 		goto err_unlock;
3064 	}
3065 
3066 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3067 
3068 err_unlock:
3069 	task_rq_unlock(rq, p, &rf);
3070 	return err;
3071 }
3072 
3073 /*
3074  * Restrict the CPU affinity of task @p so that it is a subset of
3075  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3076  * old affinity mask. If the resulting mask is empty, we warn and walk
3077  * up the cpuset hierarchy until we find a suitable mask.
3078  */
3079 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3080 {
3081 	cpumask_var_t new_mask;
3082 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3083 
3084 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3085 
3086 	/*
3087 	 * __migrate_task() can fail silently in the face of concurrent
3088 	 * offlining of the chosen destination CPU, so take the hotplug
3089 	 * lock to ensure that the migration succeeds.
3090 	 */
3091 	cpus_read_lock();
3092 	if (!cpumask_available(new_mask))
3093 		goto out_set_mask;
3094 
3095 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3096 		goto out_free_mask;
3097 
3098 	/*
3099 	 * We failed to find a valid subset of the affinity mask for the
3100 	 * task, so override it based on its cpuset hierarchy.
3101 	 */
3102 	cpuset_cpus_allowed(p, new_mask);
3103 	override_mask = new_mask;
3104 
3105 out_set_mask:
3106 	if (printk_ratelimit()) {
3107 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3108 				task_pid_nr(p), p->comm,
3109 				cpumask_pr_args(override_mask));
3110 	}
3111 
3112 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3113 out_free_mask:
3114 	cpus_read_unlock();
3115 	free_cpumask_var(new_mask);
3116 }
3117 
3118 static int
3119 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3120 
3121 /*
3122  * Restore the affinity of a task @p which was previously restricted by a
3123  * call to force_compatible_cpus_allowed_ptr().
3124  *
3125  * It is the caller's responsibility to serialise this with any calls to
3126  * force_compatible_cpus_allowed_ptr(@p).
3127  */
3128 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3129 {
3130 	struct affinity_context ac = {
3131 		.new_mask  = task_user_cpus(p),
3132 		.flags     = 0,
3133 	};
3134 	int ret;
3135 
3136 	/*
3137 	 * Try to restore the old affinity mask with __sched_setaffinity().
3138 	 * Cpuset masking will be done there too.
3139 	 */
3140 	ret = __sched_setaffinity(p, &ac);
3141 	WARN_ON_ONCE(ret);
3142 }
3143 
3144 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3145 {
3146 #ifdef CONFIG_SCHED_DEBUG
3147 	unsigned int state = READ_ONCE(p->__state);
3148 
3149 	/*
3150 	 * We should never call set_task_cpu() on a blocked task,
3151 	 * ttwu() will sort out the placement.
3152 	 */
3153 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3154 
3155 	/*
3156 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3157 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3158 	 * time relying on p->on_rq.
3159 	 */
3160 	WARN_ON_ONCE(state == TASK_RUNNING &&
3161 		     p->sched_class == &fair_sched_class &&
3162 		     (p->on_rq && !task_on_rq_migrating(p)));
3163 
3164 #ifdef CONFIG_LOCKDEP
3165 	/*
3166 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3167 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3168 	 *
3169 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3170 	 * see task_group().
3171 	 *
3172 	 * Furthermore, all task_rq users should acquire both locks, see
3173 	 * task_rq_lock().
3174 	 */
3175 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3176 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3177 #endif
3178 	/*
3179 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3180 	 */
3181 	WARN_ON_ONCE(!cpu_online(new_cpu));
3182 
3183 	WARN_ON_ONCE(is_migration_disabled(p));
3184 #endif
3185 
3186 	trace_sched_migrate_task(p, new_cpu);
3187 
3188 	if (task_cpu(p) != new_cpu) {
3189 		if (p->sched_class->migrate_task_rq)
3190 			p->sched_class->migrate_task_rq(p, new_cpu);
3191 		p->se.nr_migrations++;
3192 		rseq_migrate(p);
3193 		perf_event_task_migrate(p);
3194 	}
3195 
3196 	__set_task_cpu(p, new_cpu);
3197 }
3198 
3199 #ifdef CONFIG_NUMA_BALANCING
3200 static void __migrate_swap_task(struct task_struct *p, int cpu)
3201 {
3202 	if (task_on_rq_queued(p)) {
3203 		struct rq *src_rq, *dst_rq;
3204 		struct rq_flags srf, drf;
3205 
3206 		src_rq = task_rq(p);
3207 		dst_rq = cpu_rq(cpu);
3208 
3209 		rq_pin_lock(src_rq, &srf);
3210 		rq_pin_lock(dst_rq, &drf);
3211 
3212 		deactivate_task(src_rq, p, 0);
3213 		set_task_cpu(p, cpu);
3214 		activate_task(dst_rq, p, 0);
3215 		check_preempt_curr(dst_rq, p, 0);
3216 
3217 		rq_unpin_lock(dst_rq, &drf);
3218 		rq_unpin_lock(src_rq, &srf);
3219 
3220 	} else {
3221 		/*
3222 		 * Task isn't running anymore; make it appear like we migrated
3223 		 * it before it went to sleep. This means on wakeup we make the
3224 		 * previous CPU our target instead of where it really is.
3225 		 */
3226 		p->wake_cpu = cpu;
3227 	}
3228 }
3229 
3230 struct migration_swap_arg {
3231 	struct task_struct *src_task, *dst_task;
3232 	int src_cpu, dst_cpu;
3233 };
3234 
3235 static int migrate_swap_stop(void *data)
3236 {
3237 	struct migration_swap_arg *arg = data;
3238 	struct rq *src_rq, *dst_rq;
3239 	int ret = -EAGAIN;
3240 
3241 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3242 		return -EAGAIN;
3243 
3244 	src_rq = cpu_rq(arg->src_cpu);
3245 	dst_rq = cpu_rq(arg->dst_cpu);
3246 
3247 	double_raw_lock(&arg->src_task->pi_lock,
3248 			&arg->dst_task->pi_lock);
3249 	double_rq_lock(src_rq, dst_rq);
3250 
3251 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3252 		goto unlock;
3253 
3254 	if (task_cpu(arg->src_task) != arg->src_cpu)
3255 		goto unlock;
3256 
3257 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3258 		goto unlock;
3259 
3260 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3261 		goto unlock;
3262 
3263 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3264 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3265 
3266 	ret = 0;
3267 
3268 unlock:
3269 	double_rq_unlock(src_rq, dst_rq);
3270 	raw_spin_unlock(&arg->dst_task->pi_lock);
3271 	raw_spin_unlock(&arg->src_task->pi_lock);
3272 
3273 	return ret;
3274 }
3275 
3276 /*
3277  * Cross migrate two tasks
3278  */
3279 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3280 		int target_cpu, int curr_cpu)
3281 {
3282 	struct migration_swap_arg arg;
3283 	int ret = -EINVAL;
3284 
3285 	arg = (struct migration_swap_arg){
3286 		.src_task = cur,
3287 		.src_cpu = curr_cpu,
3288 		.dst_task = p,
3289 		.dst_cpu = target_cpu,
3290 	};
3291 
3292 	if (arg.src_cpu == arg.dst_cpu)
3293 		goto out;
3294 
3295 	/*
3296 	 * These three tests are all lockless; this is OK since all of them
3297 	 * will be re-checked with proper locks held further down the line.
3298 	 */
3299 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3300 		goto out;
3301 
3302 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3303 		goto out;
3304 
3305 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3306 		goto out;
3307 
3308 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3309 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3310 
3311 out:
3312 	return ret;
3313 }
3314 #endif /* CONFIG_NUMA_BALANCING */
3315 
3316 /*
3317  * wait_task_inactive - wait for a thread to unschedule.
3318  *
3319  * Wait for the thread to block in any of the states set in @match_state.
3320  * If it changes, i.e. @p might have woken up, then return zero.  When we
3321  * succeed in waiting for @p to be off its CPU, we return a positive number
3322  * (its total switch count).  If a second call a short while later returns the
3323  * same number, the caller can be sure that @p has remained unscheduled the
3324  * whole time.
3325  *
3326  * The caller must ensure that the task *will* unschedule sometime soon,
3327  * else this function might spin for a *long* time. This function can't
3328  * be called with interrupts off, or it may introduce deadlock with
3329  * smp_call_function() if an IPI is sent by the same process we are
3330  * waiting to become inactive.
3331  */
3332 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3333 {
3334 	int running, queued;
3335 	struct rq_flags rf;
3336 	unsigned long ncsw;
3337 	struct rq *rq;
3338 
3339 	for (;;) {
3340 		/*
3341 		 * We do the initial early heuristics without holding
3342 		 * any task-queue locks at all. We'll only try to get
3343 		 * the runqueue lock when things look like they will
3344 		 * work out!
3345 		 */
3346 		rq = task_rq(p);
3347 
3348 		/*
3349 		 * If the task is actively running on another CPU
3350 		 * still, just relax and busy-wait without holding
3351 		 * any locks.
3352 		 *
3353 		 * NOTE! Since we don't hold any locks, it's not
3354 		 * even sure that "rq" stays as the right runqueue!
3355 		 * But we don't care, since "task_on_cpu()" will
3356 		 * return false if the runqueue has changed and p
3357 		 * is actually now running somewhere else!
3358 		 */
3359 		while (task_on_cpu(rq, p)) {
3360 			if (!(READ_ONCE(p->__state) & match_state))
3361 				return 0;
3362 			cpu_relax();
3363 		}
3364 
3365 		/*
3366 		 * Ok, time to look more closely! We need the rq
3367 		 * lock now, to be *sure*. If we're wrong, we'll
3368 		 * just go back and repeat.
3369 		 */
3370 		rq = task_rq_lock(p, &rf);
3371 		trace_sched_wait_task(p);
3372 		running = task_on_cpu(rq, p);
3373 		queued = task_on_rq_queued(p);
3374 		ncsw = 0;
3375 		if (READ_ONCE(p->__state) & match_state)
3376 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3377 		task_rq_unlock(rq, p, &rf);
3378 
3379 		/*
3380 		 * If it changed from the expected state, bail out now.
3381 		 */
3382 		if (unlikely(!ncsw))
3383 			break;
3384 
3385 		/*
3386 		 * Was it really running after all now that we
3387 		 * checked with the proper locks actually held?
3388 		 *
3389 		 * Oops. Go back and try again..
3390 		 */
3391 		if (unlikely(running)) {
3392 			cpu_relax();
3393 			continue;
3394 		}
3395 
3396 		/*
3397 		 * It's not enough that it's not actively running,
3398 		 * it must be off the runqueue _entirely_, and not
3399 		 * preempted!
3400 		 *
3401 		 * So if it was still runnable (but just not actively
3402 		 * running right now), it's preempted, and we should
3403 		 * yield - it could be a while.
3404 		 */
3405 		if (unlikely(queued)) {
3406 			ktime_t to = NSEC_PER_SEC / HZ;
3407 
3408 			set_current_state(TASK_UNINTERRUPTIBLE);
3409 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3410 			continue;
3411 		}
3412 
3413 		/*
3414 		 * Ahh, all good. It wasn't running, and it wasn't
3415 		 * runnable, which means that it will never become
3416 		 * running in the future either. We're all done!
3417 		 */
3418 		break;
3419 	}
3420 
3421 	return ncsw;
3422 }
3423 
3424 /***
3425  * kick_process - kick a running thread to enter/exit the kernel
3426  * @p: the to-be-kicked thread
3427  *
3428  * Cause a process which is running on another CPU to enter
3429  * kernel-mode, without any delay. (to get signals handled.)
3430  *
3431  * NOTE: this function doesn't have to take the runqueue lock,
3432  * because all it wants to ensure is that the remote task enters
3433  * the kernel. If the IPI races and the task has been migrated
3434  * to another CPU then no harm is done and the purpose has been
3435  * achieved as well.
3436  */
3437 void kick_process(struct task_struct *p)
3438 {
3439 	int cpu;
3440 
3441 	preempt_disable();
3442 	cpu = task_cpu(p);
3443 	if ((cpu != smp_processor_id()) && task_curr(p))
3444 		smp_send_reschedule(cpu);
3445 	preempt_enable();
3446 }
3447 EXPORT_SYMBOL_GPL(kick_process);
3448 
3449 /*
3450  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3451  *
3452  * A few notes on cpu_active vs cpu_online:
3453  *
3454  *  - cpu_active must be a subset of cpu_online
3455  *
3456  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3457  *    see __set_cpus_allowed_ptr(). At this point the newly online
3458  *    CPU isn't yet part of the sched domains, and balancing will not
3459  *    see it.
3460  *
3461  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3462  *    avoid the load balancer to place new tasks on the to be removed
3463  *    CPU. Existing tasks will remain running there and will be taken
3464  *    off.
3465  *
3466  * This means that fallback selection must not select !active CPUs.
3467  * And can assume that any active CPU must be online. Conversely
3468  * select_task_rq() below may allow selection of !active CPUs in order
3469  * to satisfy the above rules.
3470  */
3471 static int select_fallback_rq(int cpu, struct task_struct *p)
3472 {
3473 	int nid = cpu_to_node(cpu);
3474 	const struct cpumask *nodemask = NULL;
3475 	enum { cpuset, possible, fail } state = cpuset;
3476 	int dest_cpu;
3477 
3478 	/*
3479 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3480 	 * will return -1. There is no CPU on the node, and we should
3481 	 * select the CPU on the other node.
3482 	 */
3483 	if (nid != -1) {
3484 		nodemask = cpumask_of_node(nid);
3485 
3486 		/* Look for allowed, online CPU in same node. */
3487 		for_each_cpu(dest_cpu, nodemask) {
3488 			if (is_cpu_allowed(p, dest_cpu))
3489 				return dest_cpu;
3490 		}
3491 	}
3492 
3493 	for (;;) {
3494 		/* Any allowed, online CPU? */
3495 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3496 			if (!is_cpu_allowed(p, dest_cpu))
3497 				continue;
3498 
3499 			goto out;
3500 		}
3501 
3502 		/* No more Mr. Nice Guy. */
3503 		switch (state) {
3504 		case cpuset:
3505 			if (cpuset_cpus_allowed_fallback(p)) {
3506 				state = possible;
3507 				break;
3508 			}
3509 			fallthrough;
3510 		case possible:
3511 			/*
3512 			 * XXX When called from select_task_rq() we only
3513 			 * hold p->pi_lock and again violate locking order.
3514 			 *
3515 			 * More yuck to audit.
3516 			 */
3517 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3518 			state = fail;
3519 			break;
3520 		case fail:
3521 			BUG();
3522 			break;
3523 		}
3524 	}
3525 
3526 out:
3527 	if (state != cpuset) {
3528 		/*
3529 		 * Don't tell them about moving exiting tasks or
3530 		 * kernel threads (both mm NULL), since they never
3531 		 * leave kernel.
3532 		 */
3533 		if (p->mm && printk_ratelimit()) {
3534 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3535 					task_pid_nr(p), p->comm, cpu);
3536 		}
3537 	}
3538 
3539 	return dest_cpu;
3540 }
3541 
3542 /*
3543  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3544  */
3545 static inline
3546 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3547 {
3548 	lockdep_assert_held(&p->pi_lock);
3549 
3550 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3551 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3552 	else
3553 		cpu = cpumask_any(p->cpus_ptr);
3554 
3555 	/*
3556 	 * In order not to call set_task_cpu() on a blocking task we need
3557 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3558 	 * CPU.
3559 	 *
3560 	 * Since this is common to all placement strategies, this lives here.
3561 	 *
3562 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3563 	 *   not worry about this generic constraint ]
3564 	 */
3565 	if (unlikely(!is_cpu_allowed(p, cpu)))
3566 		cpu = select_fallback_rq(task_cpu(p), p);
3567 
3568 	return cpu;
3569 }
3570 
3571 void sched_set_stop_task(int cpu, struct task_struct *stop)
3572 {
3573 	static struct lock_class_key stop_pi_lock;
3574 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3575 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3576 
3577 	if (stop) {
3578 		/*
3579 		 * Make it appear like a SCHED_FIFO task, its something
3580 		 * userspace knows about and won't get confused about.
3581 		 *
3582 		 * Also, it will make PI more or less work without too
3583 		 * much confusion -- but then, stop work should not
3584 		 * rely on PI working anyway.
3585 		 */
3586 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3587 
3588 		stop->sched_class = &stop_sched_class;
3589 
3590 		/*
3591 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3592 		 * adjust the effective priority of a task. As a result,
3593 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3594 		 * which can then trigger wakeups of the stop thread to push
3595 		 * around the current task.
3596 		 *
3597 		 * The stop task itself will never be part of the PI-chain, it
3598 		 * never blocks, therefore that ->pi_lock recursion is safe.
3599 		 * Tell lockdep about this by placing the stop->pi_lock in its
3600 		 * own class.
3601 		 */
3602 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3603 	}
3604 
3605 	cpu_rq(cpu)->stop = stop;
3606 
3607 	if (old_stop) {
3608 		/*
3609 		 * Reset it back to a normal scheduling class so that
3610 		 * it can die in pieces.
3611 		 */
3612 		old_stop->sched_class = &rt_sched_class;
3613 	}
3614 }
3615 
3616 #else /* CONFIG_SMP */
3617 
3618 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3619 					 struct affinity_context *ctx)
3620 {
3621 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3622 }
3623 
3624 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3625 
3626 static inline bool rq_has_pinned_tasks(struct rq *rq)
3627 {
3628 	return false;
3629 }
3630 
3631 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3632 {
3633 	return NULL;
3634 }
3635 
3636 #endif /* !CONFIG_SMP */
3637 
3638 static void
3639 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3640 {
3641 	struct rq *rq;
3642 
3643 	if (!schedstat_enabled())
3644 		return;
3645 
3646 	rq = this_rq();
3647 
3648 #ifdef CONFIG_SMP
3649 	if (cpu == rq->cpu) {
3650 		__schedstat_inc(rq->ttwu_local);
3651 		__schedstat_inc(p->stats.nr_wakeups_local);
3652 	} else {
3653 		struct sched_domain *sd;
3654 
3655 		__schedstat_inc(p->stats.nr_wakeups_remote);
3656 		rcu_read_lock();
3657 		for_each_domain(rq->cpu, sd) {
3658 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3659 				__schedstat_inc(sd->ttwu_wake_remote);
3660 				break;
3661 			}
3662 		}
3663 		rcu_read_unlock();
3664 	}
3665 
3666 	if (wake_flags & WF_MIGRATED)
3667 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3668 #endif /* CONFIG_SMP */
3669 
3670 	__schedstat_inc(rq->ttwu_count);
3671 	__schedstat_inc(p->stats.nr_wakeups);
3672 
3673 	if (wake_flags & WF_SYNC)
3674 		__schedstat_inc(p->stats.nr_wakeups_sync);
3675 }
3676 
3677 /*
3678  * Mark the task runnable and perform wakeup-preemption.
3679  */
3680 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3681 			   struct rq_flags *rf)
3682 {
3683 	check_preempt_curr(rq, p, wake_flags);
3684 	WRITE_ONCE(p->__state, TASK_RUNNING);
3685 	trace_sched_wakeup(p);
3686 
3687 #ifdef CONFIG_SMP
3688 	if (p->sched_class->task_woken) {
3689 		/*
3690 		 * Our task @p is fully woken up and running; so it's safe to
3691 		 * drop the rq->lock, hereafter rq is only used for statistics.
3692 		 */
3693 		rq_unpin_lock(rq, rf);
3694 		p->sched_class->task_woken(rq, p);
3695 		rq_repin_lock(rq, rf);
3696 	}
3697 
3698 	if (rq->idle_stamp) {
3699 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3700 		u64 max = 2*rq->max_idle_balance_cost;
3701 
3702 		update_avg(&rq->avg_idle, delta);
3703 
3704 		if (rq->avg_idle > max)
3705 			rq->avg_idle = max;
3706 
3707 		rq->wake_stamp = jiffies;
3708 		rq->wake_avg_idle = rq->avg_idle / 2;
3709 
3710 		rq->idle_stamp = 0;
3711 	}
3712 #endif
3713 }
3714 
3715 static void
3716 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3717 		 struct rq_flags *rf)
3718 {
3719 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3720 
3721 	lockdep_assert_rq_held(rq);
3722 
3723 	if (p->sched_contributes_to_load)
3724 		rq->nr_uninterruptible--;
3725 
3726 #ifdef CONFIG_SMP
3727 	if (wake_flags & WF_MIGRATED)
3728 		en_flags |= ENQUEUE_MIGRATED;
3729 	else
3730 #endif
3731 	if (p->in_iowait) {
3732 		delayacct_blkio_end(p);
3733 		atomic_dec(&task_rq(p)->nr_iowait);
3734 	}
3735 
3736 	activate_task(rq, p, en_flags);
3737 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3738 }
3739 
3740 /*
3741  * Consider @p being inside a wait loop:
3742  *
3743  *   for (;;) {
3744  *      set_current_state(TASK_UNINTERRUPTIBLE);
3745  *
3746  *      if (CONDITION)
3747  *         break;
3748  *
3749  *      schedule();
3750  *   }
3751  *   __set_current_state(TASK_RUNNING);
3752  *
3753  * between set_current_state() and schedule(). In this case @p is still
3754  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3755  * an atomic manner.
3756  *
3757  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3758  * then schedule() must still happen and p->state can be changed to
3759  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3760  * need to do a full wakeup with enqueue.
3761  *
3762  * Returns: %true when the wakeup is done,
3763  *          %false otherwise.
3764  */
3765 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3766 {
3767 	struct rq_flags rf;
3768 	struct rq *rq;
3769 	int ret = 0;
3770 
3771 	rq = __task_rq_lock(p, &rf);
3772 	if (task_on_rq_queued(p)) {
3773 		/* check_preempt_curr() may use rq clock */
3774 		update_rq_clock(rq);
3775 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3776 		ret = 1;
3777 	}
3778 	__task_rq_unlock(rq, &rf);
3779 
3780 	return ret;
3781 }
3782 
3783 #ifdef CONFIG_SMP
3784 void sched_ttwu_pending(void *arg)
3785 {
3786 	struct llist_node *llist = arg;
3787 	struct rq *rq = this_rq();
3788 	struct task_struct *p, *t;
3789 	struct rq_flags rf;
3790 
3791 	if (!llist)
3792 		return;
3793 
3794 	rq_lock_irqsave(rq, &rf);
3795 	update_rq_clock(rq);
3796 
3797 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3798 		if (WARN_ON_ONCE(p->on_cpu))
3799 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3800 
3801 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3802 			set_task_cpu(p, cpu_of(rq));
3803 
3804 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3805 	}
3806 
3807 	/*
3808 	 * Must be after enqueueing at least once task such that
3809 	 * idle_cpu() does not observe a false-negative -- if it does,
3810 	 * it is possible for select_idle_siblings() to stack a number
3811 	 * of tasks on this CPU during that window.
3812 	 *
3813 	 * It is ok to clear ttwu_pending when another task pending.
3814 	 * We will receive IPI after local irq enabled and then enqueue it.
3815 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3816 	 */
3817 	WRITE_ONCE(rq->ttwu_pending, 0);
3818 	rq_unlock_irqrestore(rq, &rf);
3819 }
3820 
3821 void send_call_function_single_ipi(int cpu)
3822 {
3823 	struct rq *rq = cpu_rq(cpu);
3824 
3825 	if (!set_nr_if_polling(rq->idle))
3826 		arch_send_call_function_single_ipi(cpu);
3827 	else
3828 		trace_sched_wake_idle_without_ipi(cpu);
3829 }
3830 
3831 /*
3832  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3833  * necessary. The wakee CPU on receipt of the IPI will queue the task
3834  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3835  * of the wakeup instead of the waker.
3836  */
3837 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3838 {
3839 	struct rq *rq = cpu_rq(cpu);
3840 
3841 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3842 
3843 	WRITE_ONCE(rq->ttwu_pending, 1);
3844 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3845 }
3846 
3847 void wake_up_if_idle(int cpu)
3848 {
3849 	struct rq *rq = cpu_rq(cpu);
3850 	struct rq_flags rf;
3851 
3852 	rcu_read_lock();
3853 
3854 	if (!is_idle_task(rcu_dereference(rq->curr)))
3855 		goto out;
3856 
3857 	rq_lock_irqsave(rq, &rf);
3858 	if (is_idle_task(rq->curr))
3859 		resched_curr(rq);
3860 	/* Else CPU is not idle, do nothing here: */
3861 	rq_unlock_irqrestore(rq, &rf);
3862 
3863 out:
3864 	rcu_read_unlock();
3865 }
3866 
3867 bool cpus_share_cache(int this_cpu, int that_cpu)
3868 {
3869 	if (this_cpu == that_cpu)
3870 		return true;
3871 
3872 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3873 }
3874 
3875 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3876 {
3877 	/*
3878 	 * Do not complicate things with the async wake_list while the CPU is
3879 	 * in hotplug state.
3880 	 */
3881 	if (!cpu_active(cpu))
3882 		return false;
3883 
3884 	/* Ensure the task will still be allowed to run on the CPU. */
3885 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3886 		return false;
3887 
3888 	/*
3889 	 * If the CPU does not share cache, then queue the task on the
3890 	 * remote rqs wakelist to avoid accessing remote data.
3891 	 */
3892 	if (!cpus_share_cache(smp_processor_id(), cpu))
3893 		return true;
3894 
3895 	if (cpu == smp_processor_id())
3896 		return false;
3897 
3898 	/*
3899 	 * If the wakee cpu is idle, or the task is descheduling and the
3900 	 * only running task on the CPU, then use the wakelist to offload
3901 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3902 	 * the current CPU is likely busy. nr_running is checked to
3903 	 * avoid unnecessary task stacking.
3904 	 *
3905 	 * Note that we can only get here with (wakee) p->on_rq=0,
3906 	 * p->on_cpu can be whatever, we've done the dequeue, so
3907 	 * the wakee has been accounted out of ->nr_running.
3908 	 */
3909 	if (!cpu_rq(cpu)->nr_running)
3910 		return true;
3911 
3912 	return false;
3913 }
3914 
3915 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3916 {
3917 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3918 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3919 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3920 		return true;
3921 	}
3922 
3923 	return false;
3924 }
3925 
3926 #else /* !CONFIG_SMP */
3927 
3928 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3929 {
3930 	return false;
3931 }
3932 
3933 #endif /* CONFIG_SMP */
3934 
3935 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3936 {
3937 	struct rq *rq = cpu_rq(cpu);
3938 	struct rq_flags rf;
3939 
3940 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3941 		return;
3942 
3943 	rq_lock(rq, &rf);
3944 	update_rq_clock(rq);
3945 	ttwu_do_activate(rq, p, wake_flags, &rf);
3946 	rq_unlock(rq, &rf);
3947 }
3948 
3949 /*
3950  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3951  *
3952  * The caller holds p::pi_lock if p != current or has preemption
3953  * disabled when p == current.
3954  *
3955  * The rules of PREEMPT_RT saved_state:
3956  *
3957  *   The related locking code always holds p::pi_lock when updating
3958  *   p::saved_state, which means the code is fully serialized in both cases.
3959  *
3960  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3961  *   bits set. This allows to distinguish all wakeup scenarios.
3962  */
3963 static __always_inline
3964 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3965 {
3966 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3967 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3968 			     state != TASK_RTLOCK_WAIT);
3969 	}
3970 
3971 	if (READ_ONCE(p->__state) & state) {
3972 		*success = 1;
3973 		return true;
3974 	}
3975 
3976 #ifdef CONFIG_PREEMPT_RT
3977 	/*
3978 	 * Saved state preserves the task state across blocking on
3979 	 * an RT lock.  If the state matches, set p::saved_state to
3980 	 * TASK_RUNNING, but do not wake the task because it waits
3981 	 * for a lock wakeup. Also indicate success because from
3982 	 * the regular waker's point of view this has succeeded.
3983 	 *
3984 	 * After acquiring the lock the task will restore p::__state
3985 	 * from p::saved_state which ensures that the regular
3986 	 * wakeup is not lost. The restore will also set
3987 	 * p::saved_state to TASK_RUNNING so any further tests will
3988 	 * not result in false positives vs. @success
3989 	 */
3990 	if (p->saved_state & state) {
3991 		p->saved_state = TASK_RUNNING;
3992 		*success = 1;
3993 	}
3994 #endif
3995 	return false;
3996 }
3997 
3998 /*
3999  * Notes on Program-Order guarantees on SMP systems.
4000  *
4001  *  MIGRATION
4002  *
4003  * The basic program-order guarantee on SMP systems is that when a task [t]
4004  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4005  * execution on its new CPU [c1].
4006  *
4007  * For migration (of runnable tasks) this is provided by the following means:
4008  *
4009  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4010  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4011  *     rq(c1)->lock (if not at the same time, then in that order).
4012  *  C) LOCK of the rq(c1)->lock scheduling in task
4013  *
4014  * Release/acquire chaining guarantees that B happens after A and C after B.
4015  * Note: the CPU doing B need not be c0 or c1
4016  *
4017  * Example:
4018  *
4019  *   CPU0            CPU1            CPU2
4020  *
4021  *   LOCK rq(0)->lock
4022  *   sched-out X
4023  *   sched-in Y
4024  *   UNLOCK rq(0)->lock
4025  *
4026  *                                   LOCK rq(0)->lock // orders against CPU0
4027  *                                   dequeue X
4028  *                                   UNLOCK rq(0)->lock
4029  *
4030  *                                   LOCK rq(1)->lock
4031  *                                   enqueue X
4032  *                                   UNLOCK rq(1)->lock
4033  *
4034  *                   LOCK rq(1)->lock // orders against CPU2
4035  *                   sched-out Z
4036  *                   sched-in X
4037  *                   UNLOCK rq(1)->lock
4038  *
4039  *
4040  *  BLOCKING -- aka. SLEEP + WAKEUP
4041  *
4042  * For blocking we (obviously) need to provide the same guarantee as for
4043  * migration. However the means are completely different as there is no lock
4044  * chain to provide order. Instead we do:
4045  *
4046  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4047  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4048  *
4049  * Example:
4050  *
4051  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4052  *
4053  *   LOCK rq(0)->lock LOCK X->pi_lock
4054  *   dequeue X
4055  *   sched-out X
4056  *   smp_store_release(X->on_cpu, 0);
4057  *
4058  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4059  *                    X->state = WAKING
4060  *                    set_task_cpu(X,2)
4061  *
4062  *                    LOCK rq(2)->lock
4063  *                    enqueue X
4064  *                    X->state = RUNNING
4065  *                    UNLOCK rq(2)->lock
4066  *
4067  *                                          LOCK rq(2)->lock // orders against CPU1
4068  *                                          sched-out Z
4069  *                                          sched-in X
4070  *                                          UNLOCK rq(2)->lock
4071  *
4072  *                    UNLOCK X->pi_lock
4073  *   UNLOCK rq(0)->lock
4074  *
4075  *
4076  * However, for wakeups there is a second guarantee we must provide, namely we
4077  * must ensure that CONDITION=1 done by the caller can not be reordered with
4078  * accesses to the task state; see try_to_wake_up() and set_current_state().
4079  */
4080 
4081 /**
4082  * try_to_wake_up - wake up a thread
4083  * @p: the thread to be awakened
4084  * @state: the mask of task states that can be woken
4085  * @wake_flags: wake modifier flags (WF_*)
4086  *
4087  * Conceptually does:
4088  *
4089  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4090  *
4091  * If the task was not queued/runnable, also place it back on a runqueue.
4092  *
4093  * This function is atomic against schedule() which would dequeue the task.
4094  *
4095  * It issues a full memory barrier before accessing @p->state, see the comment
4096  * with set_current_state().
4097  *
4098  * Uses p->pi_lock to serialize against concurrent wake-ups.
4099  *
4100  * Relies on p->pi_lock stabilizing:
4101  *  - p->sched_class
4102  *  - p->cpus_ptr
4103  *  - p->sched_task_group
4104  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4105  *
4106  * Tries really hard to only take one task_rq(p)->lock for performance.
4107  * Takes rq->lock in:
4108  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4109  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4110  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4111  *
4112  * As a consequence we race really badly with just about everything. See the
4113  * many memory barriers and their comments for details.
4114  *
4115  * Return: %true if @p->state changes (an actual wakeup was done),
4116  *	   %false otherwise.
4117  */
4118 static int
4119 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4120 {
4121 	unsigned long flags;
4122 	int cpu, success = 0;
4123 
4124 	preempt_disable();
4125 	if (p == current) {
4126 		/*
4127 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4128 		 * == smp_processor_id()'. Together this means we can special
4129 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4130 		 * without taking any locks.
4131 		 *
4132 		 * In particular:
4133 		 *  - we rely on Program-Order guarantees for all the ordering,
4134 		 *  - we're serialized against set_special_state() by virtue of
4135 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4136 		 */
4137 		if (!ttwu_state_match(p, state, &success))
4138 			goto out;
4139 
4140 		trace_sched_waking(p);
4141 		WRITE_ONCE(p->__state, TASK_RUNNING);
4142 		trace_sched_wakeup(p);
4143 		goto out;
4144 	}
4145 
4146 	/*
4147 	 * If we are going to wake up a thread waiting for CONDITION we
4148 	 * need to ensure that CONDITION=1 done by the caller can not be
4149 	 * reordered with p->state check below. This pairs with smp_store_mb()
4150 	 * in set_current_state() that the waiting thread does.
4151 	 */
4152 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4153 	smp_mb__after_spinlock();
4154 	if (!ttwu_state_match(p, state, &success))
4155 		goto unlock;
4156 
4157 	trace_sched_waking(p);
4158 
4159 	/*
4160 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4161 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4162 	 * in smp_cond_load_acquire() below.
4163 	 *
4164 	 * sched_ttwu_pending()			try_to_wake_up()
4165 	 *   STORE p->on_rq = 1			  LOAD p->state
4166 	 *   UNLOCK rq->lock
4167 	 *
4168 	 * __schedule() (switch to task 'p')
4169 	 *   LOCK rq->lock			  smp_rmb();
4170 	 *   smp_mb__after_spinlock();
4171 	 *   UNLOCK rq->lock
4172 	 *
4173 	 * [task p]
4174 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4175 	 *
4176 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4177 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4178 	 *
4179 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4180 	 */
4181 	smp_rmb();
4182 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4183 		goto unlock;
4184 
4185 #ifdef CONFIG_SMP
4186 	/*
4187 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4188 	 * possible to, falsely, observe p->on_cpu == 0.
4189 	 *
4190 	 * One must be running (->on_cpu == 1) in order to remove oneself
4191 	 * from the runqueue.
4192 	 *
4193 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4194 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4195 	 *   UNLOCK rq->lock
4196 	 *
4197 	 * __schedule() (put 'p' to sleep)
4198 	 *   LOCK rq->lock			  smp_rmb();
4199 	 *   smp_mb__after_spinlock();
4200 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4201 	 *
4202 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4203 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4204 	 *
4205 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4206 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4207 	 * care about it's own p->state. See the comment in __schedule().
4208 	 */
4209 	smp_acquire__after_ctrl_dep();
4210 
4211 	/*
4212 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4213 	 * == 0), which means we need to do an enqueue, change p->state to
4214 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4215 	 * enqueue, such as ttwu_queue_wakelist().
4216 	 */
4217 	WRITE_ONCE(p->__state, TASK_WAKING);
4218 
4219 	/*
4220 	 * If the owning (remote) CPU is still in the middle of schedule() with
4221 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4222 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4223 	 * let the waker make forward progress. This is safe because IRQs are
4224 	 * disabled and the IPI will deliver after on_cpu is cleared.
4225 	 *
4226 	 * Ensure we load task_cpu(p) after p->on_cpu:
4227 	 *
4228 	 * set_task_cpu(p, cpu);
4229 	 *   STORE p->cpu = @cpu
4230 	 * __schedule() (switch to task 'p')
4231 	 *   LOCK rq->lock
4232 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4233 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4234 	 *
4235 	 * to ensure we observe the correct CPU on which the task is currently
4236 	 * scheduling.
4237 	 */
4238 	if (smp_load_acquire(&p->on_cpu) &&
4239 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4240 		goto unlock;
4241 
4242 	/*
4243 	 * If the owning (remote) CPU is still in the middle of schedule() with
4244 	 * this task as prev, wait until it's done referencing the task.
4245 	 *
4246 	 * Pairs with the smp_store_release() in finish_task().
4247 	 *
4248 	 * This ensures that tasks getting woken will be fully ordered against
4249 	 * their previous state and preserve Program Order.
4250 	 */
4251 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4252 
4253 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4254 	if (task_cpu(p) != cpu) {
4255 		if (p->in_iowait) {
4256 			delayacct_blkio_end(p);
4257 			atomic_dec(&task_rq(p)->nr_iowait);
4258 		}
4259 
4260 		wake_flags |= WF_MIGRATED;
4261 		psi_ttwu_dequeue(p);
4262 		set_task_cpu(p, cpu);
4263 	}
4264 #else
4265 	cpu = task_cpu(p);
4266 #endif /* CONFIG_SMP */
4267 
4268 	ttwu_queue(p, cpu, wake_flags);
4269 unlock:
4270 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4271 out:
4272 	if (success)
4273 		ttwu_stat(p, task_cpu(p), wake_flags);
4274 	preempt_enable();
4275 
4276 	return success;
4277 }
4278 
4279 static bool __task_needs_rq_lock(struct task_struct *p)
4280 {
4281 	unsigned int state = READ_ONCE(p->__state);
4282 
4283 	/*
4284 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4285 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4286 	 * locks at the end, see ttwu_queue_wakelist().
4287 	 */
4288 	if (state == TASK_RUNNING || state == TASK_WAKING)
4289 		return true;
4290 
4291 	/*
4292 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4293 	 * possible to, falsely, observe p->on_rq == 0.
4294 	 *
4295 	 * See try_to_wake_up() for a longer comment.
4296 	 */
4297 	smp_rmb();
4298 	if (p->on_rq)
4299 		return true;
4300 
4301 #ifdef CONFIG_SMP
4302 	/*
4303 	 * Ensure the task has finished __schedule() and will not be referenced
4304 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4305 	 */
4306 	smp_rmb();
4307 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4308 #endif
4309 
4310 	return false;
4311 }
4312 
4313 /**
4314  * task_call_func - Invoke a function on task in fixed state
4315  * @p: Process for which the function is to be invoked, can be @current.
4316  * @func: Function to invoke.
4317  * @arg: Argument to function.
4318  *
4319  * Fix the task in it's current state by avoiding wakeups and or rq operations
4320  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4321  * to work out what the state is, if required.  Given that @func can be invoked
4322  * with a runqueue lock held, it had better be quite lightweight.
4323  *
4324  * Returns:
4325  *   Whatever @func returns
4326  */
4327 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4328 {
4329 	struct rq *rq = NULL;
4330 	struct rq_flags rf;
4331 	int ret;
4332 
4333 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4334 
4335 	if (__task_needs_rq_lock(p))
4336 		rq = __task_rq_lock(p, &rf);
4337 
4338 	/*
4339 	 * At this point the task is pinned; either:
4340 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4341 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4342 	 *  - queued, and we're holding off schedule	 (rq->lock)
4343 	 *  - running, and we're holding off de-schedule (rq->lock)
4344 	 *
4345 	 * The called function (@func) can use: task_curr(), p->on_rq and
4346 	 * p->__state to differentiate between these states.
4347 	 */
4348 	ret = func(p, arg);
4349 
4350 	if (rq)
4351 		rq_unlock(rq, &rf);
4352 
4353 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4354 	return ret;
4355 }
4356 
4357 /**
4358  * cpu_curr_snapshot - Return a snapshot of the currently running task
4359  * @cpu: The CPU on which to snapshot the task.
4360  *
4361  * Returns the task_struct pointer of the task "currently" running on
4362  * the specified CPU.  If the same task is running on that CPU throughout,
4363  * the return value will be a pointer to that task's task_struct structure.
4364  * If the CPU did any context switches even vaguely concurrently with the
4365  * execution of this function, the return value will be a pointer to the
4366  * task_struct structure of a randomly chosen task that was running on
4367  * that CPU somewhere around the time that this function was executing.
4368  *
4369  * If the specified CPU was offline, the return value is whatever it
4370  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4371  * task, but there is no guarantee.  Callers wishing a useful return
4372  * value must take some action to ensure that the specified CPU remains
4373  * online throughout.
4374  *
4375  * This function executes full memory barriers before and after fetching
4376  * the pointer, which permits the caller to confine this function's fetch
4377  * with respect to the caller's accesses to other shared variables.
4378  */
4379 struct task_struct *cpu_curr_snapshot(int cpu)
4380 {
4381 	struct task_struct *t;
4382 
4383 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4384 	t = rcu_dereference(cpu_curr(cpu));
4385 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4386 	return t;
4387 }
4388 
4389 /**
4390  * wake_up_process - Wake up a specific process
4391  * @p: The process to be woken up.
4392  *
4393  * Attempt to wake up the nominated process and move it to the set of runnable
4394  * processes.
4395  *
4396  * Return: 1 if the process was woken up, 0 if it was already running.
4397  *
4398  * This function executes a full memory barrier before accessing the task state.
4399  */
4400 int wake_up_process(struct task_struct *p)
4401 {
4402 	return try_to_wake_up(p, TASK_NORMAL, 0);
4403 }
4404 EXPORT_SYMBOL(wake_up_process);
4405 
4406 int wake_up_state(struct task_struct *p, unsigned int state)
4407 {
4408 	return try_to_wake_up(p, state, 0);
4409 }
4410 
4411 /*
4412  * Perform scheduler related setup for a newly forked process p.
4413  * p is forked by current.
4414  *
4415  * __sched_fork() is basic setup used by init_idle() too:
4416  */
4417 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4418 {
4419 	p->on_rq			= 0;
4420 
4421 	p->se.on_rq			= 0;
4422 	p->se.exec_start		= 0;
4423 	p->se.sum_exec_runtime		= 0;
4424 	p->se.prev_sum_exec_runtime	= 0;
4425 	p->se.nr_migrations		= 0;
4426 	p->se.vruntime			= 0;
4427 	INIT_LIST_HEAD(&p->se.group_node);
4428 
4429 #ifdef CONFIG_FAIR_GROUP_SCHED
4430 	p->se.cfs_rq			= NULL;
4431 #endif
4432 
4433 #ifdef CONFIG_SCHEDSTATS
4434 	/* Even if schedstat is disabled, there should not be garbage */
4435 	memset(&p->stats, 0, sizeof(p->stats));
4436 #endif
4437 
4438 	RB_CLEAR_NODE(&p->dl.rb_node);
4439 	init_dl_task_timer(&p->dl);
4440 	init_dl_inactive_task_timer(&p->dl);
4441 	__dl_clear_params(p);
4442 
4443 	INIT_LIST_HEAD(&p->rt.run_list);
4444 	p->rt.timeout		= 0;
4445 	p->rt.time_slice	= sched_rr_timeslice;
4446 	p->rt.on_rq		= 0;
4447 	p->rt.on_list		= 0;
4448 
4449 #ifdef CONFIG_PREEMPT_NOTIFIERS
4450 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4451 #endif
4452 
4453 #ifdef CONFIG_COMPACTION
4454 	p->capture_control = NULL;
4455 #endif
4456 	init_numa_balancing(clone_flags, p);
4457 #ifdef CONFIG_SMP
4458 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4459 	p->migration_pending = NULL;
4460 #endif
4461 }
4462 
4463 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4464 
4465 #ifdef CONFIG_NUMA_BALANCING
4466 
4467 int sysctl_numa_balancing_mode;
4468 
4469 static void __set_numabalancing_state(bool enabled)
4470 {
4471 	if (enabled)
4472 		static_branch_enable(&sched_numa_balancing);
4473 	else
4474 		static_branch_disable(&sched_numa_balancing);
4475 }
4476 
4477 void set_numabalancing_state(bool enabled)
4478 {
4479 	if (enabled)
4480 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4481 	else
4482 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4483 	__set_numabalancing_state(enabled);
4484 }
4485 
4486 #ifdef CONFIG_PROC_SYSCTL
4487 static void reset_memory_tiering(void)
4488 {
4489 	struct pglist_data *pgdat;
4490 
4491 	for_each_online_pgdat(pgdat) {
4492 		pgdat->nbp_threshold = 0;
4493 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4494 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4495 	}
4496 }
4497 
4498 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4499 			  void *buffer, size_t *lenp, loff_t *ppos)
4500 {
4501 	struct ctl_table t;
4502 	int err;
4503 	int state = sysctl_numa_balancing_mode;
4504 
4505 	if (write && !capable(CAP_SYS_ADMIN))
4506 		return -EPERM;
4507 
4508 	t = *table;
4509 	t.data = &state;
4510 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4511 	if (err < 0)
4512 		return err;
4513 	if (write) {
4514 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4515 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4516 			reset_memory_tiering();
4517 		sysctl_numa_balancing_mode = state;
4518 		__set_numabalancing_state(state);
4519 	}
4520 	return err;
4521 }
4522 #endif
4523 #endif
4524 
4525 #ifdef CONFIG_SCHEDSTATS
4526 
4527 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4528 
4529 static void set_schedstats(bool enabled)
4530 {
4531 	if (enabled)
4532 		static_branch_enable(&sched_schedstats);
4533 	else
4534 		static_branch_disable(&sched_schedstats);
4535 }
4536 
4537 void force_schedstat_enabled(void)
4538 {
4539 	if (!schedstat_enabled()) {
4540 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4541 		static_branch_enable(&sched_schedstats);
4542 	}
4543 }
4544 
4545 static int __init setup_schedstats(char *str)
4546 {
4547 	int ret = 0;
4548 	if (!str)
4549 		goto out;
4550 
4551 	if (!strcmp(str, "enable")) {
4552 		set_schedstats(true);
4553 		ret = 1;
4554 	} else if (!strcmp(str, "disable")) {
4555 		set_schedstats(false);
4556 		ret = 1;
4557 	}
4558 out:
4559 	if (!ret)
4560 		pr_warn("Unable to parse schedstats=\n");
4561 
4562 	return ret;
4563 }
4564 __setup("schedstats=", setup_schedstats);
4565 
4566 #ifdef CONFIG_PROC_SYSCTL
4567 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4568 		size_t *lenp, loff_t *ppos)
4569 {
4570 	struct ctl_table t;
4571 	int err;
4572 	int state = static_branch_likely(&sched_schedstats);
4573 
4574 	if (write && !capable(CAP_SYS_ADMIN))
4575 		return -EPERM;
4576 
4577 	t = *table;
4578 	t.data = &state;
4579 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4580 	if (err < 0)
4581 		return err;
4582 	if (write)
4583 		set_schedstats(state);
4584 	return err;
4585 }
4586 #endif /* CONFIG_PROC_SYSCTL */
4587 #endif /* CONFIG_SCHEDSTATS */
4588 
4589 #ifdef CONFIG_SYSCTL
4590 static struct ctl_table sched_core_sysctls[] = {
4591 #ifdef CONFIG_SCHEDSTATS
4592 	{
4593 		.procname       = "sched_schedstats",
4594 		.data           = NULL,
4595 		.maxlen         = sizeof(unsigned int),
4596 		.mode           = 0644,
4597 		.proc_handler   = sysctl_schedstats,
4598 		.extra1         = SYSCTL_ZERO,
4599 		.extra2         = SYSCTL_ONE,
4600 	},
4601 #endif /* CONFIG_SCHEDSTATS */
4602 #ifdef CONFIG_UCLAMP_TASK
4603 	{
4604 		.procname       = "sched_util_clamp_min",
4605 		.data           = &sysctl_sched_uclamp_util_min,
4606 		.maxlen         = sizeof(unsigned int),
4607 		.mode           = 0644,
4608 		.proc_handler   = sysctl_sched_uclamp_handler,
4609 	},
4610 	{
4611 		.procname       = "sched_util_clamp_max",
4612 		.data           = &sysctl_sched_uclamp_util_max,
4613 		.maxlen         = sizeof(unsigned int),
4614 		.mode           = 0644,
4615 		.proc_handler   = sysctl_sched_uclamp_handler,
4616 	},
4617 	{
4618 		.procname       = "sched_util_clamp_min_rt_default",
4619 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4620 		.maxlen         = sizeof(unsigned int),
4621 		.mode           = 0644,
4622 		.proc_handler   = sysctl_sched_uclamp_handler,
4623 	},
4624 #endif /* CONFIG_UCLAMP_TASK */
4625 #ifdef CONFIG_NUMA_BALANCING
4626 	{
4627 		.procname	= "numa_balancing",
4628 		.data		= NULL, /* filled in by handler */
4629 		.maxlen		= sizeof(unsigned int),
4630 		.mode		= 0644,
4631 		.proc_handler	= sysctl_numa_balancing,
4632 		.extra1		= SYSCTL_ZERO,
4633 		.extra2		= SYSCTL_FOUR,
4634 	},
4635 #endif /* CONFIG_NUMA_BALANCING */
4636 	{}
4637 };
4638 static int __init sched_core_sysctl_init(void)
4639 {
4640 	register_sysctl_init("kernel", sched_core_sysctls);
4641 	return 0;
4642 }
4643 late_initcall(sched_core_sysctl_init);
4644 #endif /* CONFIG_SYSCTL */
4645 
4646 /*
4647  * fork()/clone()-time setup:
4648  */
4649 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4650 {
4651 	__sched_fork(clone_flags, p);
4652 	/*
4653 	 * We mark the process as NEW here. This guarantees that
4654 	 * nobody will actually run it, and a signal or other external
4655 	 * event cannot wake it up and insert it on the runqueue either.
4656 	 */
4657 	p->__state = TASK_NEW;
4658 
4659 	/*
4660 	 * Make sure we do not leak PI boosting priority to the child.
4661 	 */
4662 	p->prio = current->normal_prio;
4663 
4664 	uclamp_fork(p);
4665 
4666 	/*
4667 	 * Revert to default priority/policy on fork if requested.
4668 	 */
4669 	if (unlikely(p->sched_reset_on_fork)) {
4670 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4671 			p->policy = SCHED_NORMAL;
4672 			p->static_prio = NICE_TO_PRIO(0);
4673 			p->rt_priority = 0;
4674 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4675 			p->static_prio = NICE_TO_PRIO(0);
4676 
4677 		p->prio = p->normal_prio = p->static_prio;
4678 		set_load_weight(p, false);
4679 
4680 		/*
4681 		 * We don't need the reset flag anymore after the fork. It has
4682 		 * fulfilled its duty:
4683 		 */
4684 		p->sched_reset_on_fork = 0;
4685 	}
4686 
4687 	if (dl_prio(p->prio))
4688 		return -EAGAIN;
4689 	else if (rt_prio(p->prio))
4690 		p->sched_class = &rt_sched_class;
4691 	else
4692 		p->sched_class = &fair_sched_class;
4693 
4694 	init_entity_runnable_average(&p->se);
4695 
4696 
4697 #ifdef CONFIG_SCHED_INFO
4698 	if (likely(sched_info_on()))
4699 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4700 #endif
4701 #if defined(CONFIG_SMP)
4702 	p->on_cpu = 0;
4703 #endif
4704 	init_task_preempt_count(p);
4705 #ifdef CONFIG_SMP
4706 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4707 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4708 #endif
4709 	return 0;
4710 }
4711 
4712 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4713 {
4714 	unsigned long flags;
4715 
4716 	/*
4717 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4718 	 * required yet, but lockdep gets upset if rules are violated.
4719 	 */
4720 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4721 #ifdef CONFIG_CGROUP_SCHED
4722 	if (1) {
4723 		struct task_group *tg;
4724 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4725 				  struct task_group, css);
4726 		tg = autogroup_task_group(p, tg);
4727 		p->sched_task_group = tg;
4728 	}
4729 #endif
4730 	rseq_migrate(p);
4731 	/*
4732 	 * We're setting the CPU for the first time, we don't migrate,
4733 	 * so use __set_task_cpu().
4734 	 */
4735 	__set_task_cpu(p, smp_processor_id());
4736 	if (p->sched_class->task_fork)
4737 		p->sched_class->task_fork(p);
4738 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4739 }
4740 
4741 void sched_post_fork(struct task_struct *p)
4742 {
4743 	uclamp_post_fork(p);
4744 }
4745 
4746 unsigned long to_ratio(u64 period, u64 runtime)
4747 {
4748 	if (runtime == RUNTIME_INF)
4749 		return BW_UNIT;
4750 
4751 	/*
4752 	 * Doing this here saves a lot of checks in all
4753 	 * the calling paths, and returning zero seems
4754 	 * safe for them anyway.
4755 	 */
4756 	if (period == 0)
4757 		return 0;
4758 
4759 	return div64_u64(runtime << BW_SHIFT, period);
4760 }
4761 
4762 /*
4763  * wake_up_new_task - wake up a newly created task for the first time.
4764  *
4765  * This function will do some initial scheduler statistics housekeeping
4766  * that must be done for every newly created context, then puts the task
4767  * on the runqueue and wakes it.
4768  */
4769 void wake_up_new_task(struct task_struct *p)
4770 {
4771 	struct rq_flags rf;
4772 	struct rq *rq;
4773 
4774 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4775 	WRITE_ONCE(p->__state, TASK_RUNNING);
4776 #ifdef CONFIG_SMP
4777 	/*
4778 	 * Fork balancing, do it here and not earlier because:
4779 	 *  - cpus_ptr can change in the fork path
4780 	 *  - any previously selected CPU might disappear through hotplug
4781 	 *
4782 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4783 	 * as we're not fully set-up yet.
4784 	 */
4785 	p->recent_used_cpu = task_cpu(p);
4786 	rseq_migrate(p);
4787 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4788 #endif
4789 	rq = __task_rq_lock(p, &rf);
4790 	update_rq_clock(rq);
4791 	post_init_entity_util_avg(p);
4792 
4793 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4794 	trace_sched_wakeup_new(p);
4795 	check_preempt_curr(rq, p, WF_FORK);
4796 #ifdef CONFIG_SMP
4797 	if (p->sched_class->task_woken) {
4798 		/*
4799 		 * Nothing relies on rq->lock after this, so it's fine to
4800 		 * drop it.
4801 		 */
4802 		rq_unpin_lock(rq, &rf);
4803 		p->sched_class->task_woken(rq, p);
4804 		rq_repin_lock(rq, &rf);
4805 	}
4806 #endif
4807 	task_rq_unlock(rq, p, &rf);
4808 }
4809 
4810 #ifdef CONFIG_PREEMPT_NOTIFIERS
4811 
4812 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4813 
4814 void preempt_notifier_inc(void)
4815 {
4816 	static_branch_inc(&preempt_notifier_key);
4817 }
4818 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4819 
4820 void preempt_notifier_dec(void)
4821 {
4822 	static_branch_dec(&preempt_notifier_key);
4823 }
4824 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4825 
4826 /**
4827  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4828  * @notifier: notifier struct to register
4829  */
4830 void preempt_notifier_register(struct preempt_notifier *notifier)
4831 {
4832 	if (!static_branch_unlikely(&preempt_notifier_key))
4833 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4834 
4835 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4836 }
4837 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4838 
4839 /**
4840  * preempt_notifier_unregister - no longer interested in preemption notifications
4841  * @notifier: notifier struct to unregister
4842  *
4843  * This is *not* safe to call from within a preemption notifier.
4844  */
4845 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4846 {
4847 	hlist_del(&notifier->link);
4848 }
4849 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4850 
4851 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4852 {
4853 	struct preempt_notifier *notifier;
4854 
4855 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4856 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4857 }
4858 
4859 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4860 {
4861 	if (static_branch_unlikely(&preempt_notifier_key))
4862 		__fire_sched_in_preempt_notifiers(curr);
4863 }
4864 
4865 static void
4866 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4867 				   struct task_struct *next)
4868 {
4869 	struct preempt_notifier *notifier;
4870 
4871 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4872 		notifier->ops->sched_out(notifier, next);
4873 }
4874 
4875 static __always_inline void
4876 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4877 				 struct task_struct *next)
4878 {
4879 	if (static_branch_unlikely(&preempt_notifier_key))
4880 		__fire_sched_out_preempt_notifiers(curr, next);
4881 }
4882 
4883 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4884 
4885 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4886 {
4887 }
4888 
4889 static inline void
4890 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4891 				 struct task_struct *next)
4892 {
4893 }
4894 
4895 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4896 
4897 static inline void prepare_task(struct task_struct *next)
4898 {
4899 #ifdef CONFIG_SMP
4900 	/*
4901 	 * Claim the task as running, we do this before switching to it
4902 	 * such that any running task will have this set.
4903 	 *
4904 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4905 	 * its ordering comment.
4906 	 */
4907 	WRITE_ONCE(next->on_cpu, 1);
4908 #endif
4909 }
4910 
4911 static inline void finish_task(struct task_struct *prev)
4912 {
4913 #ifdef CONFIG_SMP
4914 	/*
4915 	 * This must be the very last reference to @prev from this CPU. After
4916 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4917 	 * must ensure this doesn't happen until the switch is completely
4918 	 * finished.
4919 	 *
4920 	 * In particular, the load of prev->state in finish_task_switch() must
4921 	 * happen before this.
4922 	 *
4923 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4924 	 */
4925 	smp_store_release(&prev->on_cpu, 0);
4926 #endif
4927 }
4928 
4929 #ifdef CONFIG_SMP
4930 
4931 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4932 {
4933 	void (*func)(struct rq *rq);
4934 	struct balance_callback *next;
4935 
4936 	lockdep_assert_rq_held(rq);
4937 
4938 	while (head) {
4939 		func = (void (*)(struct rq *))head->func;
4940 		next = head->next;
4941 		head->next = NULL;
4942 		head = next;
4943 
4944 		func(rq);
4945 	}
4946 }
4947 
4948 static void balance_push(struct rq *rq);
4949 
4950 /*
4951  * balance_push_callback is a right abuse of the callback interface and plays
4952  * by significantly different rules.
4953  *
4954  * Where the normal balance_callback's purpose is to be ran in the same context
4955  * that queued it (only later, when it's safe to drop rq->lock again),
4956  * balance_push_callback is specifically targeted at __schedule().
4957  *
4958  * This abuse is tolerated because it places all the unlikely/odd cases behind
4959  * a single test, namely: rq->balance_callback == NULL.
4960  */
4961 struct balance_callback balance_push_callback = {
4962 	.next = NULL,
4963 	.func = balance_push,
4964 };
4965 
4966 static inline struct balance_callback *
4967 __splice_balance_callbacks(struct rq *rq, bool split)
4968 {
4969 	struct balance_callback *head = rq->balance_callback;
4970 
4971 	if (likely(!head))
4972 		return NULL;
4973 
4974 	lockdep_assert_rq_held(rq);
4975 	/*
4976 	 * Must not take balance_push_callback off the list when
4977 	 * splice_balance_callbacks() and balance_callbacks() are not
4978 	 * in the same rq->lock section.
4979 	 *
4980 	 * In that case it would be possible for __schedule() to interleave
4981 	 * and observe the list empty.
4982 	 */
4983 	if (split && head == &balance_push_callback)
4984 		head = NULL;
4985 	else
4986 		rq->balance_callback = NULL;
4987 
4988 	return head;
4989 }
4990 
4991 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4992 {
4993 	return __splice_balance_callbacks(rq, true);
4994 }
4995 
4996 static void __balance_callbacks(struct rq *rq)
4997 {
4998 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4999 }
5000 
5001 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5002 {
5003 	unsigned long flags;
5004 
5005 	if (unlikely(head)) {
5006 		raw_spin_rq_lock_irqsave(rq, flags);
5007 		do_balance_callbacks(rq, head);
5008 		raw_spin_rq_unlock_irqrestore(rq, flags);
5009 	}
5010 }
5011 
5012 #else
5013 
5014 static inline void __balance_callbacks(struct rq *rq)
5015 {
5016 }
5017 
5018 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5019 {
5020 	return NULL;
5021 }
5022 
5023 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5024 {
5025 }
5026 
5027 #endif
5028 
5029 static inline void
5030 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5031 {
5032 	/*
5033 	 * Since the runqueue lock will be released by the next
5034 	 * task (which is an invalid locking op but in the case
5035 	 * of the scheduler it's an obvious special-case), so we
5036 	 * do an early lockdep release here:
5037 	 */
5038 	rq_unpin_lock(rq, rf);
5039 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5040 #ifdef CONFIG_DEBUG_SPINLOCK
5041 	/* this is a valid case when another task releases the spinlock */
5042 	rq_lockp(rq)->owner = next;
5043 #endif
5044 }
5045 
5046 static inline void finish_lock_switch(struct rq *rq)
5047 {
5048 	/*
5049 	 * If we are tracking spinlock dependencies then we have to
5050 	 * fix up the runqueue lock - which gets 'carried over' from
5051 	 * prev into current:
5052 	 */
5053 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5054 	__balance_callbacks(rq);
5055 	raw_spin_rq_unlock_irq(rq);
5056 }
5057 
5058 /*
5059  * NOP if the arch has not defined these:
5060  */
5061 
5062 #ifndef prepare_arch_switch
5063 # define prepare_arch_switch(next)	do { } while (0)
5064 #endif
5065 
5066 #ifndef finish_arch_post_lock_switch
5067 # define finish_arch_post_lock_switch()	do { } while (0)
5068 #endif
5069 
5070 static inline void kmap_local_sched_out(void)
5071 {
5072 #ifdef CONFIG_KMAP_LOCAL
5073 	if (unlikely(current->kmap_ctrl.idx))
5074 		__kmap_local_sched_out();
5075 #endif
5076 }
5077 
5078 static inline void kmap_local_sched_in(void)
5079 {
5080 #ifdef CONFIG_KMAP_LOCAL
5081 	if (unlikely(current->kmap_ctrl.idx))
5082 		__kmap_local_sched_in();
5083 #endif
5084 }
5085 
5086 /**
5087  * prepare_task_switch - prepare to switch tasks
5088  * @rq: the runqueue preparing to switch
5089  * @prev: the current task that is being switched out
5090  * @next: the task we are going to switch to.
5091  *
5092  * This is called with the rq lock held and interrupts off. It must
5093  * be paired with a subsequent finish_task_switch after the context
5094  * switch.
5095  *
5096  * prepare_task_switch sets up locking and calls architecture specific
5097  * hooks.
5098  */
5099 static inline void
5100 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5101 		    struct task_struct *next)
5102 {
5103 	kcov_prepare_switch(prev);
5104 	sched_info_switch(rq, prev, next);
5105 	perf_event_task_sched_out(prev, next);
5106 	rseq_preempt(prev);
5107 	fire_sched_out_preempt_notifiers(prev, next);
5108 	kmap_local_sched_out();
5109 	prepare_task(next);
5110 	prepare_arch_switch(next);
5111 }
5112 
5113 /**
5114  * finish_task_switch - clean up after a task-switch
5115  * @prev: the thread we just switched away from.
5116  *
5117  * finish_task_switch must be called after the context switch, paired
5118  * with a prepare_task_switch call before the context switch.
5119  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5120  * and do any other architecture-specific cleanup actions.
5121  *
5122  * Note that we may have delayed dropping an mm in context_switch(). If
5123  * so, we finish that here outside of the runqueue lock. (Doing it
5124  * with the lock held can cause deadlocks; see schedule() for
5125  * details.)
5126  *
5127  * The context switch have flipped the stack from under us and restored the
5128  * local variables which were saved when this task called schedule() in the
5129  * past. prev == current is still correct but we need to recalculate this_rq
5130  * because prev may have moved to another CPU.
5131  */
5132 static struct rq *finish_task_switch(struct task_struct *prev)
5133 	__releases(rq->lock)
5134 {
5135 	struct rq *rq = this_rq();
5136 	struct mm_struct *mm = rq->prev_mm;
5137 	unsigned int prev_state;
5138 
5139 	/*
5140 	 * The previous task will have left us with a preempt_count of 2
5141 	 * because it left us after:
5142 	 *
5143 	 *	schedule()
5144 	 *	  preempt_disable();			// 1
5145 	 *	  __schedule()
5146 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5147 	 *
5148 	 * Also, see FORK_PREEMPT_COUNT.
5149 	 */
5150 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5151 		      "corrupted preempt_count: %s/%d/0x%x\n",
5152 		      current->comm, current->pid, preempt_count()))
5153 		preempt_count_set(FORK_PREEMPT_COUNT);
5154 
5155 	rq->prev_mm = NULL;
5156 
5157 	/*
5158 	 * A task struct has one reference for the use as "current".
5159 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5160 	 * schedule one last time. The schedule call will never return, and
5161 	 * the scheduled task must drop that reference.
5162 	 *
5163 	 * We must observe prev->state before clearing prev->on_cpu (in
5164 	 * finish_task), otherwise a concurrent wakeup can get prev
5165 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5166 	 * transition, resulting in a double drop.
5167 	 */
5168 	prev_state = READ_ONCE(prev->__state);
5169 	vtime_task_switch(prev);
5170 	perf_event_task_sched_in(prev, current);
5171 	finish_task(prev);
5172 	tick_nohz_task_switch();
5173 	finish_lock_switch(rq);
5174 	finish_arch_post_lock_switch();
5175 	kcov_finish_switch(current);
5176 	/*
5177 	 * kmap_local_sched_out() is invoked with rq::lock held and
5178 	 * interrupts disabled. There is no requirement for that, but the
5179 	 * sched out code does not have an interrupt enabled section.
5180 	 * Restoring the maps on sched in does not require interrupts being
5181 	 * disabled either.
5182 	 */
5183 	kmap_local_sched_in();
5184 
5185 	fire_sched_in_preempt_notifiers(current);
5186 	/*
5187 	 * When switching through a kernel thread, the loop in
5188 	 * membarrier_{private,global}_expedited() may have observed that
5189 	 * kernel thread and not issued an IPI. It is therefore possible to
5190 	 * schedule between user->kernel->user threads without passing though
5191 	 * switch_mm(). Membarrier requires a barrier after storing to
5192 	 * rq->curr, before returning to userspace, so provide them here:
5193 	 *
5194 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5195 	 *   provided by mmdrop(),
5196 	 * - a sync_core for SYNC_CORE.
5197 	 */
5198 	if (mm) {
5199 		membarrier_mm_sync_core_before_usermode(mm);
5200 		mmdrop_sched(mm);
5201 	}
5202 	if (unlikely(prev_state == TASK_DEAD)) {
5203 		if (prev->sched_class->task_dead)
5204 			prev->sched_class->task_dead(prev);
5205 
5206 		/* Task is done with its stack. */
5207 		put_task_stack(prev);
5208 
5209 		put_task_struct_rcu_user(prev);
5210 	}
5211 
5212 	return rq;
5213 }
5214 
5215 /**
5216  * schedule_tail - first thing a freshly forked thread must call.
5217  * @prev: the thread we just switched away from.
5218  */
5219 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5220 	__releases(rq->lock)
5221 {
5222 	/*
5223 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5224 	 * finish_task_switch() for details.
5225 	 *
5226 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5227 	 * and the preempt_enable() will end up enabling preemption (on
5228 	 * PREEMPT_COUNT kernels).
5229 	 */
5230 
5231 	finish_task_switch(prev);
5232 	preempt_enable();
5233 
5234 	if (current->set_child_tid)
5235 		put_user(task_pid_vnr(current), current->set_child_tid);
5236 
5237 	calculate_sigpending();
5238 }
5239 
5240 /*
5241  * context_switch - switch to the new MM and the new thread's register state.
5242  */
5243 static __always_inline struct rq *
5244 context_switch(struct rq *rq, struct task_struct *prev,
5245 	       struct task_struct *next, struct rq_flags *rf)
5246 {
5247 	prepare_task_switch(rq, prev, next);
5248 
5249 	/*
5250 	 * For paravirt, this is coupled with an exit in switch_to to
5251 	 * combine the page table reload and the switch backend into
5252 	 * one hypercall.
5253 	 */
5254 	arch_start_context_switch(prev);
5255 
5256 	/*
5257 	 * kernel -> kernel   lazy + transfer active
5258 	 *   user -> kernel   lazy + mmgrab() active
5259 	 *
5260 	 * kernel ->   user   switch + mmdrop() active
5261 	 *   user ->   user   switch
5262 	 */
5263 	if (!next->mm) {                                // to kernel
5264 		enter_lazy_tlb(prev->active_mm, next);
5265 
5266 		next->active_mm = prev->active_mm;
5267 		if (prev->mm)                           // from user
5268 			mmgrab(prev->active_mm);
5269 		else
5270 			prev->active_mm = NULL;
5271 	} else {                                        // to user
5272 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5273 		/*
5274 		 * sys_membarrier() requires an smp_mb() between setting
5275 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5276 		 *
5277 		 * The below provides this either through switch_mm(), or in
5278 		 * case 'prev->active_mm == next->mm' through
5279 		 * finish_task_switch()'s mmdrop().
5280 		 */
5281 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5282 		lru_gen_use_mm(next->mm);
5283 
5284 		if (!prev->mm) {                        // from kernel
5285 			/* will mmdrop() in finish_task_switch(). */
5286 			rq->prev_mm = prev->active_mm;
5287 			prev->active_mm = NULL;
5288 		}
5289 	}
5290 
5291 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5292 
5293 	prepare_lock_switch(rq, next, rf);
5294 
5295 	/* Here we just switch the register state and the stack. */
5296 	switch_to(prev, next, prev);
5297 	barrier();
5298 
5299 	return finish_task_switch(prev);
5300 }
5301 
5302 /*
5303  * nr_running and nr_context_switches:
5304  *
5305  * externally visible scheduler statistics: current number of runnable
5306  * threads, total number of context switches performed since bootup.
5307  */
5308 unsigned int nr_running(void)
5309 {
5310 	unsigned int i, sum = 0;
5311 
5312 	for_each_online_cpu(i)
5313 		sum += cpu_rq(i)->nr_running;
5314 
5315 	return sum;
5316 }
5317 
5318 /*
5319  * Check if only the current task is running on the CPU.
5320  *
5321  * Caution: this function does not check that the caller has disabled
5322  * preemption, thus the result might have a time-of-check-to-time-of-use
5323  * race.  The caller is responsible to use it correctly, for example:
5324  *
5325  * - from a non-preemptible section (of course)
5326  *
5327  * - from a thread that is bound to a single CPU
5328  *
5329  * - in a loop with very short iterations (e.g. a polling loop)
5330  */
5331 bool single_task_running(void)
5332 {
5333 	return raw_rq()->nr_running == 1;
5334 }
5335 EXPORT_SYMBOL(single_task_running);
5336 
5337 unsigned long long nr_context_switches(void)
5338 {
5339 	int i;
5340 	unsigned long long sum = 0;
5341 
5342 	for_each_possible_cpu(i)
5343 		sum += cpu_rq(i)->nr_switches;
5344 
5345 	return sum;
5346 }
5347 
5348 /*
5349  * Consumers of these two interfaces, like for example the cpuidle menu
5350  * governor, are using nonsensical data. Preferring shallow idle state selection
5351  * for a CPU that has IO-wait which might not even end up running the task when
5352  * it does become runnable.
5353  */
5354 
5355 unsigned int nr_iowait_cpu(int cpu)
5356 {
5357 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5358 }
5359 
5360 /*
5361  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5362  *
5363  * The idea behind IO-wait account is to account the idle time that we could
5364  * have spend running if it were not for IO. That is, if we were to improve the
5365  * storage performance, we'd have a proportional reduction in IO-wait time.
5366  *
5367  * This all works nicely on UP, where, when a task blocks on IO, we account
5368  * idle time as IO-wait, because if the storage were faster, it could've been
5369  * running and we'd not be idle.
5370  *
5371  * This has been extended to SMP, by doing the same for each CPU. This however
5372  * is broken.
5373  *
5374  * Imagine for instance the case where two tasks block on one CPU, only the one
5375  * CPU will have IO-wait accounted, while the other has regular idle. Even
5376  * though, if the storage were faster, both could've ran at the same time,
5377  * utilising both CPUs.
5378  *
5379  * This means, that when looking globally, the current IO-wait accounting on
5380  * SMP is a lower bound, by reason of under accounting.
5381  *
5382  * Worse, since the numbers are provided per CPU, they are sometimes
5383  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5384  * associated with any one particular CPU, it can wake to another CPU than it
5385  * blocked on. This means the per CPU IO-wait number is meaningless.
5386  *
5387  * Task CPU affinities can make all that even more 'interesting'.
5388  */
5389 
5390 unsigned int nr_iowait(void)
5391 {
5392 	unsigned int i, sum = 0;
5393 
5394 	for_each_possible_cpu(i)
5395 		sum += nr_iowait_cpu(i);
5396 
5397 	return sum;
5398 }
5399 
5400 #ifdef CONFIG_SMP
5401 
5402 /*
5403  * sched_exec - execve() is a valuable balancing opportunity, because at
5404  * this point the task has the smallest effective memory and cache footprint.
5405  */
5406 void sched_exec(void)
5407 {
5408 	struct task_struct *p = current;
5409 	unsigned long flags;
5410 	int dest_cpu;
5411 
5412 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5413 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5414 	if (dest_cpu == smp_processor_id())
5415 		goto unlock;
5416 
5417 	if (likely(cpu_active(dest_cpu))) {
5418 		struct migration_arg arg = { p, dest_cpu };
5419 
5420 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5421 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5422 		return;
5423 	}
5424 unlock:
5425 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5426 }
5427 
5428 #endif
5429 
5430 DEFINE_PER_CPU(struct kernel_stat, kstat);
5431 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5432 
5433 EXPORT_PER_CPU_SYMBOL(kstat);
5434 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5435 
5436 /*
5437  * The function fair_sched_class.update_curr accesses the struct curr
5438  * and its field curr->exec_start; when called from task_sched_runtime(),
5439  * we observe a high rate of cache misses in practice.
5440  * Prefetching this data results in improved performance.
5441  */
5442 static inline void prefetch_curr_exec_start(struct task_struct *p)
5443 {
5444 #ifdef CONFIG_FAIR_GROUP_SCHED
5445 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5446 #else
5447 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5448 #endif
5449 	prefetch(curr);
5450 	prefetch(&curr->exec_start);
5451 }
5452 
5453 /*
5454  * Return accounted runtime for the task.
5455  * In case the task is currently running, return the runtime plus current's
5456  * pending runtime that have not been accounted yet.
5457  */
5458 unsigned long long task_sched_runtime(struct task_struct *p)
5459 {
5460 	struct rq_flags rf;
5461 	struct rq *rq;
5462 	u64 ns;
5463 
5464 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5465 	/*
5466 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5467 	 * So we have a optimization chance when the task's delta_exec is 0.
5468 	 * Reading ->on_cpu is racy, but this is ok.
5469 	 *
5470 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5471 	 * If we race with it entering CPU, unaccounted time is 0. This is
5472 	 * indistinguishable from the read occurring a few cycles earlier.
5473 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5474 	 * been accounted, so we're correct here as well.
5475 	 */
5476 	if (!p->on_cpu || !task_on_rq_queued(p))
5477 		return p->se.sum_exec_runtime;
5478 #endif
5479 
5480 	rq = task_rq_lock(p, &rf);
5481 	/*
5482 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5483 	 * project cycles that may never be accounted to this
5484 	 * thread, breaking clock_gettime().
5485 	 */
5486 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5487 		prefetch_curr_exec_start(p);
5488 		update_rq_clock(rq);
5489 		p->sched_class->update_curr(rq);
5490 	}
5491 	ns = p->se.sum_exec_runtime;
5492 	task_rq_unlock(rq, p, &rf);
5493 
5494 	return ns;
5495 }
5496 
5497 #ifdef CONFIG_SCHED_DEBUG
5498 static u64 cpu_resched_latency(struct rq *rq)
5499 {
5500 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5501 	u64 resched_latency, now = rq_clock(rq);
5502 	static bool warned_once;
5503 
5504 	if (sysctl_resched_latency_warn_once && warned_once)
5505 		return 0;
5506 
5507 	if (!need_resched() || !latency_warn_ms)
5508 		return 0;
5509 
5510 	if (system_state == SYSTEM_BOOTING)
5511 		return 0;
5512 
5513 	if (!rq->last_seen_need_resched_ns) {
5514 		rq->last_seen_need_resched_ns = now;
5515 		rq->ticks_without_resched = 0;
5516 		return 0;
5517 	}
5518 
5519 	rq->ticks_without_resched++;
5520 	resched_latency = now - rq->last_seen_need_resched_ns;
5521 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5522 		return 0;
5523 
5524 	warned_once = true;
5525 
5526 	return resched_latency;
5527 }
5528 
5529 static int __init setup_resched_latency_warn_ms(char *str)
5530 {
5531 	long val;
5532 
5533 	if ((kstrtol(str, 0, &val))) {
5534 		pr_warn("Unable to set resched_latency_warn_ms\n");
5535 		return 1;
5536 	}
5537 
5538 	sysctl_resched_latency_warn_ms = val;
5539 	return 1;
5540 }
5541 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5542 #else
5543 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5544 #endif /* CONFIG_SCHED_DEBUG */
5545 
5546 /*
5547  * This function gets called by the timer code, with HZ frequency.
5548  * We call it with interrupts disabled.
5549  */
5550 void scheduler_tick(void)
5551 {
5552 	int cpu = smp_processor_id();
5553 	struct rq *rq = cpu_rq(cpu);
5554 	struct task_struct *curr = rq->curr;
5555 	struct rq_flags rf;
5556 	unsigned long thermal_pressure;
5557 	u64 resched_latency;
5558 
5559 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5560 		arch_scale_freq_tick();
5561 
5562 	sched_clock_tick();
5563 
5564 	rq_lock(rq, &rf);
5565 
5566 	update_rq_clock(rq);
5567 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5568 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5569 	curr->sched_class->task_tick(rq, curr, 0);
5570 	if (sched_feat(LATENCY_WARN))
5571 		resched_latency = cpu_resched_latency(rq);
5572 	calc_global_load_tick(rq);
5573 	sched_core_tick(rq);
5574 
5575 	rq_unlock(rq, &rf);
5576 
5577 	if (sched_feat(LATENCY_WARN) && resched_latency)
5578 		resched_latency_warn(cpu, resched_latency);
5579 
5580 	perf_event_task_tick();
5581 
5582 #ifdef CONFIG_SMP
5583 	rq->idle_balance = idle_cpu(cpu);
5584 	trigger_load_balance(rq);
5585 #endif
5586 }
5587 
5588 #ifdef CONFIG_NO_HZ_FULL
5589 
5590 struct tick_work {
5591 	int			cpu;
5592 	atomic_t		state;
5593 	struct delayed_work	work;
5594 };
5595 /* Values for ->state, see diagram below. */
5596 #define TICK_SCHED_REMOTE_OFFLINE	0
5597 #define TICK_SCHED_REMOTE_OFFLINING	1
5598 #define TICK_SCHED_REMOTE_RUNNING	2
5599 
5600 /*
5601  * State diagram for ->state:
5602  *
5603  *
5604  *          TICK_SCHED_REMOTE_OFFLINE
5605  *                    |   ^
5606  *                    |   |
5607  *                    |   | sched_tick_remote()
5608  *                    |   |
5609  *                    |   |
5610  *                    +--TICK_SCHED_REMOTE_OFFLINING
5611  *                    |   ^
5612  *                    |   |
5613  * sched_tick_start() |   | sched_tick_stop()
5614  *                    |   |
5615  *                    V   |
5616  *          TICK_SCHED_REMOTE_RUNNING
5617  *
5618  *
5619  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5620  * and sched_tick_start() are happy to leave the state in RUNNING.
5621  */
5622 
5623 static struct tick_work __percpu *tick_work_cpu;
5624 
5625 static void sched_tick_remote(struct work_struct *work)
5626 {
5627 	struct delayed_work *dwork = to_delayed_work(work);
5628 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5629 	int cpu = twork->cpu;
5630 	struct rq *rq = cpu_rq(cpu);
5631 	struct task_struct *curr;
5632 	struct rq_flags rf;
5633 	u64 delta;
5634 	int os;
5635 
5636 	/*
5637 	 * Handle the tick only if it appears the remote CPU is running in full
5638 	 * dynticks mode. The check is racy by nature, but missing a tick or
5639 	 * having one too much is no big deal because the scheduler tick updates
5640 	 * statistics and checks timeslices in a time-independent way, regardless
5641 	 * of when exactly it is running.
5642 	 */
5643 	if (!tick_nohz_tick_stopped_cpu(cpu))
5644 		goto out_requeue;
5645 
5646 	rq_lock_irq(rq, &rf);
5647 	curr = rq->curr;
5648 	if (cpu_is_offline(cpu))
5649 		goto out_unlock;
5650 
5651 	update_rq_clock(rq);
5652 
5653 	if (!is_idle_task(curr)) {
5654 		/*
5655 		 * Make sure the next tick runs within a reasonable
5656 		 * amount of time.
5657 		 */
5658 		delta = rq_clock_task(rq) - curr->se.exec_start;
5659 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5660 	}
5661 	curr->sched_class->task_tick(rq, curr, 0);
5662 
5663 	calc_load_nohz_remote(rq);
5664 out_unlock:
5665 	rq_unlock_irq(rq, &rf);
5666 out_requeue:
5667 
5668 	/*
5669 	 * Run the remote tick once per second (1Hz). This arbitrary
5670 	 * frequency is large enough to avoid overload but short enough
5671 	 * to keep scheduler internal stats reasonably up to date.  But
5672 	 * first update state to reflect hotplug activity if required.
5673 	 */
5674 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5675 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5676 	if (os == TICK_SCHED_REMOTE_RUNNING)
5677 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5678 }
5679 
5680 static void sched_tick_start(int cpu)
5681 {
5682 	int os;
5683 	struct tick_work *twork;
5684 
5685 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5686 		return;
5687 
5688 	WARN_ON_ONCE(!tick_work_cpu);
5689 
5690 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5691 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5692 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5693 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5694 		twork->cpu = cpu;
5695 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5696 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5697 	}
5698 }
5699 
5700 #ifdef CONFIG_HOTPLUG_CPU
5701 static void sched_tick_stop(int cpu)
5702 {
5703 	struct tick_work *twork;
5704 	int os;
5705 
5706 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5707 		return;
5708 
5709 	WARN_ON_ONCE(!tick_work_cpu);
5710 
5711 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5712 	/* There cannot be competing actions, but don't rely on stop-machine. */
5713 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5714 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5715 	/* Don't cancel, as this would mess up the state machine. */
5716 }
5717 #endif /* CONFIG_HOTPLUG_CPU */
5718 
5719 int __init sched_tick_offload_init(void)
5720 {
5721 	tick_work_cpu = alloc_percpu(struct tick_work);
5722 	BUG_ON(!tick_work_cpu);
5723 	return 0;
5724 }
5725 
5726 #else /* !CONFIG_NO_HZ_FULL */
5727 static inline void sched_tick_start(int cpu) { }
5728 static inline void sched_tick_stop(int cpu) { }
5729 #endif
5730 
5731 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5732 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5733 /*
5734  * If the value passed in is equal to the current preempt count
5735  * then we just disabled preemption. Start timing the latency.
5736  */
5737 static inline void preempt_latency_start(int val)
5738 {
5739 	if (preempt_count() == val) {
5740 		unsigned long ip = get_lock_parent_ip();
5741 #ifdef CONFIG_DEBUG_PREEMPT
5742 		current->preempt_disable_ip = ip;
5743 #endif
5744 		trace_preempt_off(CALLER_ADDR0, ip);
5745 	}
5746 }
5747 
5748 void preempt_count_add(int val)
5749 {
5750 #ifdef CONFIG_DEBUG_PREEMPT
5751 	/*
5752 	 * Underflow?
5753 	 */
5754 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5755 		return;
5756 #endif
5757 	__preempt_count_add(val);
5758 #ifdef CONFIG_DEBUG_PREEMPT
5759 	/*
5760 	 * Spinlock count overflowing soon?
5761 	 */
5762 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5763 				PREEMPT_MASK - 10);
5764 #endif
5765 	preempt_latency_start(val);
5766 }
5767 EXPORT_SYMBOL(preempt_count_add);
5768 NOKPROBE_SYMBOL(preempt_count_add);
5769 
5770 /*
5771  * If the value passed in equals to the current preempt count
5772  * then we just enabled preemption. Stop timing the latency.
5773  */
5774 static inline void preempt_latency_stop(int val)
5775 {
5776 	if (preempt_count() == val)
5777 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5778 }
5779 
5780 void preempt_count_sub(int val)
5781 {
5782 #ifdef CONFIG_DEBUG_PREEMPT
5783 	/*
5784 	 * Underflow?
5785 	 */
5786 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5787 		return;
5788 	/*
5789 	 * Is the spinlock portion underflowing?
5790 	 */
5791 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5792 			!(preempt_count() & PREEMPT_MASK)))
5793 		return;
5794 #endif
5795 
5796 	preempt_latency_stop(val);
5797 	__preempt_count_sub(val);
5798 }
5799 EXPORT_SYMBOL(preempt_count_sub);
5800 NOKPROBE_SYMBOL(preempt_count_sub);
5801 
5802 #else
5803 static inline void preempt_latency_start(int val) { }
5804 static inline void preempt_latency_stop(int val) { }
5805 #endif
5806 
5807 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5808 {
5809 #ifdef CONFIG_DEBUG_PREEMPT
5810 	return p->preempt_disable_ip;
5811 #else
5812 	return 0;
5813 #endif
5814 }
5815 
5816 /*
5817  * Print scheduling while atomic bug:
5818  */
5819 static noinline void __schedule_bug(struct task_struct *prev)
5820 {
5821 	/* Save this before calling printk(), since that will clobber it */
5822 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5823 
5824 	if (oops_in_progress)
5825 		return;
5826 
5827 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5828 		prev->comm, prev->pid, preempt_count());
5829 
5830 	debug_show_held_locks(prev);
5831 	print_modules();
5832 	if (irqs_disabled())
5833 		print_irqtrace_events(prev);
5834 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5835 	    && in_atomic_preempt_off()) {
5836 		pr_err("Preemption disabled at:");
5837 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5838 	}
5839 	check_panic_on_warn("scheduling while atomic");
5840 
5841 	dump_stack();
5842 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5843 }
5844 
5845 /*
5846  * Various schedule()-time debugging checks and statistics:
5847  */
5848 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5849 {
5850 #ifdef CONFIG_SCHED_STACK_END_CHECK
5851 	if (task_stack_end_corrupted(prev))
5852 		panic("corrupted stack end detected inside scheduler\n");
5853 
5854 	if (task_scs_end_corrupted(prev))
5855 		panic("corrupted shadow stack detected inside scheduler\n");
5856 #endif
5857 
5858 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5859 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5860 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5861 			prev->comm, prev->pid, prev->non_block_count);
5862 		dump_stack();
5863 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5864 	}
5865 #endif
5866 
5867 	if (unlikely(in_atomic_preempt_off())) {
5868 		__schedule_bug(prev);
5869 		preempt_count_set(PREEMPT_DISABLED);
5870 	}
5871 	rcu_sleep_check();
5872 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5873 
5874 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5875 
5876 	schedstat_inc(this_rq()->sched_count);
5877 }
5878 
5879 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5880 				  struct rq_flags *rf)
5881 {
5882 #ifdef CONFIG_SMP
5883 	const struct sched_class *class;
5884 	/*
5885 	 * We must do the balancing pass before put_prev_task(), such
5886 	 * that when we release the rq->lock the task is in the same
5887 	 * state as before we took rq->lock.
5888 	 *
5889 	 * We can terminate the balance pass as soon as we know there is
5890 	 * a runnable task of @class priority or higher.
5891 	 */
5892 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5893 		if (class->balance(rq, prev, rf))
5894 			break;
5895 	}
5896 #endif
5897 
5898 	put_prev_task(rq, prev);
5899 }
5900 
5901 /*
5902  * Pick up the highest-prio task:
5903  */
5904 static inline struct task_struct *
5905 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5906 {
5907 	const struct sched_class *class;
5908 	struct task_struct *p;
5909 
5910 	/*
5911 	 * Optimization: we know that if all tasks are in the fair class we can
5912 	 * call that function directly, but only if the @prev task wasn't of a
5913 	 * higher scheduling class, because otherwise those lose the
5914 	 * opportunity to pull in more work from other CPUs.
5915 	 */
5916 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5917 		   rq->nr_running == rq->cfs.h_nr_running)) {
5918 
5919 		p = pick_next_task_fair(rq, prev, rf);
5920 		if (unlikely(p == RETRY_TASK))
5921 			goto restart;
5922 
5923 		/* Assume the next prioritized class is idle_sched_class */
5924 		if (!p) {
5925 			put_prev_task(rq, prev);
5926 			p = pick_next_task_idle(rq);
5927 		}
5928 
5929 		return p;
5930 	}
5931 
5932 restart:
5933 	put_prev_task_balance(rq, prev, rf);
5934 
5935 	for_each_class(class) {
5936 		p = class->pick_next_task(rq);
5937 		if (p)
5938 			return p;
5939 	}
5940 
5941 	BUG(); /* The idle class should always have a runnable task. */
5942 }
5943 
5944 #ifdef CONFIG_SCHED_CORE
5945 static inline bool is_task_rq_idle(struct task_struct *t)
5946 {
5947 	return (task_rq(t)->idle == t);
5948 }
5949 
5950 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5951 {
5952 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5953 }
5954 
5955 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5956 {
5957 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5958 		return true;
5959 
5960 	return a->core_cookie == b->core_cookie;
5961 }
5962 
5963 static inline struct task_struct *pick_task(struct rq *rq)
5964 {
5965 	const struct sched_class *class;
5966 	struct task_struct *p;
5967 
5968 	for_each_class(class) {
5969 		p = class->pick_task(rq);
5970 		if (p)
5971 			return p;
5972 	}
5973 
5974 	BUG(); /* The idle class should always have a runnable task. */
5975 }
5976 
5977 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5978 
5979 static void queue_core_balance(struct rq *rq);
5980 
5981 static struct task_struct *
5982 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5983 {
5984 	struct task_struct *next, *p, *max = NULL;
5985 	const struct cpumask *smt_mask;
5986 	bool fi_before = false;
5987 	bool core_clock_updated = (rq == rq->core);
5988 	unsigned long cookie;
5989 	int i, cpu, occ = 0;
5990 	struct rq *rq_i;
5991 	bool need_sync;
5992 
5993 	if (!sched_core_enabled(rq))
5994 		return __pick_next_task(rq, prev, rf);
5995 
5996 	cpu = cpu_of(rq);
5997 
5998 	/* Stopper task is switching into idle, no need core-wide selection. */
5999 	if (cpu_is_offline(cpu)) {
6000 		/*
6001 		 * Reset core_pick so that we don't enter the fastpath when
6002 		 * coming online. core_pick would already be migrated to
6003 		 * another cpu during offline.
6004 		 */
6005 		rq->core_pick = NULL;
6006 		return __pick_next_task(rq, prev, rf);
6007 	}
6008 
6009 	/*
6010 	 * If there were no {en,de}queues since we picked (IOW, the task
6011 	 * pointers are all still valid), and we haven't scheduled the last
6012 	 * pick yet, do so now.
6013 	 *
6014 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6015 	 * it was either offline or went offline during a sibling's core-wide
6016 	 * selection. In this case, do a core-wide selection.
6017 	 */
6018 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6019 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6020 	    rq->core_pick) {
6021 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6022 
6023 		next = rq->core_pick;
6024 		if (next != prev) {
6025 			put_prev_task(rq, prev);
6026 			set_next_task(rq, next);
6027 		}
6028 
6029 		rq->core_pick = NULL;
6030 		goto out;
6031 	}
6032 
6033 	put_prev_task_balance(rq, prev, rf);
6034 
6035 	smt_mask = cpu_smt_mask(cpu);
6036 	need_sync = !!rq->core->core_cookie;
6037 
6038 	/* reset state */
6039 	rq->core->core_cookie = 0UL;
6040 	if (rq->core->core_forceidle_count) {
6041 		if (!core_clock_updated) {
6042 			update_rq_clock(rq->core);
6043 			core_clock_updated = true;
6044 		}
6045 		sched_core_account_forceidle(rq);
6046 		/* reset after accounting force idle */
6047 		rq->core->core_forceidle_start = 0;
6048 		rq->core->core_forceidle_count = 0;
6049 		rq->core->core_forceidle_occupation = 0;
6050 		need_sync = true;
6051 		fi_before = true;
6052 	}
6053 
6054 	/*
6055 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6056 	 *
6057 	 * @task_seq guards the task state ({en,de}queues)
6058 	 * @pick_seq is the @task_seq we did a selection on
6059 	 * @sched_seq is the @pick_seq we scheduled
6060 	 *
6061 	 * However, preemptions can cause multiple picks on the same task set.
6062 	 * 'Fix' this by also increasing @task_seq for every pick.
6063 	 */
6064 	rq->core->core_task_seq++;
6065 
6066 	/*
6067 	 * Optimize for common case where this CPU has no cookies
6068 	 * and there are no cookied tasks running on siblings.
6069 	 */
6070 	if (!need_sync) {
6071 		next = pick_task(rq);
6072 		if (!next->core_cookie) {
6073 			rq->core_pick = NULL;
6074 			/*
6075 			 * For robustness, update the min_vruntime_fi for
6076 			 * unconstrained picks as well.
6077 			 */
6078 			WARN_ON_ONCE(fi_before);
6079 			task_vruntime_update(rq, next, false);
6080 			goto out_set_next;
6081 		}
6082 	}
6083 
6084 	/*
6085 	 * For each thread: do the regular task pick and find the max prio task
6086 	 * amongst them.
6087 	 *
6088 	 * Tie-break prio towards the current CPU
6089 	 */
6090 	for_each_cpu_wrap(i, smt_mask, cpu) {
6091 		rq_i = cpu_rq(i);
6092 
6093 		/*
6094 		 * Current cpu always has its clock updated on entrance to
6095 		 * pick_next_task(). If the current cpu is not the core,
6096 		 * the core may also have been updated above.
6097 		 */
6098 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6099 			update_rq_clock(rq_i);
6100 
6101 		p = rq_i->core_pick = pick_task(rq_i);
6102 		if (!max || prio_less(max, p, fi_before))
6103 			max = p;
6104 	}
6105 
6106 	cookie = rq->core->core_cookie = max->core_cookie;
6107 
6108 	/*
6109 	 * For each thread: try and find a runnable task that matches @max or
6110 	 * force idle.
6111 	 */
6112 	for_each_cpu(i, smt_mask) {
6113 		rq_i = cpu_rq(i);
6114 		p = rq_i->core_pick;
6115 
6116 		if (!cookie_equals(p, cookie)) {
6117 			p = NULL;
6118 			if (cookie)
6119 				p = sched_core_find(rq_i, cookie);
6120 			if (!p)
6121 				p = idle_sched_class.pick_task(rq_i);
6122 		}
6123 
6124 		rq_i->core_pick = p;
6125 
6126 		if (p == rq_i->idle) {
6127 			if (rq_i->nr_running) {
6128 				rq->core->core_forceidle_count++;
6129 				if (!fi_before)
6130 					rq->core->core_forceidle_seq++;
6131 			}
6132 		} else {
6133 			occ++;
6134 		}
6135 	}
6136 
6137 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6138 		rq->core->core_forceidle_start = rq_clock(rq->core);
6139 		rq->core->core_forceidle_occupation = occ;
6140 	}
6141 
6142 	rq->core->core_pick_seq = rq->core->core_task_seq;
6143 	next = rq->core_pick;
6144 	rq->core_sched_seq = rq->core->core_pick_seq;
6145 
6146 	/* Something should have been selected for current CPU */
6147 	WARN_ON_ONCE(!next);
6148 
6149 	/*
6150 	 * Reschedule siblings
6151 	 *
6152 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6153 	 * sending an IPI (below) ensures the sibling will no longer be running
6154 	 * their task. This ensures there is no inter-sibling overlap between
6155 	 * non-matching user state.
6156 	 */
6157 	for_each_cpu(i, smt_mask) {
6158 		rq_i = cpu_rq(i);
6159 
6160 		/*
6161 		 * An online sibling might have gone offline before a task
6162 		 * could be picked for it, or it might be offline but later
6163 		 * happen to come online, but its too late and nothing was
6164 		 * picked for it.  That's Ok - it will pick tasks for itself,
6165 		 * so ignore it.
6166 		 */
6167 		if (!rq_i->core_pick)
6168 			continue;
6169 
6170 		/*
6171 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6172 		 * fi_before     fi      update?
6173 		 *  0            0       1
6174 		 *  0            1       1
6175 		 *  1            0       1
6176 		 *  1            1       0
6177 		 */
6178 		if (!(fi_before && rq->core->core_forceidle_count))
6179 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6180 
6181 		rq_i->core_pick->core_occupation = occ;
6182 
6183 		if (i == cpu) {
6184 			rq_i->core_pick = NULL;
6185 			continue;
6186 		}
6187 
6188 		/* Did we break L1TF mitigation requirements? */
6189 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6190 
6191 		if (rq_i->curr == rq_i->core_pick) {
6192 			rq_i->core_pick = NULL;
6193 			continue;
6194 		}
6195 
6196 		resched_curr(rq_i);
6197 	}
6198 
6199 out_set_next:
6200 	set_next_task(rq, next);
6201 out:
6202 	if (rq->core->core_forceidle_count && next == rq->idle)
6203 		queue_core_balance(rq);
6204 
6205 	return next;
6206 }
6207 
6208 static bool try_steal_cookie(int this, int that)
6209 {
6210 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6211 	struct task_struct *p;
6212 	unsigned long cookie;
6213 	bool success = false;
6214 
6215 	local_irq_disable();
6216 	double_rq_lock(dst, src);
6217 
6218 	cookie = dst->core->core_cookie;
6219 	if (!cookie)
6220 		goto unlock;
6221 
6222 	if (dst->curr != dst->idle)
6223 		goto unlock;
6224 
6225 	p = sched_core_find(src, cookie);
6226 	if (p == src->idle)
6227 		goto unlock;
6228 
6229 	do {
6230 		if (p == src->core_pick || p == src->curr)
6231 			goto next;
6232 
6233 		if (!is_cpu_allowed(p, this))
6234 			goto next;
6235 
6236 		if (p->core_occupation > dst->idle->core_occupation)
6237 			goto next;
6238 
6239 		deactivate_task(src, p, 0);
6240 		set_task_cpu(p, this);
6241 		activate_task(dst, p, 0);
6242 
6243 		resched_curr(dst);
6244 
6245 		success = true;
6246 		break;
6247 
6248 next:
6249 		p = sched_core_next(p, cookie);
6250 	} while (p);
6251 
6252 unlock:
6253 	double_rq_unlock(dst, src);
6254 	local_irq_enable();
6255 
6256 	return success;
6257 }
6258 
6259 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6260 {
6261 	int i;
6262 
6263 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6264 		if (i == cpu)
6265 			continue;
6266 
6267 		if (need_resched())
6268 			break;
6269 
6270 		if (try_steal_cookie(cpu, i))
6271 			return true;
6272 	}
6273 
6274 	return false;
6275 }
6276 
6277 static void sched_core_balance(struct rq *rq)
6278 {
6279 	struct sched_domain *sd;
6280 	int cpu = cpu_of(rq);
6281 
6282 	preempt_disable();
6283 	rcu_read_lock();
6284 	raw_spin_rq_unlock_irq(rq);
6285 	for_each_domain(cpu, sd) {
6286 		if (need_resched())
6287 			break;
6288 
6289 		if (steal_cookie_task(cpu, sd))
6290 			break;
6291 	}
6292 	raw_spin_rq_lock_irq(rq);
6293 	rcu_read_unlock();
6294 	preempt_enable();
6295 }
6296 
6297 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6298 
6299 static void queue_core_balance(struct rq *rq)
6300 {
6301 	if (!sched_core_enabled(rq))
6302 		return;
6303 
6304 	if (!rq->core->core_cookie)
6305 		return;
6306 
6307 	if (!rq->nr_running) /* not forced idle */
6308 		return;
6309 
6310 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6311 }
6312 
6313 static void sched_core_cpu_starting(unsigned int cpu)
6314 {
6315 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6316 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6317 	unsigned long flags;
6318 	int t;
6319 
6320 	sched_core_lock(cpu, &flags);
6321 
6322 	WARN_ON_ONCE(rq->core != rq);
6323 
6324 	/* if we're the first, we'll be our own leader */
6325 	if (cpumask_weight(smt_mask) == 1)
6326 		goto unlock;
6327 
6328 	/* find the leader */
6329 	for_each_cpu(t, smt_mask) {
6330 		if (t == cpu)
6331 			continue;
6332 		rq = cpu_rq(t);
6333 		if (rq->core == rq) {
6334 			core_rq = rq;
6335 			break;
6336 		}
6337 	}
6338 
6339 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6340 		goto unlock;
6341 
6342 	/* install and validate core_rq */
6343 	for_each_cpu(t, smt_mask) {
6344 		rq = cpu_rq(t);
6345 
6346 		if (t == cpu)
6347 			rq->core = core_rq;
6348 
6349 		WARN_ON_ONCE(rq->core != core_rq);
6350 	}
6351 
6352 unlock:
6353 	sched_core_unlock(cpu, &flags);
6354 }
6355 
6356 static void sched_core_cpu_deactivate(unsigned int cpu)
6357 {
6358 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6359 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6360 	unsigned long flags;
6361 	int t;
6362 
6363 	sched_core_lock(cpu, &flags);
6364 
6365 	/* if we're the last man standing, nothing to do */
6366 	if (cpumask_weight(smt_mask) == 1) {
6367 		WARN_ON_ONCE(rq->core != rq);
6368 		goto unlock;
6369 	}
6370 
6371 	/* if we're not the leader, nothing to do */
6372 	if (rq->core != rq)
6373 		goto unlock;
6374 
6375 	/* find a new leader */
6376 	for_each_cpu(t, smt_mask) {
6377 		if (t == cpu)
6378 			continue;
6379 		core_rq = cpu_rq(t);
6380 		break;
6381 	}
6382 
6383 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6384 		goto unlock;
6385 
6386 	/* copy the shared state to the new leader */
6387 	core_rq->core_task_seq             = rq->core_task_seq;
6388 	core_rq->core_pick_seq             = rq->core_pick_seq;
6389 	core_rq->core_cookie               = rq->core_cookie;
6390 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6391 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6392 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6393 
6394 	/*
6395 	 * Accounting edge for forced idle is handled in pick_next_task().
6396 	 * Don't need another one here, since the hotplug thread shouldn't
6397 	 * have a cookie.
6398 	 */
6399 	core_rq->core_forceidle_start = 0;
6400 
6401 	/* install new leader */
6402 	for_each_cpu(t, smt_mask) {
6403 		rq = cpu_rq(t);
6404 		rq->core = core_rq;
6405 	}
6406 
6407 unlock:
6408 	sched_core_unlock(cpu, &flags);
6409 }
6410 
6411 static inline void sched_core_cpu_dying(unsigned int cpu)
6412 {
6413 	struct rq *rq = cpu_rq(cpu);
6414 
6415 	if (rq->core != rq)
6416 		rq->core = rq;
6417 }
6418 
6419 #else /* !CONFIG_SCHED_CORE */
6420 
6421 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6422 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6423 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6424 
6425 static struct task_struct *
6426 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6427 {
6428 	return __pick_next_task(rq, prev, rf);
6429 }
6430 
6431 #endif /* CONFIG_SCHED_CORE */
6432 
6433 /*
6434  * Constants for the sched_mode argument of __schedule().
6435  *
6436  * The mode argument allows RT enabled kernels to differentiate a
6437  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6438  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6439  * optimize the AND operation out and just check for zero.
6440  */
6441 #define SM_NONE			0x0
6442 #define SM_PREEMPT		0x1
6443 #define SM_RTLOCK_WAIT		0x2
6444 
6445 #ifndef CONFIG_PREEMPT_RT
6446 # define SM_MASK_PREEMPT	(~0U)
6447 #else
6448 # define SM_MASK_PREEMPT	SM_PREEMPT
6449 #endif
6450 
6451 /*
6452  * __schedule() is the main scheduler function.
6453  *
6454  * The main means of driving the scheduler and thus entering this function are:
6455  *
6456  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6457  *
6458  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6459  *      paths. For example, see arch/x86/entry_64.S.
6460  *
6461  *      To drive preemption between tasks, the scheduler sets the flag in timer
6462  *      interrupt handler scheduler_tick().
6463  *
6464  *   3. Wakeups don't really cause entry into schedule(). They add a
6465  *      task to the run-queue and that's it.
6466  *
6467  *      Now, if the new task added to the run-queue preempts the current
6468  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6469  *      called on the nearest possible occasion:
6470  *
6471  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6472  *
6473  *         - in syscall or exception context, at the next outmost
6474  *           preempt_enable(). (this might be as soon as the wake_up()'s
6475  *           spin_unlock()!)
6476  *
6477  *         - in IRQ context, return from interrupt-handler to
6478  *           preemptible context
6479  *
6480  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6481  *         then at the next:
6482  *
6483  *          - cond_resched() call
6484  *          - explicit schedule() call
6485  *          - return from syscall or exception to user-space
6486  *          - return from interrupt-handler to user-space
6487  *
6488  * WARNING: must be called with preemption disabled!
6489  */
6490 static void __sched notrace __schedule(unsigned int sched_mode)
6491 {
6492 	struct task_struct *prev, *next;
6493 	unsigned long *switch_count;
6494 	unsigned long prev_state;
6495 	struct rq_flags rf;
6496 	struct rq *rq;
6497 	int cpu;
6498 
6499 	cpu = smp_processor_id();
6500 	rq = cpu_rq(cpu);
6501 	prev = rq->curr;
6502 
6503 	schedule_debug(prev, !!sched_mode);
6504 
6505 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6506 		hrtick_clear(rq);
6507 
6508 	local_irq_disable();
6509 	rcu_note_context_switch(!!sched_mode);
6510 
6511 	/*
6512 	 * Make sure that signal_pending_state()->signal_pending() below
6513 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6514 	 * done by the caller to avoid the race with signal_wake_up():
6515 	 *
6516 	 * __set_current_state(@state)		signal_wake_up()
6517 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6518 	 *					  wake_up_state(p, state)
6519 	 *   LOCK rq->lock			    LOCK p->pi_state
6520 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6521 	 *     if (signal_pending_state())	    if (p->state & @state)
6522 	 *
6523 	 * Also, the membarrier system call requires a full memory barrier
6524 	 * after coming from user-space, before storing to rq->curr.
6525 	 */
6526 	rq_lock(rq, &rf);
6527 	smp_mb__after_spinlock();
6528 
6529 	/* Promote REQ to ACT */
6530 	rq->clock_update_flags <<= 1;
6531 	update_rq_clock(rq);
6532 
6533 	switch_count = &prev->nivcsw;
6534 
6535 	/*
6536 	 * We must load prev->state once (task_struct::state is volatile), such
6537 	 * that we form a control dependency vs deactivate_task() below.
6538 	 */
6539 	prev_state = READ_ONCE(prev->__state);
6540 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6541 		if (signal_pending_state(prev_state, prev)) {
6542 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6543 		} else {
6544 			prev->sched_contributes_to_load =
6545 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6546 				!(prev_state & TASK_NOLOAD) &&
6547 				!(prev_state & TASK_FROZEN);
6548 
6549 			if (prev->sched_contributes_to_load)
6550 				rq->nr_uninterruptible++;
6551 
6552 			/*
6553 			 * __schedule()			ttwu()
6554 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6555 			 *   if (prev_state)		    goto out;
6556 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6557 			 *				  p->state = TASK_WAKING
6558 			 *
6559 			 * Where __schedule() and ttwu() have matching control dependencies.
6560 			 *
6561 			 * After this, schedule() must not care about p->state any more.
6562 			 */
6563 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6564 
6565 			if (prev->in_iowait) {
6566 				atomic_inc(&rq->nr_iowait);
6567 				delayacct_blkio_start();
6568 			}
6569 		}
6570 		switch_count = &prev->nvcsw;
6571 	}
6572 
6573 	next = pick_next_task(rq, prev, &rf);
6574 	clear_tsk_need_resched(prev);
6575 	clear_preempt_need_resched();
6576 #ifdef CONFIG_SCHED_DEBUG
6577 	rq->last_seen_need_resched_ns = 0;
6578 #endif
6579 
6580 	if (likely(prev != next)) {
6581 		rq->nr_switches++;
6582 		/*
6583 		 * RCU users of rcu_dereference(rq->curr) may not see
6584 		 * changes to task_struct made by pick_next_task().
6585 		 */
6586 		RCU_INIT_POINTER(rq->curr, next);
6587 		/*
6588 		 * The membarrier system call requires each architecture
6589 		 * to have a full memory barrier after updating
6590 		 * rq->curr, before returning to user-space.
6591 		 *
6592 		 * Here are the schemes providing that barrier on the
6593 		 * various architectures:
6594 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6595 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6596 		 * - finish_lock_switch() for weakly-ordered
6597 		 *   architectures where spin_unlock is a full barrier,
6598 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6599 		 *   is a RELEASE barrier),
6600 		 */
6601 		++*switch_count;
6602 
6603 		migrate_disable_switch(rq, prev);
6604 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6605 
6606 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6607 
6608 		/* Also unlocks the rq: */
6609 		rq = context_switch(rq, prev, next, &rf);
6610 	} else {
6611 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6612 
6613 		rq_unpin_lock(rq, &rf);
6614 		__balance_callbacks(rq);
6615 		raw_spin_rq_unlock_irq(rq);
6616 	}
6617 }
6618 
6619 void __noreturn do_task_dead(void)
6620 {
6621 	/* Causes final put_task_struct in finish_task_switch(): */
6622 	set_special_state(TASK_DEAD);
6623 
6624 	/* Tell freezer to ignore us: */
6625 	current->flags |= PF_NOFREEZE;
6626 
6627 	__schedule(SM_NONE);
6628 	BUG();
6629 
6630 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6631 	for (;;)
6632 		cpu_relax();
6633 }
6634 
6635 static inline void sched_submit_work(struct task_struct *tsk)
6636 {
6637 	unsigned int task_flags;
6638 
6639 	if (task_is_running(tsk))
6640 		return;
6641 
6642 	task_flags = tsk->flags;
6643 	/*
6644 	 * If a worker goes to sleep, notify and ask workqueue whether it
6645 	 * wants to wake up a task to maintain concurrency.
6646 	 */
6647 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6648 		if (task_flags & PF_WQ_WORKER)
6649 			wq_worker_sleeping(tsk);
6650 		else
6651 			io_wq_worker_sleeping(tsk);
6652 	}
6653 
6654 	/*
6655 	 * spinlock and rwlock must not flush block requests.  This will
6656 	 * deadlock if the callback attempts to acquire a lock which is
6657 	 * already acquired.
6658 	 */
6659 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6660 
6661 	/*
6662 	 * If we are going to sleep and we have plugged IO queued,
6663 	 * make sure to submit it to avoid deadlocks.
6664 	 */
6665 	blk_flush_plug(tsk->plug, true);
6666 }
6667 
6668 static void sched_update_worker(struct task_struct *tsk)
6669 {
6670 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6671 		if (tsk->flags & PF_WQ_WORKER)
6672 			wq_worker_running(tsk);
6673 		else
6674 			io_wq_worker_running(tsk);
6675 	}
6676 }
6677 
6678 asmlinkage __visible void __sched schedule(void)
6679 {
6680 	struct task_struct *tsk = current;
6681 
6682 	sched_submit_work(tsk);
6683 	do {
6684 		preempt_disable();
6685 		__schedule(SM_NONE);
6686 		sched_preempt_enable_no_resched();
6687 	} while (need_resched());
6688 	sched_update_worker(tsk);
6689 }
6690 EXPORT_SYMBOL(schedule);
6691 
6692 /*
6693  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6694  * state (have scheduled out non-voluntarily) by making sure that all
6695  * tasks have either left the run queue or have gone into user space.
6696  * As idle tasks do not do either, they must not ever be preempted
6697  * (schedule out non-voluntarily).
6698  *
6699  * schedule_idle() is similar to schedule_preempt_disable() except that it
6700  * never enables preemption because it does not call sched_submit_work().
6701  */
6702 void __sched schedule_idle(void)
6703 {
6704 	/*
6705 	 * As this skips calling sched_submit_work(), which the idle task does
6706 	 * regardless because that function is a nop when the task is in a
6707 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6708 	 * current task can be in any other state. Note, idle is always in the
6709 	 * TASK_RUNNING state.
6710 	 */
6711 	WARN_ON_ONCE(current->__state);
6712 	do {
6713 		__schedule(SM_NONE);
6714 	} while (need_resched());
6715 }
6716 
6717 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6718 asmlinkage __visible void __sched schedule_user(void)
6719 {
6720 	/*
6721 	 * If we come here after a random call to set_need_resched(),
6722 	 * or we have been woken up remotely but the IPI has not yet arrived,
6723 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6724 	 * we find a better solution.
6725 	 *
6726 	 * NB: There are buggy callers of this function.  Ideally we
6727 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6728 	 * too frequently to make sense yet.
6729 	 */
6730 	enum ctx_state prev_state = exception_enter();
6731 	schedule();
6732 	exception_exit(prev_state);
6733 }
6734 #endif
6735 
6736 /**
6737  * schedule_preempt_disabled - called with preemption disabled
6738  *
6739  * Returns with preemption disabled. Note: preempt_count must be 1
6740  */
6741 void __sched schedule_preempt_disabled(void)
6742 {
6743 	sched_preempt_enable_no_resched();
6744 	schedule();
6745 	preempt_disable();
6746 }
6747 
6748 #ifdef CONFIG_PREEMPT_RT
6749 void __sched notrace schedule_rtlock(void)
6750 {
6751 	do {
6752 		preempt_disable();
6753 		__schedule(SM_RTLOCK_WAIT);
6754 		sched_preempt_enable_no_resched();
6755 	} while (need_resched());
6756 }
6757 NOKPROBE_SYMBOL(schedule_rtlock);
6758 #endif
6759 
6760 static void __sched notrace preempt_schedule_common(void)
6761 {
6762 	do {
6763 		/*
6764 		 * Because the function tracer can trace preempt_count_sub()
6765 		 * and it also uses preempt_enable/disable_notrace(), if
6766 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6767 		 * by the function tracer will call this function again and
6768 		 * cause infinite recursion.
6769 		 *
6770 		 * Preemption must be disabled here before the function
6771 		 * tracer can trace. Break up preempt_disable() into two
6772 		 * calls. One to disable preemption without fear of being
6773 		 * traced. The other to still record the preemption latency,
6774 		 * which can also be traced by the function tracer.
6775 		 */
6776 		preempt_disable_notrace();
6777 		preempt_latency_start(1);
6778 		__schedule(SM_PREEMPT);
6779 		preempt_latency_stop(1);
6780 		preempt_enable_no_resched_notrace();
6781 
6782 		/*
6783 		 * Check again in case we missed a preemption opportunity
6784 		 * between schedule and now.
6785 		 */
6786 	} while (need_resched());
6787 }
6788 
6789 #ifdef CONFIG_PREEMPTION
6790 /*
6791  * This is the entry point to schedule() from in-kernel preemption
6792  * off of preempt_enable.
6793  */
6794 asmlinkage __visible void __sched notrace preempt_schedule(void)
6795 {
6796 	/*
6797 	 * If there is a non-zero preempt_count or interrupts are disabled,
6798 	 * we do not want to preempt the current task. Just return..
6799 	 */
6800 	if (likely(!preemptible()))
6801 		return;
6802 	preempt_schedule_common();
6803 }
6804 NOKPROBE_SYMBOL(preempt_schedule);
6805 EXPORT_SYMBOL(preempt_schedule);
6806 
6807 #ifdef CONFIG_PREEMPT_DYNAMIC
6808 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6809 #ifndef preempt_schedule_dynamic_enabled
6810 #define preempt_schedule_dynamic_enabled	preempt_schedule
6811 #define preempt_schedule_dynamic_disabled	NULL
6812 #endif
6813 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6814 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6815 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6816 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6817 void __sched notrace dynamic_preempt_schedule(void)
6818 {
6819 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6820 		return;
6821 	preempt_schedule();
6822 }
6823 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6824 EXPORT_SYMBOL(dynamic_preempt_schedule);
6825 #endif
6826 #endif
6827 
6828 /**
6829  * preempt_schedule_notrace - preempt_schedule called by tracing
6830  *
6831  * The tracing infrastructure uses preempt_enable_notrace to prevent
6832  * recursion and tracing preempt enabling caused by the tracing
6833  * infrastructure itself. But as tracing can happen in areas coming
6834  * from userspace or just about to enter userspace, a preempt enable
6835  * can occur before user_exit() is called. This will cause the scheduler
6836  * to be called when the system is still in usermode.
6837  *
6838  * To prevent this, the preempt_enable_notrace will use this function
6839  * instead of preempt_schedule() to exit user context if needed before
6840  * calling the scheduler.
6841  */
6842 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6843 {
6844 	enum ctx_state prev_ctx;
6845 
6846 	if (likely(!preemptible()))
6847 		return;
6848 
6849 	do {
6850 		/*
6851 		 * Because the function tracer can trace preempt_count_sub()
6852 		 * and it also uses preempt_enable/disable_notrace(), if
6853 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6854 		 * by the function tracer will call this function again and
6855 		 * cause infinite recursion.
6856 		 *
6857 		 * Preemption must be disabled here before the function
6858 		 * tracer can trace. Break up preempt_disable() into two
6859 		 * calls. One to disable preemption without fear of being
6860 		 * traced. The other to still record the preemption latency,
6861 		 * which can also be traced by the function tracer.
6862 		 */
6863 		preempt_disable_notrace();
6864 		preempt_latency_start(1);
6865 		/*
6866 		 * Needs preempt disabled in case user_exit() is traced
6867 		 * and the tracer calls preempt_enable_notrace() causing
6868 		 * an infinite recursion.
6869 		 */
6870 		prev_ctx = exception_enter();
6871 		__schedule(SM_PREEMPT);
6872 		exception_exit(prev_ctx);
6873 
6874 		preempt_latency_stop(1);
6875 		preempt_enable_no_resched_notrace();
6876 	} while (need_resched());
6877 }
6878 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6879 
6880 #ifdef CONFIG_PREEMPT_DYNAMIC
6881 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6882 #ifndef preempt_schedule_notrace_dynamic_enabled
6883 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6884 #define preempt_schedule_notrace_dynamic_disabled	NULL
6885 #endif
6886 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6887 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6888 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6889 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6890 void __sched notrace dynamic_preempt_schedule_notrace(void)
6891 {
6892 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6893 		return;
6894 	preempt_schedule_notrace();
6895 }
6896 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6897 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6898 #endif
6899 #endif
6900 
6901 #endif /* CONFIG_PREEMPTION */
6902 
6903 /*
6904  * This is the entry point to schedule() from kernel preemption
6905  * off of irq context.
6906  * Note, that this is called and return with irqs disabled. This will
6907  * protect us against recursive calling from irq.
6908  */
6909 asmlinkage __visible void __sched preempt_schedule_irq(void)
6910 {
6911 	enum ctx_state prev_state;
6912 
6913 	/* Catch callers which need to be fixed */
6914 	BUG_ON(preempt_count() || !irqs_disabled());
6915 
6916 	prev_state = exception_enter();
6917 
6918 	do {
6919 		preempt_disable();
6920 		local_irq_enable();
6921 		__schedule(SM_PREEMPT);
6922 		local_irq_disable();
6923 		sched_preempt_enable_no_resched();
6924 	} while (need_resched());
6925 
6926 	exception_exit(prev_state);
6927 }
6928 
6929 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6930 			  void *key)
6931 {
6932 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6933 	return try_to_wake_up(curr->private, mode, wake_flags);
6934 }
6935 EXPORT_SYMBOL(default_wake_function);
6936 
6937 static void __setscheduler_prio(struct task_struct *p, int prio)
6938 {
6939 	if (dl_prio(prio))
6940 		p->sched_class = &dl_sched_class;
6941 	else if (rt_prio(prio))
6942 		p->sched_class = &rt_sched_class;
6943 	else
6944 		p->sched_class = &fair_sched_class;
6945 
6946 	p->prio = prio;
6947 }
6948 
6949 #ifdef CONFIG_RT_MUTEXES
6950 
6951 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6952 {
6953 	if (pi_task)
6954 		prio = min(prio, pi_task->prio);
6955 
6956 	return prio;
6957 }
6958 
6959 static inline int rt_effective_prio(struct task_struct *p, int prio)
6960 {
6961 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6962 
6963 	return __rt_effective_prio(pi_task, prio);
6964 }
6965 
6966 /*
6967  * rt_mutex_setprio - set the current priority of a task
6968  * @p: task to boost
6969  * @pi_task: donor task
6970  *
6971  * This function changes the 'effective' priority of a task. It does
6972  * not touch ->normal_prio like __setscheduler().
6973  *
6974  * Used by the rt_mutex code to implement priority inheritance
6975  * logic. Call site only calls if the priority of the task changed.
6976  */
6977 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6978 {
6979 	int prio, oldprio, queued, running, queue_flag =
6980 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6981 	const struct sched_class *prev_class;
6982 	struct rq_flags rf;
6983 	struct rq *rq;
6984 
6985 	/* XXX used to be waiter->prio, not waiter->task->prio */
6986 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6987 
6988 	/*
6989 	 * If nothing changed; bail early.
6990 	 */
6991 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6992 		return;
6993 
6994 	rq = __task_rq_lock(p, &rf);
6995 	update_rq_clock(rq);
6996 	/*
6997 	 * Set under pi_lock && rq->lock, such that the value can be used under
6998 	 * either lock.
6999 	 *
7000 	 * Note that there is loads of tricky to make this pointer cache work
7001 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7002 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7003 	 * task is allowed to run again (and can exit). This ensures the pointer
7004 	 * points to a blocked task -- which guarantees the task is present.
7005 	 */
7006 	p->pi_top_task = pi_task;
7007 
7008 	/*
7009 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7010 	 */
7011 	if (prio == p->prio && !dl_prio(prio))
7012 		goto out_unlock;
7013 
7014 	/*
7015 	 * Idle task boosting is a nono in general. There is one
7016 	 * exception, when PREEMPT_RT and NOHZ is active:
7017 	 *
7018 	 * The idle task calls get_next_timer_interrupt() and holds
7019 	 * the timer wheel base->lock on the CPU and another CPU wants
7020 	 * to access the timer (probably to cancel it). We can safely
7021 	 * ignore the boosting request, as the idle CPU runs this code
7022 	 * with interrupts disabled and will complete the lock
7023 	 * protected section without being interrupted. So there is no
7024 	 * real need to boost.
7025 	 */
7026 	if (unlikely(p == rq->idle)) {
7027 		WARN_ON(p != rq->curr);
7028 		WARN_ON(p->pi_blocked_on);
7029 		goto out_unlock;
7030 	}
7031 
7032 	trace_sched_pi_setprio(p, pi_task);
7033 	oldprio = p->prio;
7034 
7035 	if (oldprio == prio)
7036 		queue_flag &= ~DEQUEUE_MOVE;
7037 
7038 	prev_class = p->sched_class;
7039 	queued = task_on_rq_queued(p);
7040 	running = task_current(rq, p);
7041 	if (queued)
7042 		dequeue_task(rq, p, queue_flag);
7043 	if (running)
7044 		put_prev_task(rq, p);
7045 
7046 	/*
7047 	 * Boosting condition are:
7048 	 * 1. -rt task is running and holds mutex A
7049 	 *      --> -dl task blocks on mutex A
7050 	 *
7051 	 * 2. -dl task is running and holds mutex A
7052 	 *      --> -dl task blocks on mutex A and could preempt the
7053 	 *          running task
7054 	 */
7055 	if (dl_prio(prio)) {
7056 		if (!dl_prio(p->normal_prio) ||
7057 		    (pi_task && dl_prio(pi_task->prio) &&
7058 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7059 			p->dl.pi_se = pi_task->dl.pi_se;
7060 			queue_flag |= ENQUEUE_REPLENISH;
7061 		} else {
7062 			p->dl.pi_se = &p->dl;
7063 		}
7064 	} else if (rt_prio(prio)) {
7065 		if (dl_prio(oldprio))
7066 			p->dl.pi_se = &p->dl;
7067 		if (oldprio < prio)
7068 			queue_flag |= ENQUEUE_HEAD;
7069 	} else {
7070 		if (dl_prio(oldprio))
7071 			p->dl.pi_se = &p->dl;
7072 		if (rt_prio(oldprio))
7073 			p->rt.timeout = 0;
7074 	}
7075 
7076 	__setscheduler_prio(p, prio);
7077 
7078 	if (queued)
7079 		enqueue_task(rq, p, queue_flag);
7080 	if (running)
7081 		set_next_task(rq, p);
7082 
7083 	check_class_changed(rq, p, prev_class, oldprio);
7084 out_unlock:
7085 	/* Avoid rq from going away on us: */
7086 	preempt_disable();
7087 
7088 	rq_unpin_lock(rq, &rf);
7089 	__balance_callbacks(rq);
7090 	raw_spin_rq_unlock(rq);
7091 
7092 	preempt_enable();
7093 }
7094 #else
7095 static inline int rt_effective_prio(struct task_struct *p, int prio)
7096 {
7097 	return prio;
7098 }
7099 #endif
7100 
7101 void set_user_nice(struct task_struct *p, long nice)
7102 {
7103 	bool queued, running;
7104 	int old_prio;
7105 	struct rq_flags rf;
7106 	struct rq *rq;
7107 
7108 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7109 		return;
7110 	/*
7111 	 * We have to be careful, if called from sys_setpriority(),
7112 	 * the task might be in the middle of scheduling on another CPU.
7113 	 */
7114 	rq = task_rq_lock(p, &rf);
7115 	update_rq_clock(rq);
7116 
7117 	/*
7118 	 * The RT priorities are set via sched_setscheduler(), but we still
7119 	 * allow the 'normal' nice value to be set - but as expected
7120 	 * it won't have any effect on scheduling until the task is
7121 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7122 	 */
7123 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7124 		p->static_prio = NICE_TO_PRIO(nice);
7125 		goto out_unlock;
7126 	}
7127 	queued = task_on_rq_queued(p);
7128 	running = task_current(rq, p);
7129 	if (queued)
7130 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7131 	if (running)
7132 		put_prev_task(rq, p);
7133 
7134 	p->static_prio = NICE_TO_PRIO(nice);
7135 	set_load_weight(p, true);
7136 	old_prio = p->prio;
7137 	p->prio = effective_prio(p);
7138 
7139 	if (queued)
7140 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7141 	if (running)
7142 		set_next_task(rq, p);
7143 
7144 	/*
7145 	 * If the task increased its priority or is running and
7146 	 * lowered its priority, then reschedule its CPU:
7147 	 */
7148 	p->sched_class->prio_changed(rq, p, old_prio);
7149 
7150 out_unlock:
7151 	task_rq_unlock(rq, p, &rf);
7152 }
7153 EXPORT_SYMBOL(set_user_nice);
7154 
7155 /*
7156  * is_nice_reduction - check if nice value is an actual reduction
7157  *
7158  * Similar to can_nice() but does not perform a capability check.
7159  *
7160  * @p: task
7161  * @nice: nice value
7162  */
7163 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7164 {
7165 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7166 	int nice_rlim = nice_to_rlimit(nice);
7167 
7168 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7169 }
7170 
7171 /*
7172  * can_nice - check if a task can reduce its nice value
7173  * @p: task
7174  * @nice: nice value
7175  */
7176 int can_nice(const struct task_struct *p, const int nice)
7177 {
7178 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7179 }
7180 
7181 #ifdef __ARCH_WANT_SYS_NICE
7182 
7183 /*
7184  * sys_nice - change the priority of the current process.
7185  * @increment: priority increment
7186  *
7187  * sys_setpriority is a more generic, but much slower function that
7188  * does similar things.
7189  */
7190 SYSCALL_DEFINE1(nice, int, increment)
7191 {
7192 	long nice, retval;
7193 
7194 	/*
7195 	 * Setpriority might change our priority at the same moment.
7196 	 * We don't have to worry. Conceptually one call occurs first
7197 	 * and we have a single winner.
7198 	 */
7199 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7200 	nice = task_nice(current) + increment;
7201 
7202 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7203 	if (increment < 0 && !can_nice(current, nice))
7204 		return -EPERM;
7205 
7206 	retval = security_task_setnice(current, nice);
7207 	if (retval)
7208 		return retval;
7209 
7210 	set_user_nice(current, nice);
7211 	return 0;
7212 }
7213 
7214 #endif
7215 
7216 /**
7217  * task_prio - return the priority value of a given task.
7218  * @p: the task in question.
7219  *
7220  * Return: The priority value as seen by users in /proc.
7221  *
7222  * sched policy         return value   kernel prio    user prio/nice
7223  *
7224  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7225  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7226  * deadline                     -101             -1           0
7227  */
7228 int task_prio(const struct task_struct *p)
7229 {
7230 	return p->prio - MAX_RT_PRIO;
7231 }
7232 
7233 /**
7234  * idle_cpu - is a given CPU idle currently?
7235  * @cpu: the processor in question.
7236  *
7237  * Return: 1 if the CPU is currently idle. 0 otherwise.
7238  */
7239 int idle_cpu(int cpu)
7240 {
7241 	struct rq *rq = cpu_rq(cpu);
7242 
7243 	if (rq->curr != rq->idle)
7244 		return 0;
7245 
7246 	if (rq->nr_running)
7247 		return 0;
7248 
7249 #ifdef CONFIG_SMP
7250 	if (rq->ttwu_pending)
7251 		return 0;
7252 #endif
7253 
7254 	return 1;
7255 }
7256 
7257 /**
7258  * available_idle_cpu - is a given CPU idle for enqueuing work.
7259  * @cpu: the CPU in question.
7260  *
7261  * Return: 1 if the CPU is currently idle. 0 otherwise.
7262  */
7263 int available_idle_cpu(int cpu)
7264 {
7265 	if (!idle_cpu(cpu))
7266 		return 0;
7267 
7268 	if (vcpu_is_preempted(cpu))
7269 		return 0;
7270 
7271 	return 1;
7272 }
7273 
7274 /**
7275  * idle_task - return the idle task for a given CPU.
7276  * @cpu: the processor in question.
7277  *
7278  * Return: The idle task for the CPU @cpu.
7279  */
7280 struct task_struct *idle_task(int cpu)
7281 {
7282 	return cpu_rq(cpu)->idle;
7283 }
7284 
7285 #ifdef CONFIG_SMP
7286 /*
7287  * This function computes an effective utilization for the given CPU, to be
7288  * used for frequency selection given the linear relation: f = u * f_max.
7289  *
7290  * The scheduler tracks the following metrics:
7291  *
7292  *   cpu_util_{cfs,rt,dl,irq}()
7293  *   cpu_bw_dl()
7294  *
7295  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7296  * synchronized windows and are thus directly comparable.
7297  *
7298  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7299  * which excludes things like IRQ and steal-time. These latter are then accrued
7300  * in the irq utilization.
7301  *
7302  * The DL bandwidth number otoh is not a measured metric but a value computed
7303  * based on the task model parameters and gives the minimal utilization
7304  * required to meet deadlines.
7305  */
7306 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7307 				 enum cpu_util_type type,
7308 				 struct task_struct *p)
7309 {
7310 	unsigned long dl_util, util, irq, max;
7311 	struct rq *rq = cpu_rq(cpu);
7312 
7313 	max = arch_scale_cpu_capacity(cpu);
7314 
7315 	if (!uclamp_is_used() &&
7316 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7317 		return max;
7318 	}
7319 
7320 	/*
7321 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7322 	 * because of inaccuracies in how we track these -- see
7323 	 * update_irq_load_avg().
7324 	 */
7325 	irq = cpu_util_irq(rq);
7326 	if (unlikely(irq >= max))
7327 		return max;
7328 
7329 	/*
7330 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7331 	 * CFS tasks and we use the same metric to track the effective
7332 	 * utilization (PELT windows are synchronized) we can directly add them
7333 	 * to obtain the CPU's actual utilization.
7334 	 *
7335 	 * CFS and RT utilization can be boosted or capped, depending on
7336 	 * utilization clamp constraints requested by currently RUNNABLE
7337 	 * tasks.
7338 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7339 	 * frequency will be gracefully reduced with the utilization decay.
7340 	 */
7341 	util = util_cfs + cpu_util_rt(rq);
7342 	if (type == FREQUENCY_UTIL)
7343 		util = uclamp_rq_util_with(rq, util, p);
7344 
7345 	dl_util = cpu_util_dl(rq);
7346 
7347 	/*
7348 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7349 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7350 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7351 	 * that we select f_max when there is no idle time.
7352 	 *
7353 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7354 	 * saturation when we should -- something for later.
7355 	 */
7356 	if (util + dl_util >= max)
7357 		return max;
7358 
7359 	/*
7360 	 * OTOH, for energy computation we need the estimated running time, so
7361 	 * include util_dl and ignore dl_bw.
7362 	 */
7363 	if (type == ENERGY_UTIL)
7364 		util += dl_util;
7365 
7366 	/*
7367 	 * There is still idle time; further improve the number by using the
7368 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7369 	 * need to scale the task numbers:
7370 	 *
7371 	 *              max - irq
7372 	 *   U' = irq + --------- * U
7373 	 *                 max
7374 	 */
7375 	util = scale_irq_capacity(util, irq, max);
7376 	util += irq;
7377 
7378 	/*
7379 	 * Bandwidth required by DEADLINE must always be granted while, for
7380 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7381 	 * to gracefully reduce the frequency when no tasks show up for longer
7382 	 * periods of time.
7383 	 *
7384 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7385 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7386 	 * an interface. So, we only do the latter for now.
7387 	 */
7388 	if (type == FREQUENCY_UTIL)
7389 		util += cpu_bw_dl(rq);
7390 
7391 	return min(max, util);
7392 }
7393 
7394 unsigned long sched_cpu_util(int cpu)
7395 {
7396 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7397 }
7398 #endif /* CONFIG_SMP */
7399 
7400 /**
7401  * find_process_by_pid - find a process with a matching PID value.
7402  * @pid: the pid in question.
7403  *
7404  * The task of @pid, if found. %NULL otherwise.
7405  */
7406 static struct task_struct *find_process_by_pid(pid_t pid)
7407 {
7408 	return pid ? find_task_by_vpid(pid) : current;
7409 }
7410 
7411 /*
7412  * sched_setparam() passes in -1 for its policy, to let the functions
7413  * it calls know not to change it.
7414  */
7415 #define SETPARAM_POLICY	-1
7416 
7417 static void __setscheduler_params(struct task_struct *p,
7418 		const struct sched_attr *attr)
7419 {
7420 	int policy = attr->sched_policy;
7421 
7422 	if (policy == SETPARAM_POLICY)
7423 		policy = p->policy;
7424 
7425 	p->policy = policy;
7426 
7427 	if (dl_policy(policy))
7428 		__setparam_dl(p, attr);
7429 	else if (fair_policy(policy))
7430 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7431 
7432 	/*
7433 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7434 	 * !rt_policy. Always setting this ensures that things like
7435 	 * getparam()/getattr() don't report silly values for !rt tasks.
7436 	 */
7437 	p->rt_priority = attr->sched_priority;
7438 	p->normal_prio = normal_prio(p);
7439 	set_load_weight(p, true);
7440 }
7441 
7442 /*
7443  * Check the target process has a UID that matches the current process's:
7444  */
7445 static bool check_same_owner(struct task_struct *p)
7446 {
7447 	const struct cred *cred = current_cred(), *pcred;
7448 	bool match;
7449 
7450 	rcu_read_lock();
7451 	pcred = __task_cred(p);
7452 	match = (uid_eq(cred->euid, pcred->euid) ||
7453 		 uid_eq(cred->euid, pcred->uid));
7454 	rcu_read_unlock();
7455 	return match;
7456 }
7457 
7458 /*
7459  * Allow unprivileged RT tasks to decrease priority.
7460  * Only issue a capable test if needed and only once to avoid an audit
7461  * event on permitted non-privileged operations:
7462  */
7463 static int user_check_sched_setscheduler(struct task_struct *p,
7464 					 const struct sched_attr *attr,
7465 					 int policy, int reset_on_fork)
7466 {
7467 	if (fair_policy(policy)) {
7468 		if (attr->sched_nice < task_nice(p) &&
7469 		    !is_nice_reduction(p, attr->sched_nice))
7470 			goto req_priv;
7471 	}
7472 
7473 	if (rt_policy(policy)) {
7474 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7475 
7476 		/* Can't set/change the rt policy: */
7477 		if (policy != p->policy && !rlim_rtprio)
7478 			goto req_priv;
7479 
7480 		/* Can't increase priority: */
7481 		if (attr->sched_priority > p->rt_priority &&
7482 		    attr->sched_priority > rlim_rtprio)
7483 			goto req_priv;
7484 	}
7485 
7486 	/*
7487 	 * Can't set/change SCHED_DEADLINE policy at all for now
7488 	 * (safest behavior); in the future we would like to allow
7489 	 * unprivileged DL tasks to increase their relative deadline
7490 	 * or reduce their runtime (both ways reducing utilization)
7491 	 */
7492 	if (dl_policy(policy))
7493 		goto req_priv;
7494 
7495 	/*
7496 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7497 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7498 	 */
7499 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7500 		if (!is_nice_reduction(p, task_nice(p)))
7501 			goto req_priv;
7502 	}
7503 
7504 	/* Can't change other user's priorities: */
7505 	if (!check_same_owner(p))
7506 		goto req_priv;
7507 
7508 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7509 	if (p->sched_reset_on_fork && !reset_on_fork)
7510 		goto req_priv;
7511 
7512 	return 0;
7513 
7514 req_priv:
7515 	if (!capable(CAP_SYS_NICE))
7516 		return -EPERM;
7517 
7518 	return 0;
7519 }
7520 
7521 static int __sched_setscheduler(struct task_struct *p,
7522 				const struct sched_attr *attr,
7523 				bool user, bool pi)
7524 {
7525 	int oldpolicy = -1, policy = attr->sched_policy;
7526 	int retval, oldprio, newprio, queued, running;
7527 	const struct sched_class *prev_class;
7528 	struct balance_callback *head;
7529 	struct rq_flags rf;
7530 	int reset_on_fork;
7531 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7532 	struct rq *rq;
7533 
7534 	/* The pi code expects interrupts enabled */
7535 	BUG_ON(pi && in_interrupt());
7536 recheck:
7537 	/* Double check policy once rq lock held: */
7538 	if (policy < 0) {
7539 		reset_on_fork = p->sched_reset_on_fork;
7540 		policy = oldpolicy = p->policy;
7541 	} else {
7542 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7543 
7544 		if (!valid_policy(policy))
7545 			return -EINVAL;
7546 	}
7547 
7548 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7549 		return -EINVAL;
7550 
7551 	/*
7552 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7553 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7554 	 * SCHED_BATCH and SCHED_IDLE is 0.
7555 	 */
7556 	if (attr->sched_priority > MAX_RT_PRIO-1)
7557 		return -EINVAL;
7558 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7559 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7560 		return -EINVAL;
7561 
7562 	if (user) {
7563 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7564 		if (retval)
7565 			return retval;
7566 
7567 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7568 			return -EINVAL;
7569 
7570 		retval = security_task_setscheduler(p);
7571 		if (retval)
7572 			return retval;
7573 	}
7574 
7575 	/* Update task specific "requested" clamps */
7576 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7577 		retval = uclamp_validate(p, attr);
7578 		if (retval)
7579 			return retval;
7580 	}
7581 
7582 	if (pi)
7583 		cpuset_read_lock();
7584 
7585 	/*
7586 	 * Make sure no PI-waiters arrive (or leave) while we are
7587 	 * changing the priority of the task:
7588 	 *
7589 	 * To be able to change p->policy safely, the appropriate
7590 	 * runqueue lock must be held.
7591 	 */
7592 	rq = task_rq_lock(p, &rf);
7593 	update_rq_clock(rq);
7594 
7595 	/*
7596 	 * Changing the policy of the stop threads its a very bad idea:
7597 	 */
7598 	if (p == rq->stop) {
7599 		retval = -EINVAL;
7600 		goto unlock;
7601 	}
7602 
7603 	/*
7604 	 * If not changing anything there's no need to proceed further,
7605 	 * but store a possible modification of reset_on_fork.
7606 	 */
7607 	if (unlikely(policy == p->policy)) {
7608 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7609 			goto change;
7610 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7611 			goto change;
7612 		if (dl_policy(policy) && dl_param_changed(p, attr))
7613 			goto change;
7614 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7615 			goto change;
7616 
7617 		p->sched_reset_on_fork = reset_on_fork;
7618 		retval = 0;
7619 		goto unlock;
7620 	}
7621 change:
7622 
7623 	if (user) {
7624 #ifdef CONFIG_RT_GROUP_SCHED
7625 		/*
7626 		 * Do not allow realtime tasks into groups that have no runtime
7627 		 * assigned.
7628 		 */
7629 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7630 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7631 				!task_group_is_autogroup(task_group(p))) {
7632 			retval = -EPERM;
7633 			goto unlock;
7634 		}
7635 #endif
7636 #ifdef CONFIG_SMP
7637 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7638 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7639 			cpumask_t *span = rq->rd->span;
7640 
7641 			/*
7642 			 * Don't allow tasks with an affinity mask smaller than
7643 			 * the entire root_domain to become SCHED_DEADLINE. We
7644 			 * will also fail if there's no bandwidth available.
7645 			 */
7646 			if (!cpumask_subset(span, p->cpus_ptr) ||
7647 			    rq->rd->dl_bw.bw == 0) {
7648 				retval = -EPERM;
7649 				goto unlock;
7650 			}
7651 		}
7652 #endif
7653 	}
7654 
7655 	/* Re-check policy now with rq lock held: */
7656 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7657 		policy = oldpolicy = -1;
7658 		task_rq_unlock(rq, p, &rf);
7659 		if (pi)
7660 			cpuset_read_unlock();
7661 		goto recheck;
7662 	}
7663 
7664 	/*
7665 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7666 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7667 	 * is available.
7668 	 */
7669 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7670 		retval = -EBUSY;
7671 		goto unlock;
7672 	}
7673 
7674 	p->sched_reset_on_fork = reset_on_fork;
7675 	oldprio = p->prio;
7676 
7677 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7678 	if (pi) {
7679 		/*
7680 		 * Take priority boosted tasks into account. If the new
7681 		 * effective priority is unchanged, we just store the new
7682 		 * normal parameters and do not touch the scheduler class and
7683 		 * the runqueue. This will be done when the task deboost
7684 		 * itself.
7685 		 */
7686 		newprio = rt_effective_prio(p, newprio);
7687 		if (newprio == oldprio)
7688 			queue_flags &= ~DEQUEUE_MOVE;
7689 	}
7690 
7691 	queued = task_on_rq_queued(p);
7692 	running = task_current(rq, p);
7693 	if (queued)
7694 		dequeue_task(rq, p, queue_flags);
7695 	if (running)
7696 		put_prev_task(rq, p);
7697 
7698 	prev_class = p->sched_class;
7699 
7700 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7701 		__setscheduler_params(p, attr);
7702 		__setscheduler_prio(p, newprio);
7703 	}
7704 	__setscheduler_uclamp(p, attr);
7705 
7706 	if (queued) {
7707 		/*
7708 		 * We enqueue to tail when the priority of a task is
7709 		 * increased (user space view).
7710 		 */
7711 		if (oldprio < p->prio)
7712 			queue_flags |= ENQUEUE_HEAD;
7713 
7714 		enqueue_task(rq, p, queue_flags);
7715 	}
7716 	if (running)
7717 		set_next_task(rq, p);
7718 
7719 	check_class_changed(rq, p, prev_class, oldprio);
7720 
7721 	/* Avoid rq from going away on us: */
7722 	preempt_disable();
7723 	head = splice_balance_callbacks(rq);
7724 	task_rq_unlock(rq, p, &rf);
7725 
7726 	if (pi) {
7727 		cpuset_read_unlock();
7728 		rt_mutex_adjust_pi(p);
7729 	}
7730 
7731 	/* Run balance callbacks after we've adjusted the PI chain: */
7732 	balance_callbacks(rq, head);
7733 	preempt_enable();
7734 
7735 	return 0;
7736 
7737 unlock:
7738 	task_rq_unlock(rq, p, &rf);
7739 	if (pi)
7740 		cpuset_read_unlock();
7741 	return retval;
7742 }
7743 
7744 static int _sched_setscheduler(struct task_struct *p, int policy,
7745 			       const struct sched_param *param, bool check)
7746 {
7747 	struct sched_attr attr = {
7748 		.sched_policy   = policy,
7749 		.sched_priority = param->sched_priority,
7750 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7751 	};
7752 
7753 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7754 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7755 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7756 		policy &= ~SCHED_RESET_ON_FORK;
7757 		attr.sched_policy = policy;
7758 	}
7759 
7760 	return __sched_setscheduler(p, &attr, check, true);
7761 }
7762 /**
7763  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7764  * @p: the task in question.
7765  * @policy: new policy.
7766  * @param: structure containing the new RT priority.
7767  *
7768  * Use sched_set_fifo(), read its comment.
7769  *
7770  * Return: 0 on success. An error code otherwise.
7771  *
7772  * NOTE that the task may be already dead.
7773  */
7774 int sched_setscheduler(struct task_struct *p, int policy,
7775 		       const struct sched_param *param)
7776 {
7777 	return _sched_setscheduler(p, policy, param, true);
7778 }
7779 
7780 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7781 {
7782 	return __sched_setscheduler(p, attr, true, true);
7783 }
7784 
7785 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7786 {
7787 	return __sched_setscheduler(p, attr, false, true);
7788 }
7789 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7790 
7791 /**
7792  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7793  * @p: the task in question.
7794  * @policy: new policy.
7795  * @param: structure containing the new RT priority.
7796  *
7797  * Just like sched_setscheduler, only don't bother checking if the
7798  * current context has permission.  For example, this is needed in
7799  * stop_machine(): we create temporary high priority worker threads,
7800  * but our caller might not have that capability.
7801  *
7802  * Return: 0 on success. An error code otherwise.
7803  */
7804 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7805 			       const struct sched_param *param)
7806 {
7807 	return _sched_setscheduler(p, policy, param, false);
7808 }
7809 
7810 /*
7811  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7812  * incapable of resource management, which is the one thing an OS really should
7813  * be doing.
7814  *
7815  * This is of course the reason it is limited to privileged users only.
7816  *
7817  * Worse still; it is fundamentally impossible to compose static priority
7818  * workloads. You cannot take two correctly working static prio workloads
7819  * and smash them together and still expect them to work.
7820  *
7821  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7822  *
7823  *   MAX_RT_PRIO / 2
7824  *
7825  * The administrator _MUST_ configure the system, the kernel simply doesn't
7826  * know enough information to make a sensible choice.
7827  */
7828 void sched_set_fifo(struct task_struct *p)
7829 {
7830 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7831 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7832 }
7833 EXPORT_SYMBOL_GPL(sched_set_fifo);
7834 
7835 /*
7836  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7837  */
7838 void sched_set_fifo_low(struct task_struct *p)
7839 {
7840 	struct sched_param sp = { .sched_priority = 1 };
7841 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7842 }
7843 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7844 
7845 void sched_set_normal(struct task_struct *p, int nice)
7846 {
7847 	struct sched_attr attr = {
7848 		.sched_policy = SCHED_NORMAL,
7849 		.sched_nice = nice,
7850 	};
7851 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7852 }
7853 EXPORT_SYMBOL_GPL(sched_set_normal);
7854 
7855 static int
7856 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7857 {
7858 	struct sched_param lparam;
7859 	struct task_struct *p;
7860 	int retval;
7861 
7862 	if (!param || pid < 0)
7863 		return -EINVAL;
7864 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7865 		return -EFAULT;
7866 
7867 	rcu_read_lock();
7868 	retval = -ESRCH;
7869 	p = find_process_by_pid(pid);
7870 	if (likely(p))
7871 		get_task_struct(p);
7872 	rcu_read_unlock();
7873 
7874 	if (likely(p)) {
7875 		retval = sched_setscheduler(p, policy, &lparam);
7876 		put_task_struct(p);
7877 	}
7878 
7879 	return retval;
7880 }
7881 
7882 /*
7883  * Mimics kernel/events/core.c perf_copy_attr().
7884  */
7885 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7886 {
7887 	u32 size;
7888 	int ret;
7889 
7890 	/* Zero the full structure, so that a short copy will be nice: */
7891 	memset(attr, 0, sizeof(*attr));
7892 
7893 	ret = get_user(size, &uattr->size);
7894 	if (ret)
7895 		return ret;
7896 
7897 	/* ABI compatibility quirk: */
7898 	if (!size)
7899 		size = SCHED_ATTR_SIZE_VER0;
7900 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7901 		goto err_size;
7902 
7903 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7904 	if (ret) {
7905 		if (ret == -E2BIG)
7906 			goto err_size;
7907 		return ret;
7908 	}
7909 
7910 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7911 	    size < SCHED_ATTR_SIZE_VER1)
7912 		return -EINVAL;
7913 
7914 	/*
7915 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7916 	 * to be strict and return an error on out-of-bounds values?
7917 	 */
7918 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7919 
7920 	return 0;
7921 
7922 err_size:
7923 	put_user(sizeof(*attr), &uattr->size);
7924 	return -E2BIG;
7925 }
7926 
7927 static void get_params(struct task_struct *p, struct sched_attr *attr)
7928 {
7929 	if (task_has_dl_policy(p))
7930 		__getparam_dl(p, attr);
7931 	else if (task_has_rt_policy(p))
7932 		attr->sched_priority = p->rt_priority;
7933 	else
7934 		attr->sched_nice = task_nice(p);
7935 }
7936 
7937 /**
7938  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7939  * @pid: the pid in question.
7940  * @policy: new policy.
7941  * @param: structure containing the new RT priority.
7942  *
7943  * Return: 0 on success. An error code otherwise.
7944  */
7945 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7946 {
7947 	if (policy < 0)
7948 		return -EINVAL;
7949 
7950 	return do_sched_setscheduler(pid, policy, param);
7951 }
7952 
7953 /**
7954  * sys_sched_setparam - set/change the RT priority of a thread
7955  * @pid: the pid in question.
7956  * @param: structure containing the new RT priority.
7957  *
7958  * Return: 0 on success. An error code otherwise.
7959  */
7960 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7961 {
7962 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7963 }
7964 
7965 /**
7966  * sys_sched_setattr - same as above, but with extended sched_attr
7967  * @pid: the pid in question.
7968  * @uattr: structure containing the extended parameters.
7969  * @flags: for future extension.
7970  */
7971 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7972 			       unsigned int, flags)
7973 {
7974 	struct sched_attr attr;
7975 	struct task_struct *p;
7976 	int retval;
7977 
7978 	if (!uattr || pid < 0 || flags)
7979 		return -EINVAL;
7980 
7981 	retval = sched_copy_attr(uattr, &attr);
7982 	if (retval)
7983 		return retval;
7984 
7985 	if ((int)attr.sched_policy < 0)
7986 		return -EINVAL;
7987 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7988 		attr.sched_policy = SETPARAM_POLICY;
7989 
7990 	rcu_read_lock();
7991 	retval = -ESRCH;
7992 	p = find_process_by_pid(pid);
7993 	if (likely(p))
7994 		get_task_struct(p);
7995 	rcu_read_unlock();
7996 
7997 	if (likely(p)) {
7998 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7999 			get_params(p, &attr);
8000 		retval = sched_setattr(p, &attr);
8001 		put_task_struct(p);
8002 	}
8003 
8004 	return retval;
8005 }
8006 
8007 /**
8008  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8009  * @pid: the pid in question.
8010  *
8011  * Return: On success, the policy of the thread. Otherwise, a negative error
8012  * code.
8013  */
8014 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8015 {
8016 	struct task_struct *p;
8017 	int retval;
8018 
8019 	if (pid < 0)
8020 		return -EINVAL;
8021 
8022 	retval = -ESRCH;
8023 	rcu_read_lock();
8024 	p = find_process_by_pid(pid);
8025 	if (p) {
8026 		retval = security_task_getscheduler(p);
8027 		if (!retval)
8028 			retval = p->policy
8029 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8030 	}
8031 	rcu_read_unlock();
8032 	return retval;
8033 }
8034 
8035 /**
8036  * sys_sched_getparam - get the RT priority of a thread
8037  * @pid: the pid in question.
8038  * @param: structure containing the RT priority.
8039  *
8040  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8041  * code.
8042  */
8043 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8044 {
8045 	struct sched_param lp = { .sched_priority = 0 };
8046 	struct task_struct *p;
8047 	int retval;
8048 
8049 	if (!param || pid < 0)
8050 		return -EINVAL;
8051 
8052 	rcu_read_lock();
8053 	p = find_process_by_pid(pid);
8054 	retval = -ESRCH;
8055 	if (!p)
8056 		goto out_unlock;
8057 
8058 	retval = security_task_getscheduler(p);
8059 	if (retval)
8060 		goto out_unlock;
8061 
8062 	if (task_has_rt_policy(p))
8063 		lp.sched_priority = p->rt_priority;
8064 	rcu_read_unlock();
8065 
8066 	/*
8067 	 * This one might sleep, we cannot do it with a spinlock held ...
8068 	 */
8069 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8070 
8071 	return retval;
8072 
8073 out_unlock:
8074 	rcu_read_unlock();
8075 	return retval;
8076 }
8077 
8078 /*
8079  * Copy the kernel size attribute structure (which might be larger
8080  * than what user-space knows about) to user-space.
8081  *
8082  * Note that all cases are valid: user-space buffer can be larger or
8083  * smaller than the kernel-space buffer. The usual case is that both
8084  * have the same size.
8085  */
8086 static int
8087 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8088 			struct sched_attr *kattr,
8089 			unsigned int usize)
8090 {
8091 	unsigned int ksize = sizeof(*kattr);
8092 
8093 	if (!access_ok(uattr, usize))
8094 		return -EFAULT;
8095 
8096 	/*
8097 	 * sched_getattr() ABI forwards and backwards compatibility:
8098 	 *
8099 	 * If usize == ksize then we just copy everything to user-space and all is good.
8100 	 *
8101 	 * If usize < ksize then we only copy as much as user-space has space for,
8102 	 * this keeps ABI compatibility as well. We skip the rest.
8103 	 *
8104 	 * If usize > ksize then user-space is using a newer version of the ABI,
8105 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8106 	 * detect the kernel's knowledge of attributes from the attr->size value
8107 	 * which is set to ksize in this case.
8108 	 */
8109 	kattr->size = min(usize, ksize);
8110 
8111 	if (copy_to_user(uattr, kattr, kattr->size))
8112 		return -EFAULT;
8113 
8114 	return 0;
8115 }
8116 
8117 /**
8118  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8119  * @pid: the pid in question.
8120  * @uattr: structure containing the extended parameters.
8121  * @usize: sizeof(attr) for fwd/bwd comp.
8122  * @flags: for future extension.
8123  */
8124 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8125 		unsigned int, usize, unsigned int, flags)
8126 {
8127 	struct sched_attr kattr = { };
8128 	struct task_struct *p;
8129 	int retval;
8130 
8131 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8132 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8133 		return -EINVAL;
8134 
8135 	rcu_read_lock();
8136 	p = find_process_by_pid(pid);
8137 	retval = -ESRCH;
8138 	if (!p)
8139 		goto out_unlock;
8140 
8141 	retval = security_task_getscheduler(p);
8142 	if (retval)
8143 		goto out_unlock;
8144 
8145 	kattr.sched_policy = p->policy;
8146 	if (p->sched_reset_on_fork)
8147 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8148 	get_params(p, &kattr);
8149 	kattr.sched_flags &= SCHED_FLAG_ALL;
8150 
8151 #ifdef CONFIG_UCLAMP_TASK
8152 	/*
8153 	 * This could race with another potential updater, but this is fine
8154 	 * because it'll correctly read the old or the new value. We don't need
8155 	 * to guarantee who wins the race as long as it doesn't return garbage.
8156 	 */
8157 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8158 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8159 #endif
8160 
8161 	rcu_read_unlock();
8162 
8163 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8164 
8165 out_unlock:
8166 	rcu_read_unlock();
8167 	return retval;
8168 }
8169 
8170 #ifdef CONFIG_SMP
8171 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8172 {
8173 	int ret = 0;
8174 
8175 	/*
8176 	 * If the task isn't a deadline task or admission control is
8177 	 * disabled then we don't care about affinity changes.
8178 	 */
8179 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8180 		return 0;
8181 
8182 	/*
8183 	 * Since bandwidth control happens on root_domain basis,
8184 	 * if admission test is enabled, we only admit -deadline
8185 	 * tasks allowed to run on all the CPUs in the task's
8186 	 * root_domain.
8187 	 */
8188 	rcu_read_lock();
8189 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8190 		ret = -EBUSY;
8191 	rcu_read_unlock();
8192 	return ret;
8193 }
8194 #endif
8195 
8196 static int
8197 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8198 {
8199 	int retval;
8200 	cpumask_var_t cpus_allowed, new_mask;
8201 
8202 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8203 		return -ENOMEM;
8204 
8205 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8206 		retval = -ENOMEM;
8207 		goto out_free_cpus_allowed;
8208 	}
8209 
8210 	cpuset_cpus_allowed(p, cpus_allowed);
8211 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8212 
8213 	ctx->new_mask = new_mask;
8214 	ctx->flags |= SCA_CHECK;
8215 
8216 	retval = dl_task_check_affinity(p, new_mask);
8217 	if (retval)
8218 		goto out_free_new_mask;
8219 
8220 	retval = __set_cpus_allowed_ptr(p, ctx);
8221 	if (retval)
8222 		goto out_free_new_mask;
8223 
8224 	cpuset_cpus_allowed(p, cpus_allowed);
8225 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8226 		/*
8227 		 * We must have raced with a concurrent cpuset update.
8228 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8229 		 */
8230 		cpumask_copy(new_mask, cpus_allowed);
8231 
8232 		/*
8233 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8234 		 * will restore the previous user_cpus_ptr value.
8235 		 *
8236 		 * In the unlikely event a previous user_cpus_ptr exists,
8237 		 * we need to further restrict the mask to what is allowed
8238 		 * by that old user_cpus_ptr.
8239 		 */
8240 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8241 			bool empty = !cpumask_and(new_mask, new_mask,
8242 						  ctx->user_mask);
8243 
8244 			if (WARN_ON_ONCE(empty))
8245 				cpumask_copy(new_mask, cpus_allowed);
8246 		}
8247 		__set_cpus_allowed_ptr(p, ctx);
8248 		retval = -EINVAL;
8249 	}
8250 
8251 out_free_new_mask:
8252 	free_cpumask_var(new_mask);
8253 out_free_cpus_allowed:
8254 	free_cpumask_var(cpus_allowed);
8255 	return retval;
8256 }
8257 
8258 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8259 {
8260 	struct affinity_context ac;
8261 	struct cpumask *user_mask;
8262 	struct task_struct *p;
8263 	int retval;
8264 
8265 	rcu_read_lock();
8266 
8267 	p = find_process_by_pid(pid);
8268 	if (!p) {
8269 		rcu_read_unlock();
8270 		return -ESRCH;
8271 	}
8272 
8273 	/* Prevent p going away */
8274 	get_task_struct(p);
8275 	rcu_read_unlock();
8276 
8277 	if (p->flags & PF_NO_SETAFFINITY) {
8278 		retval = -EINVAL;
8279 		goto out_put_task;
8280 	}
8281 
8282 	if (!check_same_owner(p)) {
8283 		rcu_read_lock();
8284 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8285 			rcu_read_unlock();
8286 			retval = -EPERM;
8287 			goto out_put_task;
8288 		}
8289 		rcu_read_unlock();
8290 	}
8291 
8292 	retval = security_task_setscheduler(p);
8293 	if (retval)
8294 		goto out_put_task;
8295 
8296 	/*
8297 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8298 	 * alloc_user_cpus_ptr() returns NULL.
8299 	 */
8300 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8301 	if (user_mask) {
8302 		cpumask_copy(user_mask, in_mask);
8303 	} else if (IS_ENABLED(CONFIG_SMP)) {
8304 		retval = -ENOMEM;
8305 		goto out_put_task;
8306 	}
8307 
8308 	ac = (struct affinity_context){
8309 		.new_mask  = in_mask,
8310 		.user_mask = user_mask,
8311 		.flags     = SCA_USER,
8312 	};
8313 
8314 	retval = __sched_setaffinity(p, &ac);
8315 	kfree(ac.user_mask);
8316 
8317 out_put_task:
8318 	put_task_struct(p);
8319 	return retval;
8320 }
8321 
8322 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8323 			     struct cpumask *new_mask)
8324 {
8325 	if (len < cpumask_size())
8326 		cpumask_clear(new_mask);
8327 	else if (len > cpumask_size())
8328 		len = cpumask_size();
8329 
8330 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8331 }
8332 
8333 /**
8334  * sys_sched_setaffinity - set the CPU affinity of a process
8335  * @pid: pid of the process
8336  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8337  * @user_mask_ptr: user-space pointer to the new CPU mask
8338  *
8339  * Return: 0 on success. An error code otherwise.
8340  */
8341 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8342 		unsigned long __user *, user_mask_ptr)
8343 {
8344 	cpumask_var_t new_mask;
8345 	int retval;
8346 
8347 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8348 		return -ENOMEM;
8349 
8350 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8351 	if (retval == 0)
8352 		retval = sched_setaffinity(pid, new_mask);
8353 	free_cpumask_var(new_mask);
8354 	return retval;
8355 }
8356 
8357 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8358 {
8359 	struct task_struct *p;
8360 	unsigned long flags;
8361 	int retval;
8362 
8363 	rcu_read_lock();
8364 
8365 	retval = -ESRCH;
8366 	p = find_process_by_pid(pid);
8367 	if (!p)
8368 		goto out_unlock;
8369 
8370 	retval = security_task_getscheduler(p);
8371 	if (retval)
8372 		goto out_unlock;
8373 
8374 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8375 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8376 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8377 
8378 out_unlock:
8379 	rcu_read_unlock();
8380 
8381 	return retval;
8382 }
8383 
8384 /**
8385  * sys_sched_getaffinity - get the CPU affinity of a process
8386  * @pid: pid of the process
8387  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8388  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8389  *
8390  * Return: size of CPU mask copied to user_mask_ptr on success. An
8391  * error code otherwise.
8392  */
8393 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8394 		unsigned long __user *, user_mask_ptr)
8395 {
8396 	int ret;
8397 	cpumask_var_t mask;
8398 
8399 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8400 		return -EINVAL;
8401 	if (len & (sizeof(unsigned long)-1))
8402 		return -EINVAL;
8403 
8404 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8405 		return -ENOMEM;
8406 
8407 	ret = sched_getaffinity(pid, mask);
8408 	if (ret == 0) {
8409 		unsigned int retlen = min(len, cpumask_size());
8410 
8411 		if (copy_to_user(user_mask_ptr, mask, retlen))
8412 			ret = -EFAULT;
8413 		else
8414 			ret = retlen;
8415 	}
8416 	free_cpumask_var(mask);
8417 
8418 	return ret;
8419 }
8420 
8421 static void do_sched_yield(void)
8422 {
8423 	struct rq_flags rf;
8424 	struct rq *rq;
8425 
8426 	rq = this_rq_lock_irq(&rf);
8427 
8428 	schedstat_inc(rq->yld_count);
8429 	current->sched_class->yield_task(rq);
8430 
8431 	preempt_disable();
8432 	rq_unlock_irq(rq, &rf);
8433 	sched_preempt_enable_no_resched();
8434 
8435 	schedule();
8436 }
8437 
8438 /**
8439  * sys_sched_yield - yield the current processor to other threads.
8440  *
8441  * This function yields the current CPU to other tasks. If there are no
8442  * other threads running on this CPU then this function will return.
8443  *
8444  * Return: 0.
8445  */
8446 SYSCALL_DEFINE0(sched_yield)
8447 {
8448 	do_sched_yield();
8449 	return 0;
8450 }
8451 
8452 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8453 int __sched __cond_resched(void)
8454 {
8455 	if (should_resched(0)) {
8456 		preempt_schedule_common();
8457 		return 1;
8458 	}
8459 	/*
8460 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8461 	 * whether the current CPU is in an RCU read-side critical section,
8462 	 * so the tick can report quiescent states even for CPUs looping
8463 	 * in kernel context.  In contrast, in non-preemptible kernels,
8464 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8465 	 * processes executing in kernel context might never report an
8466 	 * RCU quiescent state.  Therefore, the following code causes
8467 	 * cond_resched() to report a quiescent state, but only when RCU
8468 	 * is in urgent need of one.
8469 	 */
8470 #ifndef CONFIG_PREEMPT_RCU
8471 	rcu_all_qs();
8472 #endif
8473 	return 0;
8474 }
8475 EXPORT_SYMBOL(__cond_resched);
8476 #endif
8477 
8478 #ifdef CONFIG_PREEMPT_DYNAMIC
8479 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8480 #define cond_resched_dynamic_enabled	__cond_resched
8481 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8482 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8483 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8484 
8485 #define might_resched_dynamic_enabled	__cond_resched
8486 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8487 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8488 EXPORT_STATIC_CALL_TRAMP(might_resched);
8489 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8490 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8491 int __sched dynamic_cond_resched(void)
8492 {
8493 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8494 		return 0;
8495 	return __cond_resched();
8496 }
8497 EXPORT_SYMBOL(dynamic_cond_resched);
8498 
8499 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8500 int __sched dynamic_might_resched(void)
8501 {
8502 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8503 		return 0;
8504 	return __cond_resched();
8505 }
8506 EXPORT_SYMBOL(dynamic_might_resched);
8507 #endif
8508 #endif
8509 
8510 /*
8511  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8512  * call schedule, and on return reacquire the lock.
8513  *
8514  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8515  * operations here to prevent schedule() from being called twice (once via
8516  * spin_unlock(), once by hand).
8517  */
8518 int __cond_resched_lock(spinlock_t *lock)
8519 {
8520 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8521 	int ret = 0;
8522 
8523 	lockdep_assert_held(lock);
8524 
8525 	if (spin_needbreak(lock) || resched) {
8526 		spin_unlock(lock);
8527 		if (!_cond_resched())
8528 			cpu_relax();
8529 		ret = 1;
8530 		spin_lock(lock);
8531 	}
8532 	return ret;
8533 }
8534 EXPORT_SYMBOL(__cond_resched_lock);
8535 
8536 int __cond_resched_rwlock_read(rwlock_t *lock)
8537 {
8538 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8539 	int ret = 0;
8540 
8541 	lockdep_assert_held_read(lock);
8542 
8543 	if (rwlock_needbreak(lock) || resched) {
8544 		read_unlock(lock);
8545 		if (!_cond_resched())
8546 			cpu_relax();
8547 		ret = 1;
8548 		read_lock(lock);
8549 	}
8550 	return ret;
8551 }
8552 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8553 
8554 int __cond_resched_rwlock_write(rwlock_t *lock)
8555 {
8556 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8557 	int ret = 0;
8558 
8559 	lockdep_assert_held_write(lock);
8560 
8561 	if (rwlock_needbreak(lock) || resched) {
8562 		write_unlock(lock);
8563 		if (!_cond_resched())
8564 			cpu_relax();
8565 		ret = 1;
8566 		write_lock(lock);
8567 	}
8568 	return ret;
8569 }
8570 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8571 
8572 #ifdef CONFIG_PREEMPT_DYNAMIC
8573 
8574 #ifdef CONFIG_GENERIC_ENTRY
8575 #include <linux/entry-common.h>
8576 #endif
8577 
8578 /*
8579  * SC:cond_resched
8580  * SC:might_resched
8581  * SC:preempt_schedule
8582  * SC:preempt_schedule_notrace
8583  * SC:irqentry_exit_cond_resched
8584  *
8585  *
8586  * NONE:
8587  *   cond_resched               <- __cond_resched
8588  *   might_resched              <- RET0
8589  *   preempt_schedule           <- NOP
8590  *   preempt_schedule_notrace   <- NOP
8591  *   irqentry_exit_cond_resched <- NOP
8592  *
8593  * VOLUNTARY:
8594  *   cond_resched               <- __cond_resched
8595  *   might_resched              <- __cond_resched
8596  *   preempt_schedule           <- NOP
8597  *   preempt_schedule_notrace   <- NOP
8598  *   irqentry_exit_cond_resched <- NOP
8599  *
8600  * FULL:
8601  *   cond_resched               <- RET0
8602  *   might_resched              <- RET0
8603  *   preempt_schedule           <- preempt_schedule
8604  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8605  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8606  */
8607 
8608 enum {
8609 	preempt_dynamic_undefined = -1,
8610 	preempt_dynamic_none,
8611 	preempt_dynamic_voluntary,
8612 	preempt_dynamic_full,
8613 };
8614 
8615 int preempt_dynamic_mode = preempt_dynamic_undefined;
8616 
8617 int sched_dynamic_mode(const char *str)
8618 {
8619 	if (!strcmp(str, "none"))
8620 		return preempt_dynamic_none;
8621 
8622 	if (!strcmp(str, "voluntary"))
8623 		return preempt_dynamic_voluntary;
8624 
8625 	if (!strcmp(str, "full"))
8626 		return preempt_dynamic_full;
8627 
8628 	return -EINVAL;
8629 }
8630 
8631 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8632 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8633 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8634 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8635 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8636 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8637 #else
8638 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8639 #endif
8640 
8641 void sched_dynamic_update(int mode)
8642 {
8643 	/*
8644 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8645 	 * the ZERO state, which is invalid.
8646 	 */
8647 	preempt_dynamic_enable(cond_resched);
8648 	preempt_dynamic_enable(might_resched);
8649 	preempt_dynamic_enable(preempt_schedule);
8650 	preempt_dynamic_enable(preempt_schedule_notrace);
8651 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8652 
8653 	switch (mode) {
8654 	case preempt_dynamic_none:
8655 		preempt_dynamic_enable(cond_resched);
8656 		preempt_dynamic_disable(might_resched);
8657 		preempt_dynamic_disable(preempt_schedule);
8658 		preempt_dynamic_disable(preempt_schedule_notrace);
8659 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8660 		pr_info("Dynamic Preempt: none\n");
8661 		break;
8662 
8663 	case preempt_dynamic_voluntary:
8664 		preempt_dynamic_enable(cond_resched);
8665 		preempt_dynamic_enable(might_resched);
8666 		preempt_dynamic_disable(preempt_schedule);
8667 		preempt_dynamic_disable(preempt_schedule_notrace);
8668 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8669 		pr_info("Dynamic Preempt: voluntary\n");
8670 		break;
8671 
8672 	case preempt_dynamic_full:
8673 		preempt_dynamic_disable(cond_resched);
8674 		preempt_dynamic_disable(might_resched);
8675 		preempt_dynamic_enable(preempt_schedule);
8676 		preempt_dynamic_enable(preempt_schedule_notrace);
8677 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8678 		pr_info("Dynamic Preempt: full\n");
8679 		break;
8680 	}
8681 
8682 	preempt_dynamic_mode = mode;
8683 }
8684 
8685 static int __init setup_preempt_mode(char *str)
8686 {
8687 	int mode = sched_dynamic_mode(str);
8688 	if (mode < 0) {
8689 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8690 		return 0;
8691 	}
8692 
8693 	sched_dynamic_update(mode);
8694 	return 1;
8695 }
8696 __setup("preempt=", setup_preempt_mode);
8697 
8698 static void __init preempt_dynamic_init(void)
8699 {
8700 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8701 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8702 			sched_dynamic_update(preempt_dynamic_none);
8703 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8704 			sched_dynamic_update(preempt_dynamic_voluntary);
8705 		} else {
8706 			/* Default static call setting, nothing to do */
8707 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8708 			preempt_dynamic_mode = preempt_dynamic_full;
8709 			pr_info("Dynamic Preempt: full\n");
8710 		}
8711 	}
8712 }
8713 
8714 #define PREEMPT_MODEL_ACCESSOR(mode) \
8715 	bool preempt_model_##mode(void)						 \
8716 	{									 \
8717 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8718 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8719 	}									 \
8720 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8721 
8722 PREEMPT_MODEL_ACCESSOR(none);
8723 PREEMPT_MODEL_ACCESSOR(voluntary);
8724 PREEMPT_MODEL_ACCESSOR(full);
8725 
8726 #else /* !CONFIG_PREEMPT_DYNAMIC */
8727 
8728 static inline void preempt_dynamic_init(void) { }
8729 
8730 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8731 
8732 /**
8733  * yield - yield the current processor to other threads.
8734  *
8735  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8736  *
8737  * The scheduler is at all times free to pick the calling task as the most
8738  * eligible task to run, if removing the yield() call from your code breaks
8739  * it, it's already broken.
8740  *
8741  * Typical broken usage is:
8742  *
8743  * while (!event)
8744  *	yield();
8745  *
8746  * where one assumes that yield() will let 'the other' process run that will
8747  * make event true. If the current task is a SCHED_FIFO task that will never
8748  * happen. Never use yield() as a progress guarantee!!
8749  *
8750  * If you want to use yield() to wait for something, use wait_event().
8751  * If you want to use yield() to be 'nice' for others, use cond_resched().
8752  * If you still want to use yield(), do not!
8753  */
8754 void __sched yield(void)
8755 {
8756 	set_current_state(TASK_RUNNING);
8757 	do_sched_yield();
8758 }
8759 EXPORT_SYMBOL(yield);
8760 
8761 /**
8762  * yield_to - yield the current processor to another thread in
8763  * your thread group, or accelerate that thread toward the
8764  * processor it's on.
8765  * @p: target task
8766  * @preempt: whether task preemption is allowed or not
8767  *
8768  * It's the caller's job to ensure that the target task struct
8769  * can't go away on us before we can do any checks.
8770  *
8771  * Return:
8772  *	true (>0) if we indeed boosted the target task.
8773  *	false (0) if we failed to boost the target.
8774  *	-ESRCH if there's no task to yield to.
8775  */
8776 int __sched yield_to(struct task_struct *p, bool preempt)
8777 {
8778 	struct task_struct *curr = current;
8779 	struct rq *rq, *p_rq;
8780 	unsigned long flags;
8781 	int yielded = 0;
8782 
8783 	local_irq_save(flags);
8784 	rq = this_rq();
8785 
8786 again:
8787 	p_rq = task_rq(p);
8788 	/*
8789 	 * If we're the only runnable task on the rq and target rq also
8790 	 * has only one task, there's absolutely no point in yielding.
8791 	 */
8792 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8793 		yielded = -ESRCH;
8794 		goto out_irq;
8795 	}
8796 
8797 	double_rq_lock(rq, p_rq);
8798 	if (task_rq(p) != p_rq) {
8799 		double_rq_unlock(rq, p_rq);
8800 		goto again;
8801 	}
8802 
8803 	if (!curr->sched_class->yield_to_task)
8804 		goto out_unlock;
8805 
8806 	if (curr->sched_class != p->sched_class)
8807 		goto out_unlock;
8808 
8809 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8810 		goto out_unlock;
8811 
8812 	yielded = curr->sched_class->yield_to_task(rq, p);
8813 	if (yielded) {
8814 		schedstat_inc(rq->yld_count);
8815 		/*
8816 		 * Make p's CPU reschedule; pick_next_entity takes care of
8817 		 * fairness.
8818 		 */
8819 		if (preempt && rq != p_rq)
8820 			resched_curr(p_rq);
8821 	}
8822 
8823 out_unlock:
8824 	double_rq_unlock(rq, p_rq);
8825 out_irq:
8826 	local_irq_restore(flags);
8827 
8828 	if (yielded > 0)
8829 		schedule();
8830 
8831 	return yielded;
8832 }
8833 EXPORT_SYMBOL_GPL(yield_to);
8834 
8835 int io_schedule_prepare(void)
8836 {
8837 	int old_iowait = current->in_iowait;
8838 
8839 	current->in_iowait = 1;
8840 	blk_flush_plug(current->plug, true);
8841 	return old_iowait;
8842 }
8843 
8844 void io_schedule_finish(int token)
8845 {
8846 	current->in_iowait = token;
8847 }
8848 
8849 /*
8850  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8851  * that process accounting knows that this is a task in IO wait state.
8852  */
8853 long __sched io_schedule_timeout(long timeout)
8854 {
8855 	int token;
8856 	long ret;
8857 
8858 	token = io_schedule_prepare();
8859 	ret = schedule_timeout(timeout);
8860 	io_schedule_finish(token);
8861 
8862 	return ret;
8863 }
8864 EXPORT_SYMBOL(io_schedule_timeout);
8865 
8866 void __sched io_schedule(void)
8867 {
8868 	int token;
8869 
8870 	token = io_schedule_prepare();
8871 	schedule();
8872 	io_schedule_finish(token);
8873 }
8874 EXPORT_SYMBOL(io_schedule);
8875 
8876 /**
8877  * sys_sched_get_priority_max - return maximum RT priority.
8878  * @policy: scheduling class.
8879  *
8880  * Return: On success, this syscall returns the maximum
8881  * rt_priority that can be used by a given scheduling class.
8882  * On failure, a negative error code is returned.
8883  */
8884 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8885 {
8886 	int ret = -EINVAL;
8887 
8888 	switch (policy) {
8889 	case SCHED_FIFO:
8890 	case SCHED_RR:
8891 		ret = MAX_RT_PRIO-1;
8892 		break;
8893 	case SCHED_DEADLINE:
8894 	case SCHED_NORMAL:
8895 	case SCHED_BATCH:
8896 	case SCHED_IDLE:
8897 		ret = 0;
8898 		break;
8899 	}
8900 	return ret;
8901 }
8902 
8903 /**
8904  * sys_sched_get_priority_min - return minimum RT priority.
8905  * @policy: scheduling class.
8906  *
8907  * Return: On success, this syscall returns the minimum
8908  * rt_priority that can be used by a given scheduling class.
8909  * On failure, a negative error code is returned.
8910  */
8911 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8912 {
8913 	int ret = -EINVAL;
8914 
8915 	switch (policy) {
8916 	case SCHED_FIFO:
8917 	case SCHED_RR:
8918 		ret = 1;
8919 		break;
8920 	case SCHED_DEADLINE:
8921 	case SCHED_NORMAL:
8922 	case SCHED_BATCH:
8923 	case SCHED_IDLE:
8924 		ret = 0;
8925 	}
8926 	return ret;
8927 }
8928 
8929 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8930 {
8931 	struct task_struct *p;
8932 	unsigned int time_slice;
8933 	struct rq_flags rf;
8934 	struct rq *rq;
8935 	int retval;
8936 
8937 	if (pid < 0)
8938 		return -EINVAL;
8939 
8940 	retval = -ESRCH;
8941 	rcu_read_lock();
8942 	p = find_process_by_pid(pid);
8943 	if (!p)
8944 		goto out_unlock;
8945 
8946 	retval = security_task_getscheduler(p);
8947 	if (retval)
8948 		goto out_unlock;
8949 
8950 	rq = task_rq_lock(p, &rf);
8951 	time_slice = 0;
8952 	if (p->sched_class->get_rr_interval)
8953 		time_slice = p->sched_class->get_rr_interval(rq, p);
8954 	task_rq_unlock(rq, p, &rf);
8955 
8956 	rcu_read_unlock();
8957 	jiffies_to_timespec64(time_slice, t);
8958 	return 0;
8959 
8960 out_unlock:
8961 	rcu_read_unlock();
8962 	return retval;
8963 }
8964 
8965 /**
8966  * sys_sched_rr_get_interval - return the default timeslice of a process.
8967  * @pid: pid of the process.
8968  * @interval: userspace pointer to the timeslice value.
8969  *
8970  * this syscall writes the default timeslice value of a given process
8971  * into the user-space timespec buffer. A value of '0' means infinity.
8972  *
8973  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8974  * an error code.
8975  */
8976 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8977 		struct __kernel_timespec __user *, interval)
8978 {
8979 	struct timespec64 t;
8980 	int retval = sched_rr_get_interval(pid, &t);
8981 
8982 	if (retval == 0)
8983 		retval = put_timespec64(&t, interval);
8984 
8985 	return retval;
8986 }
8987 
8988 #ifdef CONFIG_COMPAT_32BIT_TIME
8989 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8990 		struct old_timespec32 __user *, interval)
8991 {
8992 	struct timespec64 t;
8993 	int retval = sched_rr_get_interval(pid, &t);
8994 
8995 	if (retval == 0)
8996 		retval = put_old_timespec32(&t, interval);
8997 	return retval;
8998 }
8999 #endif
9000 
9001 void sched_show_task(struct task_struct *p)
9002 {
9003 	unsigned long free = 0;
9004 	int ppid;
9005 
9006 	if (!try_get_task_stack(p))
9007 		return;
9008 
9009 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9010 
9011 	if (task_is_running(p))
9012 		pr_cont("  running task    ");
9013 #ifdef CONFIG_DEBUG_STACK_USAGE
9014 	free = stack_not_used(p);
9015 #endif
9016 	ppid = 0;
9017 	rcu_read_lock();
9018 	if (pid_alive(p))
9019 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9020 	rcu_read_unlock();
9021 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9022 		free, task_pid_nr(p), ppid,
9023 		read_task_thread_flags(p));
9024 
9025 	print_worker_info(KERN_INFO, p);
9026 	print_stop_info(KERN_INFO, p);
9027 	show_stack(p, NULL, KERN_INFO);
9028 	put_task_stack(p);
9029 }
9030 EXPORT_SYMBOL_GPL(sched_show_task);
9031 
9032 static inline bool
9033 state_filter_match(unsigned long state_filter, struct task_struct *p)
9034 {
9035 	unsigned int state = READ_ONCE(p->__state);
9036 
9037 	/* no filter, everything matches */
9038 	if (!state_filter)
9039 		return true;
9040 
9041 	/* filter, but doesn't match */
9042 	if (!(state & state_filter))
9043 		return false;
9044 
9045 	/*
9046 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9047 	 * TASK_KILLABLE).
9048 	 */
9049 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9050 		return false;
9051 
9052 	return true;
9053 }
9054 
9055 
9056 void show_state_filter(unsigned int state_filter)
9057 {
9058 	struct task_struct *g, *p;
9059 
9060 	rcu_read_lock();
9061 	for_each_process_thread(g, p) {
9062 		/*
9063 		 * reset the NMI-timeout, listing all files on a slow
9064 		 * console might take a lot of time:
9065 		 * Also, reset softlockup watchdogs on all CPUs, because
9066 		 * another CPU might be blocked waiting for us to process
9067 		 * an IPI.
9068 		 */
9069 		touch_nmi_watchdog();
9070 		touch_all_softlockup_watchdogs();
9071 		if (state_filter_match(state_filter, p))
9072 			sched_show_task(p);
9073 	}
9074 
9075 #ifdef CONFIG_SCHED_DEBUG
9076 	if (!state_filter)
9077 		sysrq_sched_debug_show();
9078 #endif
9079 	rcu_read_unlock();
9080 	/*
9081 	 * Only show locks if all tasks are dumped:
9082 	 */
9083 	if (!state_filter)
9084 		debug_show_all_locks();
9085 }
9086 
9087 /**
9088  * init_idle - set up an idle thread for a given CPU
9089  * @idle: task in question
9090  * @cpu: CPU the idle task belongs to
9091  *
9092  * NOTE: this function does not set the idle thread's NEED_RESCHED
9093  * flag, to make booting more robust.
9094  */
9095 void __init init_idle(struct task_struct *idle, int cpu)
9096 {
9097 #ifdef CONFIG_SMP
9098 	struct affinity_context ac = (struct affinity_context) {
9099 		.new_mask  = cpumask_of(cpu),
9100 		.flags     = 0,
9101 	};
9102 #endif
9103 	struct rq *rq = cpu_rq(cpu);
9104 	unsigned long flags;
9105 
9106 	__sched_fork(0, idle);
9107 
9108 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9109 	raw_spin_rq_lock(rq);
9110 
9111 	idle->__state = TASK_RUNNING;
9112 	idle->se.exec_start = sched_clock();
9113 	/*
9114 	 * PF_KTHREAD should already be set at this point; regardless, make it
9115 	 * look like a proper per-CPU kthread.
9116 	 */
9117 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
9118 	kthread_set_per_cpu(idle, cpu);
9119 
9120 #ifdef CONFIG_SMP
9121 	/*
9122 	 * It's possible that init_idle() gets called multiple times on a task,
9123 	 * in that case do_set_cpus_allowed() will not do the right thing.
9124 	 *
9125 	 * And since this is boot we can forgo the serialization.
9126 	 */
9127 	set_cpus_allowed_common(idle, &ac);
9128 #endif
9129 	/*
9130 	 * We're having a chicken and egg problem, even though we are
9131 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9132 	 * lockdep check in task_group() will fail.
9133 	 *
9134 	 * Similar case to sched_fork(). / Alternatively we could
9135 	 * use task_rq_lock() here and obtain the other rq->lock.
9136 	 *
9137 	 * Silence PROVE_RCU
9138 	 */
9139 	rcu_read_lock();
9140 	__set_task_cpu(idle, cpu);
9141 	rcu_read_unlock();
9142 
9143 	rq->idle = idle;
9144 	rcu_assign_pointer(rq->curr, idle);
9145 	idle->on_rq = TASK_ON_RQ_QUEUED;
9146 #ifdef CONFIG_SMP
9147 	idle->on_cpu = 1;
9148 #endif
9149 	raw_spin_rq_unlock(rq);
9150 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9151 
9152 	/* Set the preempt count _outside_ the spinlocks! */
9153 	init_idle_preempt_count(idle, cpu);
9154 
9155 	/*
9156 	 * The idle tasks have their own, simple scheduling class:
9157 	 */
9158 	idle->sched_class = &idle_sched_class;
9159 	ftrace_graph_init_idle_task(idle, cpu);
9160 	vtime_init_idle(idle, cpu);
9161 #ifdef CONFIG_SMP
9162 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9163 #endif
9164 }
9165 
9166 #ifdef CONFIG_SMP
9167 
9168 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9169 			      const struct cpumask *trial)
9170 {
9171 	int ret = 1;
9172 
9173 	if (cpumask_empty(cur))
9174 		return ret;
9175 
9176 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9177 
9178 	return ret;
9179 }
9180 
9181 int task_can_attach(struct task_struct *p,
9182 		    const struct cpumask *cs_effective_cpus)
9183 {
9184 	int ret = 0;
9185 
9186 	/*
9187 	 * Kthreads which disallow setaffinity shouldn't be moved
9188 	 * to a new cpuset; we don't want to change their CPU
9189 	 * affinity and isolating such threads by their set of
9190 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9191 	 * applicable for such threads.  This prevents checking for
9192 	 * success of set_cpus_allowed_ptr() on all attached tasks
9193 	 * before cpus_mask may be changed.
9194 	 */
9195 	if (p->flags & PF_NO_SETAFFINITY) {
9196 		ret = -EINVAL;
9197 		goto out;
9198 	}
9199 
9200 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9201 					      cs_effective_cpus)) {
9202 		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9203 
9204 		if (unlikely(cpu >= nr_cpu_ids))
9205 			return -EINVAL;
9206 		ret = dl_cpu_busy(cpu, p);
9207 	}
9208 
9209 out:
9210 	return ret;
9211 }
9212 
9213 bool sched_smp_initialized __read_mostly;
9214 
9215 #ifdef CONFIG_NUMA_BALANCING
9216 /* Migrate current task p to target_cpu */
9217 int migrate_task_to(struct task_struct *p, int target_cpu)
9218 {
9219 	struct migration_arg arg = { p, target_cpu };
9220 	int curr_cpu = task_cpu(p);
9221 
9222 	if (curr_cpu == target_cpu)
9223 		return 0;
9224 
9225 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9226 		return -EINVAL;
9227 
9228 	/* TODO: This is not properly updating schedstats */
9229 
9230 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9231 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9232 }
9233 
9234 /*
9235  * Requeue a task on a given node and accurately track the number of NUMA
9236  * tasks on the runqueues
9237  */
9238 void sched_setnuma(struct task_struct *p, int nid)
9239 {
9240 	bool queued, running;
9241 	struct rq_flags rf;
9242 	struct rq *rq;
9243 
9244 	rq = task_rq_lock(p, &rf);
9245 	queued = task_on_rq_queued(p);
9246 	running = task_current(rq, p);
9247 
9248 	if (queued)
9249 		dequeue_task(rq, p, DEQUEUE_SAVE);
9250 	if (running)
9251 		put_prev_task(rq, p);
9252 
9253 	p->numa_preferred_nid = nid;
9254 
9255 	if (queued)
9256 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9257 	if (running)
9258 		set_next_task(rq, p);
9259 	task_rq_unlock(rq, p, &rf);
9260 }
9261 #endif /* CONFIG_NUMA_BALANCING */
9262 
9263 #ifdef CONFIG_HOTPLUG_CPU
9264 /*
9265  * Ensure that the idle task is using init_mm right before its CPU goes
9266  * offline.
9267  */
9268 void idle_task_exit(void)
9269 {
9270 	struct mm_struct *mm = current->active_mm;
9271 
9272 	BUG_ON(cpu_online(smp_processor_id()));
9273 	BUG_ON(current != this_rq()->idle);
9274 
9275 	if (mm != &init_mm) {
9276 		switch_mm(mm, &init_mm, current);
9277 		finish_arch_post_lock_switch();
9278 	}
9279 
9280 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9281 }
9282 
9283 static int __balance_push_cpu_stop(void *arg)
9284 {
9285 	struct task_struct *p = arg;
9286 	struct rq *rq = this_rq();
9287 	struct rq_flags rf;
9288 	int cpu;
9289 
9290 	raw_spin_lock_irq(&p->pi_lock);
9291 	rq_lock(rq, &rf);
9292 
9293 	update_rq_clock(rq);
9294 
9295 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9296 		cpu = select_fallback_rq(rq->cpu, p);
9297 		rq = __migrate_task(rq, &rf, p, cpu);
9298 	}
9299 
9300 	rq_unlock(rq, &rf);
9301 	raw_spin_unlock_irq(&p->pi_lock);
9302 
9303 	put_task_struct(p);
9304 
9305 	return 0;
9306 }
9307 
9308 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9309 
9310 /*
9311  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9312  *
9313  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9314  * effective when the hotplug motion is down.
9315  */
9316 static void balance_push(struct rq *rq)
9317 {
9318 	struct task_struct *push_task = rq->curr;
9319 
9320 	lockdep_assert_rq_held(rq);
9321 
9322 	/*
9323 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9324 	 */
9325 	rq->balance_callback = &balance_push_callback;
9326 
9327 	/*
9328 	 * Only active while going offline and when invoked on the outgoing
9329 	 * CPU.
9330 	 */
9331 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9332 		return;
9333 
9334 	/*
9335 	 * Both the cpu-hotplug and stop task are in this case and are
9336 	 * required to complete the hotplug process.
9337 	 */
9338 	if (kthread_is_per_cpu(push_task) ||
9339 	    is_migration_disabled(push_task)) {
9340 
9341 		/*
9342 		 * If this is the idle task on the outgoing CPU try to wake
9343 		 * up the hotplug control thread which might wait for the
9344 		 * last task to vanish. The rcuwait_active() check is
9345 		 * accurate here because the waiter is pinned on this CPU
9346 		 * and can't obviously be running in parallel.
9347 		 *
9348 		 * On RT kernels this also has to check whether there are
9349 		 * pinned and scheduled out tasks on the runqueue. They
9350 		 * need to leave the migrate disabled section first.
9351 		 */
9352 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9353 		    rcuwait_active(&rq->hotplug_wait)) {
9354 			raw_spin_rq_unlock(rq);
9355 			rcuwait_wake_up(&rq->hotplug_wait);
9356 			raw_spin_rq_lock(rq);
9357 		}
9358 		return;
9359 	}
9360 
9361 	get_task_struct(push_task);
9362 	/*
9363 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9364 	 * Both preemption and IRQs are still disabled.
9365 	 */
9366 	raw_spin_rq_unlock(rq);
9367 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9368 			    this_cpu_ptr(&push_work));
9369 	/*
9370 	 * At this point need_resched() is true and we'll take the loop in
9371 	 * schedule(). The next pick is obviously going to be the stop task
9372 	 * which kthread_is_per_cpu() and will push this task away.
9373 	 */
9374 	raw_spin_rq_lock(rq);
9375 }
9376 
9377 static void balance_push_set(int cpu, bool on)
9378 {
9379 	struct rq *rq = cpu_rq(cpu);
9380 	struct rq_flags rf;
9381 
9382 	rq_lock_irqsave(rq, &rf);
9383 	if (on) {
9384 		WARN_ON_ONCE(rq->balance_callback);
9385 		rq->balance_callback = &balance_push_callback;
9386 	} else if (rq->balance_callback == &balance_push_callback) {
9387 		rq->balance_callback = NULL;
9388 	}
9389 	rq_unlock_irqrestore(rq, &rf);
9390 }
9391 
9392 /*
9393  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9394  * inactive. All tasks which are not per CPU kernel threads are either
9395  * pushed off this CPU now via balance_push() or placed on a different CPU
9396  * during wakeup. Wait until the CPU is quiescent.
9397  */
9398 static void balance_hotplug_wait(void)
9399 {
9400 	struct rq *rq = this_rq();
9401 
9402 	rcuwait_wait_event(&rq->hotplug_wait,
9403 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9404 			   TASK_UNINTERRUPTIBLE);
9405 }
9406 
9407 #else
9408 
9409 static inline void balance_push(struct rq *rq)
9410 {
9411 }
9412 
9413 static inline void balance_push_set(int cpu, bool on)
9414 {
9415 }
9416 
9417 static inline void balance_hotplug_wait(void)
9418 {
9419 }
9420 
9421 #endif /* CONFIG_HOTPLUG_CPU */
9422 
9423 void set_rq_online(struct rq *rq)
9424 {
9425 	if (!rq->online) {
9426 		const struct sched_class *class;
9427 
9428 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9429 		rq->online = 1;
9430 
9431 		for_each_class(class) {
9432 			if (class->rq_online)
9433 				class->rq_online(rq);
9434 		}
9435 	}
9436 }
9437 
9438 void set_rq_offline(struct rq *rq)
9439 {
9440 	if (rq->online) {
9441 		const struct sched_class *class;
9442 
9443 		for_each_class(class) {
9444 			if (class->rq_offline)
9445 				class->rq_offline(rq);
9446 		}
9447 
9448 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9449 		rq->online = 0;
9450 	}
9451 }
9452 
9453 /*
9454  * used to mark begin/end of suspend/resume:
9455  */
9456 static int num_cpus_frozen;
9457 
9458 /*
9459  * Update cpusets according to cpu_active mask.  If cpusets are
9460  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9461  * around partition_sched_domains().
9462  *
9463  * If we come here as part of a suspend/resume, don't touch cpusets because we
9464  * want to restore it back to its original state upon resume anyway.
9465  */
9466 static void cpuset_cpu_active(void)
9467 {
9468 	if (cpuhp_tasks_frozen) {
9469 		/*
9470 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9471 		 * resume sequence. As long as this is not the last online
9472 		 * operation in the resume sequence, just build a single sched
9473 		 * domain, ignoring cpusets.
9474 		 */
9475 		partition_sched_domains(1, NULL, NULL);
9476 		if (--num_cpus_frozen)
9477 			return;
9478 		/*
9479 		 * This is the last CPU online operation. So fall through and
9480 		 * restore the original sched domains by considering the
9481 		 * cpuset configurations.
9482 		 */
9483 		cpuset_force_rebuild();
9484 	}
9485 	cpuset_update_active_cpus();
9486 }
9487 
9488 static int cpuset_cpu_inactive(unsigned int cpu)
9489 {
9490 	if (!cpuhp_tasks_frozen) {
9491 		int ret = dl_cpu_busy(cpu, NULL);
9492 
9493 		if (ret)
9494 			return ret;
9495 		cpuset_update_active_cpus();
9496 	} else {
9497 		num_cpus_frozen++;
9498 		partition_sched_domains(1, NULL, NULL);
9499 	}
9500 	return 0;
9501 }
9502 
9503 int sched_cpu_activate(unsigned int cpu)
9504 {
9505 	struct rq *rq = cpu_rq(cpu);
9506 	struct rq_flags rf;
9507 
9508 	/*
9509 	 * Clear the balance_push callback and prepare to schedule
9510 	 * regular tasks.
9511 	 */
9512 	balance_push_set(cpu, false);
9513 
9514 #ifdef CONFIG_SCHED_SMT
9515 	/*
9516 	 * When going up, increment the number of cores with SMT present.
9517 	 */
9518 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9519 		static_branch_inc_cpuslocked(&sched_smt_present);
9520 #endif
9521 	set_cpu_active(cpu, true);
9522 
9523 	if (sched_smp_initialized) {
9524 		sched_update_numa(cpu, true);
9525 		sched_domains_numa_masks_set(cpu);
9526 		cpuset_cpu_active();
9527 	}
9528 
9529 	/*
9530 	 * Put the rq online, if not already. This happens:
9531 	 *
9532 	 * 1) In the early boot process, because we build the real domains
9533 	 *    after all CPUs have been brought up.
9534 	 *
9535 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9536 	 *    domains.
9537 	 */
9538 	rq_lock_irqsave(rq, &rf);
9539 	if (rq->rd) {
9540 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9541 		set_rq_online(rq);
9542 	}
9543 	rq_unlock_irqrestore(rq, &rf);
9544 
9545 	return 0;
9546 }
9547 
9548 int sched_cpu_deactivate(unsigned int cpu)
9549 {
9550 	struct rq *rq = cpu_rq(cpu);
9551 	struct rq_flags rf;
9552 	int ret;
9553 
9554 	/*
9555 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9556 	 * load balancing when not active
9557 	 */
9558 	nohz_balance_exit_idle(rq);
9559 
9560 	set_cpu_active(cpu, false);
9561 
9562 	/*
9563 	 * From this point forward, this CPU will refuse to run any task that
9564 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9565 	 * push those tasks away until this gets cleared, see
9566 	 * sched_cpu_dying().
9567 	 */
9568 	balance_push_set(cpu, true);
9569 
9570 	/*
9571 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9572 	 * preempt-disabled and RCU users of this state to go away such that
9573 	 * all new such users will observe it.
9574 	 *
9575 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9576 	 * ttwu_queue_cond() and is_cpu_allowed().
9577 	 *
9578 	 * Do sync before park smpboot threads to take care the rcu boost case.
9579 	 */
9580 	synchronize_rcu();
9581 
9582 	rq_lock_irqsave(rq, &rf);
9583 	if (rq->rd) {
9584 		update_rq_clock(rq);
9585 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9586 		set_rq_offline(rq);
9587 	}
9588 	rq_unlock_irqrestore(rq, &rf);
9589 
9590 #ifdef CONFIG_SCHED_SMT
9591 	/*
9592 	 * When going down, decrement the number of cores with SMT present.
9593 	 */
9594 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9595 		static_branch_dec_cpuslocked(&sched_smt_present);
9596 
9597 	sched_core_cpu_deactivate(cpu);
9598 #endif
9599 
9600 	if (!sched_smp_initialized)
9601 		return 0;
9602 
9603 	sched_update_numa(cpu, false);
9604 	ret = cpuset_cpu_inactive(cpu);
9605 	if (ret) {
9606 		balance_push_set(cpu, false);
9607 		set_cpu_active(cpu, true);
9608 		sched_update_numa(cpu, true);
9609 		return ret;
9610 	}
9611 	sched_domains_numa_masks_clear(cpu);
9612 	return 0;
9613 }
9614 
9615 static void sched_rq_cpu_starting(unsigned int cpu)
9616 {
9617 	struct rq *rq = cpu_rq(cpu);
9618 
9619 	rq->calc_load_update = calc_load_update;
9620 	update_max_interval();
9621 }
9622 
9623 int sched_cpu_starting(unsigned int cpu)
9624 {
9625 	sched_core_cpu_starting(cpu);
9626 	sched_rq_cpu_starting(cpu);
9627 	sched_tick_start(cpu);
9628 	return 0;
9629 }
9630 
9631 #ifdef CONFIG_HOTPLUG_CPU
9632 
9633 /*
9634  * Invoked immediately before the stopper thread is invoked to bring the
9635  * CPU down completely. At this point all per CPU kthreads except the
9636  * hotplug thread (current) and the stopper thread (inactive) have been
9637  * either parked or have been unbound from the outgoing CPU. Ensure that
9638  * any of those which might be on the way out are gone.
9639  *
9640  * If after this point a bound task is being woken on this CPU then the
9641  * responsible hotplug callback has failed to do it's job.
9642  * sched_cpu_dying() will catch it with the appropriate fireworks.
9643  */
9644 int sched_cpu_wait_empty(unsigned int cpu)
9645 {
9646 	balance_hotplug_wait();
9647 	return 0;
9648 }
9649 
9650 /*
9651  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9652  * might have. Called from the CPU stopper task after ensuring that the
9653  * stopper is the last running task on the CPU, so nr_active count is
9654  * stable. We need to take the teardown thread which is calling this into
9655  * account, so we hand in adjust = 1 to the load calculation.
9656  *
9657  * Also see the comment "Global load-average calculations".
9658  */
9659 static void calc_load_migrate(struct rq *rq)
9660 {
9661 	long delta = calc_load_fold_active(rq, 1);
9662 
9663 	if (delta)
9664 		atomic_long_add(delta, &calc_load_tasks);
9665 }
9666 
9667 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9668 {
9669 	struct task_struct *g, *p;
9670 	int cpu = cpu_of(rq);
9671 
9672 	lockdep_assert_rq_held(rq);
9673 
9674 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9675 	for_each_process_thread(g, p) {
9676 		if (task_cpu(p) != cpu)
9677 			continue;
9678 
9679 		if (!task_on_rq_queued(p))
9680 			continue;
9681 
9682 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9683 	}
9684 }
9685 
9686 int sched_cpu_dying(unsigned int cpu)
9687 {
9688 	struct rq *rq = cpu_rq(cpu);
9689 	struct rq_flags rf;
9690 
9691 	/* Handle pending wakeups and then migrate everything off */
9692 	sched_tick_stop(cpu);
9693 
9694 	rq_lock_irqsave(rq, &rf);
9695 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9696 		WARN(true, "Dying CPU not properly vacated!");
9697 		dump_rq_tasks(rq, KERN_WARNING);
9698 	}
9699 	rq_unlock_irqrestore(rq, &rf);
9700 
9701 	calc_load_migrate(rq);
9702 	update_max_interval();
9703 	hrtick_clear(rq);
9704 	sched_core_cpu_dying(cpu);
9705 	return 0;
9706 }
9707 #endif
9708 
9709 void __init sched_init_smp(void)
9710 {
9711 	sched_init_numa(NUMA_NO_NODE);
9712 
9713 	/*
9714 	 * There's no userspace yet to cause hotplug operations; hence all the
9715 	 * CPU masks are stable and all blatant races in the below code cannot
9716 	 * happen.
9717 	 */
9718 	mutex_lock(&sched_domains_mutex);
9719 	sched_init_domains(cpu_active_mask);
9720 	mutex_unlock(&sched_domains_mutex);
9721 
9722 	/* Move init over to a non-isolated CPU */
9723 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9724 		BUG();
9725 	current->flags &= ~PF_NO_SETAFFINITY;
9726 	sched_init_granularity();
9727 
9728 	init_sched_rt_class();
9729 	init_sched_dl_class();
9730 
9731 	sched_smp_initialized = true;
9732 }
9733 
9734 static int __init migration_init(void)
9735 {
9736 	sched_cpu_starting(smp_processor_id());
9737 	return 0;
9738 }
9739 early_initcall(migration_init);
9740 
9741 #else
9742 void __init sched_init_smp(void)
9743 {
9744 	sched_init_granularity();
9745 }
9746 #endif /* CONFIG_SMP */
9747 
9748 int in_sched_functions(unsigned long addr)
9749 {
9750 	return in_lock_functions(addr) ||
9751 		(addr >= (unsigned long)__sched_text_start
9752 		&& addr < (unsigned long)__sched_text_end);
9753 }
9754 
9755 #ifdef CONFIG_CGROUP_SCHED
9756 /*
9757  * Default task group.
9758  * Every task in system belongs to this group at bootup.
9759  */
9760 struct task_group root_task_group;
9761 LIST_HEAD(task_groups);
9762 
9763 /* Cacheline aligned slab cache for task_group */
9764 static struct kmem_cache *task_group_cache __read_mostly;
9765 #endif
9766 
9767 void __init sched_init(void)
9768 {
9769 	unsigned long ptr = 0;
9770 	int i;
9771 
9772 	/* Make sure the linker didn't screw up */
9773 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9774 	       &fair_sched_class != &rt_sched_class + 1 ||
9775 	       &rt_sched_class   != &dl_sched_class + 1);
9776 #ifdef CONFIG_SMP
9777 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9778 #endif
9779 
9780 	wait_bit_init();
9781 
9782 #ifdef CONFIG_FAIR_GROUP_SCHED
9783 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9784 #endif
9785 #ifdef CONFIG_RT_GROUP_SCHED
9786 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9787 #endif
9788 	if (ptr) {
9789 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9790 
9791 #ifdef CONFIG_FAIR_GROUP_SCHED
9792 		root_task_group.se = (struct sched_entity **)ptr;
9793 		ptr += nr_cpu_ids * sizeof(void **);
9794 
9795 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9796 		ptr += nr_cpu_ids * sizeof(void **);
9797 
9798 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9799 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9800 #endif /* CONFIG_FAIR_GROUP_SCHED */
9801 #ifdef CONFIG_RT_GROUP_SCHED
9802 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9803 		ptr += nr_cpu_ids * sizeof(void **);
9804 
9805 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9806 		ptr += nr_cpu_ids * sizeof(void **);
9807 
9808 #endif /* CONFIG_RT_GROUP_SCHED */
9809 	}
9810 
9811 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9812 
9813 #ifdef CONFIG_SMP
9814 	init_defrootdomain();
9815 #endif
9816 
9817 #ifdef CONFIG_RT_GROUP_SCHED
9818 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9819 			global_rt_period(), global_rt_runtime());
9820 #endif /* CONFIG_RT_GROUP_SCHED */
9821 
9822 #ifdef CONFIG_CGROUP_SCHED
9823 	task_group_cache = KMEM_CACHE(task_group, 0);
9824 
9825 	list_add(&root_task_group.list, &task_groups);
9826 	INIT_LIST_HEAD(&root_task_group.children);
9827 	INIT_LIST_HEAD(&root_task_group.siblings);
9828 	autogroup_init(&init_task);
9829 #endif /* CONFIG_CGROUP_SCHED */
9830 
9831 	for_each_possible_cpu(i) {
9832 		struct rq *rq;
9833 
9834 		rq = cpu_rq(i);
9835 		raw_spin_lock_init(&rq->__lock);
9836 		rq->nr_running = 0;
9837 		rq->calc_load_active = 0;
9838 		rq->calc_load_update = jiffies + LOAD_FREQ;
9839 		init_cfs_rq(&rq->cfs);
9840 		init_rt_rq(&rq->rt);
9841 		init_dl_rq(&rq->dl);
9842 #ifdef CONFIG_FAIR_GROUP_SCHED
9843 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9844 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9845 		/*
9846 		 * How much CPU bandwidth does root_task_group get?
9847 		 *
9848 		 * In case of task-groups formed thr' the cgroup filesystem, it
9849 		 * gets 100% of the CPU resources in the system. This overall
9850 		 * system CPU resource is divided among the tasks of
9851 		 * root_task_group and its child task-groups in a fair manner,
9852 		 * based on each entity's (task or task-group's) weight
9853 		 * (se->load.weight).
9854 		 *
9855 		 * In other words, if root_task_group has 10 tasks of weight
9856 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9857 		 * then A0's share of the CPU resource is:
9858 		 *
9859 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9860 		 *
9861 		 * We achieve this by letting root_task_group's tasks sit
9862 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9863 		 */
9864 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9865 #endif /* CONFIG_FAIR_GROUP_SCHED */
9866 
9867 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9868 #ifdef CONFIG_RT_GROUP_SCHED
9869 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9870 #endif
9871 #ifdef CONFIG_SMP
9872 		rq->sd = NULL;
9873 		rq->rd = NULL;
9874 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9875 		rq->balance_callback = &balance_push_callback;
9876 		rq->active_balance = 0;
9877 		rq->next_balance = jiffies;
9878 		rq->push_cpu = 0;
9879 		rq->cpu = i;
9880 		rq->online = 0;
9881 		rq->idle_stamp = 0;
9882 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9883 		rq->wake_stamp = jiffies;
9884 		rq->wake_avg_idle = rq->avg_idle;
9885 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9886 
9887 		INIT_LIST_HEAD(&rq->cfs_tasks);
9888 
9889 		rq_attach_root(rq, &def_root_domain);
9890 #ifdef CONFIG_NO_HZ_COMMON
9891 		rq->last_blocked_load_update_tick = jiffies;
9892 		atomic_set(&rq->nohz_flags, 0);
9893 
9894 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9895 #endif
9896 #ifdef CONFIG_HOTPLUG_CPU
9897 		rcuwait_init(&rq->hotplug_wait);
9898 #endif
9899 #endif /* CONFIG_SMP */
9900 		hrtick_rq_init(rq);
9901 		atomic_set(&rq->nr_iowait, 0);
9902 
9903 #ifdef CONFIG_SCHED_CORE
9904 		rq->core = rq;
9905 		rq->core_pick = NULL;
9906 		rq->core_enabled = 0;
9907 		rq->core_tree = RB_ROOT;
9908 		rq->core_forceidle_count = 0;
9909 		rq->core_forceidle_occupation = 0;
9910 		rq->core_forceidle_start = 0;
9911 
9912 		rq->core_cookie = 0UL;
9913 #endif
9914 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
9915 	}
9916 
9917 	set_load_weight(&init_task, false);
9918 
9919 	/*
9920 	 * The boot idle thread does lazy MMU switching as well:
9921 	 */
9922 	mmgrab(&init_mm);
9923 	enter_lazy_tlb(&init_mm, current);
9924 
9925 	/*
9926 	 * The idle task doesn't need the kthread struct to function, but it
9927 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9928 	 * if we want to avoid special-casing it in code that deals with per-CPU
9929 	 * kthreads.
9930 	 */
9931 	WARN_ON(!set_kthread_struct(current));
9932 
9933 	/*
9934 	 * Make us the idle thread. Technically, schedule() should not be
9935 	 * called from this thread, however somewhere below it might be,
9936 	 * but because we are the idle thread, we just pick up running again
9937 	 * when this runqueue becomes "idle".
9938 	 */
9939 	init_idle(current, smp_processor_id());
9940 
9941 	calc_load_update = jiffies + LOAD_FREQ;
9942 
9943 #ifdef CONFIG_SMP
9944 	idle_thread_set_boot_cpu();
9945 	balance_push_set(smp_processor_id(), false);
9946 #endif
9947 	init_sched_fair_class();
9948 
9949 	psi_init();
9950 
9951 	init_uclamp();
9952 
9953 	preempt_dynamic_init();
9954 
9955 	scheduler_running = 1;
9956 }
9957 
9958 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9959 
9960 void __might_sleep(const char *file, int line)
9961 {
9962 	unsigned int state = get_current_state();
9963 	/*
9964 	 * Blocking primitives will set (and therefore destroy) current->state,
9965 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9966 	 * otherwise we will destroy state.
9967 	 */
9968 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9969 			"do not call blocking ops when !TASK_RUNNING; "
9970 			"state=%x set at [<%p>] %pS\n", state,
9971 			(void *)current->task_state_change,
9972 			(void *)current->task_state_change);
9973 
9974 	__might_resched(file, line, 0);
9975 }
9976 EXPORT_SYMBOL(__might_sleep);
9977 
9978 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9979 {
9980 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9981 		return;
9982 
9983 	if (preempt_count() == preempt_offset)
9984 		return;
9985 
9986 	pr_err("Preemption disabled at:");
9987 	print_ip_sym(KERN_ERR, ip);
9988 }
9989 
9990 static inline bool resched_offsets_ok(unsigned int offsets)
9991 {
9992 	unsigned int nested = preempt_count();
9993 
9994 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9995 
9996 	return nested == offsets;
9997 }
9998 
9999 void __might_resched(const char *file, int line, unsigned int offsets)
10000 {
10001 	/* Ratelimiting timestamp: */
10002 	static unsigned long prev_jiffy;
10003 
10004 	unsigned long preempt_disable_ip;
10005 
10006 	/* WARN_ON_ONCE() by default, no rate limit required: */
10007 	rcu_sleep_check();
10008 
10009 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10010 	     !is_idle_task(current) && !current->non_block_count) ||
10011 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10012 	    oops_in_progress)
10013 		return;
10014 
10015 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10016 		return;
10017 	prev_jiffy = jiffies;
10018 
10019 	/* Save this before calling printk(), since that will clobber it: */
10020 	preempt_disable_ip = get_preempt_disable_ip(current);
10021 
10022 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10023 	       file, line);
10024 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10025 	       in_atomic(), irqs_disabled(), current->non_block_count,
10026 	       current->pid, current->comm);
10027 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10028 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10029 
10030 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10031 		pr_err("RCU nest depth: %d, expected: %u\n",
10032 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10033 	}
10034 
10035 	if (task_stack_end_corrupted(current))
10036 		pr_emerg("Thread overran stack, or stack corrupted\n");
10037 
10038 	debug_show_held_locks(current);
10039 	if (irqs_disabled())
10040 		print_irqtrace_events(current);
10041 
10042 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10043 				 preempt_disable_ip);
10044 
10045 	dump_stack();
10046 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10047 }
10048 EXPORT_SYMBOL(__might_resched);
10049 
10050 void __cant_sleep(const char *file, int line, int preempt_offset)
10051 {
10052 	static unsigned long prev_jiffy;
10053 
10054 	if (irqs_disabled())
10055 		return;
10056 
10057 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10058 		return;
10059 
10060 	if (preempt_count() > preempt_offset)
10061 		return;
10062 
10063 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10064 		return;
10065 	prev_jiffy = jiffies;
10066 
10067 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10068 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10069 			in_atomic(), irqs_disabled(),
10070 			current->pid, current->comm);
10071 
10072 	debug_show_held_locks(current);
10073 	dump_stack();
10074 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10075 }
10076 EXPORT_SYMBOL_GPL(__cant_sleep);
10077 
10078 #ifdef CONFIG_SMP
10079 void __cant_migrate(const char *file, int line)
10080 {
10081 	static unsigned long prev_jiffy;
10082 
10083 	if (irqs_disabled())
10084 		return;
10085 
10086 	if (is_migration_disabled(current))
10087 		return;
10088 
10089 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10090 		return;
10091 
10092 	if (preempt_count() > 0)
10093 		return;
10094 
10095 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10096 		return;
10097 	prev_jiffy = jiffies;
10098 
10099 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10100 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10101 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10102 	       current->pid, current->comm);
10103 
10104 	debug_show_held_locks(current);
10105 	dump_stack();
10106 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10107 }
10108 EXPORT_SYMBOL_GPL(__cant_migrate);
10109 #endif
10110 #endif
10111 
10112 #ifdef CONFIG_MAGIC_SYSRQ
10113 void normalize_rt_tasks(void)
10114 {
10115 	struct task_struct *g, *p;
10116 	struct sched_attr attr = {
10117 		.sched_policy = SCHED_NORMAL,
10118 	};
10119 
10120 	read_lock(&tasklist_lock);
10121 	for_each_process_thread(g, p) {
10122 		/*
10123 		 * Only normalize user tasks:
10124 		 */
10125 		if (p->flags & PF_KTHREAD)
10126 			continue;
10127 
10128 		p->se.exec_start = 0;
10129 		schedstat_set(p->stats.wait_start,  0);
10130 		schedstat_set(p->stats.sleep_start, 0);
10131 		schedstat_set(p->stats.block_start, 0);
10132 
10133 		if (!dl_task(p) && !rt_task(p)) {
10134 			/*
10135 			 * Renice negative nice level userspace
10136 			 * tasks back to 0:
10137 			 */
10138 			if (task_nice(p) < 0)
10139 				set_user_nice(p, 0);
10140 			continue;
10141 		}
10142 
10143 		__sched_setscheduler(p, &attr, false, false);
10144 	}
10145 	read_unlock(&tasklist_lock);
10146 }
10147 
10148 #endif /* CONFIG_MAGIC_SYSRQ */
10149 
10150 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10151 /*
10152  * These functions are only useful for the IA64 MCA handling, or kdb.
10153  *
10154  * They can only be called when the whole system has been
10155  * stopped - every CPU needs to be quiescent, and no scheduling
10156  * activity can take place. Using them for anything else would
10157  * be a serious bug, and as a result, they aren't even visible
10158  * under any other configuration.
10159  */
10160 
10161 /**
10162  * curr_task - return the current task for a given CPU.
10163  * @cpu: the processor in question.
10164  *
10165  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10166  *
10167  * Return: The current task for @cpu.
10168  */
10169 struct task_struct *curr_task(int cpu)
10170 {
10171 	return cpu_curr(cpu);
10172 }
10173 
10174 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10175 
10176 #ifdef CONFIG_IA64
10177 /**
10178  * ia64_set_curr_task - set the current task for a given CPU.
10179  * @cpu: the processor in question.
10180  * @p: the task pointer to set.
10181  *
10182  * Description: This function must only be used when non-maskable interrupts
10183  * are serviced on a separate stack. It allows the architecture to switch the
10184  * notion of the current task on a CPU in a non-blocking manner. This function
10185  * must be called with all CPU's synchronized, and interrupts disabled, the
10186  * and caller must save the original value of the current task (see
10187  * curr_task() above) and restore that value before reenabling interrupts and
10188  * re-starting the system.
10189  *
10190  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10191  */
10192 void ia64_set_curr_task(int cpu, struct task_struct *p)
10193 {
10194 	cpu_curr(cpu) = p;
10195 }
10196 
10197 #endif
10198 
10199 #ifdef CONFIG_CGROUP_SCHED
10200 /* task_group_lock serializes the addition/removal of task groups */
10201 static DEFINE_SPINLOCK(task_group_lock);
10202 
10203 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10204 					    struct task_group *parent)
10205 {
10206 #ifdef CONFIG_UCLAMP_TASK_GROUP
10207 	enum uclamp_id clamp_id;
10208 
10209 	for_each_clamp_id(clamp_id) {
10210 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10211 			      uclamp_none(clamp_id), false);
10212 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10213 	}
10214 #endif
10215 }
10216 
10217 static void sched_free_group(struct task_group *tg)
10218 {
10219 	free_fair_sched_group(tg);
10220 	free_rt_sched_group(tg);
10221 	autogroup_free(tg);
10222 	kmem_cache_free(task_group_cache, tg);
10223 }
10224 
10225 static void sched_free_group_rcu(struct rcu_head *rcu)
10226 {
10227 	sched_free_group(container_of(rcu, struct task_group, rcu));
10228 }
10229 
10230 static void sched_unregister_group(struct task_group *tg)
10231 {
10232 	unregister_fair_sched_group(tg);
10233 	unregister_rt_sched_group(tg);
10234 	/*
10235 	 * We have to wait for yet another RCU grace period to expire, as
10236 	 * print_cfs_stats() might run concurrently.
10237 	 */
10238 	call_rcu(&tg->rcu, sched_free_group_rcu);
10239 }
10240 
10241 /* allocate runqueue etc for a new task group */
10242 struct task_group *sched_create_group(struct task_group *parent)
10243 {
10244 	struct task_group *tg;
10245 
10246 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10247 	if (!tg)
10248 		return ERR_PTR(-ENOMEM);
10249 
10250 	if (!alloc_fair_sched_group(tg, parent))
10251 		goto err;
10252 
10253 	if (!alloc_rt_sched_group(tg, parent))
10254 		goto err;
10255 
10256 	alloc_uclamp_sched_group(tg, parent);
10257 
10258 	return tg;
10259 
10260 err:
10261 	sched_free_group(tg);
10262 	return ERR_PTR(-ENOMEM);
10263 }
10264 
10265 void sched_online_group(struct task_group *tg, struct task_group *parent)
10266 {
10267 	unsigned long flags;
10268 
10269 	spin_lock_irqsave(&task_group_lock, flags);
10270 	list_add_rcu(&tg->list, &task_groups);
10271 
10272 	/* Root should already exist: */
10273 	WARN_ON(!parent);
10274 
10275 	tg->parent = parent;
10276 	INIT_LIST_HEAD(&tg->children);
10277 	list_add_rcu(&tg->siblings, &parent->children);
10278 	spin_unlock_irqrestore(&task_group_lock, flags);
10279 
10280 	online_fair_sched_group(tg);
10281 }
10282 
10283 /* rcu callback to free various structures associated with a task group */
10284 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10285 {
10286 	/* Now it should be safe to free those cfs_rqs: */
10287 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10288 }
10289 
10290 void sched_destroy_group(struct task_group *tg)
10291 {
10292 	/* Wait for possible concurrent references to cfs_rqs complete: */
10293 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10294 }
10295 
10296 void sched_release_group(struct task_group *tg)
10297 {
10298 	unsigned long flags;
10299 
10300 	/*
10301 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10302 	 * sched_cfs_period_timer()).
10303 	 *
10304 	 * For this to be effective, we have to wait for all pending users of
10305 	 * this task group to leave their RCU critical section to ensure no new
10306 	 * user will see our dying task group any more. Specifically ensure
10307 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10308 	 *
10309 	 * We therefore defer calling unregister_fair_sched_group() to
10310 	 * sched_unregister_group() which is guarantied to get called only after the
10311 	 * current RCU grace period has expired.
10312 	 */
10313 	spin_lock_irqsave(&task_group_lock, flags);
10314 	list_del_rcu(&tg->list);
10315 	list_del_rcu(&tg->siblings);
10316 	spin_unlock_irqrestore(&task_group_lock, flags);
10317 }
10318 
10319 static void sched_change_group(struct task_struct *tsk)
10320 {
10321 	struct task_group *tg;
10322 
10323 	/*
10324 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10325 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10326 	 * to prevent lockdep warnings.
10327 	 */
10328 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10329 			  struct task_group, css);
10330 	tg = autogroup_task_group(tsk, tg);
10331 	tsk->sched_task_group = tg;
10332 
10333 #ifdef CONFIG_FAIR_GROUP_SCHED
10334 	if (tsk->sched_class->task_change_group)
10335 		tsk->sched_class->task_change_group(tsk);
10336 	else
10337 #endif
10338 		set_task_rq(tsk, task_cpu(tsk));
10339 }
10340 
10341 /*
10342  * Change task's runqueue when it moves between groups.
10343  *
10344  * The caller of this function should have put the task in its new group by
10345  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10346  * its new group.
10347  */
10348 void sched_move_task(struct task_struct *tsk)
10349 {
10350 	int queued, running, queue_flags =
10351 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10352 	struct rq_flags rf;
10353 	struct rq *rq;
10354 
10355 	rq = task_rq_lock(tsk, &rf);
10356 	update_rq_clock(rq);
10357 
10358 	running = task_current(rq, tsk);
10359 	queued = task_on_rq_queued(tsk);
10360 
10361 	if (queued)
10362 		dequeue_task(rq, tsk, queue_flags);
10363 	if (running)
10364 		put_prev_task(rq, tsk);
10365 
10366 	sched_change_group(tsk);
10367 
10368 	if (queued)
10369 		enqueue_task(rq, tsk, queue_flags);
10370 	if (running) {
10371 		set_next_task(rq, tsk);
10372 		/*
10373 		 * After changing group, the running task may have joined a
10374 		 * throttled one but it's still the running task. Trigger a
10375 		 * resched to make sure that task can still run.
10376 		 */
10377 		resched_curr(rq);
10378 	}
10379 
10380 	task_rq_unlock(rq, tsk, &rf);
10381 }
10382 
10383 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10384 {
10385 	return css ? container_of(css, struct task_group, css) : NULL;
10386 }
10387 
10388 static struct cgroup_subsys_state *
10389 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10390 {
10391 	struct task_group *parent = css_tg(parent_css);
10392 	struct task_group *tg;
10393 
10394 	if (!parent) {
10395 		/* This is early initialization for the top cgroup */
10396 		return &root_task_group.css;
10397 	}
10398 
10399 	tg = sched_create_group(parent);
10400 	if (IS_ERR(tg))
10401 		return ERR_PTR(-ENOMEM);
10402 
10403 	return &tg->css;
10404 }
10405 
10406 /* Expose task group only after completing cgroup initialization */
10407 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10408 {
10409 	struct task_group *tg = css_tg(css);
10410 	struct task_group *parent = css_tg(css->parent);
10411 
10412 	if (parent)
10413 		sched_online_group(tg, parent);
10414 
10415 #ifdef CONFIG_UCLAMP_TASK_GROUP
10416 	/* Propagate the effective uclamp value for the new group */
10417 	mutex_lock(&uclamp_mutex);
10418 	rcu_read_lock();
10419 	cpu_util_update_eff(css);
10420 	rcu_read_unlock();
10421 	mutex_unlock(&uclamp_mutex);
10422 #endif
10423 
10424 	return 0;
10425 }
10426 
10427 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10428 {
10429 	struct task_group *tg = css_tg(css);
10430 
10431 	sched_release_group(tg);
10432 }
10433 
10434 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10435 {
10436 	struct task_group *tg = css_tg(css);
10437 
10438 	/*
10439 	 * Relies on the RCU grace period between css_released() and this.
10440 	 */
10441 	sched_unregister_group(tg);
10442 }
10443 
10444 #ifdef CONFIG_RT_GROUP_SCHED
10445 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10446 {
10447 	struct task_struct *task;
10448 	struct cgroup_subsys_state *css;
10449 
10450 	cgroup_taskset_for_each(task, css, tset) {
10451 		if (!sched_rt_can_attach(css_tg(css), task))
10452 			return -EINVAL;
10453 	}
10454 	return 0;
10455 }
10456 #endif
10457 
10458 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10459 {
10460 	struct task_struct *task;
10461 	struct cgroup_subsys_state *css;
10462 
10463 	cgroup_taskset_for_each(task, css, tset)
10464 		sched_move_task(task);
10465 }
10466 
10467 #ifdef CONFIG_UCLAMP_TASK_GROUP
10468 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10469 {
10470 	struct cgroup_subsys_state *top_css = css;
10471 	struct uclamp_se *uc_parent = NULL;
10472 	struct uclamp_se *uc_se = NULL;
10473 	unsigned int eff[UCLAMP_CNT];
10474 	enum uclamp_id clamp_id;
10475 	unsigned int clamps;
10476 
10477 	lockdep_assert_held(&uclamp_mutex);
10478 	SCHED_WARN_ON(!rcu_read_lock_held());
10479 
10480 	css_for_each_descendant_pre(css, top_css) {
10481 		uc_parent = css_tg(css)->parent
10482 			? css_tg(css)->parent->uclamp : NULL;
10483 
10484 		for_each_clamp_id(clamp_id) {
10485 			/* Assume effective clamps matches requested clamps */
10486 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10487 			/* Cap effective clamps with parent's effective clamps */
10488 			if (uc_parent &&
10489 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10490 				eff[clamp_id] = uc_parent[clamp_id].value;
10491 			}
10492 		}
10493 		/* Ensure protection is always capped by limit */
10494 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10495 
10496 		/* Propagate most restrictive effective clamps */
10497 		clamps = 0x0;
10498 		uc_se = css_tg(css)->uclamp;
10499 		for_each_clamp_id(clamp_id) {
10500 			if (eff[clamp_id] == uc_se[clamp_id].value)
10501 				continue;
10502 			uc_se[clamp_id].value = eff[clamp_id];
10503 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10504 			clamps |= (0x1 << clamp_id);
10505 		}
10506 		if (!clamps) {
10507 			css = css_rightmost_descendant(css);
10508 			continue;
10509 		}
10510 
10511 		/* Immediately update descendants RUNNABLE tasks */
10512 		uclamp_update_active_tasks(css);
10513 	}
10514 }
10515 
10516 /*
10517  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10518  * C expression. Since there is no way to convert a macro argument (N) into a
10519  * character constant, use two levels of macros.
10520  */
10521 #define _POW10(exp) ((unsigned int)1e##exp)
10522 #define POW10(exp) _POW10(exp)
10523 
10524 struct uclamp_request {
10525 #define UCLAMP_PERCENT_SHIFT	2
10526 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10527 	s64 percent;
10528 	u64 util;
10529 	int ret;
10530 };
10531 
10532 static inline struct uclamp_request
10533 capacity_from_percent(char *buf)
10534 {
10535 	struct uclamp_request req = {
10536 		.percent = UCLAMP_PERCENT_SCALE,
10537 		.util = SCHED_CAPACITY_SCALE,
10538 		.ret = 0,
10539 	};
10540 
10541 	buf = strim(buf);
10542 	if (strcmp(buf, "max")) {
10543 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10544 					     &req.percent);
10545 		if (req.ret)
10546 			return req;
10547 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10548 			req.ret = -ERANGE;
10549 			return req;
10550 		}
10551 
10552 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10553 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10554 	}
10555 
10556 	return req;
10557 }
10558 
10559 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10560 				size_t nbytes, loff_t off,
10561 				enum uclamp_id clamp_id)
10562 {
10563 	struct uclamp_request req;
10564 	struct task_group *tg;
10565 
10566 	req = capacity_from_percent(buf);
10567 	if (req.ret)
10568 		return req.ret;
10569 
10570 	static_branch_enable(&sched_uclamp_used);
10571 
10572 	mutex_lock(&uclamp_mutex);
10573 	rcu_read_lock();
10574 
10575 	tg = css_tg(of_css(of));
10576 	if (tg->uclamp_req[clamp_id].value != req.util)
10577 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10578 
10579 	/*
10580 	 * Because of not recoverable conversion rounding we keep track of the
10581 	 * exact requested value
10582 	 */
10583 	tg->uclamp_pct[clamp_id] = req.percent;
10584 
10585 	/* Update effective clamps to track the most restrictive value */
10586 	cpu_util_update_eff(of_css(of));
10587 
10588 	rcu_read_unlock();
10589 	mutex_unlock(&uclamp_mutex);
10590 
10591 	return nbytes;
10592 }
10593 
10594 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10595 				    char *buf, size_t nbytes,
10596 				    loff_t off)
10597 {
10598 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10599 }
10600 
10601 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10602 				    char *buf, size_t nbytes,
10603 				    loff_t off)
10604 {
10605 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10606 }
10607 
10608 static inline void cpu_uclamp_print(struct seq_file *sf,
10609 				    enum uclamp_id clamp_id)
10610 {
10611 	struct task_group *tg;
10612 	u64 util_clamp;
10613 	u64 percent;
10614 	u32 rem;
10615 
10616 	rcu_read_lock();
10617 	tg = css_tg(seq_css(sf));
10618 	util_clamp = tg->uclamp_req[clamp_id].value;
10619 	rcu_read_unlock();
10620 
10621 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10622 		seq_puts(sf, "max\n");
10623 		return;
10624 	}
10625 
10626 	percent = tg->uclamp_pct[clamp_id];
10627 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10628 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10629 }
10630 
10631 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10632 {
10633 	cpu_uclamp_print(sf, UCLAMP_MIN);
10634 	return 0;
10635 }
10636 
10637 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10638 {
10639 	cpu_uclamp_print(sf, UCLAMP_MAX);
10640 	return 0;
10641 }
10642 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10643 
10644 #ifdef CONFIG_FAIR_GROUP_SCHED
10645 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10646 				struct cftype *cftype, u64 shareval)
10647 {
10648 	if (shareval > scale_load_down(ULONG_MAX))
10649 		shareval = MAX_SHARES;
10650 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10651 }
10652 
10653 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10654 			       struct cftype *cft)
10655 {
10656 	struct task_group *tg = css_tg(css);
10657 
10658 	return (u64) scale_load_down(tg->shares);
10659 }
10660 
10661 #ifdef CONFIG_CFS_BANDWIDTH
10662 static DEFINE_MUTEX(cfs_constraints_mutex);
10663 
10664 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10665 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10666 /* More than 203 days if BW_SHIFT equals 20. */
10667 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10668 
10669 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10670 
10671 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10672 				u64 burst)
10673 {
10674 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10675 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10676 
10677 	if (tg == &root_task_group)
10678 		return -EINVAL;
10679 
10680 	/*
10681 	 * Ensure we have at some amount of bandwidth every period.  This is
10682 	 * to prevent reaching a state of large arrears when throttled via
10683 	 * entity_tick() resulting in prolonged exit starvation.
10684 	 */
10685 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10686 		return -EINVAL;
10687 
10688 	/*
10689 	 * Likewise, bound things on the other side by preventing insane quota
10690 	 * periods.  This also allows us to normalize in computing quota
10691 	 * feasibility.
10692 	 */
10693 	if (period > max_cfs_quota_period)
10694 		return -EINVAL;
10695 
10696 	/*
10697 	 * Bound quota to defend quota against overflow during bandwidth shift.
10698 	 */
10699 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10700 		return -EINVAL;
10701 
10702 	if (quota != RUNTIME_INF && (burst > quota ||
10703 				     burst + quota > max_cfs_runtime))
10704 		return -EINVAL;
10705 
10706 	/*
10707 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10708 	 * unthrottle_offline_cfs_rqs().
10709 	 */
10710 	cpus_read_lock();
10711 	mutex_lock(&cfs_constraints_mutex);
10712 	ret = __cfs_schedulable(tg, period, quota);
10713 	if (ret)
10714 		goto out_unlock;
10715 
10716 	runtime_enabled = quota != RUNTIME_INF;
10717 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10718 	/*
10719 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10720 	 * before making related changes, and on->off must occur afterwards
10721 	 */
10722 	if (runtime_enabled && !runtime_was_enabled)
10723 		cfs_bandwidth_usage_inc();
10724 	raw_spin_lock_irq(&cfs_b->lock);
10725 	cfs_b->period = ns_to_ktime(period);
10726 	cfs_b->quota = quota;
10727 	cfs_b->burst = burst;
10728 
10729 	__refill_cfs_bandwidth_runtime(cfs_b);
10730 
10731 	/* Restart the period timer (if active) to handle new period expiry: */
10732 	if (runtime_enabled)
10733 		start_cfs_bandwidth(cfs_b);
10734 
10735 	raw_spin_unlock_irq(&cfs_b->lock);
10736 
10737 	for_each_online_cpu(i) {
10738 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10739 		struct rq *rq = cfs_rq->rq;
10740 		struct rq_flags rf;
10741 
10742 		rq_lock_irq(rq, &rf);
10743 		cfs_rq->runtime_enabled = runtime_enabled;
10744 		cfs_rq->runtime_remaining = 0;
10745 
10746 		if (cfs_rq->throttled)
10747 			unthrottle_cfs_rq(cfs_rq);
10748 		rq_unlock_irq(rq, &rf);
10749 	}
10750 	if (runtime_was_enabled && !runtime_enabled)
10751 		cfs_bandwidth_usage_dec();
10752 out_unlock:
10753 	mutex_unlock(&cfs_constraints_mutex);
10754 	cpus_read_unlock();
10755 
10756 	return ret;
10757 }
10758 
10759 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10760 {
10761 	u64 quota, period, burst;
10762 
10763 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10764 	burst = tg->cfs_bandwidth.burst;
10765 	if (cfs_quota_us < 0)
10766 		quota = RUNTIME_INF;
10767 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10768 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10769 	else
10770 		return -EINVAL;
10771 
10772 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10773 }
10774 
10775 static long tg_get_cfs_quota(struct task_group *tg)
10776 {
10777 	u64 quota_us;
10778 
10779 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10780 		return -1;
10781 
10782 	quota_us = tg->cfs_bandwidth.quota;
10783 	do_div(quota_us, NSEC_PER_USEC);
10784 
10785 	return quota_us;
10786 }
10787 
10788 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10789 {
10790 	u64 quota, period, burst;
10791 
10792 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10793 		return -EINVAL;
10794 
10795 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10796 	quota = tg->cfs_bandwidth.quota;
10797 	burst = tg->cfs_bandwidth.burst;
10798 
10799 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10800 }
10801 
10802 static long tg_get_cfs_period(struct task_group *tg)
10803 {
10804 	u64 cfs_period_us;
10805 
10806 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10807 	do_div(cfs_period_us, NSEC_PER_USEC);
10808 
10809 	return cfs_period_us;
10810 }
10811 
10812 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10813 {
10814 	u64 quota, period, burst;
10815 
10816 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10817 		return -EINVAL;
10818 
10819 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10820 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10821 	quota = tg->cfs_bandwidth.quota;
10822 
10823 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10824 }
10825 
10826 static long tg_get_cfs_burst(struct task_group *tg)
10827 {
10828 	u64 burst_us;
10829 
10830 	burst_us = tg->cfs_bandwidth.burst;
10831 	do_div(burst_us, NSEC_PER_USEC);
10832 
10833 	return burst_us;
10834 }
10835 
10836 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10837 				  struct cftype *cft)
10838 {
10839 	return tg_get_cfs_quota(css_tg(css));
10840 }
10841 
10842 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10843 				   struct cftype *cftype, s64 cfs_quota_us)
10844 {
10845 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10846 }
10847 
10848 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10849 				   struct cftype *cft)
10850 {
10851 	return tg_get_cfs_period(css_tg(css));
10852 }
10853 
10854 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10855 				    struct cftype *cftype, u64 cfs_period_us)
10856 {
10857 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10858 }
10859 
10860 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10861 				  struct cftype *cft)
10862 {
10863 	return tg_get_cfs_burst(css_tg(css));
10864 }
10865 
10866 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10867 				   struct cftype *cftype, u64 cfs_burst_us)
10868 {
10869 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10870 }
10871 
10872 struct cfs_schedulable_data {
10873 	struct task_group *tg;
10874 	u64 period, quota;
10875 };
10876 
10877 /*
10878  * normalize group quota/period to be quota/max_period
10879  * note: units are usecs
10880  */
10881 static u64 normalize_cfs_quota(struct task_group *tg,
10882 			       struct cfs_schedulable_data *d)
10883 {
10884 	u64 quota, period;
10885 
10886 	if (tg == d->tg) {
10887 		period = d->period;
10888 		quota = d->quota;
10889 	} else {
10890 		period = tg_get_cfs_period(tg);
10891 		quota = tg_get_cfs_quota(tg);
10892 	}
10893 
10894 	/* note: these should typically be equivalent */
10895 	if (quota == RUNTIME_INF || quota == -1)
10896 		return RUNTIME_INF;
10897 
10898 	return to_ratio(period, quota);
10899 }
10900 
10901 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10902 {
10903 	struct cfs_schedulable_data *d = data;
10904 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10905 	s64 quota = 0, parent_quota = -1;
10906 
10907 	if (!tg->parent) {
10908 		quota = RUNTIME_INF;
10909 	} else {
10910 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10911 
10912 		quota = normalize_cfs_quota(tg, d);
10913 		parent_quota = parent_b->hierarchical_quota;
10914 
10915 		/*
10916 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10917 		 * always take the min.  On cgroup1, only inherit when no
10918 		 * limit is set:
10919 		 */
10920 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10921 			quota = min(quota, parent_quota);
10922 		} else {
10923 			if (quota == RUNTIME_INF)
10924 				quota = parent_quota;
10925 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10926 				return -EINVAL;
10927 		}
10928 	}
10929 	cfs_b->hierarchical_quota = quota;
10930 
10931 	return 0;
10932 }
10933 
10934 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10935 {
10936 	int ret;
10937 	struct cfs_schedulable_data data = {
10938 		.tg = tg,
10939 		.period = period,
10940 		.quota = quota,
10941 	};
10942 
10943 	if (quota != RUNTIME_INF) {
10944 		do_div(data.period, NSEC_PER_USEC);
10945 		do_div(data.quota, NSEC_PER_USEC);
10946 	}
10947 
10948 	rcu_read_lock();
10949 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10950 	rcu_read_unlock();
10951 
10952 	return ret;
10953 }
10954 
10955 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10956 {
10957 	struct task_group *tg = css_tg(seq_css(sf));
10958 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10959 
10960 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10961 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10962 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10963 
10964 	if (schedstat_enabled() && tg != &root_task_group) {
10965 		struct sched_statistics *stats;
10966 		u64 ws = 0;
10967 		int i;
10968 
10969 		for_each_possible_cpu(i) {
10970 			stats = __schedstats_from_se(tg->se[i]);
10971 			ws += schedstat_val(stats->wait_sum);
10972 		}
10973 
10974 		seq_printf(sf, "wait_sum %llu\n", ws);
10975 	}
10976 
10977 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10978 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10979 
10980 	return 0;
10981 }
10982 #endif /* CONFIG_CFS_BANDWIDTH */
10983 #endif /* CONFIG_FAIR_GROUP_SCHED */
10984 
10985 #ifdef CONFIG_RT_GROUP_SCHED
10986 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10987 				struct cftype *cft, s64 val)
10988 {
10989 	return sched_group_set_rt_runtime(css_tg(css), val);
10990 }
10991 
10992 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10993 			       struct cftype *cft)
10994 {
10995 	return sched_group_rt_runtime(css_tg(css));
10996 }
10997 
10998 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10999 				    struct cftype *cftype, u64 rt_period_us)
11000 {
11001 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11002 }
11003 
11004 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11005 				   struct cftype *cft)
11006 {
11007 	return sched_group_rt_period(css_tg(css));
11008 }
11009 #endif /* CONFIG_RT_GROUP_SCHED */
11010 
11011 #ifdef CONFIG_FAIR_GROUP_SCHED
11012 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11013 			       struct cftype *cft)
11014 {
11015 	return css_tg(css)->idle;
11016 }
11017 
11018 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11019 				struct cftype *cft, s64 idle)
11020 {
11021 	return sched_group_set_idle(css_tg(css), idle);
11022 }
11023 #endif
11024 
11025 static struct cftype cpu_legacy_files[] = {
11026 #ifdef CONFIG_FAIR_GROUP_SCHED
11027 	{
11028 		.name = "shares",
11029 		.read_u64 = cpu_shares_read_u64,
11030 		.write_u64 = cpu_shares_write_u64,
11031 	},
11032 	{
11033 		.name = "idle",
11034 		.read_s64 = cpu_idle_read_s64,
11035 		.write_s64 = cpu_idle_write_s64,
11036 	},
11037 #endif
11038 #ifdef CONFIG_CFS_BANDWIDTH
11039 	{
11040 		.name = "cfs_quota_us",
11041 		.read_s64 = cpu_cfs_quota_read_s64,
11042 		.write_s64 = cpu_cfs_quota_write_s64,
11043 	},
11044 	{
11045 		.name = "cfs_period_us",
11046 		.read_u64 = cpu_cfs_period_read_u64,
11047 		.write_u64 = cpu_cfs_period_write_u64,
11048 	},
11049 	{
11050 		.name = "cfs_burst_us",
11051 		.read_u64 = cpu_cfs_burst_read_u64,
11052 		.write_u64 = cpu_cfs_burst_write_u64,
11053 	},
11054 	{
11055 		.name = "stat",
11056 		.seq_show = cpu_cfs_stat_show,
11057 	},
11058 #endif
11059 #ifdef CONFIG_RT_GROUP_SCHED
11060 	{
11061 		.name = "rt_runtime_us",
11062 		.read_s64 = cpu_rt_runtime_read,
11063 		.write_s64 = cpu_rt_runtime_write,
11064 	},
11065 	{
11066 		.name = "rt_period_us",
11067 		.read_u64 = cpu_rt_period_read_uint,
11068 		.write_u64 = cpu_rt_period_write_uint,
11069 	},
11070 #endif
11071 #ifdef CONFIG_UCLAMP_TASK_GROUP
11072 	{
11073 		.name = "uclamp.min",
11074 		.flags = CFTYPE_NOT_ON_ROOT,
11075 		.seq_show = cpu_uclamp_min_show,
11076 		.write = cpu_uclamp_min_write,
11077 	},
11078 	{
11079 		.name = "uclamp.max",
11080 		.flags = CFTYPE_NOT_ON_ROOT,
11081 		.seq_show = cpu_uclamp_max_show,
11082 		.write = cpu_uclamp_max_write,
11083 	},
11084 #endif
11085 	{ }	/* Terminate */
11086 };
11087 
11088 static int cpu_extra_stat_show(struct seq_file *sf,
11089 			       struct cgroup_subsys_state *css)
11090 {
11091 #ifdef CONFIG_CFS_BANDWIDTH
11092 	{
11093 		struct task_group *tg = css_tg(css);
11094 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11095 		u64 throttled_usec, burst_usec;
11096 
11097 		throttled_usec = cfs_b->throttled_time;
11098 		do_div(throttled_usec, NSEC_PER_USEC);
11099 		burst_usec = cfs_b->burst_time;
11100 		do_div(burst_usec, NSEC_PER_USEC);
11101 
11102 		seq_printf(sf, "nr_periods %d\n"
11103 			   "nr_throttled %d\n"
11104 			   "throttled_usec %llu\n"
11105 			   "nr_bursts %d\n"
11106 			   "burst_usec %llu\n",
11107 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11108 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11109 	}
11110 #endif
11111 	return 0;
11112 }
11113 
11114 #ifdef CONFIG_FAIR_GROUP_SCHED
11115 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11116 			       struct cftype *cft)
11117 {
11118 	struct task_group *tg = css_tg(css);
11119 	u64 weight = scale_load_down(tg->shares);
11120 
11121 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11122 }
11123 
11124 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11125 				struct cftype *cft, u64 weight)
11126 {
11127 	/*
11128 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11129 	 * values which are 1, 100 and 10000 respectively.  While it loses
11130 	 * a bit of range on both ends, it maps pretty well onto the shares
11131 	 * value used by scheduler and the round-trip conversions preserve
11132 	 * the original value over the entire range.
11133 	 */
11134 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11135 		return -ERANGE;
11136 
11137 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11138 
11139 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11140 }
11141 
11142 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11143 				    struct cftype *cft)
11144 {
11145 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11146 	int last_delta = INT_MAX;
11147 	int prio, delta;
11148 
11149 	/* find the closest nice value to the current weight */
11150 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11151 		delta = abs(sched_prio_to_weight[prio] - weight);
11152 		if (delta >= last_delta)
11153 			break;
11154 		last_delta = delta;
11155 	}
11156 
11157 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11158 }
11159 
11160 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11161 				     struct cftype *cft, s64 nice)
11162 {
11163 	unsigned long weight;
11164 	int idx;
11165 
11166 	if (nice < MIN_NICE || nice > MAX_NICE)
11167 		return -ERANGE;
11168 
11169 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11170 	idx = array_index_nospec(idx, 40);
11171 	weight = sched_prio_to_weight[idx];
11172 
11173 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11174 }
11175 #endif
11176 
11177 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11178 						  long period, long quota)
11179 {
11180 	if (quota < 0)
11181 		seq_puts(sf, "max");
11182 	else
11183 		seq_printf(sf, "%ld", quota);
11184 
11185 	seq_printf(sf, " %ld\n", period);
11186 }
11187 
11188 /* caller should put the current value in *@periodp before calling */
11189 static int __maybe_unused cpu_period_quota_parse(char *buf,
11190 						 u64 *periodp, u64 *quotap)
11191 {
11192 	char tok[21];	/* U64_MAX */
11193 
11194 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11195 		return -EINVAL;
11196 
11197 	*periodp *= NSEC_PER_USEC;
11198 
11199 	if (sscanf(tok, "%llu", quotap))
11200 		*quotap *= NSEC_PER_USEC;
11201 	else if (!strcmp(tok, "max"))
11202 		*quotap = RUNTIME_INF;
11203 	else
11204 		return -EINVAL;
11205 
11206 	return 0;
11207 }
11208 
11209 #ifdef CONFIG_CFS_BANDWIDTH
11210 static int cpu_max_show(struct seq_file *sf, void *v)
11211 {
11212 	struct task_group *tg = css_tg(seq_css(sf));
11213 
11214 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11215 	return 0;
11216 }
11217 
11218 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11219 			     char *buf, size_t nbytes, loff_t off)
11220 {
11221 	struct task_group *tg = css_tg(of_css(of));
11222 	u64 period = tg_get_cfs_period(tg);
11223 	u64 burst = tg_get_cfs_burst(tg);
11224 	u64 quota;
11225 	int ret;
11226 
11227 	ret = cpu_period_quota_parse(buf, &period, &quota);
11228 	if (!ret)
11229 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11230 	return ret ?: nbytes;
11231 }
11232 #endif
11233 
11234 static struct cftype cpu_files[] = {
11235 #ifdef CONFIG_FAIR_GROUP_SCHED
11236 	{
11237 		.name = "weight",
11238 		.flags = CFTYPE_NOT_ON_ROOT,
11239 		.read_u64 = cpu_weight_read_u64,
11240 		.write_u64 = cpu_weight_write_u64,
11241 	},
11242 	{
11243 		.name = "weight.nice",
11244 		.flags = CFTYPE_NOT_ON_ROOT,
11245 		.read_s64 = cpu_weight_nice_read_s64,
11246 		.write_s64 = cpu_weight_nice_write_s64,
11247 	},
11248 	{
11249 		.name = "idle",
11250 		.flags = CFTYPE_NOT_ON_ROOT,
11251 		.read_s64 = cpu_idle_read_s64,
11252 		.write_s64 = cpu_idle_write_s64,
11253 	},
11254 #endif
11255 #ifdef CONFIG_CFS_BANDWIDTH
11256 	{
11257 		.name = "max",
11258 		.flags = CFTYPE_NOT_ON_ROOT,
11259 		.seq_show = cpu_max_show,
11260 		.write = cpu_max_write,
11261 	},
11262 	{
11263 		.name = "max.burst",
11264 		.flags = CFTYPE_NOT_ON_ROOT,
11265 		.read_u64 = cpu_cfs_burst_read_u64,
11266 		.write_u64 = cpu_cfs_burst_write_u64,
11267 	},
11268 #endif
11269 #ifdef CONFIG_UCLAMP_TASK_GROUP
11270 	{
11271 		.name = "uclamp.min",
11272 		.flags = CFTYPE_NOT_ON_ROOT,
11273 		.seq_show = cpu_uclamp_min_show,
11274 		.write = cpu_uclamp_min_write,
11275 	},
11276 	{
11277 		.name = "uclamp.max",
11278 		.flags = CFTYPE_NOT_ON_ROOT,
11279 		.seq_show = cpu_uclamp_max_show,
11280 		.write = cpu_uclamp_max_write,
11281 	},
11282 #endif
11283 	{ }	/* terminate */
11284 };
11285 
11286 struct cgroup_subsys cpu_cgrp_subsys = {
11287 	.css_alloc	= cpu_cgroup_css_alloc,
11288 	.css_online	= cpu_cgroup_css_online,
11289 	.css_released	= cpu_cgroup_css_released,
11290 	.css_free	= cpu_cgroup_css_free,
11291 	.css_extra_stat_show = cpu_extra_stat_show,
11292 #ifdef CONFIG_RT_GROUP_SCHED
11293 	.can_attach	= cpu_cgroup_can_attach,
11294 #endif
11295 	.attach		= cpu_cgroup_attach,
11296 	.legacy_cftypes	= cpu_legacy_files,
11297 	.dfl_cftypes	= cpu_files,
11298 	.early_init	= true,
11299 	.threaded	= true,
11300 };
11301 
11302 #endif	/* CONFIG_CGROUP_SCHED */
11303 
11304 void dump_cpu_task(int cpu)
11305 {
11306 	if (cpu == smp_processor_id() && in_hardirq()) {
11307 		struct pt_regs *regs;
11308 
11309 		regs = get_irq_regs();
11310 		if (regs) {
11311 			show_regs(regs);
11312 			return;
11313 		}
11314 	}
11315 
11316 	if (trigger_single_cpu_backtrace(cpu))
11317 		return;
11318 
11319 	pr_info("Task dump for CPU %d:\n", cpu);
11320 	sched_show_task(cpu_curr(cpu));
11321 }
11322 
11323 /*
11324  * Nice levels are multiplicative, with a gentle 10% change for every
11325  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11326  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11327  * that remained on nice 0.
11328  *
11329  * The "10% effect" is relative and cumulative: from _any_ nice level,
11330  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11331  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11332  * If a task goes up by ~10% and another task goes down by ~10% then
11333  * the relative distance between them is ~25%.)
11334  */
11335 const int sched_prio_to_weight[40] = {
11336  /* -20 */     88761,     71755,     56483,     46273,     36291,
11337  /* -15 */     29154,     23254,     18705,     14949,     11916,
11338  /* -10 */      9548,      7620,      6100,      4904,      3906,
11339  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11340  /*   0 */      1024,       820,       655,       526,       423,
11341  /*   5 */       335,       272,       215,       172,       137,
11342  /*  10 */       110,        87,        70,        56,        45,
11343  /*  15 */        36,        29,        23,        18,        15,
11344 };
11345 
11346 /*
11347  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11348  *
11349  * In cases where the weight does not change often, we can use the
11350  * precalculated inverse to speed up arithmetics by turning divisions
11351  * into multiplications:
11352  */
11353 const u32 sched_prio_to_wmult[40] = {
11354  /* -20 */     48388,     59856,     76040,     92818,    118348,
11355  /* -15 */    147320,    184698,    229616,    287308,    360437,
11356  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11357  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11358  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11359  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11360  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11361  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11362 };
11363 
11364 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11365 {
11366         trace_sched_update_nr_running_tp(rq, count);
11367 }
11368