1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <uapi/linux/sched/types.h> 11 #include <linux/sched/loadavg.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/cpuset.h> 14 #include <linux/delayacct.h> 15 #include <linux/init_task.h> 16 #include <linux/context_tracking.h> 17 #include <linux/rcupdate_wait.h> 18 19 #include <linux/blkdev.h> 20 #include <linux/kprobes.h> 21 #include <linux/mmu_context.h> 22 #include <linux/module.h> 23 #include <linux/nmi.h> 24 #include <linux/prefetch.h> 25 #include <linux/profile.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 29 #include <asm/switch_to.h> 30 #include <asm/tlb.h> 31 #ifdef CONFIG_PARAVIRT 32 #include <asm/paravirt.h> 33 #endif 34 35 #include "sched.h" 36 #include "../workqueue_internal.h" 37 #include "../smpboot.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/sched.h> 41 42 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 43 44 /* 45 * Debugging: various feature bits 46 */ 47 48 #define SCHED_FEAT(name, enabled) \ 49 (1UL << __SCHED_FEAT_##name) * enabled | 50 51 const_debug unsigned int sysctl_sched_features = 52 #include "features.h" 53 0; 54 55 #undef SCHED_FEAT 56 57 /* 58 * Number of tasks to iterate in a single balance run. 59 * Limited because this is done with IRQs disabled. 60 */ 61 const_debug unsigned int sysctl_sched_nr_migrate = 32; 62 63 /* 64 * period over which we average the RT time consumption, measured 65 * in ms. 66 * 67 * default: 1s 68 */ 69 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 70 71 /* 72 * period over which we measure -rt task CPU usage in us. 73 * default: 1s 74 */ 75 unsigned int sysctl_sched_rt_period = 1000000; 76 77 __read_mostly int scheduler_running; 78 79 /* 80 * part of the period that we allow rt tasks to run in us. 81 * default: 0.95s 82 */ 83 int sysctl_sched_rt_runtime = 950000; 84 85 /* CPUs with isolated domains */ 86 cpumask_var_t cpu_isolated_map; 87 88 /* 89 * __task_rq_lock - lock the rq @p resides on. 90 */ 91 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 92 __acquires(rq->lock) 93 { 94 struct rq *rq; 95 96 lockdep_assert_held(&p->pi_lock); 97 98 for (;;) { 99 rq = task_rq(p); 100 raw_spin_lock(&rq->lock); 101 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 102 rq_pin_lock(rq, rf); 103 return rq; 104 } 105 raw_spin_unlock(&rq->lock); 106 107 while (unlikely(task_on_rq_migrating(p))) 108 cpu_relax(); 109 } 110 } 111 112 /* 113 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 114 */ 115 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 116 __acquires(p->pi_lock) 117 __acquires(rq->lock) 118 { 119 struct rq *rq; 120 121 for (;;) { 122 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 123 rq = task_rq(p); 124 raw_spin_lock(&rq->lock); 125 /* 126 * move_queued_task() task_rq_lock() 127 * 128 * ACQUIRE (rq->lock) 129 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 130 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 131 * [S] ->cpu = new_cpu [L] task_rq() 132 * [L] ->on_rq 133 * RELEASE (rq->lock) 134 * 135 * If we observe the old cpu in task_rq_lock, the acquire of 136 * the old rq->lock will fully serialize against the stores. 137 * 138 * If we observe the new CPU in task_rq_lock, the acquire will 139 * pair with the WMB to ensure we must then also see migrating. 140 */ 141 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 142 rq_pin_lock(rq, rf); 143 return rq; 144 } 145 raw_spin_unlock(&rq->lock); 146 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 147 148 while (unlikely(task_on_rq_migrating(p))) 149 cpu_relax(); 150 } 151 } 152 153 /* 154 * RQ-clock updating methods: 155 */ 156 157 static void update_rq_clock_task(struct rq *rq, s64 delta) 158 { 159 /* 160 * In theory, the compile should just see 0 here, and optimize out the call 161 * to sched_rt_avg_update. But I don't trust it... 162 */ 163 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 164 s64 steal = 0, irq_delta = 0; 165 #endif 166 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 167 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 168 169 /* 170 * Since irq_time is only updated on {soft,}irq_exit, we might run into 171 * this case when a previous update_rq_clock() happened inside a 172 * {soft,}irq region. 173 * 174 * When this happens, we stop ->clock_task and only update the 175 * prev_irq_time stamp to account for the part that fit, so that a next 176 * update will consume the rest. This ensures ->clock_task is 177 * monotonic. 178 * 179 * It does however cause some slight miss-attribution of {soft,}irq 180 * time, a more accurate solution would be to update the irq_time using 181 * the current rq->clock timestamp, except that would require using 182 * atomic ops. 183 */ 184 if (irq_delta > delta) 185 irq_delta = delta; 186 187 rq->prev_irq_time += irq_delta; 188 delta -= irq_delta; 189 #endif 190 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 191 if (static_key_false((¶virt_steal_rq_enabled))) { 192 steal = paravirt_steal_clock(cpu_of(rq)); 193 steal -= rq->prev_steal_time_rq; 194 195 if (unlikely(steal > delta)) 196 steal = delta; 197 198 rq->prev_steal_time_rq += steal; 199 delta -= steal; 200 } 201 #endif 202 203 rq->clock_task += delta; 204 205 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 206 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 207 sched_rt_avg_update(rq, irq_delta + steal); 208 #endif 209 } 210 211 void update_rq_clock(struct rq *rq) 212 { 213 s64 delta; 214 215 lockdep_assert_held(&rq->lock); 216 217 if (rq->clock_update_flags & RQCF_ACT_SKIP) 218 return; 219 220 #ifdef CONFIG_SCHED_DEBUG 221 if (sched_feat(WARN_DOUBLE_CLOCK)) 222 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 223 rq->clock_update_flags |= RQCF_UPDATED; 224 #endif 225 226 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 227 if (delta < 0) 228 return; 229 rq->clock += delta; 230 update_rq_clock_task(rq, delta); 231 } 232 233 234 #ifdef CONFIG_SCHED_HRTICK 235 /* 236 * Use HR-timers to deliver accurate preemption points. 237 */ 238 239 static void hrtick_clear(struct rq *rq) 240 { 241 if (hrtimer_active(&rq->hrtick_timer)) 242 hrtimer_cancel(&rq->hrtick_timer); 243 } 244 245 /* 246 * High-resolution timer tick. 247 * Runs from hardirq context with interrupts disabled. 248 */ 249 static enum hrtimer_restart hrtick(struct hrtimer *timer) 250 { 251 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 252 struct rq_flags rf; 253 254 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 255 256 rq_lock(rq, &rf); 257 update_rq_clock(rq); 258 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 259 rq_unlock(rq, &rf); 260 261 return HRTIMER_NORESTART; 262 } 263 264 #ifdef CONFIG_SMP 265 266 static void __hrtick_restart(struct rq *rq) 267 { 268 struct hrtimer *timer = &rq->hrtick_timer; 269 270 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 271 } 272 273 /* 274 * called from hardirq (IPI) context 275 */ 276 static void __hrtick_start(void *arg) 277 { 278 struct rq *rq = arg; 279 struct rq_flags rf; 280 281 rq_lock(rq, &rf); 282 __hrtick_restart(rq); 283 rq->hrtick_csd_pending = 0; 284 rq_unlock(rq, &rf); 285 } 286 287 /* 288 * Called to set the hrtick timer state. 289 * 290 * called with rq->lock held and irqs disabled 291 */ 292 void hrtick_start(struct rq *rq, u64 delay) 293 { 294 struct hrtimer *timer = &rq->hrtick_timer; 295 ktime_t time; 296 s64 delta; 297 298 /* 299 * Don't schedule slices shorter than 10000ns, that just 300 * doesn't make sense and can cause timer DoS. 301 */ 302 delta = max_t(s64, delay, 10000LL); 303 time = ktime_add_ns(timer->base->get_time(), delta); 304 305 hrtimer_set_expires(timer, time); 306 307 if (rq == this_rq()) { 308 __hrtick_restart(rq); 309 } else if (!rq->hrtick_csd_pending) { 310 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 311 rq->hrtick_csd_pending = 1; 312 } 313 } 314 315 #else 316 /* 317 * Called to set the hrtick timer state. 318 * 319 * called with rq->lock held and irqs disabled 320 */ 321 void hrtick_start(struct rq *rq, u64 delay) 322 { 323 /* 324 * Don't schedule slices shorter than 10000ns, that just 325 * doesn't make sense. Rely on vruntime for fairness. 326 */ 327 delay = max_t(u64, delay, 10000LL); 328 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 329 HRTIMER_MODE_REL_PINNED); 330 } 331 #endif /* CONFIG_SMP */ 332 333 static void init_rq_hrtick(struct rq *rq) 334 { 335 #ifdef CONFIG_SMP 336 rq->hrtick_csd_pending = 0; 337 338 rq->hrtick_csd.flags = 0; 339 rq->hrtick_csd.func = __hrtick_start; 340 rq->hrtick_csd.info = rq; 341 #endif 342 343 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 344 rq->hrtick_timer.function = hrtick; 345 } 346 #else /* CONFIG_SCHED_HRTICK */ 347 static inline void hrtick_clear(struct rq *rq) 348 { 349 } 350 351 static inline void init_rq_hrtick(struct rq *rq) 352 { 353 } 354 #endif /* CONFIG_SCHED_HRTICK */ 355 356 /* 357 * cmpxchg based fetch_or, macro so it works for different integer types 358 */ 359 #define fetch_or(ptr, mask) \ 360 ({ \ 361 typeof(ptr) _ptr = (ptr); \ 362 typeof(mask) _mask = (mask); \ 363 typeof(*_ptr) _old, _val = *_ptr; \ 364 \ 365 for (;;) { \ 366 _old = cmpxchg(_ptr, _val, _val | _mask); \ 367 if (_old == _val) \ 368 break; \ 369 _val = _old; \ 370 } \ 371 _old; \ 372 }) 373 374 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 375 /* 376 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 377 * this avoids any races wrt polling state changes and thereby avoids 378 * spurious IPIs. 379 */ 380 static bool set_nr_and_not_polling(struct task_struct *p) 381 { 382 struct thread_info *ti = task_thread_info(p); 383 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 384 } 385 386 /* 387 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 388 * 389 * If this returns true, then the idle task promises to call 390 * sched_ttwu_pending() and reschedule soon. 391 */ 392 static bool set_nr_if_polling(struct task_struct *p) 393 { 394 struct thread_info *ti = task_thread_info(p); 395 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 396 397 for (;;) { 398 if (!(val & _TIF_POLLING_NRFLAG)) 399 return false; 400 if (val & _TIF_NEED_RESCHED) 401 return true; 402 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 403 if (old == val) 404 break; 405 val = old; 406 } 407 return true; 408 } 409 410 #else 411 static bool set_nr_and_not_polling(struct task_struct *p) 412 { 413 set_tsk_need_resched(p); 414 return true; 415 } 416 417 #ifdef CONFIG_SMP 418 static bool set_nr_if_polling(struct task_struct *p) 419 { 420 return false; 421 } 422 #endif 423 #endif 424 425 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 426 { 427 struct wake_q_node *node = &task->wake_q; 428 429 /* 430 * Atomically grab the task, if ->wake_q is !nil already it means 431 * its already queued (either by us or someone else) and will get the 432 * wakeup due to that. 433 * 434 * This cmpxchg() implies a full barrier, which pairs with the write 435 * barrier implied by the wakeup in wake_up_q(). 436 */ 437 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 438 return; 439 440 get_task_struct(task); 441 442 /* 443 * The head is context local, there can be no concurrency. 444 */ 445 *head->lastp = node; 446 head->lastp = &node->next; 447 } 448 449 void wake_up_q(struct wake_q_head *head) 450 { 451 struct wake_q_node *node = head->first; 452 453 while (node != WAKE_Q_TAIL) { 454 struct task_struct *task; 455 456 task = container_of(node, struct task_struct, wake_q); 457 BUG_ON(!task); 458 /* Task can safely be re-inserted now: */ 459 node = node->next; 460 task->wake_q.next = NULL; 461 462 /* 463 * wake_up_process() implies a wmb() to pair with the queueing 464 * in wake_q_add() so as not to miss wakeups. 465 */ 466 wake_up_process(task); 467 put_task_struct(task); 468 } 469 } 470 471 /* 472 * resched_curr - mark rq's current task 'to be rescheduled now'. 473 * 474 * On UP this means the setting of the need_resched flag, on SMP it 475 * might also involve a cross-CPU call to trigger the scheduler on 476 * the target CPU. 477 */ 478 void resched_curr(struct rq *rq) 479 { 480 struct task_struct *curr = rq->curr; 481 int cpu; 482 483 lockdep_assert_held(&rq->lock); 484 485 if (test_tsk_need_resched(curr)) 486 return; 487 488 cpu = cpu_of(rq); 489 490 if (cpu == smp_processor_id()) { 491 set_tsk_need_resched(curr); 492 set_preempt_need_resched(); 493 return; 494 } 495 496 if (set_nr_and_not_polling(curr)) 497 smp_send_reschedule(cpu); 498 else 499 trace_sched_wake_idle_without_ipi(cpu); 500 } 501 502 void resched_cpu(int cpu) 503 { 504 struct rq *rq = cpu_rq(cpu); 505 unsigned long flags; 506 507 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 508 return; 509 resched_curr(rq); 510 raw_spin_unlock_irqrestore(&rq->lock, flags); 511 } 512 513 #ifdef CONFIG_SMP 514 #ifdef CONFIG_NO_HZ_COMMON 515 /* 516 * In the semi idle case, use the nearest busy CPU for migrating timers 517 * from an idle CPU. This is good for power-savings. 518 * 519 * We don't do similar optimization for completely idle system, as 520 * selecting an idle CPU will add more delays to the timers than intended 521 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 522 */ 523 int get_nohz_timer_target(void) 524 { 525 int i, cpu = smp_processor_id(); 526 struct sched_domain *sd; 527 528 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 529 return cpu; 530 531 rcu_read_lock(); 532 for_each_domain(cpu, sd) { 533 for_each_cpu(i, sched_domain_span(sd)) { 534 if (cpu == i) 535 continue; 536 537 if (!idle_cpu(i) && is_housekeeping_cpu(i)) { 538 cpu = i; 539 goto unlock; 540 } 541 } 542 } 543 544 if (!is_housekeeping_cpu(cpu)) 545 cpu = housekeeping_any_cpu(); 546 unlock: 547 rcu_read_unlock(); 548 return cpu; 549 } 550 551 /* 552 * When add_timer_on() enqueues a timer into the timer wheel of an 553 * idle CPU then this timer might expire before the next timer event 554 * which is scheduled to wake up that CPU. In case of a completely 555 * idle system the next event might even be infinite time into the 556 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 557 * leaves the inner idle loop so the newly added timer is taken into 558 * account when the CPU goes back to idle and evaluates the timer 559 * wheel for the next timer event. 560 */ 561 static void wake_up_idle_cpu(int cpu) 562 { 563 struct rq *rq = cpu_rq(cpu); 564 565 if (cpu == smp_processor_id()) 566 return; 567 568 if (set_nr_and_not_polling(rq->idle)) 569 smp_send_reschedule(cpu); 570 else 571 trace_sched_wake_idle_without_ipi(cpu); 572 } 573 574 static bool wake_up_full_nohz_cpu(int cpu) 575 { 576 /* 577 * We just need the target to call irq_exit() and re-evaluate 578 * the next tick. The nohz full kick at least implies that. 579 * If needed we can still optimize that later with an 580 * empty IRQ. 581 */ 582 if (cpu_is_offline(cpu)) 583 return true; /* Don't try to wake offline CPUs. */ 584 if (tick_nohz_full_cpu(cpu)) { 585 if (cpu != smp_processor_id() || 586 tick_nohz_tick_stopped()) 587 tick_nohz_full_kick_cpu(cpu); 588 return true; 589 } 590 591 return false; 592 } 593 594 /* 595 * Wake up the specified CPU. If the CPU is going offline, it is the 596 * caller's responsibility to deal with the lost wakeup, for example, 597 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 598 */ 599 void wake_up_nohz_cpu(int cpu) 600 { 601 if (!wake_up_full_nohz_cpu(cpu)) 602 wake_up_idle_cpu(cpu); 603 } 604 605 static inline bool got_nohz_idle_kick(void) 606 { 607 int cpu = smp_processor_id(); 608 609 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 610 return false; 611 612 if (idle_cpu(cpu) && !need_resched()) 613 return true; 614 615 /* 616 * We can't run Idle Load Balance on this CPU for this time so we 617 * cancel it and clear NOHZ_BALANCE_KICK 618 */ 619 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 620 return false; 621 } 622 623 #else /* CONFIG_NO_HZ_COMMON */ 624 625 static inline bool got_nohz_idle_kick(void) 626 { 627 return false; 628 } 629 630 #endif /* CONFIG_NO_HZ_COMMON */ 631 632 #ifdef CONFIG_NO_HZ_FULL 633 bool sched_can_stop_tick(struct rq *rq) 634 { 635 int fifo_nr_running; 636 637 /* Deadline tasks, even if single, need the tick */ 638 if (rq->dl.dl_nr_running) 639 return false; 640 641 /* 642 * If there are more than one RR tasks, we need the tick to effect the 643 * actual RR behaviour. 644 */ 645 if (rq->rt.rr_nr_running) { 646 if (rq->rt.rr_nr_running == 1) 647 return true; 648 else 649 return false; 650 } 651 652 /* 653 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 654 * forced preemption between FIFO tasks. 655 */ 656 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 657 if (fifo_nr_running) 658 return true; 659 660 /* 661 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 662 * if there's more than one we need the tick for involuntary 663 * preemption. 664 */ 665 if (rq->nr_running > 1) 666 return false; 667 668 return true; 669 } 670 #endif /* CONFIG_NO_HZ_FULL */ 671 672 void sched_avg_update(struct rq *rq) 673 { 674 s64 period = sched_avg_period(); 675 676 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 677 /* 678 * Inline assembly required to prevent the compiler 679 * optimising this loop into a divmod call. 680 * See __iter_div_u64_rem() for another example of this. 681 */ 682 asm("" : "+rm" (rq->age_stamp)); 683 rq->age_stamp += period; 684 rq->rt_avg /= 2; 685 } 686 } 687 688 #endif /* CONFIG_SMP */ 689 690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 692 /* 693 * Iterate task_group tree rooted at *from, calling @down when first entering a 694 * node and @up when leaving it for the final time. 695 * 696 * Caller must hold rcu_lock or sufficient equivalent. 697 */ 698 int walk_tg_tree_from(struct task_group *from, 699 tg_visitor down, tg_visitor up, void *data) 700 { 701 struct task_group *parent, *child; 702 int ret; 703 704 parent = from; 705 706 down: 707 ret = (*down)(parent, data); 708 if (ret) 709 goto out; 710 list_for_each_entry_rcu(child, &parent->children, siblings) { 711 parent = child; 712 goto down; 713 714 up: 715 continue; 716 } 717 ret = (*up)(parent, data); 718 if (ret || parent == from) 719 goto out; 720 721 child = parent; 722 parent = parent->parent; 723 if (parent) 724 goto up; 725 out: 726 return ret; 727 } 728 729 int tg_nop(struct task_group *tg, void *data) 730 { 731 return 0; 732 } 733 #endif 734 735 static void set_load_weight(struct task_struct *p) 736 { 737 int prio = p->static_prio - MAX_RT_PRIO; 738 struct load_weight *load = &p->se.load; 739 740 /* 741 * SCHED_IDLE tasks get minimal weight: 742 */ 743 if (idle_policy(p->policy)) { 744 load->weight = scale_load(WEIGHT_IDLEPRIO); 745 load->inv_weight = WMULT_IDLEPRIO; 746 return; 747 } 748 749 load->weight = scale_load(sched_prio_to_weight[prio]); 750 load->inv_weight = sched_prio_to_wmult[prio]; 751 } 752 753 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 754 { 755 if (!(flags & ENQUEUE_NOCLOCK)) 756 update_rq_clock(rq); 757 758 if (!(flags & ENQUEUE_RESTORE)) 759 sched_info_queued(rq, p); 760 761 p->sched_class->enqueue_task(rq, p, flags); 762 } 763 764 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 765 { 766 if (!(flags & DEQUEUE_NOCLOCK)) 767 update_rq_clock(rq); 768 769 if (!(flags & DEQUEUE_SAVE)) 770 sched_info_dequeued(rq, p); 771 772 p->sched_class->dequeue_task(rq, p, flags); 773 } 774 775 void activate_task(struct rq *rq, struct task_struct *p, int flags) 776 { 777 if (task_contributes_to_load(p)) 778 rq->nr_uninterruptible--; 779 780 enqueue_task(rq, p, flags); 781 } 782 783 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 784 { 785 if (task_contributes_to_load(p)) 786 rq->nr_uninterruptible++; 787 788 dequeue_task(rq, p, flags); 789 } 790 791 void sched_set_stop_task(int cpu, struct task_struct *stop) 792 { 793 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 794 struct task_struct *old_stop = cpu_rq(cpu)->stop; 795 796 if (stop) { 797 /* 798 * Make it appear like a SCHED_FIFO task, its something 799 * userspace knows about and won't get confused about. 800 * 801 * Also, it will make PI more or less work without too 802 * much confusion -- but then, stop work should not 803 * rely on PI working anyway. 804 */ 805 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 806 807 stop->sched_class = &stop_sched_class; 808 } 809 810 cpu_rq(cpu)->stop = stop; 811 812 if (old_stop) { 813 /* 814 * Reset it back to a normal scheduling class so that 815 * it can die in pieces. 816 */ 817 old_stop->sched_class = &rt_sched_class; 818 } 819 } 820 821 /* 822 * __normal_prio - return the priority that is based on the static prio 823 */ 824 static inline int __normal_prio(struct task_struct *p) 825 { 826 return p->static_prio; 827 } 828 829 /* 830 * Calculate the expected normal priority: i.e. priority 831 * without taking RT-inheritance into account. Might be 832 * boosted by interactivity modifiers. Changes upon fork, 833 * setprio syscalls, and whenever the interactivity 834 * estimator recalculates. 835 */ 836 static inline int normal_prio(struct task_struct *p) 837 { 838 int prio; 839 840 if (task_has_dl_policy(p)) 841 prio = MAX_DL_PRIO-1; 842 else if (task_has_rt_policy(p)) 843 prio = MAX_RT_PRIO-1 - p->rt_priority; 844 else 845 prio = __normal_prio(p); 846 return prio; 847 } 848 849 /* 850 * Calculate the current priority, i.e. the priority 851 * taken into account by the scheduler. This value might 852 * be boosted by RT tasks, or might be boosted by 853 * interactivity modifiers. Will be RT if the task got 854 * RT-boosted. If not then it returns p->normal_prio. 855 */ 856 static int effective_prio(struct task_struct *p) 857 { 858 p->normal_prio = normal_prio(p); 859 /* 860 * If we are RT tasks or we were boosted to RT priority, 861 * keep the priority unchanged. Otherwise, update priority 862 * to the normal priority: 863 */ 864 if (!rt_prio(p->prio)) 865 return p->normal_prio; 866 return p->prio; 867 } 868 869 /** 870 * task_curr - is this task currently executing on a CPU? 871 * @p: the task in question. 872 * 873 * Return: 1 if the task is currently executing. 0 otherwise. 874 */ 875 inline int task_curr(const struct task_struct *p) 876 { 877 return cpu_curr(task_cpu(p)) == p; 878 } 879 880 /* 881 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 882 * use the balance_callback list if you want balancing. 883 * 884 * this means any call to check_class_changed() must be followed by a call to 885 * balance_callback(). 886 */ 887 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 888 const struct sched_class *prev_class, 889 int oldprio) 890 { 891 if (prev_class != p->sched_class) { 892 if (prev_class->switched_from) 893 prev_class->switched_from(rq, p); 894 895 p->sched_class->switched_to(rq, p); 896 } else if (oldprio != p->prio || dl_task(p)) 897 p->sched_class->prio_changed(rq, p, oldprio); 898 } 899 900 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 901 { 902 const struct sched_class *class; 903 904 if (p->sched_class == rq->curr->sched_class) { 905 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 906 } else { 907 for_each_class(class) { 908 if (class == rq->curr->sched_class) 909 break; 910 if (class == p->sched_class) { 911 resched_curr(rq); 912 break; 913 } 914 } 915 } 916 917 /* 918 * A queue event has occurred, and we're going to schedule. In 919 * this case, we can save a useless back to back clock update. 920 */ 921 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 922 rq_clock_skip_update(rq, true); 923 } 924 925 #ifdef CONFIG_SMP 926 /* 927 * This is how migration works: 928 * 929 * 1) we invoke migration_cpu_stop() on the target CPU using 930 * stop_one_cpu(). 931 * 2) stopper starts to run (implicitly forcing the migrated thread 932 * off the CPU) 933 * 3) it checks whether the migrated task is still in the wrong runqueue. 934 * 4) if it's in the wrong runqueue then the migration thread removes 935 * it and puts it into the right queue. 936 * 5) stopper completes and stop_one_cpu() returns and the migration 937 * is done. 938 */ 939 940 /* 941 * move_queued_task - move a queued task to new rq. 942 * 943 * Returns (locked) new rq. Old rq's lock is released. 944 */ 945 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 946 struct task_struct *p, int new_cpu) 947 { 948 lockdep_assert_held(&rq->lock); 949 950 p->on_rq = TASK_ON_RQ_MIGRATING; 951 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 952 set_task_cpu(p, new_cpu); 953 rq_unlock(rq, rf); 954 955 rq = cpu_rq(new_cpu); 956 957 rq_lock(rq, rf); 958 BUG_ON(task_cpu(p) != new_cpu); 959 enqueue_task(rq, p, 0); 960 p->on_rq = TASK_ON_RQ_QUEUED; 961 check_preempt_curr(rq, p, 0); 962 963 return rq; 964 } 965 966 struct migration_arg { 967 struct task_struct *task; 968 int dest_cpu; 969 }; 970 971 /* 972 * Move (not current) task off this CPU, onto the destination CPU. We're doing 973 * this because either it can't run here any more (set_cpus_allowed() 974 * away from this CPU, or CPU going down), or because we're 975 * attempting to rebalance this task on exec (sched_exec). 976 * 977 * So we race with normal scheduler movements, but that's OK, as long 978 * as the task is no longer on this CPU. 979 */ 980 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 981 struct task_struct *p, int dest_cpu) 982 { 983 if (unlikely(!cpu_active(dest_cpu))) 984 return rq; 985 986 /* Affinity changed (again). */ 987 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 988 return rq; 989 990 update_rq_clock(rq); 991 rq = move_queued_task(rq, rf, p, dest_cpu); 992 993 return rq; 994 } 995 996 /* 997 * migration_cpu_stop - this will be executed by a highprio stopper thread 998 * and performs thread migration by bumping thread off CPU then 999 * 'pushing' onto another runqueue. 1000 */ 1001 static int migration_cpu_stop(void *data) 1002 { 1003 struct migration_arg *arg = data; 1004 struct task_struct *p = arg->task; 1005 struct rq *rq = this_rq(); 1006 struct rq_flags rf; 1007 1008 /* 1009 * The original target CPU might have gone down and we might 1010 * be on another CPU but it doesn't matter. 1011 */ 1012 local_irq_disable(); 1013 /* 1014 * We need to explicitly wake pending tasks before running 1015 * __migrate_task() such that we will not miss enforcing cpus_allowed 1016 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1017 */ 1018 sched_ttwu_pending(); 1019 1020 raw_spin_lock(&p->pi_lock); 1021 rq_lock(rq, &rf); 1022 /* 1023 * If task_rq(p) != rq, it cannot be migrated here, because we're 1024 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1025 * we're holding p->pi_lock. 1026 */ 1027 if (task_rq(p) == rq) { 1028 if (task_on_rq_queued(p)) 1029 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1030 else 1031 p->wake_cpu = arg->dest_cpu; 1032 } 1033 rq_unlock(rq, &rf); 1034 raw_spin_unlock(&p->pi_lock); 1035 1036 local_irq_enable(); 1037 return 0; 1038 } 1039 1040 /* 1041 * sched_class::set_cpus_allowed must do the below, but is not required to 1042 * actually call this function. 1043 */ 1044 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1045 { 1046 cpumask_copy(&p->cpus_allowed, new_mask); 1047 p->nr_cpus_allowed = cpumask_weight(new_mask); 1048 } 1049 1050 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1051 { 1052 struct rq *rq = task_rq(p); 1053 bool queued, running; 1054 1055 lockdep_assert_held(&p->pi_lock); 1056 1057 queued = task_on_rq_queued(p); 1058 running = task_current(rq, p); 1059 1060 if (queued) { 1061 /* 1062 * Because __kthread_bind() calls this on blocked tasks without 1063 * holding rq->lock. 1064 */ 1065 lockdep_assert_held(&rq->lock); 1066 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1067 } 1068 if (running) 1069 put_prev_task(rq, p); 1070 1071 p->sched_class->set_cpus_allowed(p, new_mask); 1072 1073 if (queued) 1074 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1075 if (running) 1076 set_curr_task(rq, p); 1077 } 1078 1079 /* 1080 * Change a given task's CPU affinity. Migrate the thread to a 1081 * proper CPU and schedule it away if the CPU it's executing on 1082 * is removed from the allowed bitmask. 1083 * 1084 * NOTE: the caller must have a valid reference to the task, the 1085 * task must not exit() & deallocate itself prematurely. The 1086 * call is not atomic; no spinlocks may be held. 1087 */ 1088 static int __set_cpus_allowed_ptr(struct task_struct *p, 1089 const struct cpumask *new_mask, bool check) 1090 { 1091 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1092 unsigned int dest_cpu; 1093 struct rq_flags rf; 1094 struct rq *rq; 1095 int ret = 0; 1096 1097 rq = task_rq_lock(p, &rf); 1098 update_rq_clock(rq); 1099 1100 if (p->flags & PF_KTHREAD) { 1101 /* 1102 * Kernel threads are allowed on online && !active CPUs 1103 */ 1104 cpu_valid_mask = cpu_online_mask; 1105 } 1106 1107 /* 1108 * Must re-check here, to close a race against __kthread_bind(), 1109 * sched_setaffinity() is not guaranteed to observe the flag. 1110 */ 1111 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1112 ret = -EINVAL; 1113 goto out; 1114 } 1115 1116 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1117 goto out; 1118 1119 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1120 ret = -EINVAL; 1121 goto out; 1122 } 1123 1124 do_set_cpus_allowed(p, new_mask); 1125 1126 if (p->flags & PF_KTHREAD) { 1127 /* 1128 * For kernel threads that do indeed end up on online && 1129 * !active we want to ensure they are strict per-CPU threads. 1130 */ 1131 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1132 !cpumask_intersects(new_mask, cpu_active_mask) && 1133 p->nr_cpus_allowed != 1); 1134 } 1135 1136 /* Can the task run on the task's current CPU? If so, we're done */ 1137 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1138 goto out; 1139 1140 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1141 if (task_running(rq, p) || p->state == TASK_WAKING) { 1142 struct migration_arg arg = { p, dest_cpu }; 1143 /* Need help from migration thread: drop lock and wait. */ 1144 task_rq_unlock(rq, p, &rf); 1145 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1146 tlb_migrate_finish(p->mm); 1147 return 0; 1148 } else if (task_on_rq_queued(p)) { 1149 /* 1150 * OK, since we're going to drop the lock immediately 1151 * afterwards anyway. 1152 */ 1153 rq = move_queued_task(rq, &rf, p, dest_cpu); 1154 } 1155 out: 1156 task_rq_unlock(rq, p, &rf); 1157 1158 return ret; 1159 } 1160 1161 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1162 { 1163 return __set_cpus_allowed_ptr(p, new_mask, false); 1164 } 1165 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1166 1167 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1168 { 1169 #ifdef CONFIG_SCHED_DEBUG 1170 /* 1171 * We should never call set_task_cpu() on a blocked task, 1172 * ttwu() will sort out the placement. 1173 */ 1174 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1175 !p->on_rq); 1176 1177 /* 1178 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1179 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1180 * time relying on p->on_rq. 1181 */ 1182 WARN_ON_ONCE(p->state == TASK_RUNNING && 1183 p->sched_class == &fair_sched_class && 1184 (p->on_rq && !task_on_rq_migrating(p))); 1185 1186 #ifdef CONFIG_LOCKDEP 1187 /* 1188 * The caller should hold either p->pi_lock or rq->lock, when changing 1189 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1190 * 1191 * sched_move_task() holds both and thus holding either pins the cgroup, 1192 * see task_group(). 1193 * 1194 * Furthermore, all task_rq users should acquire both locks, see 1195 * task_rq_lock(). 1196 */ 1197 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1198 lockdep_is_held(&task_rq(p)->lock))); 1199 #endif 1200 #endif 1201 1202 trace_sched_migrate_task(p, new_cpu); 1203 1204 if (task_cpu(p) != new_cpu) { 1205 if (p->sched_class->migrate_task_rq) 1206 p->sched_class->migrate_task_rq(p); 1207 p->se.nr_migrations++; 1208 perf_event_task_migrate(p); 1209 } 1210 1211 __set_task_cpu(p, new_cpu); 1212 } 1213 1214 static void __migrate_swap_task(struct task_struct *p, int cpu) 1215 { 1216 if (task_on_rq_queued(p)) { 1217 struct rq *src_rq, *dst_rq; 1218 struct rq_flags srf, drf; 1219 1220 src_rq = task_rq(p); 1221 dst_rq = cpu_rq(cpu); 1222 1223 rq_pin_lock(src_rq, &srf); 1224 rq_pin_lock(dst_rq, &drf); 1225 1226 p->on_rq = TASK_ON_RQ_MIGRATING; 1227 deactivate_task(src_rq, p, 0); 1228 set_task_cpu(p, cpu); 1229 activate_task(dst_rq, p, 0); 1230 p->on_rq = TASK_ON_RQ_QUEUED; 1231 check_preempt_curr(dst_rq, p, 0); 1232 1233 rq_unpin_lock(dst_rq, &drf); 1234 rq_unpin_lock(src_rq, &srf); 1235 1236 } else { 1237 /* 1238 * Task isn't running anymore; make it appear like we migrated 1239 * it before it went to sleep. This means on wakeup we make the 1240 * previous CPU our target instead of where it really is. 1241 */ 1242 p->wake_cpu = cpu; 1243 } 1244 } 1245 1246 struct migration_swap_arg { 1247 struct task_struct *src_task, *dst_task; 1248 int src_cpu, dst_cpu; 1249 }; 1250 1251 static int migrate_swap_stop(void *data) 1252 { 1253 struct migration_swap_arg *arg = data; 1254 struct rq *src_rq, *dst_rq; 1255 int ret = -EAGAIN; 1256 1257 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1258 return -EAGAIN; 1259 1260 src_rq = cpu_rq(arg->src_cpu); 1261 dst_rq = cpu_rq(arg->dst_cpu); 1262 1263 double_raw_lock(&arg->src_task->pi_lock, 1264 &arg->dst_task->pi_lock); 1265 double_rq_lock(src_rq, dst_rq); 1266 1267 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1268 goto unlock; 1269 1270 if (task_cpu(arg->src_task) != arg->src_cpu) 1271 goto unlock; 1272 1273 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1274 goto unlock; 1275 1276 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1277 goto unlock; 1278 1279 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1280 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1281 1282 ret = 0; 1283 1284 unlock: 1285 double_rq_unlock(src_rq, dst_rq); 1286 raw_spin_unlock(&arg->dst_task->pi_lock); 1287 raw_spin_unlock(&arg->src_task->pi_lock); 1288 1289 return ret; 1290 } 1291 1292 /* 1293 * Cross migrate two tasks 1294 */ 1295 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1296 { 1297 struct migration_swap_arg arg; 1298 int ret = -EINVAL; 1299 1300 arg = (struct migration_swap_arg){ 1301 .src_task = cur, 1302 .src_cpu = task_cpu(cur), 1303 .dst_task = p, 1304 .dst_cpu = task_cpu(p), 1305 }; 1306 1307 if (arg.src_cpu == arg.dst_cpu) 1308 goto out; 1309 1310 /* 1311 * These three tests are all lockless; this is OK since all of them 1312 * will be re-checked with proper locks held further down the line. 1313 */ 1314 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1315 goto out; 1316 1317 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1318 goto out; 1319 1320 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1321 goto out; 1322 1323 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1324 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1325 1326 out: 1327 return ret; 1328 } 1329 1330 /* 1331 * wait_task_inactive - wait for a thread to unschedule. 1332 * 1333 * If @match_state is nonzero, it's the @p->state value just checked and 1334 * not expected to change. If it changes, i.e. @p might have woken up, 1335 * then return zero. When we succeed in waiting for @p to be off its CPU, 1336 * we return a positive number (its total switch count). If a second call 1337 * a short while later returns the same number, the caller can be sure that 1338 * @p has remained unscheduled the whole time. 1339 * 1340 * The caller must ensure that the task *will* unschedule sometime soon, 1341 * else this function might spin for a *long* time. This function can't 1342 * be called with interrupts off, or it may introduce deadlock with 1343 * smp_call_function() if an IPI is sent by the same process we are 1344 * waiting to become inactive. 1345 */ 1346 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1347 { 1348 int running, queued; 1349 struct rq_flags rf; 1350 unsigned long ncsw; 1351 struct rq *rq; 1352 1353 for (;;) { 1354 /* 1355 * We do the initial early heuristics without holding 1356 * any task-queue locks at all. We'll only try to get 1357 * the runqueue lock when things look like they will 1358 * work out! 1359 */ 1360 rq = task_rq(p); 1361 1362 /* 1363 * If the task is actively running on another CPU 1364 * still, just relax and busy-wait without holding 1365 * any locks. 1366 * 1367 * NOTE! Since we don't hold any locks, it's not 1368 * even sure that "rq" stays as the right runqueue! 1369 * But we don't care, since "task_running()" will 1370 * return false if the runqueue has changed and p 1371 * is actually now running somewhere else! 1372 */ 1373 while (task_running(rq, p)) { 1374 if (match_state && unlikely(p->state != match_state)) 1375 return 0; 1376 cpu_relax(); 1377 } 1378 1379 /* 1380 * Ok, time to look more closely! We need the rq 1381 * lock now, to be *sure*. If we're wrong, we'll 1382 * just go back and repeat. 1383 */ 1384 rq = task_rq_lock(p, &rf); 1385 trace_sched_wait_task(p); 1386 running = task_running(rq, p); 1387 queued = task_on_rq_queued(p); 1388 ncsw = 0; 1389 if (!match_state || p->state == match_state) 1390 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1391 task_rq_unlock(rq, p, &rf); 1392 1393 /* 1394 * If it changed from the expected state, bail out now. 1395 */ 1396 if (unlikely(!ncsw)) 1397 break; 1398 1399 /* 1400 * Was it really running after all now that we 1401 * checked with the proper locks actually held? 1402 * 1403 * Oops. Go back and try again.. 1404 */ 1405 if (unlikely(running)) { 1406 cpu_relax(); 1407 continue; 1408 } 1409 1410 /* 1411 * It's not enough that it's not actively running, 1412 * it must be off the runqueue _entirely_, and not 1413 * preempted! 1414 * 1415 * So if it was still runnable (but just not actively 1416 * running right now), it's preempted, and we should 1417 * yield - it could be a while. 1418 */ 1419 if (unlikely(queued)) { 1420 ktime_t to = NSEC_PER_SEC / HZ; 1421 1422 set_current_state(TASK_UNINTERRUPTIBLE); 1423 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1424 continue; 1425 } 1426 1427 /* 1428 * Ahh, all good. It wasn't running, and it wasn't 1429 * runnable, which means that it will never become 1430 * running in the future either. We're all done! 1431 */ 1432 break; 1433 } 1434 1435 return ncsw; 1436 } 1437 1438 /*** 1439 * kick_process - kick a running thread to enter/exit the kernel 1440 * @p: the to-be-kicked thread 1441 * 1442 * Cause a process which is running on another CPU to enter 1443 * kernel-mode, without any delay. (to get signals handled.) 1444 * 1445 * NOTE: this function doesn't have to take the runqueue lock, 1446 * because all it wants to ensure is that the remote task enters 1447 * the kernel. If the IPI races and the task has been migrated 1448 * to another CPU then no harm is done and the purpose has been 1449 * achieved as well. 1450 */ 1451 void kick_process(struct task_struct *p) 1452 { 1453 int cpu; 1454 1455 preempt_disable(); 1456 cpu = task_cpu(p); 1457 if ((cpu != smp_processor_id()) && task_curr(p)) 1458 smp_send_reschedule(cpu); 1459 preempt_enable(); 1460 } 1461 EXPORT_SYMBOL_GPL(kick_process); 1462 1463 /* 1464 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1465 * 1466 * A few notes on cpu_active vs cpu_online: 1467 * 1468 * - cpu_active must be a subset of cpu_online 1469 * 1470 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1471 * see __set_cpus_allowed_ptr(). At this point the newly online 1472 * CPU isn't yet part of the sched domains, and balancing will not 1473 * see it. 1474 * 1475 * - on CPU-down we clear cpu_active() to mask the sched domains and 1476 * avoid the load balancer to place new tasks on the to be removed 1477 * CPU. Existing tasks will remain running there and will be taken 1478 * off. 1479 * 1480 * This means that fallback selection must not select !active CPUs. 1481 * And can assume that any active CPU must be online. Conversely 1482 * select_task_rq() below may allow selection of !active CPUs in order 1483 * to satisfy the above rules. 1484 */ 1485 static int select_fallback_rq(int cpu, struct task_struct *p) 1486 { 1487 int nid = cpu_to_node(cpu); 1488 const struct cpumask *nodemask = NULL; 1489 enum { cpuset, possible, fail } state = cpuset; 1490 int dest_cpu; 1491 1492 /* 1493 * If the node that the CPU is on has been offlined, cpu_to_node() 1494 * will return -1. There is no CPU on the node, and we should 1495 * select the CPU on the other node. 1496 */ 1497 if (nid != -1) { 1498 nodemask = cpumask_of_node(nid); 1499 1500 /* Look for allowed, online CPU in same node. */ 1501 for_each_cpu(dest_cpu, nodemask) { 1502 if (!cpu_active(dest_cpu)) 1503 continue; 1504 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1505 return dest_cpu; 1506 } 1507 } 1508 1509 for (;;) { 1510 /* Any allowed, online CPU? */ 1511 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1512 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu)) 1513 continue; 1514 if (!cpu_online(dest_cpu)) 1515 continue; 1516 goto out; 1517 } 1518 1519 /* No more Mr. Nice Guy. */ 1520 switch (state) { 1521 case cpuset: 1522 if (IS_ENABLED(CONFIG_CPUSETS)) { 1523 cpuset_cpus_allowed_fallback(p); 1524 state = possible; 1525 break; 1526 } 1527 /* Fall-through */ 1528 case possible: 1529 do_set_cpus_allowed(p, cpu_possible_mask); 1530 state = fail; 1531 break; 1532 1533 case fail: 1534 BUG(); 1535 break; 1536 } 1537 } 1538 1539 out: 1540 if (state != cpuset) { 1541 /* 1542 * Don't tell them about moving exiting tasks or 1543 * kernel threads (both mm NULL), since they never 1544 * leave kernel. 1545 */ 1546 if (p->mm && printk_ratelimit()) { 1547 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1548 task_pid_nr(p), p->comm, cpu); 1549 } 1550 } 1551 1552 return dest_cpu; 1553 } 1554 1555 /* 1556 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1557 */ 1558 static inline 1559 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1560 { 1561 lockdep_assert_held(&p->pi_lock); 1562 1563 if (p->nr_cpus_allowed > 1) 1564 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1565 else 1566 cpu = cpumask_any(&p->cpus_allowed); 1567 1568 /* 1569 * In order not to call set_task_cpu() on a blocking task we need 1570 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1571 * CPU. 1572 * 1573 * Since this is common to all placement strategies, this lives here. 1574 * 1575 * [ this allows ->select_task() to simply return task_cpu(p) and 1576 * not worry about this generic constraint ] 1577 */ 1578 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || 1579 !cpu_online(cpu))) 1580 cpu = select_fallback_rq(task_cpu(p), p); 1581 1582 return cpu; 1583 } 1584 1585 static void update_avg(u64 *avg, u64 sample) 1586 { 1587 s64 diff = sample - *avg; 1588 *avg += diff >> 3; 1589 } 1590 1591 #else 1592 1593 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1594 const struct cpumask *new_mask, bool check) 1595 { 1596 return set_cpus_allowed_ptr(p, new_mask); 1597 } 1598 1599 #endif /* CONFIG_SMP */ 1600 1601 static void 1602 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1603 { 1604 struct rq *rq; 1605 1606 if (!schedstat_enabled()) 1607 return; 1608 1609 rq = this_rq(); 1610 1611 #ifdef CONFIG_SMP 1612 if (cpu == rq->cpu) { 1613 schedstat_inc(rq->ttwu_local); 1614 schedstat_inc(p->se.statistics.nr_wakeups_local); 1615 } else { 1616 struct sched_domain *sd; 1617 1618 schedstat_inc(p->se.statistics.nr_wakeups_remote); 1619 rcu_read_lock(); 1620 for_each_domain(rq->cpu, sd) { 1621 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1622 schedstat_inc(sd->ttwu_wake_remote); 1623 break; 1624 } 1625 } 1626 rcu_read_unlock(); 1627 } 1628 1629 if (wake_flags & WF_MIGRATED) 1630 schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1631 #endif /* CONFIG_SMP */ 1632 1633 schedstat_inc(rq->ttwu_count); 1634 schedstat_inc(p->se.statistics.nr_wakeups); 1635 1636 if (wake_flags & WF_SYNC) 1637 schedstat_inc(p->se.statistics.nr_wakeups_sync); 1638 } 1639 1640 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1641 { 1642 activate_task(rq, p, en_flags); 1643 p->on_rq = TASK_ON_RQ_QUEUED; 1644 1645 /* If a worker is waking up, notify the workqueue: */ 1646 if (p->flags & PF_WQ_WORKER) 1647 wq_worker_waking_up(p, cpu_of(rq)); 1648 } 1649 1650 /* 1651 * Mark the task runnable and perform wakeup-preemption. 1652 */ 1653 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1654 struct rq_flags *rf) 1655 { 1656 check_preempt_curr(rq, p, wake_flags); 1657 p->state = TASK_RUNNING; 1658 trace_sched_wakeup(p); 1659 1660 #ifdef CONFIG_SMP 1661 if (p->sched_class->task_woken) { 1662 /* 1663 * Our task @p is fully woken up and running; so its safe to 1664 * drop the rq->lock, hereafter rq is only used for statistics. 1665 */ 1666 rq_unpin_lock(rq, rf); 1667 p->sched_class->task_woken(rq, p); 1668 rq_repin_lock(rq, rf); 1669 } 1670 1671 if (rq->idle_stamp) { 1672 u64 delta = rq_clock(rq) - rq->idle_stamp; 1673 u64 max = 2*rq->max_idle_balance_cost; 1674 1675 update_avg(&rq->avg_idle, delta); 1676 1677 if (rq->avg_idle > max) 1678 rq->avg_idle = max; 1679 1680 rq->idle_stamp = 0; 1681 } 1682 #endif 1683 } 1684 1685 static void 1686 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1687 struct rq_flags *rf) 1688 { 1689 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1690 1691 lockdep_assert_held(&rq->lock); 1692 1693 #ifdef CONFIG_SMP 1694 if (p->sched_contributes_to_load) 1695 rq->nr_uninterruptible--; 1696 1697 if (wake_flags & WF_MIGRATED) 1698 en_flags |= ENQUEUE_MIGRATED; 1699 #endif 1700 1701 ttwu_activate(rq, p, en_flags); 1702 ttwu_do_wakeup(rq, p, wake_flags, rf); 1703 } 1704 1705 /* 1706 * Called in case the task @p isn't fully descheduled from its runqueue, 1707 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1708 * since all we need to do is flip p->state to TASK_RUNNING, since 1709 * the task is still ->on_rq. 1710 */ 1711 static int ttwu_remote(struct task_struct *p, int wake_flags) 1712 { 1713 struct rq_flags rf; 1714 struct rq *rq; 1715 int ret = 0; 1716 1717 rq = __task_rq_lock(p, &rf); 1718 if (task_on_rq_queued(p)) { 1719 /* check_preempt_curr() may use rq clock */ 1720 update_rq_clock(rq); 1721 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1722 ret = 1; 1723 } 1724 __task_rq_unlock(rq, &rf); 1725 1726 return ret; 1727 } 1728 1729 #ifdef CONFIG_SMP 1730 void sched_ttwu_pending(void) 1731 { 1732 struct rq *rq = this_rq(); 1733 struct llist_node *llist = llist_del_all(&rq->wake_list); 1734 struct task_struct *p; 1735 struct rq_flags rf; 1736 1737 if (!llist) 1738 return; 1739 1740 rq_lock_irqsave(rq, &rf); 1741 update_rq_clock(rq); 1742 1743 while (llist) { 1744 int wake_flags = 0; 1745 1746 p = llist_entry(llist, struct task_struct, wake_entry); 1747 llist = llist_next(llist); 1748 1749 if (p->sched_remote_wakeup) 1750 wake_flags = WF_MIGRATED; 1751 1752 ttwu_do_activate(rq, p, wake_flags, &rf); 1753 } 1754 1755 rq_unlock_irqrestore(rq, &rf); 1756 } 1757 1758 void scheduler_ipi(void) 1759 { 1760 /* 1761 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1762 * TIF_NEED_RESCHED remotely (for the first time) will also send 1763 * this IPI. 1764 */ 1765 preempt_fold_need_resched(); 1766 1767 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1768 return; 1769 1770 /* 1771 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1772 * traditionally all their work was done from the interrupt return 1773 * path. Now that we actually do some work, we need to make sure 1774 * we do call them. 1775 * 1776 * Some archs already do call them, luckily irq_enter/exit nest 1777 * properly. 1778 * 1779 * Arguably we should visit all archs and update all handlers, 1780 * however a fair share of IPIs are still resched only so this would 1781 * somewhat pessimize the simple resched case. 1782 */ 1783 irq_enter(); 1784 sched_ttwu_pending(); 1785 1786 /* 1787 * Check if someone kicked us for doing the nohz idle load balance. 1788 */ 1789 if (unlikely(got_nohz_idle_kick())) { 1790 this_rq()->idle_balance = 1; 1791 raise_softirq_irqoff(SCHED_SOFTIRQ); 1792 } 1793 irq_exit(); 1794 } 1795 1796 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1797 { 1798 struct rq *rq = cpu_rq(cpu); 1799 1800 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1801 1802 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1803 if (!set_nr_if_polling(rq->idle)) 1804 smp_send_reschedule(cpu); 1805 else 1806 trace_sched_wake_idle_without_ipi(cpu); 1807 } 1808 } 1809 1810 void wake_up_if_idle(int cpu) 1811 { 1812 struct rq *rq = cpu_rq(cpu); 1813 struct rq_flags rf; 1814 1815 rcu_read_lock(); 1816 1817 if (!is_idle_task(rcu_dereference(rq->curr))) 1818 goto out; 1819 1820 if (set_nr_if_polling(rq->idle)) { 1821 trace_sched_wake_idle_without_ipi(cpu); 1822 } else { 1823 rq_lock_irqsave(rq, &rf); 1824 if (is_idle_task(rq->curr)) 1825 smp_send_reschedule(cpu); 1826 /* Else CPU is not idle, do nothing here: */ 1827 rq_unlock_irqrestore(rq, &rf); 1828 } 1829 1830 out: 1831 rcu_read_unlock(); 1832 } 1833 1834 bool cpus_share_cache(int this_cpu, int that_cpu) 1835 { 1836 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1837 } 1838 #endif /* CONFIG_SMP */ 1839 1840 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1841 { 1842 struct rq *rq = cpu_rq(cpu); 1843 struct rq_flags rf; 1844 1845 #if defined(CONFIG_SMP) 1846 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1847 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1848 ttwu_queue_remote(p, cpu, wake_flags); 1849 return; 1850 } 1851 #endif 1852 1853 rq_lock(rq, &rf); 1854 update_rq_clock(rq); 1855 ttwu_do_activate(rq, p, wake_flags, &rf); 1856 rq_unlock(rq, &rf); 1857 } 1858 1859 /* 1860 * Notes on Program-Order guarantees on SMP systems. 1861 * 1862 * MIGRATION 1863 * 1864 * The basic program-order guarantee on SMP systems is that when a task [t] 1865 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1866 * execution on its new CPU [c1]. 1867 * 1868 * For migration (of runnable tasks) this is provided by the following means: 1869 * 1870 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1871 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1872 * rq(c1)->lock (if not at the same time, then in that order). 1873 * C) LOCK of the rq(c1)->lock scheduling in task 1874 * 1875 * Transitivity guarantees that B happens after A and C after B. 1876 * Note: we only require RCpc transitivity. 1877 * Note: the CPU doing B need not be c0 or c1 1878 * 1879 * Example: 1880 * 1881 * CPU0 CPU1 CPU2 1882 * 1883 * LOCK rq(0)->lock 1884 * sched-out X 1885 * sched-in Y 1886 * UNLOCK rq(0)->lock 1887 * 1888 * LOCK rq(0)->lock // orders against CPU0 1889 * dequeue X 1890 * UNLOCK rq(0)->lock 1891 * 1892 * LOCK rq(1)->lock 1893 * enqueue X 1894 * UNLOCK rq(1)->lock 1895 * 1896 * LOCK rq(1)->lock // orders against CPU2 1897 * sched-out Z 1898 * sched-in X 1899 * UNLOCK rq(1)->lock 1900 * 1901 * 1902 * BLOCKING -- aka. SLEEP + WAKEUP 1903 * 1904 * For blocking we (obviously) need to provide the same guarantee as for 1905 * migration. However the means are completely different as there is no lock 1906 * chain to provide order. Instead we do: 1907 * 1908 * 1) smp_store_release(X->on_cpu, 0) 1909 * 2) smp_cond_load_acquire(!X->on_cpu) 1910 * 1911 * Example: 1912 * 1913 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1914 * 1915 * LOCK rq(0)->lock LOCK X->pi_lock 1916 * dequeue X 1917 * sched-out X 1918 * smp_store_release(X->on_cpu, 0); 1919 * 1920 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1921 * X->state = WAKING 1922 * set_task_cpu(X,2) 1923 * 1924 * LOCK rq(2)->lock 1925 * enqueue X 1926 * X->state = RUNNING 1927 * UNLOCK rq(2)->lock 1928 * 1929 * LOCK rq(2)->lock // orders against CPU1 1930 * sched-out Z 1931 * sched-in X 1932 * UNLOCK rq(2)->lock 1933 * 1934 * UNLOCK X->pi_lock 1935 * UNLOCK rq(0)->lock 1936 * 1937 * 1938 * However; for wakeups there is a second guarantee we must provide, namely we 1939 * must observe the state that lead to our wakeup. That is, not only must our 1940 * task observe its own prior state, it must also observe the stores prior to 1941 * its wakeup. 1942 * 1943 * This means that any means of doing remote wakeups must order the CPU doing 1944 * the wakeup against the CPU the task is going to end up running on. This, 1945 * however, is already required for the regular Program-Order guarantee above, 1946 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1947 * 1948 */ 1949 1950 /** 1951 * try_to_wake_up - wake up a thread 1952 * @p: the thread to be awakened 1953 * @state: the mask of task states that can be woken 1954 * @wake_flags: wake modifier flags (WF_*) 1955 * 1956 * If (@state & @p->state) @p->state = TASK_RUNNING. 1957 * 1958 * If the task was not queued/runnable, also place it back on a runqueue. 1959 * 1960 * Atomic against schedule() which would dequeue a task, also see 1961 * set_current_state(). 1962 * 1963 * Return: %true if @p->state changes (an actual wakeup was done), 1964 * %false otherwise. 1965 */ 1966 static int 1967 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1968 { 1969 unsigned long flags; 1970 int cpu, success = 0; 1971 1972 /* 1973 * If we are going to wake up a thread waiting for CONDITION we 1974 * need to ensure that CONDITION=1 done by the caller can not be 1975 * reordered with p->state check below. This pairs with mb() in 1976 * set_current_state() the waiting thread does. 1977 */ 1978 smp_mb__before_spinlock(); 1979 raw_spin_lock_irqsave(&p->pi_lock, flags); 1980 if (!(p->state & state)) 1981 goto out; 1982 1983 trace_sched_waking(p); 1984 1985 /* We're going to change ->state: */ 1986 success = 1; 1987 cpu = task_cpu(p); 1988 1989 /* 1990 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1991 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1992 * in smp_cond_load_acquire() below. 1993 * 1994 * sched_ttwu_pending() try_to_wake_up() 1995 * [S] p->on_rq = 1; [L] P->state 1996 * UNLOCK rq->lock -----. 1997 * \ 1998 * +--- RMB 1999 * schedule() / 2000 * LOCK rq->lock -----' 2001 * UNLOCK rq->lock 2002 * 2003 * [task p] 2004 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2005 * 2006 * Pairs with the UNLOCK+LOCK on rq->lock from the 2007 * last wakeup of our task and the schedule that got our task 2008 * current. 2009 */ 2010 smp_rmb(); 2011 if (p->on_rq && ttwu_remote(p, wake_flags)) 2012 goto stat; 2013 2014 #ifdef CONFIG_SMP 2015 /* 2016 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2017 * possible to, falsely, observe p->on_cpu == 0. 2018 * 2019 * One must be running (->on_cpu == 1) in order to remove oneself 2020 * from the runqueue. 2021 * 2022 * [S] ->on_cpu = 1; [L] ->on_rq 2023 * UNLOCK rq->lock 2024 * RMB 2025 * LOCK rq->lock 2026 * [S] ->on_rq = 0; [L] ->on_cpu 2027 * 2028 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2029 * from the consecutive calls to schedule(); the first switching to our 2030 * task, the second putting it to sleep. 2031 */ 2032 smp_rmb(); 2033 2034 /* 2035 * If the owning (remote) CPU is still in the middle of schedule() with 2036 * this task as prev, wait until its done referencing the task. 2037 * 2038 * Pairs with the smp_store_release() in finish_lock_switch(). 2039 * 2040 * This ensures that tasks getting woken will be fully ordered against 2041 * their previous state and preserve Program Order. 2042 */ 2043 smp_cond_load_acquire(&p->on_cpu, !VAL); 2044 2045 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2046 p->state = TASK_WAKING; 2047 2048 if (p->in_iowait) { 2049 delayacct_blkio_end(); 2050 atomic_dec(&task_rq(p)->nr_iowait); 2051 } 2052 2053 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2054 if (task_cpu(p) != cpu) { 2055 wake_flags |= WF_MIGRATED; 2056 set_task_cpu(p, cpu); 2057 } 2058 2059 #else /* CONFIG_SMP */ 2060 2061 if (p->in_iowait) { 2062 delayacct_blkio_end(); 2063 atomic_dec(&task_rq(p)->nr_iowait); 2064 } 2065 2066 #endif /* CONFIG_SMP */ 2067 2068 ttwu_queue(p, cpu, wake_flags); 2069 stat: 2070 ttwu_stat(p, cpu, wake_flags); 2071 out: 2072 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2073 2074 return success; 2075 } 2076 2077 /** 2078 * try_to_wake_up_local - try to wake up a local task with rq lock held 2079 * @p: the thread to be awakened 2080 * @cookie: context's cookie for pinning 2081 * 2082 * Put @p on the run-queue if it's not already there. The caller must 2083 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2084 * the current task. 2085 */ 2086 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2087 { 2088 struct rq *rq = task_rq(p); 2089 2090 if (WARN_ON_ONCE(rq != this_rq()) || 2091 WARN_ON_ONCE(p == current)) 2092 return; 2093 2094 lockdep_assert_held(&rq->lock); 2095 2096 if (!raw_spin_trylock(&p->pi_lock)) { 2097 /* 2098 * This is OK, because current is on_cpu, which avoids it being 2099 * picked for load-balance and preemption/IRQs are still 2100 * disabled avoiding further scheduler activity on it and we've 2101 * not yet picked a replacement task. 2102 */ 2103 rq_unlock(rq, rf); 2104 raw_spin_lock(&p->pi_lock); 2105 rq_relock(rq, rf); 2106 } 2107 2108 if (!(p->state & TASK_NORMAL)) 2109 goto out; 2110 2111 trace_sched_waking(p); 2112 2113 if (!task_on_rq_queued(p)) { 2114 if (p->in_iowait) { 2115 delayacct_blkio_end(); 2116 atomic_dec(&rq->nr_iowait); 2117 } 2118 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2119 } 2120 2121 ttwu_do_wakeup(rq, p, 0, rf); 2122 ttwu_stat(p, smp_processor_id(), 0); 2123 out: 2124 raw_spin_unlock(&p->pi_lock); 2125 } 2126 2127 /** 2128 * wake_up_process - Wake up a specific process 2129 * @p: The process to be woken up. 2130 * 2131 * Attempt to wake up the nominated process and move it to the set of runnable 2132 * processes. 2133 * 2134 * Return: 1 if the process was woken up, 0 if it was already running. 2135 * 2136 * It may be assumed that this function implies a write memory barrier before 2137 * changing the task state if and only if any tasks are woken up. 2138 */ 2139 int wake_up_process(struct task_struct *p) 2140 { 2141 return try_to_wake_up(p, TASK_NORMAL, 0); 2142 } 2143 EXPORT_SYMBOL(wake_up_process); 2144 2145 int wake_up_state(struct task_struct *p, unsigned int state) 2146 { 2147 return try_to_wake_up(p, state, 0); 2148 } 2149 2150 /* 2151 * This function clears the sched_dl_entity static params. 2152 */ 2153 void __dl_clear_params(struct task_struct *p) 2154 { 2155 struct sched_dl_entity *dl_se = &p->dl; 2156 2157 dl_se->dl_runtime = 0; 2158 dl_se->dl_deadline = 0; 2159 dl_se->dl_period = 0; 2160 dl_se->flags = 0; 2161 dl_se->dl_bw = 0; 2162 2163 dl_se->dl_throttled = 0; 2164 dl_se->dl_yielded = 0; 2165 } 2166 2167 /* 2168 * Perform scheduler related setup for a newly forked process p. 2169 * p is forked by current. 2170 * 2171 * __sched_fork() is basic setup used by init_idle() too: 2172 */ 2173 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2174 { 2175 p->on_rq = 0; 2176 2177 p->se.on_rq = 0; 2178 p->se.exec_start = 0; 2179 p->se.sum_exec_runtime = 0; 2180 p->se.prev_sum_exec_runtime = 0; 2181 p->se.nr_migrations = 0; 2182 p->se.vruntime = 0; 2183 INIT_LIST_HEAD(&p->se.group_node); 2184 2185 #ifdef CONFIG_FAIR_GROUP_SCHED 2186 p->se.cfs_rq = NULL; 2187 #endif 2188 2189 #ifdef CONFIG_SCHEDSTATS 2190 /* Even if schedstat is disabled, there should not be garbage */ 2191 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2192 #endif 2193 2194 RB_CLEAR_NODE(&p->dl.rb_node); 2195 init_dl_task_timer(&p->dl); 2196 __dl_clear_params(p); 2197 2198 INIT_LIST_HEAD(&p->rt.run_list); 2199 p->rt.timeout = 0; 2200 p->rt.time_slice = sched_rr_timeslice; 2201 p->rt.on_rq = 0; 2202 p->rt.on_list = 0; 2203 2204 #ifdef CONFIG_PREEMPT_NOTIFIERS 2205 INIT_HLIST_HEAD(&p->preempt_notifiers); 2206 #endif 2207 2208 #ifdef CONFIG_NUMA_BALANCING 2209 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2210 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2211 p->mm->numa_scan_seq = 0; 2212 } 2213 2214 if (clone_flags & CLONE_VM) 2215 p->numa_preferred_nid = current->numa_preferred_nid; 2216 else 2217 p->numa_preferred_nid = -1; 2218 2219 p->node_stamp = 0ULL; 2220 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2221 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2222 p->numa_work.next = &p->numa_work; 2223 p->numa_faults = NULL; 2224 p->last_task_numa_placement = 0; 2225 p->last_sum_exec_runtime = 0; 2226 2227 p->numa_group = NULL; 2228 #endif /* CONFIG_NUMA_BALANCING */ 2229 } 2230 2231 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2232 2233 #ifdef CONFIG_NUMA_BALANCING 2234 2235 void set_numabalancing_state(bool enabled) 2236 { 2237 if (enabled) 2238 static_branch_enable(&sched_numa_balancing); 2239 else 2240 static_branch_disable(&sched_numa_balancing); 2241 } 2242 2243 #ifdef CONFIG_PROC_SYSCTL 2244 int sysctl_numa_balancing(struct ctl_table *table, int write, 2245 void __user *buffer, size_t *lenp, loff_t *ppos) 2246 { 2247 struct ctl_table t; 2248 int err; 2249 int state = static_branch_likely(&sched_numa_balancing); 2250 2251 if (write && !capable(CAP_SYS_ADMIN)) 2252 return -EPERM; 2253 2254 t = *table; 2255 t.data = &state; 2256 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2257 if (err < 0) 2258 return err; 2259 if (write) 2260 set_numabalancing_state(state); 2261 return err; 2262 } 2263 #endif 2264 #endif 2265 2266 #ifdef CONFIG_SCHEDSTATS 2267 2268 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2269 static bool __initdata __sched_schedstats = false; 2270 2271 static void set_schedstats(bool enabled) 2272 { 2273 if (enabled) 2274 static_branch_enable(&sched_schedstats); 2275 else 2276 static_branch_disable(&sched_schedstats); 2277 } 2278 2279 void force_schedstat_enabled(void) 2280 { 2281 if (!schedstat_enabled()) { 2282 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2283 static_branch_enable(&sched_schedstats); 2284 } 2285 } 2286 2287 static int __init setup_schedstats(char *str) 2288 { 2289 int ret = 0; 2290 if (!str) 2291 goto out; 2292 2293 /* 2294 * This code is called before jump labels have been set up, so we can't 2295 * change the static branch directly just yet. Instead set a temporary 2296 * variable so init_schedstats() can do it later. 2297 */ 2298 if (!strcmp(str, "enable")) { 2299 __sched_schedstats = true; 2300 ret = 1; 2301 } else if (!strcmp(str, "disable")) { 2302 __sched_schedstats = false; 2303 ret = 1; 2304 } 2305 out: 2306 if (!ret) 2307 pr_warn("Unable to parse schedstats=\n"); 2308 2309 return ret; 2310 } 2311 __setup("schedstats=", setup_schedstats); 2312 2313 static void __init init_schedstats(void) 2314 { 2315 set_schedstats(__sched_schedstats); 2316 } 2317 2318 #ifdef CONFIG_PROC_SYSCTL 2319 int sysctl_schedstats(struct ctl_table *table, int write, 2320 void __user *buffer, size_t *lenp, loff_t *ppos) 2321 { 2322 struct ctl_table t; 2323 int err; 2324 int state = static_branch_likely(&sched_schedstats); 2325 2326 if (write && !capable(CAP_SYS_ADMIN)) 2327 return -EPERM; 2328 2329 t = *table; 2330 t.data = &state; 2331 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2332 if (err < 0) 2333 return err; 2334 if (write) 2335 set_schedstats(state); 2336 return err; 2337 } 2338 #endif /* CONFIG_PROC_SYSCTL */ 2339 #else /* !CONFIG_SCHEDSTATS */ 2340 static inline void init_schedstats(void) {} 2341 #endif /* CONFIG_SCHEDSTATS */ 2342 2343 /* 2344 * fork()/clone()-time setup: 2345 */ 2346 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2347 { 2348 unsigned long flags; 2349 int cpu = get_cpu(); 2350 2351 __sched_fork(clone_flags, p); 2352 /* 2353 * We mark the process as NEW here. This guarantees that 2354 * nobody will actually run it, and a signal or other external 2355 * event cannot wake it up and insert it on the runqueue either. 2356 */ 2357 p->state = TASK_NEW; 2358 2359 /* 2360 * Make sure we do not leak PI boosting priority to the child. 2361 */ 2362 p->prio = current->normal_prio; 2363 2364 /* 2365 * Revert to default priority/policy on fork if requested. 2366 */ 2367 if (unlikely(p->sched_reset_on_fork)) { 2368 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2369 p->policy = SCHED_NORMAL; 2370 p->static_prio = NICE_TO_PRIO(0); 2371 p->rt_priority = 0; 2372 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2373 p->static_prio = NICE_TO_PRIO(0); 2374 2375 p->prio = p->normal_prio = __normal_prio(p); 2376 set_load_weight(p); 2377 2378 /* 2379 * We don't need the reset flag anymore after the fork. It has 2380 * fulfilled its duty: 2381 */ 2382 p->sched_reset_on_fork = 0; 2383 } 2384 2385 if (dl_prio(p->prio)) { 2386 put_cpu(); 2387 return -EAGAIN; 2388 } else if (rt_prio(p->prio)) { 2389 p->sched_class = &rt_sched_class; 2390 } else { 2391 p->sched_class = &fair_sched_class; 2392 } 2393 2394 init_entity_runnable_average(&p->se); 2395 2396 /* 2397 * The child is not yet in the pid-hash so no cgroup attach races, 2398 * and the cgroup is pinned to this child due to cgroup_fork() 2399 * is ran before sched_fork(). 2400 * 2401 * Silence PROVE_RCU. 2402 */ 2403 raw_spin_lock_irqsave(&p->pi_lock, flags); 2404 /* 2405 * We're setting the CPU for the first time, we don't migrate, 2406 * so use __set_task_cpu(). 2407 */ 2408 __set_task_cpu(p, cpu); 2409 if (p->sched_class->task_fork) 2410 p->sched_class->task_fork(p); 2411 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2412 2413 #ifdef CONFIG_SCHED_INFO 2414 if (likely(sched_info_on())) 2415 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2416 #endif 2417 #if defined(CONFIG_SMP) 2418 p->on_cpu = 0; 2419 #endif 2420 init_task_preempt_count(p); 2421 #ifdef CONFIG_SMP 2422 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2423 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2424 #endif 2425 2426 put_cpu(); 2427 return 0; 2428 } 2429 2430 unsigned long to_ratio(u64 period, u64 runtime) 2431 { 2432 if (runtime == RUNTIME_INF) 2433 return 1ULL << 20; 2434 2435 /* 2436 * Doing this here saves a lot of checks in all 2437 * the calling paths, and returning zero seems 2438 * safe for them anyway. 2439 */ 2440 if (period == 0) 2441 return 0; 2442 2443 return div64_u64(runtime << 20, period); 2444 } 2445 2446 #ifdef CONFIG_SMP 2447 inline struct dl_bw *dl_bw_of(int i) 2448 { 2449 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2450 "sched RCU must be held"); 2451 return &cpu_rq(i)->rd->dl_bw; 2452 } 2453 2454 static inline int dl_bw_cpus(int i) 2455 { 2456 struct root_domain *rd = cpu_rq(i)->rd; 2457 int cpus = 0; 2458 2459 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2460 "sched RCU must be held"); 2461 for_each_cpu_and(i, rd->span, cpu_active_mask) 2462 cpus++; 2463 2464 return cpus; 2465 } 2466 #else 2467 inline struct dl_bw *dl_bw_of(int i) 2468 { 2469 return &cpu_rq(i)->dl.dl_bw; 2470 } 2471 2472 static inline int dl_bw_cpus(int i) 2473 { 2474 return 1; 2475 } 2476 #endif 2477 2478 /* 2479 * We must be sure that accepting a new task (or allowing changing the 2480 * parameters of an existing one) is consistent with the bandwidth 2481 * constraints. If yes, this function also accordingly updates the currently 2482 * allocated bandwidth to reflect the new situation. 2483 * 2484 * This function is called while holding p's rq->lock. 2485 * 2486 * XXX we should delay bw change until the task's 0-lag point, see 2487 * __setparam_dl(). 2488 */ 2489 static int dl_overflow(struct task_struct *p, int policy, 2490 const struct sched_attr *attr) 2491 { 2492 2493 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2494 u64 period = attr->sched_period ?: attr->sched_deadline; 2495 u64 runtime = attr->sched_runtime; 2496 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2497 int cpus, err = -1; 2498 2499 /* !deadline task may carry old deadline bandwidth */ 2500 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2501 return 0; 2502 2503 /* 2504 * Either if a task, enters, leave, or stays -deadline but changes 2505 * its parameters, we may need to update accordingly the total 2506 * allocated bandwidth of the container. 2507 */ 2508 raw_spin_lock(&dl_b->lock); 2509 cpus = dl_bw_cpus(task_cpu(p)); 2510 if (dl_policy(policy) && !task_has_dl_policy(p) && 2511 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2512 __dl_add(dl_b, new_bw); 2513 err = 0; 2514 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2515 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2516 __dl_clear(dl_b, p->dl.dl_bw); 2517 __dl_add(dl_b, new_bw); 2518 err = 0; 2519 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2520 __dl_clear(dl_b, p->dl.dl_bw); 2521 err = 0; 2522 } 2523 raw_spin_unlock(&dl_b->lock); 2524 2525 return err; 2526 } 2527 2528 extern void init_dl_bw(struct dl_bw *dl_b); 2529 2530 /* 2531 * wake_up_new_task - wake up a newly created task for the first time. 2532 * 2533 * This function will do some initial scheduler statistics housekeeping 2534 * that must be done for every newly created context, then puts the task 2535 * on the runqueue and wakes it. 2536 */ 2537 void wake_up_new_task(struct task_struct *p) 2538 { 2539 struct rq_flags rf; 2540 struct rq *rq; 2541 2542 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2543 p->state = TASK_RUNNING; 2544 #ifdef CONFIG_SMP 2545 /* 2546 * Fork balancing, do it here and not earlier because: 2547 * - cpus_allowed can change in the fork path 2548 * - any previously selected CPU might disappear through hotplug 2549 * 2550 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2551 * as we're not fully set-up yet. 2552 */ 2553 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2554 #endif 2555 rq = __task_rq_lock(p, &rf); 2556 update_rq_clock(rq); 2557 post_init_entity_util_avg(&p->se); 2558 2559 activate_task(rq, p, ENQUEUE_NOCLOCK); 2560 p->on_rq = TASK_ON_RQ_QUEUED; 2561 trace_sched_wakeup_new(p); 2562 check_preempt_curr(rq, p, WF_FORK); 2563 #ifdef CONFIG_SMP 2564 if (p->sched_class->task_woken) { 2565 /* 2566 * Nothing relies on rq->lock after this, so its fine to 2567 * drop it. 2568 */ 2569 rq_unpin_lock(rq, &rf); 2570 p->sched_class->task_woken(rq, p); 2571 rq_repin_lock(rq, &rf); 2572 } 2573 #endif 2574 task_rq_unlock(rq, p, &rf); 2575 } 2576 2577 #ifdef CONFIG_PREEMPT_NOTIFIERS 2578 2579 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2580 2581 void preempt_notifier_inc(void) 2582 { 2583 static_key_slow_inc(&preempt_notifier_key); 2584 } 2585 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2586 2587 void preempt_notifier_dec(void) 2588 { 2589 static_key_slow_dec(&preempt_notifier_key); 2590 } 2591 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2592 2593 /** 2594 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2595 * @notifier: notifier struct to register 2596 */ 2597 void preempt_notifier_register(struct preempt_notifier *notifier) 2598 { 2599 if (!static_key_false(&preempt_notifier_key)) 2600 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2601 2602 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2603 } 2604 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2605 2606 /** 2607 * preempt_notifier_unregister - no longer interested in preemption notifications 2608 * @notifier: notifier struct to unregister 2609 * 2610 * This is *not* safe to call from within a preemption notifier. 2611 */ 2612 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2613 { 2614 hlist_del(¬ifier->link); 2615 } 2616 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2617 2618 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2619 { 2620 struct preempt_notifier *notifier; 2621 2622 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2623 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2624 } 2625 2626 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2627 { 2628 if (static_key_false(&preempt_notifier_key)) 2629 __fire_sched_in_preempt_notifiers(curr); 2630 } 2631 2632 static void 2633 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2634 struct task_struct *next) 2635 { 2636 struct preempt_notifier *notifier; 2637 2638 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2639 notifier->ops->sched_out(notifier, next); 2640 } 2641 2642 static __always_inline void 2643 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2644 struct task_struct *next) 2645 { 2646 if (static_key_false(&preempt_notifier_key)) 2647 __fire_sched_out_preempt_notifiers(curr, next); 2648 } 2649 2650 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2651 2652 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2653 { 2654 } 2655 2656 static inline void 2657 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2658 struct task_struct *next) 2659 { 2660 } 2661 2662 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2663 2664 /** 2665 * prepare_task_switch - prepare to switch tasks 2666 * @rq: the runqueue preparing to switch 2667 * @prev: the current task that is being switched out 2668 * @next: the task we are going to switch to. 2669 * 2670 * This is called with the rq lock held and interrupts off. It must 2671 * be paired with a subsequent finish_task_switch after the context 2672 * switch. 2673 * 2674 * prepare_task_switch sets up locking and calls architecture specific 2675 * hooks. 2676 */ 2677 static inline void 2678 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2679 struct task_struct *next) 2680 { 2681 sched_info_switch(rq, prev, next); 2682 perf_event_task_sched_out(prev, next); 2683 fire_sched_out_preempt_notifiers(prev, next); 2684 prepare_lock_switch(rq, next); 2685 prepare_arch_switch(next); 2686 } 2687 2688 /** 2689 * finish_task_switch - clean up after a task-switch 2690 * @prev: the thread we just switched away from. 2691 * 2692 * finish_task_switch must be called after the context switch, paired 2693 * with a prepare_task_switch call before the context switch. 2694 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2695 * and do any other architecture-specific cleanup actions. 2696 * 2697 * Note that we may have delayed dropping an mm in context_switch(). If 2698 * so, we finish that here outside of the runqueue lock. (Doing it 2699 * with the lock held can cause deadlocks; see schedule() for 2700 * details.) 2701 * 2702 * The context switch have flipped the stack from under us and restored the 2703 * local variables which were saved when this task called schedule() in the 2704 * past. prev == current is still correct but we need to recalculate this_rq 2705 * because prev may have moved to another CPU. 2706 */ 2707 static struct rq *finish_task_switch(struct task_struct *prev) 2708 __releases(rq->lock) 2709 { 2710 struct rq *rq = this_rq(); 2711 struct mm_struct *mm = rq->prev_mm; 2712 long prev_state; 2713 2714 /* 2715 * The previous task will have left us with a preempt_count of 2 2716 * because it left us after: 2717 * 2718 * schedule() 2719 * preempt_disable(); // 1 2720 * __schedule() 2721 * raw_spin_lock_irq(&rq->lock) // 2 2722 * 2723 * Also, see FORK_PREEMPT_COUNT. 2724 */ 2725 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2726 "corrupted preempt_count: %s/%d/0x%x\n", 2727 current->comm, current->pid, preempt_count())) 2728 preempt_count_set(FORK_PREEMPT_COUNT); 2729 2730 rq->prev_mm = NULL; 2731 2732 /* 2733 * A task struct has one reference for the use as "current". 2734 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2735 * schedule one last time. The schedule call will never return, and 2736 * the scheduled task must drop that reference. 2737 * 2738 * We must observe prev->state before clearing prev->on_cpu (in 2739 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2740 * running on another CPU and we could rave with its RUNNING -> DEAD 2741 * transition, resulting in a double drop. 2742 */ 2743 prev_state = prev->state; 2744 vtime_task_switch(prev); 2745 perf_event_task_sched_in(prev, current); 2746 finish_lock_switch(rq, prev); 2747 finish_arch_post_lock_switch(); 2748 2749 fire_sched_in_preempt_notifiers(current); 2750 if (mm) 2751 mmdrop(mm); 2752 if (unlikely(prev_state == TASK_DEAD)) { 2753 if (prev->sched_class->task_dead) 2754 prev->sched_class->task_dead(prev); 2755 2756 /* 2757 * Remove function-return probe instances associated with this 2758 * task and put them back on the free list. 2759 */ 2760 kprobe_flush_task(prev); 2761 2762 /* Task is done with its stack. */ 2763 put_task_stack(prev); 2764 2765 put_task_struct(prev); 2766 } 2767 2768 tick_nohz_task_switch(); 2769 return rq; 2770 } 2771 2772 #ifdef CONFIG_SMP 2773 2774 /* rq->lock is NOT held, but preemption is disabled */ 2775 static void __balance_callback(struct rq *rq) 2776 { 2777 struct callback_head *head, *next; 2778 void (*func)(struct rq *rq); 2779 unsigned long flags; 2780 2781 raw_spin_lock_irqsave(&rq->lock, flags); 2782 head = rq->balance_callback; 2783 rq->balance_callback = NULL; 2784 while (head) { 2785 func = (void (*)(struct rq *))head->func; 2786 next = head->next; 2787 head->next = NULL; 2788 head = next; 2789 2790 func(rq); 2791 } 2792 raw_spin_unlock_irqrestore(&rq->lock, flags); 2793 } 2794 2795 static inline void balance_callback(struct rq *rq) 2796 { 2797 if (unlikely(rq->balance_callback)) 2798 __balance_callback(rq); 2799 } 2800 2801 #else 2802 2803 static inline void balance_callback(struct rq *rq) 2804 { 2805 } 2806 2807 #endif 2808 2809 /** 2810 * schedule_tail - first thing a freshly forked thread must call. 2811 * @prev: the thread we just switched away from. 2812 */ 2813 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2814 __releases(rq->lock) 2815 { 2816 struct rq *rq; 2817 2818 /* 2819 * New tasks start with FORK_PREEMPT_COUNT, see there and 2820 * finish_task_switch() for details. 2821 * 2822 * finish_task_switch() will drop rq->lock() and lower preempt_count 2823 * and the preempt_enable() will end up enabling preemption (on 2824 * PREEMPT_COUNT kernels). 2825 */ 2826 2827 rq = finish_task_switch(prev); 2828 balance_callback(rq); 2829 preempt_enable(); 2830 2831 if (current->set_child_tid) 2832 put_user(task_pid_vnr(current), current->set_child_tid); 2833 } 2834 2835 /* 2836 * context_switch - switch to the new MM and the new thread's register state. 2837 */ 2838 static __always_inline struct rq * 2839 context_switch(struct rq *rq, struct task_struct *prev, 2840 struct task_struct *next, struct rq_flags *rf) 2841 { 2842 struct mm_struct *mm, *oldmm; 2843 2844 prepare_task_switch(rq, prev, next); 2845 2846 mm = next->mm; 2847 oldmm = prev->active_mm; 2848 /* 2849 * For paravirt, this is coupled with an exit in switch_to to 2850 * combine the page table reload and the switch backend into 2851 * one hypercall. 2852 */ 2853 arch_start_context_switch(prev); 2854 2855 if (!mm) { 2856 next->active_mm = oldmm; 2857 mmgrab(oldmm); 2858 enter_lazy_tlb(oldmm, next); 2859 } else 2860 switch_mm_irqs_off(oldmm, mm, next); 2861 2862 if (!prev->mm) { 2863 prev->active_mm = NULL; 2864 rq->prev_mm = oldmm; 2865 } 2866 2867 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2868 2869 /* 2870 * Since the runqueue lock will be released by the next 2871 * task (which is an invalid locking op but in the case 2872 * of the scheduler it's an obvious special-case), so we 2873 * do an early lockdep release here: 2874 */ 2875 rq_unpin_lock(rq, rf); 2876 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2877 2878 /* Here we just switch the register state and the stack. */ 2879 switch_to(prev, next, prev); 2880 barrier(); 2881 2882 return finish_task_switch(prev); 2883 } 2884 2885 /* 2886 * nr_running and nr_context_switches: 2887 * 2888 * externally visible scheduler statistics: current number of runnable 2889 * threads, total number of context switches performed since bootup. 2890 */ 2891 unsigned long nr_running(void) 2892 { 2893 unsigned long i, sum = 0; 2894 2895 for_each_online_cpu(i) 2896 sum += cpu_rq(i)->nr_running; 2897 2898 return sum; 2899 } 2900 2901 /* 2902 * Check if only the current task is running on the CPU. 2903 * 2904 * Caution: this function does not check that the caller has disabled 2905 * preemption, thus the result might have a time-of-check-to-time-of-use 2906 * race. The caller is responsible to use it correctly, for example: 2907 * 2908 * - from a non-preemptable section (of course) 2909 * 2910 * - from a thread that is bound to a single CPU 2911 * 2912 * - in a loop with very short iterations (e.g. a polling loop) 2913 */ 2914 bool single_task_running(void) 2915 { 2916 return raw_rq()->nr_running == 1; 2917 } 2918 EXPORT_SYMBOL(single_task_running); 2919 2920 unsigned long long nr_context_switches(void) 2921 { 2922 int i; 2923 unsigned long long sum = 0; 2924 2925 for_each_possible_cpu(i) 2926 sum += cpu_rq(i)->nr_switches; 2927 2928 return sum; 2929 } 2930 2931 /* 2932 * IO-wait accounting, and how its mostly bollocks (on SMP). 2933 * 2934 * The idea behind IO-wait account is to account the idle time that we could 2935 * have spend running if it were not for IO. That is, if we were to improve the 2936 * storage performance, we'd have a proportional reduction in IO-wait time. 2937 * 2938 * This all works nicely on UP, where, when a task blocks on IO, we account 2939 * idle time as IO-wait, because if the storage were faster, it could've been 2940 * running and we'd not be idle. 2941 * 2942 * This has been extended to SMP, by doing the same for each CPU. This however 2943 * is broken. 2944 * 2945 * Imagine for instance the case where two tasks block on one CPU, only the one 2946 * CPU will have IO-wait accounted, while the other has regular idle. Even 2947 * though, if the storage were faster, both could've ran at the same time, 2948 * utilising both CPUs. 2949 * 2950 * This means, that when looking globally, the current IO-wait accounting on 2951 * SMP is a lower bound, by reason of under accounting. 2952 * 2953 * Worse, since the numbers are provided per CPU, they are sometimes 2954 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2955 * associated with any one particular CPU, it can wake to another CPU than it 2956 * blocked on. This means the per CPU IO-wait number is meaningless. 2957 * 2958 * Task CPU affinities can make all that even more 'interesting'. 2959 */ 2960 2961 unsigned long nr_iowait(void) 2962 { 2963 unsigned long i, sum = 0; 2964 2965 for_each_possible_cpu(i) 2966 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2967 2968 return sum; 2969 } 2970 2971 /* 2972 * Consumers of these two interfaces, like for example the cpufreq menu 2973 * governor are using nonsensical data. Boosting frequency for a CPU that has 2974 * IO-wait which might not even end up running the task when it does become 2975 * runnable. 2976 */ 2977 2978 unsigned long nr_iowait_cpu(int cpu) 2979 { 2980 struct rq *this = cpu_rq(cpu); 2981 return atomic_read(&this->nr_iowait); 2982 } 2983 2984 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2985 { 2986 struct rq *rq = this_rq(); 2987 *nr_waiters = atomic_read(&rq->nr_iowait); 2988 *load = rq->load.weight; 2989 } 2990 2991 #ifdef CONFIG_SMP 2992 2993 /* 2994 * sched_exec - execve() is a valuable balancing opportunity, because at 2995 * this point the task has the smallest effective memory and cache footprint. 2996 */ 2997 void sched_exec(void) 2998 { 2999 struct task_struct *p = current; 3000 unsigned long flags; 3001 int dest_cpu; 3002 3003 raw_spin_lock_irqsave(&p->pi_lock, flags); 3004 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3005 if (dest_cpu == smp_processor_id()) 3006 goto unlock; 3007 3008 if (likely(cpu_active(dest_cpu))) { 3009 struct migration_arg arg = { p, dest_cpu }; 3010 3011 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3012 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3013 return; 3014 } 3015 unlock: 3016 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3017 } 3018 3019 #endif 3020 3021 DEFINE_PER_CPU(struct kernel_stat, kstat); 3022 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3023 3024 EXPORT_PER_CPU_SYMBOL(kstat); 3025 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3026 3027 /* 3028 * The function fair_sched_class.update_curr accesses the struct curr 3029 * and its field curr->exec_start; when called from task_sched_runtime(), 3030 * we observe a high rate of cache misses in practice. 3031 * Prefetching this data results in improved performance. 3032 */ 3033 static inline void prefetch_curr_exec_start(struct task_struct *p) 3034 { 3035 #ifdef CONFIG_FAIR_GROUP_SCHED 3036 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3037 #else 3038 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3039 #endif 3040 prefetch(curr); 3041 prefetch(&curr->exec_start); 3042 } 3043 3044 /* 3045 * Return accounted runtime for the task. 3046 * In case the task is currently running, return the runtime plus current's 3047 * pending runtime that have not been accounted yet. 3048 */ 3049 unsigned long long task_sched_runtime(struct task_struct *p) 3050 { 3051 struct rq_flags rf; 3052 struct rq *rq; 3053 u64 ns; 3054 3055 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3056 /* 3057 * 64-bit doesn't need locks to atomically read a 64bit value. 3058 * So we have a optimization chance when the task's delta_exec is 0. 3059 * Reading ->on_cpu is racy, but this is ok. 3060 * 3061 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3062 * If we race with it entering CPU, unaccounted time is 0. This is 3063 * indistinguishable from the read occurring a few cycles earlier. 3064 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3065 * been accounted, so we're correct here as well. 3066 */ 3067 if (!p->on_cpu || !task_on_rq_queued(p)) 3068 return p->se.sum_exec_runtime; 3069 #endif 3070 3071 rq = task_rq_lock(p, &rf); 3072 /* 3073 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3074 * project cycles that may never be accounted to this 3075 * thread, breaking clock_gettime(). 3076 */ 3077 if (task_current(rq, p) && task_on_rq_queued(p)) { 3078 prefetch_curr_exec_start(p); 3079 update_rq_clock(rq); 3080 p->sched_class->update_curr(rq); 3081 } 3082 ns = p->se.sum_exec_runtime; 3083 task_rq_unlock(rq, p, &rf); 3084 3085 return ns; 3086 } 3087 3088 /* 3089 * This function gets called by the timer code, with HZ frequency. 3090 * We call it with interrupts disabled. 3091 */ 3092 void scheduler_tick(void) 3093 { 3094 int cpu = smp_processor_id(); 3095 struct rq *rq = cpu_rq(cpu); 3096 struct task_struct *curr = rq->curr; 3097 struct rq_flags rf; 3098 3099 sched_clock_tick(); 3100 3101 rq_lock(rq, &rf); 3102 3103 update_rq_clock(rq); 3104 curr->sched_class->task_tick(rq, curr, 0); 3105 cpu_load_update_active(rq); 3106 calc_global_load_tick(rq); 3107 3108 rq_unlock(rq, &rf); 3109 3110 perf_event_task_tick(); 3111 3112 #ifdef CONFIG_SMP 3113 rq->idle_balance = idle_cpu(cpu); 3114 trigger_load_balance(rq); 3115 #endif 3116 rq_last_tick_reset(rq); 3117 } 3118 3119 #ifdef CONFIG_NO_HZ_FULL 3120 /** 3121 * scheduler_tick_max_deferment 3122 * 3123 * Keep at least one tick per second when a single 3124 * active task is running because the scheduler doesn't 3125 * yet completely support full dynticks environment. 3126 * 3127 * This makes sure that uptime, CFS vruntime, load 3128 * balancing, etc... continue to move forward, even 3129 * with a very low granularity. 3130 * 3131 * Return: Maximum deferment in nanoseconds. 3132 */ 3133 u64 scheduler_tick_max_deferment(void) 3134 { 3135 struct rq *rq = this_rq(); 3136 unsigned long next, now = READ_ONCE(jiffies); 3137 3138 next = rq->last_sched_tick + HZ; 3139 3140 if (time_before_eq(next, now)) 3141 return 0; 3142 3143 return jiffies_to_nsecs(next - now); 3144 } 3145 #endif 3146 3147 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3148 defined(CONFIG_PREEMPT_TRACER)) 3149 /* 3150 * If the value passed in is equal to the current preempt count 3151 * then we just disabled preemption. Start timing the latency. 3152 */ 3153 static inline void preempt_latency_start(int val) 3154 { 3155 if (preempt_count() == val) { 3156 unsigned long ip = get_lock_parent_ip(); 3157 #ifdef CONFIG_DEBUG_PREEMPT 3158 current->preempt_disable_ip = ip; 3159 #endif 3160 trace_preempt_off(CALLER_ADDR0, ip); 3161 } 3162 } 3163 3164 void preempt_count_add(int val) 3165 { 3166 #ifdef CONFIG_DEBUG_PREEMPT 3167 /* 3168 * Underflow? 3169 */ 3170 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3171 return; 3172 #endif 3173 __preempt_count_add(val); 3174 #ifdef CONFIG_DEBUG_PREEMPT 3175 /* 3176 * Spinlock count overflowing soon? 3177 */ 3178 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3179 PREEMPT_MASK - 10); 3180 #endif 3181 preempt_latency_start(val); 3182 } 3183 EXPORT_SYMBOL(preempt_count_add); 3184 NOKPROBE_SYMBOL(preempt_count_add); 3185 3186 /* 3187 * If the value passed in equals to the current preempt count 3188 * then we just enabled preemption. Stop timing the latency. 3189 */ 3190 static inline void preempt_latency_stop(int val) 3191 { 3192 if (preempt_count() == val) 3193 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3194 } 3195 3196 void preempt_count_sub(int val) 3197 { 3198 #ifdef CONFIG_DEBUG_PREEMPT 3199 /* 3200 * Underflow? 3201 */ 3202 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3203 return; 3204 /* 3205 * Is the spinlock portion underflowing? 3206 */ 3207 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3208 !(preempt_count() & PREEMPT_MASK))) 3209 return; 3210 #endif 3211 3212 preempt_latency_stop(val); 3213 __preempt_count_sub(val); 3214 } 3215 EXPORT_SYMBOL(preempt_count_sub); 3216 NOKPROBE_SYMBOL(preempt_count_sub); 3217 3218 #else 3219 static inline void preempt_latency_start(int val) { } 3220 static inline void preempt_latency_stop(int val) { } 3221 #endif 3222 3223 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3224 { 3225 #ifdef CONFIG_DEBUG_PREEMPT 3226 return p->preempt_disable_ip; 3227 #else 3228 return 0; 3229 #endif 3230 } 3231 3232 /* 3233 * Print scheduling while atomic bug: 3234 */ 3235 static noinline void __schedule_bug(struct task_struct *prev) 3236 { 3237 /* Save this before calling printk(), since that will clobber it */ 3238 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3239 3240 if (oops_in_progress) 3241 return; 3242 3243 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3244 prev->comm, prev->pid, preempt_count()); 3245 3246 debug_show_held_locks(prev); 3247 print_modules(); 3248 if (irqs_disabled()) 3249 print_irqtrace_events(prev); 3250 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3251 && in_atomic_preempt_off()) { 3252 pr_err("Preemption disabled at:"); 3253 print_ip_sym(preempt_disable_ip); 3254 pr_cont("\n"); 3255 } 3256 if (panic_on_warn) 3257 panic("scheduling while atomic\n"); 3258 3259 dump_stack(); 3260 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3261 } 3262 3263 /* 3264 * Various schedule()-time debugging checks and statistics: 3265 */ 3266 static inline void schedule_debug(struct task_struct *prev) 3267 { 3268 #ifdef CONFIG_SCHED_STACK_END_CHECK 3269 if (task_stack_end_corrupted(prev)) 3270 panic("corrupted stack end detected inside scheduler\n"); 3271 #endif 3272 3273 if (unlikely(in_atomic_preempt_off())) { 3274 __schedule_bug(prev); 3275 preempt_count_set(PREEMPT_DISABLED); 3276 } 3277 rcu_sleep_check(); 3278 3279 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3280 3281 schedstat_inc(this_rq()->sched_count); 3282 } 3283 3284 /* 3285 * Pick up the highest-prio task: 3286 */ 3287 static inline struct task_struct * 3288 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3289 { 3290 const struct sched_class *class; 3291 struct task_struct *p; 3292 3293 /* 3294 * Optimization: we know that if all tasks are in the fair class we can 3295 * call that function directly, but only if the @prev task wasn't of a 3296 * higher scheduling class, because otherwise those loose the 3297 * opportunity to pull in more work from other CPUs. 3298 */ 3299 if (likely((prev->sched_class == &idle_sched_class || 3300 prev->sched_class == &fair_sched_class) && 3301 rq->nr_running == rq->cfs.h_nr_running)) { 3302 3303 p = fair_sched_class.pick_next_task(rq, prev, rf); 3304 if (unlikely(p == RETRY_TASK)) 3305 goto again; 3306 3307 /* Assumes fair_sched_class->next == idle_sched_class */ 3308 if (unlikely(!p)) 3309 p = idle_sched_class.pick_next_task(rq, prev, rf); 3310 3311 return p; 3312 } 3313 3314 again: 3315 for_each_class(class) { 3316 p = class->pick_next_task(rq, prev, rf); 3317 if (p) { 3318 if (unlikely(p == RETRY_TASK)) 3319 goto again; 3320 return p; 3321 } 3322 } 3323 3324 /* The idle class should always have a runnable task: */ 3325 BUG(); 3326 } 3327 3328 /* 3329 * __schedule() is the main scheduler function. 3330 * 3331 * The main means of driving the scheduler and thus entering this function are: 3332 * 3333 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3334 * 3335 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3336 * paths. For example, see arch/x86/entry_64.S. 3337 * 3338 * To drive preemption between tasks, the scheduler sets the flag in timer 3339 * interrupt handler scheduler_tick(). 3340 * 3341 * 3. Wakeups don't really cause entry into schedule(). They add a 3342 * task to the run-queue and that's it. 3343 * 3344 * Now, if the new task added to the run-queue preempts the current 3345 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3346 * called on the nearest possible occasion: 3347 * 3348 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3349 * 3350 * - in syscall or exception context, at the next outmost 3351 * preempt_enable(). (this might be as soon as the wake_up()'s 3352 * spin_unlock()!) 3353 * 3354 * - in IRQ context, return from interrupt-handler to 3355 * preemptible context 3356 * 3357 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3358 * then at the next: 3359 * 3360 * - cond_resched() call 3361 * - explicit schedule() call 3362 * - return from syscall or exception to user-space 3363 * - return from interrupt-handler to user-space 3364 * 3365 * WARNING: must be called with preemption disabled! 3366 */ 3367 static void __sched notrace __schedule(bool preempt) 3368 { 3369 struct task_struct *prev, *next; 3370 unsigned long *switch_count; 3371 struct rq_flags rf; 3372 struct rq *rq; 3373 int cpu; 3374 3375 cpu = smp_processor_id(); 3376 rq = cpu_rq(cpu); 3377 prev = rq->curr; 3378 3379 schedule_debug(prev); 3380 3381 if (sched_feat(HRTICK)) 3382 hrtick_clear(rq); 3383 3384 local_irq_disable(); 3385 rcu_note_context_switch(preempt); 3386 3387 /* 3388 * Make sure that signal_pending_state()->signal_pending() below 3389 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3390 * done by the caller to avoid the race with signal_wake_up(). 3391 */ 3392 smp_mb__before_spinlock(); 3393 rq_lock(rq, &rf); 3394 3395 /* Promote REQ to ACT */ 3396 rq->clock_update_flags <<= 1; 3397 update_rq_clock(rq); 3398 3399 switch_count = &prev->nivcsw; 3400 if (!preempt && prev->state) { 3401 if (unlikely(signal_pending_state(prev->state, prev))) { 3402 prev->state = TASK_RUNNING; 3403 } else { 3404 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3405 prev->on_rq = 0; 3406 3407 if (prev->in_iowait) { 3408 atomic_inc(&rq->nr_iowait); 3409 delayacct_blkio_start(); 3410 } 3411 3412 /* 3413 * If a worker went to sleep, notify and ask workqueue 3414 * whether it wants to wake up a task to maintain 3415 * concurrency. 3416 */ 3417 if (prev->flags & PF_WQ_WORKER) { 3418 struct task_struct *to_wakeup; 3419 3420 to_wakeup = wq_worker_sleeping(prev); 3421 if (to_wakeup) 3422 try_to_wake_up_local(to_wakeup, &rf); 3423 } 3424 } 3425 switch_count = &prev->nvcsw; 3426 } 3427 3428 next = pick_next_task(rq, prev, &rf); 3429 clear_tsk_need_resched(prev); 3430 clear_preempt_need_resched(); 3431 3432 if (likely(prev != next)) { 3433 rq->nr_switches++; 3434 rq->curr = next; 3435 ++*switch_count; 3436 3437 trace_sched_switch(preempt, prev, next); 3438 3439 /* Also unlocks the rq: */ 3440 rq = context_switch(rq, prev, next, &rf); 3441 } else { 3442 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3443 rq_unlock_irq(rq, &rf); 3444 } 3445 3446 balance_callback(rq); 3447 } 3448 3449 void __noreturn do_task_dead(void) 3450 { 3451 /* 3452 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 3453 * when the following two conditions become true. 3454 * - There is race condition of mmap_sem (It is acquired by 3455 * exit_mm()), and 3456 * - SMI occurs before setting TASK_RUNINNG. 3457 * (or hypervisor of virtual machine switches to other guest) 3458 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 3459 * 3460 * To avoid it, we have to wait for releasing tsk->pi_lock which 3461 * is held by try_to_wake_up() 3462 */ 3463 smp_mb(); 3464 raw_spin_unlock_wait(¤t->pi_lock); 3465 3466 /* Causes final put_task_struct in finish_task_switch(): */ 3467 __set_current_state(TASK_DEAD); 3468 3469 /* Tell freezer to ignore us: */ 3470 current->flags |= PF_NOFREEZE; 3471 3472 __schedule(false); 3473 BUG(); 3474 3475 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3476 for (;;) 3477 cpu_relax(); 3478 } 3479 3480 static inline void sched_submit_work(struct task_struct *tsk) 3481 { 3482 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3483 return; 3484 /* 3485 * If we are going to sleep and we have plugged IO queued, 3486 * make sure to submit it to avoid deadlocks. 3487 */ 3488 if (blk_needs_flush_plug(tsk)) 3489 blk_schedule_flush_plug(tsk); 3490 } 3491 3492 asmlinkage __visible void __sched schedule(void) 3493 { 3494 struct task_struct *tsk = current; 3495 3496 sched_submit_work(tsk); 3497 do { 3498 preempt_disable(); 3499 __schedule(false); 3500 sched_preempt_enable_no_resched(); 3501 } while (need_resched()); 3502 } 3503 EXPORT_SYMBOL(schedule); 3504 3505 /* 3506 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3507 * state (have scheduled out non-voluntarily) by making sure that all 3508 * tasks have either left the run queue or have gone into user space. 3509 * As idle tasks do not do either, they must not ever be preempted 3510 * (schedule out non-voluntarily). 3511 * 3512 * schedule_idle() is similar to schedule_preempt_disable() except that it 3513 * never enables preemption because it does not call sched_submit_work(). 3514 */ 3515 void __sched schedule_idle(void) 3516 { 3517 /* 3518 * As this skips calling sched_submit_work(), which the idle task does 3519 * regardless because that function is a nop when the task is in a 3520 * TASK_RUNNING state, make sure this isn't used someplace that the 3521 * current task can be in any other state. Note, idle is always in the 3522 * TASK_RUNNING state. 3523 */ 3524 WARN_ON_ONCE(current->state); 3525 do { 3526 __schedule(false); 3527 } while (need_resched()); 3528 } 3529 3530 #ifdef CONFIG_CONTEXT_TRACKING 3531 asmlinkage __visible void __sched schedule_user(void) 3532 { 3533 /* 3534 * If we come here after a random call to set_need_resched(), 3535 * or we have been woken up remotely but the IPI has not yet arrived, 3536 * we haven't yet exited the RCU idle mode. Do it here manually until 3537 * we find a better solution. 3538 * 3539 * NB: There are buggy callers of this function. Ideally we 3540 * should warn if prev_state != CONTEXT_USER, but that will trigger 3541 * too frequently to make sense yet. 3542 */ 3543 enum ctx_state prev_state = exception_enter(); 3544 schedule(); 3545 exception_exit(prev_state); 3546 } 3547 #endif 3548 3549 /** 3550 * schedule_preempt_disabled - called with preemption disabled 3551 * 3552 * Returns with preemption disabled. Note: preempt_count must be 1 3553 */ 3554 void __sched schedule_preempt_disabled(void) 3555 { 3556 sched_preempt_enable_no_resched(); 3557 schedule(); 3558 preempt_disable(); 3559 } 3560 3561 static void __sched notrace preempt_schedule_common(void) 3562 { 3563 do { 3564 /* 3565 * Because the function tracer can trace preempt_count_sub() 3566 * and it also uses preempt_enable/disable_notrace(), if 3567 * NEED_RESCHED is set, the preempt_enable_notrace() called 3568 * by the function tracer will call this function again and 3569 * cause infinite recursion. 3570 * 3571 * Preemption must be disabled here before the function 3572 * tracer can trace. Break up preempt_disable() into two 3573 * calls. One to disable preemption without fear of being 3574 * traced. The other to still record the preemption latency, 3575 * which can also be traced by the function tracer. 3576 */ 3577 preempt_disable_notrace(); 3578 preempt_latency_start(1); 3579 __schedule(true); 3580 preempt_latency_stop(1); 3581 preempt_enable_no_resched_notrace(); 3582 3583 /* 3584 * Check again in case we missed a preemption opportunity 3585 * between schedule and now. 3586 */ 3587 } while (need_resched()); 3588 } 3589 3590 #ifdef CONFIG_PREEMPT 3591 /* 3592 * this is the entry point to schedule() from in-kernel preemption 3593 * off of preempt_enable. Kernel preemptions off return from interrupt 3594 * occur there and call schedule directly. 3595 */ 3596 asmlinkage __visible void __sched notrace preempt_schedule(void) 3597 { 3598 /* 3599 * If there is a non-zero preempt_count or interrupts are disabled, 3600 * we do not want to preempt the current task. Just return.. 3601 */ 3602 if (likely(!preemptible())) 3603 return; 3604 3605 preempt_schedule_common(); 3606 } 3607 NOKPROBE_SYMBOL(preempt_schedule); 3608 EXPORT_SYMBOL(preempt_schedule); 3609 3610 /** 3611 * preempt_schedule_notrace - preempt_schedule called by tracing 3612 * 3613 * The tracing infrastructure uses preempt_enable_notrace to prevent 3614 * recursion and tracing preempt enabling caused by the tracing 3615 * infrastructure itself. But as tracing can happen in areas coming 3616 * from userspace or just about to enter userspace, a preempt enable 3617 * can occur before user_exit() is called. This will cause the scheduler 3618 * to be called when the system is still in usermode. 3619 * 3620 * To prevent this, the preempt_enable_notrace will use this function 3621 * instead of preempt_schedule() to exit user context if needed before 3622 * calling the scheduler. 3623 */ 3624 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3625 { 3626 enum ctx_state prev_ctx; 3627 3628 if (likely(!preemptible())) 3629 return; 3630 3631 do { 3632 /* 3633 * Because the function tracer can trace preempt_count_sub() 3634 * and it also uses preempt_enable/disable_notrace(), if 3635 * NEED_RESCHED is set, the preempt_enable_notrace() called 3636 * by the function tracer will call this function again and 3637 * cause infinite recursion. 3638 * 3639 * Preemption must be disabled here before the function 3640 * tracer can trace. Break up preempt_disable() into two 3641 * calls. One to disable preemption without fear of being 3642 * traced. The other to still record the preemption latency, 3643 * which can also be traced by the function tracer. 3644 */ 3645 preempt_disable_notrace(); 3646 preempt_latency_start(1); 3647 /* 3648 * Needs preempt disabled in case user_exit() is traced 3649 * and the tracer calls preempt_enable_notrace() causing 3650 * an infinite recursion. 3651 */ 3652 prev_ctx = exception_enter(); 3653 __schedule(true); 3654 exception_exit(prev_ctx); 3655 3656 preempt_latency_stop(1); 3657 preempt_enable_no_resched_notrace(); 3658 } while (need_resched()); 3659 } 3660 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3661 3662 #endif /* CONFIG_PREEMPT */ 3663 3664 /* 3665 * this is the entry point to schedule() from kernel preemption 3666 * off of irq context. 3667 * Note, that this is called and return with irqs disabled. This will 3668 * protect us against recursive calling from irq. 3669 */ 3670 asmlinkage __visible void __sched preempt_schedule_irq(void) 3671 { 3672 enum ctx_state prev_state; 3673 3674 /* Catch callers which need to be fixed */ 3675 BUG_ON(preempt_count() || !irqs_disabled()); 3676 3677 prev_state = exception_enter(); 3678 3679 do { 3680 preempt_disable(); 3681 local_irq_enable(); 3682 __schedule(true); 3683 local_irq_disable(); 3684 sched_preempt_enable_no_resched(); 3685 } while (need_resched()); 3686 3687 exception_exit(prev_state); 3688 } 3689 3690 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3691 void *key) 3692 { 3693 return try_to_wake_up(curr->private, mode, wake_flags); 3694 } 3695 EXPORT_SYMBOL(default_wake_function); 3696 3697 #ifdef CONFIG_RT_MUTEXES 3698 3699 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3700 { 3701 if (pi_task) 3702 prio = min(prio, pi_task->prio); 3703 3704 return prio; 3705 } 3706 3707 static inline int rt_effective_prio(struct task_struct *p, int prio) 3708 { 3709 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3710 3711 return __rt_effective_prio(pi_task, prio); 3712 } 3713 3714 /* 3715 * rt_mutex_setprio - set the current priority of a task 3716 * @p: task to boost 3717 * @pi_task: donor task 3718 * 3719 * This function changes the 'effective' priority of a task. It does 3720 * not touch ->normal_prio like __setscheduler(). 3721 * 3722 * Used by the rt_mutex code to implement priority inheritance 3723 * logic. Call site only calls if the priority of the task changed. 3724 */ 3725 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3726 { 3727 int prio, oldprio, queued, running, queue_flag = 3728 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3729 const struct sched_class *prev_class; 3730 struct rq_flags rf; 3731 struct rq *rq; 3732 3733 /* XXX used to be waiter->prio, not waiter->task->prio */ 3734 prio = __rt_effective_prio(pi_task, p->normal_prio); 3735 3736 /* 3737 * If nothing changed; bail early. 3738 */ 3739 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3740 return; 3741 3742 rq = __task_rq_lock(p, &rf); 3743 update_rq_clock(rq); 3744 /* 3745 * Set under pi_lock && rq->lock, such that the value can be used under 3746 * either lock. 3747 * 3748 * Note that there is loads of tricky to make this pointer cache work 3749 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3750 * ensure a task is de-boosted (pi_task is set to NULL) before the 3751 * task is allowed to run again (and can exit). This ensures the pointer 3752 * points to a blocked task -- which guaratees the task is present. 3753 */ 3754 p->pi_top_task = pi_task; 3755 3756 /* 3757 * For FIFO/RR we only need to set prio, if that matches we're done. 3758 */ 3759 if (prio == p->prio && !dl_prio(prio)) 3760 goto out_unlock; 3761 3762 /* 3763 * Idle task boosting is a nono in general. There is one 3764 * exception, when PREEMPT_RT and NOHZ is active: 3765 * 3766 * The idle task calls get_next_timer_interrupt() and holds 3767 * the timer wheel base->lock on the CPU and another CPU wants 3768 * to access the timer (probably to cancel it). We can safely 3769 * ignore the boosting request, as the idle CPU runs this code 3770 * with interrupts disabled and will complete the lock 3771 * protected section without being interrupted. So there is no 3772 * real need to boost. 3773 */ 3774 if (unlikely(p == rq->idle)) { 3775 WARN_ON(p != rq->curr); 3776 WARN_ON(p->pi_blocked_on); 3777 goto out_unlock; 3778 } 3779 3780 trace_sched_pi_setprio(p, pi_task); 3781 oldprio = p->prio; 3782 3783 if (oldprio == prio) 3784 queue_flag &= ~DEQUEUE_MOVE; 3785 3786 prev_class = p->sched_class; 3787 queued = task_on_rq_queued(p); 3788 running = task_current(rq, p); 3789 if (queued) 3790 dequeue_task(rq, p, queue_flag); 3791 if (running) 3792 put_prev_task(rq, p); 3793 3794 /* 3795 * Boosting condition are: 3796 * 1. -rt task is running and holds mutex A 3797 * --> -dl task blocks on mutex A 3798 * 3799 * 2. -dl task is running and holds mutex A 3800 * --> -dl task blocks on mutex A and could preempt the 3801 * running task 3802 */ 3803 if (dl_prio(prio)) { 3804 if (!dl_prio(p->normal_prio) || 3805 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3806 p->dl.dl_boosted = 1; 3807 queue_flag |= ENQUEUE_REPLENISH; 3808 } else 3809 p->dl.dl_boosted = 0; 3810 p->sched_class = &dl_sched_class; 3811 } else if (rt_prio(prio)) { 3812 if (dl_prio(oldprio)) 3813 p->dl.dl_boosted = 0; 3814 if (oldprio < prio) 3815 queue_flag |= ENQUEUE_HEAD; 3816 p->sched_class = &rt_sched_class; 3817 } else { 3818 if (dl_prio(oldprio)) 3819 p->dl.dl_boosted = 0; 3820 if (rt_prio(oldprio)) 3821 p->rt.timeout = 0; 3822 p->sched_class = &fair_sched_class; 3823 } 3824 3825 p->prio = prio; 3826 3827 if (queued) 3828 enqueue_task(rq, p, queue_flag); 3829 if (running) 3830 set_curr_task(rq, p); 3831 3832 check_class_changed(rq, p, prev_class, oldprio); 3833 out_unlock: 3834 /* Avoid rq from going away on us: */ 3835 preempt_disable(); 3836 __task_rq_unlock(rq, &rf); 3837 3838 balance_callback(rq); 3839 preempt_enable(); 3840 } 3841 #else 3842 static inline int rt_effective_prio(struct task_struct *p, int prio) 3843 { 3844 return prio; 3845 } 3846 #endif 3847 3848 void set_user_nice(struct task_struct *p, long nice) 3849 { 3850 bool queued, running; 3851 int old_prio, delta; 3852 struct rq_flags rf; 3853 struct rq *rq; 3854 3855 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3856 return; 3857 /* 3858 * We have to be careful, if called from sys_setpriority(), 3859 * the task might be in the middle of scheduling on another CPU. 3860 */ 3861 rq = task_rq_lock(p, &rf); 3862 update_rq_clock(rq); 3863 3864 /* 3865 * The RT priorities are set via sched_setscheduler(), but we still 3866 * allow the 'normal' nice value to be set - but as expected 3867 * it wont have any effect on scheduling until the task is 3868 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3869 */ 3870 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3871 p->static_prio = NICE_TO_PRIO(nice); 3872 goto out_unlock; 3873 } 3874 queued = task_on_rq_queued(p); 3875 running = task_current(rq, p); 3876 if (queued) 3877 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3878 if (running) 3879 put_prev_task(rq, p); 3880 3881 p->static_prio = NICE_TO_PRIO(nice); 3882 set_load_weight(p); 3883 old_prio = p->prio; 3884 p->prio = effective_prio(p); 3885 delta = p->prio - old_prio; 3886 3887 if (queued) { 3888 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3889 /* 3890 * If the task increased its priority or is running and 3891 * lowered its priority, then reschedule its CPU: 3892 */ 3893 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3894 resched_curr(rq); 3895 } 3896 if (running) 3897 set_curr_task(rq, p); 3898 out_unlock: 3899 task_rq_unlock(rq, p, &rf); 3900 } 3901 EXPORT_SYMBOL(set_user_nice); 3902 3903 /* 3904 * can_nice - check if a task can reduce its nice value 3905 * @p: task 3906 * @nice: nice value 3907 */ 3908 int can_nice(const struct task_struct *p, const int nice) 3909 { 3910 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3911 int nice_rlim = nice_to_rlimit(nice); 3912 3913 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3914 capable(CAP_SYS_NICE)); 3915 } 3916 3917 #ifdef __ARCH_WANT_SYS_NICE 3918 3919 /* 3920 * sys_nice - change the priority of the current process. 3921 * @increment: priority increment 3922 * 3923 * sys_setpriority is a more generic, but much slower function that 3924 * does similar things. 3925 */ 3926 SYSCALL_DEFINE1(nice, int, increment) 3927 { 3928 long nice, retval; 3929 3930 /* 3931 * Setpriority might change our priority at the same moment. 3932 * We don't have to worry. Conceptually one call occurs first 3933 * and we have a single winner. 3934 */ 3935 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3936 nice = task_nice(current) + increment; 3937 3938 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3939 if (increment < 0 && !can_nice(current, nice)) 3940 return -EPERM; 3941 3942 retval = security_task_setnice(current, nice); 3943 if (retval) 3944 return retval; 3945 3946 set_user_nice(current, nice); 3947 return 0; 3948 } 3949 3950 #endif 3951 3952 /** 3953 * task_prio - return the priority value of a given task. 3954 * @p: the task in question. 3955 * 3956 * Return: The priority value as seen by users in /proc. 3957 * RT tasks are offset by -200. Normal tasks are centered 3958 * around 0, value goes from -16 to +15. 3959 */ 3960 int task_prio(const struct task_struct *p) 3961 { 3962 return p->prio - MAX_RT_PRIO; 3963 } 3964 3965 /** 3966 * idle_cpu - is a given CPU idle currently? 3967 * @cpu: the processor in question. 3968 * 3969 * Return: 1 if the CPU is currently idle. 0 otherwise. 3970 */ 3971 int idle_cpu(int cpu) 3972 { 3973 struct rq *rq = cpu_rq(cpu); 3974 3975 if (rq->curr != rq->idle) 3976 return 0; 3977 3978 if (rq->nr_running) 3979 return 0; 3980 3981 #ifdef CONFIG_SMP 3982 if (!llist_empty(&rq->wake_list)) 3983 return 0; 3984 #endif 3985 3986 return 1; 3987 } 3988 3989 /** 3990 * idle_task - return the idle task for a given CPU. 3991 * @cpu: the processor in question. 3992 * 3993 * Return: The idle task for the CPU @cpu. 3994 */ 3995 struct task_struct *idle_task(int cpu) 3996 { 3997 return cpu_rq(cpu)->idle; 3998 } 3999 4000 /** 4001 * find_process_by_pid - find a process with a matching PID value. 4002 * @pid: the pid in question. 4003 * 4004 * The task of @pid, if found. %NULL otherwise. 4005 */ 4006 static struct task_struct *find_process_by_pid(pid_t pid) 4007 { 4008 return pid ? find_task_by_vpid(pid) : current; 4009 } 4010 4011 /* 4012 * This function initializes the sched_dl_entity of a newly becoming 4013 * SCHED_DEADLINE task. 4014 * 4015 * Only the static values are considered here, the actual runtime and the 4016 * absolute deadline will be properly calculated when the task is enqueued 4017 * for the first time with its new policy. 4018 */ 4019 static void 4020 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 4021 { 4022 struct sched_dl_entity *dl_se = &p->dl; 4023 4024 dl_se->dl_runtime = attr->sched_runtime; 4025 dl_se->dl_deadline = attr->sched_deadline; 4026 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 4027 dl_se->flags = attr->sched_flags; 4028 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 4029 4030 /* 4031 * Changing the parameters of a task is 'tricky' and we're not doing 4032 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 4033 * 4034 * What we SHOULD do is delay the bandwidth release until the 0-lag 4035 * point. This would include retaining the task_struct until that time 4036 * and change dl_overflow() to not immediately decrement the current 4037 * amount. 4038 * 4039 * Instead we retain the current runtime/deadline and let the new 4040 * parameters take effect after the current reservation period lapses. 4041 * This is safe (albeit pessimistic) because the 0-lag point is always 4042 * before the current scheduling deadline. 4043 * 4044 * We can still have temporary overloads because we do not delay the 4045 * change in bandwidth until that time; so admission control is 4046 * not on the safe side. It does however guarantee tasks will never 4047 * consume more than promised. 4048 */ 4049 } 4050 4051 /* 4052 * sched_setparam() passes in -1 for its policy, to let the functions 4053 * it calls know not to change it. 4054 */ 4055 #define SETPARAM_POLICY -1 4056 4057 static void __setscheduler_params(struct task_struct *p, 4058 const struct sched_attr *attr) 4059 { 4060 int policy = attr->sched_policy; 4061 4062 if (policy == SETPARAM_POLICY) 4063 policy = p->policy; 4064 4065 p->policy = policy; 4066 4067 if (dl_policy(policy)) 4068 __setparam_dl(p, attr); 4069 else if (fair_policy(policy)) 4070 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4071 4072 /* 4073 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4074 * !rt_policy. Always setting this ensures that things like 4075 * getparam()/getattr() don't report silly values for !rt tasks. 4076 */ 4077 p->rt_priority = attr->sched_priority; 4078 p->normal_prio = normal_prio(p); 4079 set_load_weight(p); 4080 } 4081 4082 /* Actually do priority change: must hold pi & rq lock. */ 4083 static void __setscheduler(struct rq *rq, struct task_struct *p, 4084 const struct sched_attr *attr, bool keep_boost) 4085 { 4086 __setscheduler_params(p, attr); 4087 4088 /* 4089 * Keep a potential priority boosting if called from 4090 * sched_setscheduler(). 4091 */ 4092 p->prio = normal_prio(p); 4093 if (keep_boost) 4094 p->prio = rt_effective_prio(p, p->prio); 4095 4096 if (dl_prio(p->prio)) 4097 p->sched_class = &dl_sched_class; 4098 else if (rt_prio(p->prio)) 4099 p->sched_class = &rt_sched_class; 4100 else 4101 p->sched_class = &fair_sched_class; 4102 } 4103 4104 static void 4105 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 4106 { 4107 struct sched_dl_entity *dl_se = &p->dl; 4108 4109 attr->sched_priority = p->rt_priority; 4110 attr->sched_runtime = dl_se->dl_runtime; 4111 attr->sched_deadline = dl_se->dl_deadline; 4112 attr->sched_period = dl_se->dl_period; 4113 attr->sched_flags = dl_se->flags; 4114 } 4115 4116 /* 4117 * This function validates the new parameters of a -deadline task. 4118 * We ask for the deadline not being zero, and greater or equal 4119 * than the runtime, as well as the period of being zero or 4120 * greater than deadline. Furthermore, we have to be sure that 4121 * user parameters are above the internal resolution of 1us (we 4122 * check sched_runtime only since it is always the smaller one) and 4123 * below 2^63 ns (we have to check both sched_deadline and 4124 * sched_period, as the latter can be zero). 4125 */ 4126 static bool 4127 __checkparam_dl(const struct sched_attr *attr) 4128 { 4129 /* deadline != 0 */ 4130 if (attr->sched_deadline == 0) 4131 return false; 4132 4133 /* 4134 * Since we truncate DL_SCALE bits, make sure we're at least 4135 * that big. 4136 */ 4137 if (attr->sched_runtime < (1ULL << DL_SCALE)) 4138 return false; 4139 4140 /* 4141 * Since we use the MSB for wrap-around and sign issues, make 4142 * sure it's not set (mind that period can be equal to zero). 4143 */ 4144 if (attr->sched_deadline & (1ULL << 63) || 4145 attr->sched_period & (1ULL << 63)) 4146 return false; 4147 4148 /* runtime <= deadline <= period (if period != 0) */ 4149 if ((attr->sched_period != 0 && 4150 attr->sched_period < attr->sched_deadline) || 4151 attr->sched_deadline < attr->sched_runtime) 4152 return false; 4153 4154 return true; 4155 } 4156 4157 /* 4158 * Check the target process has a UID that matches the current process's: 4159 */ 4160 static bool check_same_owner(struct task_struct *p) 4161 { 4162 const struct cred *cred = current_cred(), *pcred; 4163 bool match; 4164 4165 rcu_read_lock(); 4166 pcred = __task_cred(p); 4167 match = (uid_eq(cred->euid, pcred->euid) || 4168 uid_eq(cred->euid, pcred->uid)); 4169 rcu_read_unlock(); 4170 return match; 4171 } 4172 4173 static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 4174 { 4175 struct sched_dl_entity *dl_se = &p->dl; 4176 4177 if (dl_se->dl_runtime != attr->sched_runtime || 4178 dl_se->dl_deadline != attr->sched_deadline || 4179 dl_se->dl_period != attr->sched_period || 4180 dl_se->flags != attr->sched_flags) 4181 return true; 4182 4183 return false; 4184 } 4185 4186 static int __sched_setscheduler(struct task_struct *p, 4187 const struct sched_attr *attr, 4188 bool user, bool pi) 4189 { 4190 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4191 MAX_RT_PRIO - 1 - attr->sched_priority; 4192 int retval, oldprio, oldpolicy = -1, queued, running; 4193 int new_effective_prio, policy = attr->sched_policy; 4194 const struct sched_class *prev_class; 4195 struct rq_flags rf; 4196 int reset_on_fork; 4197 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4198 struct rq *rq; 4199 4200 /* May grab non-irq protected spin_locks: */ 4201 BUG_ON(in_interrupt()); 4202 recheck: 4203 /* Double check policy once rq lock held: */ 4204 if (policy < 0) { 4205 reset_on_fork = p->sched_reset_on_fork; 4206 policy = oldpolicy = p->policy; 4207 } else { 4208 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4209 4210 if (!valid_policy(policy)) 4211 return -EINVAL; 4212 } 4213 4214 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 4215 return -EINVAL; 4216 4217 /* 4218 * Valid priorities for SCHED_FIFO and SCHED_RR are 4219 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4220 * SCHED_BATCH and SCHED_IDLE is 0. 4221 */ 4222 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4223 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4224 return -EINVAL; 4225 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4226 (rt_policy(policy) != (attr->sched_priority != 0))) 4227 return -EINVAL; 4228 4229 /* 4230 * Allow unprivileged RT tasks to decrease priority: 4231 */ 4232 if (user && !capable(CAP_SYS_NICE)) { 4233 if (fair_policy(policy)) { 4234 if (attr->sched_nice < task_nice(p) && 4235 !can_nice(p, attr->sched_nice)) 4236 return -EPERM; 4237 } 4238 4239 if (rt_policy(policy)) { 4240 unsigned long rlim_rtprio = 4241 task_rlimit(p, RLIMIT_RTPRIO); 4242 4243 /* Can't set/change the rt policy: */ 4244 if (policy != p->policy && !rlim_rtprio) 4245 return -EPERM; 4246 4247 /* Can't increase priority: */ 4248 if (attr->sched_priority > p->rt_priority && 4249 attr->sched_priority > rlim_rtprio) 4250 return -EPERM; 4251 } 4252 4253 /* 4254 * Can't set/change SCHED_DEADLINE policy at all for now 4255 * (safest behavior); in the future we would like to allow 4256 * unprivileged DL tasks to increase their relative deadline 4257 * or reduce their runtime (both ways reducing utilization) 4258 */ 4259 if (dl_policy(policy)) 4260 return -EPERM; 4261 4262 /* 4263 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4264 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4265 */ 4266 if (idle_policy(p->policy) && !idle_policy(policy)) { 4267 if (!can_nice(p, task_nice(p))) 4268 return -EPERM; 4269 } 4270 4271 /* Can't change other user's priorities: */ 4272 if (!check_same_owner(p)) 4273 return -EPERM; 4274 4275 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4276 if (p->sched_reset_on_fork && !reset_on_fork) 4277 return -EPERM; 4278 } 4279 4280 if (user) { 4281 retval = security_task_setscheduler(p); 4282 if (retval) 4283 return retval; 4284 } 4285 4286 /* 4287 * Make sure no PI-waiters arrive (or leave) while we are 4288 * changing the priority of the task: 4289 * 4290 * To be able to change p->policy safely, the appropriate 4291 * runqueue lock must be held. 4292 */ 4293 rq = task_rq_lock(p, &rf); 4294 update_rq_clock(rq); 4295 4296 /* 4297 * Changing the policy of the stop threads its a very bad idea: 4298 */ 4299 if (p == rq->stop) { 4300 task_rq_unlock(rq, p, &rf); 4301 return -EINVAL; 4302 } 4303 4304 /* 4305 * If not changing anything there's no need to proceed further, 4306 * but store a possible modification of reset_on_fork. 4307 */ 4308 if (unlikely(policy == p->policy)) { 4309 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4310 goto change; 4311 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4312 goto change; 4313 if (dl_policy(policy) && dl_param_changed(p, attr)) 4314 goto change; 4315 4316 p->sched_reset_on_fork = reset_on_fork; 4317 task_rq_unlock(rq, p, &rf); 4318 return 0; 4319 } 4320 change: 4321 4322 if (user) { 4323 #ifdef CONFIG_RT_GROUP_SCHED 4324 /* 4325 * Do not allow realtime tasks into groups that have no runtime 4326 * assigned. 4327 */ 4328 if (rt_bandwidth_enabled() && rt_policy(policy) && 4329 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4330 !task_group_is_autogroup(task_group(p))) { 4331 task_rq_unlock(rq, p, &rf); 4332 return -EPERM; 4333 } 4334 #endif 4335 #ifdef CONFIG_SMP 4336 if (dl_bandwidth_enabled() && dl_policy(policy)) { 4337 cpumask_t *span = rq->rd->span; 4338 4339 /* 4340 * Don't allow tasks with an affinity mask smaller than 4341 * the entire root_domain to become SCHED_DEADLINE. We 4342 * will also fail if there's no bandwidth available. 4343 */ 4344 if (!cpumask_subset(span, &p->cpus_allowed) || 4345 rq->rd->dl_bw.bw == 0) { 4346 task_rq_unlock(rq, p, &rf); 4347 return -EPERM; 4348 } 4349 } 4350 #endif 4351 } 4352 4353 /* Re-check policy now with rq lock held: */ 4354 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4355 policy = oldpolicy = -1; 4356 task_rq_unlock(rq, p, &rf); 4357 goto recheck; 4358 } 4359 4360 /* 4361 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4362 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4363 * is available. 4364 */ 4365 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 4366 task_rq_unlock(rq, p, &rf); 4367 return -EBUSY; 4368 } 4369 4370 p->sched_reset_on_fork = reset_on_fork; 4371 oldprio = p->prio; 4372 4373 if (pi) { 4374 /* 4375 * Take priority boosted tasks into account. If the new 4376 * effective priority is unchanged, we just store the new 4377 * normal parameters and do not touch the scheduler class and 4378 * the runqueue. This will be done when the task deboost 4379 * itself. 4380 */ 4381 new_effective_prio = rt_effective_prio(p, newprio); 4382 if (new_effective_prio == oldprio) 4383 queue_flags &= ~DEQUEUE_MOVE; 4384 } 4385 4386 queued = task_on_rq_queued(p); 4387 running = task_current(rq, p); 4388 if (queued) 4389 dequeue_task(rq, p, queue_flags); 4390 if (running) 4391 put_prev_task(rq, p); 4392 4393 prev_class = p->sched_class; 4394 __setscheduler(rq, p, attr, pi); 4395 4396 if (queued) { 4397 /* 4398 * We enqueue to tail when the priority of a task is 4399 * increased (user space view). 4400 */ 4401 if (oldprio < p->prio) 4402 queue_flags |= ENQUEUE_HEAD; 4403 4404 enqueue_task(rq, p, queue_flags); 4405 } 4406 if (running) 4407 set_curr_task(rq, p); 4408 4409 check_class_changed(rq, p, prev_class, oldprio); 4410 4411 /* Avoid rq from going away on us: */ 4412 preempt_disable(); 4413 task_rq_unlock(rq, p, &rf); 4414 4415 if (pi) 4416 rt_mutex_adjust_pi(p); 4417 4418 /* Run balance callbacks after we've adjusted the PI chain: */ 4419 balance_callback(rq); 4420 preempt_enable(); 4421 4422 return 0; 4423 } 4424 4425 static int _sched_setscheduler(struct task_struct *p, int policy, 4426 const struct sched_param *param, bool check) 4427 { 4428 struct sched_attr attr = { 4429 .sched_policy = policy, 4430 .sched_priority = param->sched_priority, 4431 .sched_nice = PRIO_TO_NICE(p->static_prio), 4432 }; 4433 4434 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4435 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4436 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4437 policy &= ~SCHED_RESET_ON_FORK; 4438 attr.sched_policy = policy; 4439 } 4440 4441 return __sched_setscheduler(p, &attr, check, true); 4442 } 4443 /** 4444 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4445 * @p: the task in question. 4446 * @policy: new policy. 4447 * @param: structure containing the new RT priority. 4448 * 4449 * Return: 0 on success. An error code otherwise. 4450 * 4451 * NOTE that the task may be already dead. 4452 */ 4453 int sched_setscheduler(struct task_struct *p, int policy, 4454 const struct sched_param *param) 4455 { 4456 return _sched_setscheduler(p, policy, param, true); 4457 } 4458 EXPORT_SYMBOL_GPL(sched_setscheduler); 4459 4460 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4461 { 4462 return __sched_setscheduler(p, attr, true, true); 4463 } 4464 EXPORT_SYMBOL_GPL(sched_setattr); 4465 4466 /** 4467 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4468 * @p: the task in question. 4469 * @policy: new policy. 4470 * @param: structure containing the new RT priority. 4471 * 4472 * Just like sched_setscheduler, only don't bother checking if the 4473 * current context has permission. For example, this is needed in 4474 * stop_machine(): we create temporary high priority worker threads, 4475 * but our caller might not have that capability. 4476 * 4477 * Return: 0 on success. An error code otherwise. 4478 */ 4479 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4480 const struct sched_param *param) 4481 { 4482 return _sched_setscheduler(p, policy, param, false); 4483 } 4484 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4485 4486 static int 4487 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4488 { 4489 struct sched_param lparam; 4490 struct task_struct *p; 4491 int retval; 4492 4493 if (!param || pid < 0) 4494 return -EINVAL; 4495 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4496 return -EFAULT; 4497 4498 rcu_read_lock(); 4499 retval = -ESRCH; 4500 p = find_process_by_pid(pid); 4501 if (p != NULL) 4502 retval = sched_setscheduler(p, policy, &lparam); 4503 rcu_read_unlock(); 4504 4505 return retval; 4506 } 4507 4508 /* 4509 * Mimics kernel/events/core.c perf_copy_attr(). 4510 */ 4511 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4512 { 4513 u32 size; 4514 int ret; 4515 4516 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4517 return -EFAULT; 4518 4519 /* Zero the full structure, so that a short copy will be nice: */ 4520 memset(attr, 0, sizeof(*attr)); 4521 4522 ret = get_user(size, &uattr->size); 4523 if (ret) 4524 return ret; 4525 4526 /* Bail out on silly large: */ 4527 if (size > PAGE_SIZE) 4528 goto err_size; 4529 4530 /* ABI compatibility quirk: */ 4531 if (!size) 4532 size = SCHED_ATTR_SIZE_VER0; 4533 4534 if (size < SCHED_ATTR_SIZE_VER0) 4535 goto err_size; 4536 4537 /* 4538 * If we're handed a bigger struct than we know of, 4539 * ensure all the unknown bits are 0 - i.e. new 4540 * user-space does not rely on any kernel feature 4541 * extensions we dont know about yet. 4542 */ 4543 if (size > sizeof(*attr)) { 4544 unsigned char __user *addr; 4545 unsigned char __user *end; 4546 unsigned char val; 4547 4548 addr = (void __user *)uattr + sizeof(*attr); 4549 end = (void __user *)uattr + size; 4550 4551 for (; addr < end; addr++) { 4552 ret = get_user(val, addr); 4553 if (ret) 4554 return ret; 4555 if (val) 4556 goto err_size; 4557 } 4558 size = sizeof(*attr); 4559 } 4560 4561 ret = copy_from_user(attr, uattr, size); 4562 if (ret) 4563 return -EFAULT; 4564 4565 /* 4566 * XXX: Do we want to be lenient like existing syscalls; or do we want 4567 * to be strict and return an error on out-of-bounds values? 4568 */ 4569 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4570 4571 return 0; 4572 4573 err_size: 4574 put_user(sizeof(*attr), &uattr->size); 4575 return -E2BIG; 4576 } 4577 4578 /** 4579 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4580 * @pid: the pid in question. 4581 * @policy: new policy. 4582 * @param: structure containing the new RT priority. 4583 * 4584 * Return: 0 on success. An error code otherwise. 4585 */ 4586 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4587 { 4588 if (policy < 0) 4589 return -EINVAL; 4590 4591 return do_sched_setscheduler(pid, policy, param); 4592 } 4593 4594 /** 4595 * sys_sched_setparam - set/change the RT priority of a thread 4596 * @pid: the pid in question. 4597 * @param: structure containing the new RT priority. 4598 * 4599 * Return: 0 on success. An error code otherwise. 4600 */ 4601 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4602 { 4603 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4604 } 4605 4606 /** 4607 * sys_sched_setattr - same as above, but with extended sched_attr 4608 * @pid: the pid in question. 4609 * @uattr: structure containing the extended parameters. 4610 * @flags: for future extension. 4611 */ 4612 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4613 unsigned int, flags) 4614 { 4615 struct sched_attr attr; 4616 struct task_struct *p; 4617 int retval; 4618 4619 if (!uattr || pid < 0 || flags) 4620 return -EINVAL; 4621 4622 retval = sched_copy_attr(uattr, &attr); 4623 if (retval) 4624 return retval; 4625 4626 if ((int)attr.sched_policy < 0) 4627 return -EINVAL; 4628 4629 rcu_read_lock(); 4630 retval = -ESRCH; 4631 p = find_process_by_pid(pid); 4632 if (p != NULL) 4633 retval = sched_setattr(p, &attr); 4634 rcu_read_unlock(); 4635 4636 return retval; 4637 } 4638 4639 /** 4640 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4641 * @pid: the pid in question. 4642 * 4643 * Return: On success, the policy of the thread. Otherwise, a negative error 4644 * code. 4645 */ 4646 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4647 { 4648 struct task_struct *p; 4649 int retval; 4650 4651 if (pid < 0) 4652 return -EINVAL; 4653 4654 retval = -ESRCH; 4655 rcu_read_lock(); 4656 p = find_process_by_pid(pid); 4657 if (p) { 4658 retval = security_task_getscheduler(p); 4659 if (!retval) 4660 retval = p->policy 4661 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4662 } 4663 rcu_read_unlock(); 4664 return retval; 4665 } 4666 4667 /** 4668 * sys_sched_getparam - get the RT priority of a thread 4669 * @pid: the pid in question. 4670 * @param: structure containing the RT priority. 4671 * 4672 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4673 * code. 4674 */ 4675 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4676 { 4677 struct sched_param lp = { .sched_priority = 0 }; 4678 struct task_struct *p; 4679 int retval; 4680 4681 if (!param || pid < 0) 4682 return -EINVAL; 4683 4684 rcu_read_lock(); 4685 p = find_process_by_pid(pid); 4686 retval = -ESRCH; 4687 if (!p) 4688 goto out_unlock; 4689 4690 retval = security_task_getscheduler(p); 4691 if (retval) 4692 goto out_unlock; 4693 4694 if (task_has_rt_policy(p)) 4695 lp.sched_priority = p->rt_priority; 4696 rcu_read_unlock(); 4697 4698 /* 4699 * This one might sleep, we cannot do it with a spinlock held ... 4700 */ 4701 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4702 4703 return retval; 4704 4705 out_unlock: 4706 rcu_read_unlock(); 4707 return retval; 4708 } 4709 4710 static int sched_read_attr(struct sched_attr __user *uattr, 4711 struct sched_attr *attr, 4712 unsigned int usize) 4713 { 4714 int ret; 4715 4716 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4717 return -EFAULT; 4718 4719 /* 4720 * If we're handed a smaller struct than we know of, 4721 * ensure all the unknown bits are 0 - i.e. old 4722 * user-space does not get uncomplete information. 4723 */ 4724 if (usize < sizeof(*attr)) { 4725 unsigned char *addr; 4726 unsigned char *end; 4727 4728 addr = (void *)attr + usize; 4729 end = (void *)attr + sizeof(*attr); 4730 4731 for (; addr < end; addr++) { 4732 if (*addr) 4733 return -EFBIG; 4734 } 4735 4736 attr->size = usize; 4737 } 4738 4739 ret = copy_to_user(uattr, attr, attr->size); 4740 if (ret) 4741 return -EFAULT; 4742 4743 return 0; 4744 } 4745 4746 /** 4747 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4748 * @pid: the pid in question. 4749 * @uattr: structure containing the extended parameters. 4750 * @size: sizeof(attr) for fwd/bwd comp. 4751 * @flags: for future extension. 4752 */ 4753 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4754 unsigned int, size, unsigned int, flags) 4755 { 4756 struct sched_attr attr = { 4757 .size = sizeof(struct sched_attr), 4758 }; 4759 struct task_struct *p; 4760 int retval; 4761 4762 if (!uattr || pid < 0 || size > PAGE_SIZE || 4763 size < SCHED_ATTR_SIZE_VER0 || flags) 4764 return -EINVAL; 4765 4766 rcu_read_lock(); 4767 p = find_process_by_pid(pid); 4768 retval = -ESRCH; 4769 if (!p) 4770 goto out_unlock; 4771 4772 retval = security_task_getscheduler(p); 4773 if (retval) 4774 goto out_unlock; 4775 4776 attr.sched_policy = p->policy; 4777 if (p->sched_reset_on_fork) 4778 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4779 if (task_has_dl_policy(p)) 4780 __getparam_dl(p, &attr); 4781 else if (task_has_rt_policy(p)) 4782 attr.sched_priority = p->rt_priority; 4783 else 4784 attr.sched_nice = task_nice(p); 4785 4786 rcu_read_unlock(); 4787 4788 retval = sched_read_attr(uattr, &attr, size); 4789 return retval; 4790 4791 out_unlock: 4792 rcu_read_unlock(); 4793 return retval; 4794 } 4795 4796 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4797 { 4798 cpumask_var_t cpus_allowed, new_mask; 4799 struct task_struct *p; 4800 int retval; 4801 4802 rcu_read_lock(); 4803 4804 p = find_process_by_pid(pid); 4805 if (!p) { 4806 rcu_read_unlock(); 4807 return -ESRCH; 4808 } 4809 4810 /* Prevent p going away */ 4811 get_task_struct(p); 4812 rcu_read_unlock(); 4813 4814 if (p->flags & PF_NO_SETAFFINITY) { 4815 retval = -EINVAL; 4816 goto out_put_task; 4817 } 4818 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4819 retval = -ENOMEM; 4820 goto out_put_task; 4821 } 4822 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4823 retval = -ENOMEM; 4824 goto out_free_cpus_allowed; 4825 } 4826 retval = -EPERM; 4827 if (!check_same_owner(p)) { 4828 rcu_read_lock(); 4829 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4830 rcu_read_unlock(); 4831 goto out_free_new_mask; 4832 } 4833 rcu_read_unlock(); 4834 } 4835 4836 retval = security_task_setscheduler(p); 4837 if (retval) 4838 goto out_free_new_mask; 4839 4840 4841 cpuset_cpus_allowed(p, cpus_allowed); 4842 cpumask_and(new_mask, in_mask, cpus_allowed); 4843 4844 /* 4845 * Since bandwidth control happens on root_domain basis, 4846 * if admission test is enabled, we only admit -deadline 4847 * tasks allowed to run on all the CPUs in the task's 4848 * root_domain. 4849 */ 4850 #ifdef CONFIG_SMP 4851 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4852 rcu_read_lock(); 4853 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4854 retval = -EBUSY; 4855 rcu_read_unlock(); 4856 goto out_free_new_mask; 4857 } 4858 rcu_read_unlock(); 4859 } 4860 #endif 4861 again: 4862 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4863 4864 if (!retval) { 4865 cpuset_cpus_allowed(p, cpus_allowed); 4866 if (!cpumask_subset(new_mask, cpus_allowed)) { 4867 /* 4868 * We must have raced with a concurrent cpuset 4869 * update. Just reset the cpus_allowed to the 4870 * cpuset's cpus_allowed 4871 */ 4872 cpumask_copy(new_mask, cpus_allowed); 4873 goto again; 4874 } 4875 } 4876 out_free_new_mask: 4877 free_cpumask_var(new_mask); 4878 out_free_cpus_allowed: 4879 free_cpumask_var(cpus_allowed); 4880 out_put_task: 4881 put_task_struct(p); 4882 return retval; 4883 } 4884 4885 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4886 struct cpumask *new_mask) 4887 { 4888 if (len < cpumask_size()) 4889 cpumask_clear(new_mask); 4890 else if (len > cpumask_size()) 4891 len = cpumask_size(); 4892 4893 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4894 } 4895 4896 /** 4897 * sys_sched_setaffinity - set the CPU affinity of a process 4898 * @pid: pid of the process 4899 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4900 * @user_mask_ptr: user-space pointer to the new CPU mask 4901 * 4902 * Return: 0 on success. An error code otherwise. 4903 */ 4904 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4905 unsigned long __user *, user_mask_ptr) 4906 { 4907 cpumask_var_t new_mask; 4908 int retval; 4909 4910 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4911 return -ENOMEM; 4912 4913 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4914 if (retval == 0) 4915 retval = sched_setaffinity(pid, new_mask); 4916 free_cpumask_var(new_mask); 4917 return retval; 4918 } 4919 4920 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4921 { 4922 struct task_struct *p; 4923 unsigned long flags; 4924 int retval; 4925 4926 rcu_read_lock(); 4927 4928 retval = -ESRCH; 4929 p = find_process_by_pid(pid); 4930 if (!p) 4931 goto out_unlock; 4932 4933 retval = security_task_getscheduler(p); 4934 if (retval) 4935 goto out_unlock; 4936 4937 raw_spin_lock_irqsave(&p->pi_lock, flags); 4938 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4939 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4940 4941 out_unlock: 4942 rcu_read_unlock(); 4943 4944 return retval; 4945 } 4946 4947 /** 4948 * sys_sched_getaffinity - get the CPU affinity of a process 4949 * @pid: pid of the process 4950 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4951 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4952 * 4953 * Return: size of CPU mask copied to user_mask_ptr on success. An 4954 * error code otherwise. 4955 */ 4956 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4957 unsigned long __user *, user_mask_ptr) 4958 { 4959 int ret; 4960 cpumask_var_t mask; 4961 4962 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4963 return -EINVAL; 4964 if (len & (sizeof(unsigned long)-1)) 4965 return -EINVAL; 4966 4967 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4968 return -ENOMEM; 4969 4970 ret = sched_getaffinity(pid, mask); 4971 if (ret == 0) { 4972 size_t retlen = min_t(size_t, len, cpumask_size()); 4973 4974 if (copy_to_user(user_mask_ptr, mask, retlen)) 4975 ret = -EFAULT; 4976 else 4977 ret = retlen; 4978 } 4979 free_cpumask_var(mask); 4980 4981 return ret; 4982 } 4983 4984 /** 4985 * sys_sched_yield - yield the current processor to other threads. 4986 * 4987 * This function yields the current CPU to other tasks. If there are no 4988 * other threads running on this CPU then this function will return. 4989 * 4990 * Return: 0. 4991 */ 4992 SYSCALL_DEFINE0(sched_yield) 4993 { 4994 struct rq_flags rf; 4995 struct rq *rq; 4996 4997 local_irq_disable(); 4998 rq = this_rq(); 4999 rq_lock(rq, &rf); 5000 5001 schedstat_inc(rq->yld_count); 5002 current->sched_class->yield_task(rq); 5003 5004 /* 5005 * Since we are going to call schedule() anyway, there's 5006 * no need to preempt or enable interrupts: 5007 */ 5008 preempt_disable(); 5009 rq_unlock(rq, &rf); 5010 sched_preempt_enable_no_resched(); 5011 5012 schedule(); 5013 5014 return 0; 5015 } 5016 5017 #ifndef CONFIG_PREEMPT 5018 int __sched _cond_resched(void) 5019 { 5020 if (should_resched(0)) { 5021 preempt_schedule_common(); 5022 return 1; 5023 } 5024 return 0; 5025 } 5026 EXPORT_SYMBOL(_cond_resched); 5027 #endif 5028 5029 /* 5030 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5031 * call schedule, and on return reacquire the lock. 5032 * 5033 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 5034 * operations here to prevent schedule() from being called twice (once via 5035 * spin_unlock(), once by hand). 5036 */ 5037 int __cond_resched_lock(spinlock_t *lock) 5038 { 5039 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5040 int ret = 0; 5041 5042 lockdep_assert_held(lock); 5043 5044 if (spin_needbreak(lock) || resched) { 5045 spin_unlock(lock); 5046 if (resched) 5047 preempt_schedule_common(); 5048 else 5049 cpu_relax(); 5050 ret = 1; 5051 spin_lock(lock); 5052 } 5053 return ret; 5054 } 5055 EXPORT_SYMBOL(__cond_resched_lock); 5056 5057 int __sched __cond_resched_softirq(void) 5058 { 5059 BUG_ON(!in_softirq()); 5060 5061 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 5062 local_bh_enable(); 5063 preempt_schedule_common(); 5064 local_bh_disable(); 5065 return 1; 5066 } 5067 return 0; 5068 } 5069 EXPORT_SYMBOL(__cond_resched_softirq); 5070 5071 /** 5072 * yield - yield the current processor to other threads. 5073 * 5074 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5075 * 5076 * The scheduler is at all times free to pick the calling task as the most 5077 * eligible task to run, if removing the yield() call from your code breaks 5078 * it, its already broken. 5079 * 5080 * Typical broken usage is: 5081 * 5082 * while (!event) 5083 * yield(); 5084 * 5085 * where one assumes that yield() will let 'the other' process run that will 5086 * make event true. If the current task is a SCHED_FIFO task that will never 5087 * happen. Never use yield() as a progress guarantee!! 5088 * 5089 * If you want to use yield() to wait for something, use wait_event(). 5090 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5091 * If you still want to use yield(), do not! 5092 */ 5093 void __sched yield(void) 5094 { 5095 set_current_state(TASK_RUNNING); 5096 sys_sched_yield(); 5097 } 5098 EXPORT_SYMBOL(yield); 5099 5100 /** 5101 * yield_to - yield the current processor to another thread in 5102 * your thread group, or accelerate that thread toward the 5103 * processor it's on. 5104 * @p: target task 5105 * @preempt: whether task preemption is allowed or not 5106 * 5107 * It's the caller's job to ensure that the target task struct 5108 * can't go away on us before we can do any checks. 5109 * 5110 * Return: 5111 * true (>0) if we indeed boosted the target task. 5112 * false (0) if we failed to boost the target. 5113 * -ESRCH if there's no task to yield to. 5114 */ 5115 int __sched yield_to(struct task_struct *p, bool preempt) 5116 { 5117 struct task_struct *curr = current; 5118 struct rq *rq, *p_rq; 5119 unsigned long flags; 5120 int yielded = 0; 5121 5122 local_irq_save(flags); 5123 rq = this_rq(); 5124 5125 again: 5126 p_rq = task_rq(p); 5127 /* 5128 * If we're the only runnable task on the rq and target rq also 5129 * has only one task, there's absolutely no point in yielding. 5130 */ 5131 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5132 yielded = -ESRCH; 5133 goto out_irq; 5134 } 5135 5136 double_rq_lock(rq, p_rq); 5137 if (task_rq(p) != p_rq) { 5138 double_rq_unlock(rq, p_rq); 5139 goto again; 5140 } 5141 5142 if (!curr->sched_class->yield_to_task) 5143 goto out_unlock; 5144 5145 if (curr->sched_class != p->sched_class) 5146 goto out_unlock; 5147 5148 if (task_running(p_rq, p) || p->state) 5149 goto out_unlock; 5150 5151 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5152 if (yielded) { 5153 schedstat_inc(rq->yld_count); 5154 /* 5155 * Make p's CPU reschedule; pick_next_entity takes care of 5156 * fairness. 5157 */ 5158 if (preempt && rq != p_rq) 5159 resched_curr(p_rq); 5160 } 5161 5162 out_unlock: 5163 double_rq_unlock(rq, p_rq); 5164 out_irq: 5165 local_irq_restore(flags); 5166 5167 if (yielded > 0) 5168 schedule(); 5169 5170 return yielded; 5171 } 5172 EXPORT_SYMBOL_GPL(yield_to); 5173 5174 int io_schedule_prepare(void) 5175 { 5176 int old_iowait = current->in_iowait; 5177 5178 current->in_iowait = 1; 5179 blk_schedule_flush_plug(current); 5180 5181 return old_iowait; 5182 } 5183 5184 void io_schedule_finish(int token) 5185 { 5186 current->in_iowait = token; 5187 } 5188 5189 /* 5190 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5191 * that process accounting knows that this is a task in IO wait state. 5192 */ 5193 long __sched io_schedule_timeout(long timeout) 5194 { 5195 int token; 5196 long ret; 5197 5198 token = io_schedule_prepare(); 5199 ret = schedule_timeout(timeout); 5200 io_schedule_finish(token); 5201 5202 return ret; 5203 } 5204 EXPORT_SYMBOL(io_schedule_timeout); 5205 5206 void io_schedule(void) 5207 { 5208 int token; 5209 5210 token = io_schedule_prepare(); 5211 schedule(); 5212 io_schedule_finish(token); 5213 } 5214 EXPORT_SYMBOL(io_schedule); 5215 5216 /** 5217 * sys_sched_get_priority_max - return maximum RT priority. 5218 * @policy: scheduling class. 5219 * 5220 * Return: On success, this syscall returns the maximum 5221 * rt_priority that can be used by a given scheduling class. 5222 * On failure, a negative error code is returned. 5223 */ 5224 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5225 { 5226 int ret = -EINVAL; 5227 5228 switch (policy) { 5229 case SCHED_FIFO: 5230 case SCHED_RR: 5231 ret = MAX_USER_RT_PRIO-1; 5232 break; 5233 case SCHED_DEADLINE: 5234 case SCHED_NORMAL: 5235 case SCHED_BATCH: 5236 case SCHED_IDLE: 5237 ret = 0; 5238 break; 5239 } 5240 return ret; 5241 } 5242 5243 /** 5244 * sys_sched_get_priority_min - return minimum RT priority. 5245 * @policy: scheduling class. 5246 * 5247 * Return: On success, this syscall returns the minimum 5248 * rt_priority that can be used by a given scheduling class. 5249 * On failure, a negative error code is returned. 5250 */ 5251 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5252 { 5253 int ret = -EINVAL; 5254 5255 switch (policy) { 5256 case SCHED_FIFO: 5257 case SCHED_RR: 5258 ret = 1; 5259 break; 5260 case SCHED_DEADLINE: 5261 case SCHED_NORMAL: 5262 case SCHED_BATCH: 5263 case SCHED_IDLE: 5264 ret = 0; 5265 } 5266 return ret; 5267 } 5268 5269 /** 5270 * sys_sched_rr_get_interval - return the default timeslice of a process. 5271 * @pid: pid of the process. 5272 * @interval: userspace pointer to the timeslice value. 5273 * 5274 * this syscall writes the default timeslice value of a given process 5275 * into the user-space timespec buffer. A value of '0' means infinity. 5276 * 5277 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5278 * an error code. 5279 */ 5280 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5281 struct timespec __user *, interval) 5282 { 5283 struct task_struct *p; 5284 unsigned int time_slice; 5285 struct rq_flags rf; 5286 struct timespec t; 5287 struct rq *rq; 5288 int retval; 5289 5290 if (pid < 0) 5291 return -EINVAL; 5292 5293 retval = -ESRCH; 5294 rcu_read_lock(); 5295 p = find_process_by_pid(pid); 5296 if (!p) 5297 goto out_unlock; 5298 5299 retval = security_task_getscheduler(p); 5300 if (retval) 5301 goto out_unlock; 5302 5303 rq = task_rq_lock(p, &rf); 5304 time_slice = 0; 5305 if (p->sched_class->get_rr_interval) 5306 time_slice = p->sched_class->get_rr_interval(rq, p); 5307 task_rq_unlock(rq, p, &rf); 5308 5309 rcu_read_unlock(); 5310 jiffies_to_timespec(time_slice, &t); 5311 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5312 return retval; 5313 5314 out_unlock: 5315 rcu_read_unlock(); 5316 return retval; 5317 } 5318 5319 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 5320 5321 void sched_show_task(struct task_struct *p) 5322 { 5323 unsigned long free = 0; 5324 int ppid; 5325 unsigned long state = p->state; 5326 5327 /* Make sure the string lines up properly with the number of task states: */ 5328 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1); 5329 5330 if (!try_get_task_stack(p)) 5331 return; 5332 if (state) 5333 state = __ffs(state) + 1; 5334 printk(KERN_INFO "%-15.15s %c", p->comm, 5335 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 5336 if (state == TASK_RUNNING) 5337 printk(KERN_CONT " running task "); 5338 #ifdef CONFIG_DEBUG_STACK_USAGE 5339 free = stack_not_used(p); 5340 #endif 5341 ppid = 0; 5342 rcu_read_lock(); 5343 if (pid_alive(p)) 5344 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5345 rcu_read_unlock(); 5346 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5347 task_pid_nr(p), ppid, 5348 (unsigned long)task_thread_info(p)->flags); 5349 5350 print_worker_info(KERN_INFO, p); 5351 show_stack(p, NULL); 5352 put_task_stack(p); 5353 } 5354 5355 void show_state_filter(unsigned long state_filter) 5356 { 5357 struct task_struct *g, *p; 5358 5359 #if BITS_PER_LONG == 32 5360 printk(KERN_INFO 5361 " task PC stack pid father\n"); 5362 #else 5363 printk(KERN_INFO 5364 " task PC stack pid father\n"); 5365 #endif 5366 rcu_read_lock(); 5367 for_each_process_thread(g, p) { 5368 /* 5369 * reset the NMI-timeout, listing all files on a slow 5370 * console might take a lot of time: 5371 * Also, reset softlockup watchdogs on all CPUs, because 5372 * another CPU might be blocked waiting for us to process 5373 * an IPI. 5374 */ 5375 touch_nmi_watchdog(); 5376 touch_all_softlockup_watchdogs(); 5377 if (!state_filter || (p->state & state_filter)) 5378 sched_show_task(p); 5379 } 5380 5381 #ifdef CONFIG_SCHED_DEBUG 5382 if (!state_filter) 5383 sysrq_sched_debug_show(); 5384 #endif 5385 rcu_read_unlock(); 5386 /* 5387 * Only show locks if all tasks are dumped: 5388 */ 5389 if (!state_filter) 5390 debug_show_all_locks(); 5391 } 5392 5393 void init_idle_bootup_task(struct task_struct *idle) 5394 { 5395 idle->sched_class = &idle_sched_class; 5396 } 5397 5398 /** 5399 * init_idle - set up an idle thread for a given CPU 5400 * @idle: task in question 5401 * @cpu: CPU the idle task belongs to 5402 * 5403 * NOTE: this function does not set the idle thread's NEED_RESCHED 5404 * flag, to make booting more robust. 5405 */ 5406 void init_idle(struct task_struct *idle, int cpu) 5407 { 5408 struct rq *rq = cpu_rq(cpu); 5409 unsigned long flags; 5410 5411 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5412 raw_spin_lock(&rq->lock); 5413 5414 __sched_fork(0, idle); 5415 idle->state = TASK_RUNNING; 5416 idle->se.exec_start = sched_clock(); 5417 idle->flags |= PF_IDLE; 5418 5419 kasan_unpoison_task_stack(idle); 5420 5421 #ifdef CONFIG_SMP 5422 /* 5423 * Its possible that init_idle() gets called multiple times on a task, 5424 * in that case do_set_cpus_allowed() will not do the right thing. 5425 * 5426 * And since this is boot we can forgo the serialization. 5427 */ 5428 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5429 #endif 5430 /* 5431 * We're having a chicken and egg problem, even though we are 5432 * holding rq->lock, the CPU isn't yet set to this CPU so the 5433 * lockdep check in task_group() will fail. 5434 * 5435 * Similar case to sched_fork(). / Alternatively we could 5436 * use task_rq_lock() here and obtain the other rq->lock. 5437 * 5438 * Silence PROVE_RCU 5439 */ 5440 rcu_read_lock(); 5441 __set_task_cpu(idle, cpu); 5442 rcu_read_unlock(); 5443 5444 rq->curr = rq->idle = idle; 5445 idle->on_rq = TASK_ON_RQ_QUEUED; 5446 #ifdef CONFIG_SMP 5447 idle->on_cpu = 1; 5448 #endif 5449 raw_spin_unlock(&rq->lock); 5450 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5451 5452 /* Set the preempt count _outside_ the spinlocks! */ 5453 init_idle_preempt_count(idle, cpu); 5454 5455 /* 5456 * The idle tasks have their own, simple scheduling class: 5457 */ 5458 idle->sched_class = &idle_sched_class; 5459 ftrace_graph_init_idle_task(idle, cpu); 5460 vtime_init_idle(idle, cpu); 5461 #ifdef CONFIG_SMP 5462 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5463 #endif 5464 } 5465 5466 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5467 const struct cpumask *trial) 5468 { 5469 int ret = 1, trial_cpus; 5470 struct dl_bw *cur_dl_b; 5471 unsigned long flags; 5472 5473 if (!cpumask_weight(cur)) 5474 return ret; 5475 5476 rcu_read_lock_sched(); 5477 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5478 trial_cpus = cpumask_weight(trial); 5479 5480 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5481 if (cur_dl_b->bw != -1 && 5482 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5483 ret = 0; 5484 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5485 rcu_read_unlock_sched(); 5486 5487 return ret; 5488 } 5489 5490 int task_can_attach(struct task_struct *p, 5491 const struct cpumask *cs_cpus_allowed) 5492 { 5493 int ret = 0; 5494 5495 /* 5496 * Kthreads which disallow setaffinity shouldn't be moved 5497 * to a new cpuset; we don't want to change their CPU 5498 * affinity and isolating such threads by their set of 5499 * allowed nodes is unnecessary. Thus, cpusets are not 5500 * applicable for such threads. This prevents checking for 5501 * success of set_cpus_allowed_ptr() on all attached tasks 5502 * before cpus_allowed may be changed. 5503 */ 5504 if (p->flags & PF_NO_SETAFFINITY) { 5505 ret = -EINVAL; 5506 goto out; 5507 } 5508 5509 #ifdef CONFIG_SMP 5510 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5511 cs_cpus_allowed)) { 5512 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5513 cs_cpus_allowed); 5514 struct dl_bw *dl_b; 5515 bool overflow; 5516 int cpus; 5517 unsigned long flags; 5518 5519 rcu_read_lock_sched(); 5520 dl_b = dl_bw_of(dest_cpu); 5521 raw_spin_lock_irqsave(&dl_b->lock, flags); 5522 cpus = dl_bw_cpus(dest_cpu); 5523 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5524 if (overflow) 5525 ret = -EBUSY; 5526 else { 5527 /* 5528 * We reserve space for this task in the destination 5529 * root_domain, as we can't fail after this point. 5530 * We will free resources in the source root_domain 5531 * later on (see set_cpus_allowed_dl()). 5532 */ 5533 __dl_add(dl_b, p->dl.dl_bw); 5534 } 5535 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5536 rcu_read_unlock_sched(); 5537 5538 } 5539 #endif 5540 out: 5541 return ret; 5542 } 5543 5544 #ifdef CONFIG_SMP 5545 5546 bool sched_smp_initialized __read_mostly; 5547 5548 #ifdef CONFIG_NUMA_BALANCING 5549 /* Migrate current task p to target_cpu */ 5550 int migrate_task_to(struct task_struct *p, int target_cpu) 5551 { 5552 struct migration_arg arg = { p, target_cpu }; 5553 int curr_cpu = task_cpu(p); 5554 5555 if (curr_cpu == target_cpu) 5556 return 0; 5557 5558 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5559 return -EINVAL; 5560 5561 /* TODO: This is not properly updating schedstats */ 5562 5563 trace_sched_move_numa(p, curr_cpu, target_cpu); 5564 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5565 } 5566 5567 /* 5568 * Requeue a task on a given node and accurately track the number of NUMA 5569 * tasks on the runqueues 5570 */ 5571 void sched_setnuma(struct task_struct *p, int nid) 5572 { 5573 bool queued, running; 5574 struct rq_flags rf; 5575 struct rq *rq; 5576 5577 rq = task_rq_lock(p, &rf); 5578 queued = task_on_rq_queued(p); 5579 running = task_current(rq, p); 5580 5581 if (queued) 5582 dequeue_task(rq, p, DEQUEUE_SAVE); 5583 if (running) 5584 put_prev_task(rq, p); 5585 5586 p->numa_preferred_nid = nid; 5587 5588 if (queued) 5589 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5590 if (running) 5591 set_curr_task(rq, p); 5592 task_rq_unlock(rq, p, &rf); 5593 } 5594 #endif /* CONFIG_NUMA_BALANCING */ 5595 5596 #ifdef CONFIG_HOTPLUG_CPU 5597 /* 5598 * Ensure that the idle task is using init_mm right before its CPU goes 5599 * offline. 5600 */ 5601 void idle_task_exit(void) 5602 { 5603 struct mm_struct *mm = current->active_mm; 5604 5605 BUG_ON(cpu_online(smp_processor_id())); 5606 5607 if (mm != &init_mm) { 5608 switch_mm(mm, &init_mm, current); 5609 finish_arch_post_lock_switch(); 5610 } 5611 mmdrop(mm); 5612 } 5613 5614 /* 5615 * Since this CPU is going 'away' for a while, fold any nr_active delta 5616 * we might have. Assumes we're called after migrate_tasks() so that the 5617 * nr_active count is stable. We need to take the teardown thread which 5618 * is calling this into account, so we hand in adjust = 1 to the load 5619 * calculation. 5620 * 5621 * Also see the comment "Global load-average calculations". 5622 */ 5623 static void calc_load_migrate(struct rq *rq) 5624 { 5625 long delta = calc_load_fold_active(rq, 1); 5626 if (delta) 5627 atomic_long_add(delta, &calc_load_tasks); 5628 } 5629 5630 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5631 { 5632 } 5633 5634 static const struct sched_class fake_sched_class = { 5635 .put_prev_task = put_prev_task_fake, 5636 }; 5637 5638 static struct task_struct fake_task = { 5639 /* 5640 * Avoid pull_{rt,dl}_task() 5641 */ 5642 .prio = MAX_PRIO + 1, 5643 .sched_class = &fake_sched_class, 5644 }; 5645 5646 /* 5647 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5648 * try_to_wake_up()->select_task_rq(). 5649 * 5650 * Called with rq->lock held even though we'er in stop_machine() and 5651 * there's no concurrency possible, we hold the required locks anyway 5652 * because of lock validation efforts. 5653 */ 5654 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5655 { 5656 struct rq *rq = dead_rq; 5657 struct task_struct *next, *stop = rq->stop; 5658 struct rq_flags orf = *rf; 5659 int dest_cpu; 5660 5661 /* 5662 * Fudge the rq selection such that the below task selection loop 5663 * doesn't get stuck on the currently eligible stop task. 5664 * 5665 * We're currently inside stop_machine() and the rq is either stuck 5666 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5667 * either way we should never end up calling schedule() until we're 5668 * done here. 5669 */ 5670 rq->stop = NULL; 5671 5672 /* 5673 * put_prev_task() and pick_next_task() sched 5674 * class method both need to have an up-to-date 5675 * value of rq->clock[_task] 5676 */ 5677 update_rq_clock(rq); 5678 5679 for (;;) { 5680 /* 5681 * There's this thread running, bail when that's the only 5682 * remaining thread: 5683 */ 5684 if (rq->nr_running == 1) 5685 break; 5686 5687 /* 5688 * pick_next_task() assumes pinned rq->lock: 5689 */ 5690 next = pick_next_task(rq, &fake_task, rf); 5691 BUG_ON(!next); 5692 next->sched_class->put_prev_task(rq, next); 5693 5694 /* 5695 * Rules for changing task_struct::cpus_allowed are holding 5696 * both pi_lock and rq->lock, such that holding either 5697 * stabilizes the mask. 5698 * 5699 * Drop rq->lock is not quite as disastrous as it usually is 5700 * because !cpu_active at this point, which means load-balance 5701 * will not interfere. Also, stop-machine. 5702 */ 5703 rq_unlock(rq, rf); 5704 raw_spin_lock(&next->pi_lock); 5705 rq_relock(rq, rf); 5706 5707 /* 5708 * Since we're inside stop-machine, _nothing_ should have 5709 * changed the task, WARN if weird stuff happened, because in 5710 * that case the above rq->lock drop is a fail too. 5711 */ 5712 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5713 raw_spin_unlock(&next->pi_lock); 5714 continue; 5715 } 5716 5717 /* Find suitable destination for @next, with force if needed. */ 5718 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5719 rq = __migrate_task(rq, rf, next, dest_cpu); 5720 if (rq != dead_rq) { 5721 rq_unlock(rq, rf); 5722 rq = dead_rq; 5723 *rf = orf; 5724 rq_relock(rq, rf); 5725 } 5726 raw_spin_unlock(&next->pi_lock); 5727 } 5728 5729 rq->stop = stop; 5730 } 5731 #endif /* CONFIG_HOTPLUG_CPU */ 5732 5733 void set_rq_online(struct rq *rq) 5734 { 5735 if (!rq->online) { 5736 const struct sched_class *class; 5737 5738 cpumask_set_cpu(rq->cpu, rq->rd->online); 5739 rq->online = 1; 5740 5741 for_each_class(class) { 5742 if (class->rq_online) 5743 class->rq_online(rq); 5744 } 5745 } 5746 } 5747 5748 void set_rq_offline(struct rq *rq) 5749 { 5750 if (rq->online) { 5751 const struct sched_class *class; 5752 5753 for_each_class(class) { 5754 if (class->rq_offline) 5755 class->rq_offline(rq); 5756 } 5757 5758 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5759 rq->online = 0; 5760 } 5761 } 5762 5763 static void set_cpu_rq_start_time(unsigned int cpu) 5764 { 5765 struct rq *rq = cpu_rq(cpu); 5766 5767 rq->age_stamp = sched_clock_cpu(cpu); 5768 } 5769 5770 /* 5771 * used to mark begin/end of suspend/resume: 5772 */ 5773 static int num_cpus_frozen; 5774 5775 /* 5776 * Update cpusets according to cpu_active mask. If cpusets are 5777 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5778 * around partition_sched_domains(). 5779 * 5780 * If we come here as part of a suspend/resume, don't touch cpusets because we 5781 * want to restore it back to its original state upon resume anyway. 5782 */ 5783 static void cpuset_cpu_active(void) 5784 { 5785 if (cpuhp_tasks_frozen) { 5786 /* 5787 * num_cpus_frozen tracks how many CPUs are involved in suspend 5788 * resume sequence. As long as this is not the last online 5789 * operation in the resume sequence, just build a single sched 5790 * domain, ignoring cpusets. 5791 */ 5792 num_cpus_frozen--; 5793 if (likely(num_cpus_frozen)) { 5794 partition_sched_domains(1, NULL, NULL); 5795 return; 5796 } 5797 /* 5798 * This is the last CPU online operation. So fall through and 5799 * restore the original sched domains by considering the 5800 * cpuset configurations. 5801 */ 5802 } 5803 cpuset_update_active_cpus(); 5804 } 5805 5806 static int cpuset_cpu_inactive(unsigned int cpu) 5807 { 5808 unsigned long flags; 5809 struct dl_bw *dl_b; 5810 bool overflow; 5811 int cpus; 5812 5813 if (!cpuhp_tasks_frozen) { 5814 rcu_read_lock_sched(); 5815 dl_b = dl_bw_of(cpu); 5816 5817 raw_spin_lock_irqsave(&dl_b->lock, flags); 5818 cpus = dl_bw_cpus(cpu); 5819 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5820 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5821 5822 rcu_read_unlock_sched(); 5823 5824 if (overflow) 5825 return -EBUSY; 5826 cpuset_update_active_cpus(); 5827 } else { 5828 num_cpus_frozen++; 5829 partition_sched_domains(1, NULL, NULL); 5830 } 5831 return 0; 5832 } 5833 5834 int sched_cpu_activate(unsigned int cpu) 5835 { 5836 struct rq *rq = cpu_rq(cpu); 5837 struct rq_flags rf; 5838 5839 set_cpu_active(cpu, true); 5840 5841 if (sched_smp_initialized) { 5842 sched_domains_numa_masks_set(cpu); 5843 cpuset_cpu_active(); 5844 } 5845 5846 /* 5847 * Put the rq online, if not already. This happens: 5848 * 5849 * 1) In the early boot process, because we build the real domains 5850 * after all CPUs have been brought up. 5851 * 5852 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5853 * domains. 5854 */ 5855 rq_lock_irqsave(rq, &rf); 5856 if (rq->rd) { 5857 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5858 set_rq_online(rq); 5859 } 5860 rq_unlock_irqrestore(rq, &rf); 5861 5862 update_max_interval(); 5863 5864 return 0; 5865 } 5866 5867 int sched_cpu_deactivate(unsigned int cpu) 5868 { 5869 int ret; 5870 5871 set_cpu_active(cpu, false); 5872 /* 5873 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5874 * users of this state to go away such that all new such users will 5875 * observe it. 5876 * 5877 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might 5878 * not imply sync_sched(), so wait for both. 5879 * 5880 * Do sync before park smpboot threads to take care the rcu boost case. 5881 */ 5882 if (IS_ENABLED(CONFIG_PREEMPT)) 5883 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5884 else 5885 synchronize_rcu(); 5886 5887 if (!sched_smp_initialized) 5888 return 0; 5889 5890 ret = cpuset_cpu_inactive(cpu); 5891 if (ret) { 5892 set_cpu_active(cpu, true); 5893 return ret; 5894 } 5895 sched_domains_numa_masks_clear(cpu); 5896 return 0; 5897 } 5898 5899 static void sched_rq_cpu_starting(unsigned int cpu) 5900 { 5901 struct rq *rq = cpu_rq(cpu); 5902 5903 rq->calc_load_update = calc_load_update; 5904 update_max_interval(); 5905 } 5906 5907 int sched_cpu_starting(unsigned int cpu) 5908 { 5909 set_cpu_rq_start_time(cpu); 5910 sched_rq_cpu_starting(cpu); 5911 return 0; 5912 } 5913 5914 #ifdef CONFIG_HOTPLUG_CPU 5915 int sched_cpu_dying(unsigned int cpu) 5916 { 5917 struct rq *rq = cpu_rq(cpu); 5918 struct rq_flags rf; 5919 5920 /* Handle pending wakeups and then migrate everything off */ 5921 sched_ttwu_pending(); 5922 5923 rq_lock_irqsave(rq, &rf); 5924 if (rq->rd) { 5925 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5926 set_rq_offline(rq); 5927 } 5928 migrate_tasks(rq, &rf); 5929 BUG_ON(rq->nr_running != 1); 5930 rq_unlock_irqrestore(rq, &rf); 5931 5932 calc_load_migrate(rq); 5933 update_max_interval(); 5934 nohz_balance_exit_idle(cpu); 5935 hrtick_clear(rq); 5936 return 0; 5937 } 5938 #endif 5939 5940 #ifdef CONFIG_SCHED_SMT 5941 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5942 5943 static void sched_init_smt(void) 5944 { 5945 /* 5946 * We've enumerated all CPUs and will assume that if any CPU 5947 * has SMT siblings, CPU0 will too. 5948 */ 5949 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5950 static_branch_enable(&sched_smt_present); 5951 } 5952 #else 5953 static inline void sched_init_smt(void) { } 5954 #endif 5955 5956 void __init sched_init_smp(void) 5957 { 5958 cpumask_var_t non_isolated_cpus; 5959 5960 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 5961 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 5962 5963 sched_init_numa(); 5964 5965 /* 5966 * There's no userspace yet to cause hotplug operations; hence all the 5967 * CPU masks are stable and all blatant races in the below code cannot 5968 * happen. 5969 */ 5970 mutex_lock(&sched_domains_mutex); 5971 init_sched_domains(cpu_active_mask); 5972 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 5973 if (cpumask_empty(non_isolated_cpus)) 5974 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 5975 mutex_unlock(&sched_domains_mutex); 5976 5977 /* Move init over to a non-isolated CPU */ 5978 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 5979 BUG(); 5980 sched_init_granularity(); 5981 free_cpumask_var(non_isolated_cpus); 5982 5983 init_sched_rt_class(); 5984 init_sched_dl_class(); 5985 5986 sched_init_smt(); 5987 sched_clock_init_late(); 5988 5989 sched_smp_initialized = true; 5990 } 5991 5992 static int __init migration_init(void) 5993 { 5994 sched_rq_cpu_starting(smp_processor_id()); 5995 return 0; 5996 } 5997 early_initcall(migration_init); 5998 5999 #else 6000 void __init sched_init_smp(void) 6001 { 6002 sched_init_granularity(); 6003 sched_clock_init_late(); 6004 } 6005 #endif /* CONFIG_SMP */ 6006 6007 int in_sched_functions(unsigned long addr) 6008 { 6009 return in_lock_functions(addr) || 6010 (addr >= (unsigned long)__sched_text_start 6011 && addr < (unsigned long)__sched_text_end); 6012 } 6013 6014 #ifdef CONFIG_CGROUP_SCHED 6015 /* 6016 * Default task group. 6017 * Every task in system belongs to this group at bootup. 6018 */ 6019 struct task_group root_task_group; 6020 LIST_HEAD(task_groups); 6021 6022 /* Cacheline aligned slab cache for task_group */ 6023 static struct kmem_cache *task_group_cache __read_mostly; 6024 #endif 6025 6026 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6027 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 6028 6029 #define WAIT_TABLE_BITS 8 6030 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS) 6031 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned; 6032 6033 wait_queue_head_t *bit_waitqueue(void *word, int bit) 6034 { 6035 const int shift = BITS_PER_LONG == 32 ? 5 : 6; 6036 unsigned long val = (unsigned long)word << shift | bit; 6037 6038 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS); 6039 } 6040 EXPORT_SYMBOL(bit_waitqueue); 6041 6042 void __init sched_init(void) 6043 { 6044 int i, j; 6045 unsigned long alloc_size = 0, ptr; 6046 6047 sched_clock_init(); 6048 6049 for (i = 0; i < WAIT_TABLE_SIZE; i++) 6050 init_waitqueue_head(bit_wait_table + i); 6051 6052 #ifdef CONFIG_FAIR_GROUP_SCHED 6053 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6054 #endif 6055 #ifdef CONFIG_RT_GROUP_SCHED 6056 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6057 #endif 6058 if (alloc_size) { 6059 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6060 6061 #ifdef CONFIG_FAIR_GROUP_SCHED 6062 root_task_group.se = (struct sched_entity **)ptr; 6063 ptr += nr_cpu_ids * sizeof(void **); 6064 6065 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6066 ptr += nr_cpu_ids * sizeof(void **); 6067 6068 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6069 #ifdef CONFIG_RT_GROUP_SCHED 6070 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6071 ptr += nr_cpu_ids * sizeof(void **); 6072 6073 root_task_group.rt_rq = (struct rt_rq **)ptr; 6074 ptr += nr_cpu_ids * sizeof(void **); 6075 6076 #endif /* CONFIG_RT_GROUP_SCHED */ 6077 } 6078 #ifdef CONFIG_CPUMASK_OFFSTACK 6079 for_each_possible_cpu(i) { 6080 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6081 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6082 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6083 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6084 } 6085 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6086 6087 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6088 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6089 6090 #ifdef CONFIG_SMP 6091 init_defrootdomain(); 6092 #endif 6093 6094 #ifdef CONFIG_RT_GROUP_SCHED 6095 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6096 global_rt_period(), global_rt_runtime()); 6097 #endif /* CONFIG_RT_GROUP_SCHED */ 6098 6099 #ifdef CONFIG_CGROUP_SCHED 6100 task_group_cache = KMEM_CACHE(task_group, 0); 6101 6102 list_add(&root_task_group.list, &task_groups); 6103 INIT_LIST_HEAD(&root_task_group.children); 6104 INIT_LIST_HEAD(&root_task_group.siblings); 6105 autogroup_init(&init_task); 6106 #endif /* CONFIG_CGROUP_SCHED */ 6107 6108 for_each_possible_cpu(i) { 6109 struct rq *rq; 6110 6111 rq = cpu_rq(i); 6112 raw_spin_lock_init(&rq->lock); 6113 rq->nr_running = 0; 6114 rq->calc_load_active = 0; 6115 rq->calc_load_update = jiffies + LOAD_FREQ; 6116 init_cfs_rq(&rq->cfs); 6117 init_rt_rq(&rq->rt); 6118 init_dl_rq(&rq->dl); 6119 #ifdef CONFIG_FAIR_GROUP_SCHED 6120 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6121 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6122 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6123 /* 6124 * How much CPU bandwidth does root_task_group get? 6125 * 6126 * In case of task-groups formed thr' the cgroup filesystem, it 6127 * gets 100% of the CPU resources in the system. This overall 6128 * system CPU resource is divided among the tasks of 6129 * root_task_group and its child task-groups in a fair manner, 6130 * based on each entity's (task or task-group's) weight 6131 * (se->load.weight). 6132 * 6133 * In other words, if root_task_group has 10 tasks of weight 6134 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6135 * then A0's share of the CPU resource is: 6136 * 6137 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6138 * 6139 * We achieve this by letting root_task_group's tasks sit 6140 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6141 */ 6142 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6143 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6144 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6145 6146 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6147 #ifdef CONFIG_RT_GROUP_SCHED 6148 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6149 #endif 6150 6151 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6152 rq->cpu_load[j] = 0; 6153 6154 #ifdef CONFIG_SMP 6155 rq->sd = NULL; 6156 rq->rd = NULL; 6157 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6158 rq->balance_callback = NULL; 6159 rq->active_balance = 0; 6160 rq->next_balance = jiffies; 6161 rq->push_cpu = 0; 6162 rq->cpu = i; 6163 rq->online = 0; 6164 rq->idle_stamp = 0; 6165 rq->avg_idle = 2*sysctl_sched_migration_cost; 6166 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6167 6168 INIT_LIST_HEAD(&rq->cfs_tasks); 6169 6170 rq_attach_root(rq, &def_root_domain); 6171 #ifdef CONFIG_NO_HZ_COMMON 6172 rq->last_load_update_tick = jiffies; 6173 rq->nohz_flags = 0; 6174 #endif 6175 #ifdef CONFIG_NO_HZ_FULL 6176 rq->last_sched_tick = 0; 6177 #endif 6178 #endif /* CONFIG_SMP */ 6179 init_rq_hrtick(rq); 6180 atomic_set(&rq->nr_iowait, 0); 6181 } 6182 6183 set_load_weight(&init_task); 6184 6185 /* 6186 * The boot idle thread does lazy MMU switching as well: 6187 */ 6188 mmgrab(&init_mm); 6189 enter_lazy_tlb(&init_mm, current); 6190 6191 /* 6192 * Make us the idle thread. Technically, schedule() should not be 6193 * called from this thread, however somewhere below it might be, 6194 * but because we are the idle thread, we just pick up running again 6195 * when this runqueue becomes "idle". 6196 */ 6197 init_idle(current, smp_processor_id()); 6198 6199 calc_load_update = jiffies + LOAD_FREQ; 6200 6201 #ifdef CONFIG_SMP 6202 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6203 /* May be allocated at isolcpus cmdline parse time */ 6204 if (cpu_isolated_map == NULL) 6205 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6206 idle_thread_set_boot_cpu(); 6207 set_cpu_rq_start_time(smp_processor_id()); 6208 #endif 6209 init_sched_fair_class(); 6210 6211 init_schedstats(); 6212 6213 scheduler_running = 1; 6214 } 6215 6216 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6217 static inline int preempt_count_equals(int preempt_offset) 6218 { 6219 int nested = preempt_count() + rcu_preempt_depth(); 6220 6221 return (nested == preempt_offset); 6222 } 6223 6224 void __might_sleep(const char *file, int line, int preempt_offset) 6225 { 6226 /* 6227 * Blocking primitives will set (and therefore destroy) current->state, 6228 * since we will exit with TASK_RUNNING make sure we enter with it, 6229 * otherwise we will destroy state. 6230 */ 6231 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6232 "do not call blocking ops when !TASK_RUNNING; " 6233 "state=%lx set at [<%p>] %pS\n", 6234 current->state, 6235 (void *)current->task_state_change, 6236 (void *)current->task_state_change); 6237 6238 ___might_sleep(file, line, preempt_offset); 6239 } 6240 EXPORT_SYMBOL(__might_sleep); 6241 6242 void ___might_sleep(const char *file, int line, int preempt_offset) 6243 { 6244 /* Ratelimiting timestamp: */ 6245 static unsigned long prev_jiffy; 6246 6247 unsigned long preempt_disable_ip; 6248 6249 /* WARN_ON_ONCE() by default, no rate limit required: */ 6250 rcu_sleep_check(); 6251 6252 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6253 !is_idle_task(current)) || 6254 system_state != SYSTEM_RUNNING || oops_in_progress) 6255 return; 6256 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6257 return; 6258 prev_jiffy = jiffies; 6259 6260 /* Save this before calling printk(), since that will clobber it: */ 6261 preempt_disable_ip = get_preempt_disable_ip(current); 6262 6263 printk(KERN_ERR 6264 "BUG: sleeping function called from invalid context at %s:%d\n", 6265 file, line); 6266 printk(KERN_ERR 6267 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6268 in_atomic(), irqs_disabled(), 6269 current->pid, current->comm); 6270 6271 if (task_stack_end_corrupted(current)) 6272 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6273 6274 debug_show_held_locks(current); 6275 if (irqs_disabled()) 6276 print_irqtrace_events(current); 6277 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6278 && !preempt_count_equals(preempt_offset)) { 6279 pr_err("Preemption disabled at:"); 6280 print_ip_sym(preempt_disable_ip); 6281 pr_cont("\n"); 6282 } 6283 dump_stack(); 6284 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6285 } 6286 EXPORT_SYMBOL(___might_sleep); 6287 #endif 6288 6289 #ifdef CONFIG_MAGIC_SYSRQ 6290 void normalize_rt_tasks(void) 6291 { 6292 struct task_struct *g, *p; 6293 struct sched_attr attr = { 6294 .sched_policy = SCHED_NORMAL, 6295 }; 6296 6297 read_lock(&tasklist_lock); 6298 for_each_process_thread(g, p) { 6299 /* 6300 * Only normalize user tasks: 6301 */ 6302 if (p->flags & PF_KTHREAD) 6303 continue; 6304 6305 p->se.exec_start = 0; 6306 schedstat_set(p->se.statistics.wait_start, 0); 6307 schedstat_set(p->se.statistics.sleep_start, 0); 6308 schedstat_set(p->se.statistics.block_start, 0); 6309 6310 if (!dl_task(p) && !rt_task(p)) { 6311 /* 6312 * Renice negative nice level userspace 6313 * tasks back to 0: 6314 */ 6315 if (task_nice(p) < 0) 6316 set_user_nice(p, 0); 6317 continue; 6318 } 6319 6320 __sched_setscheduler(p, &attr, false, false); 6321 } 6322 read_unlock(&tasklist_lock); 6323 } 6324 6325 #endif /* CONFIG_MAGIC_SYSRQ */ 6326 6327 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6328 /* 6329 * These functions are only useful for the IA64 MCA handling, or kdb. 6330 * 6331 * They can only be called when the whole system has been 6332 * stopped - every CPU needs to be quiescent, and no scheduling 6333 * activity can take place. Using them for anything else would 6334 * be a serious bug, and as a result, they aren't even visible 6335 * under any other configuration. 6336 */ 6337 6338 /** 6339 * curr_task - return the current task for a given CPU. 6340 * @cpu: the processor in question. 6341 * 6342 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6343 * 6344 * Return: The current task for @cpu. 6345 */ 6346 struct task_struct *curr_task(int cpu) 6347 { 6348 return cpu_curr(cpu); 6349 } 6350 6351 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6352 6353 #ifdef CONFIG_IA64 6354 /** 6355 * set_curr_task - set the current task for a given CPU. 6356 * @cpu: the processor in question. 6357 * @p: the task pointer to set. 6358 * 6359 * Description: This function must only be used when non-maskable interrupts 6360 * are serviced on a separate stack. It allows the architecture to switch the 6361 * notion of the current task on a CPU in a non-blocking manner. This function 6362 * must be called with all CPU's synchronized, and interrupts disabled, the 6363 * and caller must save the original value of the current task (see 6364 * curr_task() above) and restore that value before reenabling interrupts and 6365 * re-starting the system. 6366 * 6367 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6368 */ 6369 void ia64_set_curr_task(int cpu, struct task_struct *p) 6370 { 6371 cpu_curr(cpu) = p; 6372 } 6373 6374 #endif 6375 6376 #ifdef CONFIG_CGROUP_SCHED 6377 /* task_group_lock serializes the addition/removal of task groups */ 6378 static DEFINE_SPINLOCK(task_group_lock); 6379 6380 static void sched_free_group(struct task_group *tg) 6381 { 6382 free_fair_sched_group(tg); 6383 free_rt_sched_group(tg); 6384 autogroup_free(tg); 6385 kmem_cache_free(task_group_cache, tg); 6386 } 6387 6388 /* allocate runqueue etc for a new task group */ 6389 struct task_group *sched_create_group(struct task_group *parent) 6390 { 6391 struct task_group *tg; 6392 6393 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6394 if (!tg) 6395 return ERR_PTR(-ENOMEM); 6396 6397 if (!alloc_fair_sched_group(tg, parent)) 6398 goto err; 6399 6400 if (!alloc_rt_sched_group(tg, parent)) 6401 goto err; 6402 6403 return tg; 6404 6405 err: 6406 sched_free_group(tg); 6407 return ERR_PTR(-ENOMEM); 6408 } 6409 6410 void sched_online_group(struct task_group *tg, struct task_group *parent) 6411 { 6412 unsigned long flags; 6413 6414 spin_lock_irqsave(&task_group_lock, flags); 6415 list_add_rcu(&tg->list, &task_groups); 6416 6417 /* Root should already exist: */ 6418 WARN_ON(!parent); 6419 6420 tg->parent = parent; 6421 INIT_LIST_HEAD(&tg->children); 6422 list_add_rcu(&tg->siblings, &parent->children); 6423 spin_unlock_irqrestore(&task_group_lock, flags); 6424 6425 online_fair_sched_group(tg); 6426 } 6427 6428 /* rcu callback to free various structures associated with a task group */ 6429 static void sched_free_group_rcu(struct rcu_head *rhp) 6430 { 6431 /* Now it should be safe to free those cfs_rqs: */ 6432 sched_free_group(container_of(rhp, struct task_group, rcu)); 6433 } 6434 6435 void sched_destroy_group(struct task_group *tg) 6436 { 6437 /* Wait for possible concurrent references to cfs_rqs complete: */ 6438 call_rcu(&tg->rcu, sched_free_group_rcu); 6439 } 6440 6441 void sched_offline_group(struct task_group *tg) 6442 { 6443 unsigned long flags; 6444 6445 /* End participation in shares distribution: */ 6446 unregister_fair_sched_group(tg); 6447 6448 spin_lock_irqsave(&task_group_lock, flags); 6449 list_del_rcu(&tg->list); 6450 list_del_rcu(&tg->siblings); 6451 spin_unlock_irqrestore(&task_group_lock, flags); 6452 } 6453 6454 static void sched_change_group(struct task_struct *tsk, int type) 6455 { 6456 struct task_group *tg; 6457 6458 /* 6459 * All callers are synchronized by task_rq_lock(); we do not use RCU 6460 * which is pointless here. Thus, we pass "true" to task_css_check() 6461 * to prevent lockdep warnings. 6462 */ 6463 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6464 struct task_group, css); 6465 tg = autogroup_task_group(tsk, tg); 6466 tsk->sched_task_group = tg; 6467 6468 #ifdef CONFIG_FAIR_GROUP_SCHED 6469 if (tsk->sched_class->task_change_group) 6470 tsk->sched_class->task_change_group(tsk, type); 6471 else 6472 #endif 6473 set_task_rq(tsk, task_cpu(tsk)); 6474 } 6475 6476 /* 6477 * Change task's runqueue when it moves between groups. 6478 * 6479 * The caller of this function should have put the task in its new group by 6480 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6481 * its new group. 6482 */ 6483 void sched_move_task(struct task_struct *tsk) 6484 { 6485 int queued, running, queue_flags = 6486 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6487 struct rq_flags rf; 6488 struct rq *rq; 6489 6490 rq = task_rq_lock(tsk, &rf); 6491 update_rq_clock(rq); 6492 6493 running = task_current(rq, tsk); 6494 queued = task_on_rq_queued(tsk); 6495 6496 if (queued) 6497 dequeue_task(rq, tsk, queue_flags); 6498 if (running) 6499 put_prev_task(rq, tsk); 6500 6501 sched_change_group(tsk, TASK_MOVE_GROUP); 6502 6503 if (queued) 6504 enqueue_task(rq, tsk, queue_flags); 6505 if (running) 6506 set_curr_task(rq, tsk); 6507 6508 task_rq_unlock(rq, tsk, &rf); 6509 } 6510 #endif /* CONFIG_CGROUP_SCHED */ 6511 6512 #ifdef CONFIG_RT_GROUP_SCHED 6513 /* 6514 * Ensure that the real time constraints are schedulable. 6515 */ 6516 static DEFINE_MUTEX(rt_constraints_mutex); 6517 6518 /* Must be called with tasklist_lock held */ 6519 static inline int tg_has_rt_tasks(struct task_group *tg) 6520 { 6521 struct task_struct *g, *p; 6522 6523 /* 6524 * Autogroups do not have RT tasks; see autogroup_create(). 6525 */ 6526 if (task_group_is_autogroup(tg)) 6527 return 0; 6528 6529 for_each_process_thread(g, p) { 6530 if (rt_task(p) && task_group(p) == tg) 6531 return 1; 6532 } 6533 6534 return 0; 6535 } 6536 6537 struct rt_schedulable_data { 6538 struct task_group *tg; 6539 u64 rt_period; 6540 u64 rt_runtime; 6541 }; 6542 6543 static int tg_rt_schedulable(struct task_group *tg, void *data) 6544 { 6545 struct rt_schedulable_data *d = data; 6546 struct task_group *child; 6547 unsigned long total, sum = 0; 6548 u64 period, runtime; 6549 6550 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 6551 runtime = tg->rt_bandwidth.rt_runtime; 6552 6553 if (tg == d->tg) { 6554 period = d->rt_period; 6555 runtime = d->rt_runtime; 6556 } 6557 6558 /* 6559 * Cannot have more runtime than the period. 6560 */ 6561 if (runtime > period && runtime != RUNTIME_INF) 6562 return -EINVAL; 6563 6564 /* 6565 * Ensure we don't starve existing RT tasks. 6566 */ 6567 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 6568 return -EBUSY; 6569 6570 total = to_ratio(period, runtime); 6571 6572 /* 6573 * Nobody can have more than the global setting allows. 6574 */ 6575 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 6576 return -EINVAL; 6577 6578 /* 6579 * The sum of our children's runtime should not exceed our own. 6580 */ 6581 list_for_each_entry_rcu(child, &tg->children, siblings) { 6582 period = ktime_to_ns(child->rt_bandwidth.rt_period); 6583 runtime = child->rt_bandwidth.rt_runtime; 6584 6585 if (child == d->tg) { 6586 period = d->rt_period; 6587 runtime = d->rt_runtime; 6588 } 6589 6590 sum += to_ratio(period, runtime); 6591 } 6592 6593 if (sum > total) 6594 return -EINVAL; 6595 6596 return 0; 6597 } 6598 6599 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 6600 { 6601 int ret; 6602 6603 struct rt_schedulable_data data = { 6604 .tg = tg, 6605 .rt_period = period, 6606 .rt_runtime = runtime, 6607 }; 6608 6609 rcu_read_lock(); 6610 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 6611 rcu_read_unlock(); 6612 6613 return ret; 6614 } 6615 6616 static int tg_set_rt_bandwidth(struct task_group *tg, 6617 u64 rt_period, u64 rt_runtime) 6618 { 6619 int i, err = 0; 6620 6621 /* 6622 * Disallowing the root group RT runtime is BAD, it would disallow the 6623 * kernel creating (and or operating) RT threads. 6624 */ 6625 if (tg == &root_task_group && rt_runtime == 0) 6626 return -EINVAL; 6627 6628 /* No period doesn't make any sense. */ 6629 if (rt_period == 0) 6630 return -EINVAL; 6631 6632 mutex_lock(&rt_constraints_mutex); 6633 read_lock(&tasklist_lock); 6634 err = __rt_schedulable(tg, rt_period, rt_runtime); 6635 if (err) 6636 goto unlock; 6637 6638 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 6639 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 6640 tg->rt_bandwidth.rt_runtime = rt_runtime; 6641 6642 for_each_possible_cpu(i) { 6643 struct rt_rq *rt_rq = tg->rt_rq[i]; 6644 6645 raw_spin_lock(&rt_rq->rt_runtime_lock); 6646 rt_rq->rt_runtime = rt_runtime; 6647 raw_spin_unlock(&rt_rq->rt_runtime_lock); 6648 } 6649 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 6650 unlock: 6651 read_unlock(&tasklist_lock); 6652 mutex_unlock(&rt_constraints_mutex); 6653 6654 return err; 6655 } 6656 6657 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 6658 { 6659 u64 rt_runtime, rt_period; 6660 6661 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 6662 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 6663 if (rt_runtime_us < 0) 6664 rt_runtime = RUNTIME_INF; 6665 6666 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 6667 } 6668 6669 static long sched_group_rt_runtime(struct task_group *tg) 6670 { 6671 u64 rt_runtime_us; 6672 6673 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 6674 return -1; 6675 6676 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 6677 do_div(rt_runtime_us, NSEC_PER_USEC); 6678 return rt_runtime_us; 6679 } 6680 6681 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 6682 { 6683 u64 rt_runtime, rt_period; 6684 6685 rt_period = rt_period_us * NSEC_PER_USEC; 6686 rt_runtime = tg->rt_bandwidth.rt_runtime; 6687 6688 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 6689 } 6690 6691 static long sched_group_rt_period(struct task_group *tg) 6692 { 6693 u64 rt_period_us; 6694 6695 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 6696 do_div(rt_period_us, NSEC_PER_USEC); 6697 return rt_period_us; 6698 } 6699 #endif /* CONFIG_RT_GROUP_SCHED */ 6700 6701 #ifdef CONFIG_RT_GROUP_SCHED 6702 static int sched_rt_global_constraints(void) 6703 { 6704 int ret = 0; 6705 6706 mutex_lock(&rt_constraints_mutex); 6707 read_lock(&tasklist_lock); 6708 ret = __rt_schedulable(NULL, 0, 0); 6709 read_unlock(&tasklist_lock); 6710 mutex_unlock(&rt_constraints_mutex); 6711 6712 return ret; 6713 } 6714 6715 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 6716 { 6717 /* Don't accept realtime tasks when there is no way for them to run */ 6718 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 6719 return 0; 6720 6721 return 1; 6722 } 6723 6724 #else /* !CONFIG_RT_GROUP_SCHED */ 6725 static int sched_rt_global_constraints(void) 6726 { 6727 unsigned long flags; 6728 int i; 6729 6730 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 6731 for_each_possible_cpu(i) { 6732 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 6733 6734 raw_spin_lock(&rt_rq->rt_runtime_lock); 6735 rt_rq->rt_runtime = global_rt_runtime(); 6736 raw_spin_unlock(&rt_rq->rt_runtime_lock); 6737 } 6738 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 6739 6740 return 0; 6741 } 6742 #endif /* CONFIG_RT_GROUP_SCHED */ 6743 6744 static int sched_dl_global_validate(void) 6745 { 6746 u64 runtime = global_rt_runtime(); 6747 u64 period = global_rt_period(); 6748 u64 new_bw = to_ratio(period, runtime); 6749 struct dl_bw *dl_b; 6750 int cpu, ret = 0; 6751 unsigned long flags; 6752 6753 /* 6754 * Here we want to check the bandwidth not being set to some 6755 * value smaller than the currently allocated bandwidth in 6756 * any of the root_domains. 6757 * 6758 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 6759 * cycling on root_domains... Discussion on different/better 6760 * solutions is welcome! 6761 */ 6762 for_each_possible_cpu(cpu) { 6763 rcu_read_lock_sched(); 6764 dl_b = dl_bw_of(cpu); 6765 6766 raw_spin_lock_irqsave(&dl_b->lock, flags); 6767 if (new_bw < dl_b->total_bw) 6768 ret = -EBUSY; 6769 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 6770 6771 rcu_read_unlock_sched(); 6772 6773 if (ret) 6774 break; 6775 } 6776 6777 return ret; 6778 } 6779 6780 static void sched_dl_do_global(void) 6781 { 6782 u64 new_bw = -1; 6783 struct dl_bw *dl_b; 6784 int cpu; 6785 unsigned long flags; 6786 6787 def_dl_bandwidth.dl_period = global_rt_period(); 6788 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 6789 6790 if (global_rt_runtime() != RUNTIME_INF) 6791 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 6792 6793 /* 6794 * FIXME: As above... 6795 */ 6796 for_each_possible_cpu(cpu) { 6797 rcu_read_lock_sched(); 6798 dl_b = dl_bw_of(cpu); 6799 6800 raw_spin_lock_irqsave(&dl_b->lock, flags); 6801 dl_b->bw = new_bw; 6802 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 6803 6804 rcu_read_unlock_sched(); 6805 } 6806 } 6807 6808 static int sched_rt_global_validate(void) 6809 { 6810 if (sysctl_sched_rt_period <= 0) 6811 return -EINVAL; 6812 6813 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 6814 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 6815 return -EINVAL; 6816 6817 return 0; 6818 } 6819 6820 static void sched_rt_do_global(void) 6821 { 6822 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 6823 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 6824 } 6825 6826 int sched_rt_handler(struct ctl_table *table, int write, 6827 void __user *buffer, size_t *lenp, 6828 loff_t *ppos) 6829 { 6830 int old_period, old_runtime; 6831 static DEFINE_MUTEX(mutex); 6832 int ret; 6833 6834 mutex_lock(&mutex); 6835 old_period = sysctl_sched_rt_period; 6836 old_runtime = sysctl_sched_rt_runtime; 6837 6838 ret = proc_dointvec(table, write, buffer, lenp, ppos); 6839 6840 if (!ret && write) { 6841 ret = sched_rt_global_validate(); 6842 if (ret) 6843 goto undo; 6844 6845 ret = sched_dl_global_validate(); 6846 if (ret) 6847 goto undo; 6848 6849 ret = sched_rt_global_constraints(); 6850 if (ret) 6851 goto undo; 6852 6853 sched_rt_do_global(); 6854 sched_dl_do_global(); 6855 } 6856 if (0) { 6857 undo: 6858 sysctl_sched_rt_period = old_period; 6859 sysctl_sched_rt_runtime = old_runtime; 6860 } 6861 mutex_unlock(&mutex); 6862 6863 return ret; 6864 } 6865 6866 int sched_rr_handler(struct ctl_table *table, int write, 6867 void __user *buffer, size_t *lenp, 6868 loff_t *ppos) 6869 { 6870 int ret; 6871 static DEFINE_MUTEX(mutex); 6872 6873 mutex_lock(&mutex); 6874 ret = proc_dointvec(table, write, buffer, lenp, ppos); 6875 /* 6876 * Make sure that internally we keep jiffies. 6877 * Also, writing zero resets the timeslice to default: 6878 */ 6879 if (!ret && write) { 6880 sched_rr_timeslice = 6881 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 6882 msecs_to_jiffies(sysctl_sched_rr_timeslice); 6883 } 6884 mutex_unlock(&mutex); 6885 return ret; 6886 } 6887 6888 #ifdef CONFIG_CGROUP_SCHED 6889 6890 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6891 { 6892 return css ? container_of(css, struct task_group, css) : NULL; 6893 } 6894 6895 static struct cgroup_subsys_state * 6896 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6897 { 6898 struct task_group *parent = css_tg(parent_css); 6899 struct task_group *tg; 6900 6901 if (!parent) { 6902 /* This is early initialization for the top cgroup */ 6903 return &root_task_group.css; 6904 } 6905 6906 tg = sched_create_group(parent); 6907 if (IS_ERR(tg)) 6908 return ERR_PTR(-ENOMEM); 6909 6910 return &tg->css; 6911 } 6912 6913 /* Expose task group only after completing cgroup initialization */ 6914 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6915 { 6916 struct task_group *tg = css_tg(css); 6917 struct task_group *parent = css_tg(css->parent); 6918 6919 if (parent) 6920 sched_online_group(tg, parent); 6921 return 0; 6922 } 6923 6924 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6925 { 6926 struct task_group *tg = css_tg(css); 6927 6928 sched_offline_group(tg); 6929 } 6930 6931 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6932 { 6933 struct task_group *tg = css_tg(css); 6934 6935 /* 6936 * Relies on the RCU grace period between css_released() and this. 6937 */ 6938 sched_free_group(tg); 6939 } 6940 6941 /* 6942 * This is called before wake_up_new_task(), therefore we really only 6943 * have to set its group bits, all the other stuff does not apply. 6944 */ 6945 static void cpu_cgroup_fork(struct task_struct *task) 6946 { 6947 struct rq_flags rf; 6948 struct rq *rq; 6949 6950 rq = task_rq_lock(task, &rf); 6951 6952 update_rq_clock(rq); 6953 sched_change_group(task, TASK_SET_GROUP); 6954 6955 task_rq_unlock(rq, task, &rf); 6956 } 6957 6958 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6959 { 6960 struct task_struct *task; 6961 struct cgroup_subsys_state *css; 6962 int ret = 0; 6963 6964 cgroup_taskset_for_each(task, css, tset) { 6965 #ifdef CONFIG_RT_GROUP_SCHED 6966 if (!sched_rt_can_attach(css_tg(css), task)) 6967 return -EINVAL; 6968 #else 6969 /* We don't support RT-tasks being in separate groups */ 6970 if (task->sched_class != &fair_sched_class) 6971 return -EINVAL; 6972 #endif 6973 /* 6974 * Serialize against wake_up_new_task() such that if its 6975 * running, we're sure to observe its full state. 6976 */ 6977 raw_spin_lock_irq(&task->pi_lock); 6978 /* 6979 * Avoid calling sched_move_task() before wake_up_new_task() 6980 * has happened. This would lead to problems with PELT, due to 6981 * move wanting to detach+attach while we're not attached yet. 6982 */ 6983 if (task->state == TASK_NEW) 6984 ret = -EINVAL; 6985 raw_spin_unlock_irq(&task->pi_lock); 6986 6987 if (ret) 6988 break; 6989 } 6990 return ret; 6991 } 6992 6993 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6994 { 6995 struct task_struct *task; 6996 struct cgroup_subsys_state *css; 6997 6998 cgroup_taskset_for_each(task, css, tset) 6999 sched_move_task(task); 7000 } 7001 7002 #ifdef CONFIG_FAIR_GROUP_SCHED 7003 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7004 struct cftype *cftype, u64 shareval) 7005 { 7006 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7007 } 7008 7009 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7010 struct cftype *cft) 7011 { 7012 struct task_group *tg = css_tg(css); 7013 7014 return (u64) scale_load_down(tg->shares); 7015 } 7016 7017 #ifdef CONFIG_CFS_BANDWIDTH 7018 static DEFINE_MUTEX(cfs_constraints_mutex); 7019 7020 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7021 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7022 7023 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7024 7025 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7026 { 7027 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7028 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7029 7030 if (tg == &root_task_group) 7031 return -EINVAL; 7032 7033 /* 7034 * Ensure we have at some amount of bandwidth every period. This is 7035 * to prevent reaching a state of large arrears when throttled via 7036 * entity_tick() resulting in prolonged exit starvation. 7037 */ 7038 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7039 return -EINVAL; 7040 7041 /* 7042 * Likewise, bound things on the otherside by preventing insane quota 7043 * periods. This also allows us to normalize in computing quota 7044 * feasibility. 7045 */ 7046 if (period > max_cfs_quota_period) 7047 return -EINVAL; 7048 7049 /* 7050 * Prevent race between setting of cfs_rq->runtime_enabled and 7051 * unthrottle_offline_cfs_rqs(). 7052 */ 7053 get_online_cpus(); 7054 mutex_lock(&cfs_constraints_mutex); 7055 ret = __cfs_schedulable(tg, period, quota); 7056 if (ret) 7057 goto out_unlock; 7058 7059 runtime_enabled = quota != RUNTIME_INF; 7060 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7061 /* 7062 * If we need to toggle cfs_bandwidth_used, off->on must occur 7063 * before making related changes, and on->off must occur afterwards 7064 */ 7065 if (runtime_enabled && !runtime_was_enabled) 7066 cfs_bandwidth_usage_inc(); 7067 raw_spin_lock_irq(&cfs_b->lock); 7068 cfs_b->period = ns_to_ktime(period); 7069 cfs_b->quota = quota; 7070 7071 __refill_cfs_bandwidth_runtime(cfs_b); 7072 7073 /* Restart the period timer (if active) to handle new period expiry: */ 7074 if (runtime_enabled) 7075 start_cfs_bandwidth(cfs_b); 7076 7077 raw_spin_unlock_irq(&cfs_b->lock); 7078 7079 for_each_online_cpu(i) { 7080 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7081 struct rq *rq = cfs_rq->rq; 7082 struct rq_flags rf; 7083 7084 rq_lock_irq(rq, &rf); 7085 cfs_rq->runtime_enabled = runtime_enabled; 7086 cfs_rq->runtime_remaining = 0; 7087 7088 if (cfs_rq->throttled) 7089 unthrottle_cfs_rq(cfs_rq); 7090 rq_unlock_irq(rq, &rf); 7091 } 7092 if (runtime_was_enabled && !runtime_enabled) 7093 cfs_bandwidth_usage_dec(); 7094 out_unlock: 7095 mutex_unlock(&cfs_constraints_mutex); 7096 put_online_cpus(); 7097 7098 return ret; 7099 } 7100 7101 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7102 { 7103 u64 quota, period; 7104 7105 period = ktime_to_ns(tg->cfs_bandwidth.period); 7106 if (cfs_quota_us < 0) 7107 quota = RUNTIME_INF; 7108 else 7109 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7110 7111 return tg_set_cfs_bandwidth(tg, period, quota); 7112 } 7113 7114 long tg_get_cfs_quota(struct task_group *tg) 7115 { 7116 u64 quota_us; 7117 7118 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7119 return -1; 7120 7121 quota_us = tg->cfs_bandwidth.quota; 7122 do_div(quota_us, NSEC_PER_USEC); 7123 7124 return quota_us; 7125 } 7126 7127 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7128 { 7129 u64 quota, period; 7130 7131 period = (u64)cfs_period_us * NSEC_PER_USEC; 7132 quota = tg->cfs_bandwidth.quota; 7133 7134 return tg_set_cfs_bandwidth(tg, period, quota); 7135 } 7136 7137 long tg_get_cfs_period(struct task_group *tg) 7138 { 7139 u64 cfs_period_us; 7140 7141 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7142 do_div(cfs_period_us, NSEC_PER_USEC); 7143 7144 return cfs_period_us; 7145 } 7146 7147 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7148 struct cftype *cft) 7149 { 7150 return tg_get_cfs_quota(css_tg(css)); 7151 } 7152 7153 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7154 struct cftype *cftype, s64 cfs_quota_us) 7155 { 7156 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7157 } 7158 7159 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7160 struct cftype *cft) 7161 { 7162 return tg_get_cfs_period(css_tg(css)); 7163 } 7164 7165 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7166 struct cftype *cftype, u64 cfs_period_us) 7167 { 7168 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7169 } 7170 7171 struct cfs_schedulable_data { 7172 struct task_group *tg; 7173 u64 period, quota; 7174 }; 7175 7176 /* 7177 * normalize group quota/period to be quota/max_period 7178 * note: units are usecs 7179 */ 7180 static u64 normalize_cfs_quota(struct task_group *tg, 7181 struct cfs_schedulable_data *d) 7182 { 7183 u64 quota, period; 7184 7185 if (tg == d->tg) { 7186 period = d->period; 7187 quota = d->quota; 7188 } else { 7189 period = tg_get_cfs_period(tg); 7190 quota = tg_get_cfs_quota(tg); 7191 } 7192 7193 /* note: these should typically be equivalent */ 7194 if (quota == RUNTIME_INF || quota == -1) 7195 return RUNTIME_INF; 7196 7197 return to_ratio(period, quota); 7198 } 7199 7200 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7201 { 7202 struct cfs_schedulable_data *d = data; 7203 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7204 s64 quota = 0, parent_quota = -1; 7205 7206 if (!tg->parent) { 7207 quota = RUNTIME_INF; 7208 } else { 7209 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7210 7211 quota = normalize_cfs_quota(tg, d); 7212 parent_quota = parent_b->hierarchical_quota; 7213 7214 /* 7215 * Ensure max(child_quota) <= parent_quota, inherit when no 7216 * limit is set: 7217 */ 7218 if (quota == RUNTIME_INF) 7219 quota = parent_quota; 7220 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7221 return -EINVAL; 7222 } 7223 cfs_b->hierarchical_quota = quota; 7224 7225 return 0; 7226 } 7227 7228 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7229 { 7230 int ret; 7231 struct cfs_schedulable_data data = { 7232 .tg = tg, 7233 .period = period, 7234 .quota = quota, 7235 }; 7236 7237 if (quota != RUNTIME_INF) { 7238 do_div(data.period, NSEC_PER_USEC); 7239 do_div(data.quota, NSEC_PER_USEC); 7240 } 7241 7242 rcu_read_lock(); 7243 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7244 rcu_read_unlock(); 7245 7246 return ret; 7247 } 7248 7249 static int cpu_stats_show(struct seq_file *sf, void *v) 7250 { 7251 struct task_group *tg = css_tg(seq_css(sf)); 7252 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7253 7254 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7255 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7256 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7257 7258 return 0; 7259 } 7260 #endif /* CONFIG_CFS_BANDWIDTH */ 7261 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7262 7263 #ifdef CONFIG_RT_GROUP_SCHED 7264 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7265 struct cftype *cft, s64 val) 7266 { 7267 return sched_group_set_rt_runtime(css_tg(css), val); 7268 } 7269 7270 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7271 struct cftype *cft) 7272 { 7273 return sched_group_rt_runtime(css_tg(css)); 7274 } 7275 7276 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7277 struct cftype *cftype, u64 rt_period_us) 7278 { 7279 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7280 } 7281 7282 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7283 struct cftype *cft) 7284 { 7285 return sched_group_rt_period(css_tg(css)); 7286 } 7287 #endif /* CONFIG_RT_GROUP_SCHED */ 7288 7289 static struct cftype cpu_files[] = { 7290 #ifdef CONFIG_FAIR_GROUP_SCHED 7291 { 7292 .name = "shares", 7293 .read_u64 = cpu_shares_read_u64, 7294 .write_u64 = cpu_shares_write_u64, 7295 }, 7296 #endif 7297 #ifdef CONFIG_CFS_BANDWIDTH 7298 { 7299 .name = "cfs_quota_us", 7300 .read_s64 = cpu_cfs_quota_read_s64, 7301 .write_s64 = cpu_cfs_quota_write_s64, 7302 }, 7303 { 7304 .name = "cfs_period_us", 7305 .read_u64 = cpu_cfs_period_read_u64, 7306 .write_u64 = cpu_cfs_period_write_u64, 7307 }, 7308 { 7309 .name = "stat", 7310 .seq_show = cpu_stats_show, 7311 }, 7312 #endif 7313 #ifdef CONFIG_RT_GROUP_SCHED 7314 { 7315 .name = "rt_runtime_us", 7316 .read_s64 = cpu_rt_runtime_read, 7317 .write_s64 = cpu_rt_runtime_write, 7318 }, 7319 { 7320 .name = "rt_period_us", 7321 .read_u64 = cpu_rt_period_read_uint, 7322 .write_u64 = cpu_rt_period_write_uint, 7323 }, 7324 #endif 7325 { } /* Terminate */ 7326 }; 7327 7328 struct cgroup_subsys cpu_cgrp_subsys = { 7329 .css_alloc = cpu_cgroup_css_alloc, 7330 .css_online = cpu_cgroup_css_online, 7331 .css_released = cpu_cgroup_css_released, 7332 .css_free = cpu_cgroup_css_free, 7333 .fork = cpu_cgroup_fork, 7334 .can_attach = cpu_cgroup_can_attach, 7335 .attach = cpu_cgroup_attach, 7336 .legacy_cftypes = cpu_files, 7337 .early_init = true, 7338 }; 7339 7340 #endif /* CONFIG_CGROUP_SCHED */ 7341 7342 void dump_cpu_task(int cpu) 7343 { 7344 pr_info("Task dump for CPU %d:\n", cpu); 7345 sched_show_task(cpu_curr(cpu)); 7346 } 7347 7348 /* 7349 * Nice levels are multiplicative, with a gentle 10% change for every 7350 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7351 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7352 * that remained on nice 0. 7353 * 7354 * The "10% effect" is relative and cumulative: from _any_ nice level, 7355 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7356 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7357 * If a task goes up by ~10% and another task goes down by ~10% then 7358 * the relative distance between them is ~25%.) 7359 */ 7360 const int sched_prio_to_weight[40] = { 7361 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7362 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7363 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7364 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7365 /* 0 */ 1024, 820, 655, 526, 423, 7366 /* 5 */ 335, 272, 215, 172, 137, 7367 /* 10 */ 110, 87, 70, 56, 45, 7368 /* 15 */ 36, 29, 23, 18, 15, 7369 }; 7370 7371 /* 7372 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7373 * 7374 * In cases where the weight does not change often, we can use the 7375 * precalculated inverse to speed up arithmetics by turning divisions 7376 * into multiplications: 7377 */ 7378 const u32 sched_prio_to_wmult[40] = { 7379 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7380 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7381 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7382 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7383 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7384 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7385 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7386 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7387 }; 7388