1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <linux/nospec.h> 11 12 #include <linux/kcov.h> 13 14 #include <asm/switch_to.h> 15 #include <asm/tlb.h> 16 17 #include "../workqueue_internal.h" 18 #include "../smpboot.h" 19 20 #define CREATE_TRACE_POINTS 21 #include <trace/events/sched.h> 22 23 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 24 25 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 26 /* 27 * Debugging: various feature bits 28 * 29 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 30 * sysctl_sched_features, defined in sched.h, to allow constants propagation 31 * at compile time and compiler optimization based on features default. 32 */ 33 #define SCHED_FEAT(name, enabled) \ 34 (1UL << __SCHED_FEAT_##name) * enabled | 35 const_debug unsigned int sysctl_sched_features = 36 #include "features.h" 37 0; 38 #undef SCHED_FEAT 39 #endif 40 41 /* 42 * Number of tasks to iterate in a single balance run. 43 * Limited because this is done with IRQs disabled. 44 */ 45 const_debug unsigned int sysctl_sched_nr_migrate = 32; 46 47 /* 48 * period over which we average the RT time consumption, measured 49 * in ms. 50 * 51 * default: 1s 52 */ 53 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 54 55 /* 56 * period over which we measure -rt task CPU usage in us. 57 * default: 1s 58 */ 59 unsigned int sysctl_sched_rt_period = 1000000; 60 61 __read_mostly int scheduler_running; 62 63 /* 64 * part of the period that we allow rt tasks to run in us. 65 * default: 0.95s 66 */ 67 int sysctl_sched_rt_runtime = 950000; 68 69 /* 70 * __task_rq_lock - lock the rq @p resides on. 71 */ 72 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 73 __acquires(rq->lock) 74 { 75 struct rq *rq; 76 77 lockdep_assert_held(&p->pi_lock); 78 79 for (;;) { 80 rq = task_rq(p); 81 raw_spin_lock(&rq->lock); 82 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 83 rq_pin_lock(rq, rf); 84 return rq; 85 } 86 raw_spin_unlock(&rq->lock); 87 88 while (unlikely(task_on_rq_migrating(p))) 89 cpu_relax(); 90 } 91 } 92 93 /* 94 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 95 */ 96 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 97 __acquires(p->pi_lock) 98 __acquires(rq->lock) 99 { 100 struct rq *rq; 101 102 for (;;) { 103 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 104 rq = task_rq(p); 105 raw_spin_lock(&rq->lock); 106 /* 107 * move_queued_task() task_rq_lock() 108 * 109 * ACQUIRE (rq->lock) 110 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 111 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 112 * [S] ->cpu = new_cpu [L] task_rq() 113 * [L] ->on_rq 114 * RELEASE (rq->lock) 115 * 116 * If we observe the old CPU in task_rq_lock, the acquire of 117 * the old rq->lock will fully serialize against the stores. 118 * 119 * If we observe the new CPU in task_rq_lock, the acquire will 120 * pair with the WMB to ensure we must then also see migrating. 121 */ 122 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 123 rq_pin_lock(rq, rf); 124 return rq; 125 } 126 raw_spin_unlock(&rq->lock); 127 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 128 129 while (unlikely(task_on_rq_migrating(p))) 130 cpu_relax(); 131 } 132 } 133 134 /* 135 * RQ-clock updating methods: 136 */ 137 138 static void update_rq_clock_task(struct rq *rq, s64 delta) 139 { 140 /* 141 * In theory, the compile should just see 0 here, and optimize out the call 142 * to sched_rt_avg_update. But I don't trust it... 143 */ 144 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 145 s64 steal = 0, irq_delta = 0; 146 #endif 147 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 148 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 149 150 /* 151 * Since irq_time is only updated on {soft,}irq_exit, we might run into 152 * this case when a previous update_rq_clock() happened inside a 153 * {soft,}irq region. 154 * 155 * When this happens, we stop ->clock_task and only update the 156 * prev_irq_time stamp to account for the part that fit, so that a next 157 * update will consume the rest. This ensures ->clock_task is 158 * monotonic. 159 * 160 * It does however cause some slight miss-attribution of {soft,}irq 161 * time, a more accurate solution would be to update the irq_time using 162 * the current rq->clock timestamp, except that would require using 163 * atomic ops. 164 */ 165 if (irq_delta > delta) 166 irq_delta = delta; 167 168 rq->prev_irq_time += irq_delta; 169 delta -= irq_delta; 170 #endif 171 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 172 if (static_key_false((¶virt_steal_rq_enabled))) { 173 steal = paravirt_steal_clock(cpu_of(rq)); 174 steal -= rq->prev_steal_time_rq; 175 176 if (unlikely(steal > delta)) 177 steal = delta; 178 179 rq->prev_steal_time_rq += steal; 180 delta -= steal; 181 } 182 #endif 183 184 rq->clock_task += delta; 185 186 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 187 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 188 sched_rt_avg_update(rq, irq_delta + steal); 189 #endif 190 } 191 192 void update_rq_clock(struct rq *rq) 193 { 194 s64 delta; 195 196 lockdep_assert_held(&rq->lock); 197 198 if (rq->clock_update_flags & RQCF_ACT_SKIP) 199 return; 200 201 #ifdef CONFIG_SCHED_DEBUG 202 if (sched_feat(WARN_DOUBLE_CLOCK)) 203 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 204 rq->clock_update_flags |= RQCF_UPDATED; 205 #endif 206 207 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 208 if (delta < 0) 209 return; 210 rq->clock += delta; 211 update_rq_clock_task(rq, delta); 212 } 213 214 215 #ifdef CONFIG_SCHED_HRTICK 216 /* 217 * Use HR-timers to deliver accurate preemption points. 218 */ 219 220 static void hrtick_clear(struct rq *rq) 221 { 222 if (hrtimer_active(&rq->hrtick_timer)) 223 hrtimer_cancel(&rq->hrtick_timer); 224 } 225 226 /* 227 * High-resolution timer tick. 228 * Runs from hardirq context with interrupts disabled. 229 */ 230 static enum hrtimer_restart hrtick(struct hrtimer *timer) 231 { 232 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 233 struct rq_flags rf; 234 235 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 236 237 rq_lock(rq, &rf); 238 update_rq_clock(rq); 239 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 240 rq_unlock(rq, &rf); 241 242 return HRTIMER_NORESTART; 243 } 244 245 #ifdef CONFIG_SMP 246 247 static void __hrtick_restart(struct rq *rq) 248 { 249 struct hrtimer *timer = &rq->hrtick_timer; 250 251 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 252 } 253 254 /* 255 * called from hardirq (IPI) context 256 */ 257 static void __hrtick_start(void *arg) 258 { 259 struct rq *rq = arg; 260 struct rq_flags rf; 261 262 rq_lock(rq, &rf); 263 __hrtick_restart(rq); 264 rq->hrtick_csd_pending = 0; 265 rq_unlock(rq, &rf); 266 } 267 268 /* 269 * Called to set the hrtick timer state. 270 * 271 * called with rq->lock held and irqs disabled 272 */ 273 void hrtick_start(struct rq *rq, u64 delay) 274 { 275 struct hrtimer *timer = &rq->hrtick_timer; 276 ktime_t time; 277 s64 delta; 278 279 /* 280 * Don't schedule slices shorter than 10000ns, that just 281 * doesn't make sense and can cause timer DoS. 282 */ 283 delta = max_t(s64, delay, 10000LL); 284 time = ktime_add_ns(timer->base->get_time(), delta); 285 286 hrtimer_set_expires(timer, time); 287 288 if (rq == this_rq()) { 289 __hrtick_restart(rq); 290 } else if (!rq->hrtick_csd_pending) { 291 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 292 rq->hrtick_csd_pending = 1; 293 } 294 } 295 296 #else 297 /* 298 * Called to set the hrtick timer state. 299 * 300 * called with rq->lock held and irqs disabled 301 */ 302 void hrtick_start(struct rq *rq, u64 delay) 303 { 304 /* 305 * Don't schedule slices shorter than 10000ns, that just 306 * doesn't make sense. Rely on vruntime for fairness. 307 */ 308 delay = max_t(u64, delay, 10000LL); 309 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 310 HRTIMER_MODE_REL_PINNED); 311 } 312 #endif /* CONFIG_SMP */ 313 314 static void hrtick_rq_init(struct rq *rq) 315 { 316 #ifdef CONFIG_SMP 317 rq->hrtick_csd_pending = 0; 318 319 rq->hrtick_csd.flags = 0; 320 rq->hrtick_csd.func = __hrtick_start; 321 rq->hrtick_csd.info = rq; 322 #endif 323 324 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 325 rq->hrtick_timer.function = hrtick; 326 } 327 #else /* CONFIG_SCHED_HRTICK */ 328 static inline void hrtick_clear(struct rq *rq) 329 { 330 } 331 332 static inline void hrtick_rq_init(struct rq *rq) 333 { 334 } 335 #endif /* CONFIG_SCHED_HRTICK */ 336 337 /* 338 * cmpxchg based fetch_or, macro so it works for different integer types 339 */ 340 #define fetch_or(ptr, mask) \ 341 ({ \ 342 typeof(ptr) _ptr = (ptr); \ 343 typeof(mask) _mask = (mask); \ 344 typeof(*_ptr) _old, _val = *_ptr; \ 345 \ 346 for (;;) { \ 347 _old = cmpxchg(_ptr, _val, _val | _mask); \ 348 if (_old == _val) \ 349 break; \ 350 _val = _old; \ 351 } \ 352 _old; \ 353 }) 354 355 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 356 /* 357 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 358 * this avoids any races wrt polling state changes and thereby avoids 359 * spurious IPIs. 360 */ 361 static bool set_nr_and_not_polling(struct task_struct *p) 362 { 363 struct thread_info *ti = task_thread_info(p); 364 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 365 } 366 367 /* 368 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 369 * 370 * If this returns true, then the idle task promises to call 371 * sched_ttwu_pending() and reschedule soon. 372 */ 373 static bool set_nr_if_polling(struct task_struct *p) 374 { 375 struct thread_info *ti = task_thread_info(p); 376 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 377 378 for (;;) { 379 if (!(val & _TIF_POLLING_NRFLAG)) 380 return false; 381 if (val & _TIF_NEED_RESCHED) 382 return true; 383 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 384 if (old == val) 385 break; 386 val = old; 387 } 388 return true; 389 } 390 391 #else 392 static bool set_nr_and_not_polling(struct task_struct *p) 393 { 394 set_tsk_need_resched(p); 395 return true; 396 } 397 398 #ifdef CONFIG_SMP 399 static bool set_nr_if_polling(struct task_struct *p) 400 { 401 return false; 402 } 403 #endif 404 #endif 405 406 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 407 { 408 struct wake_q_node *node = &task->wake_q; 409 410 /* 411 * Atomically grab the task, if ->wake_q is !nil already it means 412 * its already queued (either by us or someone else) and will get the 413 * wakeup due to that. 414 * 415 * This cmpxchg() implies a full barrier, which pairs with the write 416 * barrier implied by the wakeup in wake_up_q(). 417 */ 418 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 419 return; 420 421 get_task_struct(task); 422 423 /* 424 * The head is context local, there can be no concurrency. 425 */ 426 *head->lastp = node; 427 head->lastp = &node->next; 428 } 429 430 void wake_up_q(struct wake_q_head *head) 431 { 432 struct wake_q_node *node = head->first; 433 434 while (node != WAKE_Q_TAIL) { 435 struct task_struct *task; 436 437 task = container_of(node, struct task_struct, wake_q); 438 BUG_ON(!task); 439 /* Task can safely be re-inserted now: */ 440 node = node->next; 441 task->wake_q.next = NULL; 442 443 /* 444 * wake_up_process() implies a wmb() to pair with the queueing 445 * in wake_q_add() so as not to miss wakeups. 446 */ 447 wake_up_process(task); 448 put_task_struct(task); 449 } 450 } 451 452 /* 453 * resched_curr - mark rq's current task 'to be rescheduled now'. 454 * 455 * On UP this means the setting of the need_resched flag, on SMP it 456 * might also involve a cross-CPU call to trigger the scheduler on 457 * the target CPU. 458 */ 459 void resched_curr(struct rq *rq) 460 { 461 struct task_struct *curr = rq->curr; 462 int cpu; 463 464 lockdep_assert_held(&rq->lock); 465 466 if (test_tsk_need_resched(curr)) 467 return; 468 469 cpu = cpu_of(rq); 470 471 if (cpu == smp_processor_id()) { 472 set_tsk_need_resched(curr); 473 set_preempt_need_resched(); 474 return; 475 } 476 477 if (set_nr_and_not_polling(curr)) 478 smp_send_reschedule(cpu); 479 else 480 trace_sched_wake_idle_without_ipi(cpu); 481 } 482 483 void resched_cpu(int cpu) 484 { 485 struct rq *rq = cpu_rq(cpu); 486 unsigned long flags; 487 488 raw_spin_lock_irqsave(&rq->lock, flags); 489 if (cpu_online(cpu) || cpu == smp_processor_id()) 490 resched_curr(rq); 491 raw_spin_unlock_irqrestore(&rq->lock, flags); 492 } 493 494 #ifdef CONFIG_SMP 495 #ifdef CONFIG_NO_HZ_COMMON 496 /* 497 * In the semi idle case, use the nearest busy CPU for migrating timers 498 * from an idle CPU. This is good for power-savings. 499 * 500 * We don't do similar optimization for completely idle system, as 501 * selecting an idle CPU will add more delays to the timers than intended 502 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 503 */ 504 int get_nohz_timer_target(void) 505 { 506 int i, cpu = smp_processor_id(); 507 struct sched_domain *sd; 508 509 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 510 return cpu; 511 512 rcu_read_lock(); 513 for_each_domain(cpu, sd) { 514 for_each_cpu(i, sched_domain_span(sd)) { 515 if (cpu == i) 516 continue; 517 518 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 519 cpu = i; 520 goto unlock; 521 } 522 } 523 } 524 525 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 526 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 527 unlock: 528 rcu_read_unlock(); 529 return cpu; 530 } 531 532 /* 533 * When add_timer_on() enqueues a timer into the timer wheel of an 534 * idle CPU then this timer might expire before the next timer event 535 * which is scheduled to wake up that CPU. In case of a completely 536 * idle system the next event might even be infinite time into the 537 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 538 * leaves the inner idle loop so the newly added timer is taken into 539 * account when the CPU goes back to idle and evaluates the timer 540 * wheel for the next timer event. 541 */ 542 static void wake_up_idle_cpu(int cpu) 543 { 544 struct rq *rq = cpu_rq(cpu); 545 546 if (cpu == smp_processor_id()) 547 return; 548 549 if (set_nr_and_not_polling(rq->idle)) 550 smp_send_reschedule(cpu); 551 else 552 trace_sched_wake_idle_without_ipi(cpu); 553 } 554 555 static bool wake_up_full_nohz_cpu(int cpu) 556 { 557 /* 558 * We just need the target to call irq_exit() and re-evaluate 559 * the next tick. The nohz full kick at least implies that. 560 * If needed we can still optimize that later with an 561 * empty IRQ. 562 */ 563 if (cpu_is_offline(cpu)) 564 return true; /* Don't try to wake offline CPUs. */ 565 if (tick_nohz_full_cpu(cpu)) { 566 if (cpu != smp_processor_id() || 567 tick_nohz_tick_stopped()) 568 tick_nohz_full_kick_cpu(cpu); 569 return true; 570 } 571 572 return false; 573 } 574 575 /* 576 * Wake up the specified CPU. If the CPU is going offline, it is the 577 * caller's responsibility to deal with the lost wakeup, for example, 578 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 579 */ 580 void wake_up_nohz_cpu(int cpu) 581 { 582 if (!wake_up_full_nohz_cpu(cpu)) 583 wake_up_idle_cpu(cpu); 584 } 585 586 static inline bool got_nohz_idle_kick(void) 587 { 588 int cpu = smp_processor_id(); 589 590 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 591 return false; 592 593 if (idle_cpu(cpu) && !need_resched()) 594 return true; 595 596 /* 597 * We can't run Idle Load Balance on this CPU for this time so we 598 * cancel it and clear NOHZ_BALANCE_KICK 599 */ 600 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 601 return false; 602 } 603 604 #else /* CONFIG_NO_HZ_COMMON */ 605 606 static inline bool got_nohz_idle_kick(void) 607 { 608 return false; 609 } 610 611 #endif /* CONFIG_NO_HZ_COMMON */ 612 613 #ifdef CONFIG_NO_HZ_FULL 614 bool sched_can_stop_tick(struct rq *rq) 615 { 616 int fifo_nr_running; 617 618 /* Deadline tasks, even if single, need the tick */ 619 if (rq->dl.dl_nr_running) 620 return false; 621 622 /* 623 * If there are more than one RR tasks, we need the tick to effect the 624 * actual RR behaviour. 625 */ 626 if (rq->rt.rr_nr_running) { 627 if (rq->rt.rr_nr_running == 1) 628 return true; 629 else 630 return false; 631 } 632 633 /* 634 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 635 * forced preemption between FIFO tasks. 636 */ 637 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 638 if (fifo_nr_running) 639 return true; 640 641 /* 642 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 643 * if there's more than one we need the tick for involuntary 644 * preemption. 645 */ 646 if (rq->nr_running > 1) 647 return false; 648 649 return true; 650 } 651 #endif /* CONFIG_NO_HZ_FULL */ 652 653 void sched_avg_update(struct rq *rq) 654 { 655 s64 period = sched_avg_period(); 656 657 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 658 /* 659 * Inline assembly required to prevent the compiler 660 * optimising this loop into a divmod call. 661 * See __iter_div_u64_rem() for another example of this. 662 */ 663 asm("" : "+rm" (rq->age_stamp)); 664 rq->age_stamp += period; 665 rq->rt_avg /= 2; 666 } 667 } 668 669 #endif /* CONFIG_SMP */ 670 671 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 672 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 673 /* 674 * Iterate task_group tree rooted at *from, calling @down when first entering a 675 * node and @up when leaving it for the final time. 676 * 677 * Caller must hold rcu_lock or sufficient equivalent. 678 */ 679 int walk_tg_tree_from(struct task_group *from, 680 tg_visitor down, tg_visitor up, void *data) 681 { 682 struct task_group *parent, *child; 683 int ret; 684 685 parent = from; 686 687 down: 688 ret = (*down)(parent, data); 689 if (ret) 690 goto out; 691 list_for_each_entry_rcu(child, &parent->children, siblings) { 692 parent = child; 693 goto down; 694 695 up: 696 continue; 697 } 698 ret = (*up)(parent, data); 699 if (ret || parent == from) 700 goto out; 701 702 child = parent; 703 parent = parent->parent; 704 if (parent) 705 goto up; 706 out: 707 return ret; 708 } 709 710 int tg_nop(struct task_group *tg, void *data) 711 { 712 return 0; 713 } 714 #endif 715 716 static void set_load_weight(struct task_struct *p, bool update_load) 717 { 718 int prio = p->static_prio - MAX_RT_PRIO; 719 struct load_weight *load = &p->se.load; 720 721 /* 722 * SCHED_IDLE tasks get minimal weight: 723 */ 724 if (idle_policy(p->policy)) { 725 load->weight = scale_load(WEIGHT_IDLEPRIO); 726 load->inv_weight = WMULT_IDLEPRIO; 727 return; 728 } 729 730 /* 731 * SCHED_OTHER tasks have to update their load when changing their 732 * weight 733 */ 734 if (update_load && p->sched_class == &fair_sched_class) { 735 reweight_task(p, prio); 736 } else { 737 load->weight = scale_load(sched_prio_to_weight[prio]); 738 load->inv_weight = sched_prio_to_wmult[prio]; 739 } 740 } 741 742 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 743 { 744 if (!(flags & ENQUEUE_NOCLOCK)) 745 update_rq_clock(rq); 746 747 if (!(flags & ENQUEUE_RESTORE)) 748 sched_info_queued(rq, p); 749 750 p->sched_class->enqueue_task(rq, p, flags); 751 } 752 753 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 754 { 755 if (!(flags & DEQUEUE_NOCLOCK)) 756 update_rq_clock(rq); 757 758 if (!(flags & DEQUEUE_SAVE)) 759 sched_info_dequeued(rq, p); 760 761 p->sched_class->dequeue_task(rq, p, flags); 762 } 763 764 void activate_task(struct rq *rq, struct task_struct *p, int flags) 765 { 766 if (task_contributes_to_load(p)) 767 rq->nr_uninterruptible--; 768 769 enqueue_task(rq, p, flags); 770 } 771 772 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 773 { 774 if (task_contributes_to_load(p)) 775 rq->nr_uninterruptible++; 776 777 dequeue_task(rq, p, flags); 778 } 779 780 /* 781 * __normal_prio - return the priority that is based on the static prio 782 */ 783 static inline int __normal_prio(struct task_struct *p) 784 { 785 return p->static_prio; 786 } 787 788 /* 789 * Calculate the expected normal priority: i.e. priority 790 * without taking RT-inheritance into account. Might be 791 * boosted by interactivity modifiers. Changes upon fork, 792 * setprio syscalls, and whenever the interactivity 793 * estimator recalculates. 794 */ 795 static inline int normal_prio(struct task_struct *p) 796 { 797 int prio; 798 799 if (task_has_dl_policy(p)) 800 prio = MAX_DL_PRIO-1; 801 else if (task_has_rt_policy(p)) 802 prio = MAX_RT_PRIO-1 - p->rt_priority; 803 else 804 prio = __normal_prio(p); 805 return prio; 806 } 807 808 /* 809 * Calculate the current priority, i.e. the priority 810 * taken into account by the scheduler. This value might 811 * be boosted by RT tasks, or might be boosted by 812 * interactivity modifiers. Will be RT if the task got 813 * RT-boosted. If not then it returns p->normal_prio. 814 */ 815 static int effective_prio(struct task_struct *p) 816 { 817 p->normal_prio = normal_prio(p); 818 /* 819 * If we are RT tasks or we were boosted to RT priority, 820 * keep the priority unchanged. Otherwise, update priority 821 * to the normal priority: 822 */ 823 if (!rt_prio(p->prio)) 824 return p->normal_prio; 825 return p->prio; 826 } 827 828 /** 829 * task_curr - is this task currently executing on a CPU? 830 * @p: the task in question. 831 * 832 * Return: 1 if the task is currently executing. 0 otherwise. 833 */ 834 inline int task_curr(const struct task_struct *p) 835 { 836 return cpu_curr(task_cpu(p)) == p; 837 } 838 839 /* 840 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 841 * use the balance_callback list if you want balancing. 842 * 843 * this means any call to check_class_changed() must be followed by a call to 844 * balance_callback(). 845 */ 846 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 847 const struct sched_class *prev_class, 848 int oldprio) 849 { 850 if (prev_class != p->sched_class) { 851 if (prev_class->switched_from) 852 prev_class->switched_from(rq, p); 853 854 p->sched_class->switched_to(rq, p); 855 } else if (oldprio != p->prio || dl_task(p)) 856 p->sched_class->prio_changed(rq, p, oldprio); 857 } 858 859 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 860 { 861 const struct sched_class *class; 862 863 if (p->sched_class == rq->curr->sched_class) { 864 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 865 } else { 866 for_each_class(class) { 867 if (class == rq->curr->sched_class) 868 break; 869 if (class == p->sched_class) { 870 resched_curr(rq); 871 break; 872 } 873 } 874 } 875 876 /* 877 * A queue event has occurred, and we're going to schedule. In 878 * this case, we can save a useless back to back clock update. 879 */ 880 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 881 rq_clock_skip_update(rq); 882 } 883 884 #ifdef CONFIG_SMP 885 886 static inline bool is_per_cpu_kthread(struct task_struct *p) 887 { 888 if (!(p->flags & PF_KTHREAD)) 889 return false; 890 891 if (p->nr_cpus_allowed != 1) 892 return false; 893 894 return true; 895 } 896 897 /* 898 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see 899 * __set_cpus_allowed_ptr() and select_fallback_rq(). 900 */ 901 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 902 { 903 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 904 return false; 905 906 if (is_per_cpu_kthread(p)) 907 return cpu_online(cpu); 908 909 return cpu_active(cpu); 910 } 911 912 /* 913 * This is how migration works: 914 * 915 * 1) we invoke migration_cpu_stop() on the target CPU using 916 * stop_one_cpu(). 917 * 2) stopper starts to run (implicitly forcing the migrated thread 918 * off the CPU) 919 * 3) it checks whether the migrated task is still in the wrong runqueue. 920 * 4) if it's in the wrong runqueue then the migration thread removes 921 * it and puts it into the right queue. 922 * 5) stopper completes and stop_one_cpu() returns and the migration 923 * is done. 924 */ 925 926 /* 927 * move_queued_task - move a queued task to new rq. 928 * 929 * Returns (locked) new rq. Old rq's lock is released. 930 */ 931 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 932 struct task_struct *p, int new_cpu) 933 { 934 lockdep_assert_held(&rq->lock); 935 936 p->on_rq = TASK_ON_RQ_MIGRATING; 937 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 938 set_task_cpu(p, new_cpu); 939 rq_unlock(rq, rf); 940 941 rq = cpu_rq(new_cpu); 942 943 rq_lock(rq, rf); 944 BUG_ON(task_cpu(p) != new_cpu); 945 enqueue_task(rq, p, 0); 946 p->on_rq = TASK_ON_RQ_QUEUED; 947 check_preempt_curr(rq, p, 0); 948 949 return rq; 950 } 951 952 struct migration_arg { 953 struct task_struct *task; 954 int dest_cpu; 955 }; 956 957 /* 958 * Move (not current) task off this CPU, onto the destination CPU. We're doing 959 * this because either it can't run here any more (set_cpus_allowed() 960 * away from this CPU, or CPU going down), or because we're 961 * attempting to rebalance this task on exec (sched_exec). 962 * 963 * So we race with normal scheduler movements, but that's OK, as long 964 * as the task is no longer on this CPU. 965 */ 966 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 967 struct task_struct *p, int dest_cpu) 968 { 969 /* Affinity changed (again). */ 970 if (!is_cpu_allowed(p, dest_cpu)) 971 return rq; 972 973 update_rq_clock(rq); 974 rq = move_queued_task(rq, rf, p, dest_cpu); 975 976 return rq; 977 } 978 979 /* 980 * migration_cpu_stop - this will be executed by a highprio stopper thread 981 * and performs thread migration by bumping thread off CPU then 982 * 'pushing' onto another runqueue. 983 */ 984 static int migration_cpu_stop(void *data) 985 { 986 struct migration_arg *arg = data; 987 struct task_struct *p = arg->task; 988 struct rq *rq = this_rq(); 989 struct rq_flags rf; 990 991 /* 992 * The original target CPU might have gone down and we might 993 * be on another CPU but it doesn't matter. 994 */ 995 local_irq_disable(); 996 /* 997 * We need to explicitly wake pending tasks before running 998 * __migrate_task() such that we will not miss enforcing cpus_allowed 999 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1000 */ 1001 sched_ttwu_pending(); 1002 1003 raw_spin_lock(&p->pi_lock); 1004 rq_lock(rq, &rf); 1005 /* 1006 * If task_rq(p) != rq, it cannot be migrated here, because we're 1007 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1008 * we're holding p->pi_lock. 1009 */ 1010 if (task_rq(p) == rq) { 1011 if (task_on_rq_queued(p)) 1012 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1013 else 1014 p->wake_cpu = arg->dest_cpu; 1015 } 1016 rq_unlock(rq, &rf); 1017 raw_spin_unlock(&p->pi_lock); 1018 1019 local_irq_enable(); 1020 return 0; 1021 } 1022 1023 /* 1024 * sched_class::set_cpus_allowed must do the below, but is not required to 1025 * actually call this function. 1026 */ 1027 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1028 { 1029 cpumask_copy(&p->cpus_allowed, new_mask); 1030 p->nr_cpus_allowed = cpumask_weight(new_mask); 1031 } 1032 1033 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1034 { 1035 struct rq *rq = task_rq(p); 1036 bool queued, running; 1037 1038 lockdep_assert_held(&p->pi_lock); 1039 1040 queued = task_on_rq_queued(p); 1041 running = task_current(rq, p); 1042 1043 if (queued) { 1044 /* 1045 * Because __kthread_bind() calls this on blocked tasks without 1046 * holding rq->lock. 1047 */ 1048 lockdep_assert_held(&rq->lock); 1049 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1050 } 1051 if (running) 1052 put_prev_task(rq, p); 1053 1054 p->sched_class->set_cpus_allowed(p, new_mask); 1055 1056 if (queued) 1057 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1058 if (running) 1059 set_curr_task(rq, p); 1060 } 1061 1062 /* 1063 * Change a given task's CPU affinity. Migrate the thread to a 1064 * proper CPU and schedule it away if the CPU it's executing on 1065 * is removed from the allowed bitmask. 1066 * 1067 * NOTE: the caller must have a valid reference to the task, the 1068 * task must not exit() & deallocate itself prematurely. The 1069 * call is not atomic; no spinlocks may be held. 1070 */ 1071 static int __set_cpus_allowed_ptr(struct task_struct *p, 1072 const struct cpumask *new_mask, bool check) 1073 { 1074 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1075 unsigned int dest_cpu; 1076 struct rq_flags rf; 1077 struct rq *rq; 1078 int ret = 0; 1079 1080 rq = task_rq_lock(p, &rf); 1081 update_rq_clock(rq); 1082 1083 if (p->flags & PF_KTHREAD) { 1084 /* 1085 * Kernel threads are allowed on online && !active CPUs 1086 */ 1087 cpu_valid_mask = cpu_online_mask; 1088 } 1089 1090 /* 1091 * Must re-check here, to close a race against __kthread_bind(), 1092 * sched_setaffinity() is not guaranteed to observe the flag. 1093 */ 1094 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1095 ret = -EINVAL; 1096 goto out; 1097 } 1098 1099 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1100 goto out; 1101 1102 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1103 ret = -EINVAL; 1104 goto out; 1105 } 1106 1107 do_set_cpus_allowed(p, new_mask); 1108 1109 if (p->flags & PF_KTHREAD) { 1110 /* 1111 * For kernel threads that do indeed end up on online && 1112 * !active we want to ensure they are strict per-CPU threads. 1113 */ 1114 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1115 !cpumask_intersects(new_mask, cpu_active_mask) && 1116 p->nr_cpus_allowed != 1); 1117 } 1118 1119 /* Can the task run on the task's current CPU? If so, we're done */ 1120 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1121 goto out; 1122 1123 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1124 if (task_running(rq, p) || p->state == TASK_WAKING) { 1125 struct migration_arg arg = { p, dest_cpu }; 1126 /* Need help from migration thread: drop lock and wait. */ 1127 task_rq_unlock(rq, p, &rf); 1128 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1129 tlb_migrate_finish(p->mm); 1130 return 0; 1131 } else if (task_on_rq_queued(p)) { 1132 /* 1133 * OK, since we're going to drop the lock immediately 1134 * afterwards anyway. 1135 */ 1136 rq = move_queued_task(rq, &rf, p, dest_cpu); 1137 } 1138 out: 1139 task_rq_unlock(rq, p, &rf); 1140 1141 return ret; 1142 } 1143 1144 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1145 { 1146 return __set_cpus_allowed_ptr(p, new_mask, false); 1147 } 1148 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1149 1150 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1151 { 1152 #ifdef CONFIG_SCHED_DEBUG 1153 /* 1154 * We should never call set_task_cpu() on a blocked task, 1155 * ttwu() will sort out the placement. 1156 */ 1157 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1158 !p->on_rq); 1159 1160 /* 1161 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1162 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1163 * time relying on p->on_rq. 1164 */ 1165 WARN_ON_ONCE(p->state == TASK_RUNNING && 1166 p->sched_class == &fair_sched_class && 1167 (p->on_rq && !task_on_rq_migrating(p))); 1168 1169 #ifdef CONFIG_LOCKDEP 1170 /* 1171 * The caller should hold either p->pi_lock or rq->lock, when changing 1172 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1173 * 1174 * sched_move_task() holds both and thus holding either pins the cgroup, 1175 * see task_group(). 1176 * 1177 * Furthermore, all task_rq users should acquire both locks, see 1178 * task_rq_lock(). 1179 */ 1180 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1181 lockdep_is_held(&task_rq(p)->lock))); 1182 #endif 1183 /* 1184 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1185 */ 1186 WARN_ON_ONCE(!cpu_online(new_cpu)); 1187 #endif 1188 1189 trace_sched_migrate_task(p, new_cpu); 1190 1191 if (task_cpu(p) != new_cpu) { 1192 if (p->sched_class->migrate_task_rq) 1193 p->sched_class->migrate_task_rq(p); 1194 p->se.nr_migrations++; 1195 rseq_migrate(p); 1196 perf_event_task_migrate(p); 1197 } 1198 1199 __set_task_cpu(p, new_cpu); 1200 } 1201 1202 static void __migrate_swap_task(struct task_struct *p, int cpu) 1203 { 1204 if (task_on_rq_queued(p)) { 1205 struct rq *src_rq, *dst_rq; 1206 struct rq_flags srf, drf; 1207 1208 src_rq = task_rq(p); 1209 dst_rq = cpu_rq(cpu); 1210 1211 rq_pin_lock(src_rq, &srf); 1212 rq_pin_lock(dst_rq, &drf); 1213 1214 p->on_rq = TASK_ON_RQ_MIGRATING; 1215 deactivate_task(src_rq, p, 0); 1216 set_task_cpu(p, cpu); 1217 activate_task(dst_rq, p, 0); 1218 p->on_rq = TASK_ON_RQ_QUEUED; 1219 check_preempt_curr(dst_rq, p, 0); 1220 1221 rq_unpin_lock(dst_rq, &drf); 1222 rq_unpin_lock(src_rq, &srf); 1223 1224 } else { 1225 /* 1226 * Task isn't running anymore; make it appear like we migrated 1227 * it before it went to sleep. This means on wakeup we make the 1228 * previous CPU our target instead of where it really is. 1229 */ 1230 p->wake_cpu = cpu; 1231 } 1232 } 1233 1234 struct migration_swap_arg { 1235 struct task_struct *src_task, *dst_task; 1236 int src_cpu, dst_cpu; 1237 }; 1238 1239 static int migrate_swap_stop(void *data) 1240 { 1241 struct migration_swap_arg *arg = data; 1242 struct rq *src_rq, *dst_rq; 1243 int ret = -EAGAIN; 1244 1245 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1246 return -EAGAIN; 1247 1248 src_rq = cpu_rq(arg->src_cpu); 1249 dst_rq = cpu_rq(arg->dst_cpu); 1250 1251 double_raw_lock(&arg->src_task->pi_lock, 1252 &arg->dst_task->pi_lock); 1253 double_rq_lock(src_rq, dst_rq); 1254 1255 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1256 goto unlock; 1257 1258 if (task_cpu(arg->src_task) != arg->src_cpu) 1259 goto unlock; 1260 1261 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1262 goto unlock; 1263 1264 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1265 goto unlock; 1266 1267 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1268 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1269 1270 ret = 0; 1271 1272 unlock: 1273 double_rq_unlock(src_rq, dst_rq); 1274 raw_spin_unlock(&arg->dst_task->pi_lock); 1275 raw_spin_unlock(&arg->src_task->pi_lock); 1276 1277 return ret; 1278 } 1279 1280 /* 1281 * Cross migrate two tasks 1282 */ 1283 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1284 { 1285 struct migration_swap_arg arg; 1286 int ret = -EINVAL; 1287 1288 arg = (struct migration_swap_arg){ 1289 .src_task = cur, 1290 .src_cpu = task_cpu(cur), 1291 .dst_task = p, 1292 .dst_cpu = task_cpu(p), 1293 }; 1294 1295 if (arg.src_cpu == arg.dst_cpu) 1296 goto out; 1297 1298 /* 1299 * These three tests are all lockless; this is OK since all of them 1300 * will be re-checked with proper locks held further down the line. 1301 */ 1302 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1303 goto out; 1304 1305 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1306 goto out; 1307 1308 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1309 goto out; 1310 1311 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1312 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1313 1314 out: 1315 return ret; 1316 } 1317 1318 /* 1319 * wait_task_inactive - wait for a thread to unschedule. 1320 * 1321 * If @match_state is nonzero, it's the @p->state value just checked and 1322 * not expected to change. If it changes, i.e. @p might have woken up, 1323 * then return zero. When we succeed in waiting for @p to be off its CPU, 1324 * we return a positive number (its total switch count). If a second call 1325 * a short while later returns the same number, the caller can be sure that 1326 * @p has remained unscheduled the whole time. 1327 * 1328 * The caller must ensure that the task *will* unschedule sometime soon, 1329 * else this function might spin for a *long* time. This function can't 1330 * be called with interrupts off, or it may introduce deadlock with 1331 * smp_call_function() if an IPI is sent by the same process we are 1332 * waiting to become inactive. 1333 */ 1334 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1335 { 1336 int running, queued; 1337 struct rq_flags rf; 1338 unsigned long ncsw; 1339 struct rq *rq; 1340 1341 for (;;) { 1342 /* 1343 * We do the initial early heuristics without holding 1344 * any task-queue locks at all. We'll only try to get 1345 * the runqueue lock when things look like they will 1346 * work out! 1347 */ 1348 rq = task_rq(p); 1349 1350 /* 1351 * If the task is actively running on another CPU 1352 * still, just relax and busy-wait without holding 1353 * any locks. 1354 * 1355 * NOTE! Since we don't hold any locks, it's not 1356 * even sure that "rq" stays as the right runqueue! 1357 * But we don't care, since "task_running()" will 1358 * return false if the runqueue has changed and p 1359 * is actually now running somewhere else! 1360 */ 1361 while (task_running(rq, p)) { 1362 if (match_state && unlikely(p->state != match_state)) 1363 return 0; 1364 cpu_relax(); 1365 } 1366 1367 /* 1368 * Ok, time to look more closely! We need the rq 1369 * lock now, to be *sure*. If we're wrong, we'll 1370 * just go back and repeat. 1371 */ 1372 rq = task_rq_lock(p, &rf); 1373 trace_sched_wait_task(p); 1374 running = task_running(rq, p); 1375 queued = task_on_rq_queued(p); 1376 ncsw = 0; 1377 if (!match_state || p->state == match_state) 1378 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1379 task_rq_unlock(rq, p, &rf); 1380 1381 /* 1382 * If it changed from the expected state, bail out now. 1383 */ 1384 if (unlikely(!ncsw)) 1385 break; 1386 1387 /* 1388 * Was it really running after all now that we 1389 * checked with the proper locks actually held? 1390 * 1391 * Oops. Go back and try again.. 1392 */ 1393 if (unlikely(running)) { 1394 cpu_relax(); 1395 continue; 1396 } 1397 1398 /* 1399 * It's not enough that it's not actively running, 1400 * it must be off the runqueue _entirely_, and not 1401 * preempted! 1402 * 1403 * So if it was still runnable (but just not actively 1404 * running right now), it's preempted, and we should 1405 * yield - it could be a while. 1406 */ 1407 if (unlikely(queued)) { 1408 ktime_t to = NSEC_PER_SEC / HZ; 1409 1410 set_current_state(TASK_UNINTERRUPTIBLE); 1411 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1412 continue; 1413 } 1414 1415 /* 1416 * Ahh, all good. It wasn't running, and it wasn't 1417 * runnable, which means that it will never become 1418 * running in the future either. We're all done! 1419 */ 1420 break; 1421 } 1422 1423 return ncsw; 1424 } 1425 1426 /*** 1427 * kick_process - kick a running thread to enter/exit the kernel 1428 * @p: the to-be-kicked thread 1429 * 1430 * Cause a process which is running on another CPU to enter 1431 * kernel-mode, without any delay. (to get signals handled.) 1432 * 1433 * NOTE: this function doesn't have to take the runqueue lock, 1434 * because all it wants to ensure is that the remote task enters 1435 * the kernel. If the IPI races and the task has been migrated 1436 * to another CPU then no harm is done and the purpose has been 1437 * achieved as well. 1438 */ 1439 void kick_process(struct task_struct *p) 1440 { 1441 int cpu; 1442 1443 preempt_disable(); 1444 cpu = task_cpu(p); 1445 if ((cpu != smp_processor_id()) && task_curr(p)) 1446 smp_send_reschedule(cpu); 1447 preempt_enable(); 1448 } 1449 EXPORT_SYMBOL_GPL(kick_process); 1450 1451 /* 1452 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1453 * 1454 * A few notes on cpu_active vs cpu_online: 1455 * 1456 * - cpu_active must be a subset of cpu_online 1457 * 1458 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1459 * see __set_cpus_allowed_ptr(). At this point the newly online 1460 * CPU isn't yet part of the sched domains, and balancing will not 1461 * see it. 1462 * 1463 * - on CPU-down we clear cpu_active() to mask the sched domains and 1464 * avoid the load balancer to place new tasks on the to be removed 1465 * CPU. Existing tasks will remain running there and will be taken 1466 * off. 1467 * 1468 * This means that fallback selection must not select !active CPUs. 1469 * And can assume that any active CPU must be online. Conversely 1470 * select_task_rq() below may allow selection of !active CPUs in order 1471 * to satisfy the above rules. 1472 */ 1473 static int select_fallback_rq(int cpu, struct task_struct *p) 1474 { 1475 int nid = cpu_to_node(cpu); 1476 const struct cpumask *nodemask = NULL; 1477 enum { cpuset, possible, fail } state = cpuset; 1478 int dest_cpu; 1479 1480 /* 1481 * If the node that the CPU is on has been offlined, cpu_to_node() 1482 * will return -1. There is no CPU on the node, and we should 1483 * select the CPU on the other node. 1484 */ 1485 if (nid != -1) { 1486 nodemask = cpumask_of_node(nid); 1487 1488 /* Look for allowed, online CPU in same node. */ 1489 for_each_cpu(dest_cpu, nodemask) { 1490 if (!cpu_active(dest_cpu)) 1491 continue; 1492 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1493 return dest_cpu; 1494 } 1495 } 1496 1497 for (;;) { 1498 /* Any allowed, online CPU? */ 1499 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1500 if (!is_cpu_allowed(p, dest_cpu)) 1501 continue; 1502 1503 goto out; 1504 } 1505 1506 /* No more Mr. Nice Guy. */ 1507 switch (state) { 1508 case cpuset: 1509 if (IS_ENABLED(CONFIG_CPUSETS)) { 1510 cpuset_cpus_allowed_fallback(p); 1511 state = possible; 1512 break; 1513 } 1514 /* Fall-through */ 1515 case possible: 1516 do_set_cpus_allowed(p, cpu_possible_mask); 1517 state = fail; 1518 break; 1519 1520 case fail: 1521 BUG(); 1522 break; 1523 } 1524 } 1525 1526 out: 1527 if (state != cpuset) { 1528 /* 1529 * Don't tell them about moving exiting tasks or 1530 * kernel threads (both mm NULL), since they never 1531 * leave kernel. 1532 */ 1533 if (p->mm && printk_ratelimit()) { 1534 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1535 task_pid_nr(p), p->comm, cpu); 1536 } 1537 } 1538 1539 return dest_cpu; 1540 } 1541 1542 /* 1543 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1544 */ 1545 static inline 1546 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1547 { 1548 lockdep_assert_held(&p->pi_lock); 1549 1550 if (p->nr_cpus_allowed > 1) 1551 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1552 else 1553 cpu = cpumask_any(&p->cpus_allowed); 1554 1555 /* 1556 * In order not to call set_task_cpu() on a blocking task we need 1557 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1558 * CPU. 1559 * 1560 * Since this is common to all placement strategies, this lives here. 1561 * 1562 * [ this allows ->select_task() to simply return task_cpu(p) and 1563 * not worry about this generic constraint ] 1564 */ 1565 if (unlikely(!is_cpu_allowed(p, cpu))) 1566 cpu = select_fallback_rq(task_cpu(p), p); 1567 1568 return cpu; 1569 } 1570 1571 static void update_avg(u64 *avg, u64 sample) 1572 { 1573 s64 diff = sample - *avg; 1574 *avg += diff >> 3; 1575 } 1576 1577 void sched_set_stop_task(int cpu, struct task_struct *stop) 1578 { 1579 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1580 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1581 1582 if (stop) { 1583 /* 1584 * Make it appear like a SCHED_FIFO task, its something 1585 * userspace knows about and won't get confused about. 1586 * 1587 * Also, it will make PI more or less work without too 1588 * much confusion -- but then, stop work should not 1589 * rely on PI working anyway. 1590 */ 1591 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1592 1593 stop->sched_class = &stop_sched_class; 1594 } 1595 1596 cpu_rq(cpu)->stop = stop; 1597 1598 if (old_stop) { 1599 /* 1600 * Reset it back to a normal scheduling class so that 1601 * it can die in pieces. 1602 */ 1603 old_stop->sched_class = &rt_sched_class; 1604 } 1605 } 1606 1607 #else 1608 1609 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1610 const struct cpumask *new_mask, bool check) 1611 { 1612 return set_cpus_allowed_ptr(p, new_mask); 1613 } 1614 1615 #endif /* CONFIG_SMP */ 1616 1617 static void 1618 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1619 { 1620 struct rq *rq; 1621 1622 if (!schedstat_enabled()) 1623 return; 1624 1625 rq = this_rq(); 1626 1627 #ifdef CONFIG_SMP 1628 if (cpu == rq->cpu) { 1629 __schedstat_inc(rq->ttwu_local); 1630 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1631 } else { 1632 struct sched_domain *sd; 1633 1634 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1635 rcu_read_lock(); 1636 for_each_domain(rq->cpu, sd) { 1637 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1638 __schedstat_inc(sd->ttwu_wake_remote); 1639 break; 1640 } 1641 } 1642 rcu_read_unlock(); 1643 } 1644 1645 if (wake_flags & WF_MIGRATED) 1646 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1647 #endif /* CONFIG_SMP */ 1648 1649 __schedstat_inc(rq->ttwu_count); 1650 __schedstat_inc(p->se.statistics.nr_wakeups); 1651 1652 if (wake_flags & WF_SYNC) 1653 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1654 } 1655 1656 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1657 { 1658 activate_task(rq, p, en_flags); 1659 p->on_rq = TASK_ON_RQ_QUEUED; 1660 1661 /* If a worker is waking up, notify the workqueue: */ 1662 if (p->flags & PF_WQ_WORKER) 1663 wq_worker_waking_up(p, cpu_of(rq)); 1664 } 1665 1666 /* 1667 * Mark the task runnable and perform wakeup-preemption. 1668 */ 1669 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1670 struct rq_flags *rf) 1671 { 1672 check_preempt_curr(rq, p, wake_flags); 1673 p->state = TASK_RUNNING; 1674 trace_sched_wakeup(p); 1675 1676 #ifdef CONFIG_SMP 1677 if (p->sched_class->task_woken) { 1678 /* 1679 * Our task @p is fully woken up and running; so its safe to 1680 * drop the rq->lock, hereafter rq is only used for statistics. 1681 */ 1682 rq_unpin_lock(rq, rf); 1683 p->sched_class->task_woken(rq, p); 1684 rq_repin_lock(rq, rf); 1685 } 1686 1687 if (rq->idle_stamp) { 1688 u64 delta = rq_clock(rq) - rq->idle_stamp; 1689 u64 max = 2*rq->max_idle_balance_cost; 1690 1691 update_avg(&rq->avg_idle, delta); 1692 1693 if (rq->avg_idle > max) 1694 rq->avg_idle = max; 1695 1696 rq->idle_stamp = 0; 1697 } 1698 #endif 1699 } 1700 1701 static void 1702 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1703 struct rq_flags *rf) 1704 { 1705 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1706 1707 lockdep_assert_held(&rq->lock); 1708 1709 #ifdef CONFIG_SMP 1710 if (p->sched_contributes_to_load) 1711 rq->nr_uninterruptible--; 1712 1713 if (wake_flags & WF_MIGRATED) 1714 en_flags |= ENQUEUE_MIGRATED; 1715 #endif 1716 1717 ttwu_activate(rq, p, en_flags); 1718 ttwu_do_wakeup(rq, p, wake_flags, rf); 1719 } 1720 1721 /* 1722 * Called in case the task @p isn't fully descheduled from its runqueue, 1723 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1724 * since all we need to do is flip p->state to TASK_RUNNING, since 1725 * the task is still ->on_rq. 1726 */ 1727 static int ttwu_remote(struct task_struct *p, int wake_flags) 1728 { 1729 struct rq_flags rf; 1730 struct rq *rq; 1731 int ret = 0; 1732 1733 rq = __task_rq_lock(p, &rf); 1734 if (task_on_rq_queued(p)) { 1735 /* check_preempt_curr() may use rq clock */ 1736 update_rq_clock(rq); 1737 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1738 ret = 1; 1739 } 1740 __task_rq_unlock(rq, &rf); 1741 1742 return ret; 1743 } 1744 1745 #ifdef CONFIG_SMP 1746 void sched_ttwu_pending(void) 1747 { 1748 struct rq *rq = this_rq(); 1749 struct llist_node *llist = llist_del_all(&rq->wake_list); 1750 struct task_struct *p, *t; 1751 struct rq_flags rf; 1752 1753 if (!llist) 1754 return; 1755 1756 rq_lock_irqsave(rq, &rf); 1757 update_rq_clock(rq); 1758 1759 llist_for_each_entry_safe(p, t, llist, wake_entry) 1760 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1761 1762 rq_unlock_irqrestore(rq, &rf); 1763 } 1764 1765 void scheduler_ipi(void) 1766 { 1767 /* 1768 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1769 * TIF_NEED_RESCHED remotely (for the first time) will also send 1770 * this IPI. 1771 */ 1772 preempt_fold_need_resched(); 1773 1774 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1775 return; 1776 1777 /* 1778 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1779 * traditionally all their work was done from the interrupt return 1780 * path. Now that we actually do some work, we need to make sure 1781 * we do call them. 1782 * 1783 * Some archs already do call them, luckily irq_enter/exit nest 1784 * properly. 1785 * 1786 * Arguably we should visit all archs and update all handlers, 1787 * however a fair share of IPIs are still resched only so this would 1788 * somewhat pessimize the simple resched case. 1789 */ 1790 irq_enter(); 1791 sched_ttwu_pending(); 1792 1793 /* 1794 * Check if someone kicked us for doing the nohz idle load balance. 1795 */ 1796 if (unlikely(got_nohz_idle_kick())) { 1797 this_rq()->idle_balance = 1; 1798 raise_softirq_irqoff(SCHED_SOFTIRQ); 1799 } 1800 irq_exit(); 1801 } 1802 1803 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1804 { 1805 struct rq *rq = cpu_rq(cpu); 1806 1807 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1808 1809 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1810 if (!set_nr_if_polling(rq->idle)) 1811 smp_send_reschedule(cpu); 1812 else 1813 trace_sched_wake_idle_without_ipi(cpu); 1814 } 1815 } 1816 1817 void wake_up_if_idle(int cpu) 1818 { 1819 struct rq *rq = cpu_rq(cpu); 1820 struct rq_flags rf; 1821 1822 rcu_read_lock(); 1823 1824 if (!is_idle_task(rcu_dereference(rq->curr))) 1825 goto out; 1826 1827 if (set_nr_if_polling(rq->idle)) { 1828 trace_sched_wake_idle_without_ipi(cpu); 1829 } else { 1830 rq_lock_irqsave(rq, &rf); 1831 if (is_idle_task(rq->curr)) 1832 smp_send_reschedule(cpu); 1833 /* Else CPU is not idle, do nothing here: */ 1834 rq_unlock_irqrestore(rq, &rf); 1835 } 1836 1837 out: 1838 rcu_read_unlock(); 1839 } 1840 1841 bool cpus_share_cache(int this_cpu, int that_cpu) 1842 { 1843 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1844 } 1845 #endif /* CONFIG_SMP */ 1846 1847 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1848 { 1849 struct rq *rq = cpu_rq(cpu); 1850 struct rq_flags rf; 1851 1852 #if defined(CONFIG_SMP) 1853 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1854 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1855 ttwu_queue_remote(p, cpu, wake_flags); 1856 return; 1857 } 1858 #endif 1859 1860 rq_lock(rq, &rf); 1861 update_rq_clock(rq); 1862 ttwu_do_activate(rq, p, wake_flags, &rf); 1863 rq_unlock(rq, &rf); 1864 } 1865 1866 /* 1867 * Notes on Program-Order guarantees on SMP systems. 1868 * 1869 * MIGRATION 1870 * 1871 * The basic program-order guarantee on SMP systems is that when a task [t] 1872 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1873 * execution on its new CPU [c1]. 1874 * 1875 * For migration (of runnable tasks) this is provided by the following means: 1876 * 1877 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1878 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1879 * rq(c1)->lock (if not at the same time, then in that order). 1880 * C) LOCK of the rq(c1)->lock scheduling in task 1881 * 1882 * Transitivity guarantees that B happens after A and C after B. 1883 * Note: we only require RCpc transitivity. 1884 * Note: the CPU doing B need not be c0 or c1 1885 * 1886 * Example: 1887 * 1888 * CPU0 CPU1 CPU2 1889 * 1890 * LOCK rq(0)->lock 1891 * sched-out X 1892 * sched-in Y 1893 * UNLOCK rq(0)->lock 1894 * 1895 * LOCK rq(0)->lock // orders against CPU0 1896 * dequeue X 1897 * UNLOCK rq(0)->lock 1898 * 1899 * LOCK rq(1)->lock 1900 * enqueue X 1901 * UNLOCK rq(1)->lock 1902 * 1903 * LOCK rq(1)->lock // orders against CPU2 1904 * sched-out Z 1905 * sched-in X 1906 * UNLOCK rq(1)->lock 1907 * 1908 * 1909 * BLOCKING -- aka. SLEEP + WAKEUP 1910 * 1911 * For blocking we (obviously) need to provide the same guarantee as for 1912 * migration. However the means are completely different as there is no lock 1913 * chain to provide order. Instead we do: 1914 * 1915 * 1) smp_store_release(X->on_cpu, 0) 1916 * 2) smp_cond_load_acquire(!X->on_cpu) 1917 * 1918 * Example: 1919 * 1920 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1921 * 1922 * LOCK rq(0)->lock LOCK X->pi_lock 1923 * dequeue X 1924 * sched-out X 1925 * smp_store_release(X->on_cpu, 0); 1926 * 1927 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1928 * X->state = WAKING 1929 * set_task_cpu(X,2) 1930 * 1931 * LOCK rq(2)->lock 1932 * enqueue X 1933 * X->state = RUNNING 1934 * UNLOCK rq(2)->lock 1935 * 1936 * LOCK rq(2)->lock // orders against CPU1 1937 * sched-out Z 1938 * sched-in X 1939 * UNLOCK rq(2)->lock 1940 * 1941 * UNLOCK X->pi_lock 1942 * UNLOCK rq(0)->lock 1943 * 1944 * 1945 * However; for wakeups there is a second guarantee we must provide, namely we 1946 * must observe the state that lead to our wakeup. That is, not only must our 1947 * task observe its own prior state, it must also observe the stores prior to 1948 * its wakeup. 1949 * 1950 * This means that any means of doing remote wakeups must order the CPU doing 1951 * the wakeup against the CPU the task is going to end up running on. This, 1952 * however, is already required for the regular Program-Order guarantee above, 1953 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1954 * 1955 */ 1956 1957 /** 1958 * try_to_wake_up - wake up a thread 1959 * @p: the thread to be awakened 1960 * @state: the mask of task states that can be woken 1961 * @wake_flags: wake modifier flags (WF_*) 1962 * 1963 * If (@state & @p->state) @p->state = TASK_RUNNING. 1964 * 1965 * If the task was not queued/runnable, also place it back on a runqueue. 1966 * 1967 * Atomic against schedule() which would dequeue a task, also see 1968 * set_current_state(). 1969 * 1970 * Return: %true if @p->state changes (an actual wakeup was done), 1971 * %false otherwise. 1972 */ 1973 static int 1974 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1975 { 1976 unsigned long flags; 1977 int cpu, success = 0; 1978 1979 /* 1980 * If we are going to wake up a thread waiting for CONDITION we 1981 * need to ensure that CONDITION=1 done by the caller can not be 1982 * reordered with p->state check below. This pairs with mb() in 1983 * set_current_state() the waiting thread does. 1984 */ 1985 raw_spin_lock_irqsave(&p->pi_lock, flags); 1986 smp_mb__after_spinlock(); 1987 if (!(p->state & state)) 1988 goto out; 1989 1990 trace_sched_waking(p); 1991 1992 /* We're going to change ->state: */ 1993 success = 1; 1994 cpu = task_cpu(p); 1995 1996 /* 1997 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1998 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1999 * in smp_cond_load_acquire() below. 2000 * 2001 * sched_ttwu_pending() try_to_wake_up() 2002 * [S] p->on_rq = 1; [L] P->state 2003 * UNLOCK rq->lock -----. 2004 * \ 2005 * +--- RMB 2006 * schedule() / 2007 * LOCK rq->lock -----' 2008 * UNLOCK rq->lock 2009 * 2010 * [task p] 2011 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2012 * 2013 * Pairs with the UNLOCK+LOCK on rq->lock from the 2014 * last wakeup of our task and the schedule that got our task 2015 * current. 2016 */ 2017 smp_rmb(); 2018 if (p->on_rq && ttwu_remote(p, wake_flags)) 2019 goto stat; 2020 2021 #ifdef CONFIG_SMP 2022 /* 2023 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2024 * possible to, falsely, observe p->on_cpu == 0. 2025 * 2026 * One must be running (->on_cpu == 1) in order to remove oneself 2027 * from the runqueue. 2028 * 2029 * [S] ->on_cpu = 1; [L] ->on_rq 2030 * UNLOCK rq->lock 2031 * RMB 2032 * LOCK rq->lock 2033 * [S] ->on_rq = 0; [L] ->on_cpu 2034 * 2035 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2036 * from the consecutive calls to schedule(); the first switching to our 2037 * task, the second putting it to sleep. 2038 */ 2039 smp_rmb(); 2040 2041 /* 2042 * If the owning (remote) CPU is still in the middle of schedule() with 2043 * this task as prev, wait until its done referencing the task. 2044 * 2045 * Pairs with the smp_store_release() in finish_task(). 2046 * 2047 * This ensures that tasks getting woken will be fully ordered against 2048 * their previous state and preserve Program Order. 2049 */ 2050 smp_cond_load_acquire(&p->on_cpu, !VAL); 2051 2052 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2053 p->state = TASK_WAKING; 2054 2055 if (p->in_iowait) { 2056 delayacct_blkio_end(p); 2057 atomic_dec(&task_rq(p)->nr_iowait); 2058 } 2059 2060 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2061 if (task_cpu(p) != cpu) { 2062 wake_flags |= WF_MIGRATED; 2063 set_task_cpu(p, cpu); 2064 } 2065 2066 #else /* CONFIG_SMP */ 2067 2068 if (p->in_iowait) { 2069 delayacct_blkio_end(p); 2070 atomic_dec(&task_rq(p)->nr_iowait); 2071 } 2072 2073 #endif /* CONFIG_SMP */ 2074 2075 ttwu_queue(p, cpu, wake_flags); 2076 stat: 2077 ttwu_stat(p, cpu, wake_flags); 2078 out: 2079 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2080 2081 return success; 2082 } 2083 2084 /** 2085 * try_to_wake_up_local - try to wake up a local task with rq lock held 2086 * @p: the thread to be awakened 2087 * @rf: request-queue flags for pinning 2088 * 2089 * Put @p on the run-queue if it's not already there. The caller must 2090 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2091 * the current task. 2092 */ 2093 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2094 { 2095 struct rq *rq = task_rq(p); 2096 2097 if (WARN_ON_ONCE(rq != this_rq()) || 2098 WARN_ON_ONCE(p == current)) 2099 return; 2100 2101 lockdep_assert_held(&rq->lock); 2102 2103 if (!raw_spin_trylock(&p->pi_lock)) { 2104 /* 2105 * This is OK, because current is on_cpu, which avoids it being 2106 * picked for load-balance and preemption/IRQs are still 2107 * disabled avoiding further scheduler activity on it and we've 2108 * not yet picked a replacement task. 2109 */ 2110 rq_unlock(rq, rf); 2111 raw_spin_lock(&p->pi_lock); 2112 rq_relock(rq, rf); 2113 } 2114 2115 if (!(p->state & TASK_NORMAL)) 2116 goto out; 2117 2118 trace_sched_waking(p); 2119 2120 if (!task_on_rq_queued(p)) { 2121 if (p->in_iowait) { 2122 delayacct_blkio_end(p); 2123 atomic_dec(&rq->nr_iowait); 2124 } 2125 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2126 } 2127 2128 ttwu_do_wakeup(rq, p, 0, rf); 2129 ttwu_stat(p, smp_processor_id(), 0); 2130 out: 2131 raw_spin_unlock(&p->pi_lock); 2132 } 2133 2134 /** 2135 * wake_up_process - Wake up a specific process 2136 * @p: The process to be woken up. 2137 * 2138 * Attempt to wake up the nominated process and move it to the set of runnable 2139 * processes. 2140 * 2141 * Return: 1 if the process was woken up, 0 if it was already running. 2142 * 2143 * It may be assumed that this function implies a write memory barrier before 2144 * changing the task state if and only if any tasks are woken up. 2145 */ 2146 int wake_up_process(struct task_struct *p) 2147 { 2148 return try_to_wake_up(p, TASK_NORMAL, 0); 2149 } 2150 EXPORT_SYMBOL(wake_up_process); 2151 2152 int wake_up_state(struct task_struct *p, unsigned int state) 2153 { 2154 return try_to_wake_up(p, state, 0); 2155 } 2156 2157 /* 2158 * Perform scheduler related setup for a newly forked process p. 2159 * p is forked by current. 2160 * 2161 * __sched_fork() is basic setup used by init_idle() too: 2162 */ 2163 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2164 { 2165 p->on_rq = 0; 2166 2167 p->se.on_rq = 0; 2168 p->se.exec_start = 0; 2169 p->se.sum_exec_runtime = 0; 2170 p->se.prev_sum_exec_runtime = 0; 2171 p->se.nr_migrations = 0; 2172 p->se.vruntime = 0; 2173 INIT_LIST_HEAD(&p->se.group_node); 2174 2175 #ifdef CONFIG_FAIR_GROUP_SCHED 2176 p->se.cfs_rq = NULL; 2177 #endif 2178 2179 #ifdef CONFIG_SCHEDSTATS 2180 /* Even if schedstat is disabled, there should not be garbage */ 2181 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2182 #endif 2183 2184 RB_CLEAR_NODE(&p->dl.rb_node); 2185 init_dl_task_timer(&p->dl); 2186 init_dl_inactive_task_timer(&p->dl); 2187 __dl_clear_params(p); 2188 2189 INIT_LIST_HEAD(&p->rt.run_list); 2190 p->rt.timeout = 0; 2191 p->rt.time_slice = sched_rr_timeslice; 2192 p->rt.on_rq = 0; 2193 p->rt.on_list = 0; 2194 2195 #ifdef CONFIG_PREEMPT_NOTIFIERS 2196 INIT_HLIST_HEAD(&p->preempt_notifiers); 2197 #endif 2198 2199 init_numa_balancing(clone_flags, p); 2200 } 2201 2202 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2203 2204 #ifdef CONFIG_NUMA_BALANCING 2205 2206 void set_numabalancing_state(bool enabled) 2207 { 2208 if (enabled) 2209 static_branch_enable(&sched_numa_balancing); 2210 else 2211 static_branch_disable(&sched_numa_balancing); 2212 } 2213 2214 #ifdef CONFIG_PROC_SYSCTL 2215 int sysctl_numa_balancing(struct ctl_table *table, int write, 2216 void __user *buffer, size_t *lenp, loff_t *ppos) 2217 { 2218 struct ctl_table t; 2219 int err; 2220 int state = static_branch_likely(&sched_numa_balancing); 2221 2222 if (write && !capable(CAP_SYS_ADMIN)) 2223 return -EPERM; 2224 2225 t = *table; 2226 t.data = &state; 2227 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2228 if (err < 0) 2229 return err; 2230 if (write) 2231 set_numabalancing_state(state); 2232 return err; 2233 } 2234 #endif 2235 #endif 2236 2237 #ifdef CONFIG_SCHEDSTATS 2238 2239 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2240 static bool __initdata __sched_schedstats = false; 2241 2242 static void set_schedstats(bool enabled) 2243 { 2244 if (enabled) 2245 static_branch_enable(&sched_schedstats); 2246 else 2247 static_branch_disable(&sched_schedstats); 2248 } 2249 2250 void force_schedstat_enabled(void) 2251 { 2252 if (!schedstat_enabled()) { 2253 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2254 static_branch_enable(&sched_schedstats); 2255 } 2256 } 2257 2258 static int __init setup_schedstats(char *str) 2259 { 2260 int ret = 0; 2261 if (!str) 2262 goto out; 2263 2264 /* 2265 * This code is called before jump labels have been set up, so we can't 2266 * change the static branch directly just yet. Instead set a temporary 2267 * variable so init_schedstats() can do it later. 2268 */ 2269 if (!strcmp(str, "enable")) { 2270 __sched_schedstats = true; 2271 ret = 1; 2272 } else if (!strcmp(str, "disable")) { 2273 __sched_schedstats = false; 2274 ret = 1; 2275 } 2276 out: 2277 if (!ret) 2278 pr_warn("Unable to parse schedstats=\n"); 2279 2280 return ret; 2281 } 2282 __setup("schedstats=", setup_schedstats); 2283 2284 static void __init init_schedstats(void) 2285 { 2286 set_schedstats(__sched_schedstats); 2287 } 2288 2289 #ifdef CONFIG_PROC_SYSCTL 2290 int sysctl_schedstats(struct ctl_table *table, int write, 2291 void __user *buffer, size_t *lenp, loff_t *ppos) 2292 { 2293 struct ctl_table t; 2294 int err; 2295 int state = static_branch_likely(&sched_schedstats); 2296 2297 if (write && !capable(CAP_SYS_ADMIN)) 2298 return -EPERM; 2299 2300 t = *table; 2301 t.data = &state; 2302 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2303 if (err < 0) 2304 return err; 2305 if (write) 2306 set_schedstats(state); 2307 return err; 2308 } 2309 #endif /* CONFIG_PROC_SYSCTL */ 2310 #else /* !CONFIG_SCHEDSTATS */ 2311 static inline void init_schedstats(void) {} 2312 #endif /* CONFIG_SCHEDSTATS */ 2313 2314 /* 2315 * fork()/clone()-time setup: 2316 */ 2317 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2318 { 2319 unsigned long flags; 2320 int cpu = get_cpu(); 2321 2322 __sched_fork(clone_flags, p); 2323 /* 2324 * We mark the process as NEW here. This guarantees that 2325 * nobody will actually run it, and a signal or other external 2326 * event cannot wake it up and insert it on the runqueue either. 2327 */ 2328 p->state = TASK_NEW; 2329 2330 /* 2331 * Make sure we do not leak PI boosting priority to the child. 2332 */ 2333 p->prio = current->normal_prio; 2334 2335 /* 2336 * Revert to default priority/policy on fork if requested. 2337 */ 2338 if (unlikely(p->sched_reset_on_fork)) { 2339 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2340 p->policy = SCHED_NORMAL; 2341 p->static_prio = NICE_TO_PRIO(0); 2342 p->rt_priority = 0; 2343 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2344 p->static_prio = NICE_TO_PRIO(0); 2345 2346 p->prio = p->normal_prio = __normal_prio(p); 2347 set_load_weight(p, false); 2348 2349 /* 2350 * We don't need the reset flag anymore after the fork. It has 2351 * fulfilled its duty: 2352 */ 2353 p->sched_reset_on_fork = 0; 2354 } 2355 2356 if (dl_prio(p->prio)) { 2357 put_cpu(); 2358 return -EAGAIN; 2359 } else if (rt_prio(p->prio)) { 2360 p->sched_class = &rt_sched_class; 2361 } else { 2362 p->sched_class = &fair_sched_class; 2363 } 2364 2365 init_entity_runnable_average(&p->se); 2366 2367 /* 2368 * The child is not yet in the pid-hash so no cgroup attach races, 2369 * and the cgroup is pinned to this child due to cgroup_fork() 2370 * is ran before sched_fork(). 2371 * 2372 * Silence PROVE_RCU. 2373 */ 2374 raw_spin_lock_irqsave(&p->pi_lock, flags); 2375 /* 2376 * We're setting the CPU for the first time, we don't migrate, 2377 * so use __set_task_cpu(). 2378 */ 2379 __set_task_cpu(p, cpu); 2380 if (p->sched_class->task_fork) 2381 p->sched_class->task_fork(p); 2382 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2383 2384 #ifdef CONFIG_SCHED_INFO 2385 if (likely(sched_info_on())) 2386 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2387 #endif 2388 #if defined(CONFIG_SMP) 2389 p->on_cpu = 0; 2390 #endif 2391 init_task_preempt_count(p); 2392 #ifdef CONFIG_SMP 2393 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2394 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2395 #endif 2396 2397 put_cpu(); 2398 return 0; 2399 } 2400 2401 unsigned long to_ratio(u64 period, u64 runtime) 2402 { 2403 if (runtime == RUNTIME_INF) 2404 return BW_UNIT; 2405 2406 /* 2407 * Doing this here saves a lot of checks in all 2408 * the calling paths, and returning zero seems 2409 * safe for them anyway. 2410 */ 2411 if (period == 0) 2412 return 0; 2413 2414 return div64_u64(runtime << BW_SHIFT, period); 2415 } 2416 2417 /* 2418 * wake_up_new_task - wake up a newly created task for the first time. 2419 * 2420 * This function will do some initial scheduler statistics housekeeping 2421 * that must be done for every newly created context, then puts the task 2422 * on the runqueue and wakes it. 2423 */ 2424 void wake_up_new_task(struct task_struct *p) 2425 { 2426 struct rq_flags rf; 2427 struct rq *rq; 2428 2429 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2430 p->state = TASK_RUNNING; 2431 #ifdef CONFIG_SMP 2432 /* 2433 * Fork balancing, do it here and not earlier because: 2434 * - cpus_allowed can change in the fork path 2435 * - any previously selected CPU might disappear through hotplug 2436 * 2437 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2438 * as we're not fully set-up yet. 2439 */ 2440 p->recent_used_cpu = task_cpu(p); 2441 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2442 #endif 2443 rq = __task_rq_lock(p, &rf); 2444 update_rq_clock(rq); 2445 post_init_entity_util_avg(&p->se); 2446 2447 activate_task(rq, p, ENQUEUE_NOCLOCK); 2448 p->on_rq = TASK_ON_RQ_QUEUED; 2449 trace_sched_wakeup_new(p); 2450 check_preempt_curr(rq, p, WF_FORK); 2451 #ifdef CONFIG_SMP 2452 if (p->sched_class->task_woken) { 2453 /* 2454 * Nothing relies on rq->lock after this, so its fine to 2455 * drop it. 2456 */ 2457 rq_unpin_lock(rq, &rf); 2458 p->sched_class->task_woken(rq, p); 2459 rq_repin_lock(rq, &rf); 2460 } 2461 #endif 2462 task_rq_unlock(rq, p, &rf); 2463 } 2464 2465 #ifdef CONFIG_PREEMPT_NOTIFIERS 2466 2467 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2468 2469 void preempt_notifier_inc(void) 2470 { 2471 static_branch_inc(&preempt_notifier_key); 2472 } 2473 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2474 2475 void preempt_notifier_dec(void) 2476 { 2477 static_branch_dec(&preempt_notifier_key); 2478 } 2479 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2480 2481 /** 2482 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2483 * @notifier: notifier struct to register 2484 */ 2485 void preempt_notifier_register(struct preempt_notifier *notifier) 2486 { 2487 if (!static_branch_unlikely(&preempt_notifier_key)) 2488 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2489 2490 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2491 } 2492 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2493 2494 /** 2495 * preempt_notifier_unregister - no longer interested in preemption notifications 2496 * @notifier: notifier struct to unregister 2497 * 2498 * This is *not* safe to call from within a preemption notifier. 2499 */ 2500 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2501 { 2502 hlist_del(¬ifier->link); 2503 } 2504 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2505 2506 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2507 { 2508 struct preempt_notifier *notifier; 2509 2510 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2511 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2512 } 2513 2514 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2515 { 2516 if (static_branch_unlikely(&preempt_notifier_key)) 2517 __fire_sched_in_preempt_notifiers(curr); 2518 } 2519 2520 static void 2521 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2522 struct task_struct *next) 2523 { 2524 struct preempt_notifier *notifier; 2525 2526 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2527 notifier->ops->sched_out(notifier, next); 2528 } 2529 2530 static __always_inline void 2531 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2532 struct task_struct *next) 2533 { 2534 if (static_branch_unlikely(&preempt_notifier_key)) 2535 __fire_sched_out_preempt_notifiers(curr, next); 2536 } 2537 2538 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2539 2540 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2541 { 2542 } 2543 2544 static inline void 2545 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2546 struct task_struct *next) 2547 { 2548 } 2549 2550 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2551 2552 static inline void prepare_task(struct task_struct *next) 2553 { 2554 #ifdef CONFIG_SMP 2555 /* 2556 * Claim the task as running, we do this before switching to it 2557 * such that any running task will have this set. 2558 */ 2559 next->on_cpu = 1; 2560 #endif 2561 } 2562 2563 static inline void finish_task(struct task_struct *prev) 2564 { 2565 #ifdef CONFIG_SMP 2566 /* 2567 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2568 * We must ensure this doesn't happen until the switch is completely 2569 * finished. 2570 * 2571 * In particular, the load of prev->state in finish_task_switch() must 2572 * happen before this. 2573 * 2574 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2575 */ 2576 smp_store_release(&prev->on_cpu, 0); 2577 #endif 2578 } 2579 2580 static inline void 2581 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2582 { 2583 /* 2584 * Since the runqueue lock will be released by the next 2585 * task (which is an invalid locking op but in the case 2586 * of the scheduler it's an obvious special-case), so we 2587 * do an early lockdep release here: 2588 */ 2589 rq_unpin_lock(rq, rf); 2590 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2591 #ifdef CONFIG_DEBUG_SPINLOCK 2592 /* this is a valid case when another task releases the spinlock */ 2593 rq->lock.owner = next; 2594 #endif 2595 } 2596 2597 static inline void finish_lock_switch(struct rq *rq) 2598 { 2599 /* 2600 * If we are tracking spinlock dependencies then we have to 2601 * fix up the runqueue lock - which gets 'carried over' from 2602 * prev into current: 2603 */ 2604 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2605 raw_spin_unlock_irq(&rq->lock); 2606 } 2607 2608 /* 2609 * NOP if the arch has not defined these: 2610 */ 2611 2612 #ifndef prepare_arch_switch 2613 # define prepare_arch_switch(next) do { } while (0) 2614 #endif 2615 2616 #ifndef finish_arch_post_lock_switch 2617 # define finish_arch_post_lock_switch() do { } while (0) 2618 #endif 2619 2620 /** 2621 * prepare_task_switch - prepare to switch tasks 2622 * @rq: the runqueue preparing to switch 2623 * @prev: the current task that is being switched out 2624 * @next: the task we are going to switch to. 2625 * 2626 * This is called with the rq lock held and interrupts off. It must 2627 * be paired with a subsequent finish_task_switch after the context 2628 * switch. 2629 * 2630 * prepare_task_switch sets up locking and calls architecture specific 2631 * hooks. 2632 */ 2633 static inline void 2634 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2635 struct task_struct *next) 2636 { 2637 kcov_prepare_switch(prev); 2638 sched_info_switch(rq, prev, next); 2639 perf_event_task_sched_out(prev, next); 2640 rseq_preempt(prev); 2641 fire_sched_out_preempt_notifiers(prev, next); 2642 prepare_task(next); 2643 prepare_arch_switch(next); 2644 } 2645 2646 /** 2647 * finish_task_switch - clean up after a task-switch 2648 * @prev: the thread we just switched away from. 2649 * 2650 * finish_task_switch must be called after the context switch, paired 2651 * with a prepare_task_switch call before the context switch. 2652 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2653 * and do any other architecture-specific cleanup actions. 2654 * 2655 * Note that we may have delayed dropping an mm in context_switch(). If 2656 * so, we finish that here outside of the runqueue lock. (Doing it 2657 * with the lock held can cause deadlocks; see schedule() for 2658 * details.) 2659 * 2660 * The context switch have flipped the stack from under us and restored the 2661 * local variables which were saved when this task called schedule() in the 2662 * past. prev == current is still correct but we need to recalculate this_rq 2663 * because prev may have moved to another CPU. 2664 */ 2665 static struct rq *finish_task_switch(struct task_struct *prev) 2666 __releases(rq->lock) 2667 { 2668 struct rq *rq = this_rq(); 2669 struct mm_struct *mm = rq->prev_mm; 2670 long prev_state; 2671 2672 /* 2673 * The previous task will have left us with a preempt_count of 2 2674 * because it left us after: 2675 * 2676 * schedule() 2677 * preempt_disable(); // 1 2678 * __schedule() 2679 * raw_spin_lock_irq(&rq->lock) // 2 2680 * 2681 * Also, see FORK_PREEMPT_COUNT. 2682 */ 2683 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2684 "corrupted preempt_count: %s/%d/0x%x\n", 2685 current->comm, current->pid, preempt_count())) 2686 preempt_count_set(FORK_PREEMPT_COUNT); 2687 2688 rq->prev_mm = NULL; 2689 2690 /* 2691 * A task struct has one reference for the use as "current". 2692 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2693 * schedule one last time. The schedule call will never return, and 2694 * the scheduled task must drop that reference. 2695 * 2696 * We must observe prev->state before clearing prev->on_cpu (in 2697 * finish_task), otherwise a concurrent wakeup can get prev 2698 * running on another CPU and we could rave with its RUNNING -> DEAD 2699 * transition, resulting in a double drop. 2700 */ 2701 prev_state = prev->state; 2702 vtime_task_switch(prev); 2703 perf_event_task_sched_in(prev, current); 2704 finish_task(prev); 2705 finish_lock_switch(rq); 2706 finish_arch_post_lock_switch(); 2707 kcov_finish_switch(current); 2708 2709 fire_sched_in_preempt_notifiers(current); 2710 /* 2711 * When switching through a kernel thread, the loop in 2712 * membarrier_{private,global}_expedited() may have observed that 2713 * kernel thread and not issued an IPI. It is therefore possible to 2714 * schedule between user->kernel->user threads without passing though 2715 * switch_mm(). Membarrier requires a barrier after storing to 2716 * rq->curr, before returning to userspace, so provide them here: 2717 * 2718 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2719 * provided by mmdrop(), 2720 * - a sync_core for SYNC_CORE. 2721 */ 2722 if (mm) { 2723 membarrier_mm_sync_core_before_usermode(mm); 2724 mmdrop(mm); 2725 } 2726 if (unlikely(prev_state == TASK_DEAD)) { 2727 if (prev->sched_class->task_dead) 2728 prev->sched_class->task_dead(prev); 2729 2730 /* 2731 * Remove function-return probe instances associated with this 2732 * task and put them back on the free list. 2733 */ 2734 kprobe_flush_task(prev); 2735 2736 /* Task is done with its stack. */ 2737 put_task_stack(prev); 2738 2739 put_task_struct(prev); 2740 } 2741 2742 tick_nohz_task_switch(); 2743 return rq; 2744 } 2745 2746 #ifdef CONFIG_SMP 2747 2748 /* rq->lock is NOT held, but preemption is disabled */ 2749 static void __balance_callback(struct rq *rq) 2750 { 2751 struct callback_head *head, *next; 2752 void (*func)(struct rq *rq); 2753 unsigned long flags; 2754 2755 raw_spin_lock_irqsave(&rq->lock, flags); 2756 head = rq->balance_callback; 2757 rq->balance_callback = NULL; 2758 while (head) { 2759 func = (void (*)(struct rq *))head->func; 2760 next = head->next; 2761 head->next = NULL; 2762 head = next; 2763 2764 func(rq); 2765 } 2766 raw_spin_unlock_irqrestore(&rq->lock, flags); 2767 } 2768 2769 static inline void balance_callback(struct rq *rq) 2770 { 2771 if (unlikely(rq->balance_callback)) 2772 __balance_callback(rq); 2773 } 2774 2775 #else 2776 2777 static inline void balance_callback(struct rq *rq) 2778 { 2779 } 2780 2781 #endif 2782 2783 /** 2784 * schedule_tail - first thing a freshly forked thread must call. 2785 * @prev: the thread we just switched away from. 2786 */ 2787 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2788 __releases(rq->lock) 2789 { 2790 struct rq *rq; 2791 2792 /* 2793 * New tasks start with FORK_PREEMPT_COUNT, see there and 2794 * finish_task_switch() for details. 2795 * 2796 * finish_task_switch() will drop rq->lock() and lower preempt_count 2797 * and the preempt_enable() will end up enabling preemption (on 2798 * PREEMPT_COUNT kernels). 2799 */ 2800 2801 rq = finish_task_switch(prev); 2802 balance_callback(rq); 2803 preempt_enable(); 2804 2805 if (current->set_child_tid) 2806 put_user(task_pid_vnr(current), current->set_child_tid); 2807 } 2808 2809 /* 2810 * context_switch - switch to the new MM and the new thread's register state. 2811 */ 2812 static __always_inline struct rq * 2813 context_switch(struct rq *rq, struct task_struct *prev, 2814 struct task_struct *next, struct rq_flags *rf) 2815 { 2816 struct mm_struct *mm, *oldmm; 2817 2818 prepare_task_switch(rq, prev, next); 2819 2820 mm = next->mm; 2821 oldmm = prev->active_mm; 2822 /* 2823 * For paravirt, this is coupled with an exit in switch_to to 2824 * combine the page table reload and the switch backend into 2825 * one hypercall. 2826 */ 2827 arch_start_context_switch(prev); 2828 2829 /* 2830 * If mm is non-NULL, we pass through switch_mm(). If mm is 2831 * NULL, we will pass through mmdrop() in finish_task_switch(). 2832 * Both of these contain the full memory barrier required by 2833 * membarrier after storing to rq->curr, before returning to 2834 * user-space. 2835 */ 2836 if (!mm) { 2837 next->active_mm = oldmm; 2838 mmgrab(oldmm); 2839 enter_lazy_tlb(oldmm, next); 2840 } else 2841 switch_mm_irqs_off(oldmm, mm, next); 2842 2843 if (!prev->mm) { 2844 prev->active_mm = NULL; 2845 rq->prev_mm = oldmm; 2846 } 2847 2848 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2849 2850 prepare_lock_switch(rq, next, rf); 2851 2852 /* Here we just switch the register state and the stack. */ 2853 switch_to(prev, next, prev); 2854 barrier(); 2855 2856 return finish_task_switch(prev); 2857 } 2858 2859 /* 2860 * nr_running and nr_context_switches: 2861 * 2862 * externally visible scheduler statistics: current number of runnable 2863 * threads, total number of context switches performed since bootup. 2864 */ 2865 unsigned long nr_running(void) 2866 { 2867 unsigned long i, sum = 0; 2868 2869 for_each_online_cpu(i) 2870 sum += cpu_rq(i)->nr_running; 2871 2872 return sum; 2873 } 2874 2875 /* 2876 * Check if only the current task is running on the CPU. 2877 * 2878 * Caution: this function does not check that the caller has disabled 2879 * preemption, thus the result might have a time-of-check-to-time-of-use 2880 * race. The caller is responsible to use it correctly, for example: 2881 * 2882 * - from a non-preemptable section (of course) 2883 * 2884 * - from a thread that is bound to a single CPU 2885 * 2886 * - in a loop with very short iterations (e.g. a polling loop) 2887 */ 2888 bool single_task_running(void) 2889 { 2890 return raw_rq()->nr_running == 1; 2891 } 2892 EXPORT_SYMBOL(single_task_running); 2893 2894 unsigned long long nr_context_switches(void) 2895 { 2896 int i; 2897 unsigned long long sum = 0; 2898 2899 for_each_possible_cpu(i) 2900 sum += cpu_rq(i)->nr_switches; 2901 2902 return sum; 2903 } 2904 2905 /* 2906 * IO-wait accounting, and how its mostly bollocks (on SMP). 2907 * 2908 * The idea behind IO-wait account is to account the idle time that we could 2909 * have spend running if it were not for IO. That is, if we were to improve the 2910 * storage performance, we'd have a proportional reduction in IO-wait time. 2911 * 2912 * This all works nicely on UP, where, when a task blocks on IO, we account 2913 * idle time as IO-wait, because if the storage were faster, it could've been 2914 * running and we'd not be idle. 2915 * 2916 * This has been extended to SMP, by doing the same for each CPU. This however 2917 * is broken. 2918 * 2919 * Imagine for instance the case where two tasks block on one CPU, only the one 2920 * CPU will have IO-wait accounted, while the other has regular idle. Even 2921 * though, if the storage were faster, both could've ran at the same time, 2922 * utilising both CPUs. 2923 * 2924 * This means, that when looking globally, the current IO-wait accounting on 2925 * SMP is a lower bound, by reason of under accounting. 2926 * 2927 * Worse, since the numbers are provided per CPU, they are sometimes 2928 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2929 * associated with any one particular CPU, it can wake to another CPU than it 2930 * blocked on. This means the per CPU IO-wait number is meaningless. 2931 * 2932 * Task CPU affinities can make all that even more 'interesting'. 2933 */ 2934 2935 unsigned long nr_iowait(void) 2936 { 2937 unsigned long i, sum = 0; 2938 2939 for_each_possible_cpu(i) 2940 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2941 2942 return sum; 2943 } 2944 2945 /* 2946 * Consumers of these two interfaces, like for example the cpufreq menu 2947 * governor are using nonsensical data. Boosting frequency for a CPU that has 2948 * IO-wait which might not even end up running the task when it does become 2949 * runnable. 2950 */ 2951 2952 unsigned long nr_iowait_cpu(int cpu) 2953 { 2954 struct rq *this = cpu_rq(cpu); 2955 return atomic_read(&this->nr_iowait); 2956 } 2957 2958 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2959 { 2960 struct rq *rq = this_rq(); 2961 *nr_waiters = atomic_read(&rq->nr_iowait); 2962 *load = rq->load.weight; 2963 } 2964 2965 #ifdef CONFIG_SMP 2966 2967 /* 2968 * sched_exec - execve() is a valuable balancing opportunity, because at 2969 * this point the task has the smallest effective memory and cache footprint. 2970 */ 2971 void sched_exec(void) 2972 { 2973 struct task_struct *p = current; 2974 unsigned long flags; 2975 int dest_cpu; 2976 2977 raw_spin_lock_irqsave(&p->pi_lock, flags); 2978 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2979 if (dest_cpu == smp_processor_id()) 2980 goto unlock; 2981 2982 if (likely(cpu_active(dest_cpu))) { 2983 struct migration_arg arg = { p, dest_cpu }; 2984 2985 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2986 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2987 return; 2988 } 2989 unlock: 2990 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2991 } 2992 2993 #endif 2994 2995 DEFINE_PER_CPU(struct kernel_stat, kstat); 2996 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2997 2998 EXPORT_PER_CPU_SYMBOL(kstat); 2999 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3000 3001 /* 3002 * The function fair_sched_class.update_curr accesses the struct curr 3003 * and its field curr->exec_start; when called from task_sched_runtime(), 3004 * we observe a high rate of cache misses in practice. 3005 * Prefetching this data results in improved performance. 3006 */ 3007 static inline void prefetch_curr_exec_start(struct task_struct *p) 3008 { 3009 #ifdef CONFIG_FAIR_GROUP_SCHED 3010 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3011 #else 3012 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3013 #endif 3014 prefetch(curr); 3015 prefetch(&curr->exec_start); 3016 } 3017 3018 /* 3019 * Return accounted runtime for the task. 3020 * In case the task is currently running, return the runtime plus current's 3021 * pending runtime that have not been accounted yet. 3022 */ 3023 unsigned long long task_sched_runtime(struct task_struct *p) 3024 { 3025 struct rq_flags rf; 3026 struct rq *rq; 3027 u64 ns; 3028 3029 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3030 /* 3031 * 64-bit doesn't need locks to atomically read a 64-bit value. 3032 * So we have a optimization chance when the task's delta_exec is 0. 3033 * Reading ->on_cpu is racy, but this is ok. 3034 * 3035 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3036 * If we race with it entering CPU, unaccounted time is 0. This is 3037 * indistinguishable from the read occurring a few cycles earlier. 3038 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3039 * been accounted, so we're correct here as well. 3040 */ 3041 if (!p->on_cpu || !task_on_rq_queued(p)) 3042 return p->se.sum_exec_runtime; 3043 #endif 3044 3045 rq = task_rq_lock(p, &rf); 3046 /* 3047 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3048 * project cycles that may never be accounted to this 3049 * thread, breaking clock_gettime(). 3050 */ 3051 if (task_current(rq, p) && task_on_rq_queued(p)) { 3052 prefetch_curr_exec_start(p); 3053 update_rq_clock(rq); 3054 p->sched_class->update_curr(rq); 3055 } 3056 ns = p->se.sum_exec_runtime; 3057 task_rq_unlock(rq, p, &rf); 3058 3059 return ns; 3060 } 3061 3062 /* 3063 * This function gets called by the timer code, with HZ frequency. 3064 * We call it with interrupts disabled. 3065 */ 3066 void scheduler_tick(void) 3067 { 3068 int cpu = smp_processor_id(); 3069 struct rq *rq = cpu_rq(cpu); 3070 struct task_struct *curr = rq->curr; 3071 struct rq_flags rf; 3072 3073 sched_clock_tick(); 3074 3075 rq_lock(rq, &rf); 3076 3077 update_rq_clock(rq); 3078 curr->sched_class->task_tick(rq, curr, 0); 3079 cpu_load_update_active(rq); 3080 calc_global_load_tick(rq); 3081 3082 rq_unlock(rq, &rf); 3083 3084 perf_event_task_tick(); 3085 3086 #ifdef CONFIG_SMP 3087 rq->idle_balance = idle_cpu(cpu); 3088 trigger_load_balance(rq); 3089 #endif 3090 } 3091 3092 #ifdef CONFIG_NO_HZ_FULL 3093 3094 struct tick_work { 3095 int cpu; 3096 struct delayed_work work; 3097 }; 3098 3099 static struct tick_work __percpu *tick_work_cpu; 3100 3101 static void sched_tick_remote(struct work_struct *work) 3102 { 3103 struct delayed_work *dwork = to_delayed_work(work); 3104 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3105 int cpu = twork->cpu; 3106 struct rq *rq = cpu_rq(cpu); 3107 struct task_struct *curr; 3108 struct rq_flags rf; 3109 u64 delta; 3110 3111 /* 3112 * Handle the tick only if it appears the remote CPU is running in full 3113 * dynticks mode. The check is racy by nature, but missing a tick or 3114 * having one too much is no big deal because the scheduler tick updates 3115 * statistics and checks timeslices in a time-independent way, regardless 3116 * of when exactly it is running. 3117 */ 3118 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu)) 3119 goto out_requeue; 3120 3121 rq_lock_irq(rq, &rf); 3122 curr = rq->curr; 3123 if (is_idle_task(curr)) 3124 goto out_unlock; 3125 3126 update_rq_clock(rq); 3127 delta = rq_clock_task(rq) - curr->se.exec_start; 3128 3129 /* 3130 * Make sure the next tick runs within a reasonable 3131 * amount of time. 3132 */ 3133 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3134 curr->sched_class->task_tick(rq, curr, 0); 3135 3136 out_unlock: 3137 rq_unlock_irq(rq, &rf); 3138 3139 out_requeue: 3140 /* 3141 * Run the remote tick once per second (1Hz). This arbitrary 3142 * frequency is large enough to avoid overload but short enough 3143 * to keep scheduler internal stats reasonably up to date. 3144 */ 3145 queue_delayed_work(system_unbound_wq, dwork, HZ); 3146 } 3147 3148 static void sched_tick_start(int cpu) 3149 { 3150 struct tick_work *twork; 3151 3152 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3153 return; 3154 3155 WARN_ON_ONCE(!tick_work_cpu); 3156 3157 twork = per_cpu_ptr(tick_work_cpu, cpu); 3158 twork->cpu = cpu; 3159 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3160 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3161 } 3162 3163 #ifdef CONFIG_HOTPLUG_CPU 3164 static void sched_tick_stop(int cpu) 3165 { 3166 struct tick_work *twork; 3167 3168 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3169 return; 3170 3171 WARN_ON_ONCE(!tick_work_cpu); 3172 3173 twork = per_cpu_ptr(tick_work_cpu, cpu); 3174 cancel_delayed_work_sync(&twork->work); 3175 } 3176 #endif /* CONFIG_HOTPLUG_CPU */ 3177 3178 int __init sched_tick_offload_init(void) 3179 { 3180 tick_work_cpu = alloc_percpu(struct tick_work); 3181 BUG_ON(!tick_work_cpu); 3182 3183 return 0; 3184 } 3185 3186 #else /* !CONFIG_NO_HZ_FULL */ 3187 static inline void sched_tick_start(int cpu) { } 3188 static inline void sched_tick_stop(int cpu) { } 3189 #endif 3190 3191 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3192 defined(CONFIG_PREEMPT_TRACER)) 3193 /* 3194 * If the value passed in is equal to the current preempt count 3195 * then we just disabled preemption. Start timing the latency. 3196 */ 3197 static inline void preempt_latency_start(int val) 3198 { 3199 if (preempt_count() == val) { 3200 unsigned long ip = get_lock_parent_ip(); 3201 #ifdef CONFIG_DEBUG_PREEMPT 3202 current->preempt_disable_ip = ip; 3203 #endif 3204 trace_preempt_off(CALLER_ADDR0, ip); 3205 } 3206 } 3207 3208 void preempt_count_add(int val) 3209 { 3210 #ifdef CONFIG_DEBUG_PREEMPT 3211 /* 3212 * Underflow? 3213 */ 3214 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3215 return; 3216 #endif 3217 __preempt_count_add(val); 3218 #ifdef CONFIG_DEBUG_PREEMPT 3219 /* 3220 * Spinlock count overflowing soon? 3221 */ 3222 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3223 PREEMPT_MASK - 10); 3224 #endif 3225 preempt_latency_start(val); 3226 } 3227 EXPORT_SYMBOL(preempt_count_add); 3228 NOKPROBE_SYMBOL(preempt_count_add); 3229 3230 /* 3231 * If the value passed in equals to the current preempt count 3232 * then we just enabled preemption. Stop timing the latency. 3233 */ 3234 static inline void preempt_latency_stop(int val) 3235 { 3236 if (preempt_count() == val) 3237 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3238 } 3239 3240 void preempt_count_sub(int val) 3241 { 3242 #ifdef CONFIG_DEBUG_PREEMPT 3243 /* 3244 * Underflow? 3245 */ 3246 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3247 return; 3248 /* 3249 * Is the spinlock portion underflowing? 3250 */ 3251 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3252 !(preempt_count() & PREEMPT_MASK))) 3253 return; 3254 #endif 3255 3256 preempt_latency_stop(val); 3257 __preempt_count_sub(val); 3258 } 3259 EXPORT_SYMBOL(preempt_count_sub); 3260 NOKPROBE_SYMBOL(preempt_count_sub); 3261 3262 #else 3263 static inline void preempt_latency_start(int val) { } 3264 static inline void preempt_latency_stop(int val) { } 3265 #endif 3266 3267 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3268 { 3269 #ifdef CONFIG_DEBUG_PREEMPT 3270 return p->preempt_disable_ip; 3271 #else 3272 return 0; 3273 #endif 3274 } 3275 3276 /* 3277 * Print scheduling while atomic bug: 3278 */ 3279 static noinline void __schedule_bug(struct task_struct *prev) 3280 { 3281 /* Save this before calling printk(), since that will clobber it */ 3282 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3283 3284 if (oops_in_progress) 3285 return; 3286 3287 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3288 prev->comm, prev->pid, preempt_count()); 3289 3290 debug_show_held_locks(prev); 3291 print_modules(); 3292 if (irqs_disabled()) 3293 print_irqtrace_events(prev); 3294 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3295 && in_atomic_preempt_off()) { 3296 pr_err("Preemption disabled at:"); 3297 print_ip_sym(preempt_disable_ip); 3298 pr_cont("\n"); 3299 } 3300 if (panic_on_warn) 3301 panic("scheduling while atomic\n"); 3302 3303 dump_stack(); 3304 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3305 } 3306 3307 /* 3308 * Various schedule()-time debugging checks and statistics: 3309 */ 3310 static inline void schedule_debug(struct task_struct *prev) 3311 { 3312 #ifdef CONFIG_SCHED_STACK_END_CHECK 3313 if (task_stack_end_corrupted(prev)) 3314 panic("corrupted stack end detected inside scheduler\n"); 3315 #endif 3316 3317 if (unlikely(in_atomic_preempt_off())) { 3318 __schedule_bug(prev); 3319 preempt_count_set(PREEMPT_DISABLED); 3320 } 3321 rcu_sleep_check(); 3322 3323 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3324 3325 schedstat_inc(this_rq()->sched_count); 3326 } 3327 3328 /* 3329 * Pick up the highest-prio task: 3330 */ 3331 static inline struct task_struct * 3332 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3333 { 3334 const struct sched_class *class; 3335 struct task_struct *p; 3336 3337 /* 3338 * Optimization: we know that if all tasks are in the fair class we can 3339 * call that function directly, but only if the @prev task wasn't of a 3340 * higher scheduling class, because otherwise those loose the 3341 * opportunity to pull in more work from other CPUs. 3342 */ 3343 if (likely((prev->sched_class == &idle_sched_class || 3344 prev->sched_class == &fair_sched_class) && 3345 rq->nr_running == rq->cfs.h_nr_running)) { 3346 3347 p = fair_sched_class.pick_next_task(rq, prev, rf); 3348 if (unlikely(p == RETRY_TASK)) 3349 goto again; 3350 3351 /* Assumes fair_sched_class->next == idle_sched_class */ 3352 if (unlikely(!p)) 3353 p = idle_sched_class.pick_next_task(rq, prev, rf); 3354 3355 return p; 3356 } 3357 3358 again: 3359 for_each_class(class) { 3360 p = class->pick_next_task(rq, prev, rf); 3361 if (p) { 3362 if (unlikely(p == RETRY_TASK)) 3363 goto again; 3364 return p; 3365 } 3366 } 3367 3368 /* The idle class should always have a runnable task: */ 3369 BUG(); 3370 } 3371 3372 /* 3373 * __schedule() is the main scheduler function. 3374 * 3375 * The main means of driving the scheduler and thus entering this function are: 3376 * 3377 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3378 * 3379 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3380 * paths. For example, see arch/x86/entry_64.S. 3381 * 3382 * To drive preemption between tasks, the scheduler sets the flag in timer 3383 * interrupt handler scheduler_tick(). 3384 * 3385 * 3. Wakeups don't really cause entry into schedule(). They add a 3386 * task to the run-queue and that's it. 3387 * 3388 * Now, if the new task added to the run-queue preempts the current 3389 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3390 * called on the nearest possible occasion: 3391 * 3392 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3393 * 3394 * - in syscall or exception context, at the next outmost 3395 * preempt_enable(). (this might be as soon as the wake_up()'s 3396 * spin_unlock()!) 3397 * 3398 * - in IRQ context, return from interrupt-handler to 3399 * preemptible context 3400 * 3401 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3402 * then at the next: 3403 * 3404 * - cond_resched() call 3405 * - explicit schedule() call 3406 * - return from syscall or exception to user-space 3407 * - return from interrupt-handler to user-space 3408 * 3409 * WARNING: must be called with preemption disabled! 3410 */ 3411 static void __sched notrace __schedule(bool preempt) 3412 { 3413 struct task_struct *prev, *next; 3414 unsigned long *switch_count; 3415 struct rq_flags rf; 3416 struct rq *rq; 3417 int cpu; 3418 3419 cpu = smp_processor_id(); 3420 rq = cpu_rq(cpu); 3421 prev = rq->curr; 3422 3423 schedule_debug(prev); 3424 3425 if (sched_feat(HRTICK)) 3426 hrtick_clear(rq); 3427 3428 local_irq_disable(); 3429 rcu_note_context_switch(preempt); 3430 3431 /* 3432 * Make sure that signal_pending_state()->signal_pending() below 3433 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3434 * done by the caller to avoid the race with signal_wake_up(). 3435 * 3436 * The membarrier system call requires a full memory barrier 3437 * after coming from user-space, before storing to rq->curr. 3438 */ 3439 rq_lock(rq, &rf); 3440 smp_mb__after_spinlock(); 3441 3442 /* Promote REQ to ACT */ 3443 rq->clock_update_flags <<= 1; 3444 update_rq_clock(rq); 3445 3446 switch_count = &prev->nivcsw; 3447 if (!preempt && prev->state) { 3448 if (unlikely(signal_pending_state(prev->state, prev))) { 3449 prev->state = TASK_RUNNING; 3450 } else { 3451 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3452 prev->on_rq = 0; 3453 3454 if (prev->in_iowait) { 3455 atomic_inc(&rq->nr_iowait); 3456 delayacct_blkio_start(); 3457 } 3458 3459 /* 3460 * If a worker went to sleep, notify and ask workqueue 3461 * whether it wants to wake up a task to maintain 3462 * concurrency. 3463 */ 3464 if (prev->flags & PF_WQ_WORKER) { 3465 struct task_struct *to_wakeup; 3466 3467 to_wakeup = wq_worker_sleeping(prev); 3468 if (to_wakeup) 3469 try_to_wake_up_local(to_wakeup, &rf); 3470 } 3471 } 3472 switch_count = &prev->nvcsw; 3473 } 3474 3475 next = pick_next_task(rq, prev, &rf); 3476 clear_tsk_need_resched(prev); 3477 clear_preempt_need_resched(); 3478 3479 if (likely(prev != next)) { 3480 rq->nr_switches++; 3481 rq->curr = next; 3482 /* 3483 * The membarrier system call requires each architecture 3484 * to have a full memory barrier after updating 3485 * rq->curr, before returning to user-space. 3486 * 3487 * Here are the schemes providing that barrier on the 3488 * various architectures: 3489 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3490 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3491 * - finish_lock_switch() for weakly-ordered 3492 * architectures where spin_unlock is a full barrier, 3493 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3494 * is a RELEASE barrier), 3495 */ 3496 ++*switch_count; 3497 3498 trace_sched_switch(preempt, prev, next); 3499 3500 /* Also unlocks the rq: */ 3501 rq = context_switch(rq, prev, next, &rf); 3502 } else { 3503 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3504 rq_unlock_irq(rq, &rf); 3505 } 3506 3507 balance_callback(rq); 3508 } 3509 3510 void __noreturn do_task_dead(void) 3511 { 3512 /* Causes final put_task_struct in finish_task_switch(): */ 3513 set_special_state(TASK_DEAD); 3514 3515 /* Tell freezer to ignore us: */ 3516 current->flags |= PF_NOFREEZE; 3517 3518 __schedule(false); 3519 BUG(); 3520 3521 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3522 for (;;) 3523 cpu_relax(); 3524 } 3525 3526 static inline void sched_submit_work(struct task_struct *tsk) 3527 { 3528 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3529 return; 3530 /* 3531 * If we are going to sleep and we have plugged IO queued, 3532 * make sure to submit it to avoid deadlocks. 3533 */ 3534 if (blk_needs_flush_plug(tsk)) 3535 blk_schedule_flush_plug(tsk); 3536 } 3537 3538 asmlinkage __visible void __sched schedule(void) 3539 { 3540 struct task_struct *tsk = current; 3541 3542 sched_submit_work(tsk); 3543 do { 3544 preempt_disable(); 3545 __schedule(false); 3546 sched_preempt_enable_no_resched(); 3547 } while (need_resched()); 3548 } 3549 EXPORT_SYMBOL(schedule); 3550 3551 /* 3552 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3553 * state (have scheduled out non-voluntarily) by making sure that all 3554 * tasks have either left the run queue or have gone into user space. 3555 * As idle tasks do not do either, they must not ever be preempted 3556 * (schedule out non-voluntarily). 3557 * 3558 * schedule_idle() is similar to schedule_preempt_disable() except that it 3559 * never enables preemption because it does not call sched_submit_work(). 3560 */ 3561 void __sched schedule_idle(void) 3562 { 3563 /* 3564 * As this skips calling sched_submit_work(), which the idle task does 3565 * regardless because that function is a nop when the task is in a 3566 * TASK_RUNNING state, make sure this isn't used someplace that the 3567 * current task can be in any other state. Note, idle is always in the 3568 * TASK_RUNNING state. 3569 */ 3570 WARN_ON_ONCE(current->state); 3571 do { 3572 __schedule(false); 3573 } while (need_resched()); 3574 } 3575 3576 #ifdef CONFIG_CONTEXT_TRACKING 3577 asmlinkage __visible void __sched schedule_user(void) 3578 { 3579 /* 3580 * If we come here after a random call to set_need_resched(), 3581 * or we have been woken up remotely but the IPI has not yet arrived, 3582 * we haven't yet exited the RCU idle mode. Do it here manually until 3583 * we find a better solution. 3584 * 3585 * NB: There are buggy callers of this function. Ideally we 3586 * should warn if prev_state != CONTEXT_USER, but that will trigger 3587 * too frequently to make sense yet. 3588 */ 3589 enum ctx_state prev_state = exception_enter(); 3590 schedule(); 3591 exception_exit(prev_state); 3592 } 3593 #endif 3594 3595 /** 3596 * schedule_preempt_disabled - called with preemption disabled 3597 * 3598 * Returns with preemption disabled. Note: preempt_count must be 1 3599 */ 3600 void __sched schedule_preempt_disabled(void) 3601 { 3602 sched_preempt_enable_no_resched(); 3603 schedule(); 3604 preempt_disable(); 3605 } 3606 3607 static void __sched notrace preempt_schedule_common(void) 3608 { 3609 do { 3610 /* 3611 * Because the function tracer can trace preempt_count_sub() 3612 * and it also uses preempt_enable/disable_notrace(), if 3613 * NEED_RESCHED is set, the preempt_enable_notrace() called 3614 * by the function tracer will call this function again and 3615 * cause infinite recursion. 3616 * 3617 * Preemption must be disabled here before the function 3618 * tracer can trace. Break up preempt_disable() into two 3619 * calls. One to disable preemption without fear of being 3620 * traced. The other to still record the preemption latency, 3621 * which can also be traced by the function tracer. 3622 */ 3623 preempt_disable_notrace(); 3624 preempt_latency_start(1); 3625 __schedule(true); 3626 preempt_latency_stop(1); 3627 preempt_enable_no_resched_notrace(); 3628 3629 /* 3630 * Check again in case we missed a preemption opportunity 3631 * between schedule and now. 3632 */ 3633 } while (need_resched()); 3634 } 3635 3636 #ifdef CONFIG_PREEMPT 3637 /* 3638 * this is the entry point to schedule() from in-kernel preemption 3639 * off of preempt_enable. Kernel preemptions off return from interrupt 3640 * occur there and call schedule directly. 3641 */ 3642 asmlinkage __visible void __sched notrace preempt_schedule(void) 3643 { 3644 /* 3645 * If there is a non-zero preempt_count or interrupts are disabled, 3646 * we do not want to preempt the current task. Just return.. 3647 */ 3648 if (likely(!preemptible())) 3649 return; 3650 3651 preempt_schedule_common(); 3652 } 3653 NOKPROBE_SYMBOL(preempt_schedule); 3654 EXPORT_SYMBOL(preempt_schedule); 3655 3656 /** 3657 * preempt_schedule_notrace - preempt_schedule called by tracing 3658 * 3659 * The tracing infrastructure uses preempt_enable_notrace to prevent 3660 * recursion and tracing preempt enabling caused by the tracing 3661 * infrastructure itself. But as tracing can happen in areas coming 3662 * from userspace or just about to enter userspace, a preempt enable 3663 * can occur before user_exit() is called. This will cause the scheduler 3664 * to be called when the system is still in usermode. 3665 * 3666 * To prevent this, the preempt_enable_notrace will use this function 3667 * instead of preempt_schedule() to exit user context if needed before 3668 * calling the scheduler. 3669 */ 3670 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3671 { 3672 enum ctx_state prev_ctx; 3673 3674 if (likely(!preemptible())) 3675 return; 3676 3677 do { 3678 /* 3679 * Because the function tracer can trace preempt_count_sub() 3680 * and it also uses preempt_enable/disable_notrace(), if 3681 * NEED_RESCHED is set, the preempt_enable_notrace() called 3682 * by the function tracer will call this function again and 3683 * cause infinite recursion. 3684 * 3685 * Preemption must be disabled here before the function 3686 * tracer can trace. Break up preempt_disable() into two 3687 * calls. One to disable preemption without fear of being 3688 * traced. The other to still record the preemption latency, 3689 * which can also be traced by the function tracer. 3690 */ 3691 preempt_disable_notrace(); 3692 preempt_latency_start(1); 3693 /* 3694 * Needs preempt disabled in case user_exit() is traced 3695 * and the tracer calls preempt_enable_notrace() causing 3696 * an infinite recursion. 3697 */ 3698 prev_ctx = exception_enter(); 3699 __schedule(true); 3700 exception_exit(prev_ctx); 3701 3702 preempt_latency_stop(1); 3703 preempt_enable_no_resched_notrace(); 3704 } while (need_resched()); 3705 } 3706 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3707 3708 #endif /* CONFIG_PREEMPT */ 3709 3710 /* 3711 * this is the entry point to schedule() from kernel preemption 3712 * off of irq context. 3713 * Note, that this is called and return with irqs disabled. This will 3714 * protect us against recursive calling from irq. 3715 */ 3716 asmlinkage __visible void __sched preempt_schedule_irq(void) 3717 { 3718 enum ctx_state prev_state; 3719 3720 /* Catch callers which need to be fixed */ 3721 BUG_ON(preempt_count() || !irqs_disabled()); 3722 3723 prev_state = exception_enter(); 3724 3725 do { 3726 preempt_disable(); 3727 local_irq_enable(); 3728 __schedule(true); 3729 local_irq_disable(); 3730 sched_preempt_enable_no_resched(); 3731 } while (need_resched()); 3732 3733 exception_exit(prev_state); 3734 } 3735 3736 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3737 void *key) 3738 { 3739 return try_to_wake_up(curr->private, mode, wake_flags); 3740 } 3741 EXPORT_SYMBOL(default_wake_function); 3742 3743 #ifdef CONFIG_RT_MUTEXES 3744 3745 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3746 { 3747 if (pi_task) 3748 prio = min(prio, pi_task->prio); 3749 3750 return prio; 3751 } 3752 3753 static inline int rt_effective_prio(struct task_struct *p, int prio) 3754 { 3755 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3756 3757 return __rt_effective_prio(pi_task, prio); 3758 } 3759 3760 /* 3761 * rt_mutex_setprio - set the current priority of a task 3762 * @p: task to boost 3763 * @pi_task: donor task 3764 * 3765 * This function changes the 'effective' priority of a task. It does 3766 * not touch ->normal_prio like __setscheduler(). 3767 * 3768 * Used by the rt_mutex code to implement priority inheritance 3769 * logic. Call site only calls if the priority of the task changed. 3770 */ 3771 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3772 { 3773 int prio, oldprio, queued, running, queue_flag = 3774 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3775 const struct sched_class *prev_class; 3776 struct rq_flags rf; 3777 struct rq *rq; 3778 3779 /* XXX used to be waiter->prio, not waiter->task->prio */ 3780 prio = __rt_effective_prio(pi_task, p->normal_prio); 3781 3782 /* 3783 * If nothing changed; bail early. 3784 */ 3785 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3786 return; 3787 3788 rq = __task_rq_lock(p, &rf); 3789 update_rq_clock(rq); 3790 /* 3791 * Set under pi_lock && rq->lock, such that the value can be used under 3792 * either lock. 3793 * 3794 * Note that there is loads of tricky to make this pointer cache work 3795 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3796 * ensure a task is de-boosted (pi_task is set to NULL) before the 3797 * task is allowed to run again (and can exit). This ensures the pointer 3798 * points to a blocked task -- which guaratees the task is present. 3799 */ 3800 p->pi_top_task = pi_task; 3801 3802 /* 3803 * For FIFO/RR we only need to set prio, if that matches we're done. 3804 */ 3805 if (prio == p->prio && !dl_prio(prio)) 3806 goto out_unlock; 3807 3808 /* 3809 * Idle task boosting is a nono in general. There is one 3810 * exception, when PREEMPT_RT and NOHZ is active: 3811 * 3812 * The idle task calls get_next_timer_interrupt() and holds 3813 * the timer wheel base->lock on the CPU and another CPU wants 3814 * to access the timer (probably to cancel it). We can safely 3815 * ignore the boosting request, as the idle CPU runs this code 3816 * with interrupts disabled and will complete the lock 3817 * protected section without being interrupted. So there is no 3818 * real need to boost. 3819 */ 3820 if (unlikely(p == rq->idle)) { 3821 WARN_ON(p != rq->curr); 3822 WARN_ON(p->pi_blocked_on); 3823 goto out_unlock; 3824 } 3825 3826 trace_sched_pi_setprio(p, pi_task); 3827 oldprio = p->prio; 3828 3829 if (oldprio == prio) 3830 queue_flag &= ~DEQUEUE_MOVE; 3831 3832 prev_class = p->sched_class; 3833 queued = task_on_rq_queued(p); 3834 running = task_current(rq, p); 3835 if (queued) 3836 dequeue_task(rq, p, queue_flag); 3837 if (running) 3838 put_prev_task(rq, p); 3839 3840 /* 3841 * Boosting condition are: 3842 * 1. -rt task is running and holds mutex A 3843 * --> -dl task blocks on mutex A 3844 * 3845 * 2. -dl task is running and holds mutex A 3846 * --> -dl task blocks on mutex A and could preempt the 3847 * running task 3848 */ 3849 if (dl_prio(prio)) { 3850 if (!dl_prio(p->normal_prio) || 3851 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3852 p->dl.dl_boosted = 1; 3853 queue_flag |= ENQUEUE_REPLENISH; 3854 } else 3855 p->dl.dl_boosted = 0; 3856 p->sched_class = &dl_sched_class; 3857 } else if (rt_prio(prio)) { 3858 if (dl_prio(oldprio)) 3859 p->dl.dl_boosted = 0; 3860 if (oldprio < prio) 3861 queue_flag |= ENQUEUE_HEAD; 3862 p->sched_class = &rt_sched_class; 3863 } else { 3864 if (dl_prio(oldprio)) 3865 p->dl.dl_boosted = 0; 3866 if (rt_prio(oldprio)) 3867 p->rt.timeout = 0; 3868 p->sched_class = &fair_sched_class; 3869 } 3870 3871 p->prio = prio; 3872 3873 if (queued) 3874 enqueue_task(rq, p, queue_flag); 3875 if (running) 3876 set_curr_task(rq, p); 3877 3878 check_class_changed(rq, p, prev_class, oldprio); 3879 out_unlock: 3880 /* Avoid rq from going away on us: */ 3881 preempt_disable(); 3882 __task_rq_unlock(rq, &rf); 3883 3884 balance_callback(rq); 3885 preempt_enable(); 3886 } 3887 #else 3888 static inline int rt_effective_prio(struct task_struct *p, int prio) 3889 { 3890 return prio; 3891 } 3892 #endif 3893 3894 void set_user_nice(struct task_struct *p, long nice) 3895 { 3896 bool queued, running; 3897 int old_prio, delta; 3898 struct rq_flags rf; 3899 struct rq *rq; 3900 3901 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3902 return; 3903 /* 3904 * We have to be careful, if called from sys_setpriority(), 3905 * the task might be in the middle of scheduling on another CPU. 3906 */ 3907 rq = task_rq_lock(p, &rf); 3908 update_rq_clock(rq); 3909 3910 /* 3911 * The RT priorities are set via sched_setscheduler(), but we still 3912 * allow the 'normal' nice value to be set - but as expected 3913 * it wont have any effect on scheduling until the task is 3914 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3915 */ 3916 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3917 p->static_prio = NICE_TO_PRIO(nice); 3918 goto out_unlock; 3919 } 3920 queued = task_on_rq_queued(p); 3921 running = task_current(rq, p); 3922 if (queued) 3923 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3924 if (running) 3925 put_prev_task(rq, p); 3926 3927 p->static_prio = NICE_TO_PRIO(nice); 3928 set_load_weight(p, true); 3929 old_prio = p->prio; 3930 p->prio = effective_prio(p); 3931 delta = p->prio - old_prio; 3932 3933 if (queued) { 3934 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3935 /* 3936 * If the task increased its priority or is running and 3937 * lowered its priority, then reschedule its CPU: 3938 */ 3939 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3940 resched_curr(rq); 3941 } 3942 if (running) 3943 set_curr_task(rq, p); 3944 out_unlock: 3945 task_rq_unlock(rq, p, &rf); 3946 } 3947 EXPORT_SYMBOL(set_user_nice); 3948 3949 /* 3950 * can_nice - check if a task can reduce its nice value 3951 * @p: task 3952 * @nice: nice value 3953 */ 3954 int can_nice(const struct task_struct *p, const int nice) 3955 { 3956 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3957 int nice_rlim = nice_to_rlimit(nice); 3958 3959 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3960 capable(CAP_SYS_NICE)); 3961 } 3962 3963 #ifdef __ARCH_WANT_SYS_NICE 3964 3965 /* 3966 * sys_nice - change the priority of the current process. 3967 * @increment: priority increment 3968 * 3969 * sys_setpriority is a more generic, but much slower function that 3970 * does similar things. 3971 */ 3972 SYSCALL_DEFINE1(nice, int, increment) 3973 { 3974 long nice, retval; 3975 3976 /* 3977 * Setpriority might change our priority at the same moment. 3978 * We don't have to worry. Conceptually one call occurs first 3979 * and we have a single winner. 3980 */ 3981 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3982 nice = task_nice(current) + increment; 3983 3984 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3985 if (increment < 0 && !can_nice(current, nice)) 3986 return -EPERM; 3987 3988 retval = security_task_setnice(current, nice); 3989 if (retval) 3990 return retval; 3991 3992 set_user_nice(current, nice); 3993 return 0; 3994 } 3995 3996 #endif 3997 3998 /** 3999 * task_prio - return the priority value of a given task. 4000 * @p: the task in question. 4001 * 4002 * Return: The priority value as seen by users in /proc. 4003 * RT tasks are offset by -200. Normal tasks are centered 4004 * around 0, value goes from -16 to +15. 4005 */ 4006 int task_prio(const struct task_struct *p) 4007 { 4008 return p->prio - MAX_RT_PRIO; 4009 } 4010 4011 /** 4012 * idle_cpu - is a given CPU idle currently? 4013 * @cpu: the processor in question. 4014 * 4015 * Return: 1 if the CPU is currently idle. 0 otherwise. 4016 */ 4017 int idle_cpu(int cpu) 4018 { 4019 struct rq *rq = cpu_rq(cpu); 4020 4021 if (rq->curr != rq->idle) 4022 return 0; 4023 4024 if (rq->nr_running) 4025 return 0; 4026 4027 #ifdef CONFIG_SMP 4028 if (!llist_empty(&rq->wake_list)) 4029 return 0; 4030 #endif 4031 4032 return 1; 4033 } 4034 4035 /** 4036 * available_idle_cpu - is a given CPU idle for enqueuing work. 4037 * @cpu: the CPU in question. 4038 * 4039 * Return: 1 if the CPU is currently idle. 0 otherwise. 4040 */ 4041 int available_idle_cpu(int cpu) 4042 { 4043 if (!idle_cpu(cpu)) 4044 return 0; 4045 4046 if (vcpu_is_preempted(cpu)) 4047 return 0; 4048 4049 return 1; 4050 } 4051 4052 /** 4053 * idle_task - return the idle task for a given CPU. 4054 * @cpu: the processor in question. 4055 * 4056 * Return: The idle task for the CPU @cpu. 4057 */ 4058 struct task_struct *idle_task(int cpu) 4059 { 4060 return cpu_rq(cpu)->idle; 4061 } 4062 4063 /** 4064 * find_process_by_pid - find a process with a matching PID value. 4065 * @pid: the pid in question. 4066 * 4067 * The task of @pid, if found. %NULL otherwise. 4068 */ 4069 static struct task_struct *find_process_by_pid(pid_t pid) 4070 { 4071 return pid ? find_task_by_vpid(pid) : current; 4072 } 4073 4074 /* 4075 * sched_setparam() passes in -1 for its policy, to let the functions 4076 * it calls know not to change it. 4077 */ 4078 #define SETPARAM_POLICY -1 4079 4080 static void __setscheduler_params(struct task_struct *p, 4081 const struct sched_attr *attr) 4082 { 4083 int policy = attr->sched_policy; 4084 4085 if (policy == SETPARAM_POLICY) 4086 policy = p->policy; 4087 4088 p->policy = policy; 4089 4090 if (dl_policy(policy)) 4091 __setparam_dl(p, attr); 4092 else if (fair_policy(policy)) 4093 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4094 4095 /* 4096 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4097 * !rt_policy. Always setting this ensures that things like 4098 * getparam()/getattr() don't report silly values for !rt tasks. 4099 */ 4100 p->rt_priority = attr->sched_priority; 4101 p->normal_prio = normal_prio(p); 4102 set_load_weight(p, true); 4103 } 4104 4105 /* Actually do priority change: must hold pi & rq lock. */ 4106 static void __setscheduler(struct rq *rq, struct task_struct *p, 4107 const struct sched_attr *attr, bool keep_boost) 4108 { 4109 __setscheduler_params(p, attr); 4110 4111 /* 4112 * Keep a potential priority boosting if called from 4113 * sched_setscheduler(). 4114 */ 4115 p->prio = normal_prio(p); 4116 if (keep_boost) 4117 p->prio = rt_effective_prio(p, p->prio); 4118 4119 if (dl_prio(p->prio)) 4120 p->sched_class = &dl_sched_class; 4121 else if (rt_prio(p->prio)) 4122 p->sched_class = &rt_sched_class; 4123 else 4124 p->sched_class = &fair_sched_class; 4125 } 4126 4127 /* 4128 * Check the target process has a UID that matches the current process's: 4129 */ 4130 static bool check_same_owner(struct task_struct *p) 4131 { 4132 const struct cred *cred = current_cred(), *pcred; 4133 bool match; 4134 4135 rcu_read_lock(); 4136 pcred = __task_cred(p); 4137 match = (uid_eq(cred->euid, pcred->euid) || 4138 uid_eq(cred->euid, pcred->uid)); 4139 rcu_read_unlock(); 4140 return match; 4141 } 4142 4143 static int __sched_setscheduler(struct task_struct *p, 4144 const struct sched_attr *attr, 4145 bool user, bool pi) 4146 { 4147 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4148 MAX_RT_PRIO - 1 - attr->sched_priority; 4149 int retval, oldprio, oldpolicy = -1, queued, running; 4150 int new_effective_prio, policy = attr->sched_policy; 4151 const struct sched_class *prev_class; 4152 struct rq_flags rf; 4153 int reset_on_fork; 4154 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4155 struct rq *rq; 4156 4157 /* The pi code expects interrupts enabled */ 4158 BUG_ON(pi && in_interrupt()); 4159 recheck: 4160 /* Double check policy once rq lock held: */ 4161 if (policy < 0) { 4162 reset_on_fork = p->sched_reset_on_fork; 4163 policy = oldpolicy = p->policy; 4164 } else { 4165 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4166 4167 if (!valid_policy(policy)) 4168 return -EINVAL; 4169 } 4170 4171 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4172 return -EINVAL; 4173 4174 /* 4175 * Valid priorities for SCHED_FIFO and SCHED_RR are 4176 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4177 * SCHED_BATCH and SCHED_IDLE is 0. 4178 */ 4179 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4180 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4181 return -EINVAL; 4182 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4183 (rt_policy(policy) != (attr->sched_priority != 0))) 4184 return -EINVAL; 4185 4186 /* 4187 * Allow unprivileged RT tasks to decrease priority: 4188 */ 4189 if (user && !capable(CAP_SYS_NICE)) { 4190 if (fair_policy(policy)) { 4191 if (attr->sched_nice < task_nice(p) && 4192 !can_nice(p, attr->sched_nice)) 4193 return -EPERM; 4194 } 4195 4196 if (rt_policy(policy)) { 4197 unsigned long rlim_rtprio = 4198 task_rlimit(p, RLIMIT_RTPRIO); 4199 4200 /* Can't set/change the rt policy: */ 4201 if (policy != p->policy && !rlim_rtprio) 4202 return -EPERM; 4203 4204 /* Can't increase priority: */ 4205 if (attr->sched_priority > p->rt_priority && 4206 attr->sched_priority > rlim_rtprio) 4207 return -EPERM; 4208 } 4209 4210 /* 4211 * Can't set/change SCHED_DEADLINE policy at all for now 4212 * (safest behavior); in the future we would like to allow 4213 * unprivileged DL tasks to increase their relative deadline 4214 * or reduce their runtime (both ways reducing utilization) 4215 */ 4216 if (dl_policy(policy)) 4217 return -EPERM; 4218 4219 /* 4220 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4221 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4222 */ 4223 if (idle_policy(p->policy) && !idle_policy(policy)) { 4224 if (!can_nice(p, task_nice(p))) 4225 return -EPERM; 4226 } 4227 4228 /* Can't change other user's priorities: */ 4229 if (!check_same_owner(p)) 4230 return -EPERM; 4231 4232 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4233 if (p->sched_reset_on_fork && !reset_on_fork) 4234 return -EPERM; 4235 } 4236 4237 if (user) { 4238 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4239 return -EINVAL; 4240 4241 retval = security_task_setscheduler(p); 4242 if (retval) 4243 return retval; 4244 } 4245 4246 /* 4247 * Make sure no PI-waiters arrive (or leave) while we are 4248 * changing the priority of the task: 4249 * 4250 * To be able to change p->policy safely, the appropriate 4251 * runqueue lock must be held. 4252 */ 4253 rq = task_rq_lock(p, &rf); 4254 update_rq_clock(rq); 4255 4256 /* 4257 * Changing the policy of the stop threads its a very bad idea: 4258 */ 4259 if (p == rq->stop) { 4260 task_rq_unlock(rq, p, &rf); 4261 return -EINVAL; 4262 } 4263 4264 /* 4265 * If not changing anything there's no need to proceed further, 4266 * but store a possible modification of reset_on_fork. 4267 */ 4268 if (unlikely(policy == p->policy)) { 4269 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4270 goto change; 4271 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4272 goto change; 4273 if (dl_policy(policy) && dl_param_changed(p, attr)) 4274 goto change; 4275 4276 p->sched_reset_on_fork = reset_on_fork; 4277 task_rq_unlock(rq, p, &rf); 4278 return 0; 4279 } 4280 change: 4281 4282 if (user) { 4283 #ifdef CONFIG_RT_GROUP_SCHED 4284 /* 4285 * Do not allow realtime tasks into groups that have no runtime 4286 * assigned. 4287 */ 4288 if (rt_bandwidth_enabled() && rt_policy(policy) && 4289 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4290 !task_group_is_autogroup(task_group(p))) { 4291 task_rq_unlock(rq, p, &rf); 4292 return -EPERM; 4293 } 4294 #endif 4295 #ifdef CONFIG_SMP 4296 if (dl_bandwidth_enabled() && dl_policy(policy) && 4297 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4298 cpumask_t *span = rq->rd->span; 4299 4300 /* 4301 * Don't allow tasks with an affinity mask smaller than 4302 * the entire root_domain to become SCHED_DEADLINE. We 4303 * will also fail if there's no bandwidth available. 4304 */ 4305 if (!cpumask_subset(span, &p->cpus_allowed) || 4306 rq->rd->dl_bw.bw == 0) { 4307 task_rq_unlock(rq, p, &rf); 4308 return -EPERM; 4309 } 4310 } 4311 #endif 4312 } 4313 4314 /* Re-check policy now with rq lock held: */ 4315 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4316 policy = oldpolicy = -1; 4317 task_rq_unlock(rq, p, &rf); 4318 goto recheck; 4319 } 4320 4321 /* 4322 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4323 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4324 * is available. 4325 */ 4326 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4327 task_rq_unlock(rq, p, &rf); 4328 return -EBUSY; 4329 } 4330 4331 p->sched_reset_on_fork = reset_on_fork; 4332 oldprio = p->prio; 4333 4334 if (pi) { 4335 /* 4336 * Take priority boosted tasks into account. If the new 4337 * effective priority is unchanged, we just store the new 4338 * normal parameters and do not touch the scheduler class and 4339 * the runqueue. This will be done when the task deboost 4340 * itself. 4341 */ 4342 new_effective_prio = rt_effective_prio(p, newprio); 4343 if (new_effective_prio == oldprio) 4344 queue_flags &= ~DEQUEUE_MOVE; 4345 } 4346 4347 queued = task_on_rq_queued(p); 4348 running = task_current(rq, p); 4349 if (queued) 4350 dequeue_task(rq, p, queue_flags); 4351 if (running) 4352 put_prev_task(rq, p); 4353 4354 prev_class = p->sched_class; 4355 __setscheduler(rq, p, attr, pi); 4356 4357 if (queued) { 4358 /* 4359 * We enqueue to tail when the priority of a task is 4360 * increased (user space view). 4361 */ 4362 if (oldprio < p->prio) 4363 queue_flags |= ENQUEUE_HEAD; 4364 4365 enqueue_task(rq, p, queue_flags); 4366 } 4367 if (running) 4368 set_curr_task(rq, p); 4369 4370 check_class_changed(rq, p, prev_class, oldprio); 4371 4372 /* Avoid rq from going away on us: */ 4373 preempt_disable(); 4374 task_rq_unlock(rq, p, &rf); 4375 4376 if (pi) 4377 rt_mutex_adjust_pi(p); 4378 4379 /* Run balance callbacks after we've adjusted the PI chain: */ 4380 balance_callback(rq); 4381 preempt_enable(); 4382 4383 return 0; 4384 } 4385 4386 static int _sched_setscheduler(struct task_struct *p, int policy, 4387 const struct sched_param *param, bool check) 4388 { 4389 struct sched_attr attr = { 4390 .sched_policy = policy, 4391 .sched_priority = param->sched_priority, 4392 .sched_nice = PRIO_TO_NICE(p->static_prio), 4393 }; 4394 4395 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4396 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4397 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4398 policy &= ~SCHED_RESET_ON_FORK; 4399 attr.sched_policy = policy; 4400 } 4401 4402 return __sched_setscheduler(p, &attr, check, true); 4403 } 4404 /** 4405 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4406 * @p: the task in question. 4407 * @policy: new policy. 4408 * @param: structure containing the new RT priority. 4409 * 4410 * Return: 0 on success. An error code otherwise. 4411 * 4412 * NOTE that the task may be already dead. 4413 */ 4414 int sched_setscheduler(struct task_struct *p, int policy, 4415 const struct sched_param *param) 4416 { 4417 return _sched_setscheduler(p, policy, param, true); 4418 } 4419 EXPORT_SYMBOL_GPL(sched_setscheduler); 4420 4421 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4422 { 4423 return __sched_setscheduler(p, attr, true, true); 4424 } 4425 EXPORT_SYMBOL_GPL(sched_setattr); 4426 4427 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4428 { 4429 return __sched_setscheduler(p, attr, false, true); 4430 } 4431 4432 /** 4433 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4434 * @p: the task in question. 4435 * @policy: new policy. 4436 * @param: structure containing the new RT priority. 4437 * 4438 * Just like sched_setscheduler, only don't bother checking if the 4439 * current context has permission. For example, this is needed in 4440 * stop_machine(): we create temporary high priority worker threads, 4441 * but our caller might not have that capability. 4442 * 4443 * Return: 0 on success. An error code otherwise. 4444 */ 4445 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4446 const struct sched_param *param) 4447 { 4448 return _sched_setscheduler(p, policy, param, false); 4449 } 4450 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4451 4452 static int 4453 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4454 { 4455 struct sched_param lparam; 4456 struct task_struct *p; 4457 int retval; 4458 4459 if (!param || pid < 0) 4460 return -EINVAL; 4461 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4462 return -EFAULT; 4463 4464 rcu_read_lock(); 4465 retval = -ESRCH; 4466 p = find_process_by_pid(pid); 4467 if (p != NULL) 4468 retval = sched_setscheduler(p, policy, &lparam); 4469 rcu_read_unlock(); 4470 4471 return retval; 4472 } 4473 4474 /* 4475 * Mimics kernel/events/core.c perf_copy_attr(). 4476 */ 4477 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4478 { 4479 u32 size; 4480 int ret; 4481 4482 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4483 return -EFAULT; 4484 4485 /* Zero the full structure, so that a short copy will be nice: */ 4486 memset(attr, 0, sizeof(*attr)); 4487 4488 ret = get_user(size, &uattr->size); 4489 if (ret) 4490 return ret; 4491 4492 /* Bail out on silly large: */ 4493 if (size > PAGE_SIZE) 4494 goto err_size; 4495 4496 /* ABI compatibility quirk: */ 4497 if (!size) 4498 size = SCHED_ATTR_SIZE_VER0; 4499 4500 if (size < SCHED_ATTR_SIZE_VER0) 4501 goto err_size; 4502 4503 /* 4504 * If we're handed a bigger struct than we know of, 4505 * ensure all the unknown bits are 0 - i.e. new 4506 * user-space does not rely on any kernel feature 4507 * extensions we dont know about yet. 4508 */ 4509 if (size > sizeof(*attr)) { 4510 unsigned char __user *addr; 4511 unsigned char __user *end; 4512 unsigned char val; 4513 4514 addr = (void __user *)uattr + sizeof(*attr); 4515 end = (void __user *)uattr + size; 4516 4517 for (; addr < end; addr++) { 4518 ret = get_user(val, addr); 4519 if (ret) 4520 return ret; 4521 if (val) 4522 goto err_size; 4523 } 4524 size = sizeof(*attr); 4525 } 4526 4527 ret = copy_from_user(attr, uattr, size); 4528 if (ret) 4529 return -EFAULT; 4530 4531 /* 4532 * XXX: Do we want to be lenient like existing syscalls; or do we want 4533 * to be strict and return an error on out-of-bounds values? 4534 */ 4535 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4536 4537 return 0; 4538 4539 err_size: 4540 put_user(sizeof(*attr), &uattr->size); 4541 return -E2BIG; 4542 } 4543 4544 /** 4545 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4546 * @pid: the pid in question. 4547 * @policy: new policy. 4548 * @param: structure containing the new RT priority. 4549 * 4550 * Return: 0 on success. An error code otherwise. 4551 */ 4552 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4553 { 4554 if (policy < 0) 4555 return -EINVAL; 4556 4557 return do_sched_setscheduler(pid, policy, param); 4558 } 4559 4560 /** 4561 * sys_sched_setparam - set/change the RT priority of a thread 4562 * @pid: the pid in question. 4563 * @param: structure containing the new RT priority. 4564 * 4565 * Return: 0 on success. An error code otherwise. 4566 */ 4567 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4568 { 4569 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4570 } 4571 4572 /** 4573 * sys_sched_setattr - same as above, but with extended sched_attr 4574 * @pid: the pid in question. 4575 * @uattr: structure containing the extended parameters. 4576 * @flags: for future extension. 4577 */ 4578 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4579 unsigned int, flags) 4580 { 4581 struct sched_attr attr; 4582 struct task_struct *p; 4583 int retval; 4584 4585 if (!uattr || pid < 0 || flags) 4586 return -EINVAL; 4587 4588 retval = sched_copy_attr(uattr, &attr); 4589 if (retval) 4590 return retval; 4591 4592 if ((int)attr.sched_policy < 0) 4593 return -EINVAL; 4594 4595 rcu_read_lock(); 4596 retval = -ESRCH; 4597 p = find_process_by_pid(pid); 4598 if (p != NULL) 4599 retval = sched_setattr(p, &attr); 4600 rcu_read_unlock(); 4601 4602 return retval; 4603 } 4604 4605 /** 4606 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4607 * @pid: the pid in question. 4608 * 4609 * Return: On success, the policy of the thread. Otherwise, a negative error 4610 * code. 4611 */ 4612 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4613 { 4614 struct task_struct *p; 4615 int retval; 4616 4617 if (pid < 0) 4618 return -EINVAL; 4619 4620 retval = -ESRCH; 4621 rcu_read_lock(); 4622 p = find_process_by_pid(pid); 4623 if (p) { 4624 retval = security_task_getscheduler(p); 4625 if (!retval) 4626 retval = p->policy 4627 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4628 } 4629 rcu_read_unlock(); 4630 return retval; 4631 } 4632 4633 /** 4634 * sys_sched_getparam - get the RT priority of a thread 4635 * @pid: the pid in question. 4636 * @param: structure containing the RT priority. 4637 * 4638 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4639 * code. 4640 */ 4641 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4642 { 4643 struct sched_param lp = { .sched_priority = 0 }; 4644 struct task_struct *p; 4645 int retval; 4646 4647 if (!param || pid < 0) 4648 return -EINVAL; 4649 4650 rcu_read_lock(); 4651 p = find_process_by_pid(pid); 4652 retval = -ESRCH; 4653 if (!p) 4654 goto out_unlock; 4655 4656 retval = security_task_getscheduler(p); 4657 if (retval) 4658 goto out_unlock; 4659 4660 if (task_has_rt_policy(p)) 4661 lp.sched_priority = p->rt_priority; 4662 rcu_read_unlock(); 4663 4664 /* 4665 * This one might sleep, we cannot do it with a spinlock held ... 4666 */ 4667 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4668 4669 return retval; 4670 4671 out_unlock: 4672 rcu_read_unlock(); 4673 return retval; 4674 } 4675 4676 static int sched_read_attr(struct sched_attr __user *uattr, 4677 struct sched_attr *attr, 4678 unsigned int usize) 4679 { 4680 int ret; 4681 4682 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4683 return -EFAULT; 4684 4685 /* 4686 * If we're handed a smaller struct than we know of, 4687 * ensure all the unknown bits are 0 - i.e. old 4688 * user-space does not get uncomplete information. 4689 */ 4690 if (usize < sizeof(*attr)) { 4691 unsigned char *addr; 4692 unsigned char *end; 4693 4694 addr = (void *)attr + usize; 4695 end = (void *)attr + sizeof(*attr); 4696 4697 for (; addr < end; addr++) { 4698 if (*addr) 4699 return -EFBIG; 4700 } 4701 4702 attr->size = usize; 4703 } 4704 4705 ret = copy_to_user(uattr, attr, attr->size); 4706 if (ret) 4707 return -EFAULT; 4708 4709 return 0; 4710 } 4711 4712 /** 4713 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4714 * @pid: the pid in question. 4715 * @uattr: structure containing the extended parameters. 4716 * @size: sizeof(attr) for fwd/bwd comp. 4717 * @flags: for future extension. 4718 */ 4719 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4720 unsigned int, size, unsigned int, flags) 4721 { 4722 struct sched_attr attr = { 4723 .size = sizeof(struct sched_attr), 4724 }; 4725 struct task_struct *p; 4726 int retval; 4727 4728 if (!uattr || pid < 0 || size > PAGE_SIZE || 4729 size < SCHED_ATTR_SIZE_VER0 || flags) 4730 return -EINVAL; 4731 4732 rcu_read_lock(); 4733 p = find_process_by_pid(pid); 4734 retval = -ESRCH; 4735 if (!p) 4736 goto out_unlock; 4737 4738 retval = security_task_getscheduler(p); 4739 if (retval) 4740 goto out_unlock; 4741 4742 attr.sched_policy = p->policy; 4743 if (p->sched_reset_on_fork) 4744 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4745 if (task_has_dl_policy(p)) 4746 __getparam_dl(p, &attr); 4747 else if (task_has_rt_policy(p)) 4748 attr.sched_priority = p->rt_priority; 4749 else 4750 attr.sched_nice = task_nice(p); 4751 4752 rcu_read_unlock(); 4753 4754 retval = sched_read_attr(uattr, &attr, size); 4755 return retval; 4756 4757 out_unlock: 4758 rcu_read_unlock(); 4759 return retval; 4760 } 4761 4762 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4763 { 4764 cpumask_var_t cpus_allowed, new_mask; 4765 struct task_struct *p; 4766 int retval; 4767 4768 rcu_read_lock(); 4769 4770 p = find_process_by_pid(pid); 4771 if (!p) { 4772 rcu_read_unlock(); 4773 return -ESRCH; 4774 } 4775 4776 /* Prevent p going away */ 4777 get_task_struct(p); 4778 rcu_read_unlock(); 4779 4780 if (p->flags & PF_NO_SETAFFINITY) { 4781 retval = -EINVAL; 4782 goto out_put_task; 4783 } 4784 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4785 retval = -ENOMEM; 4786 goto out_put_task; 4787 } 4788 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4789 retval = -ENOMEM; 4790 goto out_free_cpus_allowed; 4791 } 4792 retval = -EPERM; 4793 if (!check_same_owner(p)) { 4794 rcu_read_lock(); 4795 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4796 rcu_read_unlock(); 4797 goto out_free_new_mask; 4798 } 4799 rcu_read_unlock(); 4800 } 4801 4802 retval = security_task_setscheduler(p); 4803 if (retval) 4804 goto out_free_new_mask; 4805 4806 4807 cpuset_cpus_allowed(p, cpus_allowed); 4808 cpumask_and(new_mask, in_mask, cpus_allowed); 4809 4810 /* 4811 * Since bandwidth control happens on root_domain basis, 4812 * if admission test is enabled, we only admit -deadline 4813 * tasks allowed to run on all the CPUs in the task's 4814 * root_domain. 4815 */ 4816 #ifdef CONFIG_SMP 4817 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4818 rcu_read_lock(); 4819 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4820 retval = -EBUSY; 4821 rcu_read_unlock(); 4822 goto out_free_new_mask; 4823 } 4824 rcu_read_unlock(); 4825 } 4826 #endif 4827 again: 4828 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4829 4830 if (!retval) { 4831 cpuset_cpus_allowed(p, cpus_allowed); 4832 if (!cpumask_subset(new_mask, cpus_allowed)) { 4833 /* 4834 * We must have raced with a concurrent cpuset 4835 * update. Just reset the cpus_allowed to the 4836 * cpuset's cpus_allowed 4837 */ 4838 cpumask_copy(new_mask, cpus_allowed); 4839 goto again; 4840 } 4841 } 4842 out_free_new_mask: 4843 free_cpumask_var(new_mask); 4844 out_free_cpus_allowed: 4845 free_cpumask_var(cpus_allowed); 4846 out_put_task: 4847 put_task_struct(p); 4848 return retval; 4849 } 4850 4851 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4852 struct cpumask *new_mask) 4853 { 4854 if (len < cpumask_size()) 4855 cpumask_clear(new_mask); 4856 else if (len > cpumask_size()) 4857 len = cpumask_size(); 4858 4859 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4860 } 4861 4862 /** 4863 * sys_sched_setaffinity - set the CPU affinity of a process 4864 * @pid: pid of the process 4865 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4866 * @user_mask_ptr: user-space pointer to the new CPU mask 4867 * 4868 * Return: 0 on success. An error code otherwise. 4869 */ 4870 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4871 unsigned long __user *, user_mask_ptr) 4872 { 4873 cpumask_var_t new_mask; 4874 int retval; 4875 4876 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4877 return -ENOMEM; 4878 4879 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4880 if (retval == 0) 4881 retval = sched_setaffinity(pid, new_mask); 4882 free_cpumask_var(new_mask); 4883 return retval; 4884 } 4885 4886 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4887 { 4888 struct task_struct *p; 4889 unsigned long flags; 4890 int retval; 4891 4892 rcu_read_lock(); 4893 4894 retval = -ESRCH; 4895 p = find_process_by_pid(pid); 4896 if (!p) 4897 goto out_unlock; 4898 4899 retval = security_task_getscheduler(p); 4900 if (retval) 4901 goto out_unlock; 4902 4903 raw_spin_lock_irqsave(&p->pi_lock, flags); 4904 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4905 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4906 4907 out_unlock: 4908 rcu_read_unlock(); 4909 4910 return retval; 4911 } 4912 4913 /** 4914 * sys_sched_getaffinity - get the CPU affinity of a process 4915 * @pid: pid of the process 4916 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4917 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4918 * 4919 * Return: size of CPU mask copied to user_mask_ptr on success. An 4920 * error code otherwise. 4921 */ 4922 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4923 unsigned long __user *, user_mask_ptr) 4924 { 4925 int ret; 4926 cpumask_var_t mask; 4927 4928 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4929 return -EINVAL; 4930 if (len & (sizeof(unsigned long)-1)) 4931 return -EINVAL; 4932 4933 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4934 return -ENOMEM; 4935 4936 ret = sched_getaffinity(pid, mask); 4937 if (ret == 0) { 4938 unsigned int retlen = min(len, cpumask_size()); 4939 4940 if (copy_to_user(user_mask_ptr, mask, retlen)) 4941 ret = -EFAULT; 4942 else 4943 ret = retlen; 4944 } 4945 free_cpumask_var(mask); 4946 4947 return ret; 4948 } 4949 4950 /** 4951 * sys_sched_yield - yield the current processor to other threads. 4952 * 4953 * This function yields the current CPU to other tasks. If there are no 4954 * other threads running on this CPU then this function will return. 4955 * 4956 * Return: 0. 4957 */ 4958 static void do_sched_yield(void) 4959 { 4960 struct rq_flags rf; 4961 struct rq *rq; 4962 4963 local_irq_disable(); 4964 rq = this_rq(); 4965 rq_lock(rq, &rf); 4966 4967 schedstat_inc(rq->yld_count); 4968 current->sched_class->yield_task(rq); 4969 4970 /* 4971 * Since we are going to call schedule() anyway, there's 4972 * no need to preempt or enable interrupts: 4973 */ 4974 preempt_disable(); 4975 rq_unlock(rq, &rf); 4976 sched_preempt_enable_no_resched(); 4977 4978 schedule(); 4979 } 4980 4981 SYSCALL_DEFINE0(sched_yield) 4982 { 4983 do_sched_yield(); 4984 return 0; 4985 } 4986 4987 #ifndef CONFIG_PREEMPT 4988 int __sched _cond_resched(void) 4989 { 4990 if (should_resched(0)) { 4991 preempt_schedule_common(); 4992 return 1; 4993 } 4994 rcu_all_qs(); 4995 return 0; 4996 } 4997 EXPORT_SYMBOL(_cond_resched); 4998 #endif 4999 5000 /* 5001 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5002 * call schedule, and on return reacquire the lock. 5003 * 5004 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 5005 * operations here to prevent schedule() from being called twice (once via 5006 * spin_unlock(), once by hand). 5007 */ 5008 int __cond_resched_lock(spinlock_t *lock) 5009 { 5010 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5011 int ret = 0; 5012 5013 lockdep_assert_held(lock); 5014 5015 if (spin_needbreak(lock) || resched) { 5016 spin_unlock(lock); 5017 if (resched) 5018 preempt_schedule_common(); 5019 else 5020 cpu_relax(); 5021 ret = 1; 5022 spin_lock(lock); 5023 } 5024 return ret; 5025 } 5026 EXPORT_SYMBOL(__cond_resched_lock); 5027 5028 /** 5029 * yield - yield the current processor to other threads. 5030 * 5031 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5032 * 5033 * The scheduler is at all times free to pick the calling task as the most 5034 * eligible task to run, if removing the yield() call from your code breaks 5035 * it, its already broken. 5036 * 5037 * Typical broken usage is: 5038 * 5039 * while (!event) 5040 * yield(); 5041 * 5042 * where one assumes that yield() will let 'the other' process run that will 5043 * make event true. If the current task is a SCHED_FIFO task that will never 5044 * happen. Never use yield() as a progress guarantee!! 5045 * 5046 * If you want to use yield() to wait for something, use wait_event(). 5047 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5048 * If you still want to use yield(), do not! 5049 */ 5050 void __sched yield(void) 5051 { 5052 set_current_state(TASK_RUNNING); 5053 do_sched_yield(); 5054 } 5055 EXPORT_SYMBOL(yield); 5056 5057 /** 5058 * yield_to - yield the current processor to another thread in 5059 * your thread group, or accelerate that thread toward the 5060 * processor it's on. 5061 * @p: target task 5062 * @preempt: whether task preemption is allowed or not 5063 * 5064 * It's the caller's job to ensure that the target task struct 5065 * can't go away on us before we can do any checks. 5066 * 5067 * Return: 5068 * true (>0) if we indeed boosted the target task. 5069 * false (0) if we failed to boost the target. 5070 * -ESRCH if there's no task to yield to. 5071 */ 5072 int __sched yield_to(struct task_struct *p, bool preempt) 5073 { 5074 struct task_struct *curr = current; 5075 struct rq *rq, *p_rq; 5076 unsigned long flags; 5077 int yielded = 0; 5078 5079 local_irq_save(flags); 5080 rq = this_rq(); 5081 5082 again: 5083 p_rq = task_rq(p); 5084 /* 5085 * If we're the only runnable task on the rq and target rq also 5086 * has only one task, there's absolutely no point in yielding. 5087 */ 5088 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5089 yielded = -ESRCH; 5090 goto out_irq; 5091 } 5092 5093 double_rq_lock(rq, p_rq); 5094 if (task_rq(p) != p_rq) { 5095 double_rq_unlock(rq, p_rq); 5096 goto again; 5097 } 5098 5099 if (!curr->sched_class->yield_to_task) 5100 goto out_unlock; 5101 5102 if (curr->sched_class != p->sched_class) 5103 goto out_unlock; 5104 5105 if (task_running(p_rq, p) || p->state) 5106 goto out_unlock; 5107 5108 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5109 if (yielded) { 5110 schedstat_inc(rq->yld_count); 5111 /* 5112 * Make p's CPU reschedule; pick_next_entity takes care of 5113 * fairness. 5114 */ 5115 if (preempt && rq != p_rq) 5116 resched_curr(p_rq); 5117 } 5118 5119 out_unlock: 5120 double_rq_unlock(rq, p_rq); 5121 out_irq: 5122 local_irq_restore(flags); 5123 5124 if (yielded > 0) 5125 schedule(); 5126 5127 return yielded; 5128 } 5129 EXPORT_SYMBOL_GPL(yield_to); 5130 5131 int io_schedule_prepare(void) 5132 { 5133 int old_iowait = current->in_iowait; 5134 5135 current->in_iowait = 1; 5136 blk_schedule_flush_plug(current); 5137 5138 return old_iowait; 5139 } 5140 5141 void io_schedule_finish(int token) 5142 { 5143 current->in_iowait = token; 5144 } 5145 5146 /* 5147 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5148 * that process accounting knows that this is a task in IO wait state. 5149 */ 5150 long __sched io_schedule_timeout(long timeout) 5151 { 5152 int token; 5153 long ret; 5154 5155 token = io_schedule_prepare(); 5156 ret = schedule_timeout(timeout); 5157 io_schedule_finish(token); 5158 5159 return ret; 5160 } 5161 EXPORT_SYMBOL(io_schedule_timeout); 5162 5163 void io_schedule(void) 5164 { 5165 int token; 5166 5167 token = io_schedule_prepare(); 5168 schedule(); 5169 io_schedule_finish(token); 5170 } 5171 EXPORT_SYMBOL(io_schedule); 5172 5173 /** 5174 * sys_sched_get_priority_max - return maximum RT priority. 5175 * @policy: scheduling class. 5176 * 5177 * Return: On success, this syscall returns the maximum 5178 * rt_priority that can be used by a given scheduling class. 5179 * On failure, a negative error code is returned. 5180 */ 5181 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5182 { 5183 int ret = -EINVAL; 5184 5185 switch (policy) { 5186 case SCHED_FIFO: 5187 case SCHED_RR: 5188 ret = MAX_USER_RT_PRIO-1; 5189 break; 5190 case SCHED_DEADLINE: 5191 case SCHED_NORMAL: 5192 case SCHED_BATCH: 5193 case SCHED_IDLE: 5194 ret = 0; 5195 break; 5196 } 5197 return ret; 5198 } 5199 5200 /** 5201 * sys_sched_get_priority_min - return minimum RT priority. 5202 * @policy: scheduling class. 5203 * 5204 * Return: On success, this syscall returns the minimum 5205 * rt_priority that can be used by a given scheduling class. 5206 * On failure, a negative error code is returned. 5207 */ 5208 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5209 { 5210 int ret = -EINVAL; 5211 5212 switch (policy) { 5213 case SCHED_FIFO: 5214 case SCHED_RR: 5215 ret = 1; 5216 break; 5217 case SCHED_DEADLINE: 5218 case SCHED_NORMAL: 5219 case SCHED_BATCH: 5220 case SCHED_IDLE: 5221 ret = 0; 5222 } 5223 return ret; 5224 } 5225 5226 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5227 { 5228 struct task_struct *p; 5229 unsigned int time_slice; 5230 struct rq_flags rf; 5231 struct rq *rq; 5232 int retval; 5233 5234 if (pid < 0) 5235 return -EINVAL; 5236 5237 retval = -ESRCH; 5238 rcu_read_lock(); 5239 p = find_process_by_pid(pid); 5240 if (!p) 5241 goto out_unlock; 5242 5243 retval = security_task_getscheduler(p); 5244 if (retval) 5245 goto out_unlock; 5246 5247 rq = task_rq_lock(p, &rf); 5248 time_slice = 0; 5249 if (p->sched_class->get_rr_interval) 5250 time_slice = p->sched_class->get_rr_interval(rq, p); 5251 task_rq_unlock(rq, p, &rf); 5252 5253 rcu_read_unlock(); 5254 jiffies_to_timespec64(time_slice, t); 5255 return 0; 5256 5257 out_unlock: 5258 rcu_read_unlock(); 5259 return retval; 5260 } 5261 5262 /** 5263 * sys_sched_rr_get_interval - return the default timeslice of a process. 5264 * @pid: pid of the process. 5265 * @interval: userspace pointer to the timeslice value. 5266 * 5267 * this syscall writes the default timeslice value of a given process 5268 * into the user-space timespec buffer. A value of '0' means infinity. 5269 * 5270 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5271 * an error code. 5272 */ 5273 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5274 struct timespec __user *, interval) 5275 { 5276 struct timespec64 t; 5277 int retval = sched_rr_get_interval(pid, &t); 5278 5279 if (retval == 0) 5280 retval = put_timespec64(&t, interval); 5281 5282 return retval; 5283 } 5284 5285 #ifdef CONFIG_COMPAT 5286 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5287 compat_pid_t, pid, 5288 struct compat_timespec __user *, interval) 5289 { 5290 struct timespec64 t; 5291 int retval = sched_rr_get_interval(pid, &t); 5292 5293 if (retval == 0) 5294 retval = compat_put_timespec64(&t, interval); 5295 return retval; 5296 } 5297 #endif 5298 5299 void sched_show_task(struct task_struct *p) 5300 { 5301 unsigned long free = 0; 5302 int ppid; 5303 5304 if (!try_get_task_stack(p)) 5305 return; 5306 5307 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5308 5309 if (p->state == TASK_RUNNING) 5310 printk(KERN_CONT " running task "); 5311 #ifdef CONFIG_DEBUG_STACK_USAGE 5312 free = stack_not_used(p); 5313 #endif 5314 ppid = 0; 5315 rcu_read_lock(); 5316 if (pid_alive(p)) 5317 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5318 rcu_read_unlock(); 5319 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5320 task_pid_nr(p), ppid, 5321 (unsigned long)task_thread_info(p)->flags); 5322 5323 print_worker_info(KERN_INFO, p); 5324 show_stack(p, NULL); 5325 put_task_stack(p); 5326 } 5327 EXPORT_SYMBOL_GPL(sched_show_task); 5328 5329 static inline bool 5330 state_filter_match(unsigned long state_filter, struct task_struct *p) 5331 { 5332 /* no filter, everything matches */ 5333 if (!state_filter) 5334 return true; 5335 5336 /* filter, but doesn't match */ 5337 if (!(p->state & state_filter)) 5338 return false; 5339 5340 /* 5341 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5342 * TASK_KILLABLE). 5343 */ 5344 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5345 return false; 5346 5347 return true; 5348 } 5349 5350 5351 void show_state_filter(unsigned long state_filter) 5352 { 5353 struct task_struct *g, *p; 5354 5355 #if BITS_PER_LONG == 32 5356 printk(KERN_INFO 5357 " task PC stack pid father\n"); 5358 #else 5359 printk(KERN_INFO 5360 " task PC stack pid father\n"); 5361 #endif 5362 rcu_read_lock(); 5363 for_each_process_thread(g, p) { 5364 /* 5365 * reset the NMI-timeout, listing all files on a slow 5366 * console might take a lot of time: 5367 * Also, reset softlockup watchdogs on all CPUs, because 5368 * another CPU might be blocked waiting for us to process 5369 * an IPI. 5370 */ 5371 touch_nmi_watchdog(); 5372 touch_all_softlockup_watchdogs(); 5373 if (state_filter_match(state_filter, p)) 5374 sched_show_task(p); 5375 } 5376 5377 #ifdef CONFIG_SCHED_DEBUG 5378 if (!state_filter) 5379 sysrq_sched_debug_show(); 5380 #endif 5381 rcu_read_unlock(); 5382 /* 5383 * Only show locks if all tasks are dumped: 5384 */ 5385 if (!state_filter) 5386 debug_show_all_locks(); 5387 } 5388 5389 /** 5390 * init_idle - set up an idle thread for a given CPU 5391 * @idle: task in question 5392 * @cpu: CPU the idle task belongs to 5393 * 5394 * NOTE: this function does not set the idle thread's NEED_RESCHED 5395 * flag, to make booting more robust. 5396 */ 5397 void init_idle(struct task_struct *idle, int cpu) 5398 { 5399 struct rq *rq = cpu_rq(cpu); 5400 unsigned long flags; 5401 5402 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5403 raw_spin_lock(&rq->lock); 5404 5405 __sched_fork(0, idle); 5406 idle->state = TASK_RUNNING; 5407 idle->se.exec_start = sched_clock(); 5408 idle->flags |= PF_IDLE; 5409 5410 kasan_unpoison_task_stack(idle); 5411 5412 #ifdef CONFIG_SMP 5413 /* 5414 * Its possible that init_idle() gets called multiple times on a task, 5415 * in that case do_set_cpus_allowed() will not do the right thing. 5416 * 5417 * And since this is boot we can forgo the serialization. 5418 */ 5419 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5420 #endif 5421 /* 5422 * We're having a chicken and egg problem, even though we are 5423 * holding rq->lock, the CPU isn't yet set to this CPU so the 5424 * lockdep check in task_group() will fail. 5425 * 5426 * Similar case to sched_fork(). / Alternatively we could 5427 * use task_rq_lock() here and obtain the other rq->lock. 5428 * 5429 * Silence PROVE_RCU 5430 */ 5431 rcu_read_lock(); 5432 __set_task_cpu(idle, cpu); 5433 rcu_read_unlock(); 5434 5435 rq->curr = rq->idle = idle; 5436 idle->on_rq = TASK_ON_RQ_QUEUED; 5437 #ifdef CONFIG_SMP 5438 idle->on_cpu = 1; 5439 #endif 5440 raw_spin_unlock(&rq->lock); 5441 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5442 5443 /* Set the preempt count _outside_ the spinlocks! */ 5444 init_idle_preempt_count(idle, cpu); 5445 5446 /* 5447 * The idle tasks have their own, simple scheduling class: 5448 */ 5449 idle->sched_class = &idle_sched_class; 5450 ftrace_graph_init_idle_task(idle, cpu); 5451 vtime_init_idle(idle, cpu); 5452 #ifdef CONFIG_SMP 5453 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5454 #endif 5455 } 5456 5457 #ifdef CONFIG_SMP 5458 5459 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5460 const struct cpumask *trial) 5461 { 5462 int ret = 1; 5463 5464 if (!cpumask_weight(cur)) 5465 return ret; 5466 5467 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5468 5469 return ret; 5470 } 5471 5472 int task_can_attach(struct task_struct *p, 5473 const struct cpumask *cs_cpus_allowed) 5474 { 5475 int ret = 0; 5476 5477 /* 5478 * Kthreads which disallow setaffinity shouldn't be moved 5479 * to a new cpuset; we don't want to change their CPU 5480 * affinity and isolating such threads by their set of 5481 * allowed nodes is unnecessary. Thus, cpusets are not 5482 * applicable for such threads. This prevents checking for 5483 * success of set_cpus_allowed_ptr() on all attached tasks 5484 * before cpus_allowed may be changed. 5485 */ 5486 if (p->flags & PF_NO_SETAFFINITY) { 5487 ret = -EINVAL; 5488 goto out; 5489 } 5490 5491 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5492 cs_cpus_allowed)) 5493 ret = dl_task_can_attach(p, cs_cpus_allowed); 5494 5495 out: 5496 return ret; 5497 } 5498 5499 bool sched_smp_initialized __read_mostly; 5500 5501 #ifdef CONFIG_NUMA_BALANCING 5502 /* Migrate current task p to target_cpu */ 5503 int migrate_task_to(struct task_struct *p, int target_cpu) 5504 { 5505 struct migration_arg arg = { p, target_cpu }; 5506 int curr_cpu = task_cpu(p); 5507 5508 if (curr_cpu == target_cpu) 5509 return 0; 5510 5511 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5512 return -EINVAL; 5513 5514 /* TODO: This is not properly updating schedstats */ 5515 5516 trace_sched_move_numa(p, curr_cpu, target_cpu); 5517 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5518 } 5519 5520 /* 5521 * Requeue a task on a given node and accurately track the number of NUMA 5522 * tasks on the runqueues 5523 */ 5524 void sched_setnuma(struct task_struct *p, int nid) 5525 { 5526 bool queued, running; 5527 struct rq_flags rf; 5528 struct rq *rq; 5529 5530 rq = task_rq_lock(p, &rf); 5531 queued = task_on_rq_queued(p); 5532 running = task_current(rq, p); 5533 5534 if (queued) 5535 dequeue_task(rq, p, DEQUEUE_SAVE); 5536 if (running) 5537 put_prev_task(rq, p); 5538 5539 p->numa_preferred_nid = nid; 5540 5541 if (queued) 5542 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5543 if (running) 5544 set_curr_task(rq, p); 5545 task_rq_unlock(rq, p, &rf); 5546 } 5547 #endif /* CONFIG_NUMA_BALANCING */ 5548 5549 #ifdef CONFIG_HOTPLUG_CPU 5550 /* 5551 * Ensure that the idle task is using init_mm right before its CPU goes 5552 * offline. 5553 */ 5554 void idle_task_exit(void) 5555 { 5556 struct mm_struct *mm = current->active_mm; 5557 5558 BUG_ON(cpu_online(smp_processor_id())); 5559 5560 if (mm != &init_mm) { 5561 switch_mm(mm, &init_mm, current); 5562 current->active_mm = &init_mm; 5563 finish_arch_post_lock_switch(); 5564 } 5565 mmdrop(mm); 5566 } 5567 5568 /* 5569 * Since this CPU is going 'away' for a while, fold any nr_active delta 5570 * we might have. Assumes we're called after migrate_tasks() so that the 5571 * nr_active count is stable. We need to take the teardown thread which 5572 * is calling this into account, so we hand in adjust = 1 to the load 5573 * calculation. 5574 * 5575 * Also see the comment "Global load-average calculations". 5576 */ 5577 static void calc_load_migrate(struct rq *rq) 5578 { 5579 long delta = calc_load_fold_active(rq, 1); 5580 if (delta) 5581 atomic_long_add(delta, &calc_load_tasks); 5582 } 5583 5584 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5585 { 5586 } 5587 5588 static const struct sched_class fake_sched_class = { 5589 .put_prev_task = put_prev_task_fake, 5590 }; 5591 5592 static struct task_struct fake_task = { 5593 /* 5594 * Avoid pull_{rt,dl}_task() 5595 */ 5596 .prio = MAX_PRIO + 1, 5597 .sched_class = &fake_sched_class, 5598 }; 5599 5600 /* 5601 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5602 * try_to_wake_up()->select_task_rq(). 5603 * 5604 * Called with rq->lock held even though we'er in stop_machine() and 5605 * there's no concurrency possible, we hold the required locks anyway 5606 * because of lock validation efforts. 5607 */ 5608 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5609 { 5610 struct rq *rq = dead_rq; 5611 struct task_struct *next, *stop = rq->stop; 5612 struct rq_flags orf = *rf; 5613 int dest_cpu; 5614 5615 /* 5616 * Fudge the rq selection such that the below task selection loop 5617 * doesn't get stuck on the currently eligible stop task. 5618 * 5619 * We're currently inside stop_machine() and the rq is either stuck 5620 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5621 * either way we should never end up calling schedule() until we're 5622 * done here. 5623 */ 5624 rq->stop = NULL; 5625 5626 /* 5627 * put_prev_task() and pick_next_task() sched 5628 * class method both need to have an up-to-date 5629 * value of rq->clock[_task] 5630 */ 5631 update_rq_clock(rq); 5632 5633 for (;;) { 5634 /* 5635 * There's this thread running, bail when that's the only 5636 * remaining thread: 5637 */ 5638 if (rq->nr_running == 1) 5639 break; 5640 5641 /* 5642 * pick_next_task() assumes pinned rq->lock: 5643 */ 5644 next = pick_next_task(rq, &fake_task, rf); 5645 BUG_ON(!next); 5646 put_prev_task(rq, next); 5647 5648 /* 5649 * Rules for changing task_struct::cpus_allowed are holding 5650 * both pi_lock and rq->lock, such that holding either 5651 * stabilizes the mask. 5652 * 5653 * Drop rq->lock is not quite as disastrous as it usually is 5654 * because !cpu_active at this point, which means load-balance 5655 * will not interfere. Also, stop-machine. 5656 */ 5657 rq_unlock(rq, rf); 5658 raw_spin_lock(&next->pi_lock); 5659 rq_relock(rq, rf); 5660 5661 /* 5662 * Since we're inside stop-machine, _nothing_ should have 5663 * changed the task, WARN if weird stuff happened, because in 5664 * that case the above rq->lock drop is a fail too. 5665 */ 5666 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5667 raw_spin_unlock(&next->pi_lock); 5668 continue; 5669 } 5670 5671 /* Find suitable destination for @next, with force if needed. */ 5672 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5673 rq = __migrate_task(rq, rf, next, dest_cpu); 5674 if (rq != dead_rq) { 5675 rq_unlock(rq, rf); 5676 rq = dead_rq; 5677 *rf = orf; 5678 rq_relock(rq, rf); 5679 } 5680 raw_spin_unlock(&next->pi_lock); 5681 } 5682 5683 rq->stop = stop; 5684 } 5685 #endif /* CONFIG_HOTPLUG_CPU */ 5686 5687 void set_rq_online(struct rq *rq) 5688 { 5689 if (!rq->online) { 5690 const struct sched_class *class; 5691 5692 cpumask_set_cpu(rq->cpu, rq->rd->online); 5693 rq->online = 1; 5694 5695 for_each_class(class) { 5696 if (class->rq_online) 5697 class->rq_online(rq); 5698 } 5699 } 5700 } 5701 5702 void set_rq_offline(struct rq *rq) 5703 { 5704 if (rq->online) { 5705 const struct sched_class *class; 5706 5707 for_each_class(class) { 5708 if (class->rq_offline) 5709 class->rq_offline(rq); 5710 } 5711 5712 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5713 rq->online = 0; 5714 } 5715 } 5716 5717 static void set_cpu_rq_start_time(unsigned int cpu) 5718 { 5719 struct rq *rq = cpu_rq(cpu); 5720 5721 rq->age_stamp = sched_clock_cpu(cpu); 5722 } 5723 5724 /* 5725 * used to mark begin/end of suspend/resume: 5726 */ 5727 static int num_cpus_frozen; 5728 5729 /* 5730 * Update cpusets according to cpu_active mask. If cpusets are 5731 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5732 * around partition_sched_domains(). 5733 * 5734 * If we come here as part of a suspend/resume, don't touch cpusets because we 5735 * want to restore it back to its original state upon resume anyway. 5736 */ 5737 static void cpuset_cpu_active(void) 5738 { 5739 if (cpuhp_tasks_frozen) { 5740 /* 5741 * num_cpus_frozen tracks how many CPUs are involved in suspend 5742 * resume sequence. As long as this is not the last online 5743 * operation in the resume sequence, just build a single sched 5744 * domain, ignoring cpusets. 5745 */ 5746 partition_sched_domains(1, NULL, NULL); 5747 if (--num_cpus_frozen) 5748 return; 5749 /* 5750 * This is the last CPU online operation. So fall through and 5751 * restore the original sched domains by considering the 5752 * cpuset configurations. 5753 */ 5754 cpuset_force_rebuild(); 5755 } 5756 cpuset_update_active_cpus(); 5757 } 5758 5759 static int cpuset_cpu_inactive(unsigned int cpu) 5760 { 5761 if (!cpuhp_tasks_frozen) { 5762 if (dl_cpu_busy(cpu)) 5763 return -EBUSY; 5764 cpuset_update_active_cpus(); 5765 } else { 5766 num_cpus_frozen++; 5767 partition_sched_domains(1, NULL, NULL); 5768 } 5769 return 0; 5770 } 5771 5772 int sched_cpu_activate(unsigned int cpu) 5773 { 5774 struct rq *rq = cpu_rq(cpu); 5775 struct rq_flags rf; 5776 5777 set_cpu_active(cpu, true); 5778 5779 if (sched_smp_initialized) { 5780 sched_domains_numa_masks_set(cpu); 5781 cpuset_cpu_active(); 5782 } 5783 5784 /* 5785 * Put the rq online, if not already. This happens: 5786 * 5787 * 1) In the early boot process, because we build the real domains 5788 * after all CPUs have been brought up. 5789 * 5790 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5791 * domains. 5792 */ 5793 rq_lock_irqsave(rq, &rf); 5794 if (rq->rd) { 5795 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5796 set_rq_online(rq); 5797 } 5798 rq_unlock_irqrestore(rq, &rf); 5799 5800 update_max_interval(); 5801 5802 return 0; 5803 } 5804 5805 int sched_cpu_deactivate(unsigned int cpu) 5806 { 5807 int ret; 5808 5809 set_cpu_active(cpu, false); 5810 /* 5811 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5812 * users of this state to go away such that all new such users will 5813 * observe it. 5814 * 5815 * Do sync before park smpboot threads to take care the rcu boost case. 5816 */ 5817 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5818 5819 if (!sched_smp_initialized) 5820 return 0; 5821 5822 ret = cpuset_cpu_inactive(cpu); 5823 if (ret) { 5824 set_cpu_active(cpu, true); 5825 return ret; 5826 } 5827 sched_domains_numa_masks_clear(cpu); 5828 return 0; 5829 } 5830 5831 static void sched_rq_cpu_starting(unsigned int cpu) 5832 { 5833 struct rq *rq = cpu_rq(cpu); 5834 5835 rq->calc_load_update = calc_load_update; 5836 update_max_interval(); 5837 } 5838 5839 int sched_cpu_starting(unsigned int cpu) 5840 { 5841 set_cpu_rq_start_time(cpu); 5842 sched_rq_cpu_starting(cpu); 5843 sched_tick_start(cpu); 5844 return 0; 5845 } 5846 5847 #ifdef CONFIG_HOTPLUG_CPU 5848 int sched_cpu_dying(unsigned int cpu) 5849 { 5850 struct rq *rq = cpu_rq(cpu); 5851 struct rq_flags rf; 5852 5853 /* Handle pending wakeups and then migrate everything off */ 5854 sched_ttwu_pending(); 5855 sched_tick_stop(cpu); 5856 5857 rq_lock_irqsave(rq, &rf); 5858 if (rq->rd) { 5859 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5860 set_rq_offline(rq); 5861 } 5862 migrate_tasks(rq, &rf); 5863 BUG_ON(rq->nr_running != 1); 5864 rq_unlock_irqrestore(rq, &rf); 5865 5866 calc_load_migrate(rq); 5867 update_max_interval(); 5868 nohz_balance_exit_idle(rq); 5869 hrtick_clear(rq); 5870 return 0; 5871 } 5872 #endif 5873 5874 #ifdef CONFIG_SCHED_SMT 5875 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5876 5877 static void sched_init_smt(void) 5878 { 5879 /* 5880 * We've enumerated all CPUs and will assume that if any CPU 5881 * has SMT siblings, CPU0 will too. 5882 */ 5883 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5884 static_branch_enable(&sched_smt_present); 5885 } 5886 #else 5887 static inline void sched_init_smt(void) { } 5888 #endif 5889 5890 void __init sched_init_smp(void) 5891 { 5892 sched_init_numa(); 5893 5894 /* 5895 * There's no userspace yet to cause hotplug operations; hence all the 5896 * CPU masks are stable and all blatant races in the below code cannot 5897 * happen. 5898 */ 5899 mutex_lock(&sched_domains_mutex); 5900 sched_init_domains(cpu_active_mask); 5901 mutex_unlock(&sched_domains_mutex); 5902 5903 /* Move init over to a non-isolated CPU */ 5904 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5905 BUG(); 5906 sched_init_granularity(); 5907 5908 init_sched_rt_class(); 5909 init_sched_dl_class(); 5910 5911 sched_init_smt(); 5912 5913 sched_smp_initialized = true; 5914 } 5915 5916 static int __init migration_init(void) 5917 { 5918 sched_rq_cpu_starting(smp_processor_id()); 5919 return 0; 5920 } 5921 early_initcall(migration_init); 5922 5923 #else 5924 void __init sched_init_smp(void) 5925 { 5926 sched_init_granularity(); 5927 } 5928 #endif /* CONFIG_SMP */ 5929 5930 int in_sched_functions(unsigned long addr) 5931 { 5932 return in_lock_functions(addr) || 5933 (addr >= (unsigned long)__sched_text_start 5934 && addr < (unsigned long)__sched_text_end); 5935 } 5936 5937 #ifdef CONFIG_CGROUP_SCHED 5938 /* 5939 * Default task group. 5940 * Every task in system belongs to this group at bootup. 5941 */ 5942 struct task_group root_task_group; 5943 LIST_HEAD(task_groups); 5944 5945 /* Cacheline aligned slab cache for task_group */ 5946 static struct kmem_cache *task_group_cache __read_mostly; 5947 #endif 5948 5949 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5950 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5951 5952 void __init sched_init(void) 5953 { 5954 int i, j; 5955 unsigned long alloc_size = 0, ptr; 5956 5957 sched_clock_init(); 5958 wait_bit_init(); 5959 5960 #ifdef CONFIG_FAIR_GROUP_SCHED 5961 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5962 #endif 5963 #ifdef CONFIG_RT_GROUP_SCHED 5964 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5965 #endif 5966 if (alloc_size) { 5967 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5968 5969 #ifdef CONFIG_FAIR_GROUP_SCHED 5970 root_task_group.se = (struct sched_entity **)ptr; 5971 ptr += nr_cpu_ids * sizeof(void **); 5972 5973 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5974 ptr += nr_cpu_ids * sizeof(void **); 5975 5976 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5977 #ifdef CONFIG_RT_GROUP_SCHED 5978 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5979 ptr += nr_cpu_ids * sizeof(void **); 5980 5981 root_task_group.rt_rq = (struct rt_rq **)ptr; 5982 ptr += nr_cpu_ids * sizeof(void **); 5983 5984 #endif /* CONFIG_RT_GROUP_SCHED */ 5985 } 5986 #ifdef CONFIG_CPUMASK_OFFSTACK 5987 for_each_possible_cpu(i) { 5988 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5989 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5990 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5991 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5992 } 5993 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5994 5995 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5996 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5997 5998 #ifdef CONFIG_SMP 5999 init_defrootdomain(); 6000 #endif 6001 6002 #ifdef CONFIG_RT_GROUP_SCHED 6003 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6004 global_rt_period(), global_rt_runtime()); 6005 #endif /* CONFIG_RT_GROUP_SCHED */ 6006 6007 #ifdef CONFIG_CGROUP_SCHED 6008 task_group_cache = KMEM_CACHE(task_group, 0); 6009 6010 list_add(&root_task_group.list, &task_groups); 6011 INIT_LIST_HEAD(&root_task_group.children); 6012 INIT_LIST_HEAD(&root_task_group.siblings); 6013 autogroup_init(&init_task); 6014 #endif /* CONFIG_CGROUP_SCHED */ 6015 6016 for_each_possible_cpu(i) { 6017 struct rq *rq; 6018 6019 rq = cpu_rq(i); 6020 raw_spin_lock_init(&rq->lock); 6021 rq->nr_running = 0; 6022 rq->calc_load_active = 0; 6023 rq->calc_load_update = jiffies + LOAD_FREQ; 6024 init_cfs_rq(&rq->cfs); 6025 init_rt_rq(&rq->rt); 6026 init_dl_rq(&rq->dl); 6027 #ifdef CONFIG_FAIR_GROUP_SCHED 6028 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6029 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6030 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6031 /* 6032 * How much CPU bandwidth does root_task_group get? 6033 * 6034 * In case of task-groups formed thr' the cgroup filesystem, it 6035 * gets 100% of the CPU resources in the system. This overall 6036 * system CPU resource is divided among the tasks of 6037 * root_task_group and its child task-groups in a fair manner, 6038 * based on each entity's (task or task-group's) weight 6039 * (se->load.weight). 6040 * 6041 * In other words, if root_task_group has 10 tasks of weight 6042 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6043 * then A0's share of the CPU resource is: 6044 * 6045 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6046 * 6047 * We achieve this by letting root_task_group's tasks sit 6048 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6049 */ 6050 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6051 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6052 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6053 6054 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6055 #ifdef CONFIG_RT_GROUP_SCHED 6056 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6057 #endif 6058 6059 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6060 rq->cpu_load[j] = 0; 6061 6062 #ifdef CONFIG_SMP 6063 rq->sd = NULL; 6064 rq->rd = NULL; 6065 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6066 rq->balance_callback = NULL; 6067 rq->active_balance = 0; 6068 rq->next_balance = jiffies; 6069 rq->push_cpu = 0; 6070 rq->cpu = i; 6071 rq->online = 0; 6072 rq->idle_stamp = 0; 6073 rq->avg_idle = 2*sysctl_sched_migration_cost; 6074 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6075 6076 INIT_LIST_HEAD(&rq->cfs_tasks); 6077 6078 rq_attach_root(rq, &def_root_domain); 6079 #ifdef CONFIG_NO_HZ_COMMON 6080 rq->last_load_update_tick = jiffies; 6081 rq->last_blocked_load_update_tick = jiffies; 6082 atomic_set(&rq->nohz_flags, 0); 6083 #endif 6084 #endif /* CONFIG_SMP */ 6085 hrtick_rq_init(rq); 6086 atomic_set(&rq->nr_iowait, 0); 6087 } 6088 6089 set_load_weight(&init_task, false); 6090 6091 /* 6092 * The boot idle thread does lazy MMU switching as well: 6093 */ 6094 mmgrab(&init_mm); 6095 enter_lazy_tlb(&init_mm, current); 6096 6097 /* 6098 * Make us the idle thread. Technically, schedule() should not be 6099 * called from this thread, however somewhere below it might be, 6100 * but because we are the idle thread, we just pick up running again 6101 * when this runqueue becomes "idle". 6102 */ 6103 init_idle(current, smp_processor_id()); 6104 6105 calc_load_update = jiffies + LOAD_FREQ; 6106 6107 #ifdef CONFIG_SMP 6108 idle_thread_set_boot_cpu(); 6109 set_cpu_rq_start_time(smp_processor_id()); 6110 #endif 6111 init_sched_fair_class(); 6112 6113 init_schedstats(); 6114 6115 scheduler_running = 1; 6116 } 6117 6118 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6119 static inline int preempt_count_equals(int preempt_offset) 6120 { 6121 int nested = preempt_count() + rcu_preempt_depth(); 6122 6123 return (nested == preempt_offset); 6124 } 6125 6126 void __might_sleep(const char *file, int line, int preempt_offset) 6127 { 6128 /* 6129 * Blocking primitives will set (and therefore destroy) current->state, 6130 * since we will exit with TASK_RUNNING make sure we enter with it, 6131 * otherwise we will destroy state. 6132 */ 6133 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6134 "do not call blocking ops when !TASK_RUNNING; " 6135 "state=%lx set at [<%p>] %pS\n", 6136 current->state, 6137 (void *)current->task_state_change, 6138 (void *)current->task_state_change); 6139 6140 ___might_sleep(file, line, preempt_offset); 6141 } 6142 EXPORT_SYMBOL(__might_sleep); 6143 6144 void ___might_sleep(const char *file, int line, int preempt_offset) 6145 { 6146 /* Ratelimiting timestamp: */ 6147 static unsigned long prev_jiffy; 6148 6149 unsigned long preempt_disable_ip; 6150 6151 /* WARN_ON_ONCE() by default, no rate limit required: */ 6152 rcu_sleep_check(); 6153 6154 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6155 !is_idle_task(current)) || 6156 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6157 oops_in_progress) 6158 return; 6159 6160 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6161 return; 6162 prev_jiffy = jiffies; 6163 6164 /* Save this before calling printk(), since that will clobber it: */ 6165 preempt_disable_ip = get_preempt_disable_ip(current); 6166 6167 printk(KERN_ERR 6168 "BUG: sleeping function called from invalid context at %s:%d\n", 6169 file, line); 6170 printk(KERN_ERR 6171 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6172 in_atomic(), irqs_disabled(), 6173 current->pid, current->comm); 6174 6175 if (task_stack_end_corrupted(current)) 6176 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6177 6178 debug_show_held_locks(current); 6179 if (irqs_disabled()) 6180 print_irqtrace_events(current); 6181 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6182 && !preempt_count_equals(preempt_offset)) { 6183 pr_err("Preemption disabled at:"); 6184 print_ip_sym(preempt_disable_ip); 6185 pr_cont("\n"); 6186 } 6187 dump_stack(); 6188 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6189 } 6190 EXPORT_SYMBOL(___might_sleep); 6191 #endif 6192 6193 #ifdef CONFIG_MAGIC_SYSRQ 6194 void normalize_rt_tasks(void) 6195 { 6196 struct task_struct *g, *p; 6197 struct sched_attr attr = { 6198 .sched_policy = SCHED_NORMAL, 6199 }; 6200 6201 read_lock(&tasklist_lock); 6202 for_each_process_thread(g, p) { 6203 /* 6204 * Only normalize user tasks: 6205 */ 6206 if (p->flags & PF_KTHREAD) 6207 continue; 6208 6209 p->se.exec_start = 0; 6210 schedstat_set(p->se.statistics.wait_start, 0); 6211 schedstat_set(p->se.statistics.sleep_start, 0); 6212 schedstat_set(p->se.statistics.block_start, 0); 6213 6214 if (!dl_task(p) && !rt_task(p)) { 6215 /* 6216 * Renice negative nice level userspace 6217 * tasks back to 0: 6218 */ 6219 if (task_nice(p) < 0) 6220 set_user_nice(p, 0); 6221 continue; 6222 } 6223 6224 __sched_setscheduler(p, &attr, false, false); 6225 } 6226 read_unlock(&tasklist_lock); 6227 } 6228 6229 #endif /* CONFIG_MAGIC_SYSRQ */ 6230 6231 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6232 /* 6233 * These functions are only useful for the IA64 MCA handling, or kdb. 6234 * 6235 * They can only be called when the whole system has been 6236 * stopped - every CPU needs to be quiescent, and no scheduling 6237 * activity can take place. Using them for anything else would 6238 * be a serious bug, and as a result, they aren't even visible 6239 * under any other configuration. 6240 */ 6241 6242 /** 6243 * curr_task - return the current task for a given CPU. 6244 * @cpu: the processor in question. 6245 * 6246 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6247 * 6248 * Return: The current task for @cpu. 6249 */ 6250 struct task_struct *curr_task(int cpu) 6251 { 6252 return cpu_curr(cpu); 6253 } 6254 6255 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6256 6257 #ifdef CONFIG_IA64 6258 /** 6259 * set_curr_task - set the current task for a given CPU. 6260 * @cpu: the processor in question. 6261 * @p: the task pointer to set. 6262 * 6263 * Description: This function must only be used when non-maskable interrupts 6264 * are serviced on a separate stack. It allows the architecture to switch the 6265 * notion of the current task on a CPU in a non-blocking manner. This function 6266 * must be called with all CPU's synchronized, and interrupts disabled, the 6267 * and caller must save the original value of the current task (see 6268 * curr_task() above) and restore that value before reenabling interrupts and 6269 * re-starting the system. 6270 * 6271 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6272 */ 6273 void ia64_set_curr_task(int cpu, struct task_struct *p) 6274 { 6275 cpu_curr(cpu) = p; 6276 } 6277 6278 #endif 6279 6280 #ifdef CONFIG_CGROUP_SCHED 6281 /* task_group_lock serializes the addition/removal of task groups */ 6282 static DEFINE_SPINLOCK(task_group_lock); 6283 6284 static void sched_free_group(struct task_group *tg) 6285 { 6286 free_fair_sched_group(tg); 6287 free_rt_sched_group(tg); 6288 autogroup_free(tg); 6289 kmem_cache_free(task_group_cache, tg); 6290 } 6291 6292 /* allocate runqueue etc for a new task group */ 6293 struct task_group *sched_create_group(struct task_group *parent) 6294 { 6295 struct task_group *tg; 6296 6297 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6298 if (!tg) 6299 return ERR_PTR(-ENOMEM); 6300 6301 if (!alloc_fair_sched_group(tg, parent)) 6302 goto err; 6303 6304 if (!alloc_rt_sched_group(tg, parent)) 6305 goto err; 6306 6307 return tg; 6308 6309 err: 6310 sched_free_group(tg); 6311 return ERR_PTR(-ENOMEM); 6312 } 6313 6314 void sched_online_group(struct task_group *tg, struct task_group *parent) 6315 { 6316 unsigned long flags; 6317 6318 spin_lock_irqsave(&task_group_lock, flags); 6319 list_add_rcu(&tg->list, &task_groups); 6320 6321 /* Root should already exist: */ 6322 WARN_ON(!parent); 6323 6324 tg->parent = parent; 6325 INIT_LIST_HEAD(&tg->children); 6326 list_add_rcu(&tg->siblings, &parent->children); 6327 spin_unlock_irqrestore(&task_group_lock, flags); 6328 6329 online_fair_sched_group(tg); 6330 } 6331 6332 /* rcu callback to free various structures associated with a task group */ 6333 static void sched_free_group_rcu(struct rcu_head *rhp) 6334 { 6335 /* Now it should be safe to free those cfs_rqs: */ 6336 sched_free_group(container_of(rhp, struct task_group, rcu)); 6337 } 6338 6339 void sched_destroy_group(struct task_group *tg) 6340 { 6341 /* Wait for possible concurrent references to cfs_rqs complete: */ 6342 call_rcu(&tg->rcu, sched_free_group_rcu); 6343 } 6344 6345 void sched_offline_group(struct task_group *tg) 6346 { 6347 unsigned long flags; 6348 6349 /* End participation in shares distribution: */ 6350 unregister_fair_sched_group(tg); 6351 6352 spin_lock_irqsave(&task_group_lock, flags); 6353 list_del_rcu(&tg->list); 6354 list_del_rcu(&tg->siblings); 6355 spin_unlock_irqrestore(&task_group_lock, flags); 6356 } 6357 6358 static void sched_change_group(struct task_struct *tsk, int type) 6359 { 6360 struct task_group *tg; 6361 6362 /* 6363 * All callers are synchronized by task_rq_lock(); we do not use RCU 6364 * which is pointless here. Thus, we pass "true" to task_css_check() 6365 * to prevent lockdep warnings. 6366 */ 6367 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6368 struct task_group, css); 6369 tg = autogroup_task_group(tsk, tg); 6370 tsk->sched_task_group = tg; 6371 6372 #ifdef CONFIG_FAIR_GROUP_SCHED 6373 if (tsk->sched_class->task_change_group) 6374 tsk->sched_class->task_change_group(tsk, type); 6375 else 6376 #endif 6377 set_task_rq(tsk, task_cpu(tsk)); 6378 } 6379 6380 /* 6381 * Change task's runqueue when it moves between groups. 6382 * 6383 * The caller of this function should have put the task in its new group by 6384 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6385 * its new group. 6386 */ 6387 void sched_move_task(struct task_struct *tsk) 6388 { 6389 int queued, running, queue_flags = 6390 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6391 struct rq_flags rf; 6392 struct rq *rq; 6393 6394 rq = task_rq_lock(tsk, &rf); 6395 update_rq_clock(rq); 6396 6397 running = task_current(rq, tsk); 6398 queued = task_on_rq_queued(tsk); 6399 6400 if (queued) 6401 dequeue_task(rq, tsk, queue_flags); 6402 if (running) 6403 put_prev_task(rq, tsk); 6404 6405 sched_change_group(tsk, TASK_MOVE_GROUP); 6406 6407 if (queued) 6408 enqueue_task(rq, tsk, queue_flags); 6409 if (running) 6410 set_curr_task(rq, tsk); 6411 6412 task_rq_unlock(rq, tsk, &rf); 6413 } 6414 6415 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6416 { 6417 return css ? container_of(css, struct task_group, css) : NULL; 6418 } 6419 6420 static struct cgroup_subsys_state * 6421 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6422 { 6423 struct task_group *parent = css_tg(parent_css); 6424 struct task_group *tg; 6425 6426 if (!parent) { 6427 /* This is early initialization for the top cgroup */ 6428 return &root_task_group.css; 6429 } 6430 6431 tg = sched_create_group(parent); 6432 if (IS_ERR(tg)) 6433 return ERR_PTR(-ENOMEM); 6434 6435 return &tg->css; 6436 } 6437 6438 /* Expose task group only after completing cgroup initialization */ 6439 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6440 { 6441 struct task_group *tg = css_tg(css); 6442 struct task_group *parent = css_tg(css->parent); 6443 6444 if (parent) 6445 sched_online_group(tg, parent); 6446 return 0; 6447 } 6448 6449 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6450 { 6451 struct task_group *tg = css_tg(css); 6452 6453 sched_offline_group(tg); 6454 } 6455 6456 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6457 { 6458 struct task_group *tg = css_tg(css); 6459 6460 /* 6461 * Relies on the RCU grace period between css_released() and this. 6462 */ 6463 sched_free_group(tg); 6464 } 6465 6466 /* 6467 * This is called before wake_up_new_task(), therefore we really only 6468 * have to set its group bits, all the other stuff does not apply. 6469 */ 6470 static void cpu_cgroup_fork(struct task_struct *task) 6471 { 6472 struct rq_flags rf; 6473 struct rq *rq; 6474 6475 rq = task_rq_lock(task, &rf); 6476 6477 update_rq_clock(rq); 6478 sched_change_group(task, TASK_SET_GROUP); 6479 6480 task_rq_unlock(rq, task, &rf); 6481 } 6482 6483 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6484 { 6485 struct task_struct *task; 6486 struct cgroup_subsys_state *css; 6487 int ret = 0; 6488 6489 cgroup_taskset_for_each(task, css, tset) { 6490 #ifdef CONFIG_RT_GROUP_SCHED 6491 if (!sched_rt_can_attach(css_tg(css), task)) 6492 return -EINVAL; 6493 #else 6494 /* We don't support RT-tasks being in separate groups */ 6495 if (task->sched_class != &fair_sched_class) 6496 return -EINVAL; 6497 #endif 6498 /* 6499 * Serialize against wake_up_new_task() such that if its 6500 * running, we're sure to observe its full state. 6501 */ 6502 raw_spin_lock_irq(&task->pi_lock); 6503 /* 6504 * Avoid calling sched_move_task() before wake_up_new_task() 6505 * has happened. This would lead to problems with PELT, due to 6506 * move wanting to detach+attach while we're not attached yet. 6507 */ 6508 if (task->state == TASK_NEW) 6509 ret = -EINVAL; 6510 raw_spin_unlock_irq(&task->pi_lock); 6511 6512 if (ret) 6513 break; 6514 } 6515 return ret; 6516 } 6517 6518 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6519 { 6520 struct task_struct *task; 6521 struct cgroup_subsys_state *css; 6522 6523 cgroup_taskset_for_each(task, css, tset) 6524 sched_move_task(task); 6525 } 6526 6527 #ifdef CONFIG_FAIR_GROUP_SCHED 6528 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6529 struct cftype *cftype, u64 shareval) 6530 { 6531 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6532 } 6533 6534 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6535 struct cftype *cft) 6536 { 6537 struct task_group *tg = css_tg(css); 6538 6539 return (u64) scale_load_down(tg->shares); 6540 } 6541 6542 #ifdef CONFIG_CFS_BANDWIDTH 6543 static DEFINE_MUTEX(cfs_constraints_mutex); 6544 6545 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6546 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6547 6548 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6549 6550 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6551 { 6552 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6553 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6554 6555 if (tg == &root_task_group) 6556 return -EINVAL; 6557 6558 /* 6559 * Ensure we have at some amount of bandwidth every period. This is 6560 * to prevent reaching a state of large arrears when throttled via 6561 * entity_tick() resulting in prolonged exit starvation. 6562 */ 6563 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6564 return -EINVAL; 6565 6566 /* 6567 * Likewise, bound things on the otherside by preventing insane quota 6568 * periods. This also allows us to normalize in computing quota 6569 * feasibility. 6570 */ 6571 if (period > max_cfs_quota_period) 6572 return -EINVAL; 6573 6574 /* 6575 * Prevent race between setting of cfs_rq->runtime_enabled and 6576 * unthrottle_offline_cfs_rqs(). 6577 */ 6578 get_online_cpus(); 6579 mutex_lock(&cfs_constraints_mutex); 6580 ret = __cfs_schedulable(tg, period, quota); 6581 if (ret) 6582 goto out_unlock; 6583 6584 runtime_enabled = quota != RUNTIME_INF; 6585 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6586 /* 6587 * If we need to toggle cfs_bandwidth_used, off->on must occur 6588 * before making related changes, and on->off must occur afterwards 6589 */ 6590 if (runtime_enabled && !runtime_was_enabled) 6591 cfs_bandwidth_usage_inc(); 6592 raw_spin_lock_irq(&cfs_b->lock); 6593 cfs_b->period = ns_to_ktime(period); 6594 cfs_b->quota = quota; 6595 6596 __refill_cfs_bandwidth_runtime(cfs_b); 6597 6598 /* Restart the period timer (if active) to handle new period expiry: */ 6599 if (runtime_enabled) 6600 start_cfs_bandwidth(cfs_b); 6601 6602 raw_spin_unlock_irq(&cfs_b->lock); 6603 6604 for_each_online_cpu(i) { 6605 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6606 struct rq *rq = cfs_rq->rq; 6607 struct rq_flags rf; 6608 6609 rq_lock_irq(rq, &rf); 6610 cfs_rq->runtime_enabled = runtime_enabled; 6611 cfs_rq->runtime_remaining = 0; 6612 6613 if (cfs_rq->throttled) 6614 unthrottle_cfs_rq(cfs_rq); 6615 rq_unlock_irq(rq, &rf); 6616 } 6617 if (runtime_was_enabled && !runtime_enabled) 6618 cfs_bandwidth_usage_dec(); 6619 out_unlock: 6620 mutex_unlock(&cfs_constraints_mutex); 6621 put_online_cpus(); 6622 6623 return ret; 6624 } 6625 6626 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6627 { 6628 u64 quota, period; 6629 6630 period = ktime_to_ns(tg->cfs_bandwidth.period); 6631 if (cfs_quota_us < 0) 6632 quota = RUNTIME_INF; 6633 else 6634 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6635 6636 return tg_set_cfs_bandwidth(tg, period, quota); 6637 } 6638 6639 long tg_get_cfs_quota(struct task_group *tg) 6640 { 6641 u64 quota_us; 6642 6643 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6644 return -1; 6645 6646 quota_us = tg->cfs_bandwidth.quota; 6647 do_div(quota_us, NSEC_PER_USEC); 6648 6649 return quota_us; 6650 } 6651 6652 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6653 { 6654 u64 quota, period; 6655 6656 period = (u64)cfs_period_us * NSEC_PER_USEC; 6657 quota = tg->cfs_bandwidth.quota; 6658 6659 return tg_set_cfs_bandwidth(tg, period, quota); 6660 } 6661 6662 long tg_get_cfs_period(struct task_group *tg) 6663 { 6664 u64 cfs_period_us; 6665 6666 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6667 do_div(cfs_period_us, NSEC_PER_USEC); 6668 6669 return cfs_period_us; 6670 } 6671 6672 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6673 struct cftype *cft) 6674 { 6675 return tg_get_cfs_quota(css_tg(css)); 6676 } 6677 6678 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6679 struct cftype *cftype, s64 cfs_quota_us) 6680 { 6681 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6682 } 6683 6684 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6685 struct cftype *cft) 6686 { 6687 return tg_get_cfs_period(css_tg(css)); 6688 } 6689 6690 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6691 struct cftype *cftype, u64 cfs_period_us) 6692 { 6693 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6694 } 6695 6696 struct cfs_schedulable_data { 6697 struct task_group *tg; 6698 u64 period, quota; 6699 }; 6700 6701 /* 6702 * normalize group quota/period to be quota/max_period 6703 * note: units are usecs 6704 */ 6705 static u64 normalize_cfs_quota(struct task_group *tg, 6706 struct cfs_schedulable_data *d) 6707 { 6708 u64 quota, period; 6709 6710 if (tg == d->tg) { 6711 period = d->period; 6712 quota = d->quota; 6713 } else { 6714 period = tg_get_cfs_period(tg); 6715 quota = tg_get_cfs_quota(tg); 6716 } 6717 6718 /* note: these should typically be equivalent */ 6719 if (quota == RUNTIME_INF || quota == -1) 6720 return RUNTIME_INF; 6721 6722 return to_ratio(period, quota); 6723 } 6724 6725 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6726 { 6727 struct cfs_schedulable_data *d = data; 6728 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6729 s64 quota = 0, parent_quota = -1; 6730 6731 if (!tg->parent) { 6732 quota = RUNTIME_INF; 6733 } else { 6734 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6735 6736 quota = normalize_cfs_quota(tg, d); 6737 parent_quota = parent_b->hierarchical_quota; 6738 6739 /* 6740 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6741 * always take the min. On cgroup1, only inherit when no 6742 * limit is set: 6743 */ 6744 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6745 quota = min(quota, parent_quota); 6746 } else { 6747 if (quota == RUNTIME_INF) 6748 quota = parent_quota; 6749 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6750 return -EINVAL; 6751 } 6752 } 6753 cfs_b->hierarchical_quota = quota; 6754 6755 return 0; 6756 } 6757 6758 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6759 { 6760 int ret; 6761 struct cfs_schedulable_data data = { 6762 .tg = tg, 6763 .period = period, 6764 .quota = quota, 6765 }; 6766 6767 if (quota != RUNTIME_INF) { 6768 do_div(data.period, NSEC_PER_USEC); 6769 do_div(data.quota, NSEC_PER_USEC); 6770 } 6771 6772 rcu_read_lock(); 6773 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6774 rcu_read_unlock(); 6775 6776 return ret; 6777 } 6778 6779 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6780 { 6781 struct task_group *tg = css_tg(seq_css(sf)); 6782 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6783 6784 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6785 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6786 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6787 6788 return 0; 6789 } 6790 #endif /* CONFIG_CFS_BANDWIDTH */ 6791 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6792 6793 #ifdef CONFIG_RT_GROUP_SCHED 6794 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6795 struct cftype *cft, s64 val) 6796 { 6797 return sched_group_set_rt_runtime(css_tg(css), val); 6798 } 6799 6800 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6801 struct cftype *cft) 6802 { 6803 return sched_group_rt_runtime(css_tg(css)); 6804 } 6805 6806 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6807 struct cftype *cftype, u64 rt_period_us) 6808 { 6809 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6810 } 6811 6812 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6813 struct cftype *cft) 6814 { 6815 return sched_group_rt_period(css_tg(css)); 6816 } 6817 #endif /* CONFIG_RT_GROUP_SCHED */ 6818 6819 static struct cftype cpu_legacy_files[] = { 6820 #ifdef CONFIG_FAIR_GROUP_SCHED 6821 { 6822 .name = "shares", 6823 .read_u64 = cpu_shares_read_u64, 6824 .write_u64 = cpu_shares_write_u64, 6825 }, 6826 #endif 6827 #ifdef CONFIG_CFS_BANDWIDTH 6828 { 6829 .name = "cfs_quota_us", 6830 .read_s64 = cpu_cfs_quota_read_s64, 6831 .write_s64 = cpu_cfs_quota_write_s64, 6832 }, 6833 { 6834 .name = "cfs_period_us", 6835 .read_u64 = cpu_cfs_period_read_u64, 6836 .write_u64 = cpu_cfs_period_write_u64, 6837 }, 6838 { 6839 .name = "stat", 6840 .seq_show = cpu_cfs_stat_show, 6841 }, 6842 #endif 6843 #ifdef CONFIG_RT_GROUP_SCHED 6844 { 6845 .name = "rt_runtime_us", 6846 .read_s64 = cpu_rt_runtime_read, 6847 .write_s64 = cpu_rt_runtime_write, 6848 }, 6849 { 6850 .name = "rt_period_us", 6851 .read_u64 = cpu_rt_period_read_uint, 6852 .write_u64 = cpu_rt_period_write_uint, 6853 }, 6854 #endif 6855 { } /* Terminate */ 6856 }; 6857 6858 static int cpu_extra_stat_show(struct seq_file *sf, 6859 struct cgroup_subsys_state *css) 6860 { 6861 #ifdef CONFIG_CFS_BANDWIDTH 6862 { 6863 struct task_group *tg = css_tg(css); 6864 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6865 u64 throttled_usec; 6866 6867 throttled_usec = cfs_b->throttled_time; 6868 do_div(throttled_usec, NSEC_PER_USEC); 6869 6870 seq_printf(sf, "nr_periods %d\n" 6871 "nr_throttled %d\n" 6872 "throttled_usec %llu\n", 6873 cfs_b->nr_periods, cfs_b->nr_throttled, 6874 throttled_usec); 6875 } 6876 #endif 6877 return 0; 6878 } 6879 6880 #ifdef CONFIG_FAIR_GROUP_SCHED 6881 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6882 struct cftype *cft) 6883 { 6884 struct task_group *tg = css_tg(css); 6885 u64 weight = scale_load_down(tg->shares); 6886 6887 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6888 } 6889 6890 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6891 struct cftype *cft, u64 weight) 6892 { 6893 /* 6894 * cgroup weight knobs should use the common MIN, DFL and MAX 6895 * values which are 1, 100 and 10000 respectively. While it loses 6896 * a bit of range on both ends, it maps pretty well onto the shares 6897 * value used by scheduler and the round-trip conversions preserve 6898 * the original value over the entire range. 6899 */ 6900 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6901 return -ERANGE; 6902 6903 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6904 6905 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6906 } 6907 6908 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6909 struct cftype *cft) 6910 { 6911 unsigned long weight = scale_load_down(css_tg(css)->shares); 6912 int last_delta = INT_MAX; 6913 int prio, delta; 6914 6915 /* find the closest nice value to the current weight */ 6916 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6917 delta = abs(sched_prio_to_weight[prio] - weight); 6918 if (delta >= last_delta) 6919 break; 6920 last_delta = delta; 6921 } 6922 6923 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6924 } 6925 6926 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6927 struct cftype *cft, s64 nice) 6928 { 6929 unsigned long weight; 6930 int idx; 6931 6932 if (nice < MIN_NICE || nice > MAX_NICE) 6933 return -ERANGE; 6934 6935 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6936 idx = array_index_nospec(idx, 40); 6937 weight = sched_prio_to_weight[idx]; 6938 6939 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6940 } 6941 #endif 6942 6943 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6944 long period, long quota) 6945 { 6946 if (quota < 0) 6947 seq_puts(sf, "max"); 6948 else 6949 seq_printf(sf, "%ld", quota); 6950 6951 seq_printf(sf, " %ld\n", period); 6952 } 6953 6954 /* caller should put the current value in *@periodp before calling */ 6955 static int __maybe_unused cpu_period_quota_parse(char *buf, 6956 u64 *periodp, u64 *quotap) 6957 { 6958 char tok[21]; /* U64_MAX */ 6959 6960 if (!sscanf(buf, "%s %llu", tok, periodp)) 6961 return -EINVAL; 6962 6963 *periodp *= NSEC_PER_USEC; 6964 6965 if (sscanf(tok, "%llu", quotap)) 6966 *quotap *= NSEC_PER_USEC; 6967 else if (!strcmp(tok, "max")) 6968 *quotap = RUNTIME_INF; 6969 else 6970 return -EINVAL; 6971 6972 return 0; 6973 } 6974 6975 #ifdef CONFIG_CFS_BANDWIDTH 6976 static int cpu_max_show(struct seq_file *sf, void *v) 6977 { 6978 struct task_group *tg = css_tg(seq_css(sf)); 6979 6980 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6981 return 0; 6982 } 6983 6984 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6985 char *buf, size_t nbytes, loff_t off) 6986 { 6987 struct task_group *tg = css_tg(of_css(of)); 6988 u64 period = tg_get_cfs_period(tg); 6989 u64 quota; 6990 int ret; 6991 6992 ret = cpu_period_quota_parse(buf, &period, "a); 6993 if (!ret) 6994 ret = tg_set_cfs_bandwidth(tg, period, quota); 6995 return ret ?: nbytes; 6996 } 6997 #endif 6998 6999 static struct cftype cpu_files[] = { 7000 #ifdef CONFIG_FAIR_GROUP_SCHED 7001 { 7002 .name = "weight", 7003 .flags = CFTYPE_NOT_ON_ROOT, 7004 .read_u64 = cpu_weight_read_u64, 7005 .write_u64 = cpu_weight_write_u64, 7006 }, 7007 { 7008 .name = "weight.nice", 7009 .flags = CFTYPE_NOT_ON_ROOT, 7010 .read_s64 = cpu_weight_nice_read_s64, 7011 .write_s64 = cpu_weight_nice_write_s64, 7012 }, 7013 #endif 7014 #ifdef CONFIG_CFS_BANDWIDTH 7015 { 7016 .name = "max", 7017 .flags = CFTYPE_NOT_ON_ROOT, 7018 .seq_show = cpu_max_show, 7019 .write = cpu_max_write, 7020 }, 7021 #endif 7022 { } /* terminate */ 7023 }; 7024 7025 struct cgroup_subsys cpu_cgrp_subsys = { 7026 .css_alloc = cpu_cgroup_css_alloc, 7027 .css_online = cpu_cgroup_css_online, 7028 .css_released = cpu_cgroup_css_released, 7029 .css_free = cpu_cgroup_css_free, 7030 .css_extra_stat_show = cpu_extra_stat_show, 7031 .fork = cpu_cgroup_fork, 7032 .can_attach = cpu_cgroup_can_attach, 7033 .attach = cpu_cgroup_attach, 7034 .legacy_cftypes = cpu_legacy_files, 7035 .dfl_cftypes = cpu_files, 7036 .early_init = true, 7037 .threaded = true, 7038 }; 7039 7040 #endif /* CONFIG_CGROUP_SCHED */ 7041 7042 void dump_cpu_task(int cpu) 7043 { 7044 pr_info("Task dump for CPU %d:\n", cpu); 7045 sched_show_task(cpu_curr(cpu)); 7046 } 7047 7048 /* 7049 * Nice levels are multiplicative, with a gentle 10% change for every 7050 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7051 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7052 * that remained on nice 0. 7053 * 7054 * The "10% effect" is relative and cumulative: from _any_ nice level, 7055 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7056 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7057 * If a task goes up by ~10% and another task goes down by ~10% then 7058 * the relative distance between them is ~25%.) 7059 */ 7060 const int sched_prio_to_weight[40] = { 7061 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7062 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7063 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7064 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7065 /* 0 */ 1024, 820, 655, 526, 423, 7066 /* 5 */ 335, 272, 215, 172, 137, 7067 /* 10 */ 110, 87, 70, 56, 45, 7068 /* 15 */ 36, 29, 23, 18, 15, 7069 }; 7070 7071 /* 7072 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7073 * 7074 * In cases where the weight does not change often, we can use the 7075 * precalculated inverse to speed up arithmetics by turning divisions 7076 * into multiplications: 7077 */ 7078 const u32 sched_prio_to_wmult[40] = { 7079 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7080 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7081 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7082 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7083 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7084 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7085 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7086 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7087 }; 7088 7089 #undef CREATE_TRACE_POINTS 7090