xref: /openbmc/linux/kernel/sched/core.c (revision f5b06569)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78 
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86 
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90 
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93 
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96 
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98 
99 void update_rq_clock(struct rq *rq)
100 {
101 	s64 delta;
102 
103 	lockdep_assert_held(&rq->lock);
104 
105 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 		return;
107 
108 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 	if (delta < 0)
110 		return;
111 	rq->clock += delta;
112 	update_rq_clock_task(rq, delta);
113 }
114 
115 /*
116  * Debugging: various feature bits
117  */
118 
119 #define SCHED_FEAT(name, enabled)	\
120 	(1UL << __SCHED_FEAT_##name) * enabled |
121 
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 	0;
125 
126 #undef SCHED_FEAT
127 
128 /*
129  * Number of tasks to iterate in a single balance run.
130  * Limited because this is done with IRQs disabled.
131  */
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
133 
134 /*
135  * period over which we average the RT time consumption, measured
136  * in ms.
137  *
138  * default: 1s
139  */
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141 
142 /*
143  * period over which we measure -rt task cpu usage in us.
144  * default: 1s
145  */
146 unsigned int sysctl_sched_rt_period = 1000000;
147 
148 __read_mostly int scheduler_running;
149 
150 /*
151  * part of the period that we allow rt tasks to run in us.
152  * default: 0.95s
153  */
154 int sysctl_sched_rt_runtime = 950000;
155 
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
158 
159 /*
160  * this_rq_lock - lock this runqueue and disable interrupts.
161  */
162 static struct rq *this_rq_lock(void)
163 	__acquires(rq->lock)
164 {
165 	struct rq *rq;
166 
167 	local_irq_disable();
168 	rq = this_rq();
169 	raw_spin_lock(&rq->lock);
170 
171 	return rq;
172 }
173 
174 /*
175  * __task_rq_lock - lock the rq @p resides on.
176  */
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 	__acquires(rq->lock)
179 {
180 	struct rq *rq;
181 
182 	lockdep_assert_held(&p->pi_lock);
183 
184 	for (;;) {
185 		rq = task_rq(p);
186 		raw_spin_lock(&rq->lock);
187 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 			rf->cookie = lockdep_pin_lock(&rq->lock);
189 			return rq;
190 		}
191 		raw_spin_unlock(&rq->lock);
192 
193 		while (unlikely(task_on_rq_migrating(p)))
194 			cpu_relax();
195 	}
196 }
197 
198 /*
199  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200  */
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 	__acquires(p->pi_lock)
203 	__acquires(rq->lock)
204 {
205 	struct rq *rq;
206 
207 	for (;;) {
208 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 		rq = task_rq(p);
210 		raw_spin_lock(&rq->lock);
211 		/*
212 		 *	move_queued_task()		task_rq_lock()
213 		 *
214 		 *	ACQUIRE (rq->lock)
215 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
216 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
217 		 *	[S] ->cpu = new_cpu		[L] task_rq()
218 		 *					[L] ->on_rq
219 		 *	RELEASE (rq->lock)
220 		 *
221 		 * If we observe the old cpu in task_rq_lock, the acquire of
222 		 * the old rq->lock will fully serialize against the stores.
223 		 *
224 		 * If we observe the new cpu in task_rq_lock, the acquire will
225 		 * pair with the WMB to ensure we must then also see migrating.
226 		 */
227 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 			rf->cookie = lockdep_pin_lock(&rq->lock);
229 			return rq;
230 		}
231 		raw_spin_unlock(&rq->lock);
232 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233 
234 		while (unlikely(task_on_rq_migrating(p)))
235 			cpu_relax();
236 	}
237 }
238 
239 #ifdef CONFIG_SCHED_HRTICK
240 /*
241  * Use HR-timers to deliver accurate preemption points.
242  */
243 
244 static void hrtick_clear(struct rq *rq)
245 {
246 	if (hrtimer_active(&rq->hrtick_timer))
247 		hrtimer_cancel(&rq->hrtick_timer);
248 }
249 
250 /*
251  * High-resolution timer tick.
252  * Runs from hardirq context with interrupts disabled.
253  */
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
255 {
256 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257 
258 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259 
260 	raw_spin_lock(&rq->lock);
261 	update_rq_clock(rq);
262 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 	raw_spin_unlock(&rq->lock);
264 
265 	return HRTIMER_NORESTART;
266 }
267 
268 #ifdef CONFIG_SMP
269 
270 static void __hrtick_restart(struct rq *rq)
271 {
272 	struct hrtimer *timer = &rq->hrtick_timer;
273 
274 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
275 }
276 
277 /*
278  * called from hardirq (IPI) context
279  */
280 static void __hrtick_start(void *arg)
281 {
282 	struct rq *rq = arg;
283 
284 	raw_spin_lock(&rq->lock);
285 	__hrtick_restart(rq);
286 	rq->hrtick_csd_pending = 0;
287 	raw_spin_unlock(&rq->lock);
288 }
289 
290 /*
291  * Called to set the hrtick timer state.
292  *
293  * called with rq->lock held and irqs disabled
294  */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 	struct hrtimer *timer = &rq->hrtick_timer;
298 	ktime_t time;
299 	s64 delta;
300 
301 	/*
302 	 * Don't schedule slices shorter than 10000ns, that just
303 	 * doesn't make sense and can cause timer DoS.
304 	 */
305 	delta = max_t(s64, delay, 10000LL);
306 	time = ktime_add_ns(timer->base->get_time(), delta);
307 
308 	hrtimer_set_expires(timer, time);
309 
310 	if (rq == this_rq()) {
311 		__hrtick_restart(rq);
312 	} else if (!rq->hrtick_csd_pending) {
313 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 		rq->hrtick_csd_pending = 1;
315 	}
316 }
317 
318 #else
319 /*
320  * Called to set the hrtick timer state.
321  *
322  * called with rq->lock held and irqs disabled
323  */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 	/*
327 	 * Don't schedule slices shorter than 10000ns, that just
328 	 * doesn't make sense. Rely on vruntime for fairness.
329 	 */
330 	delay = max_t(u64, delay, 10000LL);
331 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 		      HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335 
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 	rq->hrtick_csd_pending = 0;
340 
341 	rq->hrtick_csd.flags = 0;
342 	rq->hrtick_csd.func = __hrtick_start;
343 	rq->hrtick_csd.info = rq;
344 #endif
345 
346 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 	rq->hrtick_timer.function = hrtick;
348 }
349 #else	/* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353 
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif	/* CONFIG_SCHED_HRTICK */
358 
359 /*
360  * cmpxchg based fetch_or, macro so it works for different integer types
361  */
362 #define fetch_or(ptr, mask)						\
363 	({								\
364 		typeof(ptr) _ptr = (ptr);				\
365 		typeof(mask) _mask = (mask);				\
366 		typeof(*_ptr) _old, _val = *_ptr;			\
367 									\
368 		for (;;) {						\
369 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
370 			if (_old == _val)				\
371 				break;					\
372 			_val = _old;					\
373 		}							\
374 	_old;								\
375 })
376 
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380  * this avoids any races wrt polling state changes and thereby avoids
381  * spurious IPIs.
382  */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 	struct thread_info *ti = task_thread_info(p);
386 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388 
389 /*
390  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391  *
392  * If this returns true, then the idle task promises to call
393  * sched_ttwu_pending() and reschedule soon.
394  */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 	struct thread_info *ti = task_thread_info(p);
398 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399 
400 	for (;;) {
401 		if (!(val & _TIF_POLLING_NRFLAG))
402 			return false;
403 		if (val & _TIF_NEED_RESCHED)
404 			return true;
405 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 		if (old == val)
407 			break;
408 		val = old;
409 	}
410 	return true;
411 }
412 
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 	set_tsk_need_resched(p);
417 	return true;
418 }
419 
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 	return false;
424 }
425 #endif
426 #endif
427 
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 	struct wake_q_node *node = &task->wake_q;
431 
432 	/*
433 	 * Atomically grab the task, if ->wake_q is !nil already it means
434 	 * its already queued (either by us or someone else) and will get the
435 	 * wakeup due to that.
436 	 *
437 	 * This cmpxchg() implies a full barrier, which pairs with the write
438 	 * barrier implied by the wakeup in wake_up_q().
439 	 */
440 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 		return;
442 
443 	get_task_struct(task);
444 
445 	/*
446 	 * The head is context local, there can be no concurrency.
447 	 */
448 	*head->lastp = node;
449 	head->lastp = &node->next;
450 }
451 
452 void wake_up_q(struct wake_q_head *head)
453 {
454 	struct wake_q_node *node = head->first;
455 
456 	while (node != WAKE_Q_TAIL) {
457 		struct task_struct *task;
458 
459 		task = container_of(node, struct task_struct, wake_q);
460 		BUG_ON(!task);
461 		/* task can safely be re-inserted now */
462 		node = node->next;
463 		task->wake_q.next = NULL;
464 
465 		/*
466 		 * wake_up_process() implies a wmb() to pair with the queueing
467 		 * in wake_q_add() so as not to miss wakeups.
468 		 */
469 		wake_up_process(task);
470 		put_task_struct(task);
471 	}
472 }
473 
474 /*
475  * resched_curr - mark rq's current task 'to be rescheduled now'.
476  *
477  * On UP this means the setting of the need_resched flag, on SMP it
478  * might also involve a cross-CPU call to trigger the scheduler on
479  * the target CPU.
480  */
481 void resched_curr(struct rq *rq)
482 {
483 	struct task_struct *curr = rq->curr;
484 	int cpu;
485 
486 	lockdep_assert_held(&rq->lock);
487 
488 	if (test_tsk_need_resched(curr))
489 		return;
490 
491 	cpu = cpu_of(rq);
492 
493 	if (cpu == smp_processor_id()) {
494 		set_tsk_need_resched(curr);
495 		set_preempt_need_resched();
496 		return;
497 	}
498 
499 	if (set_nr_and_not_polling(curr))
500 		smp_send_reschedule(cpu);
501 	else
502 		trace_sched_wake_idle_without_ipi(cpu);
503 }
504 
505 void resched_cpu(int cpu)
506 {
507 	struct rq *rq = cpu_rq(cpu);
508 	unsigned long flags;
509 
510 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
511 		return;
512 	resched_curr(rq);
513 	raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515 
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519  * In the semi idle case, use the nearest busy cpu for migrating timers
520  * from an idle cpu.  This is good for power-savings.
521  *
522  * We don't do similar optimization for completely idle system, as
523  * selecting an idle cpu will add more delays to the timers than intended
524  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525  */
526 int get_nohz_timer_target(void)
527 {
528 	int i, cpu = smp_processor_id();
529 	struct sched_domain *sd;
530 
531 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 		return cpu;
533 
534 	rcu_read_lock();
535 	for_each_domain(cpu, sd) {
536 		for_each_cpu(i, sched_domain_span(sd)) {
537 			if (cpu == i)
538 				continue;
539 
540 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 				cpu = i;
542 				goto unlock;
543 			}
544 		}
545 	}
546 
547 	if (!is_housekeeping_cpu(cpu))
548 		cpu = housekeeping_any_cpu();
549 unlock:
550 	rcu_read_unlock();
551 	return cpu;
552 }
553 /*
554  * When add_timer_on() enqueues a timer into the timer wheel of an
555  * idle CPU then this timer might expire before the next timer event
556  * which is scheduled to wake up that CPU. In case of a completely
557  * idle system the next event might even be infinite time into the
558  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559  * leaves the inner idle loop so the newly added timer is taken into
560  * account when the CPU goes back to idle and evaluates the timer
561  * wheel for the next timer event.
562  */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 	struct rq *rq = cpu_rq(cpu);
566 
567 	if (cpu == smp_processor_id())
568 		return;
569 
570 	if (set_nr_and_not_polling(rq->idle))
571 		smp_send_reschedule(cpu);
572 	else
573 		trace_sched_wake_idle_without_ipi(cpu);
574 }
575 
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 	/*
579 	 * We just need the target to call irq_exit() and re-evaluate
580 	 * the next tick. The nohz full kick at least implies that.
581 	 * If needed we can still optimize that later with an
582 	 * empty IRQ.
583 	 */
584 	if (tick_nohz_full_cpu(cpu)) {
585 		if (cpu != smp_processor_id() ||
586 		    tick_nohz_tick_stopped())
587 			tick_nohz_full_kick_cpu(cpu);
588 		return true;
589 	}
590 
591 	return false;
592 }
593 
594 void wake_up_nohz_cpu(int cpu)
595 {
596 	if (!wake_up_full_nohz_cpu(cpu))
597 		wake_up_idle_cpu(cpu);
598 }
599 
600 static inline bool got_nohz_idle_kick(void)
601 {
602 	int cpu = smp_processor_id();
603 
604 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
605 		return false;
606 
607 	if (idle_cpu(cpu) && !need_resched())
608 		return true;
609 
610 	/*
611 	 * We can't run Idle Load Balance on this CPU for this time so we
612 	 * cancel it and clear NOHZ_BALANCE_KICK
613 	 */
614 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 	return false;
616 }
617 
618 #else /* CONFIG_NO_HZ_COMMON */
619 
620 static inline bool got_nohz_idle_kick(void)
621 {
622 	return false;
623 }
624 
625 #endif /* CONFIG_NO_HZ_COMMON */
626 
627 #ifdef CONFIG_NO_HZ_FULL
628 bool sched_can_stop_tick(struct rq *rq)
629 {
630 	int fifo_nr_running;
631 
632 	/* Deadline tasks, even if single, need the tick */
633 	if (rq->dl.dl_nr_running)
634 		return false;
635 
636 	/*
637 	 * If there are more than one RR tasks, we need the tick to effect the
638 	 * actual RR behaviour.
639 	 */
640 	if (rq->rt.rr_nr_running) {
641 		if (rq->rt.rr_nr_running == 1)
642 			return true;
643 		else
644 			return false;
645 	}
646 
647 	/*
648 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
649 	 * forced preemption between FIFO tasks.
650 	 */
651 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
652 	if (fifo_nr_running)
653 		return true;
654 
655 	/*
656 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
657 	 * if there's more than one we need the tick for involuntary
658 	 * preemption.
659 	 */
660 	if (rq->nr_running > 1)
661 		return false;
662 
663 	return true;
664 }
665 #endif /* CONFIG_NO_HZ_FULL */
666 
667 void sched_avg_update(struct rq *rq)
668 {
669 	s64 period = sched_avg_period();
670 
671 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
672 		/*
673 		 * Inline assembly required to prevent the compiler
674 		 * optimising this loop into a divmod call.
675 		 * See __iter_div_u64_rem() for another example of this.
676 		 */
677 		asm("" : "+rm" (rq->age_stamp));
678 		rq->age_stamp += period;
679 		rq->rt_avg /= 2;
680 	}
681 }
682 
683 #endif /* CONFIG_SMP */
684 
685 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
686 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
687 /*
688  * Iterate task_group tree rooted at *from, calling @down when first entering a
689  * node and @up when leaving it for the final time.
690  *
691  * Caller must hold rcu_lock or sufficient equivalent.
692  */
693 int walk_tg_tree_from(struct task_group *from,
694 			     tg_visitor down, tg_visitor up, void *data)
695 {
696 	struct task_group *parent, *child;
697 	int ret;
698 
699 	parent = from;
700 
701 down:
702 	ret = (*down)(parent, data);
703 	if (ret)
704 		goto out;
705 	list_for_each_entry_rcu(child, &parent->children, siblings) {
706 		parent = child;
707 		goto down;
708 
709 up:
710 		continue;
711 	}
712 	ret = (*up)(parent, data);
713 	if (ret || parent == from)
714 		goto out;
715 
716 	child = parent;
717 	parent = parent->parent;
718 	if (parent)
719 		goto up;
720 out:
721 	return ret;
722 }
723 
724 int tg_nop(struct task_group *tg, void *data)
725 {
726 	return 0;
727 }
728 #endif
729 
730 static void set_load_weight(struct task_struct *p)
731 {
732 	int prio = p->static_prio - MAX_RT_PRIO;
733 	struct load_weight *load = &p->se.load;
734 
735 	/*
736 	 * SCHED_IDLE tasks get minimal weight:
737 	 */
738 	if (idle_policy(p->policy)) {
739 		load->weight = scale_load(WEIGHT_IDLEPRIO);
740 		load->inv_weight = WMULT_IDLEPRIO;
741 		return;
742 	}
743 
744 	load->weight = scale_load(sched_prio_to_weight[prio]);
745 	load->inv_weight = sched_prio_to_wmult[prio];
746 }
747 
748 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
749 {
750 	update_rq_clock(rq);
751 	if (!(flags & ENQUEUE_RESTORE))
752 		sched_info_queued(rq, p);
753 	p->sched_class->enqueue_task(rq, p, flags);
754 }
755 
756 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
757 {
758 	update_rq_clock(rq);
759 	if (!(flags & DEQUEUE_SAVE))
760 		sched_info_dequeued(rq, p);
761 	p->sched_class->dequeue_task(rq, p, flags);
762 }
763 
764 void activate_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766 	if (task_contributes_to_load(p))
767 		rq->nr_uninterruptible--;
768 
769 	enqueue_task(rq, p, flags);
770 }
771 
772 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 	if (task_contributes_to_load(p))
775 		rq->nr_uninterruptible++;
776 
777 	dequeue_task(rq, p, flags);
778 }
779 
780 static void update_rq_clock_task(struct rq *rq, s64 delta)
781 {
782 /*
783  * In theory, the compile should just see 0 here, and optimize out the call
784  * to sched_rt_avg_update. But I don't trust it...
785  */
786 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
787 	s64 steal = 0, irq_delta = 0;
788 #endif
789 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
790 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
791 
792 	/*
793 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
794 	 * this case when a previous update_rq_clock() happened inside a
795 	 * {soft,}irq region.
796 	 *
797 	 * When this happens, we stop ->clock_task and only update the
798 	 * prev_irq_time stamp to account for the part that fit, so that a next
799 	 * update will consume the rest. This ensures ->clock_task is
800 	 * monotonic.
801 	 *
802 	 * It does however cause some slight miss-attribution of {soft,}irq
803 	 * time, a more accurate solution would be to update the irq_time using
804 	 * the current rq->clock timestamp, except that would require using
805 	 * atomic ops.
806 	 */
807 	if (irq_delta > delta)
808 		irq_delta = delta;
809 
810 	rq->prev_irq_time += irq_delta;
811 	delta -= irq_delta;
812 #endif
813 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
814 	if (static_key_false((&paravirt_steal_rq_enabled))) {
815 		steal = paravirt_steal_clock(cpu_of(rq));
816 		steal -= rq->prev_steal_time_rq;
817 
818 		if (unlikely(steal > delta))
819 			steal = delta;
820 
821 		rq->prev_steal_time_rq += steal;
822 		delta -= steal;
823 	}
824 #endif
825 
826 	rq->clock_task += delta;
827 
828 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
829 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
830 		sched_rt_avg_update(rq, irq_delta + steal);
831 #endif
832 }
833 
834 void sched_set_stop_task(int cpu, struct task_struct *stop)
835 {
836 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
837 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
838 
839 	if (stop) {
840 		/*
841 		 * Make it appear like a SCHED_FIFO task, its something
842 		 * userspace knows about and won't get confused about.
843 		 *
844 		 * Also, it will make PI more or less work without too
845 		 * much confusion -- but then, stop work should not
846 		 * rely on PI working anyway.
847 		 */
848 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
849 
850 		stop->sched_class = &stop_sched_class;
851 	}
852 
853 	cpu_rq(cpu)->stop = stop;
854 
855 	if (old_stop) {
856 		/*
857 		 * Reset it back to a normal scheduling class so that
858 		 * it can die in pieces.
859 		 */
860 		old_stop->sched_class = &rt_sched_class;
861 	}
862 }
863 
864 /*
865  * __normal_prio - return the priority that is based on the static prio
866  */
867 static inline int __normal_prio(struct task_struct *p)
868 {
869 	return p->static_prio;
870 }
871 
872 /*
873  * Calculate the expected normal priority: i.e. priority
874  * without taking RT-inheritance into account. Might be
875  * boosted by interactivity modifiers. Changes upon fork,
876  * setprio syscalls, and whenever the interactivity
877  * estimator recalculates.
878  */
879 static inline int normal_prio(struct task_struct *p)
880 {
881 	int prio;
882 
883 	if (task_has_dl_policy(p))
884 		prio = MAX_DL_PRIO-1;
885 	else if (task_has_rt_policy(p))
886 		prio = MAX_RT_PRIO-1 - p->rt_priority;
887 	else
888 		prio = __normal_prio(p);
889 	return prio;
890 }
891 
892 /*
893  * Calculate the current priority, i.e. the priority
894  * taken into account by the scheduler. This value might
895  * be boosted by RT tasks, or might be boosted by
896  * interactivity modifiers. Will be RT if the task got
897  * RT-boosted. If not then it returns p->normal_prio.
898  */
899 static int effective_prio(struct task_struct *p)
900 {
901 	p->normal_prio = normal_prio(p);
902 	/*
903 	 * If we are RT tasks or we were boosted to RT priority,
904 	 * keep the priority unchanged. Otherwise, update priority
905 	 * to the normal priority:
906 	 */
907 	if (!rt_prio(p->prio))
908 		return p->normal_prio;
909 	return p->prio;
910 }
911 
912 /**
913  * task_curr - is this task currently executing on a CPU?
914  * @p: the task in question.
915  *
916  * Return: 1 if the task is currently executing. 0 otherwise.
917  */
918 inline int task_curr(const struct task_struct *p)
919 {
920 	return cpu_curr(task_cpu(p)) == p;
921 }
922 
923 /*
924  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
925  * use the balance_callback list if you want balancing.
926  *
927  * this means any call to check_class_changed() must be followed by a call to
928  * balance_callback().
929  */
930 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
931 				       const struct sched_class *prev_class,
932 				       int oldprio)
933 {
934 	if (prev_class != p->sched_class) {
935 		if (prev_class->switched_from)
936 			prev_class->switched_from(rq, p);
937 
938 		p->sched_class->switched_to(rq, p);
939 	} else if (oldprio != p->prio || dl_task(p))
940 		p->sched_class->prio_changed(rq, p, oldprio);
941 }
942 
943 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
944 {
945 	const struct sched_class *class;
946 
947 	if (p->sched_class == rq->curr->sched_class) {
948 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
949 	} else {
950 		for_each_class(class) {
951 			if (class == rq->curr->sched_class)
952 				break;
953 			if (class == p->sched_class) {
954 				resched_curr(rq);
955 				break;
956 			}
957 		}
958 	}
959 
960 	/*
961 	 * A queue event has occurred, and we're going to schedule.  In
962 	 * this case, we can save a useless back to back clock update.
963 	 */
964 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
965 		rq_clock_skip_update(rq, true);
966 }
967 
968 #ifdef CONFIG_SMP
969 /*
970  * This is how migration works:
971  *
972  * 1) we invoke migration_cpu_stop() on the target CPU using
973  *    stop_one_cpu().
974  * 2) stopper starts to run (implicitly forcing the migrated thread
975  *    off the CPU)
976  * 3) it checks whether the migrated task is still in the wrong runqueue.
977  * 4) if it's in the wrong runqueue then the migration thread removes
978  *    it and puts it into the right queue.
979  * 5) stopper completes and stop_one_cpu() returns and the migration
980  *    is done.
981  */
982 
983 /*
984  * move_queued_task - move a queued task to new rq.
985  *
986  * Returns (locked) new rq. Old rq's lock is released.
987  */
988 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
989 {
990 	lockdep_assert_held(&rq->lock);
991 
992 	p->on_rq = TASK_ON_RQ_MIGRATING;
993 	dequeue_task(rq, p, 0);
994 	set_task_cpu(p, new_cpu);
995 	raw_spin_unlock(&rq->lock);
996 
997 	rq = cpu_rq(new_cpu);
998 
999 	raw_spin_lock(&rq->lock);
1000 	BUG_ON(task_cpu(p) != new_cpu);
1001 	enqueue_task(rq, p, 0);
1002 	p->on_rq = TASK_ON_RQ_QUEUED;
1003 	check_preempt_curr(rq, p, 0);
1004 
1005 	return rq;
1006 }
1007 
1008 struct migration_arg {
1009 	struct task_struct *task;
1010 	int dest_cpu;
1011 };
1012 
1013 /*
1014  * Move (not current) task off this cpu, onto dest cpu. We're doing
1015  * this because either it can't run here any more (set_cpus_allowed()
1016  * away from this CPU, or CPU going down), or because we're
1017  * attempting to rebalance this task on exec (sched_exec).
1018  *
1019  * So we race with normal scheduler movements, but that's OK, as long
1020  * as the task is no longer on this CPU.
1021  */
1022 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1023 {
1024 	if (unlikely(!cpu_active(dest_cpu)))
1025 		return rq;
1026 
1027 	/* Affinity changed (again). */
1028 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1029 		return rq;
1030 
1031 	rq = move_queued_task(rq, p, dest_cpu);
1032 
1033 	return rq;
1034 }
1035 
1036 /*
1037  * migration_cpu_stop - this will be executed by a highprio stopper thread
1038  * and performs thread migration by bumping thread off CPU then
1039  * 'pushing' onto another runqueue.
1040  */
1041 static int migration_cpu_stop(void *data)
1042 {
1043 	struct migration_arg *arg = data;
1044 	struct task_struct *p = arg->task;
1045 	struct rq *rq = this_rq();
1046 
1047 	/*
1048 	 * The original target cpu might have gone down and we might
1049 	 * be on another cpu but it doesn't matter.
1050 	 */
1051 	local_irq_disable();
1052 	/*
1053 	 * We need to explicitly wake pending tasks before running
1054 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1055 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1056 	 */
1057 	sched_ttwu_pending();
1058 
1059 	raw_spin_lock(&p->pi_lock);
1060 	raw_spin_lock(&rq->lock);
1061 	/*
1062 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1063 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1064 	 * we're holding p->pi_lock.
1065 	 */
1066 	if (task_rq(p) == rq && task_on_rq_queued(p))
1067 		rq = __migrate_task(rq, p, arg->dest_cpu);
1068 	raw_spin_unlock(&rq->lock);
1069 	raw_spin_unlock(&p->pi_lock);
1070 
1071 	local_irq_enable();
1072 	return 0;
1073 }
1074 
1075 /*
1076  * sched_class::set_cpus_allowed must do the below, but is not required to
1077  * actually call this function.
1078  */
1079 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1080 {
1081 	cpumask_copy(&p->cpus_allowed, new_mask);
1082 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1083 }
1084 
1085 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1086 {
1087 	struct rq *rq = task_rq(p);
1088 	bool queued, running;
1089 
1090 	lockdep_assert_held(&p->pi_lock);
1091 
1092 	queued = task_on_rq_queued(p);
1093 	running = task_current(rq, p);
1094 
1095 	if (queued) {
1096 		/*
1097 		 * Because __kthread_bind() calls this on blocked tasks without
1098 		 * holding rq->lock.
1099 		 */
1100 		lockdep_assert_held(&rq->lock);
1101 		dequeue_task(rq, p, DEQUEUE_SAVE);
1102 	}
1103 	if (running)
1104 		put_prev_task(rq, p);
1105 
1106 	p->sched_class->set_cpus_allowed(p, new_mask);
1107 
1108 	if (running)
1109 		p->sched_class->set_curr_task(rq);
1110 	if (queued)
1111 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1112 }
1113 
1114 /*
1115  * Change a given task's CPU affinity. Migrate the thread to a
1116  * proper CPU and schedule it away if the CPU it's executing on
1117  * is removed from the allowed bitmask.
1118  *
1119  * NOTE: the caller must have a valid reference to the task, the
1120  * task must not exit() & deallocate itself prematurely. The
1121  * call is not atomic; no spinlocks may be held.
1122  */
1123 static int __set_cpus_allowed_ptr(struct task_struct *p,
1124 				  const struct cpumask *new_mask, bool check)
1125 {
1126 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1127 	unsigned int dest_cpu;
1128 	struct rq_flags rf;
1129 	struct rq *rq;
1130 	int ret = 0;
1131 
1132 	rq = task_rq_lock(p, &rf);
1133 
1134 	if (p->flags & PF_KTHREAD) {
1135 		/*
1136 		 * Kernel threads are allowed on online && !active CPUs
1137 		 */
1138 		cpu_valid_mask = cpu_online_mask;
1139 	}
1140 
1141 	/*
1142 	 * Must re-check here, to close a race against __kthread_bind(),
1143 	 * sched_setaffinity() is not guaranteed to observe the flag.
1144 	 */
1145 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1146 		ret = -EINVAL;
1147 		goto out;
1148 	}
1149 
1150 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1151 		goto out;
1152 
1153 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1154 		ret = -EINVAL;
1155 		goto out;
1156 	}
1157 
1158 	do_set_cpus_allowed(p, new_mask);
1159 
1160 	if (p->flags & PF_KTHREAD) {
1161 		/*
1162 		 * For kernel threads that do indeed end up on online &&
1163 		 * !active we want to ensure they are strict per-cpu threads.
1164 		 */
1165 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1166 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1167 			p->nr_cpus_allowed != 1);
1168 	}
1169 
1170 	/* Can the task run on the task's current CPU? If so, we're done */
1171 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1172 		goto out;
1173 
1174 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1175 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1176 		struct migration_arg arg = { p, dest_cpu };
1177 		/* Need help from migration thread: drop lock and wait. */
1178 		task_rq_unlock(rq, p, &rf);
1179 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1180 		tlb_migrate_finish(p->mm);
1181 		return 0;
1182 	} else if (task_on_rq_queued(p)) {
1183 		/*
1184 		 * OK, since we're going to drop the lock immediately
1185 		 * afterwards anyway.
1186 		 */
1187 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1188 		rq = move_queued_task(rq, p, dest_cpu);
1189 		lockdep_repin_lock(&rq->lock, rf.cookie);
1190 	}
1191 out:
1192 	task_rq_unlock(rq, p, &rf);
1193 
1194 	return ret;
1195 }
1196 
1197 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1198 {
1199 	return __set_cpus_allowed_ptr(p, new_mask, false);
1200 }
1201 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1202 
1203 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1204 {
1205 #ifdef CONFIG_SCHED_DEBUG
1206 	/*
1207 	 * We should never call set_task_cpu() on a blocked task,
1208 	 * ttwu() will sort out the placement.
1209 	 */
1210 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1211 			!p->on_rq);
1212 
1213 	/*
1214 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1215 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1216 	 * time relying on p->on_rq.
1217 	 */
1218 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1219 		     p->sched_class == &fair_sched_class &&
1220 		     (p->on_rq && !task_on_rq_migrating(p)));
1221 
1222 #ifdef CONFIG_LOCKDEP
1223 	/*
1224 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1225 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1226 	 *
1227 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1228 	 * see task_group().
1229 	 *
1230 	 * Furthermore, all task_rq users should acquire both locks, see
1231 	 * task_rq_lock().
1232 	 */
1233 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1234 				      lockdep_is_held(&task_rq(p)->lock)));
1235 #endif
1236 #endif
1237 
1238 	trace_sched_migrate_task(p, new_cpu);
1239 
1240 	if (task_cpu(p) != new_cpu) {
1241 		if (p->sched_class->migrate_task_rq)
1242 			p->sched_class->migrate_task_rq(p);
1243 		p->se.nr_migrations++;
1244 		perf_event_task_migrate(p);
1245 	}
1246 
1247 	__set_task_cpu(p, new_cpu);
1248 }
1249 
1250 static void __migrate_swap_task(struct task_struct *p, int cpu)
1251 {
1252 	if (task_on_rq_queued(p)) {
1253 		struct rq *src_rq, *dst_rq;
1254 
1255 		src_rq = task_rq(p);
1256 		dst_rq = cpu_rq(cpu);
1257 
1258 		p->on_rq = TASK_ON_RQ_MIGRATING;
1259 		deactivate_task(src_rq, p, 0);
1260 		set_task_cpu(p, cpu);
1261 		activate_task(dst_rq, p, 0);
1262 		p->on_rq = TASK_ON_RQ_QUEUED;
1263 		check_preempt_curr(dst_rq, p, 0);
1264 	} else {
1265 		/*
1266 		 * Task isn't running anymore; make it appear like we migrated
1267 		 * it before it went to sleep. This means on wakeup we make the
1268 		 * previous cpu our targer instead of where it really is.
1269 		 */
1270 		p->wake_cpu = cpu;
1271 	}
1272 }
1273 
1274 struct migration_swap_arg {
1275 	struct task_struct *src_task, *dst_task;
1276 	int src_cpu, dst_cpu;
1277 };
1278 
1279 static int migrate_swap_stop(void *data)
1280 {
1281 	struct migration_swap_arg *arg = data;
1282 	struct rq *src_rq, *dst_rq;
1283 	int ret = -EAGAIN;
1284 
1285 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1286 		return -EAGAIN;
1287 
1288 	src_rq = cpu_rq(arg->src_cpu);
1289 	dst_rq = cpu_rq(arg->dst_cpu);
1290 
1291 	double_raw_lock(&arg->src_task->pi_lock,
1292 			&arg->dst_task->pi_lock);
1293 	double_rq_lock(src_rq, dst_rq);
1294 
1295 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1296 		goto unlock;
1297 
1298 	if (task_cpu(arg->src_task) != arg->src_cpu)
1299 		goto unlock;
1300 
1301 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1302 		goto unlock;
1303 
1304 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1305 		goto unlock;
1306 
1307 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1308 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1309 
1310 	ret = 0;
1311 
1312 unlock:
1313 	double_rq_unlock(src_rq, dst_rq);
1314 	raw_spin_unlock(&arg->dst_task->pi_lock);
1315 	raw_spin_unlock(&arg->src_task->pi_lock);
1316 
1317 	return ret;
1318 }
1319 
1320 /*
1321  * Cross migrate two tasks
1322  */
1323 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1324 {
1325 	struct migration_swap_arg arg;
1326 	int ret = -EINVAL;
1327 
1328 	arg = (struct migration_swap_arg){
1329 		.src_task = cur,
1330 		.src_cpu = task_cpu(cur),
1331 		.dst_task = p,
1332 		.dst_cpu = task_cpu(p),
1333 	};
1334 
1335 	if (arg.src_cpu == arg.dst_cpu)
1336 		goto out;
1337 
1338 	/*
1339 	 * These three tests are all lockless; this is OK since all of them
1340 	 * will be re-checked with proper locks held further down the line.
1341 	 */
1342 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1343 		goto out;
1344 
1345 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1346 		goto out;
1347 
1348 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1349 		goto out;
1350 
1351 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1352 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1353 
1354 out:
1355 	return ret;
1356 }
1357 
1358 /*
1359  * wait_task_inactive - wait for a thread to unschedule.
1360  *
1361  * If @match_state is nonzero, it's the @p->state value just checked and
1362  * not expected to change.  If it changes, i.e. @p might have woken up,
1363  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1364  * we return a positive number (its total switch count).  If a second call
1365  * a short while later returns the same number, the caller can be sure that
1366  * @p has remained unscheduled the whole time.
1367  *
1368  * The caller must ensure that the task *will* unschedule sometime soon,
1369  * else this function might spin for a *long* time. This function can't
1370  * be called with interrupts off, or it may introduce deadlock with
1371  * smp_call_function() if an IPI is sent by the same process we are
1372  * waiting to become inactive.
1373  */
1374 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1375 {
1376 	int running, queued;
1377 	struct rq_flags rf;
1378 	unsigned long ncsw;
1379 	struct rq *rq;
1380 
1381 	for (;;) {
1382 		/*
1383 		 * We do the initial early heuristics without holding
1384 		 * any task-queue locks at all. We'll only try to get
1385 		 * the runqueue lock when things look like they will
1386 		 * work out!
1387 		 */
1388 		rq = task_rq(p);
1389 
1390 		/*
1391 		 * If the task is actively running on another CPU
1392 		 * still, just relax and busy-wait without holding
1393 		 * any locks.
1394 		 *
1395 		 * NOTE! Since we don't hold any locks, it's not
1396 		 * even sure that "rq" stays as the right runqueue!
1397 		 * But we don't care, since "task_running()" will
1398 		 * return false if the runqueue has changed and p
1399 		 * is actually now running somewhere else!
1400 		 */
1401 		while (task_running(rq, p)) {
1402 			if (match_state && unlikely(p->state != match_state))
1403 				return 0;
1404 			cpu_relax();
1405 		}
1406 
1407 		/*
1408 		 * Ok, time to look more closely! We need the rq
1409 		 * lock now, to be *sure*. If we're wrong, we'll
1410 		 * just go back and repeat.
1411 		 */
1412 		rq = task_rq_lock(p, &rf);
1413 		trace_sched_wait_task(p);
1414 		running = task_running(rq, p);
1415 		queued = task_on_rq_queued(p);
1416 		ncsw = 0;
1417 		if (!match_state || p->state == match_state)
1418 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1419 		task_rq_unlock(rq, p, &rf);
1420 
1421 		/*
1422 		 * If it changed from the expected state, bail out now.
1423 		 */
1424 		if (unlikely(!ncsw))
1425 			break;
1426 
1427 		/*
1428 		 * Was it really running after all now that we
1429 		 * checked with the proper locks actually held?
1430 		 *
1431 		 * Oops. Go back and try again..
1432 		 */
1433 		if (unlikely(running)) {
1434 			cpu_relax();
1435 			continue;
1436 		}
1437 
1438 		/*
1439 		 * It's not enough that it's not actively running,
1440 		 * it must be off the runqueue _entirely_, and not
1441 		 * preempted!
1442 		 *
1443 		 * So if it was still runnable (but just not actively
1444 		 * running right now), it's preempted, and we should
1445 		 * yield - it could be a while.
1446 		 */
1447 		if (unlikely(queued)) {
1448 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1449 
1450 			set_current_state(TASK_UNINTERRUPTIBLE);
1451 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1452 			continue;
1453 		}
1454 
1455 		/*
1456 		 * Ahh, all good. It wasn't running, and it wasn't
1457 		 * runnable, which means that it will never become
1458 		 * running in the future either. We're all done!
1459 		 */
1460 		break;
1461 	}
1462 
1463 	return ncsw;
1464 }
1465 
1466 /***
1467  * kick_process - kick a running thread to enter/exit the kernel
1468  * @p: the to-be-kicked thread
1469  *
1470  * Cause a process which is running on another CPU to enter
1471  * kernel-mode, without any delay. (to get signals handled.)
1472  *
1473  * NOTE: this function doesn't have to take the runqueue lock,
1474  * because all it wants to ensure is that the remote task enters
1475  * the kernel. If the IPI races and the task has been migrated
1476  * to another CPU then no harm is done and the purpose has been
1477  * achieved as well.
1478  */
1479 void kick_process(struct task_struct *p)
1480 {
1481 	int cpu;
1482 
1483 	preempt_disable();
1484 	cpu = task_cpu(p);
1485 	if ((cpu != smp_processor_id()) && task_curr(p))
1486 		smp_send_reschedule(cpu);
1487 	preempt_enable();
1488 }
1489 EXPORT_SYMBOL_GPL(kick_process);
1490 
1491 /*
1492  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1493  *
1494  * A few notes on cpu_active vs cpu_online:
1495  *
1496  *  - cpu_active must be a subset of cpu_online
1497  *
1498  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1499  *    see __set_cpus_allowed_ptr(). At this point the newly online
1500  *    cpu isn't yet part of the sched domains, and balancing will not
1501  *    see it.
1502  *
1503  *  - on cpu-down we clear cpu_active() to mask the sched domains and
1504  *    avoid the load balancer to place new tasks on the to be removed
1505  *    cpu. Existing tasks will remain running there and will be taken
1506  *    off.
1507  *
1508  * This means that fallback selection must not select !active CPUs.
1509  * And can assume that any active CPU must be online. Conversely
1510  * select_task_rq() below may allow selection of !active CPUs in order
1511  * to satisfy the above rules.
1512  */
1513 static int select_fallback_rq(int cpu, struct task_struct *p)
1514 {
1515 	int nid = cpu_to_node(cpu);
1516 	const struct cpumask *nodemask = NULL;
1517 	enum { cpuset, possible, fail } state = cpuset;
1518 	int dest_cpu;
1519 
1520 	/*
1521 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1522 	 * will return -1. There is no cpu on the node, and we should
1523 	 * select the cpu on the other node.
1524 	 */
1525 	if (nid != -1) {
1526 		nodemask = cpumask_of_node(nid);
1527 
1528 		/* Look for allowed, online CPU in same node. */
1529 		for_each_cpu(dest_cpu, nodemask) {
1530 			if (!cpu_active(dest_cpu))
1531 				continue;
1532 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1533 				return dest_cpu;
1534 		}
1535 	}
1536 
1537 	for (;;) {
1538 		/* Any allowed, online CPU? */
1539 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1540 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1541 				continue;
1542 			if (!cpu_online(dest_cpu))
1543 				continue;
1544 			goto out;
1545 		}
1546 
1547 		/* No more Mr. Nice Guy. */
1548 		switch (state) {
1549 		case cpuset:
1550 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1551 				cpuset_cpus_allowed_fallback(p);
1552 				state = possible;
1553 				break;
1554 			}
1555 			/* fall-through */
1556 		case possible:
1557 			do_set_cpus_allowed(p, cpu_possible_mask);
1558 			state = fail;
1559 			break;
1560 
1561 		case fail:
1562 			BUG();
1563 			break;
1564 		}
1565 	}
1566 
1567 out:
1568 	if (state != cpuset) {
1569 		/*
1570 		 * Don't tell them about moving exiting tasks or
1571 		 * kernel threads (both mm NULL), since they never
1572 		 * leave kernel.
1573 		 */
1574 		if (p->mm && printk_ratelimit()) {
1575 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1576 					task_pid_nr(p), p->comm, cpu);
1577 		}
1578 	}
1579 
1580 	return dest_cpu;
1581 }
1582 
1583 /*
1584  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1585  */
1586 static inline
1587 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1588 {
1589 	lockdep_assert_held(&p->pi_lock);
1590 
1591 	if (tsk_nr_cpus_allowed(p) > 1)
1592 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1593 	else
1594 		cpu = cpumask_any(tsk_cpus_allowed(p));
1595 
1596 	/*
1597 	 * In order not to call set_task_cpu() on a blocking task we need
1598 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1599 	 * cpu.
1600 	 *
1601 	 * Since this is common to all placement strategies, this lives here.
1602 	 *
1603 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1604 	 *   not worry about this generic constraint ]
1605 	 */
1606 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1607 		     !cpu_online(cpu)))
1608 		cpu = select_fallback_rq(task_cpu(p), p);
1609 
1610 	return cpu;
1611 }
1612 
1613 static void update_avg(u64 *avg, u64 sample)
1614 {
1615 	s64 diff = sample - *avg;
1616 	*avg += diff >> 3;
1617 }
1618 
1619 #else
1620 
1621 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1622 					 const struct cpumask *new_mask, bool check)
1623 {
1624 	return set_cpus_allowed_ptr(p, new_mask);
1625 }
1626 
1627 #endif /* CONFIG_SMP */
1628 
1629 static void
1630 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1631 {
1632 #ifdef CONFIG_SCHEDSTATS
1633 	struct rq *rq = this_rq();
1634 
1635 #ifdef CONFIG_SMP
1636 	int this_cpu = smp_processor_id();
1637 
1638 	if (cpu == this_cpu) {
1639 		schedstat_inc(rq, ttwu_local);
1640 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1641 	} else {
1642 		struct sched_domain *sd;
1643 
1644 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1645 		rcu_read_lock();
1646 		for_each_domain(this_cpu, sd) {
1647 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1648 				schedstat_inc(sd, ttwu_wake_remote);
1649 				break;
1650 			}
1651 		}
1652 		rcu_read_unlock();
1653 	}
1654 
1655 	if (wake_flags & WF_MIGRATED)
1656 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1657 
1658 #endif /* CONFIG_SMP */
1659 
1660 	schedstat_inc(rq, ttwu_count);
1661 	schedstat_inc(p, se.statistics.nr_wakeups);
1662 
1663 	if (wake_flags & WF_SYNC)
1664 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1665 
1666 #endif /* CONFIG_SCHEDSTATS */
1667 }
1668 
1669 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1670 {
1671 	activate_task(rq, p, en_flags);
1672 	p->on_rq = TASK_ON_RQ_QUEUED;
1673 
1674 	/* if a worker is waking up, notify workqueue */
1675 	if (p->flags & PF_WQ_WORKER)
1676 		wq_worker_waking_up(p, cpu_of(rq));
1677 }
1678 
1679 /*
1680  * Mark the task runnable and perform wakeup-preemption.
1681  */
1682 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1683 			   struct pin_cookie cookie)
1684 {
1685 	check_preempt_curr(rq, p, wake_flags);
1686 	p->state = TASK_RUNNING;
1687 	trace_sched_wakeup(p);
1688 
1689 #ifdef CONFIG_SMP
1690 	if (p->sched_class->task_woken) {
1691 		/*
1692 		 * Our task @p is fully woken up and running; so its safe to
1693 		 * drop the rq->lock, hereafter rq is only used for statistics.
1694 		 */
1695 		lockdep_unpin_lock(&rq->lock, cookie);
1696 		p->sched_class->task_woken(rq, p);
1697 		lockdep_repin_lock(&rq->lock, cookie);
1698 	}
1699 
1700 	if (rq->idle_stamp) {
1701 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1702 		u64 max = 2*rq->max_idle_balance_cost;
1703 
1704 		update_avg(&rq->avg_idle, delta);
1705 
1706 		if (rq->avg_idle > max)
1707 			rq->avg_idle = max;
1708 
1709 		rq->idle_stamp = 0;
1710 	}
1711 #endif
1712 }
1713 
1714 static void
1715 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1716 		 struct pin_cookie cookie)
1717 {
1718 	int en_flags = ENQUEUE_WAKEUP;
1719 
1720 	lockdep_assert_held(&rq->lock);
1721 
1722 #ifdef CONFIG_SMP
1723 	if (p->sched_contributes_to_load)
1724 		rq->nr_uninterruptible--;
1725 
1726 	if (wake_flags & WF_MIGRATED)
1727 		en_flags |= ENQUEUE_MIGRATED;
1728 #endif
1729 
1730 	ttwu_activate(rq, p, en_flags);
1731 	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1732 }
1733 
1734 /*
1735  * Called in case the task @p isn't fully descheduled from its runqueue,
1736  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1737  * since all we need to do is flip p->state to TASK_RUNNING, since
1738  * the task is still ->on_rq.
1739  */
1740 static int ttwu_remote(struct task_struct *p, int wake_flags)
1741 {
1742 	struct rq_flags rf;
1743 	struct rq *rq;
1744 	int ret = 0;
1745 
1746 	rq = __task_rq_lock(p, &rf);
1747 	if (task_on_rq_queued(p)) {
1748 		/* check_preempt_curr() may use rq clock */
1749 		update_rq_clock(rq);
1750 		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1751 		ret = 1;
1752 	}
1753 	__task_rq_unlock(rq, &rf);
1754 
1755 	return ret;
1756 }
1757 
1758 #ifdef CONFIG_SMP
1759 void sched_ttwu_pending(void)
1760 {
1761 	struct rq *rq = this_rq();
1762 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1763 	struct pin_cookie cookie;
1764 	struct task_struct *p;
1765 	unsigned long flags;
1766 
1767 	if (!llist)
1768 		return;
1769 
1770 	raw_spin_lock_irqsave(&rq->lock, flags);
1771 	cookie = lockdep_pin_lock(&rq->lock);
1772 
1773 	while (llist) {
1774 		int wake_flags = 0;
1775 
1776 		p = llist_entry(llist, struct task_struct, wake_entry);
1777 		llist = llist_next(llist);
1778 
1779 		if (p->sched_remote_wakeup)
1780 			wake_flags = WF_MIGRATED;
1781 
1782 		ttwu_do_activate(rq, p, wake_flags, cookie);
1783 	}
1784 
1785 	lockdep_unpin_lock(&rq->lock, cookie);
1786 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1787 }
1788 
1789 void scheduler_ipi(void)
1790 {
1791 	/*
1792 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1793 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1794 	 * this IPI.
1795 	 */
1796 	preempt_fold_need_resched();
1797 
1798 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1799 		return;
1800 
1801 	/*
1802 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1803 	 * traditionally all their work was done from the interrupt return
1804 	 * path. Now that we actually do some work, we need to make sure
1805 	 * we do call them.
1806 	 *
1807 	 * Some archs already do call them, luckily irq_enter/exit nest
1808 	 * properly.
1809 	 *
1810 	 * Arguably we should visit all archs and update all handlers,
1811 	 * however a fair share of IPIs are still resched only so this would
1812 	 * somewhat pessimize the simple resched case.
1813 	 */
1814 	irq_enter();
1815 	sched_ttwu_pending();
1816 
1817 	/*
1818 	 * Check if someone kicked us for doing the nohz idle load balance.
1819 	 */
1820 	if (unlikely(got_nohz_idle_kick())) {
1821 		this_rq()->idle_balance = 1;
1822 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1823 	}
1824 	irq_exit();
1825 }
1826 
1827 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1828 {
1829 	struct rq *rq = cpu_rq(cpu);
1830 
1831 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1832 
1833 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1834 		if (!set_nr_if_polling(rq->idle))
1835 			smp_send_reschedule(cpu);
1836 		else
1837 			trace_sched_wake_idle_without_ipi(cpu);
1838 	}
1839 }
1840 
1841 void wake_up_if_idle(int cpu)
1842 {
1843 	struct rq *rq = cpu_rq(cpu);
1844 	unsigned long flags;
1845 
1846 	rcu_read_lock();
1847 
1848 	if (!is_idle_task(rcu_dereference(rq->curr)))
1849 		goto out;
1850 
1851 	if (set_nr_if_polling(rq->idle)) {
1852 		trace_sched_wake_idle_without_ipi(cpu);
1853 	} else {
1854 		raw_spin_lock_irqsave(&rq->lock, flags);
1855 		if (is_idle_task(rq->curr))
1856 			smp_send_reschedule(cpu);
1857 		/* Else cpu is not in idle, do nothing here */
1858 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1859 	}
1860 
1861 out:
1862 	rcu_read_unlock();
1863 }
1864 
1865 bool cpus_share_cache(int this_cpu, int that_cpu)
1866 {
1867 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1868 }
1869 #endif /* CONFIG_SMP */
1870 
1871 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1872 {
1873 	struct rq *rq = cpu_rq(cpu);
1874 	struct pin_cookie cookie;
1875 
1876 #if defined(CONFIG_SMP)
1877 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1878 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1879 		ttwu_queue_remote(p, cpu, wake_flags);
1880 		return;
1881 	}
1882 #endif
1883 
1884 	raw_spin_lock(&rq->lock);
1885 	cookie = lockdep_pin_lock(&rq->lock);
1886 	ttwu_do_activate(rq, p, wake_flags, cookie);
1887 	lockdep_unpin_lock(&rq->lock, cookie);
1888 	raw_spin_unlock(&rq->lock);
1889 }
1890 
1891 /*
1892  * Notes on Program-Order guarantees on SMP systems.
1893  *
1894  *  MIGRATION
1895  *
1896  * The basic program-order guarantee on SMP systems is that when a task [t]
1897  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1898  * execution on its new cpu [c1].
1899  *
1900  * For migration (of runnable tasks) this is provided by the following means:
1901  *
1902  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1903  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1904  *     rq(c1)->lock (if not at the same time, then in that order).
1905  *  C) LOCK of the rq(c1)->lock scheduling in task
1906  *
1907  * Transitivity guarantees that B happens after A and C after B.
1908  * Note: we only require RCpc transitivity.
1909  * Note: the cpu doing B need not be c0 or c1
1910  *
1911  * Example:
1912  *
1913  *   CPU0            CPU1            CPU2
1914  *
1915  *   LOCK rq(0)->lock
1916  *   sched-out X
1917  *   sched-in Y
1918  *   UNLOCK rq(0)->lock
1919  *
1920  *                                   LOCK rq(0)->lock // orders against CPU0
1921  *                                   dequeue X
1922  *                                   UNLOCK rq(0)->lock
1923  *
1924  *                                   LOCK rq(1)->lock
1925  *                                   enqueue X
1926  *                                   UNLOCK rq(1)->lock
1927  *
1928  *                   LOCK rq(1)->lock // orders against CPU2
1929  *                   sched-out Z
1930  *                   sched-in X
1931  *                   UNLOCK rq(1)->lock
1932  *
1933  *
1934  *  BLOCKING -- aka. SLEEP + WAKEUP
1935  *
1936  * For blocking we (obviously) need to provide the same guarantee as for
1937  * migration. However the means are completely different as there is no lock
1938  * chain to provide order. Instead we do:
1939  *
1940  *   1) smp_store_release(X->on_cpu, 0)
1941  *   2) smp_cond_load_acquire(!X->on_cpu)
1942  *
1943  * Example:
1944  *
1945  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1946  *
1947  *   LOCK rq(0)->lock LOCK X->pi_lock
1948  *   dequeue X
1949  *   sched-out X
1950  *   smp_store_release(X->on_cpu, 0);
1951  *
1952  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1953  *                    X->state = WAKING
1954  *                    set_task_cpu(X,2)
1955  *
1956  *                    LOCK rq(2)->lock
1957  *                    enqueue X
1958  *                    X->state = RUNNING
1959  *                    UNLOCK rq(2)->lock
1960  *
1961  *                                          LOCK rq(2)->lock // orders against CPU1
1962  *                                          sched-out Z
1963  *                                          sched-in X
1964  *                                          UNLOCK rq(2)->lock
1965  *
1966  *                    UNLOCK X->pi_lock
1967  *   UNLOCK rq(0)->lock
1968  *
1969  *
1970  * However; for wakeups there is a second guarantee we must provide, namely we
1971  * must observe the state that lead to our wakeup. That is, not only must our
1972  * task observe its own prior state, it must also observe the stores prior to
1973  * its wakeup.
1974  *
1975  * This means that any means of doing remote wakeups must order the CPU doing
1976  * the wakeup against the CPU the task is going to end up running on. This,
1977  * however, is already required for the regular Program-Order guarantee above,
1978  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1979  *
1980  */
1981 
1982 /**
1983  * try_to_wake_up - wake up a thread
1984  * @p: the thread to be awakened
1985  * @state: the mask of task states that can be woken
1986  * @wake_flags: wake modifier flags (WF_*)
1987  *
1988  * Put it on the run-queue if it's not already there. The "current"
1989  * thread is always on the run-queue (except when the actual
1990  * re-schedule is in progress), and as such you're allowed to do
1991  * the simpler "current->state = TASK_RUNNING" to mark yourself
1992  * runnable without the overhead of this.
1993  *
1994  * Return: %true if @p was woken up, %false if it was already running.
1995  * or @state didn't match @p's state.
1996  */
1997 static int
1998 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1999 {
2000 	unsigned long flags;
2001 	int cpu, success = 0;
2002 
2003 	/*
2004 	 * If we are going to wake up a thread waiting for CONDITION we
2005 	 * need to ensure that CONDITION=1 done by the caller can not be
2006 	 * reordered with p->state check below. This pairs with mb() in
2007 	 * set_current_state() the waiting thread does.
2008 	 */
2009 	smp_mb__before_spinlock();
2010 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2011 	if (!(p->state & state))
2012 		goto out;
2013 
2014 	trace_sched_waking(p);
2015 
2016 	success = 1; /* we're going to change ->state */
2017 	cpu = task_cpu(p);
2018 
2019 	if (p->on_rq && ttwu_remote(p, wake_flags))
2020 		goto stat;
2021 
2022 #ifdef CONFIG_SMP
2023 	/*
2024 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2025 	 * possible to, falsely, observe p->on_cpu == 0.
2026 	 *
2027 	 * One must be running (->on_cpu == 1) in order to remove oneself
2028 	 * from the runqueue.
2029 	 *
2030 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2031 	 *      UNLOCK rq->lock
2032 	 *			RMB
2033 	 *      LOCK   rq->lock
2034 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2035 	 *
2036 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2037 	 * from the consecutive calls to schedule(); the first switching to our
2038 	 * task, the second putting it to sleep.
2039 	 */
2040 	smp_rmb();
2041 
2042 	/*
2043 	 * If the owning (remote) cpu is still in the middle of schedule() with
2044 	 * this task as prev, wait until its done referencing the task.
2045 	 *
2046 	 * Pairs with the smp_store_release() in finish_lock_switch().
2047 	 *
2048 	 * This ensures that tasks getting woken will be fully ordered against
2049 	 * their previous state and preserve Program Order.
2050 	 */
2051 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2052 
2053 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2054 	p->state = TASK_WAKING;
2055 
2056 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2057 	if (task_cpu(p) != cpu) {
2058 		wake_flags |= WF_MIGRATED;
2059 		set_task_cpu(p, cpu);
2060 	}
2061 #endif /* CONFIG_SMP */
2062 
2063 	ttwu_queue(p, cpu, wake_flags);
2064 stat:
2065 	if (schedstat_enabled())
2066 		ttwu_stat(p, cpu, wake_flags);
2067 out:
2068 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2069 
2070 	return success;
2071 }
2072 
2073 /**
2074  * try_to_wake_up_local - try to wake up a local task with rq lock held
2075  * @p: the thread to be awakened
2076  *
2077  * Put @p on the run-queue if it's not already there. The caller must
2078  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2079  * the current task.
2080  */
2081 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2082 {
2083 	struct rq *rq = task_rq(p);
2084 
2085 	if (WARN_ON_ONCE(rq != this_rq()) ||
2086 	    WARN_ON_ONCE(p == current))
2087 		return;
2088 
2089 	lockdep_assert_held(&rq->lock);
2090 
2091 	if (!raw_spin_trylock(&p->pi_lock)) {
2092 		/*
2093 		 * This is OK, because current is on_cpu, which avoids it being
2094 		 * picked for load-balance and preemption/IRQs are still
2095 		 * disabled avoiding further scheduler activity on it and we've
2096 		 * not yet picked a replacement task.
2097 		 */
2098 		lockdep_unpin_lock(&rq->lock, cookie);
2099 		raw_spin_unlock(&rq->lock);
2100 		raw_spin_lock(&p->pi_lock);
2101 		raw_spin_lock(&rq->lock);
2102 		lockdep_repin_lock(&rq->lock, cookie);
2103 	}
2104 
2105 	if (!(p->state & TASK_NORMAL))
2106 		goto out;
2107 
2108 	trace_sched_waking(p);
2109 
2110 	if (!task_on_rq_queued(p))
2111 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2112 
2113 	ttwu_do_wakeup(rq, p, 0, cookie);
2114 	if (schedstat_enabled())
2115 		ttwu_stat(p, smp_processor_id(), 0);
2116 out:
2117 	raw_spin_unlock(&p->pi_lock);
2118 }
2119 
2120 /**
2121  * wake_up_process - Wake up a specific process
2122  * @p: The process to be woken up.
2123  *
2124  * Attempt to wake up the nominated process and move it to the set of runnable
2125  * processes.
2126  *
2127  * Return: 1 if the process was woken up, 0 if it was already running.
2128  *
2129  * It may be assumed that this function implies a write memory barrier before
2130  * changing the task state if and only if any tasks are woken up.
2131  */
2132 int wake_up_process(struct task_struct *p)
2133 {
2134 	return try_to_wake_up(p, TASK_NORMAL, 0);
2135 }
2136 EXPORT_SYMBOL(wake_up_process);
2137 
2138 int wake_up_state(struct task_struct *p, unsigned int state)
2139 {
2140 	return try_to_wake_up(p, state, 0);
2141 }
2142 
2143 /*
2144  * This function clears the sched_dl_entity static params.
2145  */
2146 void __dl_clear_params(struct task_struct *p)
2147 {
2148 	struct sched_dl_entity *dl_se = &p->dl;
2149 
2150 	dl_se->dl_runtime = 0;
2151 	dl_se->dl_deadline = 0;
2152 	dl_se->dl_period = 0;
2153 	dl_se->flags = 0;
2154 	dl_se->dl_bw = 0;
2155 
2156 	dl_se->dl_throttled = 0;
2157 	dl_se->dl_yielded = 0;
2158 }
2159 
2160 /*
2161  * Perform scheduler related setup for a newly forked process p.
2162  * p is forked by current.
2163  *
2164  * __sched_fork() is basic setup used by init_idle() too:
2165  */
2166 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2167 {
2168 	p->on_rq			= 0;
2169 
2170 	p->se.on_rq			= 0;
2171 	p->se.exec_start		= 0;
2172 	p->se.sum_exec_runtime		= 0;
2173 	p->se.prev_sum_exec_runtime	= 0;
2174 	p->se.nr_migrations		= 0;
2175 	p->se.vruntime			= 0;
2176 	INIT_LIST_HEAD(&p->se.group_node);
2177 
2178 #ifdef CONFIG_FAIR_GROUP_SCHED
2179 	p->se.cfs_rq			= NULL;
2180 #endif
2181 
2182 #ifdef CONFIG_SCHEDSTATS
2183 	/* Even if schedstat is disabled, there should not be garbage */
2184 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2185 #endif
2186 
2187 	RB_CLEAR_NODE(&p->dl.rb_node);
2188 	init_dl_task_timer(&p->dl);
2189 	__dl_clear_params(p);
2190 
2191 	INIT_LIST_HEAD(&p->rt.run_list);
2192 	p->rt.timeout		= 0;
2193 	p->rt.time_slice	= sched_rr_timeslice;
2194 	p->rt.on_rq		= 0;
2195 	p->rt.on_list		= 0;
2196 
2197 #ifdef CONFIG_PREEMPT_NOTIFIERS
2198 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2199 #endif
2200 
2201 #ifdef CONFIG_NUMA_BALANCING
2202 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2203 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2204 		p->mm->numa_scan_seq = 0;
2205 	}
2206 
2207 	if (clone_flags & CLONE_VM)
2208 		p->numa_preferred_nid = current->numa_preferred_nid;
2209 	else
2210 		p->numa_preferred_nid = -1;
2211 
2212 	p->node_stamp = 0ULL;
2213 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2214 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2215 	p->numa_work.next = &p->numa_work;
2216 	p->numa_faults = NULL;
2217 	p->last_task_numa_placement = 0;
2218 	p->last_sum_exec_runtime = 0;
2219 
2220 	p->numa_group = NULL;
2221 #endif /* CONFIG_NUMA_BALANCING */
2222 }
2223 
2224 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2225 
2226 #ifdef CONFIG_NUMA_BALANCING
2227 
2228 void set_numabalancing_state(bool enabled)
2229 {
2230 	if (enabled)
2231 		static_branch_enable(&sched_numa_balancing);
2232 	else
2233 		static_branch_disable(&sched_numa_balancing);
2234 }
2235 
2236 #ifdef CONFIG_PROC_SYSCTL
2237 int sysctl_numa_balancing(struct ctl_table *table, int write,
2238 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2239 {
2240 	struct ctl_table t;
2241 	int err;
2242 	int state = static_branch_likely(&sched_numa_balancing);
2243 
2244 	if (write && !capable(CAP_SYS_ADMIN))
2245 		return -EPERM;
2246 
2247 	t = *table;
2248 	t.data = &state;
2249 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2250 	if (err < 0)
2251 		return err;
2252 	if (write)
2253 		set_numabalancing_state(state);
2254 	return err;
2255 }
2256 #endif
2257 #endif
2258 
2259 #ifdef CONFIG_SCHEDSTATS
2260 
2261 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2262 static bool __initdata __sched_schedstats = false;
2263 
2264 static void set_schedstats(bool enabled)
2265 {
2266 	if (enabled)
2267 		static_branch_enable(&sched_schedstats);
2268 	else
2269 		static_branch_disable(&sched_schedstats);
2270 }
2271 
2272 void force_schedstat_enabled(void)
2273 {
2274 	if (!schedstat_enabled()) {
2275 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2276 		static_branch_enable(&sched_schedstats);
2277 	}
2278 }
2279 
2280 static int __init setup_schedstats(char *str)
2281 {
2282 	int ret = 0;
2283 	if (!str)
2284 		goto out;
2285 
2286 	/*
2287 	 * This code is called before jump labels have been set up, so we can't
2288 	 * change the static branch directly just yet.  Instead set a temporary
2289 	 * variable so init_schedstats() can do it later.
2290 	 */
2291 	if (!strcmp(str, "enable")) {
2292 		__sched_schedstats = true;
2293 		ret = 1;
2294 	} else if (!strcmp(str, "disable")) {
2295 		__sched_schedstats = false;
2296 		ret = 1;
2297 	}
2298 out:
2299 	if (!ret)
2300 		pr_warn("Unable to parse schedstats=\n");
2301 
2302 	return ret;
2303 }
2304 __setup("schedstats=", setup_schedstats);
2305 
2306 static void __init init_schedstats(void)
2307 {
2308 	set_schedstats(__sched_schedstats);
2309 }
2310 
2311 #ifdef CONFIG_PROC_SYSCTL
2312 int sysctl_schedstats(struct ctl_table *table, int write,
2313 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2314 {
2315 	struct ctl_table t;
2316 	int err;
2317 	int state = static_branch_likely(&sched_schedstats);
2318 
2319 	if (write && !capable(CAP_SYS_ADMIN))
2320 		return -EPERM;
2321 
2322 	t = *table;
2323 	t.data = &state;
2324 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2325 	if (err < 0)
2326 		return err;
2327 	if (write)
2328 		set_schedstats(state);
2329 	return err;
2330 }
2331 #endif /* CONFIG_PROC_SYSCTL */
2332 #else  /* !CONFIG_SCHEDSTATS */
2333 static inline void init_schedstats(void) {}
2334 #endif /* CONFIG_SCHEDSTATS */
2335 
2336 /*
2337  * fork()/clone()-time setup:
2338  */
2339 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2340 {
2341 	unsigned long flags;
2342 	int cpu = get_cpu();
2343 
2344 	__sched_fork(clone_flags, p);
2345 	/*
2346 	 * We mark the process as NEW here. This guarantees that
2347 	 * nobody will actually run it, and a signal or other external
2348 	 * event cannot wake it up and insert it on the runqueue either.
2349 	 */
2350 	p->state = TASK_NEW;
2351 
2352 	/*
2353 	 * Make sure we do not leak PI boosting priority to the child.
2354 	 */
2355 	p->prio = current->normal_prio;
2356 
2357 	/*
2358 	 * Revert to default priority/policy on fork if requested.
2359 	 */
2360 	if (unlikely(p->sched_reset_on_fork)) {
2361 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2362 			p->policy = SCHED_NORMAL;
2363 			p->static_prio = NICE_TO_PRIO(0);
2364 			p->rt_priority = 0;
2365 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2366 			p->static_prio = NICE_TO_PRIO(0);
2367 
2368 		p->prio = p->normal_prio = __normal_prio(p);
2369 		set_load_weight(p);
2370 
2371 		/*
2372 		 * We don't need the reset flag anymore after the fork. It has
2373 		 * fulfilled its duty:
2374 		 */
2375 		p->sched_reset_on_fork = 0;
2376 	}
2377 
2378 	if (dl_prio(p->prio)) {
2379 		put_cpu();
2380 		return -EAGAIN;
2381 	} else if (rt_prio(p->prio)) {
2382 		p->sched_class = &rt_sched_class;
2383 	} else {
2384 		p->sched_class = &fair_sched_class;
2385 	}
2386 
2387 	init_entity_runnable_average(&p->se);
2388 
2389 	/*
2390 	 * The child is not yet in the pid-hash so no cgroup attach races,
2391 	 * and the cgroup is pinned to this child due to cgroup_fork()
2392 	 * is ran before sched_fork().
2393 	 *
2394 	 * Silence PROVE_RCU.
2395 	 */
2396 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2397 	/*
2398 	 * We're setting the cpu for the first time, we don't migrate,
2399 	 * so use __set_task_cpu().
2400 	 */
2401 	__set_task_cpu(p, cpu);
2402 	if (p->sched_class->task_fork)
2403 		p->sched_class->task_fork(p);
2404 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2405 
2406 #ifdef CONFIG_SCHED_INFO
2407 	if (likely(sched_info_on()))
2408 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2409 #endif
2410 #if defined(CONFIG_SMP)
2411 	p->on_cpu = 0;
2412 #endif
2413 	init_task_preempt_count(p);
2414 #ifdef CONFIG_SMP
2415 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2416 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2417 #endif
2418 
2419 	put_cpu();
2420 	return 0;
2421 }
2422 
2423 unsigned long to_ratio(u64 period, u64 runtime)
2424 {
2425 	if (runtime == RUNTIME_INF)
2426 		return 1ULL << 20;
2427 
2428 	/*
2429 	 * Doing this here saves a lot of checks in all
2430 	 * the calling paths, and returning zero seems
2431 	 * safe for them anyway.
2432 	 */
2433 	if (period == 0)
2434 		return 0;
2435 
2436 	return div64_u64(runtime << 20, period);
2437 }
2438 
2439 #ifdef CONFIG_SMP
2440 inline struct dl_bw *dl_bw_of(int i)
2441 {
2442 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2443 			 "sched RCU must be held");
2444 	return &cpu_rq(i)->rd->dl_bw;
2445 }
2446 
2447 static inline int dl_bw_cpus(int i)
2448 {
2449 	struct root_domain *rd = cpu_rq(i)->rd;
2450 	int cpus = 0;
2451 
2452 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2453 			 "sched RCU must be held");
2454 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2455 		cpus++;
2456 
2457 	return cpus;
2458 }
2459 #else
2460 inline struct dl_bw *dl_bw_of(int i)
2461 {
2462 	return &cpu_rq(i)->dl.dl_bw;
2463 }
2464 
2465 static inline int dl_bw_cpus(int i)
2466 {
2467 	return 1;
2468 }
2469 #endif
2470 
2471 /*
2472  * We must be sure that accepting a new task (or allowing changing the
2473  * parameters of an existing one) is consistent with the bandwidth
2474  * constraints. If yes, this function also accordingly updates the currently
2475  * allocated bandwidth to reflect the new situation.
2476  *
2477  * This function is called while holding p's rq->lock.
2478  *
2479  * XXX we should delay bw change until the task's 0-lag point, see
2480  * __setparam_dl().
2481  */
2482 static int dl_overflow(struct task_struct *p, int policy,
2483 		       const struct sched_attr *attr)
2484 {
2485 
2486 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2487 	u64 period = attr->sched_period ?: attr->sched_deadline;
2488 	u64 runtime = attr->sched_runtime;
2489 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2490 	int cpus, err = -1;
2491 
2492 	/* !deadline task may carry old deadline bandwidth */
2493 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2494 		return 0;
2495 
2496 	/*
2497 	 * Either if a task, enters, leave, or stays -deadline but changes
2498 	 * its parameters, we may need to update accordingly the total
2499 	 * allocated bandwidth of the container.
2500 	 */
2501 	raw_spin_lock(&dl_b->lock);
2502 	cpus = dl_bw_cpus(task_cpu(p));
2503 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2504 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2505 		__dl_add(dl_b, new_bw);
2506 		err = 0;
2507 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2508 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2509 		__dl_clear(dl_b, p->dl.dl_bw);
2510 		__dl_add(dl_b, new_bw);
2511 		err = 0;
2512 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2513 		__dl_clear(dl_b, p->dl.dl_bw);
2514 		err = 0;
2515 	}
2516 	raw_spin_unlock(&dl_b->lock);
2517 
2518 	return err;
2519 }
2520 
2521 extern void init_dl_bw(struct dl_bw *dl_b);
2522 
2523 /*
2524  * wake_up_new_task - wake up a newly created task for the first time.
2525  *
2526  * This function will do some initial scheduler statistics housekeeping
2527  * that must be done for every newly created context, then puts the task
2528  * on the runqueue and wakes it.
2529  */
2530 void wake_up_new_task(struct task_struct *p)
2531 {
2532 	struct rq_flags rf;
2533 	struct rq *rq;
2534 
2535 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2536 	p->state = TASK_RUNNING;
2537 #ifdef CONFIG_SMP
2538 	/*
2539 	 * Fork balancing, do it here and not earlier because:
2540 	 *  - cpus_allowed can change in the fork path
2541 	 *  - any previously selected cpu might disappear through hotplug
2542 	 *
2543 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2544 	 * as we're not fully set-up yet.
2545 	 */
2546 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2547 #endif
2548 	rq = __task_rq_lock(p, &rf);
2549 	post_init_entity_util_avg(&p->se);
2550 
2551 	activate_task(rq, p, 0);
2552 	p->on_rq = TASK_ON_RQ_QUEUED;
2553 	trace_sched_wakeup_new(p);
2554 	check_preempt_curr(rq, p, WF_FORK);
2555 #ifdef CONFIG_SMP
2556 	if (p->sched_class->task_woken) {
2557 		/*
2558 		 * Nothing relies on rq->lock after this, so its fine to
2559 		 * drop it.
2560 		 */
2561 		lockdep_unpin_lock(&rq->lock, rf.cookie);
2562 		p->sched_class->task_woken(rq, p);
2563 		lockdep_repin_lock(&rq->lock, rf.cookie);
2564 	}
2565 #endif
2566 	task_rq_unlock(rq, p, &rf);
2567 }
2568 
2569 #ifdef CONFIG_PREEMPT_NOTIFIERS
2570 
2571 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2572 
2573 void preempt_notifier_inc(void)
2574 {
2575 	static_key_slow_inc(&preempt_notifier_key);
2576 }
2577 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2578 
2579 void preempt_notifier_dec(void)
2580 {
2581 	static_key_slow_dec(&preempt_notifier_key);
2582 }
2583 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2584 
2585 /**
2586  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2587  * @notifier: notifier struct to register
2588  */
2589 void preempt_notifier_register(struct preempt_notifier *notifier)
2590 {
2591 	if (!static_key_false(&preempt_notifier_key))
2592 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2593 
2594 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2595 }
2596 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2597 
2598 /**
2599  * preempt_notifier_unregister - no longer interested in preemption notifications
2600  * @notifier: notifier struct to unregister
2601  *
2602  * This is *not* safe to call from within a preemption notifier.
2603  */
2604 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2605 {
2606 	hlist_del(&notifier->link);
2607 }
2608 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2609 
2610 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2611 {
2612 	struct preempt_notifier *notifier;
2613 
2614 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2615 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2616 }
2617 
2618 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2619 {
2620 	if (static_key_false(&preempt_notifier_key))
2621 		__fire_sched_in_preempt_notifiers(curr);
2622 }
2623 
2624 static void
2625 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2626 				   struct task_struct *next)
2627 {
2628 	struct preempt_notifier *notifier;
2629 
2630 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2631 		notifier->ops->sched_out(notifier, next);
2632 }
2633 
2634 static __always_inline void
2635 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2636 				 struct task_struct *next)
2637 {
2638 	if (static_key_false(&preempt_notifier_key))
2639 		__fire_sched_out_preempt_notifiers(curr, next);
2640 }
2641 
2642 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2643 
2644 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2645 {
2646 }
2647 
2648 static inline void
2649 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2650 				 struct task_struct *next)
2651 {
2652 }
2653 
2654 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2655 
2656 /**
2657  * prepare_task_switch - prepare to switch tasks
2658  * @rq: the runqueue preparing to switch
2659  * @prev: the current task that is being switched out
2660  * @next: the task we are going to switch to.
2661  *
2662  * This is called with the rq lock held and interrupts off. It must
2663  * be paired with a subsequent finish_task_switch after the context
2664  * switch.
2665  *
2666  * prepare_task_switch sets up locking and calls architecture specific
2667  * hooks.
2668  */
2669 static inline void
2670 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2671 		    struct task_struct *next)
2672 {
2673 	sched_info_switch(rq, prev, next);
2674 	perf_event_task_sched_out(prev, next);
2675 	fire_sched_out_preempt_notifiers(prev, next);
2676 	prepare_lock_switch(rq, next);
2677 	prepare_arch_switch(next);
2678 }
2679 
2680 /**
2681  * finish_task_switch - clean up after a task-switch
2682  * @prev: the thread we just switched away from.
2683  *
2684  * finish_task_switch must be called after the context switch, paired
2685  * with a prepare_task_switch call before the context switch.
2686  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2687  * and do any other architecture-specific cleanup actions.
2688  *
2689  * Note that we may have delayed dropping an mm in context_switch(). If
2690  * so, we finish that here outside of the runqueue lock. (Doing it
2691  * with the lock held can cause deadlocks; see schedule() for
2692  * details.)
2693  *
2694  * The context switch have flipped the stack from under us and restored the
2695  * local variables which were saved when this task called schedule() in the
2696  * past. prev == current is still correct but we need to recalculate this_rq
2697  * because prev may have moved to another CPU.
2698  */
2699 static struct rq *finish_task_switch(struct task_struct *prev)
2700 	__releases(rq->lock)
2701 {
2702 	struct rq *rq = this_rq();
2703 	struct mm_struct *mm = rq->prev_mm;
2704 	long prev_state;
2705 
2706 	/*
2707 	 * The previous task will have left us with a preempt_count of 2
2708 	 * because it left us after:
2709 	 *
2710 	 *	schedule()
2711 	 *	  preempt_disable();			// 1
2712 	 *	  __schedule()
2713 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2714 	 *
2715 	 * Also, see FORK_PREEMPT_COUNT.
2716 	 */
2717 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2718 		      "corrupted preempt_count: %s/%d/0x%x\n",
2719 		      current->comm, current->pid, preempt_count()))
2720 		preempt_count_set(FORK_PREEMPT_COUNT);
2721 
2722 	rq->prev_mm = NULL;
2723 
2724 	/*
2725 	 * A task struct has one reference for the use as "current".
2726 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2727 	 * schedule one last time. The schedule call will never return, and
2728 	 * the scheduled task must drop that reference.
2729 	 *
2730 	 * We must observe prev->state before clearing prev->on_cpu (in
2731 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2732 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2733 	 * transition, resulting in a double drop.
2734 	 */
2735 	prev_state = prev->state;
2736 	vtime_task_switch(prev);
2737 	perf_event_task_sched_in(prev, current);
2738 	finish_lock_switch(rq, prev);
2739 	finish_arch_post_lock_switch();
2740 
2741 	fire_sched_in_preempt_notifiers(current);
2742 	if (mm)
2743 		mmdrop(mm);
2744 	if (unlikely(prev_state == TASK_DEAD)) {
2745 		if (prev->sched_class->task_dead)
2746 			prev->sched_class->task_dead(prev);
2747 
2748 		/*
2749 		 * Remove function-return probe instances associated with this
2750 		 * task and put them back on the free list.
2751 		 */
2752 		kprobe_flush_task(prev);
2753 		put_task_struct(prev);
2754 	}
2755 
2756 	tick_nohz_task_switch();
2757 	return rq;
2758 }
2759 
2760 #ifdef CONFIG_SMP
2761 
2762 /* rq->lock is NOT held, but preemption is disabled */
2763 static void __balance_callback(struct rq *rq)
2764 {
2765 	struct callback_head *head, *next;
2766 	void (*func)(struct rq *rq);
2767 	unsigned long flags;
2768 
2769 	raw_spin_lock_irqsave(&rq->lock, flags);
2770 	head = rq->balance_callback;
2771 	rq->balance_callback = NULL;
2772 	while (head) {
2773 		func = (void (*)(struct rq *))head->func;
2774 		next = head->next;
2775 		head->next = NULL;
2776 		head = next;
2777 
2778 		func(rq);
2779 	}
2780 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2781 }
2782 
2783 static inline void balance_callback(struct rq *rq)
2784 {
2785 	if (unlikely(rq->balance_callback))
2786 		__balance_callback(rq);
2787 }
2788 
2789 #else
2790 
2791 static inline void balance_callback(struct rq *rq)
2792 {
2793 }
2794 
2795 #endif
2796 
2797 /**
2798  * schedule_tail - first thing a freshly forked thread must call.
2799  * @prev: the thread we just switched away from.
2800  */
2801 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2802 	__releases(rq->lock)
2803 {
2804 	struct rq *rq;
2805 
2806 	/*
2807 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2808 	 * finish_task_switch() for details.
2809 	 *
2810 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2811 	 * and the preempt_enable() will end up enabling preemption (on
2812 	 * PREEMPT_COUNT kernels).
2813 	 */
2814 
2815 	rq = finish_task_switch(prev);
2816 	balance_callback(rq);
2817 	preempt_enable();
2818 
2819 	if (current->set_child_tid)
2820 		put_user(task_pid_vnr(current), current->set_child_tid);
2821 }
2822 
2823 /*
2824  * context_switch - switch to the new MM and the new thread's register state.
2825  */
2826 static __always_inline struct rq *
2827 context_switch(struct rq *rq, struct task_struct *prev,
2828 	       struct task_struct *next, struct pin_cookie cookie)
2829 {
2830 	struct mm_struct *mm, *oldmm;
2831 
2832 	prepare_task_switch(rq, prev, next);
2833 
2834 	mm = next->mm;
2835 	oldmm = prev->active_mm;
2836 	/*
2837 	 * For paravirt, this is coupled with an exit in switch_to to
2838 	 * combine the page table reload and the switch backend into
2839 	 * one hypercall.
2840 	 */
2841 	arch_start_context_switch(prev);
2842 
2843 	if (!mm) {
2844 		next->active_mm = oldmm;
2845 		atomic_inc(&oldmm->mm_count);
2846 		enter_lazy_tlb(oldmm, next);
2847 	} else
2848 		switch_mm_irqs_off(oldmm, mm, next);
2849 
2850 	if (!prev->mm) {
2851 		prev->active_mm = NULL;
2852 		rq->prev_mm = oldmm;
2853 	}
2854 	/*
2855 	 * Since the runqueue lock will be released by the next
2856 	 * task (which is an invalid locking op but in the case
2857 	 * of the scheduler it's an obvious special-case), so we
2858 	 * do an early lockdep release here:
2859 	 */
2860 	lockdep_unpin_lock(&rq->lock, cookie);
2861 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2862 
2863 	/* Here we just switch the register state and the stack. */
2864 	switch_to(prev, next, prev);
2865 	barrier();
2866 
2867 	return finish_task_switch(prev);
2868 }
2869 
2870 /*
2871  * nr_running and nr_context_switches:
2872  *
2873  * externally visible scheduler statistics: current number of runnable
2874  * threads, total number of context switches performed since bootup.
2875  */
2876 unsigned long nr_running(void)
2877 {
2878 	unsigned long i, sum = 0;
2879 
2880 	for_each_online_cpu(i)
2881 		sum += cpu_rq(i)->nr_running;
2882 
2883 	return sum;
2884 }
2885 
2886 /*
2887  * Check if only the current task is running on the cpu.
2888  *
2889  * Caution: this function does not check that the caller has disabled
2890  * preemption, thus the result might have a time-of-check-to-time-of-use
2891  * race.  The caller is responsible to use it correctly, for example:
2892  *
2893  * - from a non-preemptable section (of course)
2894  *
2895  * - from a thread that is bound to a single CPU
2896  *
2897  * - in a loop with very short iterations (e.g. a polling loop)
2898  */
2899 bool single_task_running(void)
2900 {
2901 	return raw_rq()->nr_running == 1;
2902 }
2903 EXPORT_SYMBOL(single_task_running);
2904 
2905 unsigned long long nr_context_switches(void)
2906 {
2907 	int i;
2908 	unsigned long long sum = 0;
2909 
2910 	for_each_possible_cpu(i)
2911 		sum += cpu_rq(i)->nr_switches;
2912 
2913 	return sum;
2914 }
2915 
2916 unsigned long nr_iowait(void)
2917 {
2918 	unsigned long i, sum = 0;
2919 
2920 	for_each_possible_cpu(i)
2921 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2922 
2923 	return sum;
2924 }
2925 
2926 unsigned long nr_iowait_cpu(int cpu)
2927 {
2928 	struct rq *this = cpu_rq(cpu);
2929 	return atomic_read(&this->nr_iowait);
2930 }
2931 
2932 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2933 {
2934 	struct rq *rq = this_rq();
2935 	*nr_waiters = atomic_read(&rq->nr_iowait);
2936 	*load = rq->load.weight;
2937 }
2938 
2939 #ifdef CONFIG_SMP
2940 
2941 /*
2942  * sched_exec - execve() is a valuable balancing opportunity, because at
2943  * this point the task has the smallest effective memory and cache footprint.
2944  */
2945 void sched_exec(void)
2946 {
2947 	struct task_struct *p = current;
2948 	unsigned long flags;
2949 	int dest_cpu;
2950 
2951 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2952 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2953 	if (dest_cpu == smp_processor_id())
2954 		goto unlock;
2955 
2956 	if (likely(cpu_active(dest_cpu))) {
2957 		struct migration_arg arg = { p, dest_cpu };
2958 
2959 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2960 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2961 		return;
2962 	}
2963 unlock:
2964 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2965 }
2966 
2967 #endif
2968 
2969 DEFINE_PER_CPU(struct kernel_stat, kstat);
2970 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2971 
2972 EXPORT_PER_CPU_SYMBOL(kstat);
2973 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2974 
2975 /*
2976  * The function fair_sched_class.update_curr accesses the struct curr
2977  * and its field curr->exec_start; when called from task_sched_runtime(),
2978  * we observe a high rate of cache misses in practice.
2979  * Prefetching this data results in improved performance.
2980  */
2981 static inline void prefetch_curr_exec_start(struct task_struct *p)
2982 {
2983 #ifdef CONFIG_FAIR_GROUP_SCHED
2984 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2985 #else
2986 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2987 #endif
2988 	prefetch(curr);
2989 	prefetch(&curr->exec_start);
2990 }
2991 
2992 /*
2993  * Return accounted runtime for the task.
2994  * In case the task is currently running, return the runtime plus current's
2995  * pending runtime that have not been accounted yet.
2996  */
2997 unsigned long long task_sched_runtime(struct task_struct *p)
2998 {
2999 	struct rq_flags rf;
3000 	struct rq *rq;
3001 	u64 ns;
3002 
3003 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3004 	/*
3005 	 * 64-bit doesn't need locks to atomically read a 64bit value.
3006 	 * So we have a optimization chance when the task's delta_exec is 0.
3007 	 * Reading ->on_cpu is racy, but this is ok.
3008 	 *
3009 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3010 	 * If we race with it entering cpu, unaccounted time is 0. This is
3011 	 * indistinguishable from the read occurring a few cycles earlier.
3012 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3013 	 * been accounted, so we're correct here as well.
3014 	 */
3015 	if (!p->on_cpu || !task_on_rq_queued(p))
3016 		return p->se.sum_exec_runtime;
3017 #endif
3018 
3019 	rq = task_rq_lock(p, &rf);
3020 	/*
3021 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3022 	 * project cycles that may never be accounted to this
3023 	 * thread, breaking clock_gettime().
3024 	 */
3025 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3026 		prefetch_curr_exec_start(p);
3027 		update_rq_clock(rq);
3028 		p->sched_class->update_curr(rq);
3029 	}
3030 	ns = p->se.sum_exec_runtime;
3031 	task_rq_unlock(rq, p, &rf);
3032 
3033 	return ns;
3034 }
3035 
3036 /*
3037  * This function gets called by the timer code, with HZ frequency.
3038  * We call it with interrupts disabled.
3039  */
3040 void scheduler_tick(void)
3041 {
3042 	int cpu = smp_processor_id();
3043 	struct rq *rq = cpu_rq(cpu);
3044 	struct task_struct *curr = rq->curr;
3045 
3046 	sched_clock_tick();
3047 
3048 	raw_spin_lock(&rq->lock);
3049 	update_rq_clock(rq);
3050 	curr->sched_class->task_tick(rq, curr, 0);
3051 	cpu_load_update_active(rq);
3052 	calc_global_load_tick(rq);
3053 	raw_spin_unlock(&rq->lock);
3054 
3055 	perf_event_task_tick();
3056 
3057 #ifdef CONFIG_SMP
3058 	rq->idle_balance = idle_cpu(cpu);
3059 	trigger_load_balance(rq);
3060 #endif
3061 	rq_last_tick_reset(rq);
3062 }
3063 
3064 #ifdef CONFIG_NO_HZ_FULL
3065 /**
3066  * scheduler_tick_max_deferment
3067  *
3068  * Keep at least one tick per second when a single
3069  * active task is running because the scheduler doesn't
3070  * yet completely support full dynticks environment.
3071  *
3072  * This makes sure that uptime, CFS vruntime, load
3073  * balancing, etc... continue to move forward, even
3074  * with a very low granularity.
3075  *
3076  * Return: Maximum deferment in nanoseconds.
3077  */
3078 u64 scheduler_tick_max_deferment(void)
3079 {
3080 	struct rq *rq = this_rq();
3081 	unsigned long next, now = READ_ONCE(jiffies);
3082 
3083 	next = rq->last_sched_tick + HZ;
3084 
3085 	if (time_before_eq(next, now))
3086 		return 0;
3087 
3088 	return jiffies_to_nsecs(next - now);
3089 }
3090 #endif
3091 
3092 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3093 				defined(CONFIG_PREEMPT_TRACER))
3094 /*
3095  * If the value passed in is equal to the current preempt count
3096  * then we just disabled preemption. Start timing the latency.
3097  */
3098 static inline void preempt_latency_start(int val)
3099 {
3100 	if (preempt_count() == val) {
3101 		unsigned long ip = get_lock_parent_ip();
3102 #ifdef CONFIG_DEBUG_PREEMPT
3103 		current->preempt_disable_ip = ip;
3104 #endif
3105 		trace_preempt_off(CALLER_ADDR0, ip);
3106 	}
3107 }
3108 
3109 void preempt_count_add(int val)
3110 {
3111 #ifdef CONFIG_DEBUG_PREEMPT
3112 	/*
3113 	 * Underflow?
3114 	 */
3115 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3116 		return;
3117 #endif
3118 	__preempt_count_add(val);
3119 #ifdef CONFIG_DEBUG_PREEMPT
3120 	/*
3121 	 * Spinlock count overflowing soon?
3122 	 */
3123 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3124 				PREEMPT_MASK - 10);
3125 #endif
3126 	preempt_latency_start(val);
3127 }
3128 EXPORT_SYMBOL(preempt_count_add);
3129 NOKPROBE_SYMBOL(preempt_count_add);
3130 
3131 /*
3132  * If the value passed in equals to the current preempt count
3133  * then we just enabled preemption. Stop timing the latency.
3134  */
3135 static inline void preempt_latency_stop(int val)
3136 {
3137 	if (preempt_count() == val)
3138 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3139 }
3140 
3141 void preempt_count_sub(int val)
3142 {
3143 #ifdef CONFIG_DEBUG_PREEMPT
3144 	/*
3145 	 * Underflow?
3146 	 */
3147 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3148 		return;
3149 	/*
3150 	 * Is the spinlock portion underflowing?
3151 	 */
3152 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3153 			!(preempt_count() & PREEMPT_MASK)))
3154 		return;
3155 #endif
3156 
3157 	preempt_latency_stop(val);
3158 	__preempt_count_sub(val);
3159 }
3160 EXPORT_SYMBOL(preempt_count_sub);
3161 NOKPROBE_SYMBOL(preempt_count_sub);
3162 
3163 #else
3164 static inline void preempt_latency_start(int val) { }
3165 static inline void preempt_latency_stop(int val) { }
3166 #endif
3167 
3168 /*
3169  * Print scheduling while atomic bug:
3170  */
3171 static noinline void __schedule_bug(struct task_struct *prev)
3172 {
3173 	if (oops_in_progress)
3174 		return;
3175 
3176 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3177 		prev->comm, prev->pid, preempt_count());
3178 
3179 	debug_show_held_locks(prev);
3180 	print_modules();
3181 	if (irqs_disabled())
3182 		print_irqtrace_events(prev);
3183 #ifdef CONFIG_DEBUG_PREEMPT
3184 	if (in_atomic_preempt_off()) {
3185 		pr_err("Preemption disabled at:");
3186 		print_ip_sym(current->preempt_disable_ip);
3187 		pr_cont("\n");
3188 	}
3189 #endif
3190 	if (panic_on_warn)
3191 		panic("scheduling while atomic\n");
3192 
3193 	dump_stack();
3194 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3195 }
3196 
3197 /*
3198  * Various schedule()-time debugging checks and statistics:
3199  */
3200 static inline void schedule_debug(struct task_struct *prev)
3201 {
3202 #ifdef CONFIG_SCHED_STACK_END_CHECK
3203 	if (task_stack_end_corrupted(prev))
3204 		panic("corrupted stack end detected inside scheduler\n");
3205 #endif
3206 
3207 	if (unlikely(in_atomic_preempt_off())) {
3208 		__schedule_bug(prev);
3209 		preempt_count_set(PREEMPT_DISABLED);
3210 	}
3211 	rcu_sleep_check();
3212 
3213 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3214 
3215 	schedstat_inc(this_rq(), sched_count);
3216 }
3217 
3218 /*
3219  * Pick up the highest-prio task:
3220  */
3221 static inline struct task_struct *
3222 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3223 {
3224 	const struct sched_class *class = &fair_sched_class;
3225 	struct task_struct *p;
3226 
3227 	/*
3228 	 * Optimization: we know that if all tasks are in
3229 	 * the fair class we can call that function directly:
3230 	 */
3231 	if (likely(prev->sched_class == class &&
3232 		   rq->nr_running == rq->cfs.h_nr_running)) {
3233 		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3234 		if (unlikely(p == RETRY_TASK))
3235 			goto again;
3236 
3237 		/* assumes fair_sched_class->next == idle_sched_class */
3238 		if (unlikely(!p))
3239 			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3240 
3241 		return p;
3242 	}
3243 
3244 again:
3245 	for_each_class(class) {
3246 		p = class->pick_next_task(rq, prev, cookie);
3247 		if (p) {
3248 			if (unlikely(p == RETRY_TASK))
3249 				goto again;
3250 			return p;
3251 		}
3252 	}
3253 
3254 	BUG(); /* the idle class will always have a runnable task */
3255 }
3256 
3257 /*
3258  * __schedule() is the main scheduler function.
3259  *
3260  * The main means of driving the scheduler and thus entering this function are:
3261  *
3262  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3263  *
3264  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3265  *      paths. For example, see arch/x86/entry_64.S.
3266  *
3267  *      To drive preemption between tasks, the scheduler sets the flag in timer
3268  *      interrupt handler scheduler_tick().
3269  *
3270  *   3. Wakeups don't really cause entry into schedule(). They add a
3271  *      task to the run-queue and that's it.
3272  *
3273  *      Now, if the new task added to the run-queue preempts the current
3274  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3275  *      called on the nearest possible occasion:
3276  *
3277  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3278  *
3279  *         - in syscall or exception context, at the next outmost
3280  *           preempt_enable(). (this might be as soon as the wake_up()'s
3281  *           spin_unlock()!)
3282  *
3283  *         - in IRQ context, return from interrupt-handler to
3284  *           preemptible context
3285  *
3286  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3287  *         then at the next:
3288  *
3289  *          - cond_resched() call
3290  *          - explicit schedule() call
3291  *          - return from syscall or exception to user-space
3292  *          - return from interrupt-handler to user-space
3293  *
3294  * WARNING: must be called with preemption disabled!
3295  */
3296 static void __sched notrace __schedule(bool preempt)
3297 {
3298 	struct task_struct *prev, *next;
3299 	unsigned long *switch_count;
3300 	struct pin_cookie cookie;
3301 	struct rq *rq;
3302 	int cpu;
3303 
3304 	cpu = smp_processor_id();
3305 	rq = cpu_rq(cpu);
3306 	prev = rq->curr;
3307 
3308 	/*
3309 	 * do_exit() calls schedule() with preemption disabled as an exception;
3310 	 * however we must fix that up, otherwise the next task will see an
3311 	 * inconsistent (higher) preempt count.
3312 	 *
3313 	 * It also avoids the below schedule_debug() test from complaining
3314 	 * about this.
3315 	 */
3316 	if (unlikely(prev->state == TASK_DEAD))
3317 		preempt_enable_no_resched_notrace();
3318 
3319 	schedule_debug(prev);
3320 
3321 	if (sched_feat(HRTICK))
3322 		hrtick_clear(rq);
3323 
3324 	local_irq_disable();
3325 	rcu_note_context_switch();
3326 
3327 	/*
3328 	 * Make sure that signal_pending_state()->signal_pending() below
3329 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3330 	 * done by the caller to avoid the race with signal_wake_up().
3331 	 */
3332 	smp_mb__before_spinlock();
3333 	raw_spin_lock(&rq->lock);
3334 	cookie = lockdep_pin_lock(&rq->lock);
3335 
3336 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3337 
3338 	switch_count = &prev->nivcsw;
3339 	if (!preempt && prev->state) {
3340 		if (unlikely(signal_pending_state(prev->state, prev))) {
3341 			prev->state = TASK_RUNNING;
3342 		} else {
3343 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3344 			prev->on_rq = 0;
3345 
3346 			/*
3347 			 * If a worker went to sleep, notify and ask workqueue
3348 			 * whether it wants to wake up a task to maintain
3349 			 * concurrency.
3350 			 */
3351 			if (prev->flags & PF_WQ_WORKER) {
3352 				struct task_struct *to_wakeup;
3353 
3354 				to_wakeup = wq_worker_sleeping(prev);
3355 				if (to_wakeup)
3356 					try_to_wake_up_local(to_wakeup, cookie);
3357 			}
3358 		}
3359 		switch_count = &prev->nvcsw;
3360 	}
3361 
3362 	if (task_on_rq_queued(prev))
3363 		update_rq_clock(rq);
3364 
3365 	next = pick_next_task(rq, prev, cookie);
3366 	clear_tsk_need_resched(prev);
3367 	clear_preempt_need_resched();
3368 	rq->clock_skip_update = 0;
3369 
3370 	if (likely(prev != next)) {
3371 		rq->nr_switches++;
3372 		rq->curr = next;
3373 		++*switch_count;
3374 
3375 		trace_sched_switch(preempt, prev, next);
3376 		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3377 	} else {
3378 		lockdep_unpin_lock(&rq->lock, cookie);
3379 		raw_spin_unlock_irq(&rq->lock);
3380 	}
3381 
3382 	balance_callback(rq);
3383 }
3384 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3385 
3386 static inline void sched_submit_work(struct task_struct *tsk)
3387 {
3388 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3389 		return;
3390 	/*
3391 	 * If we are going to sleep and we have plugged IO queued,
3392 	 * make sure to submit it to avoid deadlocks.
3393 	 */
3394 	if (blk_needs_flush_plug(tsk))
3395 		blk_schedule_flush_plug(tsk);
3396 }
3397 
3398 asmlinkage __visible void __sched schedule(void)
3399 {
3400 	struct task_struct *tsk = current;
3401 
3402 	sched_submit_work(tsk);
3403 	do {
3404 		preempt_disable();
3405 		__schedule(false);
3406 		sched_preempt_enable_no_resched();
3407 	} while (need_resched());
3408 }
3409 EXPORT_SYMBOL(schedule);
3410 
3411 #ifdef CONFIG_CONTEXT_TRACKING
3412 asmlinkage __visible void __sched schedule_user(void)
3413 {
3414 	/*
3415 	 * If we come here after a random call to set_need_resched(),
3416 	 * or we have been woken up remotely but the IPI has not yet arrived,
3417 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3418 	 * we find a better solution.
3419 	 *
3420 	 * NB: There are buggy callers of this function.  Ideally we
3421 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3422 	 * too frequently to make sense yet.
3423 	 */
3424 	enum ctx_state prev_state = exception_enter();
3425 	schedule();
3426 	exception_exit(prev_state);
3427 }
3428 #endif
3429 
3430 /**
3431  * schedule_preempt_disabled - called with preemption disabled
3432  *
3433  * Returns with preemption disabled. Note: preempt_count must be 1
3434  */
3435 void __sched schedule_preempt_disabled(void)
3436 {
3437 	sched_preempt_enable_no_resched();
3438 	schedule();
3439 	preempt_disable();
3440 }
3441 
3442 static void __sched notrace preempt_schedule_common(void)
3443 {
3444 	do {
3445 		/*
3446 		 * Because the function tracer can trace preempt_count_sub()
3447 		 * and it also uses preempt_enable/disable_notrace(), if
3448 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3449 		 * by the function tracer will call this function again and
3450 		 * cause infinite recursion.
3451 		 *
3452 		 * Preemption must be disabled here before the function
3453 		 * tracer can trace. Break up preempt_disable() into two
3454 		 * calls. One to disable preemption without fear of being
3455 		 * traced. The other to still record the preemption latency,
3456 		 * which can also be traced by the function tracer.
3457 		 */
3458 		preempt_disable_notrace();
3459 		preempt_latency_start(1);
3460 		__schedule(true);
3461 		preempt_latency_stop(1);
3462 		preempt_enable_no_resched_notrace();
3463 
3464 		/*
3465 		 * Check again in case we missed a preemption opportunity
3466 		 * between schedule and now.
3467 		 */
3468 	} while (need_resched());
3469 }
3470 
3471 #ifdef CONFIG_PREEMPT
3472 /*
3473  * this is the entry point to schedule() from in-kernel preemption
3474  * off of preempt_enable. Kernel preemptions off return from interrupt
3475  * occur there and call schedule directly.
3476  */
3477 asmlinkage __visible void __sched notrace preempt_schedule(void)
3478 {
3479 	/*
3480 	 * If there is a non-zero preempt_count or interrupts are disabled,
3481 	 * we do not want to preempt the current task. Just return..
3482 	 */
3483 	if (likely(!preemptible()))
3484 		return;
3485 
3486 	preempt_schedule_common();
3487 }
3488 NOKPROBE_SYMBOL(preempt_schedule);
3489 EXPORT_SYMBOL(preempt_schedule);
3490 
3491 /**
3492  * preempt_schedule_notrace - preempt_schedule called by tracing
3493  *
3494  * The tracing infrastructure uses preempt_enable_notrace to prevent
3495  * recursion and tracing preempt enabling caused by the tracing
3496  * infrastructure itself. But as tracing can happen in areas coming
3497  * from userspace or just about to enter userspace, a preempt enable
3498  * can occur before user_exit() is called. This will cause the scheduler
3499  * to be called when the system is still in usermode.
3500  *
3501  * To prevent this, the preempt_enable_notrace will use this function
3502  * instead of preempt_schedule() to exit user context if needed before
3503  * calling the scheduler.
3504  */
3505 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3506 {
3507 	enum ctx_state prev_ctx;
3508 
3509 	if (likely(!preemptible()))
3510 		return;
3511 
3512 	do {
3513 		/*
3514 		 * Because the function tracer can trace preempt_count_sub()
3515 		 * and it also uses preempt_enable/disable_notrace(), if
3516 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3517 		 * by the function tracer will call this function again and
3518 		 * cause infinite recursion.
3519 		 *
3520 		 * Preemption must be disabled here before the function
3521 		 * tracer can trace. Break up preempt_disable() into two
3522 		 * calls. One to disable preemption without fear of being
3523 		 * traced. The other to still record the preemption latency,
3524 		 * which can also be traced by the function tracer.
3525 		 */
3526 		preempt_disable_notrace();
3527 		preempt_latency_start(1);
3528 		/*
3529 		 * Needs preempt disabled in case user_exit() is traced
3530 		 * and the tracer calls preempt_enable_notrace() causing
3531 		 * an infinite recursion.
3532 		 */
3533 		prev_ctx = exception_enter();
3534 		__schedule(true);
3535 		exception_exit(prev_ctx);
3536 
3537 		preempt_latency_stop(1);
3538 		preempt_enable_no_resched_notrace();
3539 	} while (need_resched());
3540 }
3541 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3542 
3543 #endif /* CONFIG_PREEMPT */
3544 
3545 /*
3546  * this is the entry point to schedule() from kernel preemption
3547  * off of irq context.
3548  * Note, that this is called and return with irqs disabled. This will
3549  * protect us against recursive calling from irq.
3550  */
3551 asmlinkage __visible void __sched preempt_schedule_irq(void)
3552 {
3553 	enum ctx_state prev_state;
3554 
3555 	/* Catch callers which need to be fixed */
3556 	BUG_ON(preempt_count() || !irqs_disabled());
3557 
3558 	prev_state = exception_enter();
3559 
3560 	do {
3561 		preempt_disable();
3562 		local_irq_enable();
3563 		__schedule(true);
3564 		local_irq_disable();
3565 		sched_preempt_enable_no_resched();
3566 	} while (need_resched());
3567 
3568 	exception_exit(prev_state);
3569 }
3570 
3571 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3572 			  void *key)
3573 {
3574 	return try_to_wake_up(curr->private, mode, wake_flags);
3575 }
3576 EXPORT_SYMBOL(default_wake_function);
3577 
3578 #ifdef CONFIG_RT_MUTEXES
3579 
3580 /*
3581  * rt_mutex_setprio - set the current priority of a task
3582  * @p: task
3583  * @prio: prio value (kernel-internal form)
3584  *
3585  * This function changes the 'effective' priority of a task. It does
3586  * not touch ->normal_prio like __setscheduler().
3587  *
3588  * Used by the rt_mutex code to implement priority inheritance
3589  * logic. Call site only calls if the priority of the task changed.
3590  */
3591 void rt_mutex_setprio(struct task_struct *p, int prio)
3592 {
3593 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3594 	const struct sched_class *prev_class;
3595 	struct rq_flags rf;
3596 	struct rq *rq;
3597 
3598 	BUG_ON(prio > MAX_PRIO);
3599 
3600 	rq = __task_rq_lock(p, &rf);
3601 
3602 	/*
3603 	 * Idle task boosting is a nono in general. There is one
3604 	 * exception, when PREEMPT_RT and NOHZ is active:
3605 	 *
3606 	 * The idle task calls get_next_timer_interrupt() and holds
3607 	 * the timer wheel base->lock on the CPU and another CPU wants
3608 	 * to access the timer (probably to cancel it). We can safely
3609 	 * ignore the boosting request, as the idle CPU runs this code
3610 	 * with interrupts disabled and will complete the lock
3611 	 * protected section without being interrupted. So there is no
3612 	 * real need to boost.
3613 	 */
3614 	if (unlikely(p == rq->idle)) {
3615 		WARN_ON(p != rq->curr);
3616 		WARN_ON(p->pi_blocked_on);
3617 		goto out_unlock;
3618 	}
3619 
3620 	trace_sched_pi_setprio(p, prio);
3621 	oldprio = p->prio;
3622 
3623 	if (oldprio == prio)
3624 		queue_flag &= ~DEQUEUE_MOVE;
3625 
3626 	prev_class = p->sched_class;
3627 	queued = task_on_rq_queued(p);
3628 	running = task_current(rq, p);
3629 	if (queued)
3630 		dequeue_task(rq, p, queue_flag);
3631 	if (running)
3632 		put_prev_task(rq, p);
3633 
3634 	/*
3635 	 * Boosting condition are:
3636 	 * 1. -rt task is running and holds mutex A
3637 	 *      --> -dl task blocks on mutex A
3638 	 *
3639 	 * 2. -dl task is running and holds mutex A
3640 	 *      --> -dl task blocks on mutex A and could preempt the
3641 	 *          running task
3642 	 */
3643 	if (dl_prio(prio)) {
3644 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3645 		if (!dl_prio(p->normal_prio) ||
3646 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3647 			p->dl.dl_boosted = 1;
3648 			queue_flag |= ENQUEUE_REPLENISH;
3649 		} else
3650 			p->dl.dl_boosted = 0;
3651 		p->sched_class = &dl_sched_class;
3652 	} else if (rt_prio(prio)) {
3653 		if (dl_prio(oldprio))
3654 			p->dl.dl_boosted = 0;
3655 		if (oldprio < prio)
3656 			queue_flag |= ENQUEUE_HEAD;
3657 		p->sched_class = &rt_sched_class;
3658 	} else {
3659 		if (dl_prio(oldprio))
3660 			p->dl.dl_boosted = 0;
3661 		if (rt_prio(oldprio))
3662 			p->rt.timeout = 0;
3663 		p->sched_class = &fair_sched_class;
3664 	}
3665 
3666 	p->prio = prio;
3667 
3668 	if (running)
3669 		p->sched_class->set_curr_task(rq);
3670 	if (queued)
3671 		enqueue_task(rq, p, queue_flag);
3672 
3673 	check_class_changed(rq, p, prev_class, oldprio);
3674 out_unlock:
3675 	preempt_disable(); /* avoid rq from going away on us */
3676 	__task_rq_unlock(rq, &rf);
3677 
3678 	balance_callback(rq);
3679 	preempt_enable();
3680 }
3681 #endif
3682 
3683 void set_user_nice(struct task_struct *p, long nice)
3684 {
3685 	int old_prio, delta, queued;
3686 	struct rq_flags rf;
3687 	struct rq *rq;
3688 
3689 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3690 		return;
3691 	/*
3692 	 * We have to be careful, if called from sys_setpriority(),
3693 	 * the task might be in the middle of scheduling on another CPU.
3694 	 */
3695 	rq = task_rq_lock(p, &rf);
3696 	/*
3697 	 * The RT priorities are set via sched_setscheduler(), but we still
3698 	 * allow the 'normal' nice value to be set - but as expected
3699 	 * it wont have any effect on scheduling until the task is
3700 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3701 	 */
3702 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3703 		p->static_prio = NICE_TO_PRIO(nice);
3704 		goto out_unlock;
3705 	}
3706 	queued = task_on_rq_queued(p);
3707 	if (queued)
3708 		dequeue_task(rq, p, DEQUEUE_SAVE);
3709 
3710 	p->static_prio = NICE_TO_PRIO(nice);
3711 	set_load_weight(p);
3712 	old_prio = p->prio;
3713 	p->prio = effective_prio(p);
3714 	delta = p->prio - old_prio;
3715 
3716 	if (queued) {
3717 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3718 		/*
3719 		 * If the task increased its priority or is running and
3720 		 * lowered its priority, then reschedule its CPU:
3721 		 */
3722 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3723 			resched_curr(rq);
3724 	}
3725 out_unlock:
3726 	task_rq_unlock(rq, p, &rf);
3727 }
3728 EXPORT_SYMBOL(set_user_nice);
3729 
3730 /*
3731  * can_nice - check if a task can reduce its nice value
3732  * @p: task
3733  * @nice: nice value
3734  */
3735 int can_nice(const struct task_struct *p, const int nice)
3736 {
3737 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3738 	int nice_rlim = nice_to_rlimit(nice);
3739 
3740 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3741 		capable(CAP_SYS_NICE));
3742 }
3743 
3744 #ifdef __ARCH_WANT_SYS_NICE
3745 
3746 /*
3747  * sys_nice - change the priority of the current process.
3748  * @increment: priority increment
3749  *
3750  * sys_setpriority is a more generic, but much slower function that
3751  * does similar things.
3752  */
3753 SYSCALL_DEFINE1(nice, int, increment)
3754 {
3755 	long nice, retval;
3756 
3757 	/*
3758 	 * Setpriority might change our priority at the same moment.
3759 	 * We don't have to worry. Conceptually one call occurs first
3760 	 * and we have a single winner.
3761 	 */
3762 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3763 	nice = task_nice(current) + increment;
3764 
3765 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3766 	if (increment < 0 && !can_nice(current, nice))
3767 		return -EPERM;
3768 
3769 	retval = security_task_setnice(current, nice);
3770 	if (retval)
3771 		return retval;
3772 
3773 	set_user_nice(current, nice);
3774 	return 0;
3775 }
3776 
3777 #endif
3778 
3779 /**
3780  * task_prio - return the priority value of a given task.
3781  * @p: the task in question.
3782  *
3783  * Return: The priority value as seen by users in /proc.
3784  * RT tasks are offset by -200. Normal tasks are centered
3785  * around 0, value goes from -16 to +15.
3786  */
3787 int task_prio(const struct task_struct *p)
3788 {
3789 	return p->prio - MAX_RT_PRIO;
3790 }
3791 
3792 /**
3793  * idle_cpu - is a given cpu idle currently?
3794  * @cpu: the processor in question.
3795  *
3796  * Return: 1 if the CPU is currently idle. 0 otherwise.
3797  */
3798 int idle_cpu(int cpu)
3799 {
3800 	struct rq *rq = cpu_rq(cpu);
3801 
3802 	if (rq->curr != rq->idle)
3803 		return 0;
3804 
3805 	if (rq->nr_running)
3806 		return 0;
3807 
3808 #ifdef CONFIG_SMP
3809 	if (!llist_empty(&rq->wake_list))
3810 		return 0;
3811 #endif
3812 
3813 	return 1;
3814 }
3815 
3816 /**
3817  * idle_task - return the idle task for a given cpu.
3818  * @cpu: the processor in question.
3819  *
3820  * Return: The idle task for the cpu @cpu.
3821  */
3822 struct task_struct *idle_task(int cpu)
3823 {
3824 	return cpu_rq(cpu)->idle;
3825 }
3826 
3827 /**
3828  * find_process_by_pid - find a process with a matching PID value.
3829  * @pid: the pid in question.
3830  *
3831  * The task of @pid, if found. %NULL otherwise.
3832  */
3833 static struct task_struct *find_process_by_pid(pid_t pid)
3834 {
3835 	return pid ? find_task_by_vpid(pid) : current;
3836 }
3837 
3838 /*
3839  * This function initializes the sched_dl_entity of a newly becoming
3840  * SCHED_DEADLINE task.
3841  *
3842  * Only the static values are considered here, the actual runtime and the
3843  * absolute deadline will be properly calculated when the task is enqueued
3844  * for the first time with its new policy.
3845  */
3846 static void
3847 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3848 {
3849 	struct sched_dl_entity *dl_se = &p->dl;
3850 
3851 	dl_se->dl_runtime = attr->sched_runtime;
3852 	dl_se->dl_deadline = attr->sched_deadline;
3853 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3854 	dl_se->flags = attr->sched_flags;
3855 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3856 
3857 	/*
3858 	 * Changing the parameters of a task is 'tricky' and we're not doing
3859 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3860 	 *
3861 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3862 	 * point. This would include retaining the task_struct until that time
3863 	 * and change dl_overflow() to not immediately decrement the current
3864 	 * amount.
3865 	 *
3866 	 * Instead we retain the current runtime/deadline and let the new
3867 	 * parameters take effect after the current reservation period lapses.
3868 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3869 	 * before the current scheduling deadline.
3870 	 *
3871 	 * We can still have temporary overloads because we do not delay the
3872 	 * change in bandwidth until that time; so admission control is
3873 	 * not on the safe side. It does however guarantee tasks will never
3874 	 * consume more than promised.
3875 	 */
3876 }
3877 
3878 /*
3879  * sched_setparam() passes in -1 for its policy, to let the functions
3880  * it calls know not to change it.
3881  */
3882 #define SETPARAM_POLICY	-1
3883 
3884 static void __setscheduler_params(struct task_struct *p,
3885 		const struct sched_attr *attr)
3886 {
3887 	int policy = attr->sched_policy;
3888 
3889 	if (policy == SETPARAM_POLICY)
3890 		policy = p->policy;
3891 
3892 	p->policy = policy;
3893 
3894 	if (dl_policy(policy))
3895 		__setparam_dl(p, attr);
3896 	else if (fair_policy(policy))
3897 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3898 
3899 	/*
3900 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3901 	 * !rt_policy. Always setting this ensures that things like
3902 	 * getparam()/getattr() don't report silly values for !rt tasks.
3903 	 */
3904 	p->rt_priority = attr->sched_priority;
3905 	p->normal_prio = normal_prio(p);
3906 	set_load_weight(p);
3907 }
3908 
3909 /* Actually do priority change: must hold pi & rq lock. */
3910 static void __setscheduler(struct rq *rq, struct task_struct *p,
3911 			   const struct sched_attr *attr, bool keep_boost)
3912 {
3913 	__setscheduler_params(p, attr);
3914 
3915 	/*
3916 	 * Keep a potential priority boosting if called from
3917 	 * sched_setscheduler().
3918 	 */
3919 	if (keep_boost)
3920 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3921 	else
3922 		p->prio = normal_prio(p);
3923 
3924 	if (dl_prio(p->prio))
3925 		p->sched_class = &dl_sched_class;
3926 	else if (rt_prio(p->prio))
3927 		p->sched_class = &rt_sched_class;
3928 	else
3929 		p->sched_class = &fair_sched_class;
3930 }
3931 
3932 static void
3933 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3934 {
3935 	struct sched_dl_entity *dl_se = &p->dl;
3936 
3937 	attr->sched_priority = p->rt_priority;
3938 	attr->sched_runtime = dl_se->dl_runtime;
3939 	attr->sched_deadline = dl_se->dl_deadline;
3940 	attr->sched_period = dl_se->dl_period;
3941 	attr->sched_flags = dl_se->flags;
3942 }
3943 
3944 /*
3945  * This function validates the new parameters of a -deadline task.
3946  * We ask for the deadline not being zero, and greater or equal
3947  * than the runtime, as well as the period of being zero or
3948  * greater than deadline. Furthermore, we have to be sure that
3949  * user parameters are above the internal resolution of 1us (we
3950  * check sched_runtime only since it is always the smaller one) and
3951  * below 2^63 ns (we have to check both sched_deadline and
3952  * sched_period, as the latter can be zero).
3953  */
3954 static bool
3955 __checkparam_dl(const struct sched_attr *attr)
3956 {
3957 	/* deadline != 0 */
3958 	if (attr->sched_deadline == 0)
3959 		return false;
3960 
3961 	/*
3962 	 * Since we truncate DL_SCALE bits, make sure we're at least
3963 	 * that big.
3964 	 */
3965 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3966 		return false;
3967 
3968 	/*
3969 	 * Since we use the MSB for wrap-around and sign issues, make
3970 	 * sure it's not set (mind that period can be equal to zero).
3971 	 */
3972 	if (attr->sched_deadline & (1ULL << 63) ||
3973 	    attr->sched_period & (1ULL << 63))
3974 		return false;
3975 
3976 	/* runtime <= deadline <= period (if period != 0) */
3977 	if ((attr->sched_period != 0 &&
3978 	     attr->sched_period < attr->sched_deadline) ||
3979 	    attr->sched_deadline < attr->sched_runtime)
3980 		return false;
3981 
3982 	return true;
3983 }
3984 
3985 /*
3986  * check the target process has a UID that matches the current process's
3987  */
3988 static bool check_same_owner(struct task_struct *p)
3989 {
3990 	const struct cred *cred = current_cred(), *pcred;
3991 	bool match;
3992 
3993 	rcu_read_lock();
3994 	pcred = __task_cred(p);
3995 	match = (uid_eq(cred->euid, pcred->euid) ||
3996 		 uid_eq(cred->euid, pcred->uid));
3997 	rcu_read_unlock();
3998 	return match;
3999 }
4000 
4001 static bool dl_param_changed(struct task_struct *p,
4002 		const struct sched_attr *attr)
4003 {
4004 	struct sched_dl_entity *dl_se = &p->dl;
4005 
4006 	if (dl_se->dl_runtime != attr->sched_runtime ||
4007 		dl_se->dl_deadline != attr->sched_deadline ||
4008 		dl_se->dl_period != attr->sched_period ||
4009 		dl_se->flags != attr->sched_flags)
4010 		return true;
4011 
4012 	return false;
4013 }
4014 
4015 static int __sched_setscheduler(struct task_struct *p,
4016 				const struct sched_attr *attr,
4017 				bool user, bool pi)
4018 {
4019 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4020 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4021 	int retval, oldprio, oldpolicy = -1, queued, running;
4022 	int new_effective_prio, policy = attr->sched_policy;
4023 	const struct sched_class *prev_class;
4024 	struct rq_flags rf;
4025 	int reset_on_fork;
4026 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4027 	struct rq *rq;
4028 
4029 	/* may grab non-irq protected spin_locks */
4030 	BUG_ON(in_interrupt());
4031 recheck:
4032 	/* double check policy once rq lock held */
4033 	if (policy < 0) {
4034 		reset_on_fork = p->sched_reset_on_fork;
4035 		policy = oldpolicy = p->policy;
4036 	} else {
4037 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4038 
4039 		if (!valid_policy(policy))
4040 			return -EINVAL;
4041 	}
4042 
4043 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4044 		return -EINVAL;
4045 
4046 	/*
4047 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4048 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4049 	 * SCHED_BATCH and SCHED_IDLE is 0.
4050 	 */
4051 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4052 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4053 		return -EINVAL;
4054 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4055 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4056 		return -EINVAL;
4057 
4058 	/*
4059 	 * Allow unprivileged RT tasks to decrease priority:
4060 	 */
4061 	if (user && !capable(CAP_SYS_NICE)) {
4062 		if (fair_policy(policy)) {
4063 			if (attr->sched_nice < task_nice(p) &&
4064 			    !can_nice(p, attr->sched_nice))
4065 				return -EPERM;
4066 		}
4067 
4068 		if (rt_policy(policy)) {
4069 			unsigned long rlim_rtprio =
4070 					task_rlimit(p, RLIMIT_RTPRIO);
4071 
4072 			/* can't set/change the rt policy */
4073 			if (policy != p->policy && !rlim_rtprio)
4074 				return -EPERM;
4075 
4076 			/* can't increase priority */
4077 			if (attr->sched_priority > p->rt_priority &&
4078 			    attr->sched_priority > rlim_rtprio)
4079 				return -EPERM;
4080 		}
4081 
4082 		 /*
4083 		  * Can't set/change SCHED_DEADLINE policy at all for now
4084 		  * (safest behavior); in the future we would like to allow
4085 		  * unprivileged DL tasks to increase their relative deadline
4086 		  * or reduce their runtime (both ways reducing utilization)
4087 		  */
4088 		if (dl_policy(policy))
4089 			return -EPERM;
4090 
4091 		/*
4092 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4093 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4094 		 */
4095 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4096 			if (!can_nice(p, task_nice(p)))
4097 				return -EPERM;
4098 		}
4099 
4100 		/* can't change other user's priorities */
4101 		if (!check_same_owner(p))
4102 			return -EPERM;
4103 
4104 		/* Normal users shall not reset the sched_reset_on_fork flag */
4105 		if (p->sched_reset_on_fork && !reset_on_fork)
4106 			return -EPERM;
4107 	}
4108 
4109 	if (user) {
4110 		retval = security_task_setscheduler(p);
4111 		if (retval)
4112 			return retval;
4113 	}
4114 
4115 	/*
4116 	 * make sure no PI-waiters arrive (or leave) while we are
4117 	 * changing the priority of the task:
4118 	 *
4119 	 * To be able to change p->policy safely, the appropriate
4120 	 * runqueue lock must be held.
4121 	 */
4122 	rq = task_rq_lock(p, &rf);
4123 
4124 	/*
4125 	 * Changing the policy of the stop threads its a very bad idea
4126 	 */
4127 	if (p == rq->stop) {
4128 		task_rq_unlock(rq, p, &rf);
4129 		return -EINVAL;
4130 	}
4131 
4132 	/*
4133 	 * If not changing anything there's no need to proceed further,
4134 	 * but store a possible modification of reset_on_fork.
4135 	 */
4136 	if (unlikely(policy == p->policy)) {
4137 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4138 			goto change;
4139 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4140 			goto change;
4141 		if (dl_policy(policy) && dl_param_changed(p, attr))
4142 			goto change;
4143 
4144 		p->sched_reset_on_fork = reset_on_fork;
4145 		task_rq_unlock(rq, p, &rf);
4146 		return 0;
4147 	}
4148 change:
4149 
4150 	if (user) {
4151 #ifdef CONFIG_RT_GROUP_SCHED
4152 		/*
4153 		 * Do not allow realtime tasks into groups that have no runtime
4154 		 * assigned.
4155 		 */
4156 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4157 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4158 				!task_group_is_autogroup(task_group(p))) {
4159 			task_rq_unlock(rq, p, &rf);
4160 			return -EPERM;
4161 		}
4162 #endif
4163 #ifdef CONFIG_SMP
4164 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4165 			cpumask_t *span = rq->rd->span;
4166 
4167 			/*
4168 			 * Don't allow tasks with an affinity mask smaller than
4169 			 * the entire root_domain to become SCHED_DEADLINE. We
4170 			 * will also fail if there's no bandwidth available.
4171 			 */
4172 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4173 			    rq->rd->dl_bw.bw == 0) {
4174 				task_rq_unlock(rq, p, &rf);
4175 				return -EPERM;
4176 			}
4177 		}
4178 #endif
4179 	}
4180 
4181 	/* recheck policy now with rq lock held */
4182 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4183 		policy = oldpolicy = -1;
4184 		task_rq_unlock(rq, p, &rf);
4185 		goto recheck;
4186 	}
4187 
4188 	/*
4189 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4190 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4191 	 * is available.
4192 	 */
4193 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4194 		task_rq_unlock(rq, p, &rf);
4195 		return -EBUSY;
4196 	}
4197 
4198 	p->sched_reset_on_fork = reset_on_fork;
4199 	oldprio = p->prio;
4200 
4201 	if (pi) {
4202 		/*
4203 		 * Take priority boosted tasks into account. If the new
4204 		 * effective priority is unchanged, we just store the new
4205 		 * normal parameters and do not touch the scheduler class and
4206 		 * the runqueue. This will be done when the task deboost
4207 		 * itself.
4208 		 */
4209 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4210 		if (new_effective_prio == oldprio)
4211 			queue_flags &= ~DEQUEUE_MOVE;
4212 	}
4213 
4214 	queued = task_on_rq_queued(p);
4215 	running = task_current(rq, p);
4216 	if (queued)
4217 		dequeue_task(rq, p, queue_flags);
4218 	if (running)
4219 		put_prev_task(rq, p);
4220 
4221 	prev_class = p->sched_class;
4222 	__setscheduler(rq, p, attr, pi);
4223 
4224 	if (running)
4225 		p->sched_class->set_curr_task(rq);
4226 	if (queued) {
4227 		/*
4228 		 * We enqueue to tail when the priority of a task is
4229 		 * increased (user space view).
4230 		 */
4231 		if (oldprio < p->prio)
4232 			queue_flags |= ENQUEUE_HEAD;
4233 
4234 		enqueue_task(rq, p, queue_flags);
4235 	}
4236 
4237 	check_class_changed(rq, p, prev_class, oldprio);
4238 	preempt_disable(); /* avoid rq from going away on us */
4239 	task_rq_unlock(rq, p, &rf);
4240 
4241 	if (pi)
4242 		rt_mutex_adjust_pi(p);
4243 
4244 	/*
4245 	 * Run balance callbacks after we've adjusted the PI chain.
4246 	 */
4247 	balance_callback(rq);
4248 	preempt_enable();
4249 
4250 	return 0;
4251 }
4252 
4253 static int _sched_setscheduler(struct task_struct *p, int policy,
4254 			       const struct sched_param *param, bool check)
4255 {
4256 	struct sched_attr attr = {
4257 		.sched_policy   = policy,
4258 		.sched_priority = param->sched_priority,
4259 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4260 	};
4261 
4262 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4263 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4264 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4265 		policy &= ~SCHED_RESET_ON_FORK;
4266 		attr.sched_policy = policy;
4267 	}
4268 
4269 	return __sched_setscheduler(p, &attr, check, true);
4270 }
4271 /**
4272  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4273  * @p: the task in question.
4274  * @policy: new policy.
4275  * @param: structure containing the new RT priority.
4276  *
4277  * Return: 0 on success. An error code otherwise.
4278  *
4279  * NOTE that the task may be already dead.
4280  */
4281 int sched_setscheduler(struct task_struct *p, int policy,
4282 		       const struct sched_param *param)
4283 {
4284 	return _sched_setscheduler(p, policy, param, true);
4285 }
4286 EXPORT_SYMBOL_GPL(sched_setscheduler);
4287 
4288 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4289 {
4290 	return __sched_setscheduler(p, attr, true, true);
4291 }
4292 EXPORT_SYMBOL_GPL(sched_setattr);
4293 
4294 /**
4295  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4296  * @p: the task in question.
4297  * @policy: new policy.
4298  * @param: structure containing the new RT priority.
4299  *
4300  * Just like sched_setscheduler, only don't bother checking if the
4301  * current context has permission.  For example, this is needed in
4302  * stop_machine(): we create temporary high priority worker threads,
4303  * but our caller might not have that capability.
4304  *
4305  * Return: 0 on success. An error code otherwise.
4306  */
4307 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4308 			       const struct sched_param *param)
4309 {
4310 	return _sched_setscheduler(p, policy, param, false);
4311 }
4312 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4313 
4314 static int
4315 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4316 {
4317 	struct sched_param lparam;
4318 	struct task_struct *p;
4319 	int retval;
4320 
4321 	if (!param || pid < 0)
4322 		return -EINVAL;
4323 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4324 		return -EFAULT;
4325 
4326 	rcu_read_lock();
4327 	retval = -ESRCH;
4328 	p = find_process_by_pid(pid);
4329 	if (p != NULL)
4330 		retval = sched_setscheduler(p, policy, &lparam);
4331 	rcu_read_unlock();
4332 
4333 	return retval;
4334 }
4335 
4336 /*
4337  * Mimics kernel/events/core.c perf_copy_attr().
4338  */
4339 static int sched_copy_attr(struct sched_attr __user *uattr,
4340 			   struct sched_attr *attr)
4341 {
4342 	u32 size;
4343 	int ret;
4344 
4345 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4346 		return -EFAULT;
4347 
4348 	/*
4349 	 * zero the full structure, so that a short copy will be nice.
4350 	 */
4351 	memset(attr, 0, sizeof(*attr));
4352 
4353 	ret = get_user(size, &uattr->size);
4354 	if (ret)
4355 		return ret;
4356 
4357 	if (size > PAGE_SIZE)	/* silly large */
4358 		goto err_size;
4359 
4360 	if (!size)		/* abi compat */
4361 		size = SCHED_ATTR_SIZE_VER0;
4362 
4363 	if (size < SCHED_ATTR_SIZE_VER0)
4364 		goto err_size;
4365 
4366 	/*
4367 	 * If we're handed a bigger struct than we know of,
4368 	 * ensure all the unknown bits are 0 - i.e. new
4369 	 * user-space does not rely on any kernel feature
4370 	 * extensions we dont know about yet.
4371 	 */
4372 	if (size > sizeof(*attr)) {
4373 		unsigned char __user *addr;
4374 		unsigned char __user *end;
4375 		unsigned char val;
4376 
4377 		addr = (void __user *)uattr + sizeof(*attr);
4378 		end  = (void __user *)uattr + size;
4379 
4380 		for (; addr < end; addr++) {
4381 			ret = get_user(val, addr);
4382 			if (ret)
4383 				return ret;
4384 			if (val)
4385 				goto err_size;
4386 		}
4387 		size = sizeof(*attr);
4388 	}
4389 
4390 	ret = copy_from_user(attr, uattr, size);
4391 	if (ret)
4392 		return -EFAULT;
4393 
4394 	/*
4395 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4396 	 * to be strict and return an error on out-of-bounds values?
4397 	 */
4398 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4399 
4400 	return 0;
4401 
4402 err_size:
4403 	put_user(sizeof(*attr), &uattr->size);
4404 	return -E2BIG;
4405 }
4406 
4407 /**
4408  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4409  * @pid: the pid in question.
4410  * @policy: new policy.
4411  * @param: structure containing the new RT priority.
4412  *
4413  * Return: 0 on success. An error code otherwise.
4414  */
4415 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4416 		struct sched_param __user *, param)
4417 {
4418 	/* negative values for policy are not valid */
4419 	if (policy < 0)
4420 		return -EINVAL;
4421 
4422 	return do_sched_setscheduler(pid, policy, param);
4423 }
4424 
4425 /**
4426  * sys_sched_setparam - set/change the RT priority of a thread
4427  * @pid: the pid in question.
4428  * @param: structure containing the new RT priority.
4429  *
4430  * Return: 0 on success. An error code otherwise.
4431  */
4432 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4433 {
4434 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4435 }
4436 
4437 /**
4438  * sys_sched_setattr - same as above, but with extended sched_attr
4439  * @pid: the pid in question.
4440  * @uattr: structure containing the extended parameters.
4441  * @flags: for future extension.
4442  */
4443 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4444 			       unsigned int, flags)
4445 {
4446 	struct sched_attr attr;
4447 	struct task_struct *p;
4448 	int retval;
4449 
4450 	if (!uattr || pid < 0 || flags)
4451 		return -EINVAL;
4452 
4453 	retval = sched_copy_attr(uattr, &attr);
4454 	if (retval)
4455 		return retval;
4456 
4457 	if ((int)attr.sched_policy < 0)
4458 		return -EINVAL;
4459 
4460 	rcu_read_lock();
4461 	retval = -ESRCH;
4462 	p = find_process_by_pid(pid);
4463 	if (p != NULL)
4464 		retval = sched_setattr(p, &attr);
4465 	rcu_read_unlock();
4466 
4467 	return retval;
4468 }
4469 
4470 /**
4471  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4472  * @pid: the pid in question.
4473  *
4474  * Return: On success, the policy of the thread. Otherwise, a negative error
4475  * code.
4476  */
4477 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4478 {
4479 	struct task_struct *p;
4480 	int retval;
4481 
4482 	if (pid < 0)
4483 		return -EINVAL;
4484 
4485 	retval = -ESRCH;
4486 	rcu_read_lock();
4487 	p = find_process_by_pid(pid);
4488 	if (p) {
4489 		retval = security_task_getscheduler(p);
4490 		if (!retval)
4491 			retval = p->policy
4492 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4493 	}
4494 	rcu_read_unlock();
4495 	return retval;
4496 }
4497 
4498 /**
4499  * sys_sched_getparam - get the RT priority of a thread
4500  * @pid: the pid in question.
4501  * @param: structure containing the RT priority.
4502  *
4503  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4504  * code.
4505  */
4506 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4507 {
4508 	struct sched_param lp = { .sched_priority = 0 };
4509 	struct task_struct *p;
4510 	int retval;
4511 
4512 	if (!param || pid < 0)
4513 		return -EINVAL;
4514 
4515 	rcu_read_lock();
4516 	p = find_process_by_pid(pid);
4517 	retval = -ESRCH;
4518 	if (!p)
4519 		goto out_unlock;
4520 
4521 	retval = security_task_getscheduler(p);
4522 	if (retval)
4523 		goto out_unlock;
4524 
4525 	if (task_has_rt_policy(p))
4526 		lp.sched_priority = p->rt_priority;
4527 	rcu_read_unlock();
4528 
4529 	/*
4530 	 * This one might sleep, we cannot do it with a spinlock held ...
4531 	 */
4532 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4533 
4534 	return retval;
4535 
4536 out_unlock:
4537 	rcu_read_unlock();
4538 	return retval;
4539 }
4540 
4541 static int sched_read_attr(struct sched_attr __user *uattr,
4542 			   struct sched_attr *attr,
4543 			   unsigned int usize)
4544 {
4545 	int ret;
4546 
4547 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4548 		return -EFAULT;
4549 
4550 	/*
4551 	 * If we're handed a smaller struct than we know of,
4552 	 * ensure all the unknown bits are 0 - i.e. old
4553 	 * user-space does not get uncomplete information.
4554 	 */
4555 	if (usize < sizeof(*attr)) {
4556 		unsigned char *addr;
4557 		unsigned char *end;
4558 
4559 		addr = (void *)attr + usize;
4560 		end  = (void *)attr + sizeof(*attr);
4561 
4562 		for (; addr < end; addr++) {
4563 			if (*addr)
4564 				return -EFBIG;
4565 		}
4566 
4567 		attr->size = usize;
4568 	}
4569 
4570 	ret = copy_to_user(uattr, attr, attr->size);
4571 	if (ret)
4572 		return -EFAULT;
4573 
4574 	return 0;
4575 }
4576 
4577 /**
4578  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4579  * @pid: the pid in question.
4580  * @uattr: structure containing the extended parameters.
4581  * @size: sizeof(attr) for fwd/bwd comp.
4582  * @flags: for future extension.
4583  */
4584 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4585 		unsigned int, size, unsigned int, flags)
4586 {
4587 	struct sched_attr attr = {
4588 		.size = sizeof(struct sched_attr),
4589 	};
4590 	struct task_struct *p;
4591 	int retval;
4592 
4593 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4594 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4595 		return -EINVAL;
4596 
4597 	rcu_read_lock();
4598 	p = find_process_by_pid(pid);
4599 	retval = -ESRCH;
4600 	if (!p)
4601 		goto out_unlock;
4602 
4603 	retval = security_task_getscheduler(p);
4604 	if (retval)
4605 		goto out_unlock;
4606 
4607 	attr.sched_policy = p->policy;
4608 	if (p->sched_reset_on_fork)
4609 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4610 	if (task_has_dl_policy(p))
4611 		__getparam_dl(p, &attr);
4612 	else if (task_has_rt_policy(p))
4613 		attr.sched_priority = p->rt_priority;
4614 	else
4615 		attr.sched_nice = task_nice(p);
4616 
4617 	rcu_read_unlock();
4618 
4619 	retval = sched_read_attr(uattr, &attr, size);
4620 	return retval;
4621 
4622 out_unlock:
4623 	rcu_read_unlock();
4624 	return retval;
4625 }
4626 
4627 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4628 {
4629 	cpumask_var_t cpus_allowed, new_mask;
4630 	struct task_struct *p;
4631 	int retval;
4632 
4633 	rcu_read_lock();
4634 
4635 	p = find_process_by_pid(pid);
4636 	if (!p) {
4637 		rcu_read_unlock();
4638 		return -ESRCH;
4639 	}
4640 
4641 	/* Prevent p going away */
4642 	get_task_struct(p);
4643 	rcu_read_unlock();
4644 
4645 	if (p->flags & PF_NO_SETAFFINITY) {
4646 		retval = -EINVAL;
4647 		goto out_put_task;
4648 	}
4649 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4650 		retval = -ENOMEM;
4651 		goto out_put_task;
4652 	}
4653 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4654 		retval = -ENOMEM;
4655 		goto out_free_cpus_allowed;
4656 	}
4657 	retval = -EPERM;
4658 	if (!check_same_owner(p)) {
4659 		rcu_read_lock();
4660 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4661 			rcu_read_unlock();
4662 			goto out_free_new_mask;
4663 		}
4664 		rcu_read_unlock();
4665 	}
4666 
4667 	retval = security_task_setscheduler(p);
4668 	if (retval)
4669 		goto out_free_new_mask;
4670 
4671 
4672 	cpuset_cpus_allowed(p, cpus_allowed);
4673 	cpumask_and(new_mask, in_mask, cpus_allowed);
4674 
4675 	/*
4676 	 * Since bandwidth control happens on root_domain basis,
4677 	 * if admission test is enabled, we only admit -deadline
4678 	 * tasks allowed to run on all the CPUs in the task's
4679 	 * root_domain.
4680 	 */
4681 #ifdef CONFIG_SMP
4682 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4683 		rcu_read_lock();
4684 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4685 			retval = -EBUSY;
4686 			rcu_read_unlock();
4687 			goto out_free_new_mask;
4688 		}
4689 		rcu_read_unlock();
4690 	}
4691 #endif
4692 again:
4693 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4694 
4695 	if (!retval) {
4696 		cpuset_cpus_allowed(p, cpus_allowed);
4697 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4698 			/*
4699 			 * We must have raced with a concurrent cpuset
4700 			 * update. Just reset the cpus_allowed to the
4701 			 * cpuset's cpus_allowed
4702 			 */
4703 			cpumask_copy(new_mask, cpus_allowed);
4704 			goto again;
4705 		}
4706 	}
4707 out_free_new_mask:
4708 	free_cpumask_var(new_mask);
4709 out_free_cpus_allowed:
4710 	free_cpumask_var(cpus_allowed);
4711 out_put_task:
4712 	put_task_struct(p);
4713 	return retval;
4714 }
4715 
4716 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4717 			     struct cpumask *new_mask)
4718 {
4719 	if (len < cpumask_size())
4720 		cpumask_clear(new_mask);
4721 	else if (len > cpumask_size())
4722 		len = cpumask_size();
4723 
4724 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4725 }
4726 
4727 /**
4728  * sys_sched_setaffinity - set the cpu affinity of a process
4729  * @pid: pid of the process
4730  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4731  * @user_mask_ptr: user-space pointer to the new cpu mask
4732  *
4733  * Return: 0 on success. An error code otherwise.
4734  */
4735 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4736 		unsigned long __user *, user_mask_ptr)
4737 {
4738 	cpumask_var_t new_mask;
4739 	int retval;
4740 
4741 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4742 		return -ENOMEM;
4743 
4744 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4745 	if (retval == 0)
4746 		retval = sched_setaffinity(pid, new_mask);
4747 	free_cpumask_var(new_mask);
4748 	return retval;
4749 }
4750 
4751 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4752 {
4753 	struct task_struct *p;
4754 	unsigned long flags;
4755 	int retval;
4756 
4757 	rcu_read_lock();
4758 
4759 	retval = -ESRCH;
4760 	p = find_process_by_pid(pid);
4761 	if (!p)
4762 		goto out_unlock;
4763 
4764 	retval = security_task_getscheduler(p);
4765 	if (retval)
4766 		goto out_unlock;
4767 
4768 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4769 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4770 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4771 
4772 out_unlock:
4773 	rcu_read_unlock();
4774 
4775 	return retval;
4776 }
4777 
4778 /**
4779  * sys_sched_getaffinity - get the cpu affinity of a process
4780  * @pid: pid of the process
4781  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4782  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4783  *
4784  * Return: size of CPU mask copied to user_mask_ptr on success. An
4785  * error code otherwise.
4786  */
4787 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4788 		unsigned long __user *, user_mask_ptr)
4789 {
4790 	int ret;
4791 	cpumask_var_t mask;
4792 
4793 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4794 		return -EINVAL;
4795 	if (len & (sizeof(unsigned long)-1))
4796 		return -EINVAL;
4797 
4798 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4799 		return -ENOMEM;
4800 
4801 	ret = sched_getaffinity(pid, mask);
4802 	if (ret == 0) {
4803 		size_t retlen = min_t(size_t, len, cpumask_size());
4804 
4805 		if (copy_to_user(user_mask_ptr, mask, retlen))
4806 			ret = -EFAULT;
4807 		else
4808 			ret = retlen;
4809 	}
4810 	free_cpumask_var(mask);
4811 
4812 	return ret;
4813 }
4814 
4815 /**
4816  * sys_sched_yield - yield the current processor to other threads.
4817  *
4818  * This function yields the current CPU to other tasks. If there are no
4819  * other threads running on this CPU then this function will return.
4820  *
4821  * Return: 0.
4822  */
4823 SYSCALL_DEFINE0(sched_yield)
4824 {
4825 	struct rq *rq = this_rq_lock();
4826 
4827 	schedstat_inc(rq, yld_count);
4828 	current->sched_class->yield_task(rq);
4829 
4830 	/*
4831 	 * Since we are going to call schedule() anyway, there's
4832 	 * no need to preempt or enable interrupts:
4833 	 */
4834 	__release(rq->lock);
4835 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4836 	do_raw_spin_unlock(&rq->lock);
4837 	sched_preempt_enable_no_resched();
4838 
4839 	schedule();
4840 
4841 	return 0;
4842 }
4843 
4844 int __sched _cond_resched(void)
4845 {
4846 	if (should_resched(0)) {
4847 		preempt_schedule_common();
4848 		return 1;
4849 	}
4850 	return 0;
4851 }
4852 EXPORT_SYMBOL(_cond_resched);
4853 
4854 /*
4855  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4856  * call schedule, and on return reacquire the lock.
4857  *
4858  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4859  * operations here to prevent schedule() from being called twice (once via
4860  * spin_unlock(), once by hand).
4861  */
4862 int __cond_resched_lock(spinlock_t *lock)
4863 {
4864 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4865 	int ret = 0;
4866 
4867 	lockdep_assert_held(lock);
4868 
4869 	if (spin_needbreak(lock) || resched) {
4870 		spin_unlock(lock);
4871 		if (resched)
4872 			preempt_schedule_common();
4873 		else
4874 			cpu_relax();
4875 		ret = 1;
4876 		spin_lock(lock);
4877 	}
4878 	return ret;
4879 }
4880 EXPORT_SYMBOL(__cond_resched_lock);
4881 
4882 int __sched __cond_resched_softirq(void)
4883 {
4884 	BUG_ON(!in_softirq());
4885 
4886 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4887 		local_bh_enable();
4888 		preempt_schedule_common();
4889 		local_bh_disable();
4890 		return 1;
4891 	}
4892 	return 0;
4893 }
4894 EXPORT_SYMBOL(__cond_resched_softirq);
4895 
4896 /**
4897  * yield - yield the current processor to other threads.
4898  *
4899  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4900  *
4901  * The scheduler is at all times free to pick the calling task as the most
4902  * eligible task to run, if removing the yield() call from your code breaks
4903  * it, its already broken.
4904  *
4905  * Typical broken usage is:
4906  *
4907  * while (!event)
4908  * 	yield();
4909  *
4910  * where one assumes that yield() will let 'the other' process run that will
4911  * make event true. If the current task is a SCHED_FIFO task that will never
4912  * happen. Never use yield() as a progress guarantee!!
4913  *
4914  * If you want to use yield() to wait for something, use wait_event().
4915  * If you want to use yield() to be 'nice' for others, use cond_resched().
4916  * If you still want to use yield(), do not!
4917  */
4918 void __sched yield(void)
4919 {
4920 	set_current_state(TASK_RUNNING);
4921 	sys_sched_yield();
4922 }
4923 EXPORT_SYMBOL(yield);
4924 
4925 /**
4926  * yield_to - yield the current processor to another thread in
4927  * your thread group, or accelerate that thread toward the
4928  * processor it's on.
4929  * @p: target task
4930  * @preempt: whether task preemption is allowed or not
4931  *
4932  * It's the caller's job to ensure that the target task struct
4933  * can't go away on us before we can do any checks.
4934  *
4935  * Return:
4936  *	true (>0) if we indeed boosted the target task.
4937  *	false (0) if we failed to boost the target.
4938  *	-ESRCH if there's no task to yield to.
4939  */
4940 int __sched yield_to(struct task_struct *p, bool preempt)
4941 {
4942 	struct task_struct *curr = current;
4943 	struct rq *rq, *p_rq;
4944 	unsigned long flags;
4945 	int yielded = 0;
4946 
4947 	local_irq_save(flags);
4948 	rq = this_rq();
4949 
4950 again:
4951 	p_rq = task_rq(p);
4952 	/*
4953 	 * If we're the only runnable task on the rq and target rq also
4954 	 * has only one task, there's absolutely no point in yielding.
4955 	 */
4956 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4957 		yielded = -ESRCH;
4958 		goto out_irq;
4959 	}
4960 
4961 	double_rq_lock(rq, p_rq);
4962 	if (task_rq(p) != p_rq) {
4963 		double_rq_unlock(rq, p_rq);
4964 		goto again;
4965 	}
4966 
4967 	if (!curr->sched_class->yield_to_task)
4968 		goto out_unlock;
4969 
4970 	if (curr->sched_class != p->sched_class)
4971 		goto out_unlock;
4972 
4973 	if (task_running(p_rq, p) || p->state)
4974 		goto out_unlock;
4975 
4976 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4977 	if (yielded) {
4978 		schedstat_inc(rq, yld_count);
4979 		/*
4980 		 * Make p's CPU reschedule; pick_next_entity takes care of
4981 		 * fairness.
4982 		 */
4983 		if (preempt && rq != p_rq)
4984 			resched_curr(p_rq);
4985 	}
4986 
4987 out_unlock:
4988 	double_rq_unlock(rq, p_rq);
4989 out_irq:
4990 	local_irq_restore(flags);
4991 
4992 	if (yielded > 0)
4993 		schedule();
4994 
4995 	return yielded;
4996 }
4997 EXPORT_SYMBOL_GPL(yield_to);
4998 
4999 /*
5000  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5001  * that process accounting knows that this is a task in IO wait state.
5002  */
5003 long __sched io_schedule_timeout(long timeout)
5004 {
5005 	int old_iowait = current->in_iowait;
5006 	struct rq *rq;
5007 	long ret;
5008 
5009 	current->in_iowait = 1;
5010 	blk_schedule_flush_plug(current);
5011 
5012 	delayacct_blkio_start();
5013 	rq = raw_rq();
5014 	atomic_inc(&rq->nr_iowait);
5015 	ret = schedule_timeout(timeout);
5016 	current->in_iowait = old_iowait;
5017 	atomic_dec(&rq->nr_iowait);
5018 	delayacct_blkio_end();
5019 
5020 	return ret;
5021 }
5022 EXPORT_SYMBOL(io_schedule_timeout);
5023 
5024 /**
5025  * sys_sched_get_priority_max - return maximum RT priority.
5026  * @policy: scheduling class.
5027  *
5028  * Return: On success, this syscall returns the maximum
5029  * rt_priority that can be used by a given scheduling class.
5030  * On failure, a negative error code is returned.
5031  */
5032 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5033 {
5034 	int ret = -EINVAL;
5035 
5036 	switch (policy) {
5037 	case SCHED_FIFO:
5038 	case SCHED_RR:
5039 		ret = MAX_USER_RT_PRIO-1;
5040 		break;
5041 	case SCHED_DEADLINE:
5042 	case SCHED_NORMAL:
5043 	case SCHED_BATCH:
5044 	case SCHED_IDLE:
5045 		ret = 0;
5046 		break;
5047 	}
5048 	return ret;
5049 }
5050 
5051 /**
5052  * sys_sched_get_priority_min - return minimum RT priority.
5053  * @policy: scheduling class.
5054  *
5055  * Return: On success, this syscall returns the minimum
5056  * rt_priority that can be used by a given scheduling class.
5057  * On failure, a negative error code is returned.
5058  */
5059 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5060 {
5061 	int ret = -EINVAL;
5062 
5063 	switch (policy) {
5064 	case SCHED_FIFO:
5065 	case SCHED_RR:
5066 		ret = 1;
5067 		break;
5068 	case SCHED_DEADLINE:
5069 	case SCHED_NORMAL:
5070 	case SCHED_BATCH:
5071 	case SCHED_IDLE:
5072 		ret = 0;
5073 	}
5074 	return ret;
5075 }
5076 
5077 /**
5078  * sys_sched_rr_get_interval - return the default timeslice of a process.
5079  * @pid: pid of the process.
5080  * @interval: userspace pointer to the timeslice value.
5081  *
5082  * this syscall writes the default timeslice value of a given process
5083  * into the user-space timespec buffer. A value of '0' means infinity.
5084  *
5085  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5086  * an error code.
5087  */
5088 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5089 		struct timespec __user *, interval)
5090 {
5091 	struct task_struct *p;
5092 	unsigned int time_slice;
5093 	struct rq_flags rf;
5094 	struct timespec t;
5095 	struct rq *rq;
5096 	int retval;
5097 
5098 	if (pid < 0)
5099 		return -EINVAL;
5100 
5101 	retval = -ESRCH;
5102 	rcu_read_lock();
5103 	p = find_process_by_pid(pid);
5104 	if (!p)
5105 		goto out_unlock;
5106 
5107 	retval = security_task_getscheduler(p);
5108 	if (retval)
5109 		goto out_unlock;
5110 
5111 	rq = task_rq_lock(p, &rf);
5112 	time_slice = 0;
5113 	if (p->sched_class->get_rr_interval)
5114 		time_slice = p->sched_class->get_rr_interval(rq, p);
5115 	task_rq_unlock(rq, p, &rf);
5116 
5117 	rcu_read_unlock();
5118 	jiffies_to_timespec(time_slice, &t);
5119 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5120 	return retval;
5121 
5122 out_unlock:
5123 	rcu_read_unlock();
5124 	return retval;
5125 }
5126 
5127 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5128 
5129 void sched_show_task(struct task_struct *p)
5130 {
5131 	unsigned long free = 0;
5132 	int ppid;
5133 	unsigned long state = p->state;
5134 
5135 	if (state)
5136 		state = __ffs(state) + 1;
5137 	printk(KERN_INFO "%-15.15s %c", p->comm,
5138 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5139 #if BITS_PER_LONG == 32
5140 	if (state == TASK_RUNNING)
5141 		printk(KERN_CONT " running  ");
5142 	else
5143 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5144 #else
5145 	if (state == TASK_RUNNING)
5146 		printk(KERN_CONT "  running task    ");
5147 	else
5148 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5149 #endif
5150 #ifdef CONFIG_DEBUG_STACK_USAGE
5151 	free = stack_not_used(p);
5152 #endif
5153 	ppid = 0;
5154 	rcu_read_lock();
5155 	if (pid_alive(p))
5156 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5157 	rcu_read_unlock();
5158 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5159 		task_pid_nr(p), ppid,
5160 		(unsigned long)task_thread_info(p)->flags);
5161 
5162 	print_worker_info(KERN_INFO, p);
5163 	show_stack(p, NULL);
5164 }
5165 
5166 void show_state_filter(unsigned long state_filter)
5167 {
5168 	struct task_struct *g, *p;
5169 
5170 #if BITS_PER_LONG == 32
5171 	printk(KERN_INFO
5172 		"  task                PC stack   pid father\n");
5173 #else
5174 	printk(KERN_INFO
5175 		"  task                        PC stack   pid father\n");
5176 #endif
5177 	rcu_read_lock();
5178 	for_each_process_thread(g, p) {
5179 		/*
5180 		 * reset the NMI-timeout, listing all files on a slow
5181 		 * console might take a lot of time:
5182 		 * Also, reset softlockup watchdogs on all CPUs, because
5183 		 * another CPU might be blocked waiting for us to process
5184 		 * an IPI.
5185 		 */
5186 		touch_nmi_watchdog();
5187 		touch_all_softlockup_watchdogs();
5188 		if (!state_filter || (p->state & state_filter))
5189 			sched_show_task(p);
5190 	}
5191 
5192 #ifdef CONFIG_SCHED_DEBUG
5193 	if (!state_filter)
5194 		sysrq_sched_debug_show();
5195 #endif
5196 	rcu_read_unlock();
5197 	/*
5198 	 * Only show locks if all tasks are dumped:
5199 	 */
5200 	if (!state_filter)
5201 		debug_show_all_locks();
5202 }
5203 
5204 void init_idle_bootup_task(struct task_struct *idle)
5205 {
5206 	idle->sched_class = &idle_sched_class;
5207 }
5208 
5209 /**
5210  * init_idle - set up an idle thread for a given CPU
5211  * @idle: task in question
5212  * @cpu: cpu the idle task belongs to
5213  *
5214  * NOTE: this function does not set the idle thread's NEED_RESCHED
5215  * flag, to make booting more robust.
5216  */
5217 void init_idle(struct task_struct *idle, int cpu)
5218 {
5219 	struct rq *rq = cpu_rq(cpu);
5220 	unsigned long flags;
5221 
5222 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5223 	raw_spin_lock(&rq->lock);
5224 
5225 	__sched_fork(0, idle);
5226 	idle->state = TASK_RUNNING;
5227 	idle->se.exec_start = sched_clock();
5228 
5229 	kasan_unpoison_task_stack(idle);
5230 
5231 #ifdef CONFIG_SMP
5232 	/*
5233 	 * Its possible that init_idle() gets called multiple times on a task,
5234 	 * in that case do_set_cpus_allowed() will not do the right thing.
5235 	 *
5236 	 * And since this is boot we can forgo the serialization.
5237 	 */
5238 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5239 #endif
5240 	/*
5241 	 * We're having a chicken and egg problem, even though we are
5242 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5243 	 * lockdep check in task_group() will fail.
5244 	 *
5245 	 * Similar case to sched_fork(). / Alternatively we could
5246 	 * use task_rq_lock() here and obtain the other rq->lock.
5247 	 *
5248 	 * Silence PROVE_RCU
5249 	 */
5250 	rcu_read_lock();
5251 	__set_task_cpu(idle, cpu);
5252 	rcu_read_unlock();
5253 
5254 	rq->curr = rq->idle = idle;
5255 	idle->on_rq = TASK_ON_RQ_QUEUED;
5256 #ifdef CONFIG_SMP
5257 	idle->on_cpu = 1;
5258 #endif
5259 	raw_spin_unlock(&rq->lock);
5260 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5261 
5262 	/* Set the preempt count _outside_ the spinlocks! */
5263 	init_idle_preempt_count(idle, cpu);
5264 
5265 	/*
5266 	 * The idle tasks have their own, simple scheduling class:
5267 	 */
5268 	idle->sched_class = &idle_sched_class;
5269 	ftrace_graph_init_idle_task(idle, cpu);
5270 	vtime_init_idle(idle, cpu);
5271 #ifdef CONFIG_SMP
5272 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5273 #endif
5274 }
5275 
5276 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5277 			      const struct cpumask *trial)
5278 {
5279 	int ret = 1, trial_cpus;
5280 	struct dl_bw *cur_dl_b;
5281 	unsigned long flags;
5282 
5283 	if (!cpumask_weight(cur))
5284 		return ret;
5285 
5286 	rcu_read_lock_sched();
5287 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5288 	trial_cpus = cpumask_weight(trial);
5289 
5290 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5291 	if (cur_dl_b->bw != -1 &&
5292 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5293 		ret = 0;
5294 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5295 	rcu_read_unlock_sched();
5296 
5297 	return ret;
5298 }
5299 
5300 int task_can_attach(struct task_struct *p,
5301 		    const struct cpumask *cs_cpus_allowed)
5302 {
5303 	int ret = 0;
5304 
5305 	/*
5306 	 * Kthreads which disallow setaffinity shouldn't be moved
5307 	 * to a new cpuset; we don't want to change their cpu
5308 	 * affinity and isolating such threads by their set of
5309 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5310 	 * applicable for such threads.  This prevents checking for
5311 	 * success of set_cpus_allowed_ptr() on all attached tasks
5312 	 * before cpus_allowed may be changed.
5313 	 */
5314 	if (p->flags & PF_NO_SETAFFINITY) {
5315 		ret = -EINVAL;
5316 		goto out;
5317 	}
5318 
5319 #ifdef CONFIG_SMP
5320 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5321 					      cs_cpus_allowed)) {
5322 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5323 							cs_cpus_allowed);
5324 		struct dl_bw *dl_b;
5325 		bool overflow;
5326 		int cpus;
5327 		unsigned long flags;
5328 
5329 		rcu_read_lock_sched();
5330 		dl_b = dl_bw_of(dest_cpu);
5331 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5332 		cpus = dl_bw_cpus(dest_cpu);
5333 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5334 		if (overflow)
5335 			ret = -EBUSY;
5336 		else {
5337 			/*
5338 			 * We reserve space for this task in the destination
5339 			 * root_domain, as we can't fail after this point.
5340 			 * We will free resources in the source root_domain
5341 			 * later on (see set_cpus_allowed_dl()).
5342 			 */
5343 			__dl_add(dl_b, p->dl.dl_bw);
5344 		}
5345 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5346 		rcu_read_unlock_sched();
5347 
5348 	}
5349 #endif
5350 out:
5351 	return ret;
5352 }
5353 
5354 #ifdef CONFIG_SMP
5355 
5356 static bool sched_smp_initialized __read_mostly;
5357 
5358 #ifdef CONFIG_NUMA_BALANCING
5359 /* Migrate current task p to target_cpu */
5360 int migrate_task_to(struct task_struct *p, int target_cpu)
5361 {
5362 	struct migration_arg arg = { p, target_cpu };
5363 	int curr_cpu = task_cpu(p);
5364 
5365 	if (curr_cpu == target_cpu)
5366 		return 0;
5367 
5368 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5369 		return -EINVAL;
5370 
5371 	/* TODO: This is not properly updating schedstats */
5372 
5373 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5374 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5375 }
5376 
5377 /*
5378  * Requeue a task on a given node and accurately track the number of NUMA
5379  * tasks on the runqueues
5380  */
5381 void sched_setnuma(struct task_struct *p, int nid)
5382 {
5383 	bool queued, running;
5384 	struct rq_flags rf;
5385 	struct rq *rq;
5386 
5387 	rq = task_rq_lock(p, &rf);
5388 	queued = task_on_rq_queued(p);
5389 	running = task_current(rq, p);
5390 
5391 	if (queued)
5392 		dequeue_task(rq, p, DEQUEUE_SAVE);
5393 	if (running)
5394 		put_prev_task(rq, p);
5395 
5396 	p->numa_preferred_nid = nid;
5397 
5398 	if (running)
5399 		p->sched_class->set_curr_task(rq);
5400 	if (queued)
5401 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5402 	task_rq_unlock(rq, p, &rf);
5403 }
5404 #endif /* CONFIG_NUMA_BALANCING */
5405 
5406 #ifdef CONFIG_HOTPLUG_CPU
5407 /*
5408  * Ensures that the idle task is using init_mm right before its cpu goes
5409  * offline.
5410  */
5411 void idle_task_exit(void)
5412 {
5413 	struct mm_struct *mm = current->active_mm;
5414 
5415 	BUG_ON(cpu_online(smp_processor_id()));
5416 
5417 	if (mm != &init_mm) {
5418 		switch_mm_irqs_off(mm, &init_mm, current);
5419 		finish_arch_post_lock_switch();
5420 	}
5421 	mmdrop(mm);
5422 }
5423 
5424 /*
5425  * Since this CPU is going 'away' for a while, fold any nr_active delta
5426  * we might have. Assumes we're called after migrate_tasks() so that the
5427  * nr_active count is stable. We need to take the teardown thread which
5428  * is calling this into account, so we hand in adjust = 1 to the load
5429  * calculation.
5430  *
5431  * Also see the comment "Global load-average calculations".
5432  */
5433 static void calc_load_migrate(struct rq *rq)
5434 {
5435 	long delta = calc_load_fold_active(rq, 1);
5436 	if (delta)
5437 		atomic_long_add(delta, &calc_load_tasks);
5438 }
5439 
5440 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5441 {
5442 }
5443 
5444 static const struct sched_class fake_sched_class = {
5445 	.put_prev_task = put_prev_task_fake,
5446 };
5447 
5448 static struct task_struct fake_task = {
5449 	/*
5450 	 * Avoid pull_{rt,dl}_task()
5451 	 */
5452 	.prio = MAX_PRIO + 1,
5453 	.sched_class = &fake_sched_class,
5454 };
5455 
5456 /*
5457  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5458  * try_to_wake_up()->select_task_rq().
5459  *
5460  * Called with rq->lock held even though we'er in stop_machine() and
5461  * there's no concurrency possible, we hold the required locks anyway
5462  * because of lock validation efforts.
5463  */
5464 static void migrate_tasks(struct rq *dead_rq)
5465 {
5466 	struct rq *rq = dead_rq;
5467 	struct task_struct *next, *stop = rq->stop;
5468 	struct pin_cookie cookie;
5469 	int dest_cpu;
5470 
5471 	/*
5472 	 * Fudge the rq selection such that the below task selection loop
5473 	 * doesn't get stuck on the currently eligible stop task.
5474 	 *
5475 	 * We're currently inside stop_machine() and the rq is either stuck
5476 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5477 	 * either way we should never end up calling schedule() until we're
5478 	 * done here.
5479 	 */
5480 	rq->stop = NULL;
5481 
5482 	/*
5483 	 * put_prev_task() and pick_next_task() sched
5484 	 * class method both need to have an up-to-date
5485 	 * value of rq->clock[_task]
5486 	 */
5487 	update_rq_clock(rq);
5488 
5489 	for (;;) {
5490 		/*
5491 		 * There's this thread running, bail when that's the only
5492 		 * remaining thread.
5493 		 */
5494 		if (rq->nr_running == 1)
5495 			break;
5496 
5497 		/*
5498 		 * pick_next_task assumes pinned rq->lock.
5499 		 */
5500 		cookie = lockdep_pin_lock(&rq->lock);
5501 		next = pick_next_task(rq, &fake_task, cookie);
5502 		BUG_ON(!next);
5503 		next->sched_class->put_prev_task(rq, next);
5504 
5505 		/*
5506 		 * Rules for changing task_struct::cpus_allowed are holding
5507 		 * both pi_lock and rq->lock, such that holding either
5508 		 * stabilizes the mask.
5509 		 *
5510 		 * Drop rq->lock is not quite as disastrous as it usually is
5511 		 * because !cpu_active at this point, which means load-balance
5512 		 * will not interfere. Also, stop-machine.
5513 		 */
5514 		lockdep_unpin_lock(&rq->lock, cookie);
5515 		raw_spin_unlock(&rq->lock);
5516 		raw_spin_lock(&next->pi_lock);
5517 		raw_spin_lock(&rq->lock);
5518 
5519 		/*
5520 		 * Since we're inside stop-machine, _nothing_ should have
5521 		 * changed the task, WARN if weird stuff happened, because in
5522 		 * that case the above rq->lock drop is a fail too.
5523 		 */
5524 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5525 			raw_spin_unlock(&next->pi_lock);
5526 			continue;
5527 		}
5528 
5529 		/* Find suitable destination for @next, with force if needed. */
5530 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5531 
5532 		rq = __migrate_task(rq, next, dest_cpu);
5533 		if (rq != dead_rq) {
5534 			raw_spin_unlock(&rq->lock);
5535 			rq = dead_rq;
5536 			raw_spin_lock(&rq->lock);
5537 		}
5538 		raw_spin_unlock(&next->pi_lock);
5539 	}
5540 
5541 	rq->stop = stop;
5542 }
5543 #endif /* CONFIG_HOTPLUG_CPU */
5544 
5545 static void set_rq_online(struct rq *rq)
5546 {
5547 	if (!rq->online) {
5548 		const struct sched_class *class;
5549 
5550 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5551 		rq->online = 1;
5552 
5553 		for_each_class(class) {
5554 			if (class->rq_online)
5555 				class->rq_online(rq);
5556 		}
5557 	}
5558 }
5559 
5560 static void set_rq_offline(struct rq *rq)
5561 {
5562 	if (rq->online) {
5563 		const struct sched_class *class;
5564 
5565 		for_each_class(class) {
5566 			if (class->rq_offline)
5567 				class->rq_offline(rq);
5568 		}
5569 
5570 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5571 		rq->online = 0;
5572 	}
5573 }
5574 
5575 static void set_cpu_rq_start_time(unsigned int cpu)
5576 {
5577 	struct rq *rq = cpu_rq(cpu);
5578 
5579 	rq->age_stamp = sched_clock_cpu(cpu);
5580 }
5581 
5582 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5583 
5584 #ifdef CONFIG_SCHED_DEBUG
5585 
5586 static __read_mostly int sched_debug_enabled;
5587 
5588 static int __init sched_debug_setup(char *str)
5589 {
5590 	sched_debug_enabled = 1;
5591 
5592 	return 0;
5593 }
5594 early_param("sched_debug", sched_debug_setup);
5595 
5596 static inline bool sched_debug(void)
5597 {
5598 	return sched_debug_enabled;
5599 }
5600 
5601 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5602 				  struct cpumask *groupmask)
5603 {
5604 	struct sched_group *group = sd->groups;
5605 
5606 	cpumask_clear(groupmask);
5607 
5608 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5609 
5610 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5611 		printk("does not load-balance\n");
5612 		if (sd->parent)
5613 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5614 					" has parent");
5615 		return -1;
5616 	}
5617 
5618 	printk(KERN_CONT "span %*pbl level %s\n",
5619 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5620 
5621 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5622 		printk(KERN_ERR "ERROR: domain->span does not contain "
5623 				"CPU%d\n", cpu);
5624 	}
5625 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5626 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5627 				" CPU%d\n", cpu);
5628 	}
5629 
5630 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5631 	do {
5632 		if (!group) {
5633 			printk("\n");
5634 			printk(KERN_ERR "ERROR: group is NULL\n");
5635 			break;
5636 		}
5637 
5638 		if (!cpumask_weight(sched_group_cpus(group))) {
5639 			printk(KERN_CONT "\n");
5640 			printk(KERN_ERR "ERROR: empty group\n");
5641 			break;
5642 		}
5643 
5644 		if (!(sd->flags & SD_OVERLAP) &&
5645 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5646 			printk(KERN_CONT "\n");
5647 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5648 			break;
5649 		}
5650 
5651 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5652 
5653 		printk(KERN_CONT " %*pbl",
5654 		       cpumask_pr_args(sched_group_cpus(group)));
5655 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5656 			printk(KERN_CONT " (cpu_capacity = %d)",
5657 				group->sgc->capacity);
5658 		}
5659 
5660 		group = group->next;
5661 	} while (group != sd->groups);
5662 	printk(KERN_CONT "\n");
5663 
5664 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5665 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5666 
5667 	if (sd->parent &&
5668 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5669 		printk(KERN_ERR "ERROR: parent span is not a superset "
5670 			"of domain->span\n");
5671 	return 0;
5672 }
5673 
5674 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5675 {
5676 	int level = 0;
5677 
5678 	if (!sched_debug_enabled)
5679 		return;
5680 
5681 	if (!sd) {
5682 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5683 		return;
5684 	}
5685 
5686 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5687 
5688 	for (;;) {
5689 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5690 			break;
5691 		level++;
5692 		sd = sd->parent;
5693 		if (!sd)
5694 			break;
5695 	}
5696 }
5697 #else /* !CONFIG_SCHED_DEBUG */
5698 # define sched_domain_debug(sd, cpu) do { } while (0)
5699 static inline bool sched_debug(void)
5700 {
5701 	return false;
5702 }
5703 #endif /* CONFIG_SCHED_DEBUG */
5704 
5705 static int sd_degenerate(struct sched_domain *sd)
5706 {
5707 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5708 		return 1;
5709 
5710 	/* Following flags need at least 2 groups */
5711 	if (sd->flags & (SD_LOAD_BALANCE |
5712 			 SD_BALANCE_NEWIDLE |
5713 			 SD_BALANCE_FORK |
5714 			 SD_BALANCE_EXEC |
5715 			 SD_SHARE_CPUCAPACITY |
5716 			 SD_SHARE_PKG_RESOURCES |
5717 			 SD_SHARE_POWERDOMAIN)) {
5718 		if (sd->groups != sd->groups->next)
5719 			return 0;
5720 	}
5721 
5722 	/* Following flags don't use groups */
5723 	if (sd->flags & (SD_WAKE_AFFINE))
5724 		return 0;
5725 
5726 	return 1;
5727 }
5728 
5729 static int
5730 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5731 {
5732 	unsigned long cflags = sd->flags, pflags = parent->flags;
5733 
5734 	if (sd_degenerate(parent))
5735 		return 1;
5736 
5737 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5738 		return 0;
5739 
5740 	/* Flags needing groups don't count if only 1 group in parent */
5741 	if (parent->groups == parent->groups->next) {
5742 		pflags &= ~(SD_LOAD_BALANCE |
5743 				SD_BALANCE_NEWIDLE |
5744 				SD_BALANCE_FORK |
5745 				SD_BALANCE_EXEC |
5746 				SD_SHARE_CPUCAPACITY |
5747 				SD_SHARE_PKG_RESOURCES |
5748 				SD_PREFER_SIBLING |
5749 				SD_SHARE_POWERDOMAIN);
5750 		if (nr_node_ids == 1)
5751 			pflags &= ~SD_SERIALIZE;
5752 	}
5753 	if (~cflags & pflags)
5754 		return 0;
5755 
5756 	return 1;
5757 }
5758 
5759 static void free_rootdomain(struct rcu_head *rcu)
5760 {
5761 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5762 
5763 	cpupri_cleanup(&rd->cpupri);
5764 	cpudl_cleanup(&rd->cpudl);
5765 	free_cpumask_var(rd->dlo_mask);
5766 	free_cpumask_var(rd->rto_mask);
5767 	free_cpumask_var(rd->online);
5768 	free_cpumask_var(rd->span);
5769 	kfree(rd);
5770 }
5771 
5772 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5773 {
5774 	struct root_domain *old_rd = NULL;
5775 	unsigned long flags;
5776 
5777 	raw_spin_lock_irqsave(&rq->lock, flags);
5778 
5779 	if (rq->rd) {
5780 		old_rd = rq->rd;
5781 
5782 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5783 			set_rq_offline(rq);
5784 
5785 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5786 
5787 		/*
5788 		 * If we dont want to free the old_rd yet then
5789 		 * set old_rd to NULL to skip the freeing later
5790 		 * in this function:
5791 		 */
5792 		if (!atomic_dec_and_test(&old_rd->refcount))
5793 			old_rd = NULL;
5794 	}
5795 
5796 	atomic_inc(&rd->refcount);
5797 	rq->rd = rd;
5798 
5799 	cpumask_set_cpu(rq->cpu, rd->span);
5800 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5801 		set_rq_online(rq);
5802 
5803 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5804 
5805 	if (old_rd)
5806 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5807 }
5808 
5809 static int init_rootdomain(struct root_domain *rd)
5810 {
5811 	memset(rd, 0, sizeof(*rd));
5812 
5813 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5814 		goto out;
5815 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5816 		goto free_span;
5817 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5818 		goto free_online;
5819 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5820 		goto free_dlo_mask;
5821 
5822 	init_dl_bw(&rd->dl_bw);
5823 	if (cpudl_init(&rd->cpudl) != 0)
5824 		goto free_dlo_mask;
5825 
5826 	if (cpupri_init(&rd->cpupri) != 0)
5827 		goto free_rto_mask;
5828 	return 0;
5829 
5830 free_rto_mask:
5831 	free_cpumask_var(rd->rto_mask);
5832 free_dlo_mask:
5833 	free_cpumask_var(rd->dlo_mask);
5834 free_online:
5835 	free_cpumask_var(rd->online);
5836 free_span:
5837 	free_cpumask_var(rd->span);
5838 out:
5839 	return -ENOMEM;
5840 }
5841 
5842 /*
5843  * By default the system creates a single root-domain with all cpus as
5844  * members (mimicking the global state we have today).
5845  */
5846 struct root_domain def_root_domain;
5847 
5848 static void init_defrootdomain(void)
5849 {
5850 	init_rootdomain(&def_root_domain);
5851 
5852 	atomic_set(&def_root_domain.refcount, 1);
5853 }
5854 
5855 static struct root_domain *alloc_rootdomain(void)
5856 {
5857 	struct root_domain *rd;
5858 
5859 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5860 	if (!rd)
5861 		return NULL;
5862 
5863 	if (init_rootdomain(rd) != 0) {
5864 		kfree(rd);
5865 		return NULL;
5866 	}
5867 
5868 	return rd;
5869 }
5870 
5871 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5872 {
5873 	struct sched_group *tmp, *first;
5874 
5875 	if (!sg)
5876 		return;
5877 
5878 	first = sg;
5879 	do {
5880 		tmp = sg->next;
5881 
5882 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5883 			kfree(sg->sgc);
5884 
5885 		kfree(sg);
5886 		sg = tmp;
5887 	} while (sg != first);
5888 }
5889 
5890 static void free_sched_domain(struct rcu_head *rcu)
5891 {
5892 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5893 
5894 	/*
5895 	 * If its an overlapping domain it has private groups, iterate and
5896 	 * nuke them all.
5897 	 */
5898 	if (sd->flags & SD_OVERLAP) {
5899 		free_sched_groups(sd->groups, 1);
5900 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5901 		kfree(sd->groups->sgc);
5902 		kfree(sd->groups);
5903 	}
5904 	kfree(sd);
5905 }
5906 
5907 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5908 {
5909 	call_rcu(&sd->rcu, free_sched_domain);
5910 }
5911 
5912 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5913 {
5914 	for (; sd; sd = sd->parent)
5915 		destroy_sched_domain(sd, cpu);
5916 }
5917 
5918 /*
5919  * Keep a special pointer to the highest sched_domain that has
5920  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5921  * allows us to avoid some pointer chasing select_idle_sibling().
5922  *
5923  * Also keep a unique ID per domain (we use the first cpu number in
5924  * the cpumask of the domain), this allows us to quickly tell if
5925  * two cpus are in the same cache domain, see cpus_share_cache().
5926  */
5927 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5928 DEFINE_PER_CPU(int, sd_llc_size);
5929 DEFINE_PER_CPU(int, sd_llc_id);
5930 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5931 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5932 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5933 
5934 static void update_top_cache_domain(int cpu)
5935 {
5936 	struct sched_domain *sd;
5937 	struct sched_domain *busy_sd = NULL;
5938 	int id = cpu;
5939 	int size = 1;
5940 
5941 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5942 	if (sd) {
5943 		id = cpumask_first(sched_domain_span(sd));
5944 		size = cpumask_weight(sched_domain_span(sd));
5945 		busy_sd = sd->parent; /* sd_busy */
5946 	}
5947 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5948 
5949 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5950 	per_cpu(sd_llc_size, cpu) = size;
5951 	per_cpu(sd_llc_id, cpu) = id;
5952 
5953 	sd = lowest_flag_domain(cpu, SD_NUMA);
5954 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5955 
5956 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5957 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5958 }
5959 
5960 /*
5961  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5962  * hold the hotplug lock.
5963  */
5964 static void
5965 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5966 {
5967 	struct rq *rq = cpu_rq(cpu);
5968 	struct sched_domain *tmp;
5969 
5970 	/* Remove the sched domains which do not contribute to scheduling. */
5971 	for (tmp = sd; tmp; ) {
5972 		struct sched_domain *parent = tmp->parent;
5973 		if (!parent)
5974 			break;
5975 
5976 		if (sd_parent_degenerate(tmp, parent)) {
5977 			tmp->parent = parent->parent;
5978 			if (parent->parent)
5979 				parent->parent->child = tmp;
5980 			/*
5981 			 * Transfer SD_PREFER_SIBLING down in case of a
5982 			 * degenerate parent; the spans match for this
5983 			 * so the property transfers.
5984 			 */
5985 			if (parent->flags & SD_PREFER_SIBLING)
5986 				tmp->flags |= SD_PREFER_SIBLING;
5987 			destroy_sched_domain(parent, cpu);
5988 		} else
5989 			tmp = tmp->parent;
5990 	}
5991 
5992 	if (sd && sd_degenerate(sd)) {
5993 		tmp = sd;
5994 		sd = sd->parent;
5995 		destroy_sched_domain(tmp, cpu);
5996 		if (sd)
5997 			sd->child = NULL;
5998 	}
5999 
6000 	sched_domain_debug(sd, cpu);
6001 
6002 	rq_attach_root(rq, rd);
6003 	tmp = rq->sd;
6004 	rcu_assign_pointer(rq->sd, sd);
6005 	destroy_sched_domains(tmp, cpu);
6006 
6007 	update_top_cache_domain(cpu);
6008 }
6009 
6010 /* Setup the mask of cpus configured for isolated domains */
6011 static int __init isolated_cpu_setup(char *str)
6012 {
6013 	int ret;
6014 
6015 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6016 	ret = cpulist_parse(str, cpu_isolated_map);
6017 	if (ret) {
6018 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6019 		return 0;
6020 	}
6021 	return 1;
6022 }
6023 __setup("isolcpus=", isolated_cpu_setup);
6024 
6025 struct s_data {
6026 	struct sched_domain ** __percpu sd;
6027 	struct root_domain	*rd;
6028 };
6029 
6030 enum s_alloc {
6031 	sa_rootdomain,
6032 	sa_sd,
6033 	sa_sd_storage,
6034 	sa_none,
6035 };
6036 
6037 /*
6038  * Build an iteration mask that can exclude certain CPUs from the upwards
6039  * domain traversal.
6040  *
6041  * Asymmetric node setups can result in situations where the domain tree is of
6042  * unequal depth, make sure to skip domains that already cover the entire
6043  * range.
6044  *
6045  * In that case build_sched_domains() will have terminated the iteration early
6046  * and our sibling sd spans will be empty. Domains should always include the
6047  * cpu they're built on, so check that.
6048  *
6049  */
6050 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6051 {
6052 	const struct cpumask *span = sched_domain_span(sd);
6053 	struct sd_data *sdd = sd->private;
6054 	struct sched_domain *sibling;
6055 	int i;
6056 
6057 	for_each_cpu(i, span) {
6058 		sibling = *per_cpu_ptr(sdd->sd, i);
6059 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6060 			continue;
6061 
6062 		cpumask_set_cpu(i, sched_group_mask(sg));
6063 	}
6064 }
6065 
6066 /*
6067  * Return the canonical balance cpu for this group, this is the first cpu
6068  * of this group that's also in the iteration mask.
6069  */
6070 int group_balance_cpu(struct sched_group *sg)
6071 {
6072 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6073 }
6074 
6075 static int
6076 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6077 {
6078 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6079 	const struct cpumask *span = sched_domain_span(sd);
6080 	struct cpumask *covered = sched_domains_tmpmask;
6081 	struct sd_data *sdd = sd->private;
6082 	struct sched_domain *sibling;
6083 	int i;
6084 
6085 	cpumask_clear(covered);
6086 
6087 	for_each_cpu(i, span) {
6088 		struct cpumask *sg_span;
6089 
6090 		if (cpumask_test_cpu(i, covered))
6091 			continue;
6092 
6093 		sibling = *per_cpu_ptr(sdd->sd, i);
6094 
6095 		/* See the comment near build_group_mask(). */
6096 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6097 			continue;
6098 
6099 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6100 				GFP_KERNEL, cpu_to_node(cpu));
6101 
6102 		if (!sg)
6103 			goto fail;
6104 
6105 		sg_span = sched_group_cpus(sg);
6106 		if (sibling->child)
6107 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6108 		else
6109 			cpumask_set_cpu(i, sg_span);
6110 
6111 		cpumask_or(covered, covered, sg_span);
6112 
6113 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6114 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6115 			build_group_mask(sd, sg);
6116 
6117 		/*
6118 		 * Initialize sgc->capacity such that even if we mess up the
6119 		 * domains and no possible iteration will get us here, we won't
6120 		 * die on a /0 trap.
6121 		 */
6122 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6123 
6124 		/*
6125 		 * Make sure the first group of this domain contains the
6126 		 * canonical balance cpu. Otherwise the sched_domain iteration
6127 		 * breaks. See update_sg_lb_stats().
6128 		 */
6129 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6130 		    group_balance_cpu(sg) == cpu)
6131 			groups = sg;
6132 
6133 		if (!first)
6134 			first = sg;
6135 		if (last)
6136 			last->next = sg;
6137 		last = sg;
6138 		last->next = first;
6139 	}
6140 	sd->groups = groups;
6141 
6142 	return 0;
6143 
6144 fail:
6145 	free_sched_groups(first, 0);
6146 
6147 	return -ENOMEM;
6148 }
6149 
6150 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6151 {
6152 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6153 	struct sched_domain *child = sd->child;
6154 
6155 	if (child)
6156 		cpu = cpumask_first(sched_domain_span(child));
6157 
6158 	if (sg) {
6159 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6160 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6161 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6162 	}
6163 
6164 	return cpu;
6165 }
6166 
6167 /*
6168  * build_sched_groups will build a circular linked list of the groups
6169  * covered by the given span, and will set each group's ->cpumask correctly,
6170  * and ->cpu_capacity to 0.
6171  *
6172  * Assumes the sched_domain tree is fully constructed
6173  */
6174 static int
6175 build_sched_groups(struct sched_domain *sd, int cpu)
6176 {
6177 	struct sched_group *first = NULL, *last = NULL;
6178 	struct sd_data *sdd = sd->private;
6179 	const struct cpumask *span = sched_domain_span(sd);
6180 	struct cpumask *covered;
6181 	int i;
6182 
6183 	get_group(cpu, sdd, &sd->groups);
6184 	atomic_inc(&sd->groups->ref);
6185 
6186 	if (cpu != cpumask_first(span))
6187 		return 0;
6188 
6189 	lockdep_assert_held(&sched_domains_mutex);
6190 	covered = sched_domains_tmpmask;
6191 
6192 	cpumask_clear(covered);
6193 
6194 	for_each_cpu(i, span) {
6195 		struct sched_group *sg;
6196 		int group, j;
6197 
6198 		if (cpumask_test_cpu(i, covered))
6199 			continue;
6200 
6201 		group = get_group(i, sdd, &sg);
6202 		cpumask_setall(sched_group_mask(sg));
6203 
6204 		for_each_cpu(j, span) {
6205 			if (get_group(j, sdd, NULL) != group)
6206 				continue;
6207 
6208 			cpumask_set_cpu(j, covered);
6209 			cpumask_set_cpu(j, sched_group_cpus(sg));
6210 		}
6211 
6212 		if (!first)
6213 			first = sg;
6214 		if (last)
6215 			last->next = sg;
6216 		last = sg;
6217 	}
6218 	last->next = first;
6219 
6220 	return 0;
6221 }
6222 
6223 /*
6224  * Initialize sched groups cpu_capacity.
6225  *
6226  * cpu_capacity indicates the capacity of sched group, which is used while
6227  * distributing the load between different sched groups in a sched domain.
6228  * Typically cpu_capacity for all the groups in a sched domain will be same
6229  * unless there are asymmetries in the topology. If there are asymmetries,
6230  * group having more cpu_capacity will pickup more load compared to the
6231  * group having less cpu_capacity.
6232  */
6233 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6234 {
6235 	struct sched_group *sg = sd->groups;
6236 
6237 	WARN_ON(!sg);
6238 
6239 	do {
6240 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6241 		sg = sg->next;
6242 	} while (sg != sd->groups);
6243 
6244 	if (cpu != group_balance_cpu(sg))
6245 		return;
6246 
6247 	update_group_capacity(sd, cpu);
6248 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6249 }
6250 
6251 /*
6252  * Initializers for schedule domains
6253  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6254  */
6255 
6256 static int default_relax_domain_level = -1;
6257 int sched_domain_level_max;
6258 
6259 static int __init setup_relax_domain_level(char *str)
6260 {
6261 	if (kstrtoint(str, 0, &default_relax_domain_level))
6262 		pr_warn("Unable to set relax_domain_level\n");
6263 
6264 	return 1;
6265 }
6266 __setup("relax_domain_level=", setup_relax_domain_level);
6267 
6268 static void set_domain_attribute(struct sched_domain *sd,
6269 				 struct sched_domain_attr *attr)
6270 {
6271 	int request;
6272 
6273 	if (!attr || attr->relax_domain_level < 0) {
6274 		if (default_relax_domain_level < 0)
6275 			return;
6276 		else
6277 			request = default_relax_domain_level;
6278 	} else
6279 		request = attr->relax_domain_level;
6280 	if (request < sd->level) {
6281 		/* turn off idle balance on this domain */
6282 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6283 	} else {
6284 		/* turn on idle balance on this domain */
6285 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6286 	}
6287 }
6288 
6289 static void __sdt_free(const struct cpumask *cpu_map);
6290 static int __sdt_alloc(const struct cpumask *cpu_map);
6291 
6292 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6293 				 const struct cpumask *cpu_map)
6294 {
6295 	switch (what) {
6296 	case sa_rootdomain:
6297 		if (!atomic_read(&d->rd->refcount))
6298 			free_rootdomain(&d->rd->rcu); /* fall through */
6299 	case sa_sd:
6300 		free_percpu(d->sd); /* fall through */
6301 	case sa_sd_storage:
6302 		__sdt_free(cpu_map); /* fall through */
6303 	case sa_none:
6304 		break;
6305 	}
6306 }
6307 
6308 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6309 						   const struct cpumask *cpu_map)
6310 {
6311 	memset(d, 0, sizeof(*d));
6312 
6313 	if (__sdt_alloc(cpu_map))
6314 		return sa_sd_storage;
6315 	d->sd = alloc_percpu(struct sched_domain *);
6316 	if (!d->sd)
6317 		return sa_sd_storage;
6318 	d->rd = alloc_rootdomain();
6319 	if (!d->rd)
6320 		return sa_sd;
6321 	return sa_rootdomain;
6322 }
6323 
6324 /*
6325  * NULL the sd_data elements we've used to build the sched_domain and
6326  * sched_group structure so that the subsequent __free_domain_allocs()
6327  * will not free the data we're using.
6328  */
6329 static void claim_allocations(int cpu, struct sched_domain *sd)
6330 {
6331 	struct sd_data *sdd = sd->private;
6332 
6333 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6334 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6335 
6336 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6337 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6338 
6339 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6340 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6341 }
6342 
6343 #ifdef CONFIG_NUMA
6344 static int sched_domains_numa_levels;
6345 enum numa_topology_type sched_numa_topology_type;
6346 static int *sched_domains_numa_distance;
6347 int sched_max_numa_distance;
6348 static struct cpumask ***sched_domains_numa_masks;
6349 static int sched_domains_curr_level;
6350 #endif
6351 
6352 /*
6353  * SD_flags allowed in topology descriptions.
6354  *
6355  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6356  * SD_SHARE_PKG_RESOURCES - describes shared caches
6357  * SD_NUMA                - describes NUMA topologies
6358  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6359  *
6360  * Odd one out:
6361  * SD_ASYM_PACKING        - describes SMT quirks
6362  */
6363 #define TOPOLOGY_SD_FLAGS		\
6364 	(SD_SHARE_CPUCAPACITY |		\
6365 	 SD_SHARE_PKG_RESOURCES |	\
6366 	 SD_NUMA |			\
6367 	 SD_ASYM_PACKING |		\
6368 	 SD_SHARE_POWERDOMAIN)
6369 
6370 static struct sched_domain *
6371 sd_init(struct sched_domain_topology_level *tl, int cpu)
6372 {
6373 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6374 	int sd_weight, sd_flags = 0;
6375 
6376 #ifdef CONFIG_NUMA
6377 	/*
6378 	 * Ugly hack to pass state to sd_numa_mask()...
6379 	 */
6380 	sched_domains_curr_level = tl->numa_level;
6381 #endif
6382 
6383 	sd_weight = cpumask_weight(tl->mask(cpu));
6384 
6385 	if (tl->sd_flags)
6386 		sd_flags = (*tl->sd_flags)();
6387 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6388 			"wrong sd_flags in topology description\n"))
6389 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6390 
6391 	*sd = (struct sched_domain){
6392 		.min_interval		= sd_weight,
6393 		.max_interval		= 2*sd_weight,
6394 		.busy_factor		= 32,
6395 		.imbalance_pct		= 125,
6396 
6397 		.cache_nice_tries	= 0,
6398 		.busy_idx		= 0,
6399 		.idle_idx		= 0,
6400 		.newidle_idx		= 0,
6401 		.wake_idx		= 0,
6402 		.forkexec_idx		= 0,
6403 
6404 		.flags			= 1*SD_LOAD_BALANCE
6405 					| 1*SD_BALANCE_NEWIDLE
6406 					| 1*SD_BALANCE_EXEC
6407 					| 1*SD_BALANCE_FORK
6408 					| 0*SD_BALANCE_WAKE
6409 					| 1*SD_WAKE_AFFINE
6410 					| 0*SD_SHARE_CPUCAPACITY
6411 					| 0*SD_SHARE_PKG_RESOURCES
6412 					| 0*SD_SERIALIZE
6413 					| 0*SD_PREFER_SIBLING
6414 					| 0*SD_NUMA
6415 					| sd_flags
6416 					,
6417 
6418 		.last_balance		= jiffies,
6419 		.balance_interval	= sd_weight,
6420 		.smt_gain		= 0,
6421 		.max_newidle_lb_cost	= 0,
6422 		.next_decay_max_lb_cost	= jiffies,
6423 #ifdef CONFIG_SCHED_DEBUG
6424 		.name			= tl->name,
6425 #endif
6426 	};
6427 
6428 	/*
6429 	 * Convert topological properties into behaviour.
6430 	 */
6431 
6432 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6433 		sd->flags |= SD_PREFER_SIBLING;
6434 		sd->imbalance_pct = 110;
6435 		sd->smt_gain = 1178; /* ~15% */
6436 
6437 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6438 		sd->imbalance_pct = 117;
6439 		sd->cache_nice_tries = 1;
6440 		sd->busy_idx = 2;
6441 
6442 #ifdef CONFIG_NUMA
6443 	} else if (sd->flags & SD_NUMA) {
6444 		sd->cache_nice_tries = 2;
6445 		sd->busy_idx = 3;
6446 		sd->idle_idx = 2;
6447 
6448 		sd->flags |= SD_SERIALIZE;
6449 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6450 			sd->flags &= ~(SD_BALANCE_EXEC |
6451 				       SD_BALANCE_FORK |
6452 				       SD_WAKE_AFFINE);
6453 		}
6454 
6455 #endif
6456 	} else {
6457 		sd->flags |= SD_PREFER_SIBLING;
6458 		sd->cache_nice_tries = 1;
6459 		sd->busy_idx = 2;
6460 		sd->idle_idx = 1;
6461 	}
6462 
6463 	sd->private = &tl->data;
6464 
6465 	return sd;
6466 }
6467 
6468 /*
6469  * Topology list, bottom-up.
6470  */
6471 static struct sched_domain_topology_level default_topology[] = {
6472 #ifdef CONFIG_SCHED_SMT
6473 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6474 #endif
6475 #ifdef CONFIG_SCHED_MC
6476 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6477 #endif
6478 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6479 	{ NULL, },
6480 };
6481 
6482 static struct sched_domain_topology_level *sched_domain_topology =
6483 	default_topology;
6484 
6485 #define for_each_sd_topology(tl)			\
6486 	for (tl = sched_domain_topology; tl->mask; tl++)
6487 
6488 void set_sched_topology(struct sched_domain_topology_level *tl)
6489 {
6490 	sched_domain_topology = tl;
6491 }
6492 
6493 #ifdef CONFIG_NUMA
6494 
6495 static const struct cpumask *sd_numa_mask(int cpu)
6496 {
6497 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6498 }
6499 
6500 static void sched_numa_warn(const char *str)
6501 {
6502 	static int done = false;
6503 	int i,j;
6504 
6505 	if (done)
6506 		return;
6507 
6508 	done = true;
6509 
6510 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6511 
6512 	for (i = 0; i < nr_node_ids; i++) {
6513 		printk(KERN_WARNING "  ");
6514 		for (j = 0; j < nr_node_ids; j++)
6515 			printk(KERN_CONT "%02d ", node_distance(i,j));
6516 		printk(KERN_CONT "\n");
6517 	}
6518 	printk(KERN_WARNING "\n");
6519 }
6520 
6521 bool find_numa_distance(int distance)
6522 {
6523 	int i;
6524 
6525 	if (distance == node_distance(0, 0))
6526 		return true;
6527 
6528 	for (i = 0; i < sched_domains_numa_levels; i++) {
6529 		if (sched_domains_numa_distance[i] == distance)
6530 			return true;
6531 	}
6532 
6533 	return false;
6534 }
6535 
6536 /*
6537  * A system can have three types of NUMA topology:
6538  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6539  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6540  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6541  *
6542  * The difference between a glueless mesh topology and a backplane
6543  * topology lies in whether communication between not directly
6544  * connected nodes goes through intermediary nodes (where programs
6545  * could run), or through backplane controllers. This affects
6546  * placement of programs.
6547  *
6548  * The type of topology can be discerned with the following tests:
6549  * - If the maximum distance between any nodes is 1 hop, the system
6550  *   is directly connected.
6551  * - If for two nodes A and B, located N > 1 hops away from each other,
6552  *   there is an intermediary node C, which is < N hops away from both
6553  *   nodes A and B, the system is a glueless mesh.
6554  */
6555 static void init_numa_topology_type(void)
6556 {
6557 	int a, b, c, n;
6558 
6559 	n = sched_max_numa_distance;
6560 
6561 	if (sched_domains_numa_levels <= 1) {
6562 		sched_numa_topology_type = NUMA_DIRECT;
6563 		return;
6564 	}
6565 
6566 	for_each_online_node(a) {
6567 		for_each_online_node(b) {
6568 			/* Find two nodes furthest removed from each other. */
6569 			if (node_distance(a, b) < n)
6570 				continue;
6571 
6572 			/* Is there an intermediary node between a and b? */
6573 			for_each_online_node(c) {
6574 				if (node_distance(a, c) < n &&
6575 				    node_distance(b, c) < n) {
6576 					sched_numa_topology_type =
6577 							NUMA_GLUELESS_MESH;
6578 					return;
6579 				}
6580 			}
6581 
6582 			sched_numa_topology_type = NUMA_BACKPLANE;
6583 			return;
6584 		}
6585 	}
6586 }
6587 
6588 static void sched_init_numa(void)
6589 {
6590 	int next_distance, curr_distance = node_distance(0, 0);
6591 	struct sched_domain_topology_level *tl;
6592 	int level = 0;
6593 	int i, j, k;
6594 
6595 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6596 	if (!sched_domains_numa_distance)
6597 		return;
6598 
6599 	/*
6600 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6601 	 * unique distances in the node_distance() table.
6602 	 *
6603 	 * Assumes node_distance(0,j) includes all distances in
6604 	 * node_distance(i,j) in order to avoid cubic time.
6605 	 */
6606 	next_distance = curr_distance;
6607 	for (i = 0; i < nr_node_ids; i++) {
6608 		for (j = 0; j < nr_node_ids; j++) {
6609 			for (k = 0; k < nr_node_ids; k++) {
6610 				int distance = node_distance(i, k);
6611 
6612 				if (distance > curr_distance &&
6613 				    (distance < next_distance ||
6614 				     next_distance == curr_distance))
6615 					next_distance = distance;
6616 
6617 				/*
6618 				 * While not a strong assumption it would be nice to know
6619 				 * about cases where if node A is connected to B, B is not
6620 				 * equally connected to A.
6621 				 */
6622 				if (sched_debug() && node_distance(k, i) != distance)
6623 					sched_numa_warn("Node-distance not symmetric");
6624 
6625 				if (sched_debug() && i && !find_numa_distance(distance))
6626 					sched_numa_warn("Node-0 not representative");
6627 			}
6628 			if (next_distance != curr_distance) {
6629 				sched_domains_numa_distance[level++] = next_distance;
6630 				sched_domains_numa_levels = level;
6631 				curr_distance = next_distance;
6632 			} else break;
6633 		}
6634 
6635 		/*
6636 		 * In case of sched_debug() we verify the above assumption.
6637 		 */
6638 		if (!sched_debug())
6639 			break;
6640 	}
6641 
6642 	if (!level)
6643 		return;
6644 
6645 	/*
6646 	 * 'level' contains the number of unique distances, excluding the
6647 	 * identity distance node_distance(i,i).
6648 	 *
6649 	 * The sched_domains_numa_distance[] array includes the actual distance
6650 	 * numbers.
6651 	 */
6652 
6653 	/*
6654 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6655 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6656 	 * the array will contain less then 'level' members. This could be
6657 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6658 	 * in other functions.
6659 	 *
6660 	 * We reset it to 'level' at the end of this function.
6661 	 */
6662 	sched_domains_numa_levels = 0;
6663 
6664 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6665 	if (!sched_domains_numa_masks)
6666 		return;
6667 
6668 	/*
6669 	 * Now for each level, construct a mask per node which contains all
6670 	 * cpus of nodes that are that many hops away from us.
6671 	 */
6672 	for (i = 0; i < level; i++) {
6673 		sched_domains_numa_masks[i] =
6674 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6675 		if (!sched_domains_numa_masks[i])
6676 			return;
6677 
6678 		for (j = 0; j < nr_node_ids; j++) {
6679 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6680 			if (!mask)
6681 				return;
6682 
6683 			sched_domains_numa_masks[i][j] = mask;
6684 
6685 			for_each_node(k) {
6686 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6687 					continue;
6688 
6689 				cpumask_or(mask, mask, cpumask_of_node(k));
6690 			}
6691 		}
6692 	}
6693 
6694 	/* Compute default topology size */
6695 	for (i = 0; sched_domain_topology[i].mask; i++);
6696 
6697 	tl = kzalloc((i + level + 1) *
6698 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6699 	if (!tl)
6700 		return;
6701 
6702 	/*
6703 	 * Copy the default topology bits..
6704 	 */
6705 	for (i = 0; sched_domain_topology[i].mask; i++)
6706 		tl[i] = sched_domain_topology[i];
6707 
6708 	/*
6709 	 * .. and append 'j' levels of NUMA goodness.
6710 	 */
6711 	for (j = 0; j < level; i++, j++) {
6712 		tl[i] = (struct sched_domain_topology_level){
6713 			.mask = sd_numa_mask,
6714 			.sd_flags = cpu_numa_flags,
6715 			.flags = SDTL_OVERLAP,
6716 			.numa_level = j,
6717 			SD_INIT_NAME(NUMA)
6718 		};
6719 	}
6720 
6721 	sched_domain_topology = tl;
6722 
6723 	sched_domains_numa_levels = level;
6724 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6725 
6726 	init_numa_topology_type();
6727 }
6728 
6729 static void sched_domains_numa_masks_set(unsigned int cpu)
6730 {
6731 	int node = cpu_to_node(cpu);
6732 	int i, j;
6733 
6734 	for (i = 0; i < sched_domains_numa_levels; i++) {
6735 		for (j = 0; j < nr_node_ids; j++) {
6736 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6737 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6738 		}
6739 	}
6740 }
6741 
6742 static void sched_domains_numa_masks_clear(unsigned int cpu)
6743 {
6744 	int i, j;
6745 
6746 	for (i = 0; i < sched_domains_numa_levels; i++) {
6747 		for (j = 0; j < nr_node_ids; j++)
6748 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6749 	}
6750 }
6751 
6752 #else
6753 static inline void sched_init_numa(void) { }
6754 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6755 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6756 #endif /* CONFIG_NUMA */
6757 
6758 static int __sdt_alloc(const struct cpumask *cpu_map)
6759 {
6760 	struct sched_domain_topology_level *tl;
6761 	int j;
6762 
6763 	for_each_sd_topology(tl) {
6764 		struct sd_data *sdd = &tl->data;
6765 
6766 		sdd->sd = alloc_percpu(struct sched_domain *);
6767 		if (!sdd->sd)
6768 			return -ENOMEM;
6769 
6770 		sdd->sg = alloc_percpu(struct sched_group *);
6771 		if (!sdd->sg)
6772 			return -ENOMEM;
6773 
6774 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6775 		if (!sdd->sgc)
6776 			return -ENOMEM;
6777 
6778 		for_each_cpu(j, cpu_map) {
6779 			struct sched_domain *sd;
6780 			struct sched_group *sg;
6781 			struct sched_group_capacity *sgc;
6782 
6783 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6784 					GFP_KERNEL, cpu_to_node(j));
6785 			if (!sd)
6786 				return -ENOMEM;
6787 
6788 			*per_cpu_ptr(sdd->sd, j) = sd;
6789 
6790 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6791 					GFP_KERNEL, cpu_to_node(j));
6792 			if (!sg)
6793 				return -ENOMEM;
6794 
6795 			sg->next = sg;
6796 
6797 			*per_cpu_ptr(sdd->sg, j) = sg;
6798 
6799 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6800 					GFP_KERNEL, cpu_to_node(j));
6801 			if (!sgc)
6802 				return -ENOMEM;
6803 
6804 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6805 		}
6806 	}
6807 
6808 	return 0;
6809 }
6810 
6811 static void __sdt_free(const struct cpumask *cpu_map)
6812 {
6813 	struct sched_domain_topology_level *tl;
6814 	int j;
6815 
6816 	for_each_sd_topology(tl) {
6817 		struct sd_data *sdd = &tl->data;
6818 
6819 		for_each_cpu(j, cpu_map) {
6820 			struct sched_domain *sd;
6821 
6822 			if (sdd->sd) {
6823 				sd = *per_cpu_ptr(sdd->sd, j);
6824 				if (sd && (sd->flags & SD_OVERLAP))
6825 					free_sched_groups(sd->groups, 0);
6826 				kfree(*per_cpu_ptr(sdd->sd, j));
6827 			}
6828 
6829 			if (sdd->sg)
6830 				kfree(*per_cpu_ptr(sdd->sg, j));
6831 			if (sdd->sgc)
6832 				kfree(*per_cpu_ptr(sdd->sgc, j));
6833 		}
6834 		free_percpu(sdd->sd);
6835 		sdd->sd = NULL;
6836 		free_percpu(sdd->sg);
6837 		sdd->sg = NULL;
6838 		free_percpu(sdd->sgc);
6839 		sdd->sgc = NULL;
6840 	}
6841 }
6842 
6843 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6844 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6845 		struct sched_domain *child, int cpu)
6846 {
6847 	struct sched_domain *sd = sd_init(tl, cpu);
6848 	if (!sd)
6849 		return child;
6850 
6851 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6852 	if (child) {
6853 		sd->level = child->level + 1;
6854 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6855 		child->parent = sd;
6856 		sd->child = child;
6857 
6858 		if (!cpumask_subset(sched_domain_span(child),
6859 				    sched_domain_span(sd))) {
6860 			pr_err("BUG: arch topology borken\n");
6861 #ifdef CONFIG_SCHED_DEBUG
6862 			pr_err("     the %s domain not a subset of the %s domain\n",
6863 					child->name, sd->name);
6864 #endif
6865 			/* Fixup, ensure @sd has at least @child cpus. */
6866 			cpumask_or(sched_domain_span(sd),
6867 				   sched_domain_span(sd),
6868 				   sched_domain_span(child));
6869 		}
6870 
6871 	}
6872 	set_domain_attribute(sd, attr);
6873 
6874 	return sd;
6875 }
6876 
6877 /*
6878  * Build sched domains for a given set of cpus and attach the sched domains
6879  * to the individual cpus
6880  */
6881 static int build_sched_domains(const struct cpumask *cpu_map,
6882 			       struct sched_domain_attr *attr)
6883 {
6884 	enum s_alloc alloc_state;
6885 	struct sched_domain *sd;
6886 	struct s_data d;
6887 	int i, ret = -ENOMEM;
6888 
6889 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6890 	if (alloc_state != sa_rootdomain)
6891 		goto error;
6892 
6893 	/* Set up domains for cpus specified by the cpu_map. */
6894 	for_each_cpu(i, cpu_map) {
6895 		struct sched_domain_topology_level *tl;
6896 
6897 		sd = NULL;
6898 		for_each_sd_topology(tl) {
6899 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6900 			if (tl == sched_domain_topology)
6901 				*per_cpu_ptr(d.sd, i) = sd;
6902 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6903 				sd->flags |= SD_OVERLAP;
6904 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6905 				break;
6906 		}
6907 	}
6908 
6909 	/* Build the groups for the domains */
6910 	for_each_cpu(i, cpu_map) {
6911 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6912 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6913 			if (sd->flags & SD_OVERLAP) {
6914 				if (build_overlap_sched_groups(sd, i))
6915 					goto error;
6916 			} else {
6917 				if (build_sched_groups(sd, i))
6918 					goto error;
6919 			}
6920 		}
6921 	}
6922 
6923 	/* Calculate CPU capacity for physical packages and nodes */
6924 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6925 		if (!cpumask_test_cpu(i, cpu_map))
6926 			continue;
6927 
6928 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6929 			claim_allocations(i, sd);
6930 			init_sched_groups_capacity(i, sd);
6931 		}
6932 	}
6933 
6934 	/* Attach the domains */
6935 	rcu_read_lock();
6936 	for_each_cpu(i, cpu_map) {
6937 		sd = *per_cpu_ptr(d.sd, i);
6938 		cpu_attach_domain(sd, d.rd, i);
6939 	}
6940 	rcu_read_unlock();
6941 
6942 	ret = 0;
6943 error:
6944 	__free_domain_allocs(&d, alloc_state, cpu_map);
6945 	return ret;
6946 }
6947 
6948 static cpumask_var_t *doms_cur;	/* current sched domains */
6949 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6950 static struct sched_domain_attr *dattr_cur;
6951 				/* attribues of custom domains in 'doms_cur' */
6952 
6953 /*
6954  * Special case: If a kmalloc of a doms_cur partition (array of
6955  * cpumask) fails, then fallback to a single sched domain,
6956  * as determined by the single cpumask fallback_doms.
6957  */
6958 static cpumask_var_t fallback_doms;
6959 
6960 /*
6961  * arch_update_cpu_topology lets virtualized architectures update the
6962  * cpu core maps. It is supposed to return 1 if the topology changed
6963  * or 0 if it stayed the same.
6964  */
6965 int __weak arch_update_cpu_topology(void)
6966 {
6967 	return 0;
6968 }
6969 
6970 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6971 {
6972 	int i;
6973 	cpumask_var_t *doms;
6974 
6975 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6976 	if (!doms)
6977 		return NULL;
6978 	for (i = 0; i < ndoms; i++) {
6979 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6980 			free_sched_domains(doms, i);
6981 			return NULL;
6982 		}
6983 	}
6984 	return doms;
6985 }
6986 
6987 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6988 {
6989 	unsigned int i;
6990 	for (i = 0; i < ndoms; i++)
6991 		free_cpumask_var(doms[i]);
6992 	kfree(doms);
6993 }
6994 
6995 /*
6996  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6997  * For now this just excludes isolated cpus, but could be used to
6998  * exclude other special cases in the future.
6999  */
7000 static int init_sched_domains(const struct cpumask *cpu_map)
7001 {
7002 	int err;
7003 
7004 	arch_update_cpu_topology();
7005 	ndoms_cur = 1;
7006 	doms_cur = alloc_sched_domains(ndoms_cur);
7007 	if (!doms_cur)
7008 		doms_cur = &fallback_doms;
7009 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7010 	err = build_sched_domains(doms_cur[0], NULL);
7011 	register_sched_domain_sysctl();
7012 
7013 	return err;
7014 }
7015 
7016 /*
7017  * Detach sched domains from a group of cpus specified in cpu_map
7018  * These cpus will now be attached to the NULL domain
7019  */
7020 static void detach_destroy_domains(const struct cpumask *cpu_map)
7021 {
7022 	int i;
7023 
7024 	rcu_read_lock();
7025 	for_each_cpu(i, cpu_map)
7026 		cpu_attach_domain(NULL, &def_root_domain, i);
7027 	rcu_read_unlock();
7028 }
7029 
7030 /* handle null as "default" */
7031 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7032 			struct sched_domain_attr *new, int idx_new)
7033 {
7034 	struct sched_domain_attr tmp;
7035 
7036 	/* fast path */
7037 	if (!new && !cur)
7038 		return 1;
7039 
7040 	tmp = SD_ATTR_INIT;
7041 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7042 			new ? (new + idx_new) : &tmp,
7043 			sizeof(struct sched_domain_attr));
7044 }
7045 
7046 /*
7047  * Partition sched domains as specified by the 'ndoms_new'
7048  * cpumasks in the array doms_new[] of cpumasks. This compares
7049  * doms_new[] to the current sched domain partitioning, doms_cur[].
7050  * It destroys each deleted domain and builds each new domain.
7051  *
7052  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7053  * The masks don't intersect (don't overlap.) We should setup one
7054  * sched domain for each mask. CPUs not in any of the cpumasks will
7055  * not be load balanced. If the same cpumask appears both in the
7056  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7057  * it as it is.
7058  *
7059  * The passed in 'doms_new' should be allocated using
7060  * alloc_sched_domains.  This routine takes ownership of it and will
7061  * free_sched_domains it when done with it. If the caller failed the
7062  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7063  * and partition_sched_domains() will fallback to the single partition
7064  * 'fallback_doms', it also forces the domains to be rebuilt.
7065  *
7066  * If doms_new == NULL it will be replaced with cpu_online_mask.
7067  * ndoms_new == 0 is a special case for destroying existing domains,
7068  * and it will not create the default domain.
7069  *
7070  * Call with hotplug lock held
7071  */
7072 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7073 			     struct sched_domain_attr *dattr_new)
7074 {
7075 	int i, j, n;
7076 	int new_topology;
7077 
7078 	mutex_lock(&sched_domains_mutex);
7079 
7080 	/* always unregister in case we don't destroy any domains */
7081 	unregister_sched_domain_sysctl();
7082 
7083 	/* Let architecture update cpu core mappings. */
7084 	new_topology = arch_update_cpu_topology();
7085 
7086 	n = doms_new ? ndoms_new : 0;
7087 
7088 	/* Destroy deleted domains */
7089 	for (i = 0; i < ndoms_cur; i++) {
7090 		for (j = 0; j < n && !new_topology; j++) {
7091 			if (cpumask_equal(doms_cur[i], doms_new[j])
7092 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7093 				goto match1;
7094 		}
7095 		/* no match - a current sched domain not in new doms_new[] */
7096 		detach_destroy_domains(doms_cur[i]);
7097 match1:
7098 		;
7099 	}
7100 
7101 	n = ndoms_cur;
7102 	if (doms_new == NULL) {
7103 		n = 0;
7104 		doms_new = &fallback_doms;
7105 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7106 		WARN_ON_ONCE(dattr_new);
7107 	}
7108 
7109 	/* Build new domains */
7110 	for (i = 0; i < ndoms_new; i++) {
7111 		for (j = 0; j < n && !new_topology; j++) {
7112 			if (cpumask_equal(doms_new[i], doms_cur[j])
7113 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7114 				goto match2;
7115 		}
7116 		/* no match - add a new doms_new */
7117 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7118 match2:
7119 		;
7120 	}
7121 
7122 	/* Remember the new sched domains */
7123 	if (doms_cur != &fallback_doms)
7124 		free_sched_domains(doms_cur, ndoms_cur);
7125 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7126 	doms_cur = doms_new;
7127 	dattr_cur = dattr_new;
7128 	ndoms_cur = ndoms_new;
7129 
7130 	register_sched_domain_sysctl();
7131 
7132 	mutex_unlock(&sched_domains_mutex);
7133 }
7134 
7135 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7136 
7137 /*
7138  * Update cpusets according to cpu_active mask.  If cpusets are
7139  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7140  * around partition_sched_domains().
7141  *
7142  * If we come here as part of a suspend/resume, don't touch cpusets because we
7143  * want to restore it back to its original state upon resume anyway.
7144  */
7145 static void cpuset_cpu_active(void)
7146 {
7147 	if (cpuhp_tasks_frozen) {
7148 		/*
7149 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7150 		 * resume sequence. As long as this is not the last online
7151 		 * operation in the resume sequence, just build a single sched
7152 		 * domain, ignoring cpusets.
7153 		 */
7154 		num_cpus_frozen--;
7155 		if (likely(num_cpus_frozen)) {
7156 			partition_sched_domains(1, NULL, NULL);
7157 			return;
7158 		}
7159 		/*
7160 		 * This is the last CPU online operation. So fall through and
7161 		 * restore the original sched domains by considering the
7162 		 * cpuset configurations.
7163 		 */
7164 	}
7165 	cpuset_update_active_cpus(true);
7166 }
7167 
7168 static int cpuset_cpu_inactive(unsigned int cpu)
7169 {
7170 	unsigned long flags;
7171 	struct dl_bw *dl_b;
7172 	bool overflow;
7173 	int cpus;
7174 
7175 	if (!cpuhp_tasks_frozen) {
7176 		rcu_read_lock_sched();
7177 		dl_b = dl_bw_of(cpu);
7178 
7179 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7180 		cpus = dl_bw_cpus(cpu);
7181 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7182 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7183 
7184 		rcu_read_unlock_sched();
7185 
7186 		if (overflow)
7187 			return -EBUSY;
7188 		cpuset_update_active_cpus(false);
7189 	} else {
7190 		num_cpus_frozen++;
7191 		partition_sched_domains(1, NULL, NULL);
7192 	}
7193 	return 0;
7194 }
7195 
7196 int sched_cpu_activate(unsigned int cpu)
7197 {
7198 	struct rq *rq = cpu_rq(cpu);
7199 	unsigned long flags;
7200 
7201 	set_cpu_active(cpu, true);
7202 
7203 	if (sched_smp_initialized) {
7204 		sched_domains_numa_masks_set(cpu);
7205 		cpuset_cpu_active();
7206 	}
7207 
7208 	/*
7209 	 * Put the rq online, if not already. This happens:
7210 	 *
7211 	 * 1) In the early boot process, because we build the real domains
7212 	 *    after all cpus have been brought up.
7213 	 *
7214 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7215 	 *    domains.
7216 	 */
7217 	raw_spin_lock_irqsave(&rq->lock, flags);
7218 	if (rq->rd) {
7219 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7220 		set_rq_online(rq);
7221 	}
7222 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7223 
7224 	update_max_interval();
7225 
7226 	return 0;
7227 }
7228 
7229 int sched_cpu_deactivate(unsigned int cpu)
7230 {
7231 	int ret;
7232 
7233 	set_cpu_active(cpu, false);
7234 	/*
7235 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7236 	 * users of this state to go away such that all new such users will
7237 	 * observe it.
7238 	 *
7239 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7240 	 * not imply sync_sched(), so wait for both.
7241 	 *
7242 	 * Do sync before park smpboot threads to take care the rcu boost case.
7243 	 */
7244 	if (IS_ENABLED(CONFIG_PREEMPT))
7245 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
7246 	else
7247 		synchronize_rcu();
7248 
7249 	if (!sched_smp_initialized)
7250 		return 0;
7251 
7252 	ret = cpuset_cpu_inactive(cpu);
7253 	if (ret) {
7254 		set_cpu_active(cpu, true);
7255 		return ret;
7256 	}
7257 	sched_domains_numa_masks_clear(cpu);
7258 	return 0;
7259 }
7260 
7261 static void sched_rq_cpu_starting(unsigned int cpu)
7262 {
7263 	struct rq *rq = cpu_rq(cpu);
7264 
7265 	rq->calc_load_update = calc_load_update;
7266 	update_max_interval();
7267 }
7268 
7269 int sched_cpu_starting(unsigned int cpu)
7270 {
7271 	set_cpu_rq_start_time(cpu);
7272 	sched_rq_cpu_starting(cpu);
7273 	return 0;
7274 }
7275 
7276 #ifdef CONFIG_HOTPLUG_CPU
7277 int sched_cpu_dying(unsigned int cpu)
7278 {
7279 	struct rq *rq = cpu_rq(cpu);
7280 	unsigned long flags;
7281 
7282 	/* Handle pending wakeups and then migrate everything off */
7283 	sched_ttwu_pending();
7284 	raw_spin_lock_irqsave(&rq->lock, flags);
7285 	if (rq->rd) {
7286 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7287 		set_rq_offline(rq);
7288 	}
7289 	migrate_tasks(rq);
7290 	BUG_ON(rq->nr_running != 1);
7291 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7292 	calc_load_migrate(rq);
7293 	update_max_interval();
7294 	nohz_balance_exit_idle(cpu);
7295 	hrtick_clear(rq);
7296 	return 0;
7297 }
7298 #endif
7299 
7300 void __init sched_init_smp(void)
7301 {
7302 	cpumask_var_t non_isolated_cpus;
7303 
7304 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7305 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7306 
7307 	sched_init_numa();
7308 
7309 	/*
7310 	 * There's no userspace yet to cause hotplug operations; hence all the
7311 	 * cpu masks are stable and all blatant races in the below code cannot
7312 	 * happen.
7313 	 */
7314 	mutex_lock(&sched_domains_mutex);
7315 	init_sched_domains(cpu_active_mask);
7316 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7317 	if (cpumask_empty(non_isolated_cpus))
7318 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7319 	mutex_unlock(&sched_domains_mutex);
7320 
7321 	/* Move init over to a non-isolated CPU */
7322 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7323 		BUG();
7324 	sched_init_granularity();
7325 	free_cpumask_var(non_isolated_cpus);
7326 
7327 	init_sched_rt_class();
7328 	init_sched_dl_class();
7329 	sched_smp_initialized = true;
7330 }
7331 
7332 static int __init migration_init(void)
7333 {
7334 	sched_rq_cpu_starting(smp_processor_id());
7335 	return 0;
7336 }
7337 early_initcall(migration_init);
7338 
7339 #else
7340 void __init sched_init_smp(void)
7341 {
7342 	sched_init_granularity();
7343 }
7344 #endif /* CONFIG_SMP */
7345 
7346 int in_sched_functions(unsigned long addr)
7347 {
7348 	return in_lock_functions(addr) ||
7349 		(addr >= (unsigned long)__sched_text_start
7350 		&& addr < (unsigned long)__sched_text_end);
7351 }
7352 
7353 #ifdef CONFIG_CGROUP_SCHED
7354 /*
7355  * Default task group.
7356  * Every task in system belongs to this group at bootup.
7357  */
7358 struct task_group root_task_group;
7359 LIST_HEAD(task_groups);
7360 
7361 /* Cacheline aligned slab cache for task_group */
7362 static struct kmem_cache *task_group_cache __read_mostly;
7363 #endif
7364 
7365 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7366 
7367 void __init sched_init(void)
7368 {
7369 	int i, j;
7370 	unsigned long alloc_size = 0, ptr;
7371 
7372 #ifdef CONFIG_FAIR_GROUP_SCHED
7373 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7374 #endif
7375 #ifdef CONFIG_RT_GROUP_SCHED
7376 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7377 #endif
7378 	if (alloc_size) {
7379 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7380 
7381 #ifdef CONFIG_FAIR_GROUP_SCHED
7382 		root_task_group.se = (struct sched_entity **)ptr;
7383 		ptr += nr_cpu_ids * sizeof(void **);
7384 
7385 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7386 		ptr += nr_cpu_ids * sizeof(void **);
7387 
7388 #endif /* CONFIG_FAIR_GROUP_SCHED */
7389 #ifdef CONFIG_RT_GROUP_SCHED
7390 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7391 		ptr += nr_cpu_ids * sizeof(void **);
7392 
7393 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7394 		ptr += nr_cpu_ids * sizeof(void **);
7395 
7396 #endif /* CONFIG_RT_GROUP_SCHED */
7397 	}
7398 #ifdef CONFIG_CPUMASK_OFFSTACK
7399 	for_each_possible_cpu(i) {
7400 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7401 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7402 	}
7403 #endif /* CONFIG_CPUMASK_OFFSTACK */
7404 
7405 	init_rt_bandwidth(&def_rt_bandwidth,
7406 			global_rt_period(), global_rt_runtime());
7407 	init_dl_bandwidth(&def_dl_bandwidth,
7408 			global_rt_period(), global_rt_runtime());
7409 
7410 #ifdef CONFIG_SMP
7411 	init_defrootdomain();
7412 #endif
7413 
7414 #ifdef CONFIG_RT_GROUP_SCHED
7415 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7416 			global_rt_period(), global_rt_runtime());
7417 #endif /* CONFIG_RT_GROUP_SCHED */
7418 
7419 #ifdef CONFIG_CGROUP_SCHED
7420 	task_group_cache = KMEM_CACHE(task_group, 0);
7421 
7422 	list_add(&root_task_group.list, &task_groups);
7423 	INIT_LIST_HEAD(&root_task_group.children);
7424 	INIT_LIST_HEAD(&root_task_group.siblings);
7425 	autogroup_init(&init_task);
7426 #endif /* CONFIG_CGROUP_SCHED */
7427 
7428 	for_each_possible_cpu(i) {
7429 		struct rq *rq;
7430 
7431 		rq = cpu_rq(i);
7432 		raw_spin_lock_init(&rq->lock);
7433 		rq->nr_running = 0;
7434 		rq->calc_load_active = 0;
7435 		rq->calc_load_update = jiffies + LOAD_FREQ;
7436 		init_cfs_rq(&rq->cfs);
7437 		init_rt_rq(&rq->rt);
7438 		init_dl_rq(&rq->dl);
7439 #ifdef CONFIG_FAIR_GROUP_SCHED
7440 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7441 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7442 		/*
7443 		 * How much cpu bandwidth does root_task_group get?
7444 		 *
7445 		 * In case of task-groups formed thr' the cgroup filesystem, it
7446 		 * gets 100% of the cpu resources in the system. This overall
7447 		 * system cpu resource is divided among the tasks of
7448 		 * root_task_group and its child task-groups in a fair manner,
7449 		 * based on each entity's (task or task-group's) weight
7450 		 * (se->load.weight).
7451 		 *
7452 		 * In other words, if root_task_group has 10 tasks of weight
7453 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7454 		 * then A0's share of the cpu resource is:
7455 		 *
7456 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7457 		 *
7458 		 * We achieve this by letting root_task_group's tasks sit
7459 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7460 		 */
7461 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7462 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7463 #endif /* CONFIG_FAIR_GROUP_SCHED */
7464 
7465 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7466 #ifdef CONFIG_RT_GROUP_SCHED
7467 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7468 #endif
7469 
7470 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7471 			rq->cpu_load[j] = 0;
7472 
7473 #ifdef CONFIG_SMP
7474 		rq->sd = NULL;
7475 		rq->rd = NULL;
7476 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7477 		rq->balance_callback = NULL;
7478 		rq->active_balance = 0;
7479 		rq->next_balance = jiffies;
7480 		rq->push_cpu = 0;
7481 		rq->cpu = i;
7482 		rq->online = 0;
7483 		rq->idle_stamp = 0;
7484 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7485 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7486 
7487 		INIT_LIST_HEAD(&rq->cfs_tasks);
7488 
7489 		rq_attach_root(rq, &def_root_domain);
7490 #ifdef CONFIG_NO_HZ_COMMON
7491 		rq->last_load_update_tick = jiffies;
7492 		rq->nohz_flags = 0;
7493 #endif
7494 #ifdef CONFIG_NO_HZ_FULL
7495 		rq->last_sched_tick = 0;
7496 #endif
7497 #endif /* CONFIG_SMP */
7498 		init_rq_hrtick(rq);
7499 		atomic_set(&rq->nr_iowait, 0);
7500 	}
7501 
7502 	set_load_weight(&init_task);
7503 
7504 #ifdef CONFIG_PREEMPT_NOTIFIERS
7505 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7506 #endif
7507 
7508 	/*
7509 	 * The boot idle thread does lazy MMU switching as well:
7510 	 */
7511 	atomic_inc(&init_mm.mm_count);
7512 	enter_lazy_tlb(&init_mm, current);
7513 
7514 	/*
7515 	 * During early bootup we pretend to be a normal task:
7516 	 */
7517 	current->sched_class = &fair_sched_class;
7518 
7519 	/*
7520 	 * Make us the idle thread. Technically, schedule() should not be
7521 	 * called from this thread, however somewhere below it might be,
7522 	 * but because we are the idle thread, we just pick up running again
7523 	 * when this runqueue becomes "idle".
7524 	 */
7525 	init_idle(current, smp_processor_id());
7526 
7527 	calc_load_update = jiffies + LOAD_FREQ;
7528 
7529 #ifdef CONFIG_SMP
7530 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7531 	/* May be allocated at isolcpus cmdline parse time */
7532 	if (cpu_isolated_map == NULL)
7533 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7534 	idle_thread_set_boot_cpu();
7535 	set_cpu_rq_start_time(smp_processor_id());
7536 #endif
7537 	init_sched_fair_class();
7538 
7539 	init_schedstats();
7540 
7541 	scheduler_running = 1;
7542 }
7543 
7544 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7545 static inline int preempt_count_equals(int preempt_offset)
7546 {
7547 	int nested = preempt_count() + rcu_preempt_depth();
7548 
7549 	return (nested == preempt_offset);
7550 }
7551 
7552 void __might_sleep(const char *file, int line, int preempt_offset)
7553 {
7554 	/*
7555 	 * Blocking primitives will set (and therefore destroy) current->state,
7556 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7557 	 * otherwise we will destroy state.
7558 	 */
7559 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7560 			"do not call blocking ops when !TASK_RUNNING; "
7561 			"state=%lx set at [<%p>] %pS\n",
7562 			current->state,
7563 			(void *)current->task_state_change,
7564 			(void *)current->task_state_change);
7565 
7566 	___might_sleep(file, line, preempt_offset);
7567 }
7568 EXPORT_SYMBOL(__might_sleep);
7569 
7570 void ___might_sleep(const char *file, int line, int preempt_offset)
7571 {
7572 	static unsigned long prev_jiffy;	/* ratelimiting */
7573 
7574 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7575 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7576 	     !is_idle_task(current)) ||
7577 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7578 		return;
7579 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7580 		return;
7581 	prev_jiffy = jiffies;
7582 
7583 	printk(KERN_ERR
7584 		"BUG: sleeping function called from invalid context at %s:%d\n",
7585 			file, line);
7586 	printk(KERN_ERR
7587 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7588 			in_atomic(), irqs_disabled(),
7589 			current->pid, current->comm);
7590 
7591 	if (task_stack_end_corrupted(current))
7592 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7593 
7594 	debug_show_held_locks(current);
7595 	if (irqs_disabled())
7596 		print_irqtrace_events(current);
7597 #ifdef CONFIG_DEBUG_PREEMPT
7598 	if (!preempt_count_equals(preempt_offset)) {
7599 		pr_err("Preemption disabled at:");
7600 		print_ip_sym(current->preempt_disable_ip);
7601 		pr_cont("\n");
7602 	}
7603 #endif
7604 	dump_stack();
7605 }
7606 EXPORT_SYMBOL(___might_sleep);
7607 #endif
7608 
7609 #ifdef CONFIG_MAGIC_SYSRQ
7610 void normalize_rt_tasks(void)
7611 {
7612 	struct task_struct *g, *p;
7613 	struct sched_attr attr = {
7614 		.sched_policy = SCHED_NORMAL,
7615 	};
7616 
7617 	read_lock(&tasklist_lock);
7618 	for_each_process_thread(g, p) {
7619 		/*
7620 		 * Only normalize user tasks:
7621 		 */
7622 		if (p->flags & PF_KTHREAD)
7623 			continue;
7624 
7625 		p->se.exec_start		= 0;
7626 #ifdef CONFIG_SCHEDSTATS
7627 		p->se.statistics.wait_start	= 0;
7628 		p->se.statistics.sleep_start	= 0;
7629 		p->se.statistics.block_start	= 0;
7630 #endif
7631 
7632 		if (!dl_task(p) && !rt_task(p)) {
7633 			/*
7634 			 * Renice negative nice level userspace
7635 			 * tasks back to 0:
7636 			 */
7637 			if (task_nice(p) < 0)
7638 				set_user_nice(p, 0);
7639 			continue;
7640 		}
7641 
7642 		__sched_setscheduler(p, &attr, false, false);
7643 	}
7644 	read_unlock(&tasklist_lock);
7645 }
7646 
7647 #endif /* CONFIG_MAGIC_SYSRQ */
7648 
7649 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7650 /*
7651  * These functions are only useful for the IA64 MCA handling, or kdb.
7652  *
7653  * They can only be called when the whole system has been
7654  * stopped - every CPU needs to be quiescent, and no scheduling
7655  * activity can take place. Using them for anything else would
7656  * be a serious bug, and as a result, they aren't even visible
7657  * under any other configuration.
7658  */
7659 
7660 /**
7661  * curr_task - return the current task for a given cpu.
7662  * @cpu: the processor in question.
7663  *
7664  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7665  *
7666  * Return: The current task for @cpu.
7667  */
7668 struct task_struct *curr_task(int cpu)
7669 {
7670 	return cpu_curr(cpu);
7671 }
7672 
7673 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7674 
7675 #ifdef CONFIG_IA64
7676 /**
7677  * set_curr_task - set the current task for a given cpu.
7678  * @cpu: the processor in question.
7679  * @p: the task pointer to set.
7680  *
7681  * Description: This function must only be used when non-maskable interrupts
7682  * are serviced on a separate stack. It allows the architecture to switch the
7683  * notion of the current task on a cpu in a non-blocking manner. This function
7684  * must be called with all CPU's synchronized, and interrupts disabled, the
7685  * and caller must save the original value of the current task (see
7686  * curr_task() above) and restore that value before reenabling interrupts and
7687  * re-starting the system.
7688  *
7689  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7690  */
7691 void set_curr_task(int cpu, struct task_struct *p)
7692 {
7693 	cpu_curr(cpu) = p;
7694 }
7695 
7696 #endif
7697 
7698 #ifdef CONFIG_CGROUP_SCHED
7699 /* task_group_lock serializes the addition/removal of task groups */
7700 static DEFINE_SPINLOCK(task_group_lock);
7701 
7702 static void sched_free_group(struct task_group *tg)
7703 {
7704 	free_fair_sched_group(tg);
7705 	free_rt_sched_group(tg);
7706 	autogroup_free(tg);
7707 	kmem_cache_free(task_group_cache, tg);
7708 }
7709 
7710 /* allocate runqueue etc for a new task group */
7711 struct task_group *sched_create_group(struct task_group *parent)
7712 {
7713 	struct task_group *tg;
7714 
7715 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7716 	if (!tg)
7717 		return ERR_PTR(-ENOMEM);
7718 
7719 	if (!alloc_fair_sched_group(tg, parent))
7720 		goto err;
7721 
7722 	if (!alloc_rt_sched_group(tg, parent))
7723 		goto err;
7724 
7725 	return tg;
7726 
7727 err:
7728 	sched_free_group(tg);
7729 	return ERR_PTR(-ENOMEM);
7730 }
7731 
7732 void sched_online_group(struct task_group *tg, struct task_group *parent)
7733 {
7734 	unsigned long flags;
7735 
7736 	spin_lock_irqsave(&task_group_lock, flags);
7737 	list_add_rcu(&tg->list, &task_groups);
7738 
7739 	WARN_ON(!parent); /* root should already exist */
7740 
7741 	tg->parent = parent;
7742 	INIT_LIST_HEAD(&tg->children);
7743 	list_add_rcu(&tg->siblings, &parent->children);
7744 	spin_unlock_irqrestore(&task_group_lock, flags);
7745 
7746 	online_fair_sched_group(tg);
7747 }
7748 
7749 /* rcu callback to free various structures associated with a task group */
7750 static void sched_free_group_rcu(struct rcu_head *rhp)
7751 {
7752 	/* now it should be safe to free those cfs_rqs */
7753 	sched_free_group(container_of(rhp, struct task_group, rcu));
7754 }
7755 
7756 void sched_destroy_group(struct task_group *tg)
7757 {
7758 	/* wait for possible concurrent references to cfs_rqs complete */
7759 	call_rcu(&tg->rcu, sched_free_group_rcu);
7760 }
7761 
7762 void sched_offline_group(struct task_group *tg)
7763 {
7764 	unsigned long flags;
7765 
7766 	/* end participation in shares distribution */
7767 	unregister_fair_sched_group(tg);
7768 
7769 	spin_lock_irqsave(&task_group_lock, flags);
7770 	list_del_rcu(&tg->list);
7771 	list_del_rcu(&tg->siblings);
7772 	spin_unlock_irqrestore(&task_group_lock, flags);
7773 }
7774 
7775 static void sched_change_group(struct task_struct *tsk, int type)
7776 {
7777 	struct task_group *tg;
7778 
7779 	/*
7780 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7781 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7782 	 * to prevent lockdep warnings.
7783 	 */
7784 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7785 			  struct task_group, css);
7786 	tg = autogroup_task_group(tsk, tg);
7787 	tsk->sched_task_group = tg;
7788 
7789 #ifdef CONFIG_FAIR_GROUP_SCHED
7790 	if (tsk->sched_class->task_change_group)
7791 		tsk->sched_class->task_change_group(tsk, type);
7792 	else
7793 #endif
7794 		set_task_rq(tsk, task_cpu(tsk));
7795 }
7796 
7797 /*
7798  * Change task's runqueue when it moves between groups.
7799  *
7800  * The caller of this function should have put the task in its new group by
7801  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7802  * its new group.
7803  */
7804 void sched_move_task(struct task_struct *tsk)
7805 {
7806 	int queued, running;
7807 	struct rq_flags rf;
7808 	struct rq *rq;
7809 
7810 	rq = task_rq_lock(tsk, &rf);
7811 
7812 	running = task_current(rq, tsk);
7813 	queued = task_on_rq_queued(tsk);
7814 
7815 	if (queued)
7816 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7817 	if (unlikely(running))
7818 		put_prev_task(rq, tsk);
7819 
7820 	sched_change_group(tsk, TASK_MOVE_GROUP);
7821 
7822 	if (unlikely(running))
7823 		tsk->sched_class->set_curr_task(rq);
7824 	if (queued)
7825 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7826 
7827 	task_rq_unlock(rq, tsk, &rf);
7828 }
7829 #endif /* CONFIG_CGROUP_SCHED */
7830 
7831 #ifdef CONFIG_RT_GROUP_SCHED
7832 /*
7833  * Ensure that the real time constraints are schedulable.
7834  */
7835 static DEFINE_MUTEX(rt_constraints_mutex);
7836 
7837 /* Must be called with tasklist_lock held */
7838 static inline int tg_has_rt_tasks(struct task_group *tg)
7839 {
7840 	struct task_struct *g, *p;
7841 
7842 	/*
7843 	 * Autogroups do not have RT tasks; see autogroup_create().
7844 	 */
7845 	if (task_group_is_autogroup(tg))
7846 		return 0;
7847 
7848 	for_each_process_thread(g, p) {
7849 		if (rt_task(p) && task_group(p) == tg)
7850 			return 1;
7851 	}
7852 
7853 	return 0;
7854 }
7855 
7856 struct rt_schedulable_data {
7857 	struct task_group *tg;
7858 	u64 rt_period;
7859 	u64 rt_runtime;
7860 };
7861 
7862 static int tg_rt_schedulable(struct task_group *tg, void *data)
7863 {
7864 	struct rt_schedulable_data *d = data;
7865 	struct task_group *child;
7866 	unsigned long total, sum = 0;
7867 	u64 period, runtime;
7868 
7869 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7870 	runtime = tg->rt_bandwidth.rt_runtime;
7871 
7872 	if (tg == d->tg) {
7873 		period = d->rt_period;
7874 		runtime = d->rt_runtime;
7875 	}
7876 
7877 	/*
7878 	 * Cannot have more runtime than the period.
7879 	 */
7880 	if (runtime > period && runtime != RUNTIME_INF)
7881 		return -EINVAL;
7882 
7883 	/*
7884 	 * Ensure we don't starve existing RT tasks.
7885 	 */
7886 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7887 		return -EBUSY;
7888 
7889 	total = to_ratio(period, runtime);
7890 
7891 	/*
7892 	 * Nobody can have more than the global setting allows.
7893 	 */
7894 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7895 		return -EINVAL;
7896 
7897 	/*
7898 	 * The sum of our children's runtime should not exceed our own.
7899 	 */
7900 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7901 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7902 		runtime = child->rt_bandwidth.rt_runtime;
7903 
7904 		if (child == d->tg) {
7905 			period = d->rt_period;
7906 			runtime = d->rt_runtime;
7907 		}
7908 
7909 		sum += to_ratio(period, runtime);
7910 	}
7911 
7912 	if (sum > total)
7913 		return -EINVAL;
7914 
7915 	return 0;
7916 }
7917 
7918 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7919 {
7920 	int ret;
7921 
7922 	struct rt_schedulable_data data = {
7923 		.tg = tg,
7924 		.rt_period = period,
7925 		.rt_runtime = runtime,
7926 	};
7927 
7928 	rcu_read_lock();
7929 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7930 	rcu_read_unlock();
7931 
7932 	return ret;
7933 }
7934 
7935 static int tg_set_rt_bandwidth(struct task_group *tg,
7936 		u64 rt_period, u64 rt_runtime)
7937 {
7938 	int i, err = 0;
7939 
7940 	/*
7941 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7942 	 * kernel creating (and or operating) RT threads.
7943 	 */
7944 	if (tg == &root_task_group && rt_runtime == 0)
7945 		return -EINVAL;
7946 
7947 	/* No period doesn't make any sense. */
7948 	if (rt_period == 0)
7949 		return -EINVAL;
7950 
7951 	mutex_lock(&rt_constraints_mutex);
7952 	read_lock(&tasklist_lock);
7953 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7954 	if (err)
7955 		goto unlock;
7956 
7957 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7958 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7959 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7960 
7961 	for_each_possible_cpu(i) {
7962 		struct rt_rq *rt_rq = tg->rt_rq[i];
7963 
7964 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7965 		rt_rq->rt_runtime = rt_runtime;
7966 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7967 	}
7968 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7969 unlock:
7970 	read_unlock(&tasklist_lock);
7971 	mutex_unlock(&rt_constraints_mutex);
7972 
7973 	return err;
7974 }
7975 
7976 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7977 {
7978 	u64 rt_runtime, rt_period;
7979 
7980 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7981 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7982 	if (rt_runtime_us < 0)
7983 		rt_runtime = RUNTIME_INF;
7984 
7985 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7986 }
7987 
7988 static long sched_group_rt_runtime(struct task_group *tg)
7989 {
7990 	u64 rt_runtime_us;
7991 
7992 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7993 		return -1;
7994 
7995 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7996 	do_div(rt_runtime_us, NSEC_PER_USEC);
7997 	return rt_runtime_us;
7998 }
7999 
8000 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8001 {
8002 	u64 rt_runtime, rt_period;
8003 
8004 	rt_period = rt_period_us * NSEC_PER_USEC;
8005 	rt_runtime = tg->rt_bandwidth.rt_runtime;
8006 
8007 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8008 }
8009 
8010 static long sched_group_rt_period(struct task_group *tg)
8011 {
8012 	u64 rt_period_us;
8013 
8014 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8015 	do_div(rt_period_us, NSEC_PER_USEC);
8016 	return rt_period_us;
8017 }
8018 #endif /* CONFIG_RT_GROUP_SCHED */
8019 
8020 #ifdef CONFIG_RT_GROUP_SCHED
8021 static int sched_rt_global_constraints(void)
8022 {
8023 	int ret = 0;
8024 
8025 	mutex_lock(&rt_constraints_mutex);
8026 	read_lock(&tasklist_lock);
8027 	ret = __rt_schedulable(NULL, 0, 0);
8028 	read_unlock(&tasklist_lock);
8029 	mutex_unlock(&rt_constraints_mutex);
8030 
8031 	return ret;
8032 }
8033 
8034 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8035 {
8036 	/* Don't accept realtime tasks when there is no way for them to run */
8037 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8038 		return 0;
8039 
8040 	return 1;
8041 }
8042 
8043 #else /* !CONFIG_RT_GROUP_SCHED */
8044 static int sched_rt_global_constraints(void)
8045 {
8046 	unsigned long flags;
8047 	int i;
8048 
8049 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8050 	for_each_possible_cpu(i) {
8051 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8052 
8053 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8054 		rt_rq->rt_runtime = global_rt_runtime();
8055 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8056 	}
8057 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8058 
8059 	return 0;
8060 }
8061 #endif /* CONFIG_RT_GROUP_SCHED */
8062 
8063 static int sched_dl_global_validate(void)
8064 {
8065 	u64 runtime = global_rt_runtime();
8066 	u64 period = global_rt_period();
8067 	u64 new_bw = to_ratio(period, runtime);
8068 	struct dl_bw *dl_b;
8069 	int cpu, ret = 0;
8070 	unsigned long flags;
8071 
8072 	/*
8073 	 * Here we want to check the bandwidth not being set to some
8074 	 * value smaller than the currently allocated bandwidth in
8075 	 * any of the root_domains.
8076 	 *
8077 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8078 	 * cycling on root_domains... Discussion on different/better
8079 	 * solutions is welcome!
8080 	 */
8081 	for_each_possible_cpu(cpu) {
8082 		rcu_read_lock_sched();
8083 		dl_b = dl_bw_of(cpu);
8084 
8085 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8086 		if (new_bw < dl_b->total_bw)
8087 			ret = -EBUSY;
8088 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8089 
8090 		rcu_read_unlock_sched();
8091 
8092 		if (ret)
8093 			break;
8094 	}
8095 
8096 	return ret;
8097 }
8098 
8099 static void sched_dl_do_global(void)
8100 {
8101 	u64 new_bw = -1;
8102 	struct dl_bw *dl_b;
8103 	int cpu;
8104 	unsigned long flags;
8105 
8106 	def_dl_bandwidth.dl_period = global_rt_period();
8107 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8108 
8109 	if (global_rt_runtime() != RUNTIME_INF)
8110 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8111 
8112 	/*
8113 	 * FIXME: As above...
8114 	 */
8115 	for_each_possible_cpu(cpu) {
8116 		rcu_read_lock_sched();
8117 		dl_b = dl_bw_of(cpu);
8118 
8119 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8120 		dl_b->bw = new_bw;
8121 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8122 
8123 		rcu_read_unlock_sched();
8124 	}
8125 }
8126 
8127 static int sched_rt_global_validate(void)
8128 {
8129 	if (sysctl_sched_rt_period <= 0)
8130 		return -EINVAL;
8131 
8132 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8133 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8134 		return -EINVAL;
8135 
8136 	return 0;
8137 }
8138 
8139 static void sched_rt_do_global(void)
8140 {
8141 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8142 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8143 }
8144 
8145 int sched_rt_handler(struct ctl_table *table, int write,
8146 		void __user *buffer, size_t *lenp,
8147 		loff_t *ppos)
8148 {
8149 	int old_period, old_runtime;
8150 	static DEFINE_MUTEX(mutex);
8151 	int ret;
8152 
8153 	mutex_lock(&mutex);
8154 	old_period = sysctl_sched_rt_period;
8155 	old_runtime = sysctl_sched_rt_runtime;
8156 
8157 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8158 
8159 	if (!ret && write) {
8160 		ret = sched_rt_global_validate();
8161 		if (ret)
8162 			goto undo;
8163 
8164 		ret = sched_dl_global_validate();
8165 		if (ret)
8166 			goto undo;
8167 
8168 		ret = sched_rt_global_constraints();
8169 		if (ret)
8170 			goto undo;
8171 
8172 		sched_rt_do_global();
8173 		sched_dl_do_global();
8174 	}
8175 	if (0) {
8176 undo:
8177 		sysctl_sched_rt_period = old_period;
8178 		sysctl_sched_rt_runtime = old_runtime;
8179 	}
8180 	mutex_unlock(&mutex);
8181 
8182 	return ret;
8183 }
8184 
8185 int sched_rr_handler(struct ctl_table *table, int write,
8186 		void __user *buffer, size_t *lenp,
8187 		loff_t *ppos)
8188 {
8189 	int ret;
8190 	static DEFINE_MUTEX(mutex);
8191 
8192 	mutex_lock(&mutex);
8193 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8194 	/* make sure that internally we keep jiffies */
8195 	/* also, writing zero resets timeslice to default */
8196 	if (!ret && write) {
8197 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8198 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8199 	}
8200 	mutex_unlock(&mutex);
8201 	return ret;
8202 }
8203 
8204 #ifdef CONFIG_CGROUP_SCHED
8205 
8206 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8207 {
8208 	return css ? container_of(css, struct task_group, css) : NULL;
8209 }
8210 
8211 static struct cgroup_subsys_state *
8212 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8213 {
8214 	struct task_group *parent = css_tg(parent_css);
8215 	struct task_group *tg;
8216 
8217 	if (!parent) {
8218 		/* This is early initialization for the top cgroup */
8219 		return &root_task_group.css;
8220 	}
8221 
8222 	tg = sched_create_group(parent);
8223 	if (IS_ERR(tg))
8224 		return ERR_PTR(-ENOMEM);
8225 
8226 	sched_online_group(tg, parent);
8227 
8228 	return &tg->css;
8229 }
8230 
8231 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8232 {
8233 	struct task_group *tg = css_tg(css);
8234 
8235 	sched_offline_group(tg);
8236 }
8237 
8238 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8239 {
8240 	struct task_group *tg = css_tg(css);
8241 
8242 	/*
8243 	 * Relies on the RCU grace period between css_released() and this.
8244 	 */
8245 	sched_free_group(tg);
8246 }
8247 
8248 /*
8249  * This is called before wake_up_new_task(), therefore we really only
8250  * have to set its group bits, all the other stuff does not apply.
8251  */
8252 static void cpu_cgroup_fork(struct task_struct *task)
8253 {
8254 	struct rq_flags rf;
8255 	struct rq *rq;
8256 
8257 	rq = task_rq_lock(task, &rf);
8258 
8259 	sched_change_group(task, TASK_SET_GROUP);
8260 
8261 	task_rq_unlock(rq, task, &rf);
8262 }
8263 
8264 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8265 {
8266 	struct task_struct *task;
8267 	struct cgroup_subsys_state *css;
8268 	int ret = 0;
8269 
8270 	cgroup_taskset_for_each(task, css, tset) {
8271 #ifdef CONFIG_RT_GROUP_SCHED
8272 		if (!sched_rt_can_attach(css_tg(css), task))
8273 			return -EINVAL;
8274 #else
8275 		/* We don't support RT-tasks being in separate groups */
8276 		if (task->sched_class != &fair_sched_class)
8277 			return -EINVAL;
8278 #endif
8279 		/*
8280 		 * Serialize against wake_up_new_task() such that if its
8281 		 * running, we're sure to observe its full state.
8282 		 */
8283 		raw_spin_lock_irq(&task->pi_lock);
8284 		/*
8285 		 * Avoid calling sched_move_task() before wake_up_new_task()
8286 		 * has happened. This would lead to problems with PELT, due to
8287 		 * move wanting to detach+attach while we're not attached yet.
8288 		 */
8289 		if (task->state == TASK_NEW)
8290 			ret = -EINVAL;
8291 		raw_spin_unlock_irq(&task->pi_lock);
8292 
8293 		if (ret)
8294 			break;
8295 	}
8296 	return ret;
8297 }
8298 
8299 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8300 {
8301 	struct task_struct *task;
8302 	struct cgroup_subsys_state *css;
8303 
8304 	cgroup_taskset_for_each(task, css, tset)
8305 		sched_move_task(task);
8306 }
8307 
8308 #ifdef CONFIG_FAIR_GROUP_SCHED
8309 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8310 				struct cftype *cftype, u64 shareval)
8311 {
8312 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8313 }
8314 
8315 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8316 			       struct cftype *cft)
8317 {
8318 	struct task_group *tg = css_tg(css);
8319 
8320 	return (u64) scale_load_down(tg->shares);
8321 }
8322 
8323 #ifdef CONFIG_CFS_BANDWIDTH
8324 static DEFINE_MUTEX(cfs_constraints_mutex);
8325 
8326 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8327 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8328 
8329 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8330 
8331 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8332 {
8333 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8334 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8335 
8336 	if (tg == &root_task_group)
8337 		return -EINVAL;
8338 
8339 	/*
8340 	 * Ensure we have at some amount of bandwidth every period.  This is
8341 	 * to prevent reaching a state of large arrears when throttled via
8342 	 * entity_tick() resulting in prolonged exit starvation.
8343 	 */
8344 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8345 		return -EINVAL;
8346 
8347 	/*
8348 	 * Likewise, bound things on the otherside by preventing insane quota
8349 	 * periods.  This also allows us to normalize in computing quota
8350 	 * feasibility.
8351 	 */
8352 	if (period > max_cfs_quota_period)
8353 		return -EINVAL;
8354 
8355 	/*
8356 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8357 	 * unthrottle_offline_cfs_rqs().
8358 	 */
8359 	get_online_cpus();
8360 	mutex_lock(&cfs_constraints_mutex);
8361 	ret = __cfs_schedulable(tg, period, quota);
8362 	if (ret)
8363 		goto out_unlock;
8364 
8365 	runtime_enabled = quota != RUNTIME_INF;
8366 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8367 	/*
8368 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8369 	 * before making related changes, and on->off must occur afterwards
8370 	 */
8371 	if (runtime_enabled && !runtime_was_enabled)
8372 		cfs_bandwidth_usage_inc();
8373 	raw_spin_lock_irq(&cfs_b->lock);
8374 	cfs_b->period = ns_to_ktime(period);
8375 	cfs_b->quota = quota;
8376 
8377 	__refill_cfs_bandwidth_runtime(cfs_b);
8378 	/* restart the period timer (if active) to handle new period expiry */
8379 	if (runtime_enabled)
8380 		start_cfs_bandwidth(cfs_b);
8381 	raw_spin_unlock_irq(&cfs_b->lock);
8382 
8383 	for_each_online_cpu(i) {
8384 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8385 		struct rq *rq = cfs_rq->rq;
8386 
8387 		raw_spin_lock_irq(&rq->lock);
8388 		cfs_rq->runtime_enabled = runtime_enabled;
8389 		cfs_rq->runtime_remaining = 0;
8390 
8391 		if (cfs_rq->throttled)
8392 			unthrottle_cfs_rq(cfs_rq);
8393 		raw_spin_unlock_irq(&rq->lock);
8394 	}
8395 	if (runtime_was_enabled && !runtime_enabled)
8396 		cfs_bandwidth_usage_dec();
8397 out_unlock:
8398 	mutex_unlock(&cfs_constraints_mutex);
8399 	put_online_cpus();
8400 
8401 	return ret;
8402 }
8403 
8404 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8405 {
8406 	u64 quota, period;
8407 
8408 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8409 	if (cfs_quota_us < 0)
8410 		quota = RUNTIME_INF;
8411 	else
8412 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8413 
8414 	return tg_set_cfs_bandwidth(tg, period, quota);
8415 }
8416 
8417 long tg_get_cfs_quota(struct task_group *tg)
8418 {
8419 	u64 quota_us;
8420 
8421 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8422 		return -1;
8423 
8424 	quota_us = tg->cfs_bandwidth.quota;
8425 	do_div(quota_us, NSEC_PER_USEC);
8426 
8427 	return quota_us;
8428 }
8429 
8430 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8431 {
8432 	u64 quota, period;
8433 
8434 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8435 	quota = tg->cfs_bandwidth.quota;
8436 
8437 	return tg_set_cfs_bandwidth(tg, period, quota);
8438 }
8439 
8440 long tg_get_cfs_period(struct task_group *tg)
8441 {
8442 	u64 cfs_period_us;
8443 
8444 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8445 	do_div(cfs_period_us, NSEC_PER_USEC);
8446 
8447 	return cfs_period_us;
8448 }
8449 
8450 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8451 				  struct cftype *cft)
8452 {
8453 	return tg_get_cfs_quota(css_tg(css));
8454 }
8455 
8456 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8457 				   struct cftype *cftype, s64 cfs_quota_us)
8458 {
8459 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8460 }
8461 
8462 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8463 				   struct cftype *cft)
8464 {
8465 	return tg_get_cfs_period(css_tg(css));
8466 }
8467 
8468 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8469 				    struct cftype *cftype, u64 cfs_period_us)
8470 {
8471 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8472 }
8473 
8474 struct cfs_schedulable_data {
8475 	struct task_group *tg;
8476 	u64 period, quota;
8477 };
8478 
8479 /*
8480  * normalize group quota/period to be quota/max_period
8481  * note: units are usecs
8482  */
8483 static u64 normalize_cfs_quota(struct task_group *tg,
8484 			       struct cfs_schedulable_data *d)
8485 {
8486 	u64 quota, period;
8487 
8488 	if (tg == d->tg) {
8489 		period = d->period;
8490 		quota = d->quota;
8491 	} else {
8492 		period = tg_get_cfs_period(tg);
8493 		quota = tg_get_cfs_quota(tg);
8494 	}
8495 
8496 	/* note: these should typically be equivalent */
8497 	if (quota == RUNTIME_INF || quota == -1)
8498 		return RUNTIME_INF;
8499 
8500 	return to_ratio(period, quota);
8501 }
8502 
8503 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8504 {
8505 	struct cfs_schedulable_data *d = data;
8506 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8507 	s64 quota = 0, parent_quota = -1;
8508 
8509 	if (!tg->parent) {
8510 		quota = RUNTIME_INF;
8511 	} else {
8512 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8513 
8514 		quota = normalize_cfs_quota(tg, d);
8515 		parent_quota = parent_b->hierarchical_quota;
8516 
8517 		/*
8518 		 * ensure max(child_quota) <= parent_quota, inherit when no
8519 		 * limit is set
8520 		 */
8521 		if (quota == RUNTIME_INF)
8522 			quota = parent_quota;
8523 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8524 			return -EINVAL;
8525 	}
8526 	cfs_b->hierarchical_quota = quota;
8527 
8528 	return 0;
8529 }
8530 
8531 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8532 {
8533 	int ret;
8534 	struct cfs_schedulable_data data = {
8535 		.tg = tg,
8536 		.period = period,
8537 		.quota = quota,
8538 	};
8539 
8540 	if (quota != RUNTIME_INF) {
8541 		do_div(data.period, NSEC_PER_USEC);
8542 		do_div(data.quota, NSEC_PER_USEC);
8543 	}
8544 
8545 	rcu_read_lock();
8546 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8547 	rcu_read_unlock();
8548 
8549 	return ret;
8550 }
8551 
8552 static int cpu_stats_show(struct seq_file *sf, void *v)
8553 {
8554 	struct task_group *tg = css_tg(seq_css(sf));
8555 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8556 
8557 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8558 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8559 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8560 
8561 	return 0;
8562 }
8563 #endif /* CONFIG_CFS_BANDWIDTH */
8564 #endif /* CONFIG_FAIR_GROUP_SCHED */
8565 
8566 #ifdef CONFIG_RT_GROUP_SCHED
8567 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8568 				struct cftype *cft, s64 val)
8569 {
8570 	return sched_group_set_rt_runtime(css_tg(css), val);
8571 }
8572 
8573 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8574 			       struct cftype *cft)
8575 {
8576 	return sched_group_rt_runtime(css_tg(css));
8577 }
8578 
8579 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8580 				    struct cftype *cftype, u64 rt_period_us)
8581 {
8582 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8583 }
8584 
8585 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8586 				   struct cftype *cft)
8587 {
8588 	return sched_group_rt_period(css_tg(css));
8589 }
8590 #endif /* CONFIG_RT_GROUP_SCHED */
8591 
8592 static struct cftype cpu_files[] = {
8593 #ifdef CONFIG_FAIR_GROUP_SCHED
8594 	{
8595 		.name = "shares",
8596 		.read_u64 = cpu_shares_read_u64,
8597 		.write_u64 = cpu_shares_write_u64,
8598 	},
8599 #endif
8600 #ifdef CONFIG_CFS_BANDWIDTH
8601 	{
8602 		.name = "cfs_quota_us",
8603 		.read_s64 = cpu_cfs_quota_read_s64,
8604 		.write_s64 = cpu_cfs_quota_write_s64,
8605 	},
8606 	{
8607 		.name = "cfs_period_us",
8608 		.read_u64 = cpu_cfs_period_read_u64,
8609 		.write_u64 = cpu_cfs_period_write_u64,
8610 	},
8611 	{
8612 		.name = "stat",
8613 		.seq_show = cpu_stats_show,
8614 	},
8615 #endif
8616 #ifdef CONFIG_RT_GROUP_SCHED
8617 	{
8618 		.name = "rt_runtime_us",
8619 		.read_s64 = cpu_rt_runtime_read,
8620 		.write_s64 = cpu_rt_runtime_write,
8621 	},
8622 	{
8623 		.name = "rt_period_us",
8624 		.read_u64 = cpu_rt_period_read_uint,
8625 		.write_u64 = cpu_rt_period_write_uint,
8626 	},
8627 #endif
8628 	{ }	/* terminate */
8629 };
8630 
8631 struct cgroup_subsys cpu_cgrp_subsys = {
8632 	.css_alloc	= cpu_cgroup_css_alloc,
8633 	.css_released	= cpu_cgroup_css_released,
8634 	.css_free	= cpu_cgroup_css_free,
8635 	.fork		= cpu_cgroup_fork,
8636 	.can_attach	= cpu_cgroup_can_attach,
8637 	.attach		= cpu_cgroup_attach,
8638 	.legacy_cftypes	= cpu_files,
8639 	.early_init	= true,
8640 };
8641 
8642 #endif	/* CONFIG_CGROUP_SCHED */
8643 
8644 void dump_cpu_task(int cpu)
8645 {
8646 	pr_info("Task dump for CPU %d:\n", cpu);
8647 	sched_show_task(cpu_curr(cpu));
8648 }
8649 
8650 /*
8651  * Nice levels are multiplicative, with a gentle 10% change for every
8652  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8653  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8654  * that remained on nice 0.
8655  *
8656  * The "10% effect" is relative and cumulative: from _any_ nice level,
8657  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8658  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8659  * If a task goes up by ~10% and another task goes down by ~10% then
8660  * the relative distance between them is ~25%.)
8661  */
8662 const int sched_prio_to_weight[40] = {
8663  /* -20 */     88761,     71755,     56483,     46273,     36291,
8664  /* -15 */     29154,     23254,     18705,     14949,     11916,
8665  /* -10 */      9548,      7620,      6100,      4904,      3906,
8666  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8667  /*   0 */      1024,       820,       655,       526,       423,
8668  /*   5 */       335,       272,       215,       172,       137,
8669  /*  10 */       110,        87,        70,        56,        45,
8670  /*  15 */        36,        29,        23,        18,        15,
8671 };
8672 
8673 /*
8674  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8675  *
8676  * In cases where the weight does not change often, we can use the
8677  * precalculated inverse to speed up arithmetics by turning divisions
8678  * into multiplications:
8679  */
8680 const u32 sched_prio_to_wmult[40] = {
8681  /* -20 */     48388,     59856,     76040,     92818,    118348,
8682  /* -15 */    147320,    184698,    229616,    287308,    360437,
8683  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8684  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8685  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8686  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8687  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8688  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8689 };
8690