xref: /openbmc/linux/kernel/sched/core.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 #endif
62 
63 /*
64  * Number of tasks to iterate in a single balance run.
65  * Limited because this is done with IRQs disabled.
66  */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68 
69 /*
70  * period over which we measure -rt task CPU usage in us.
71  * default: 1s
72  */
73 unsigned int sysctl_sched_rt_period = 1000000;
74 
75 __read_mostly int scheduler_running;
76 
77 /*
78  * part of the period that we allow rt tasks to run in us.
79  * default: 0.95s
80  */
81 int sysctl_sched_rt_runtime = 950000;
82 
83 
84 /*
85  * Serialization rules:
86  *
87  * Lock order:
88  *
89  *   p->pi_lock
90  *     rq->lock
91  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92  *
93  *  rq1->lock
94  *    rq2->lock  where: rq1 < rq2
95  *
96  * Regular state:
97  *
98  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99  * local CPU's rq->lock, it optionally removes the task from the runqueue and
100  * always looks at the local rq data structures to find the most eligible task
101  * to run next.
102  *
103  * Task enqueue is also under rq->lock, possibly taken from another CPU.
104  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105  * the local CPU to avoid bouncing the runqueue state around [ see
106  * ttwu_queue_wakelist() ]
107  *
108  * Task wakeup, specifically wakeups that involve migration, are horribly
109  * complicated to avoid having to take two rq->locks.
110  *
111  * Special state:
112  *
113  * System-calls and anything external will use task_rq_lock() which acquires
114  * both p->pi_lock and rq->lock. As a consequence the state they change is
115  * stable while holding either lock:
116  *
117  *  - sched_setaffinity()/
118  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
119  *  - set_user_nice():		p->se.load, p->*prio
120  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
121  *				p->se.load, p->rt_priority,
122  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
123  *  - sched_setnuma():		p->numa_preferred_nid
124  *  - sched_move_task()/
125  *    cpu_cgroup_fork():	p->sched_task_group
126  *  - uclamp_update_active()	p->uclamp*
127  *
128  * p->state <- TASK_*:
129  *
130  *   is changed locklessly using set_current_state(), __set_current_state() or
131  *   set_special_state(), see their respective comments, or by
132  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
133  *   concurrent self.
134  *
135  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136  *
137  *   is set by activate_task() and cleared by deactivate_task(), under
138  *   rq->lock. Non-zero indicates the task is runnable, the special
139  *   ON_RQ_MIGRATING state is used for migration without holding both
140  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141  *
142  * p->on_cpu <- { 0, 1 }:
143  *
144  *   is set by prepare_task() and cleared by finish_task() such that it will be
145  *   set before p is scheduled-in and cleared after p is scheduled-out, both
146  *   under rq->lock. Non-zero indicates the task is running on its CPU.
147  *
148  *   [ The astute reader will observe that it is possible for two tasks on one
149  *     CPU to have ->on_cpu = 1 at the same time. ]
150  *
151  * task_cpu(p): is changed by set_task_cpu(), the rules are:
152  *
153  *  - Don't call set_task_cpu() on a blocked task:
154  *
155  *    We don't care what CPU we're not running on, this simplifies hotplug,
156  *    the CPU assignment of blocked tasks isn't required to be valid.
157  *
158  *  - for try_to_wake_up(), called under p->pi_lock:
159  *
160  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
161  *
162  *  - for migration called under rq->lock:
163  *    [ see task_on_rq_migrating() in task_rq_lock() ]
164  *
165  *    o move_queued_task()
166  *    o detach_task()
167  *
168  *  - for migration called under double_rq_lock():
169  *
170  *    o __migrate_swap_task()
171  *    o push_rt_task() / pull_rt_task()
172  *    o push_dl_task() / pull_dl_task()
173  *    o dl_task_offline_migration()
174  *
175  */
176 
177 /*
178  * __task_rq_lock - lock the rq @p resides on.
179  */
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 	__acquires(rq->lock)
182 {
183 	struct rq *rq;
184 
185 	lockdep_assert_held(&p->pi_lock);
186 
187 	for (;;) {
188 		rq = task_rq(p);
189 		raw_spin_lock(&rq->lock);
190 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 			rq_pin_lock(rq, rf);
192 			return rq;
193 		}
194 		raw_spin_unlock(&rq->lock);
195 
196 		while (unlikely(task_on_rq_migrating(p)))
197 			cpu_relax();
198 	}
199 }
200 
201 /*
202  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203  */
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 	__acquires(p->pi_lock)
206 	__acquires(rq->lock)
207 {
208 	struct rq *rq;
209 
210 	for (;;) {
211 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 		rq = task_rq(p);
213 		raw_spin_lock(&rq->lock);
214 		/*
215 		 *	move_queued_task()		task_rq_lock()
216 		 *
217 		 *	ACQUIRE (rq->lock)
218 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
219 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
220 		 *	[S] ->cpu = new_cpu		[L] task_rq()
221 		 *					[L] ->on_rq
222 		 *	RELEASE (rq->lock)
223 		 *
224 		 * If we observe the old CPU in task_rq_lock(), the acquire of
225 		 * the old rq->lock will fully serialize against the stores.
226 		 *
227 		 * If we observe the new CPU in task_rq_lock(), the address
228 		 * dependency headed by '[L] rq = task_rq()' and the acquire
229 		 * will pair with the WMB to ensure we then also see migrating.
230 		 */
231 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 			rq_pin_lock(rq, rf);
233 			return rq;
234 		}
235 		raw_spin_unlock(&rq->lock);
236 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
237 
238 		while (unlikely(task_on_rq_migrating(p)))
239 			cpu_relax();
240 	}
241 }
242 
243 /*
244  * RQ-clock updating methods:
245  */
246 
247 static void update_rq_clock_task(struct rq *rq, s64 delta)
248 {
249 /*
250  * In theory, the compile should just see 0 here, and optimize out the call
251  * to sched_rt_avg_update. But I don't trust it...
252  */
253 	s64 __maybe_unused steal = 0, irq_delta = 0;
254 
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257 
258 	/*
259 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 	 * this case when a previous update_rq_clock() happened inside a
261 	 * {soft,}irq region.
262 	 *
263 	 * When this happens, we stop ->clock_task and only update the
264 	 * prev_irq_time stamp to account for the part that fit, so that a next
265 	 * update will consume the rest. This ensures ->clock_task is
266 	 * monotonic.
267 	 *
268 	 * It does however cause some slight miss-attribution of {soft,}irq
269 	 * time, a more accurate solution would be to update the irq_time using
270 	 * the current rq->clock timestamp, except that would require using
271 	 * atomic ops.
272 	 */
273 	if (irq_delta > delta)
274 		irq_delta = delta;
275 
276 	rq->prev_irq_time += irq_delta;
277 	delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 	if (static_key_false((&paravirt_steal_rq_enabled))) {
281 		steal = paravirt_steal_clock(cpu_of(rq));
282 		steal -= rq->prev_steal_time_rq;
283 
284 		if (unlikely(steal > delta))
285 			steal = delta;
286 
287 		rq->prev_steal_time_rq += steal;
288 		delta -= steal;
289 	}
290 #endif
291 
292 	rq->clock_task += delta;
293 
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 		update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 	update_rq_clock_pelt(rq, delta);
299 }
300 
301 void update_rq_clock(struct rq *rq)
302 {
303 	s64 delta;
304 
305 	lockdep_assert_held(&rq->lock);
306 
307 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 		return;
309 
310 #ifdef CONFIG_SCHED_DEBUG
311 	if (sched_feat(WARN_DOUBLE_CLOCK))
312 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 	rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
315 
316 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 	if (delta < 0)
318 		return;
319 	rq->clock += delta;
320 	update_rq_clock_task(rq, delta);
321 }
322 
323 #ifdef CONFIG_SCHED_HRTICK
324 /*
325  * Use HR-timers to deliver accurate preemption points.
326  */
327 
328 static void hrtick_clear(struct rq *rq)
329 {
330 	if (hrtimer_active(&rq->hrtick_timer))
331 		hrtimer_cancel(&rq->hrtick_timer);
332 }
333 
334 /*
335  * High-resolution timer tick.
336  * Runs from hardirq context with interrupts disabled.
337  */
338 static enum hrtimer_restart hrtick(struct hrtimer *timer)
339 {
340 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
341 	struct rq_flags rf;
342 
343 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344 
345 	rq_lock(rq, &rf);
346 	update_rq_clock(rq);
347 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 	rq_unlock(rq, &rf);
349 
350 	return HRTIMER_NORESTART;
351 }
352 
353 #ifdef CONFIG_SMP
354 
355 static void __hrtick_restart(struct rq *rq)
356 {
357 	struct hrtimer *timer = &rq->hrtick_timer;
358 
359 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
360 }
361 
362 /*
363  * called from hardirq (IPI) context
364  */
365 static void __hrtick_start(void *arg)
366 {
367 	struct rq *rq = arg;
368 	struct rq_flags rf;
369 
370 	rq_lock(rq, &rf);
371 	__hrtick_restart(rq);
372 	rq_unlock(rq, &rf);
373 }
374 
375 /*
376  * Called to set the hrtick timer state.
377  *
378  * called with rq->lock held and irqs disabled
379  */
380 void hrtick_start(struct rq *rq, u64 delay)
381 {
382 	struct hrtimer *timer = &rq->hrtick_timer;
383 	ktime_t time;
384 	s64 delta;
385 
386 	/*
387 	 * Don't schedule slices shorter than 10000ns, that just
388 	 * doesn't make sense and can cause timer DoS.
389 	 */
390 	delta = max_t(s64, delay, 10000LL);
391 	time = ktime_add_ns(timer->base->get_time(), delta);
392 
393 	hrtimer_set_expires(timer, time);
394 
395 	if (rq == this_rq())
396 		__hrtick_restart(rq);
397 	else
398 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
399 }
400 
401 #else
402 /*
403  * Called to set the hrtick timer state.
404  *
405  * called with rq->lock held and irqs disabled
406  */
407 void hrtick_start(struct rq *rq, u64 delay)
408 {
409 	/*
410 	 * Don't schedule slices shorter than 10000ns, that just
411 	 * doesn't make sense. Rely on vruntime for fairness.
412 	 */
413 	delay = max_t(u64, delay, 10000LL);
414 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
415 		      HRTIMER_MODE_REL_PINNED_HARD);
416 }
417 
418 #endif /* CONFIG_SMP */
419 
420 static void hrtick_rq_init(struct rq *rq)
421 {
422 #ifdef CONFIG_SMP
423 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
424 #endif
425 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
426 	rq->hrtick_timer.function = hrtick;
427 }
428 #else	/* CONFIG_SCHED_HRTICK */
429 static inline void hrtick_clear(struct rq *rq)
430 {
431 }
432 
433 static inline void hrtick_rq_init(struct rq *rq)
434 {
435 }
436 #endif	/* CONFIG_SCHED_HRTICK */
437 
438 /*
439  * cmpxchg based fetch_or, macro so it works for different integer types
440  */
441 #define fetch_or(ptr, mask)						\
442 	({								\
443 		typeof(ptr) _ptr = (ptr);				\
444 		typeof(mask) _mask = (mask);				\
445 		typeof(*_ptr) _old, _val = *_ptr;			\
446 									\
447 		for (;;) {						\
448 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
449 			if (_old == _val)				\
450 				break;					\
451 			_val = _old;					\
452 		}							\
453 	_old;								\
454 })
455 
456 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
457 /*
458  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
459  * this avoids any races wrt polling state changes and thereby avoids
460  * spurious IPIs.
461  */
462 static bool set_nr_and_not_polling(struct task_struct *p)
463 {
464 	struct thread_info *ti = task_thread_info(p);
465 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
466 }
467 
468 /*
469  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
470  *
471  * If this returns true, then the idle task promises to call
472  * sched_ttwu_pending() and reschedule soon.
473  */
474 static bool set_nr_if_polling(struct task_struct *p)
475 {
476 	struct thread_info *ti = task_thread_info(p);
477 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
478 
479 	for (;;) {
480 		if (!(val & _TIF_POLLING_NRFLAG))
481 			return false;
482 		if (val & _TIF_NEED_RESCHED)
483 			return true;
484 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
485 		if (old == val)
486 			break;
487 		val = old;
488 	}
489 	return true;
490 }
491 
492 #else
493 static bool set_nr_and_not_polling(struct task_struct *p)
494 {
495 	set_tsk_need_resched(p);
496 	return true;
497 }
498 
499 #ifdef CONFIG_SMP
500 static bool set_nr_if_polling(struct task_struct *p)
501 {
502 	return false;
503 }
504 #endif
505 #endif
506 
507 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
508 {
509 	struct wake_q_node *node = &task->wake_q;
510 
511 	/*
512 	 * Atomically grab the task, if ->wake_q is !nil already it means
513 	 * it's already queued (either by us or someone else) and will get the
514 	 * wakeup due to that.
515 	 *
516 	 * In order to ensure that a pending wakeup will observe our pending
517 	 * state, even in the failed case, an explicit smp_mb() must be used.
518 	 */
519 	smp_mb__before_atomic();
520 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
521 		return false;
522 
523 	/*
524 	 * The head is context local, there can be no concurrency.
525 	 */
526 	*head->lastp = node;
527 	head->lastp = &node->next;
528 	return true;
529 }
530 
531 /**
532  * wake_q_add() - queue a wakeup for 'later' waking.
533  * @head: the wake_q_head to add @task to
534  * @task: the task to queue for 'later' wakeup
535  *
536  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
537  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
538  * instantly.
539  *
540  * This function must be used as-if it were wake_up_process(); IOW the task
541  * must be ready to be woken at this location.
542  */
543 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
544 {
545 	if (__wake_q_add(head, task))
546 		get_task_struct(task);
547 }
548 
549 /**
550  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
551  * @head: the wake_q_head to add @task to
552  * @task: the task to queue for 'later' wakeup
553  *
554  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
555  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
556  * instantly.
557  *
558  * This function must be used as-if it were wake_up_process(); IOW the task
559  * must be ready to be woken at this location.
560  *
561  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
562  * that already hold reference to @task can call the 'safe' version and trust
563  * wake_q to do the right thing depending whether or not the @task is already
564  * queued for wakeup.
565  */
566 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
567 {
568 	if (!__wake_q_add(head, task))
569 		put_task_struct(task);
570 }
571 
572 void wake_up_q(struct wake_q_head *head)
573 {
574 	struct wake_q_node *node = head->first;
575 
576 	while (node != WAKE_Q_TAIL) {
577 		struct task_struct *task;
578 
579 		task = container_of(node, struct task_struct, wake_q);
580 		BUG_ON(!task);
581 		/* Task can safely be re-inserted now: */
582 		node = node->next;
583 		task->wake_q.next = NULL;
584 
585 		/*
586 		 * wake_up_process() executes a full barrier, which pairs with
587 		 * the queueing in wake_q_add() so as not to miss wakeups.
588 		 */
589 		wake_up_process(task);
590 		put_task_struct(task);
591 	}
592 }
593 
594 /*
595  * resched_curr - mark rq's current task 'to be rescheduled now'.
596  *
597  * On UP this means the setting of the need_resched flag, on SMP it
598  * might also involve a cross-CPU call to trigger the scheduler on
599  * the target CPU.
600  */
601 void resched_curr(struct rq *rq)
602 {
603 	struct task_struct *curr = rq->curr;
604 	int cpu;
605 
606 	lockdep_assert_held(&rq->lock);
607 
608 	if (test_tsk_need_resched(curr))
609 		return;
610 
611 	cpu = cpu_of(rq);
612 
613 	if (cpu == smp_processor_id()) {
614 		set_tsk_need_resched(curr);
615 		set_preempt_need_resched();
616 		return;
617 	}
618 
619 	if (set_nr_and_not_polling(curr))
620 		smp_send_reschedule(cpu);
621 	else
622 		trace_sched_wake_idle_without_ipi(cpu);
623 }
624 
625 void resched_cpu(int cpu)
626 {
627 	struct rq *rq = cpu_rq(cpu);
628 	unsigned long flags;
629 
630 	raw_spin_lock_irqsave(&rq->lock, flags);
631 	if (cpu_online(cpu) || cpu == smp_processor_id())
632 		resched_curr(rq);
633 	raw_spin_unlock_irqrestore(&rq->lock, flags);
634 }
635 
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
638 /*
639  * In the semi idle case, use the nearest busy CPU for migrating timers
640  * from an idle CPU.  This is good for power-savings.
641  *
642  * We don't do similar optimization for completely idle system, as
643  * selecting an idle CPU will add more delays to the timers than intended
644  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
645  */
646 int get_nohz_timer_target(void)
647 {
648 	int i, cpu = smp_processor_id(), default_cpu = -1;
649 	struct sched_domain *sd;
650 
651 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
652 		if (!idle_cpu(cpu))
653 			return cpu;
654 		default_cpu = cpu;
655 	}
656 
657 	rcu_read_lock();
658 	for_each_domain(cpu, sd) {
659 		for_each_cpu_and(i, sched_domain_span(sd),
660 			housekeeping_cpumask(HK_FLAG_TIMER)) {
661 			if (cpu == i)
662 				continue;
663 
664 			if (!idle_cpu(i)) {
665 				cpu = i;
666 				goto unlock;
667 			}
668 		}
669 	}
670 
671 	if (default_cpu == -1)
672 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
673 	cpu = default_cpu;
674 unlock:
675 	rcu_read_unlock();
676 	return cpu;
677 }
678 
679 /*
680  * When add_timer_on() enqueues a timer into the timer wheel of an
681  * idle CPU then this timer might expire before the next timer event
682  * which is scheduled to wake up that CPU. In case of a completely
683  * idle system the next event might even be infinite time into the
684  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
685  * leaves the inner idle loop so the newly added timer is taken into
686  * account when the CPU goes back to idle and evaluates the timer
687  * wheel for the next timer event.
688  */
689 static void wake_up_idle_cpu(int cpu)
690 {
691 	struct rq *rq = cpu_rq(cpu);
692 
693 	if (cpu == smp_processor_id())
694 		return;
695 
696 	if (set_nr_and_not_polling(rq->idle))
697 		smp_send_reschedule(cpu);
698 	else
699 		trace_sched_wake_idle_without_ipi(cpu);
700 }
701 
702 static bool wake_up_full_nohz_cpu(int cpu)
703 {
704 	/*
705 	 * We just need the target to call irq_exit() and re-evaluate
706 	 * the next tick. The nohz full kick at least implies that.
707 	 * If needed we can still optimize that later with an
708 	 * empty IRQ.
709 	 */
710 	if (cpu_is_offline(cpu))
711 		return true;  /* Don't try to wake offline CPUs. */
712 	if (tick_nohz_full_cpu(cpu)) {
713 		if (cpu != smp_processor_id() ||
714 		    tick_nohz_tick_stopped())
715 			tick_nohz_full_kick_cpu(cpu);
716 		return true;
717 	}
718 
719 	return false;
720 }
721 
722 /*
723  * Wake up the specified CPU.  If the CPU is going offline, it is the
724  * caller's responsibility to deal with the lost wakeup, for example,
725  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
726  */
727 void wake_up_nohz_cpu(int cpu)
728 {
729 	if (!wake_up_full_nohz_cpu(cpu))
730 		wake_up_idle_cpu(cpu);
731 }
732 
733 static void nohz_csd_func(void *info)
734 {
735 	struct rq *rq = info;
736 	int cpu = cpu_of(rq);
737 	unsigned int flags;
738 
739 	/*
740 	 * Release the rq::nohz_csd.
741 	 */
742 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
743 	WARN_ON(!(flags & NOHZ_KICK_MASK));
744 
745 	rq->idle_balance = idle_cpu(cpu);
746 	if (rq->idle_balance && !need_resched()) {
747 		rq->nohz_idle_balance = flags;
748 		raise_softirq_irqoff(SCHED_SOFTIRQ);
749 	}
750 }
751 
752 #endif /* CONFIG_NO_HZ_COMMON */
753 
754 #ifdef CONFIG_NO_HZ_FULL
755 bool sched_can_stop_tick(struct rq *rq)
756 {
757 	int fifo_nr_running;
758 
759 	/* Deadline tasks, even if single, need the tick */
760 	if (rq->dl.dl_nr_running)
761 		return false;
762 
763 	/*
764 	 * If there are more than one RR tasks, we need the tick to affect the
765 	 * actual RR behaviour.
766 	 */
767 	if (rq->rt.rr_nr_running) {
768 		if (rq->rt.rr_nr_running == 1)
769 			return true;
770 		else
771 			return false;
772 	}
773 
774 	/*
775 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
776 	 * forced preemption between FIFO tasks.
777 	 */
778 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
779 	if (fifo_nr_running)
780 		return true;
781 
782 	/*
783 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
784 	 * if there's more than one we need the tick for involuntary
785 	 * preemption.
786 	 */
787 	if (rq->nr_running > 1)
788 		return false;
789 
790 	return true;
791 }
792 #endif /* CONFIG_NO_HZ_FULL */
793 #endif /* CONFIG_SMP */
794 
795 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
796 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
797 /*
798  * Iterate task_group tree rooted at *from, calling @down when first entering a
799  * node and @up when leaving it for the final time.
800  *
801  * Caller must hold rcu_lock or sufficient equivalent.
802  */
803 int walk_tg_tree_from(struct task_group *from,
804 			     tg_visitor down, tg_visitor up, void *data)
805 {
806 	struct task_group *parent, *child;
807 	int ret;
808 
809 	parent = from;
810 
811 down:
812 	ret = (*down)(parent, data);
813 	if (ret)
814 		goto out;
815 	list_for_each_entry_rcu(child, &parent->children, siblings) {
816 		parent = child;
817 		goto down;
818 
819 up:
820 		continue;
821 	}
822 	ret = (*up)(parent, data);
823 	if (ret || parent == from)
824 		goto out;
825 
826 	child = parent;
827 	parent = parent->parent;
828 	if (parent)
829 		goto up;
830 out:
831 	return ret;
832 }
833 
834 int tg_nop(struct task_group *tg, void *data)
835 {
836 	return 0;
837 }
838 #endif
839 
840 static void set_load_weight(struct task_struct *p, bool update_load)
841 {
842 	int prio = p->static_prio - MAX_RT_PRIO;
843 	struct load_weight *load = &p->se.load;
844 
845 	/*
846 	 * SCHED_IDLE tasks get minimal weight:
847 	 */
848 	if (task_has_idle_policy(p)) {
849 		load->weight = scale_load(WEIGHT_IDLEPRIO);
850 		load->inv_weight = WMULT_IDLEPRIO;
851 		return;
852 	}
853 
854 	/*
855 	 * SCHED_OTHER tasks have to update their load when changing their
856 	 * weight
857 	 */
858 	if (update_load && p->sched_class == &fair_sched_class) {
859 		reweight_task(p, prio);
860 	} else {
861 		load->weight = scale_load(sched_prio_to_weight[prio]);
862 		load->inv_weight = sched_prio_to_wmult[prio];
863 	}
864 }
865 
866 #ifdef CONFIG_UCLAMP_TASK
867 /*
868  * Serializes updates of utilization clamp values
869  *
870  * The (slow-path) user-space triggers utilization clamp value updates which
871  * can require updates on (fast-path) scheduler's data structures used to
872  * support enqueue/dequeue operations.
873  * While the per-CPU rq lock protects fast-path update operations, user-space
874  * requests are serialized using a mutex to reduce the risk of conflicting
875  * updates or API abuses.
876  */
877 static DEFINE_MUTEX(uclamp_mutex);
878 
879 /* Max allowed minimum utilization */
880 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
881 
882 /* Max allowed maximum utilization */
883 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
884 
885 /*
886  * By default RT tasks run at the maximum performance point/capacity of the
887  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
888  * SCHED_CAPACITY_SCALE.
889  *
890  * This knob allows admins to change the default behavior when uclamp is being
891  * used. In battery powered devices, particularly, running at the maximum
892  * capacity and frequency will increase energy consumption and shorten the
893  * battery life.
894  *
895  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
896  *
897  * This knob will not override the system default sched_util_clamp_min defined
898  * above.
899  */
900 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
901 
902 /* All clamps are required to be less or equal than these values */
903 static struct uclamp_se uclamp_default[UCLAMP_CNT];
904 
905 /*
906  * This static key is used to reduce the uclamp overhead in the fast path. It
907  * primarily disables the call to uclamp_rq_{inc, dec}() in
908  * enqueue/dequeue_task().
909  *
910  * This allows users to continue to enable uclamp in their kernel config with
911  * minimum uclamp overhead in the fast path.
912  *
913  * As soon as userspace modifies any of the uclamp knobs, the static key is
914  * enabled, since we have an actual users that make use of uclamp
915  * functionality.
916  *
917  * The knobs that would enable this static key are:
918  *
919  *   * A task modifying its uclamp value with sched_setattr().
920  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
921  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
922  */
923 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
924 
925 /* Integer rounded range for each bucket */
926 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
927 
928 #define for_each_clamp_id(clamp_id) \
929 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
930 
931 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
932 {
933 	return clamp_value / UCLAMP_BUCKET_DELTA;
934 }
935 
936 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
937 {
938 	if (clamp_id == UCLAMP_MIN)
939 		return 0;
940 	return SCHED_CAPACITY_SCALE;
941 }
942 
943 static inline void uclamp_se_set(struct uclamp_se *uc_se,
944 				 unsigned int value, bool user_defined)
945 {
946 	uc_se->value = value;
947 	uc_se->bucket_id = uclamp_bucket_id(value);
948 	uc_se->user_defined = user_defined;
949 }
950 
951 static inline unsigned int
952 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
953 		  unsigned int clamp_value)
954 {
955 	/*
956 	 * Avoid blocked utilization pushing up the frequency when we go
957 	 * idle (which drops the max-clamp) by retaining the last known
958 	 * max-clamp.
959 	 */
960 	if (clamp_id == UCLAMP_MAX) {
961 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
962 		return clamp_value;
963 	}
964 
965 	return uclamp_none(UCLAMP_MIN);
966 }
967 
968 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
969 				     unsigned int clamp_value)
970 {
971 	/* Reset max-clamp retention only on idle exit */
972 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
973 		return;
974 
975 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
976 }
977 
978 static inline
979 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
980 				   unsigned int clamp_value)
981 {
982 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
983 	int bucket_id = UCLAMP_BUCKETS - 1;
984 
985 	/*
986 	 * Since both min and max clamps are max aggregated, find the
987 	 * top most bucket with tasks in.
988 	 */
989 	for ( ; bucket_id >= 0; bucket_id--) {
990 		if (!bucket[bucket_id].tasks)
991 			continue;
992 		return bucket[bucket_id].value;
993 	}
994 
995 	/* No tasks -- default clamp values */
996 	return uclamp_idle_value(rq, clamp_id, clamp_value);
997 }
998 
999 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1000 {
1001 	unsigned int default_util_min;
1002 	struct uclamp_se *uc_se;
1003 
1004 	lockdep_assert_held(&p->pi_lock);
1005 
1006 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1007 
1008 	/* Only sync if user didn't override the default */
1009 	if (uc_se->user_defined)
1010 		return;
1011 
1012 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1013 	uclamp_se_set(uc_se, default_util_min, false);
1014 }
1015 
1016 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1017 {
1018 	struct rq_flags rf;
1019 	struct rq *rq;
1020 
1021 	if (!rt_task(p))
1022 		return;
1023 
1024 	/* Protect updates to p->uclamp_* */
1025 	rq = task_rq_lock(p, &rf);
1026 	__uclamp_update_util_min_rt_default(p);
1027 	task_rq_unlock(rq, p, &rf);
1028 }
1029 
1030 static void uclamp_sync_util_min_rt_default(void)
1031 {
1032 	struct task_struct *g, *p;
1033 
1034 	/*
1035 	 * copy_process()			sysctl_uclamp
1036 	 *					  uclamp_min_rt = X;
1037 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1038 	 *   // link thread			  smp_mb__after_spinlock()
1039 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1040 	 *   sched_post_fork()			  for_each_process_thread()
1041 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1042 	 *
1043 	 * Ensures that either sched_post_fork() will observe the new
1044 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1045 	 * task.
1046 	 */
1047 	read_lock(&tasklist_lock);
1048 	smp_mb__after_spinlock();
1049 	read_unlock(&tasklist_lock);
1050 
1051 	rcu_read_lock();
1052 	for_each_process_thread(g, p)
1053 		uclamp_update_util_min_rt_default(p);
1054 	rcu_read_unlock();
1055 }
1056 
1057 static inline struct uclamp_se
1058 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1059 {
1060 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1061 #ifdef CONFIG_UCLAMP_TASK_GROUP
1062 	struct uclamp_se uc_max;
1063 
1064 	/*
1065 	 * Tasks in autogroups or root task group will be
1066 	 * restricted by system defaults.
1067 	 */
1068 	if (task_group_is_autogroup(task_group(p)))
1069 		return uc_req;
1070 	if (task_group(p) == &root_task_group)
1071 		return uc_req;
1072 
1073 	uc_max = task_group(p)->uclamp[clamp_id];
1074 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1075 		return uc_max;
1076 #endif
1077 
1078 	return uc_req;
1079 }
1080 
1081 /*
1082  * The effective clamp bucket index of a task depends on, by increasing
1083  * priority:
1084  * - the task specific clamp value, when explicitly requested from userspace
1085  * - the task group effective clamp value, for tasks not either in the root
1086  *   group or in an autogroup
1087  * - the system default clamp value, defined by the sysadmin
1088  */
1089 static inline struct uclamp_se
1090 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1091 {
1092 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1093 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1094 
1095 	/* System default restrictions always apply */
1096 	if (unlikely(uc_req.value > uc_max.value))
1097 		return uc_max;
1098 
1099 	return uc_req;
1100 }
1101 
1102 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1103 {
1104 	struct uclamp_se uc_eff;
1105 
1106 	/* Task currently refcounted: use back-annotated (effective) value */
1107 	if (p->uclamp[clamp_id].active)
1108 		return (unsigned long)p->uclamp[clamp_id].value;
1109 
1110 	uc_eff = uclamp_eff_get(p, clamp_id);
1111 
1112 	return (unsigned long)uc_eff.value;
1113 }
1114 
1115 /*
1116  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1117  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1118  * updates the rq's clamp value if required.
1119  *
1120  * Tasks can have a task-specific value requested from user-space, track
1121  * within each bucket the maximum value for tasks refcounted in it.
1122  * This "local max aggregation" allows to track the exact "requested" value
1123  * for each bucket when all its RUNNABLE tasks require the same clamp.
1124  */
1125 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1126 				    enum uclamp_id clamp_id)
1127 {
1128 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1129 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1130 	struct uclamp_bucket *bucket;
1131 
1132 	lockdep_assert_held(&rq->lock);
1133 
1134 	/* Update task effective clamp */
1135 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1136 
1137 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1138 	bucket->tasks++;
1139 	uc_se->active = true;
1140 
1141 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1142 
1143 	/*
1144 	 * Local max aggregation: rq buckets always track the max
1145 	 * "requested" clamp value of its RUNNABLE tasks.
1146 	 */
1147 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1148 		bucket->value = uc_se->value;
1149 
1150 	if (uc_se->value > READ_ONCE(uc_rq->value))
1151 		WRITE_ONCE(uc_rq->value, uc_se->value);
1152 }
1153 
1154 /*
1155  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1156  * is released. If this is the last task reference counting the rq's max
1157  * active clamp value, then the rq's clamp value is updated.
1158  *
1159  * Both refcounted tasks and rq's cached clamp values are expected to be
1160  * always valid. If it's detected they are not, as defensive programming,
1161  * enforce the expected state and warn.
1162  */
1163 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1164 				    enum uclamp_id clamp_id)
1165 {
1166 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1167 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1168 	struct uclamp_bucket *bucket;
1169 	unsigned int bkt_clamp;
1170 	unsigned int rq_clamp;
1171 
1172 	lockdep_assert_held(&rq->lock);
1173 
1174 	/*
1175 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1176 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1177 	 *
1178 	 * In this case the uc_se->active flag should be false since no uclamp
1179 	 * accounting was performed at enqueue time and we can just return
1180 	 * here.
1181 	 *
1182 	 * Need to be careful of the following enqueue/dequeue ordering
1183 	 * problem too
1184 	 *
1185 	 *	enqueue(taskA)
1186 	 *	// sched_uclamp_used gets enabled
1187 	 *	enqueue(taskB)
1188 	 *	dequeue(taskA)
1189 	 *	// Must not decrement bucket->tasks here
1190 	 *	dequeue(taskB)
1191 	 *
1192 	 * where we could end up with stale data in uc_se and
1193 	 * bucket[uc_se->bucket_id].
1194 	 *
1195 	 * The following check here eliminates the possibility of such race.
1196 	 */
1197 	if (unlikely(!uc_se->active))
1198 		return;
1199 
1200 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1201 
1202 	SCHED_WARN_ON(!bucket->tasks);
1203 	if (likely(bucket->tasks))
1204 		bucket->tasks--;
1205 
1206 	uc_se->active = false;
1207 
1208 	/*
1209 	 * Keep "local max aggregation" simple and accept to (possibly)
1210 	 * overboost some RUNNABLE tasks in the same bucket.
1211 	 * The rq clamp bucket value is reset to its base value whenever
1212 	 * there are no more RUNNABLE tasks refcounting it.
1213 	 */
1214 	if (likely(bucket->tasks))
1215 		return;
1216 
1217 	rq_clamp = READ_ONCE(uc_rq->value);
1218 	/*
1219 	 * Defensive programming: this should never happen. If it happens,
1220 	 * e.g. due to future modification, warn and fixup the expected value.
1221 	 */
1222 	SCHED_WARN_ON(bucket->value > rq_clamp);
1223 	if (bucket->value >= rq_clamp) {
1224 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1225 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1226 	}
1227 }
1228 
1229 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1230 {
1231 	enum uclamp_id clamp_id;
1232 
1233 	/*
1234 	 * Avoid any overhead until uclamp is actually used by the userspace.
1235 	 *
1236 	 * The condition is constructed such that a NOP is generated when
1237 	 * sched_uclamp_used is disabled.
1238 	 */
1239 	if (!static_branch_unlikely(&sched_uclamp_used))
1240 		return;
1241 
1242 	if (unlikely(!p->sched_class->uclamp_enabled))
1243 		return;
1244 
1245 	for_each_clamp_id(clamp_id)
1246 		uclamp_rq_inc_id(rq, p, clamp_id);
1247 
1248 	/* Reset clamp idle holding when there is one RUNNABLE task */
1249 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1250 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1251 }
1252 
1253 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1254 {
1255 	enum uclamp_id clamp_id;
1256 
1257 	/*
1258 	 * Avoid any overhead until uclamp is actually used by the userspace.
1259 	 *
1260 	 * The condition is constructed such that a NOP is generated when
1261 	 * sched_uclamp_used is disabled.
1262 	 */
1263 	if (!static_branch_unlikely(&sched_uclamp_used))
1264 		return;
1265 
1266 	if (unlikely(!p->sched_class->uclamp_enabled))
1267 		return;
1268 
1269 	for_each_clamp_id(clamp_id)
1270 		uclamp_rq_dec_id(rq, p, clamp_id);
1271 }
1272 
1273 static inline void
1274 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1275 {
1276 	struct rq_flags rf;
1277 	struct rq *rq;
1278 
1279 	/*
1280 	 * Lock the task and the rq where the task is (or was) queued.
1281 	 *
1282 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1283 	 * price to pay to safely serialize util_{min,max} updates with
1284 	 * enqueues, dequeues and migration operations.
1285 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1286 	 */
1287 	rq = task_rq_lock(p, &rf);
1288 
1289 	/*
1290 	 * Setting the clamp bucket is serialized by task_rq_lock().
1291 	 * If the task is not yet RUNNABLE and its task_struct is not
1292 	 * affecting a valid clamp bucket, the next time it's enqueued,
1293 	 * it will already see the updated clamp bucket value.
1294 	 */
1295 	if (p->uclamp[clamp_id].active) {
1296 		uclamp_rq_dec_id(rq, p, clamp_id);
1297 		uclamp_rq_inc_id(rq, p, clamp_id);
1298 	}
1299 
1300 	task_rq_unlock(rq, p, &rf);
1301 }
1302 
1303 #ifdef CONFIG_UCLAMP_TASK_GROUP
1304 static inline void
1305 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1306 			   unsigned int clamps)
1307 {
1308 	enum uclamp_id clamp_id;
1309 	struct css_task_iter it;
1310 	struct task_struct *p;
1311 
1312 	css_task_iter_start(css, 0, &it);
1313 	while ((p = css_task_iter_next(&it))) {
1314 		for_each_clamp_id(clamp_id) {
1315 			if ((0x1 << clamp_id) & clamps)
1316 				uclamp_update_active(p, clamp_id);
1317 		}
1318 	}
1319 	css_task_iter_end(&it);
1320 }
1321 
1322 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1323 static void uclamp_update_root_tg(void)
1324 {
1325 	struct task_group *tg = &root_task_group;
1326 
1327 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1328 		      sysctl_sched_uclamp_util_min, false);
1329 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1330 		      sysctl_sched_uclamp_util_max, false);
1331 
1332 	rcu_read_lock();
1333 	cpu_util_update_eff(&root_task_group.css);
1334 	rcu_read_unlock();
1335 }
1336 #else
1337 static void uclamp_update_root_tg(void) { }
1338 #endif
1339 
1340 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1341 				void *buffer, size_t *lenp, loff_t *ppos)
1342 {
1343 	bool update_root_tg = false;
1344 	int old_min, old_max, old_min_rt;
1345 	int result;
1346 
1347 	mutex_lock(&uclamp_mutex);
1348 	old_min = sysctl_sched_uclamp_util_min;
1349 	old_max = sysctl_sched_uclamp_util_max;
1350 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1351 
1352 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1353 	if (result)
1354 		goto undo;
1355 	if (!write)
1356 		goto done;
1357 
1358 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1359 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1360 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1361 
1362 		result = -EINVAL;
1363 		goto undo;
1364 	}
1365 
1366 	if (old_min != sysctl_sched_uclamp_util_min) {
1367 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1368 			      sysctl_sched_uclamp_util_min, false);
1369 		update_root_tg = true;
1370 	}
1371 	if (old_max != sysctl_sched_uclamp_util_max) {
1372 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1373 			      sysctl_sched_uclamp_util_max, false);
1374 		update_root_tg = true;
1375 	}
1376 
1377 	if (update_root_tg) {
1378 		static_branch_enable(&sched_uclamp_used);
1379 		uclamp_update_root_tg();
1380 	}
1381 
1382 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1383 		static_branch_enable(&sched_uclamp_used);
1384 		uclamp_sync_util_min_rt_default();
1385 	}
1386 
1387 	/*
1388 	 * We update all RUNNABLE tasks only when task groups are in use.
1389 	 * Otherwise, keep it simple and do just a lazy update at each next
1390 	 * task enqueue time.
1391 	 */
1392 
1393 	goto done;
1394 
1395 undo:
1396 	sysctl_sched_uclamp_util_min = old_min;
1397 	sysctl_sched_uclamp_util_max = old_max;
1398 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1399 done:
1400 	mutex_unlock(&uclamp_mutex);
1401 
1402 	return result;
1403 }
1404 
1405 static int uclamp_validate(struct task_struct *p,
1406 			   const struct sched_attr *attr)
1407 {
1408 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1409 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1410 
1411 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1412 		util_min = attr->sched_util_min;
1413 
1414 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1415 			return -EINVAL;
1416 	}
1417 
1418 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1419 		util_max = attr->sched_util_max;
1420 
1421 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1422 			return -EINVAL;
1423 	}
1424 
1425 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1426 		return -EINVAL;
1427 
1428 	/*
1429 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1430 	 *
1431 	 * We need to do that here, because enabling static branches is a
1432 	 * blocking operation which obviously cannot be done while holding
1433 	 * scheduler locks.
1434 	 */
1435 	static_branch_enable(&sched_uclamp_used);
1436 
1437 	return 0;
1438 }
1439 
1440 static bool uclamp_reset(const struct sched_attr *attr,
1441 			 enum uclamp_id clamp_id,
1442 			 struct uclamp_se *uc_se)
1443 {
1444 	/* Reset on sched class change for a non user-defined clamp value. */
1445 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1446 	    !uc_se->user_defined)
1447 		return true;
1448 
1449 	/* Reset on sched_util_{min,max} == -1. */
1450 	if (clamp_id == UCLAMP_MIN &&
1451 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1452 	    attr->sched_util_min == -1) {
1453 		return true;
1454 	}
1455 
1456 	if (clamp_id == UCLAMP_MAX &&
1457 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1458 	    attr->sched_util_max == -1) {
1459 		return true;
1460 	}
1461 
1462 	return false;
1463 }
1464 
1465 static void __setscheduler_uclamp(struct task_struct *p,
1466 				  const struct sched_attr *attr)
1467 {
1468 	enum uclamp_id clamp_id;
1469 
1470 	for_each_clamp_id(clamp_id) {
1471 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1472 		unsigned int value;
1473 
1474 		if (!uclamp_reset(attr, clamp_id, uc_se))
1475 			continue;
1476 
1477 		/*
1478 		 * RT by default have a 100% boost value that could be modified
1479 		 * at runtime.
1480 		 */
1481 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1482 			value = sysctl_sched_uclamp_util_min_rt_default;
1483 		else
1484 			value = uclamp_none(clamp_id);
1485 
1486 		uclamp_se_set(uc_se, value, false);
1487 
1488 	}
1489 
1490 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1491 		return;
1492 
1493 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1494 	    attr->sched_util_min != -1) {
1495 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1496 			      attr->sched_util_min, true);
1497 	}
1498 
1499 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1500 	    attr->sched_util_max != -1) {
1501 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1502 			      attr->sched_util_max, true);
1503 	}
1504 }
1505 
1506 static void uclamp_fork(struct task_struct *p)
1507 {
1508 	enum uclamp_id clamp_id;
1509 
1510 	/*
1511 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1512 	 * as the task is still at its early fork stages.
1513 	 */
1514 	for_each_clamp_id(clamp_id)
1515 		p->uclamp[clamp_id].active = false;
1516 
1517 	if (likely(!p->sched_reset_on_fork))
1518 		return;
1519 
1520 	for_each_clamp_id(clamp_id) {
1521 		uclamp_se_set(&p->uclamp_req[clamp_id],
1522 			      uclamp_none(clamp_id), false);
1523 	}
1524 }
1525 
1526 static void uclamp_post_fork(struct task_struct *p)
1527 {
1528 	uclamp_update_util_min_rt_default(p);
1529 }
1530 
1531 static void __init init_uclamp_rq(struct rq *rq)
1532 {
1533 	enum uclamp_id clamp_id;
1534 	struct uclamp_rq *uc_rq = rq->uclamp;
1535 
1536 	for_each_clamp_id(clamp_id) {
1537 		uc_rq[clamp_id] = (struct uclamp_rq) {
1538 			.value = uclamp_none(clamp_id)
1539 		};
1540 	}
1541 
1542 	rq->uclamp_flags = 0;
1543 }
1544 
1545 static void __init init_uclamp(void)
1546 {
1547 	struct uclamp_se uc_max = {};
1548 	enum uclamp_id clamp_id;
1549 	int cpu;
1550 
1551 	for_each_possible_cpu(cpu)
1552 		init_uclamp_rq(cpu_rq(cpu));
1553 
1554 	for_each_clamp_id(clamp_id) {
1555 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1556 			      uclamp_none(clamp_id), false);
1557 	}
1558 
1559 	/* System defaults allow max clamp values for both indexes */
1560 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1561 	for_each_clamp_id(clamp_id) {
1562 		uclamp_default[clamp_id] = uc_max;
1563 #ifdef CONFIG_UCLAMP_TASK_GROUP
1564 		root_task_group.uclamp_req[clamp_id] = uc_max;
1565 		root_task_group.uclamp[clamp_id] = uc_max;
1566 #endif
1567 	}
1568 }
1569 
1570 #else /* CONFIG_UCLAMP_TASK */
1571 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1572 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1573 static inline int uclamp_validate(struct task_struct *p,
1574 				  const struct sched_attr *attr)
1575 {
1576 	return -EOPNOTSUPP;
1577 }
1578 static void __setscheduler_uclamp(struct task_struct *p,
1579 				  const struct sched_attr *attr) { }
1580 static inline void uclamp_fork(struct task_struct *p) { }
1581 static inline void uclamp_post_fork(struct task_struct *p) { }
1582 static inline void init_uclamp(void) { }
1583 #endif /* CONFIG_UCLAMP_TASK */
1584 
1585 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1586 {
1587 	if (!(flags & ENQUEUE_NOCLOCK))
1588 		update_rq_clock(rq);
1589 
1590 	if (!(flags & ENQUEUE_RESTORE)) {
1591 		sched_info_queued(rq, p);
1592 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1593 	}
1594 
1595 	uclamp_rq_inc(rq, p);
1596 	p->sched_class->enqueue_task(rq, p, flags);
1597 }
1598 
1599 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1600 {
1601 	if (!(flags & DEQUEUE_NOCLOCK))
1602 		update_rq_clock(rq);
1603 
1604 	if (!(flags & DEQUEUE_SAVE)) {
1605 		sched_info_dequeued(rq, p);
1606 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1607 	}
1608 
1609 	uclamp_rq_dec(rq, p);
1610 	p->sched_class->dequeue_task(rq, p, flags);
1611 }
1612 
1613 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1614 {
1615 	enqueue_task(rq, p, flags);
1616 
1617 	p->on_rq = TASK_ON_RQ_QUEUED;
1618 }
1619 
1620 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1621 {
1622 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1623 
1624 	dequeue_task(rq, p, flags);
1625 }
1626 
1627 /*
1628  * __normal_prio - return the priority that is based on the static prio
1629  */
1630 static inline int __normal_prio(struct task_struct *p)
1631 {
1632 	return p->static_prio;
1633 }
1634 
1635 /*
1636  * Calculate the expected normal priority: i.e. priority
1637  * without taking RT-inheritance into account. Might be
1638  * boosted by interactivity modifiers. Changes upon fork,
1639  * setprio syscalls, and whenever the interactivity
1640  * estimator recalculates.
1641  */
1642 static inline int normal_prio(struct task_struct *p)
1643 {
1644 	int prio;
1645 
1646 	if (task_has_dl_policy(p))
1647 		prio = MAX_DL_PRIO-1;
1648 	else if (task_has_rt_policy(p))
1649 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1650 	else
1651 		prio = __normal_prio(p);
1652 	return prio;
1653 }
1654 
1655 /*
1656  * Calculate the current priority, i.e. the priority
1657  * taken into account by the scheduler. This value might
1658  * be boosted by RT tasks, or might be boosted by
1659  * interactivity modifiers. Will be RT if the task got
1660  * RT-boosted. If not then it returns p->normal_prio.
1661  */
1662 static int effective_prio(struct task_struct *p)
1663 {
1664 	p->normal_prio = normal_prio(p);
1665 	/*
1666 	 * If we are RT tasks or we were boosted to RT priority,
1667 	 * keep the priority unchanged. Otherwise, update priority
1668 	 * to the normal priority:
1669 	 */
1670 	if (!rt_prio(p->prio))
1671 		return p->normal_prio;
1672 	return p->prio;
1673 }
1674 
1675 /**
1676  * task_curr - is this task currently executing on a CPU?
1677  * @p: the task in question.
1678  *
1679  * Return: 1 if the task is currently executing. 0 otherwise.
1680  */
1681 inline int task_curr(const struct task_struct *p)
1682 {
1683 	return cpu_curr(task_cpu(p)) == p;
1684 }
1685 
1686 /*
1687  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1688  * use the balance_callback list if you want balancing.
1689  *
1690  * this means any call to check_class_changed() must be followed by a call to
1691  * balance_callback().
1692  */
1693 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1694 				       const struct sched_class *prev_class,
1695 				       int oldprio)
1696 {
1697 	if (prev_class != p->sched_class) {
1698 		if (prev_class->switched_from)
1699 			prev_class->switched_from(rq, p);
1700 
1701 		p->sched_class->switched_to(rq, p);
1702 	} else if (oldprio != p->prio || dl_task(p))
1703 		p->sched_class->prio_changed(rq, p, oldprio);
1704 }
1705 
1706 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1707 {
1708 	if (p->sched_class == rq->curr->sched_class)
1709 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1710 	else if (p->sched_class > rq->curr->sched_class)
1711 		resched_curr(rq);
1712 
1713 	/*
1714 	 * A queue event has occurred, and we're going to schedule.  In
1715 	 * this case, we can save a useless back to back clock update.
1716 	 */
1717 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1718 		rq_clock_skip_update(rq);
1719 }
1720 
1721 #ifdef CONFIG_SMP
1722 
1723 static void
1724 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1725 
1726 static int __set_cpus_allowed_ptr(struct task_struct *p,
1727 				  const struct cpumask *new_mask,
1728 				  u32 flags);
1729 
1730 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1731 {
1732 	if (likely(!p->migration_disabled))
1733 		return;
1734 
1735 	if (p->cpus_ptr != &p->cpus_mask)
1736 		return;
1737 
1738 	/*
1739 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
1740 	 */
1741 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1742 }
1743 
1744 void migrate_disable(void)
1745 {
1746 	struct task_struct *p = current;
1747 
1748 	if (p->migration_disabled) {
1749 		p->migration_disabled++;
1750 		return;
1751 	}
1752 
1753 	preempt_disable();
1754 	this_rq()->nr_pinned++;
1755 	p->migration_disabled = 1;
1756 	preempt_enable();
1757 }
1758 EXPORT_SYMBOL_GPL(migrate_disable);
1759 
1760 void migrate_enable(void)
1761 {
1762 	struct task_struct *p = current;
1763 
1764 	if (p->migration_disabled > 1) {
1765 		p->migration_disabled--;
1766 		return;
1767 	}
1768 
1769 	/*
1770 	 * Ensure stop_task runs either before or after this, and that
1771 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1772 	 */
1773 	preempt_disable();
1774 	if (p->cpus_ptr != &p->cpus_mask)
1775 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1776 	/*
1777 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1778 	 * regular cpus_mask, otherwise things that race (eg.
1779 	 * select_fallback_rq) get confused.
1780 	 */
1781 	barrier();
1782 	p->migration_disabled = 0;
1783 	this_rq()->nr_pinned--;
1784 	preempt_enable();
1785 }
1786 EXPORT_SYMBOL_GPL(migrate_enable);
1787 
1788 static inline bool rq_has_pinned_tasks(struct rq *rq)
1789 {
1790 	return rq->nr_pinned;
1791 }
1792 
1793 /*
1794  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1795  * __set_cpus_allowed_ptr() and select_fallback_rq().
1796  */
1797 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1798 {
1799 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1800 		return false;
1801 
1802 	if (is_per_cpu_kthread(p) || is_migration_disabled(p))
1803 		return cpu_online(cpu);
1804 
1805 	return cpu_active(cpu);
1806 }
1807 
1808 /*
1809  * This is how migration works:
1810  *
1811  * 1) we invoke migration_cpu_stop() on the target CPU using
1812  *    stop_one_cpu().
1813  * 2) stopper starts to run (implicitly forcing the migrated thread
1814  *    off the CPU)
1815  * 3) it checks whether the migrated task is still in the wrong runqueue.
1816  * 4) if it's in the wrong runqueue then the migration thread removes
1817  *    it and puts it into the right queue.
1818  * 5) stopper completes and stop_one_cpu() returns and the migration
1819  *    is done.
1820  */
1821 
1822 /*
1823  * move_queued_task - move a queued task to new rq.
1824  *
1825  * Returns (locked) new rq. Old rq's lock is released.
1826  */
1827 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1828 				   struct task_struct *p, int new_cpu)
1829 {
1830 	lockdep_assert_held(&rq->lock);
1831 
1832 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1833 	set_task_cpu(p, new_cpu);
1834 	rq_unlock(rq, rf);
1835 
1836 	rq = cpu_rq(new_cpu);
1837 
1838 	rq_lock(rq, rf);
1839 	BUG_ON(task_cpu(p) != new_cpu);
1840 	activate_task(rq, p, 0);
1841 	check_preempt_curr(rq, p, 0);
1842 
1843 	return rq;
1844 }
1845 
1846 struct migration_arg {
1847 	struct task_struct		*task;
1848 	int				dest_cpu;
1849 	struct set_affinity_pending	*pending;
1850 };
1851 
1852 struct set_affinity_pending {
1853 	refcount_t		refs;
1854 	struct completion	done;
1855 	struct cpu_stop_work	stop_work;
1856 	struct migration_arg	arg;
1857 };
1858 
1859 /*
1860  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1861  * this because either it can't run here any more (set_cpus_allowed()
1862  * away from this CPU, or CPU going down), or because we're
1863  * attempting to rebalance this task on exec (sched_exec).
1864  *
1865  * So we race with normal scheduler movements, but that's OK, as long
1866  * as the task is no longer on this CPU.
1867  */
1868 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1869 				 struct task_struct *p, int dest_cpu)
1870 {
1871 	/* Affinity changed (again). */
1872 	if (!is_cpu_allowed(p, dest_cpu))
1873 		return rq;
1874 
1875 	update_rq_clock(rq);
1876 	rq = move_queued_task(rq, rf, p, dest_cpu);
1877 
1878 	return rq;
1879 }
1880 
1881 /*
1882  * migration_cpu_stop - this will be executed by a highprio stopper thread
1883  * and performs thread migration by bumping thread off CPU then
1884  * 'pushing' onto another runqueue.
1885  */
1886 static int migration_cpu_stop(void *data)
1887 {
1888 	struct set_affinity_pending *pending;
1889 	struct migration_arg *arg = data;
1890 	struct task_struct *p = arg->task;
1891 	int dest_cpu = arg->dest_cpu;
1892 	struct rq *rq = this_rq();
1893 	bool complete = false;
1894 	struct rq_flags rf;
1895 
1896 	/*
1897 	 * The original target CPU might have gone down and we might
1898 	 * be on another CPU but it doesn't matter.
1899 	 */
1900 	local_irq_save(rf.flags);
1901 	/*
1902 	 * We need to explicitly wake pending tasks before running
1903 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1904 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1905 	 */
1906 	flush_smp_call_function_from_idle();
1907 
1908 	raw_spin_lock(&p->pi_lock);
1909 	rq_lock(rq, &rf);
1910 
1911 	pending = p->migration_pending;
1912 	/*
1913 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1914 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1915 	 * we're holding p->pi_lock.
1916 	 */
1917 	if (task_rq(p) == rq) {
1918 		if (is_migration_disabled(p))
1919 			goto out;
1920 
1921 		if (pending) {
1922 			p->migration_pending = NULL;
1923 			complete = true;
1924 		}
1925 
1926 		/* migrate_enable() --  we must not race against SCA */
1927 		if (dest_cpu < 0) {
1928 			/*
1929 			 * When this was migrate_enable() but we no longer
1930 			 * have a @pending, a concurrent SCA 'fixed' things
1931 			 * and we should be valid again. Nothing to do.
1932 			 */
1933 			if (!pending) {
1934 				WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1935 				goto out;
1936 			}
1937 
1938 			dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1939 		}
1940 
1941 		if (task_on_rq_queued(p))
1942 			rq = __migrate_task(rq, &rf, p, dest_cpu);
1943 		else
1944 			p->wake_cpu = dest_cpu;
1945 
1946 	} else if (dest_cpu < 0 || pending) {
1947 		/*
1948 		 * This happens when we get migrated between migrate_enable()'s
1949 		 * preempt_enable() and scheduling the stopper task. At that
1950 		 * point we're a regular task again and not current anymore.
1951 		 *
1952 		 * A !PREEMPT kernel has a giant hole here, which makes it far
1953 		 * more likely.
1954 		 */
1955 
1956 		/*
1957 		 * The task moved before the stopper got to run. We're holding
1958 		 * ->pi_lock, so the allowed mask is stable - if it got
1959 		 * somewhere allowed, we're done.
1960 		 */
1961 		if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1962 			p->migration_pending = NULL;
1963 			complete = true;
1964 			goto out;
1965 		}
1966 
1967 		/*
1968 		 * When this was migrate_enable() but we no longer have an
1969 		 * @pending, a concurrent SCA 'fixed' things and we should be
1970 		 * valid again. Nothing to do.
1971 		 */
1972 		if (!pending) {
1973 			WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1974 			goto out;
1975 		}
1976 
1977 		/*
1978 		 * When migrate_enable() hits a rq mis-match we can't reliably
1979 		 * determine is_migration_disabled() and so have to chase after
1980 		 * it.
1981 		 */
1982 		task_rq_unlock(rq, p, &rf);
1983 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1984 				    &pending->arg, &pending->stop_work);
1985 		return 0;
1986 	}
1987 out:
1988 	task_rq_unlock(rq, p, &rf);
1989 
1990 	if (complete)
1991 		complete_all(&pending->done);
1992 
1993 	/* For pending->{arg,stop_work} */
1994 	pending = arg->pending;
1995 	if (pending && refcount_dec_and_test(&pending->refs))
1996 		wake_up_var(&pending->refs);
1997 
1998 	return 0;
1999 }
2000 
2001 int push_cpu_stop(void *arg)
2002 {
2003 	struct rq *lowest_rq = NULL, *rq = this_rq();
2004 	struct task_struct *p = arg;
2005 
2006 	raw_spin_lock_irq(&p->pi_lock);
2007 	raw_spin_lock(&rq->lock);
2008 
2009 	if (task_rq(p) != rq)
2010 		goto out_unlock;
2011 
2012 	if (is_migration_disabled(p)) {
2013 		p->migration_flags |= MDF_PUSH;
2014 		goto out_unlock;
2015 	}
2016 
2017 	p->migration_flags &= ~MDF_PUSH;
2018 
2019 	if (p->sched_class->find_lock_rq)
2020 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2021 
2022 	if (!lowest_rq)
2023 		goto out_unlock;
2024 
2025 	// XXX validate p is still the highest prio task
2026 	if (task_rq(p) == rq) {
2027 		deactivate_task(rq, p, 0);
2028 		set_task_cpu(p, lowest_rq->cpu);
2029 		activate_task(lowest_rq, p, 0);
2030 		resched_curr(lowest_rq);
2031 	}
2032 
2033 	double_unlock_balance(rq, lowest_rq);
2034 
2035 out_unlock:
2036 	rq->push_busy = false;
2037 	raw_spin_unlock(&rq->lock);
2038 	raw_spin_unlock_irq(&p->pi_lock);
2039 
2040 	put_task_struct(p);
2041 	return 0;
2042 }
2043 
2044 /*
2045  * sched_class::set_cpus_allowed must do the below, but is not required to
2046  * actually call this function.
2047  */
2048 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2049 {
2050 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2051 		p->cpus_ptr = new_mask;
2052 		return;
2053 	}
2054 
2055 	cpumask_copy(&p->cpus_mask, new_mask);
2056 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2057 }
2058 
2059 static void
2060 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2061 {
2062 	struct rq *rq = task_rq(p);
2063 	bool queued, running;
2064 
2065 	/*
2066 	 * This here violates the locking rules for affinity, since we're only
2067 	 * supposed to change these variables while holding both rq->lock and
2068 	 * p->pi_lock.
2069 	 *
2070 	 * HOWEVER, it magically works, because ttwu() is the only code that
2071 	 * accesses these variables under p->pi_lock and only does so after
2072 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2073 	 * before finish_task().
2074 	 *
2075 	 * XXX do further audits, this smells like something putrid.
2076 	 */
2077 	if (flags & SCA_MIGRATE_DISABLE)
2078 		SCHED_WARN_ON(!p->on_cpu);
2079 	else
2080 		lockdep_assert_held(&p->pi_lock);
2081 
2082 	queued = task_on_rq_queued(p);
2083 	running = task_current(rq, p);
2084 
2085 	if (queued) {
2086 		/*
2087 		 * Because __kthread_bind() calls this on blocked tasks without
2088 		 * holding rq->lock.
2089 		 */
2090 		lockdep_assert_held(&rq->lock);
2091 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2092 	}
2093 	if (running)
2094 		put_prev_task(rq, p);
2095 
2096 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2097 
2098 	if (queued)
2099 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2100 	if (running)
2101 		set_next_task(rq, p);
2102 }
2103 
2104 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2105 {
2106 	__do_set_cpus_allowed(p, new_mask, 0);
2107 }
2108 
2109 /*
2110  * This function is wildly self concurrent; here be dragons.
2111  *
2112  *
2113  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2114  * designated task is enqueued on an allowed CPU. If that task is currently
2115  * running, we have to kick it out using the CPU stopper.
2116  *
2117  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2118  * Consider:
2119  *
2120  *     Initial conditions: P0->cpus_mask = [0, 1]
2121  *
2122  *     P0@CPU0                  P1
2123  *
2124  *     migrate_disable();
2125  *     <preempted>
2126  *                              set_cpus_allowed_ptr(P0, [1]);
2127  *
2128  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2129  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2130  * This means we need the following scheme:
2131  *
2132  *     P0@CPU0                  P1
2133  *
2134  *     migrate_disable();
2135  *     <preempted>
2136  *                              set_cpus_allowed_ptr(P0, [1]);
2137  *                                <blocks>
2138  *     <resumes>
2139  *     migrate_enable();
2140  *       __set_cpus_allowed_ptr();
2141  *       <wakes local stopper>
2142  *                         `--> <woken on migration completion>
2143  *
2144  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2145  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2146  * task p are serialized by p->pi_lock, which we can leverage: the one that
2147  * should come into effect at the end of the Migrate-Disable region is the last
2148  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2149  * but we still need to properly signal those waiting tasks at the appropriate
2150  * moment.
2151  *
2152  * This is implemented using struct set_affinity_pending. The first
2153  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2154  * setup an instance of that struct and install it on the targeted task_struct.
2155  * Any and all further callers will reuse that instance. Those then wait for
2156  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2157  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2158  *
2159  *
2160  * (1) In the cases covered above. There is one more where the completion is
2161  * signaled within affine_move_task() itself: when a subsequent affinity request
2162  * cancels the need for an active migration. Consider:
2163  *
2164  *     Initial conditions: P0->cpus_mask = [0, 1]
2165  *
2166  *     P0@CPU0            P1                             P2
2167  *
2168  *     migrate_disable();
2169  *     <preempted>
2170  *                        set_cpus_allowed_ptr(P0, [1]);
2171  *                          <blocks>
2172  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2173  *                                                         <signal completion>
2174  *                          <awakes>
2175  *
2176  * Note that the above is safe vs a concurrent migrate_enable(), as any
2177  * pending affinity completion is preceded by an uninstallation of
2178  * p->migration_pending done with p->pi_lock held.
2179  */
2180 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2181 			    int dest_cpu, unsigned int flags)
2182 {
2183 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2184 	struct migration_arg arg = {
2185 		.task = p,
2186 		.dest_cpu = dest_cpu,
2187 	};
2188 	bool complete = false;
2189 
2190 	/* Can the task run on the task's current CPU? If so, we're done */
2191 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2192 		struct task_struct *push_task = NULL;
2193 
2194 		if ((flags & SCA_MIGRATE_ENABLE) &&
2195 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2196 			rq->push_busy = true;
2197 			push_task = get_task_struct(p);
2198 		}
2199 
2200 		pending = p->migration_pending;
2201 		if (pending) {
2202 			refcount_inc(&pending->refs);
2203 			p->migration_pending = NULL;
2204 			complete = true;
2205 		}
2206 		task_rq_unlock(rq, p, rf);
2207 
2208 		if (push_task) {
2209 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2210 					    p, &rq->push_work);
2211 		}
2212 
2213 		if (complete)
2214 			goto do_complete;
2215 
2216 		return 0;
2217 	}
2218 
2219 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2220 		/* serialized by p->pi_lock */
2221 		if (!p->migration_pending) {
2222 			/* Install the request */
2223 			refcount_set(&my_pending.refs, 1);
2224 			init_completion(&my_pending.done);
2225 			p->migration_pending = &my_pending;
2226 		} else {
2227 			pending = p->migration_pending;
2228 			refcount_inc(&pending->refs);
2229 		}
2230 	}
2231 	pending = p->migration_pending;
2232 	/*
2233 	 * - !MIGRATE_ENABLE:
2234 	 *   we'll have installed a pending if there wasn't one already.
2235 	 *
2236 	 * - MIGRATE_ENABLE:
2237 	 *   we're here because the current CPU isn't matching anymore,
2238 	 *   the only way that can happen is because of a concurrent
2239 	 *   set_cpus_allowed_ptr() call, which should then still be
2240 	 *   pending completion.
2241 	 *
2242 	 * Either way, we really should have a @pending here.
2243 	 */
2244 	if (WARN_ON_ONCE(!pending)) {
2245 		task_rq_unlock(rq, p, rf);
2246 		return -EINVAL;
2247 	}
2248 
2249 	if (flags & SCA_MIGRATE_ENABLE) {
2250 
2251 		refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2252 		p->migration_flags &= ~MDF_PUSH;
2253 		task_rq_unlock(rq, p, rf);
2254 
2255 		pending->arg = (struct migration_arg) {
2256 			.task = p,
2257 			.dest_cpu = -1,
2258 			.pending = pending,
2259 		};
2260 
2261 		stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2262 				    &pending->arg, &pending->stop_work);
2263 
2264 		return 0;
2265 	}
2266 
2267 	if (task_running(rq, p) || p->state == TASK_WAKING) {
2268 		/*
2269 		 * Lessen races (and headaches) by delegating
2270 		 * is_migration_disabled(p) checks to the stopper, which will
2271 		 * run on the same CPU as said p.
2272 		 */
2273 		task_rq_unlock(rq, p, rf);
2274 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2275 
2276 	} else {
2277 
2278 		if (!is_migration_disabled(p)) {
2279 			if (task_on_rq_queued(p))
2280 				rq = move_queued_task(rq, rf, p, dest_cpu);
2281 
2282 			p->migration_pending = NULL;
2283 			complete = true;
2284 		}
2285 		task_rq_unlock(rq, p, rf);
2286 
2287 do_complete:
2288 		if (complete)
2289 			complete_all(&pending->done);
2290 	}
2291 
2292 	wait_for_completion(&pending->done);
2293 
2294 	if (refcount_dec_and_test(&pending->refs))
2295 		wake_up_var(&pending->refs);
2296 
2297 	/*
2298 	 * Block the original owner of &pending until all subsequent callers
2299 	 * have seen the completion and decremented the refcount
2300 	 */
2301 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2302 
2303 	return 0;
2304 }
2305 
2306 /*
2307  * Change a given task's CPU affinity. Migrate the thread to a
2308  * proper CPU and schedule it away if the CPU it's executing on
2309  * is removed from the allowed bitmask.
2310  *
2311  * NOTE: the caller must have a valid reference to the task, the
2312  * task must not exit() & deallocate itself prematurely. The
2313  * call is not atomic; no spinlocks may be held.
2314  */
2315 static int __set_cpus_allowed_ptr(struct task_struct *p,
2316 				  const struct cpumask *new_mask,
2317 				  u32 flags)
2318 {
2319 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2320 	unsigned int dest_cpu;
2321 	struct rq_flags rf;
2322 	struct rq *rq;
2323 	int ret = 0;
2324 
2325 	rq = task_rq_lock(p, &rf);
2326 	update_rq_clock(rq);
2327 
2328 	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2329 		/*
2330 		 * Kernel threads are allowed on online && !active CPUs.
2331 		 *
2332 		 * Specifically, migration_disabled() tasks must not fail the
2333 		 * cpumask_any_and_distribute() pick below, esp. so on
2334 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2335 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2336 		 */
2337 		cpu_valid_mask = cpu_online_mask;
2338 	}
2339 
2340 	/*
2341 	 * Must re-check here, to close a race against __kthread_bind(),
2342 	 * sched_setaffinity() is not guaranteed to observe the flag.
2343 	 */
2344 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2345 		ret = -EINVAL;
2346 		goto out;
2347 	}
2348 
2349 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2350 		if (cpumask_equal(&p->cpus_mask, new_mask))
2351 			goto out;
2352 
2353 		if (WARN_ON_ONCE(p == current &&
2354 				 is_migration_disabled(p) &&
2355 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2356 			ret = -EBUSY;
2357 			goto out;
2358 		}
2359 	}
2360 
2361 	/*
2362 	 * Picking a ~random cpu helps in cases where we are changing affinity
2363 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2364 	 * immediately required to distribute the tasks within their new mask.
2365 	 */
2366 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2367 	if (dest_cpu >= nr_cpu_ids) {
2368 		ret = -EINVAL;
2369 		goto out;
2370 	}
2371 
2372 	__do_set_cpus_allowed(p, new_mask, flags);
2373 
2374 	if (p->flags & PF_KTHREAD) {
2375 		/*
2376 		 * For kernel threads that do indeed end up on online &&
2377 		 * !active we want to ensure they are strict per-CPU threads.
2378 		 */
2379 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
2380 			!cpumask_intersects(new_mask, cpu_active_mask) &&
2381 			p->nr_cpus_allowed != 1);
2382 	}
2383 
2384 	return affine_move_task(rq, p, &rf, dest_cpu, flags);
2385 
2386 out:
2387 	task_rq_unlock(rq, p, &rf);
2388 
2389 	return ret;
2390 }
2391 
2392 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2393 {
2394 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2395 }
2396 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2397 
2398 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2399 {
2400 #ifdef CONFIG_SCHED_DEBUG
2401 	/*
2402 	 * We should never call set_task_cpu() on a blocked task,
2403 	 * ttwu() will sort out the placement.
2404 	 */
2405 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2406 			!p->on_rq);
2407 
2408 	/*
2409 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2410 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2411 	 * time relying on p->on_rq.
2412 	 */
2413 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
2414 		     p->sched_class == &fair_sched_class &&
2415 		     (p->on_rq && !task_on_rq_migrating(p)));
2416 
2417 #ifdef CONFIG_LOCKDEP
2418 	/*
2419 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2420 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2421 	 *
2422 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2423 	 * see task_group().
2424 	 *
2425 	 * Furthermore, all task_rq users should acquire both locks, see
2426 	 * task_rq_lock().
2427 	 */
2428 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2429 				      lockdep_is_held(&task_rq(p)->lock)));
2430 #endif
2431 	/*
2432 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2433 	 */
2434 	WARN_ON_ONCE(!cpu_online(new_cpu));
2435 
2436 	WARN_ON_ONCE(is_migration_disabled(p));
2437 #endif
2438 
2439 	trace_sched_migrate_task(p, new_cpu);
2440 
2441 	if (task_cpu(p) != new_cpu) {
2442 		if (p->sched_class->migrate_task_rq)
2443 			p->sched_class->migrate_task_rq(p, new_cpu);
2444 		p->se.nr_migrations++;
2445 		rseq_migrate(p);
2446 		perf_event_task_migrate(p);
2447 	}
2448 
2449 	__set_task_cpu(p, new_cpu);
2450 }
2451 
2452 #ifdef CONFIG_NUMA_BALANCING
2453 static void __migrate_swap_task(struct task_struct *p, int cpu)
2454 {
2455 	if (task_on_rq_queued(p)) {
2456 		struct rq *src_rq, *dst_rq;
2457 		struct rq_flags srf, drf;
2458 
2459 		src_rq = task_rq(p);
2460 		dst_rq = cpu_rq(cpu);
2461 
2462 		rq_pin_lock(src_rq, &srf);
2463 		rq_pin_lock(dst_rq, &drf);
2464 
2465 		deactivate_task(src_rq, p, 0);
2466 		set_task_cpu(p, cpu);
2467 		activate_task(dst_rq, p, 0);
2468 		check_preempt_curr(dst_rq, p, 0);
2469 
2470 		rq_unpin_lock(dst_rq, &drf);
2471 		rq_unpin_lock(src_rq, &srf);
2472 
2473 	} else {
2474 		/*
2475 		 * Task isn't running anymore; make it appear like we migrated
2476 		 * it before it went to sleep. This means on wakeup we make the
2477 		 * previous CPU our target instead of where it really is.
2478 		 */
2479 		p->wake_cpu = cpu;
2480 	}
2481 }
2482 
2483 struct migration_swap_arg {
2484 	struct task_struct *src_task, *dst_task;
2485 	int src_cpu, dst_cpu;
2486 };
2487 
2488 static int migrate_swap_stop(void *data)
2489 {
2490 	struct migration_swap_arg *arg = data;
2491 	struct rq *src_rq, *dst_rq;
2492 	int ret = -EAGAIN;
2493 
2494 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2495 		return -EAGAIN;
2496 
2497 	src_rq = cpu_rq(arg->src_cpu);
2498 	dst_rq = cpu_rq(arg->dst_cpu);
2499 
2500 	double_raw_lock(&arg->src_task->pi_lock,
2501 			&arg->dst_task->pi_lock);
2502 	double_rq_lock(src_rq, dst_rq);
2503 
2504 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2505 		goto unlock;
2506 
2507 	if (task_cpu(arg->src_task) != arg->src_cpu)
2508 		goto unlock;
2509 
2510 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2511 		goto unlock;
2512 
2513 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2514 		goto unlock;
2515 
2516 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2517 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2518 
2519 	ret = 0;
2520 
2521 unlock:
2522 	double_rq_unlock(src_rq, dst_rq);
2523 	raw_spin_unlock(&arg->dst_task->pi_lock);
2524 	raw_spin_unlock(&arg->src_task->pi_lock);
2525 
2526 	return ret;
2527 }
2528 
2529 /*
2530  * Cross migrate two tasks
2531  */
2532 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2533 		int target_cpu, int curr_cpu)
2534 {
2535 	struct migration_swap_arg arg;
2536 	int ret = -EINVAL;
2537 
2538 	arg = (struct migration_swap_arg){
2539 		.src_task = cur,
2540 		.src_cpu = curr_cpu,
2541 		.dst_task = p,
2542 		.dst_cpu = target_cpu,
2543 	};
2544 
2545 	if (arg.src_cpu == arg.dst_cpu)
2546 		goto out;
2547 
2548 	/*
2549 	 * These three tests are all lockless; this is OK since all of them
2550 	 * will be re-checked with proper locks held further down the line.
2551 	 */
2552 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2553 		goto out;
2554 
2555 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2556 		goto out;
2557 
2558 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2559 		goto out;
2560 
2561 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2562 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2563 
2564 out:
2565 	return ret;
2566 }
2567 #endif /* CONFIG_NUMA_BALANCING */
2568 
2569 /*
2570  * wait_task_inactive - wait for a thread to unschedule.
2571  *
2572  * If @match_state is nonzero, it's the @p->state value just checked and
2573  * not expected to change.  If it changes, i.e. @p might have woken up,
2574  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2575  * we return a positive number (its total switch count).  If a second call
2576  * a short while later returns the same number, the caller can be sure that
2577  * @p has remained unscheduled the whole time.
2578  *
2579  * The caller must ensure that the task *will* unschedule sometime soon,
2580  * else this function might spin for a *long* time. This function can't
2581  * be called with interrupts off, or it may introduce deadlock with
2582  * smp_call_function() if an IPI is sent by the same process we are
2583  * waiting to become inactive.
2584  */
2585 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2586 {
2587 	int running, queued;
2588 	struct rq_flags rf;
2589 	unsigned long ncsw;
2590 	struct rq *rq;
2591 
2592 	for (;;) {
2593 		/*
2594 		 * We do the initial early heuristics without holding
2595 		 * any task-queue locks at all. We'll only try to get
2596 		 * the runqueue lock when things look like they will
2597 		 * work out!
2598 		 */
2599 		rq = task_rq(p);
2600 
2601 		/*
2602 		 * If the task is actively running on another CPU
2603 		 * still, just relax and busy-wait without holding
2604 		 * any locks.
2605 		 *
2606 		 * NOTE! Since we don't hold any locks, it's not
2607 		 * even sure that "rq" stays as the right runqueue!
2608 		 * But we don't care, since "task_running()" will
2609 		 * return false if the runqueue has changed and p
2610 		 * is actually now running somewhere else!
2611 		 */
2612 		while (task_running(rq, p)) {
2613 			if (match_state && unlikely(p->state != match_state))
2614 				return 0;
2615 			cpu_relax();
2616 		}
2617 
2618 		/*
2619 		 * Ok, time to look more closely! We need the rq
2620 		 * lock now, to be *sure*. If we're wrong, we'll
2621 		 * just go back and repeat.
2622 		 */
2623 		rq = task_rq_lock(p, &rf);
2624 		trace_sched_wait_task(p);
2625 		running = task_running(rq, p);
2626 		queued = task_on_rq_queued(p);
2627 		ncsw = 0;
2628 		if (!match_state || p->state == match_state)
2629 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2630 		task_rq_unlock(rq, p, &rf);
2631 
2632 		/*
2633 		 * If it changed from the expected state, bail out now.
2634 		 */
2635 		if (unlikely(!ncsw))
2636 			break;
2637 
2638 		/*
2639 		 * Was it really running after all now that we
2640 		 * checked with the proper locks actually held?
2641 		 *
2642 		 * Oops. Go back and try again..
2643 		 */
2644 		if (unlikely(running)) {
2645 			cpu_relax();
2646 			continue;
2647 		}
2648 
2649 		/*
2650 		 * It's not enough that it's not actively running,
2651 		 * it must be off the runqueue _entirely_, and not
2652 		 * preempted!
2653 		 *
2654 		 * So if it was still runnable (but just not actively
2655 		 * running right now), it's preempted, and we should
2656 		 * yield - it could be a while.
2657 		 */
2658 		if (unlikely(queued)) {
2659 			ktime_t to = NSEC_PER_SEC / HZ;
2660 
2661 			set_current_state(TASK_UNINTERRUPTIBLE);
2662 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2663 			continue;
2664 		}
2665 
2666 		/*
2667 		 * Ahh, all good. It wasn't running, and it wasn't
2668 		 * runnable, which means that it will never become
2669 		 * running in the future either. We're all done!
2670 		 */
2671 		break;
2672 	}
2673 
2674 	return ncsw;
2675 }
2676 
2677 /***
2678  * kick_process - kick a running thread to enter/exit the kernel
2679  * @p: the to-be-kicked thread
2680  *
2681  * Cause a process which is running on another CPU to enter
2682  * kernel-mode, without any delay. (to get signals handled.)
2683  *
2684  * NOTE: this function doesn't have to take the runqueue lock,
2685  * because all it wants to ensure is that the remote task enters
2686  * the kernel. If the IPI races and the task has been migrated
2687  * to another CPU then no harm is done and the purpose has been
2688  * achieved as well.
2689  */
2690 void kick_process(struct task_struct *p)
2691 {
2692 	int cpu;
2693 
2694 	preempt_disable();
2695 	cpu = task_cpu(p);
2696 	if ((cpu != smp_processor_id()) && task_curr(p))
2697 		smp_send_reschedule(cpu);
2698 	preempt_enable();
2699 }
2700 EXPORT_SYMBOL_GPL(kick_process);
2701 
2702 /*
2703  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2704  *
2705  * A few notes on cpu_active vs cpu_online:
2706  *
2707  *  - cpu_active must be a subset of cpu_online
2708  *
2709  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2710  *    see __set_cpus_allowed_ptr(). At this point the newly online
2711  *    CPU isn't yet part of the sched domains, and balancing will not
2712  *    see it.
2713  *
2714  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2715  *    avoid the load balancer to place new tasks on the to be removed
2716  *    CPU. Existing tasks will remain running there and will be taken
2717  *    off.
2718  *
2719  * This means that fallback selection must not select !active CPUs.
2720  * And can assume that any active CPU must be online. Conversely
2721  * select_task_rq() below may allow selection of !active CPUs in order
2722  * to satisfy the above rules.
2723  */
2724 static int select_fallback_rq(int cpu, struct task_struct *p)
2725 {
2726 	int nid = cpu_to_node(cpu);
2727 	const struct cpumask *nodemask = NULL;
2728 	enum { cpuset, possible, fail } state = cpuset;
2729 	int dest_cpu;
2730 
2731 	/*
2732 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2733 	 * will return -1. There is no CPU on the node, and we should
2734 	 * select the CPU on the other node.
2735 	 */
2736 	if (nid != -1) {
2737 		nodemask = cpumask_of_node(nid);
2738 
2739 		/* Look for allowed, online CPU in same node. */
2740 		for_each_cpu(dest_cpu, nodemask) {
2741 			if (!cpu_active(dest_cpu))
2742 				continue;
2743 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2744 				return dest_cpu;
2745 		}
2746 	}
2747 
2748 	for (;;) {
2749 		/* Any allowed, online CPU? */
2750 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2751 			if (!is_cpu_allowed(p, dest_cpu))
2752 				continue;
2753 
2754 			goto out;
2755 		}
2756 
2757 		/* No more Mr. Nice Guy. */
2758 		switch (state) {
2759 		case cpuset:
2760 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2761 				cpuset_cpus_allowed_fallback(p);
2762 				state = possible;
2763 				break;
2764 			}
2765 			fallthrough;
2766 		case possible:
2767 			/*
2768 			 * XXX When called from select_task_rq() we only
2769 			 * hold p->pi_lock and again violate locking order.
2770 			 *
2771 			 * More yuck to audit.
2772 			 */
2773 			do_set_cpus_allowed(p, cpu_possible_mask);
2774 			state = fail;
2775 			break;
2776 
2777 		case fail:
2778 			BUG();
2779 			break;
2780 		}
2781 	}
2782 
2783 out:
2784 	if (state != cpuset) {
2785 		/*
2786 		 * Don't tell them about moving exiting tasks or
2787 		 * kernel threads (both mm NULL), since they never
2788 		 * leave kernel.
2789 		 */
2790 		if (p->mm && printk_ratelimit()) {
2791 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2792 					task_pid_nr(p), p->comm, cpu);
2793 		}
2794 	}
2795 
2796 	return dest_cpu;
2797 }
2798 
2799 /*
2800  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2801  */
2802 static inline
2803 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2804 {
2805 	lockdep_assert_held(&p->pi_lock);
2806 
2807 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2808 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2809 	else
2810 		cpu = cpumask_any(p->cpus_ptr);
2811 
2812 	/*
2813 	 * In order not to call set_task_cpu() on a blocking task we need
2814 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2815 	 * CPU.
2816 	 *
2817 	 * Since this is common to all placement strategies, this lives here.
2818 	 *
2819 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2820 	 *   not worry about this generic constraint ]
2821 	 */
2822 	if (unlikely(!is_cpu_allowed(p, cpu)))
2823 		cpu = select_fallback_rq(task_cpu(p), p);
2824 
2825 	return cpu;
2826 }
2827 
2828 void sched_set_stop_task(int cpu, struct task_struct *stop)
2829 {
2830 	static struct lock_class_key stop_pi_lock;
2831 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2832 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2833 
2834 	if (stop) {
2835 		/*
2836 		 * Make it appear like a SCHED_FIFO task, its something
2837 		 * userspace knows about and won't get confused about.
2838 		 *
2839 		 * Also, it will make PI more or less work without too
2840 		 * much confusion -- but then, stop work should not
2841 		 * rely on PI working anyway.
2842 		 */
2843 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2844 
2845 		stop->sched_class = &stop_sched_class;
2846 
2847 		/*
2848 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2849 		 * adjust the effective priority of a task. As a result,
2850 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
2851 		 * which can then trigger wakeups of the stop thread to push
2852 		 * around the current task.
2853 		 *
2854 		 * The stop task itself will never be part of the PI-chain, it
2855 		 * never blocks, therefore that ->pi_lock recursion is safe.
2856 		 * Tell lockdep about this by placing the stop->pi_lock in its
2857 		 * own class.
2858 		 */
2859 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2860 	}
2861 
2862 	cpu_rq(cpu)->stop = stop;
2863 
2864 	if (old_stop) {
2865 		/*
2866 		 * Reset it back to a normal scheduling class so that
2867 		 * it can die in pieces.
2868 		 */
2869 		old_stop->sched_class = &rt_sched_class;
2870 	}
2871 }
2872 
2873 #else /* CONFIG_SMP */
2874 
2875 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2876 					 const struct cpumask *new_mask,
2877 					 u32 flags)
2878 {
2879 	return set_cpus_allowed_ptr(p, new_mask);
2880 }
2881 
2882 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2883 
2884 static inline bool rq_has_pinned_tasks(struct rq *rq)
2885 {
2886 	return false;
2887 }
2888 
2889 #endif /* !CONFIG_SMP */
2890 
2891 static void
2892 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2893 {
2894 	struct rq *rq;
2895 
2896 	if (!schedstat_enabled())
2897 		return;
2898 
2899 	rq = this_rq();
2900 
2901 #ifdef CONFIG_SMP
2902 	if (cpu == rq->cpu) {
2903 		__schedstat_inc(rq->ttwu_local);
2904 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2905 	} else {
2906 		struct sched_domain *sd;
2907 
2908 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2909 		rcu_read_lock();
2910 		for_each_domain(rq->cpu, sd) {
2911 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2912 				__schedstat_inc(sd->ttwu_wake_remote);
2913 				break;
2914 			}
2915 		}
2916 		rcu_read_unlock();
2917 	}
2918 
2919 	if (wake_flags & WF_MIGRATED)
2920 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2921 #endif /* CONFIG_SMP */
2922 
2923 	__schedstat_inc(rq->ttwu_count);
2924 	__schedstat_inc(p->se.statistics.nr_wakeups);
2925 
2926 	if (wake_flags & WF_SYNC)
2927 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2928 }
2929 
2930 /*
2931  * Mark the task runnable and perform wakeup-preemption.
2932  */
2933 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2934 			   struct rq_flags *rf)
2935 {
2936 	check_preempt_curr(rq, p, wake_flags);
2937 	p->state = TASK_RUNNING;
2938 	trace_sched_wakeup(p);
2939 
2940 #ifdef CONFIG_SMP
2941 	if (p->sched_class->task_woken) {
2942 		/*
2943 		 * Our task @p is fully woken up and running; so it's safe to
2944 		 * drop the rq->lock, hereafter rq is only used for statistics.
2945 		 */
2946 		rq_unpin_lock(rq, rf);
2947 		p->sched_class->task_woken(rq, p);
2948 		rq_repin_lock(rq, rf);
2949 	}
2950 
2951 	if (rq->idle_stamp) {
2952 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2953 		u64 max = 2*rq->max_idle_balance_cost;
2954 
2955 		update_avg(&rq->avg_idle, delta);
2956 
2957 		if (rq->avg_idle > max)
2958 			rq->avg_idle = max;
2959 
2960 		rq->idle_stamp = 0;
2961 	}
2962 #endif
2963 }
2964 
2965 static void
2966 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2967 		 struct rq_flags *rf)
2968 {
2969 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2970 
2971 	lockdep_assert_held(&rq->lock);
2972 
2973 	if (p->sched_contributes_to_load)
2974 		rq->nr_uninterruptible--;
2975 
2976 #ifdef CONFIG_SMP
2977 	if (wake_flags & WF_MIGRATED)
2978 		en_flags |= ENQUEUE_MIGRATED;
2979 	else
2980 #endif
2981 	if (p->in_iowait) {
2982 		delayacct_blkio_end(p);
2983 		atomic_dec(&task_rq(p)->nr_iowait);
2984 	}
2985 
2986 	activate_task(rq, p, en_flags);
2987 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2988 }
2989 
2990 /*
2991  * Consider @p being inside a wait loop:
2992  *
2993  *   for (;;) {
2994  *      set_current_state(TASK_UNINTERRUPTIBLE);
2995  *
2996  *      if (CONDITION)
2997  *         break;
2998  *
2999  *      schedule();
3000  *   }
3001  *   __set_current_state(TASK_RUNNING);
3002  *
3003  * between set_current_state() and schedule(). In this case @p is still
3004  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3005  * an atomic manner.
3006  *
3007  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3008  * then schedule() must still happen and p->state can be changed to
3009  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3010  * need to do a full wakeup with enqueue.
3011  *
3012  * Returns: %true when the wakeup is done,
3013  *          %false otherwise.
3014  */
3015 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3016 {
3017 	struct rq_flags rf;
3018 	struct rq *rq;
3019 	int ret = 0;
3020 
3021 	rq = __task_rq_lock(p, &rf);
3022 	if (task_on_rq_queued(p)) {
3023 		/* check_preempt_curr() may use rq clock */
3024 		update_rq_clock(rq);
3025 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3026 		ret = 1;
3027 	}
3028 	__task_rq_unlock(rq, &rf);
3029 
3030 	return ret;
3031 }
3032 
3033 #ifdef CONFIG_SMP
3034 void sched_ttwu_pending(void *arg)
3035 {
3036 	struct llist_node *llist = arg;
3037 	struct rq *rq = this_rq();
3038 	struct task_struct *p, *t;
3039 	struct rq_flags rf;
3040 
3041 	if (!llist)
3042 		return;
3043 
3044 	/*
3045 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3046 	 * Races such that false-negatives are possible, since they
3047 	 * are shorter lived that false-positives would be.
3048 	 */
3049 	WRITE_ONCE(rq->ttwu_pending, 0);
3050 
3051 	rq_lock_irqsave(rq, &rf);
3052 	update_rq_clock(rq);
3053 
3054 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3055 		if (WARN_ON_ONCE(p->on_cpu))
3056 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3057 
3058 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3059 			set_task_cpu(p, cpu_of(rq));
3060 
3061 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3062 	}
3063 
3064 	rq_unlock_irqrestore(rq, &rf);
3065 }
3066 
3067 void send_call_function_single_ipi(int cpu)
3068 {
3069 	struct rq *rq = cpu_rq(cpu);
3070 
3071 	if (!set_nr_if_polling(rq->idle))
3072 		arch_send_call_function_single_ipi(cpu);
3073 	else
3074 		trace_sched_wake_idle_without_ipi(cpu);
3075 }
3076 
3077 /*
3078  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3079  * necessary. The wakee CPU on receipt of the IPI will queue the task
3080  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3081  * of the wakeup instead of the waker.
3082  */
3083 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3084 {
3085 	struct rq *rq = cpu_rq(cpu);
3086 
3087 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3088 
3089 	WRITE_ONCE(rq->ttwu_pending, 1);
3090 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3091 }
3092 
3093 void wake_up_if_idle(int cpu)
3094 {
3095 	struct rq *rq = cpu_rq(cpu);
3096 	struct rq_flags rf;
3097 
3098 	rcu_read_lock();
3099 
3100 	if (!is_idle_task(rcu_dereference(rq->curr)))
3101 		goto out;
3102 
3103 	if (set_nr_if_polling(rq->idle)) {
3104 		trace_sched_wake_idle_without_ipi(cpu);
3105 	} else {
3106 		rq_lock_irqsave(rq, &rf);
3107 		if (is_idle_task(rq->curr))
3108 			smp_send_reschedule(cpu);
3109 		/* Else CPU is not idle, do nothing here: */
3110 		rq_unlock_irqrestore(rq, &rf);
3111 	}
3112 
3113 out:
3114 	rcu_read_unlock();
3115 }
3116 
3117 bool cpus_share_cache(int this_cpu, int that_cpu)
3118 {
3119 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3120 }
3121 
3122 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3123 {
3124 	/*
3125 	 * If the CPU does not share cache, then queue the task on the
3126 	 * remote rqs wakelist to avoid accessing remote data.
3127 	 */
3128 	if (!cpus_share_cache(smp_processor_id(), cpu))
3129 		return true;
3130 
3131 	/*
3132 	 * If the task is descheduling and the only running task on the
3133 	 * CPU then use the wakelist to offload the task activation to
3134 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3135 	 * nr_running is checked to avoid unnecessary task stacking.
3136 	 */
3137 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3138 		return true;
3139 
3140 	return false;
3141 }
3142 
3143 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3144 {
3145 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3146 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3147 			return false;
3148 
3149 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3150 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3151 		return true;
3152 	}
3153 
3154 	return false;
3155 }
3156 
3157 #else /* !CONFIG_SMP */
3158 
3159 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3160 {
3161 	return false;
3162 }
3163 
3164 #endif /* CONFIG_SMP */
3165 
3166 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3167 {
3168 	struct rq *rq = cpu_rq(cpu);
3169 	struct rq_flags rf;
3170 
3171 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3172 		return;
3173 
3174 	rq_lock(rq, &rf);
3175 	update_rq_clock(rq);
3176 	ttwu_do_activate(rq, p, wake_flags, &rf);
3177 	rq_unlock(rq, &rf);
3178 }
3179 
3180 /*
3181  * Notes on Program-Order guarantees on SMP systems.
3182  *
3183  *  MIGRATION
3184  *
3185  * The basic program-order guarantee on SMP systems is that when a task [t]
3186  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3187  * execution on its new CPU [c1].
3188  *
3189  * For migration (of runnable tasks) this is provided by the following means:
3190  *
3191  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3192  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3193  *     rq(c1)->lock (if not at the same time, then in that order).
3194  *  C) LOCK of the rq(c1)->lock scheduling in task
3195  *
3196  * Release/acquire chaining guarantees that B happens after A and C after B.
3197  * Note: the CPU doing B need not be c0 or c1
3198  *
3199  * Example:
3200  *
3201  *   CPU0            CPU1            CPU2
3202  *
3203  *   LOCK rq(0)->lock
3204  *   sched-out X
3205  *   sched-in Y
3206  *   UNLOCK rq(0)->lock
3207  *
3208  *                                   LOCK rq(0)->lock // orders against CPU0
3209  *                                   dequeue X
3210  *                                   UNLOCK rq(0)->lock
3211  *
3212  *                                   LOCK rq(1)->lock
3213  *                                   enqueue X
3214  *                                   UNLOCK rq(1)->lock
3215  *
3216  *                   LOCK rq(1)->lock // orders against CPU2
3217  *                   sched-out Z
3218  *                   sched-in X
3219  *                   UNLOCK rq(1)->lock
3220  *
3221  *
3222  *  BLOCKING -- aka. SLEEP + WAKEUP
3223  *
3224  * For blocking we (obviously) need to provide the same guarantee as for
3225  * migration. However the means are completely different as there is no lock
3226  * chain to provide order. Instead we do:
3227  *
3228  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3229  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3230  *
3231  * Example:
3232  *
3233  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3234  *
3235  *   LOCK rq(0)->lock LOCK X->pi_lock
3236  *   dequeue X
3237  *   sched-out X
3238  *   smp_store_release(X->on_cpu, 0);
3239  *
3240  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3241  *                    X->state = WAKING
3242  *                    set_task_cpu(X,2)
3243  *
3244  *                    LOCK rq(2)->lock
3245  *                    enqueue X
3246  *                    X->state = RUNNING
3247  *                    UNLOCK rq(2)->lock
3248  *
3249  *                                          LOCK rq(2)->lock // orders against CPU1
3250  *                                          sched-out Z
3251  *                                          sched-in X
3252  *                                          UNLOCK rq(2)->lock
3253  *
3254  *                    UNLOCK X->pi_lock
3255  *   UNLOCK rq(0)->lock
3256  *
3257  *
3258  * However, for wakeups there is a second guarantee we must provide, namely we
3259  * must ensure that CONDITION=1 done by the caller can not be reordered with
3260  * accesses to the task state; see try_to_wake_up() and set_current_state().
3261  */
3262 
3263 /**
3264  * try_to_wake_up - wake up a thread
3265  * @p: the thread to be awakened
3266  * @state: the mask of task states that can be woken
3267  * @wake_flags: wake modifier flags (WF_*)
3268  *
3269  * Conceptually does:
3270  *
3271  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3272  *
3273  * If the task was not queued/runnable, also place it back on a runqueue.
3274  *
3275  * This function is atomic against schedule() which would dequeue the task.
3276  *
3277  * It issues a full memory barrier before accessing @p->state, see the comment
3278  * with set_current_state().
3279  *
3280  * Uses p->pi_lock to serialize against concurrent wake-ups.
3281  *
3282  * Relies on p->pi_lock stabilizing:
3283  *  - p->sched_class
3284  *  - p->cpus_ptr
3285  *  - p->sched_task_group
3286  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3287  *
3288  * Tries really hard to only take one task_rq(p)->lock for performance.
3289  * Takes rq->lock in:
3290  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3291  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3292  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3293  *
3294  * As a consequence we race really badly with just about everything. See the
3295  * many memory barriers and their comments for details.
3296  *
3297  * Return: %true if @p->state changes (an actual wakeup was done),
3298  *	   %false otherwise.
3299  */
3300 static int
3301 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3302 {
3303 	unsigned long flags;
3304 	int cpu, success = 0;
3305 
3306 	preempt_disable();
3307 	if (p == current) {
3308 		/*
3309 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3310 		 * == smp_processor_id()'. Together this means we can special
3311 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3312 		 * without taking any locks.
3313 		 *
3314 		 * In particular:
3315 		 *  - we rely on Program-Order guarantees for all the ordering,
3316 		 *  - we're serialized against set_special_state() by virtue of
3317 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3318 		 */
3319 		if (!(p->state & state))
3320 			goto out;
3321 
3322 		success = 1;
3323 		trace_sched_waking(p);
3324 		p->state = TASK_RUNNING;
3325 		trace_sched_wakeup(p);
3326 		goto out;
3327 	}
3328 
3329 	/*
3330 	 * If we are going to wake up a thread waiting for CONDITION we
3331 	 * need to ensure that CONDITION=1 done by the caller can not be
3332 	 * reordered with p->state check below. This pairs with smp_store_mb()
3333 	 * in set_current_state() that the waiting thread does.
3334 	 */
3335 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3336 	smp_mb__after_spinlock();
3337 	if (!(p->state & state))
3338 		goto unlock;
3339 
3340 	trace_sched_waking(p);
3341 
3342 	/* We're going to change ->state: */
3343 	success = 1;
3344 
3345 	/*
3346 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3347 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3348 	 * in smp_cond_load_acquire() below.
3349 	 *
3350 	 * sched_ttwu_pending()			try_to_wake_up()
3351 	 *   STORE p->on_rq = 1			  LOAD p->state
3352 	 *   UNLOCK rq->lock
3353 	 *
3354 	 * __schedule() (switch to task 'p')
3355 	 *   LOCK rq->lock			  smp_rmb();
3356 	 *   smp_mb__after_spinlock();
3357 	 *   UNLOCK rq->lock
3358 	 *
3359 	 * [task p]
3360 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3361 	 *
3362 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3363 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3364 	 *
3365 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3366 	 */
3367 	smp_rmb();
3368 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3369 		goto unlock;
3370 
3371 #ifdef CONFIG_SMP
3372 	/*
3373 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3374 	 * possible to, falsely, observe p->on_cpu == 0.
3375 	 *
3376 	 * One must be running (->on_cpu == 1) in order to remove oneself
3377 	 * from the runqueue.
3378 	 *
3379 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3380 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3381 	 *   UNLOCK rq->lock
3382 	 *
3383 	 * __schedule() (put 'p' to sleep)
3384 	 *   LOCK rq->lock			  smp_rmb();
3385 	 *   smp_mb__after_spinlock();
3386 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3387 	 *
3388 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3389 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3390 	 *
3391 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3392 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3393 	 * care about it's own p->state. See the comment in __schedule().
3394 	 */
3395 	smp_acquire__after_ctrl_dep();
3396 
3397 	/*
3398 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3399 	 * == 0), which means we need to do an enqueue, change p->state to
3400 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3401 	 * enqueue, such as ttwu_queue_wakelist().
3402 	 */
3403 	p->state = TASK_WAKING;
3404 
3405 	/*
3406 	 * If the owning (remote) CPU is still in the middle of schedule() with
3407 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3408 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3409 	 * let the waker make forward progress. This is safe because IRQs are
3410 	 * disabled and the IPI will deliver after on_cpu is cleared.
3411 	 *
3412 	 * Ensure we load task_cpu(p) after p->on_cpu:
3413 	 *
3414 	 * set_task_cpu(p, cpu);
3415 	 *   STORE p->cpu = @cpu
3416 	 * __schedule() (switch to task 'p')
3417 	 *   LOCK rq->lock
3418 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3419 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3420 	 *
3421 	 * to ensure we observe the correct CPU on which the task is currently
3422 	 * scheduling.
3423 	 */
3424 	if (smp_load_acquire(&p->on_cpu) &&
3425 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3426 		goto unlock;
3427 
3428 	/*
3429 	 * If the owning (remote) CPU is still in the middle of schedule() with
3430 	 * this task as prev, wait until it's done referencing the task.
3431 	 *
3432 	 * Pairs with the smp_store_release() in finish_task().
3433 	 *
3434 	 * This ensures that tasks getting woken will be fully ordered against
3435 	 * their previous state and preserve Program Order.
3436 	 */
3437 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3438 
3439 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3440 	if (task_cpu(p) != cpu) {
3441 		if (p->in_iowait) {
3442 			delayacct_blkio_end(p);
3443 			atomic_dec(&task_rq(p)->nr_iowait);
3444 		}
3445 
3446 		wake_flags |= WF_MIGRATED;
3447 		psi_ttwu_dequeue(p);
3448 		set_task_cpu(p, cpu);
3449 	}
3450 #else
3451 	cpu = task_cpu(p);
3452 #endif /* CONFIG_SMP */
3453 
3454 	ttwu_queue(p, cpu, wake_flags);
3455 unlock:
3456 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3457 out:
3458 	if (success)
3459 		ttwu_stat(p, task_cpu(p), wake_flags);
3460 	preempt_enable();
3461 
3462 	return success;
3463 }
3464 
3465 /**
3466  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3467  * @p: Process for which the function is to be invoked.
3468  * @func: Function to invoke.
3469  * @arg: Argument to function.
3470  *
3471  * If the specified task can be quickly locked into a definite state
3472  * (either sleeping or on a given runqueue), arrange to keep it in that
3473  * state while invoking @func(@arg).  This function can use ->on_rq and
3474  * task_curr() to work out what the state is, if required.  Given that
3475  * @func can be invoked with a runqueue lock held, it had better be quite
3476  * lightweight.
3477  *
3478  * Returns:
3479  *	@false if the task slipped out from under the locks.
3480  *	@true if the task was locked onto a runqueue or is sleeping.
3481  *		However, @func can override this by returning @false.
3482  */
3483 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3484 {
3485 	bool ret = false;
3486 	struct rq_flags rf;
3487 	struct rq *rq;
3488 
3489 	lockdep_assert_irqs_enabled();
3490 	raw_spin_lock_irq(&p->pi_lock);
3491 	if (p->on_rq) {
3492 		rq = __task_rq_lock(p, &rf);
3493 		if (task_rq(p) == rq)
3494 			ret = func(p, arg);
3495 		rq_unlock(rq, &rf);
3496 	} else {
3497 		switch (p->state) {
3498 		case TASK_RUNNING:
3499 		case TASK_WAKING:
3500 			break;
3501 		default:
3502 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3503 			if (!p->on_rq)
3504 				ret = func(p, arg);
3505 		}
3506 	}
3507 	raw_spin_unlock_irq(&p->pi_lock);
3508 	return ret;
3509 }
3510 
3511 /**
3512  * wake_up_process - Wake up a specific process
3513  * @p: The process to be woken up.
3514  *
3515  * Attempt to wake up the nominated process and move it to the set of runnable
3516  * processes.
3517  *
3518  * Return: 1 if the process was woken up, 0 if it was already running.
3519  *
3520  * This function executes a full memory barrier before accessing the task state.
3521  */
3522 int wake_up_process(struct task_struct *p)
3523 {
3524 	return try_to_wake_up(p, TASK_NORMAL, 0);
3525 }
3526 EXPORT_SYMBOL(wake_up_process);
3527 
3528 int wake_up_state(struct task_struct *p, unsigned int state)
3529 {
3530 	return try_to_wake_up(p, state, 0);
3531 }
3532 
3533 /*
3534  * Perform scheduler related setup for a newly forked process p.
3535  * p is forked by current.
3536  *
3537  * __sched_fork() is basic setup used by init_idle() too:
3538  */
3539 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3540 {
3541 	p->on_rq			= 0;
3542 
3543 	p->se.on_rq			= 0;
3544 	p->se.exec_start		= 0;
3545 	p->se.sum_exec_runtime		= 0;
3546 	p->se.prev_sum_exec_runtime	= 0;
3547 	p->se.nr_migrations		= 0;
3548 	p->se.vruntime			= 0;
3549 	INIT_LIST_HEAD(&p->se.group_node);
3550 
3551 #ifdef CONFIG_FAIR_GROUP_SCHED
3552 	p->se.cfs_rq			= NULL;
3553 #endif
3554 
3555 #ifdef CONFIG_SCHEDSTATS
3556 	/* Even if schedstat is disabled, there should not be garbage */
3557 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3558 #endif
3559 
3560 	RB_CLEAR_NODE(&p->dl.rb_node);
3561 	init_dl_task_timer(&p->dl);
3562 	init_dl_inactive_task_timer(&p->dl);
3563 	__dl_clear_params(p);
3564 
3565 	INIT_LIST_HEAD(&p->rt.run_list);
3566 	p->rt.timeout		= 0;
3567 	p->rt.time_slice	= sched_rr_timeslice;
3568 	p->rt.on_rq		= 0;
3569 	p->rt.on_list		= 0;
3570 
3571 #ifdef CONFIG_PREEMPT_NOTIFIERS
3572 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3573 #endif
3574 
3575 #ifdef CONFIG_COMPACTION
3576 	p->capture_control = NULL;
3577 #endif
3578 	init_numa_balancing(clone_flags, p);
3579 #ifdef CONFIG_SMP
3580 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3581 	p->migration_pending = NULL;
3582 #endif
3583 }
3584 
3585 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3586 
3587 #ifdef CONFIG_NUMA_BALANCING
3588 
3589 void set_numabalancing_state(bool enabled)
3590 {
3591 	if (enabled)
3592 		static_branch_enable(&sched_numa_balancing);
3593 	else
3594 		static_branch_disable(&sched_numa_balancing);
3595 }
3596 
3597 #ifdef CONFIG_PROC_SYSCTL
3598 int sysctl_numa_balancing(struct ctl_table *table, int write,
3599 			  void *buffer, size_t *lenp, loff_t *ppos)
3600 {
3601 	struct ctl_table t;
3602 	int err;
3603 	int state = static_branch_likely(&sched_numa_balancing);
3604 
3605 	if (write && !capable(CAP_SYS_ADMIN))
3606 		return -EPERM;
3607 
3608 	t = *table;
3609 	t.data = &state;
3610 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3611 	if (err < 0)
3612 		return err;
3613 	if (write)
3614 		set_numabalancing_state(state);
3615 	return err;
3616 }
3617 #endif
3618 #endif
3619 
3620 #ifdef CONFIG_SCHEDSTATS
3621 
3622 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3623 static bool __initdata __sched_schedstats = false;
3624 
3625 static void set_schedstats(bool enabled)
3626 {
3627 	if (enabled)
3628 		static_branch_enable(&sched_schedstats);
3629 	else
3630 		static_branch_disable(&sched_schedstats);
3631 }
3632 
3633 void force_schedstat_enabled(void)
3634 {
3635 	if (!schedstat_enabled()) {
3636 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3637 		static_branch_enable(&sched_schedstats);
3638 	}
3639 }
3640 
3641 static int __init setup_schedstats(char *str)
3642 {
3643 	int ret = 0;
3644 	if (!str)
3645 		goto out;
3646 
3647 	/*
3648 	 * This code is called before jump labels have been set up, so we can't
3649 	 * change the static branch directly just yet.  Instead set a temporary
3650 	 * variable so init_schedstats() can do it later.
3651 	 */
3652 	if (!strcmp(str, "enable")) {
3653 		__sched_schedstats = true;
3654 		ret = 1;
3655 	} else if (!strcmp(str, "disable")) {
3656 		__sched_schedstats = false;
3657 		ret = 1;
3658 	}
3659 out:
3660 	if (!ret)
3661 		pr_warn("Unable to parse schedstats=\n");
3662 
3663 	return ret;
3664 }
3665 __setup("schedstats=", setup_schedstats);
3666 
3667 static void __init init_schedstats(void)
3668 {
3669 	set_schedstats(__sched_schedstats);
3670 }
3671 
3672 #ifdef CONFIG_PROC_SYSCTL
3673 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3674 		size_t *lenp, loff_t *ppos)
3675 {
3676 	struct ctl_table t;
3677 	int err;
3678 	int state = static_branch_likely(&sched_schedstats);
3679 
3680 	if (write && !capable(CAP_SYS_ADMIN))
3681 		return -EPERM;
3682 
3683 	t = *table;
3684 	t.data = &state;
3685 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3686 	if (err < 0)
3687 		return err;
3688 	if (write)
3689 		set_schedstats(state);
3690 	return err;
3691 }
3692 #endif /* CONFIG_PROC_SYSCTL */
3693 #else  /* !CONFIG_SCHEDSTATS */
3694 static inline void init_schedstats(void) {}
3695 #endif /* CONFIG_SCHEDSTATS */
3696 
3697 /*
3698  * fork()/clone()-time setup:
3699  */
3700 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3701 {
3702 	unsigned long flags;
3703 
3704 	__sched_fork(clone_flags, p);
3705 	/*
3706 	 * We mark the process as NEW here. This guarantees that
3707 	 * nobody will actually run it, and a signal or other external
3708 	 * event cannot wake it up and insert it on the runqueue either.
3709 	 */
3710 	p->state = TASK_NEW;
3711 
3712 	/*
3713 	 * Make sure we do not leak PI boosting priority to the child.
3714 	 */
3715 	p->prio = current->normal_prio;
3716 
3717 	uclamp_fork(p);
3718 
3719 	/*
3720 	 * Revert to default priority/policy on fork if requested.
3721 	 */
3722 	if (unlikely(p->sched_reset_on_fork)) {
3723 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3724 			p->policy = SCHED_NORMAL;
3725 			p->static_prio = NICE_TO_PRIO(0);
3726 			p->rt_priority = 0;
3727 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3728 			p->static_prio = NICE_TO_PRIO(0);
3729 
3730 		p->prio = p->normal_prio = __normal_prio(p);
3731 		set_load_weight(p, false);
3732 
3733 		/*
3734 		 * We don't need the reset flag anymore after the fork. It has
3735 		 * fulfilled its duty:
3736 		 */
3737 		p->sched_reset_on_fork = 0;
3738 	}
3739 
3740 	if (dl_prio(p->prio))
3741 		return -EAGAIN;
3742 	else if (rt_prio(p->prio))
3743 		p->sched_class = &rt_sched_class;
3744 	else
3745 		p->sched_class = &fair_sched_class;
3746 
3747 	init_entity_runnable_average(&p->se);
3748 
3749 	/*
3750 	 * The child is not yet in the pid-hash so no cgroup attach races,
3751 	 * and the cgroup is pinned to this child due to cgroup_fork()
3752 	 * is ran before sched_fork().
3753 	 *
3754 	 * Silence PROVE_RCU.
3755 	 */
3756 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3757 	rseq_migrate(p);
3758 	/*
3759 	 * We're setting the CPU for the first time, we don't migrate,
3760 	 * so use __set_task_cpu().
3761 	 */
3762 	__set_task_cpu(p, smp_processor_id());
3763 	if (p->sched_class->task_fork)
3764 		p->sched_class->task_fork(p);
3765 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3766 
3767 #ifdef CONFIG_SCHED_INFO
3768 	if (likely(sched_info_on()))
3769 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3770 #endif
3771 #if defined(CONFIG_SMP)
3772 	p->on_cpu = 0;
3773 #endif
3774 	init_task_preempt_count(p);
3775 #ifdef CONFIG_SMP
3776 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3777 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3778 #endif
3779 	return 0;
3780 }
3781 
3782 void sched_post_fork(struct task_struct *p)
3783 {
3784 	uclamp_post_fork(p);
3785 }
3786 
3787 unsigned long to_ratio(u64 period, u64 runtime)
3788 {
3789 	if (runtime == RUNTIME_INF)
3790 		return BW_UNIT;
3791 
3792 	/*
3793 	 * Doing this here saves a lot of checks in all
3794 	 * the calling paths, and returning zero seems
3795 	 * safe for them anyway.
3796 	 */
3797 	if (period == 0)
3798 		return 0;
3799 
3800 	return div64_u64(runtime << BW_SHIFT, period);
3801 }
3802 
3803 /*
3804  * wake_up_new_task - wake up a newly created task for the first time.
3805  *
3806  * This function will do some initial scheduler statistics housekeeping
3807  * that must be done for every newly created context, then puts the task
3808  * on the runqueue and wakes it.
3809  */
3810 void wake_up_new_task(struct task_struct *p)
3811 {
3812 	struct rq_flags rf;
3813 	struct rq *rq;
3814 
3815 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3816 	p->state = TASK_RUNNING;
3817 #ifdef CONFIG_SMP
3818 	/*
3819 	 * Fork balancing, do it here and not earlier because:
3820 	 *  - cpus_ptr can change in the fork path
3821 	 *  - any previously selected CPU might disappear through hotplug
3822 	 *
3823 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3824 	 * as we're not fully set-up yet.
3825 	 */
3826 	p->recent_used_cpu = task_cpu(p);
3827 	rseq_migrate(p);
3828 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3829 #endif
3830 	rq = __task_rq_lock(p, &rf);
3831 	update_rq_clock(rq);
3832 	post_init_entity_util_avg(p);
3833 
3834 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3835 	trace_sched_wakeup_new(p);
3836 	check_preempt_curr(rq, p, WF_FORK);
3837 #ifdef CONFIG_SMP
3838 	if (p->sched_class->task_woken) {
3839 		/*
3840 		 * Nothing relies on rq->lock after this, so it's fine to
3841 		 * drop it.
3842 		 */
3843 		rq_unpin_lock(rq, &rf);
3844 		p->sched_class->task_woken(rq, p);
3845 		rq_repin_lock(rq, &rf);
3846 	}
3847 #endif
3848 	task_rq_unlock(rq, p, &rf);
3849 }
3850 
3851 #ifdef CONFIG_PREEMPT_NOTIFIERS
3852 
3853 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3854 
3855 void preempt_notifier_inc(void)
3856 {
3857 	static_branch_inc(&preempt_notifier_key);
3858 }
3859 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3860 
3861 void preempt_notifier_dec(void)
3862 {
3863 	static_branch_dec(&preempt_notifier_key);
3864 }
3865 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3866 
3867 /**
3868  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3869  * @notifier: notifier struct to register
3870  */
3871 void preempt_notifier_register(struct preempt_notifier *notifier)
3872 {
3873 	if (!static_branch_unlikely(&preempt_notifier_key))
3874 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3875 
3876 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3877 }
3878 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3879 
3880 /**
3881  * preempt_notifier_unregister - no longer interested in preemption notifications
3882  * @notifier: notifier struct to unregister
3883  *
3884  * This is *not* safe to call from within a preemption notifier.
3885  */
3886 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3887 {
3888 	hlist_del(&notifier->link);
3889 }
3890 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3891 
3892 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3893 {
3894 	struct preempt_notifier *notifier;
3895 
3896 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3897 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3898 }
3899 
3900 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3901 {
3902 	if (static_branch_unlikely(&preempt_notifier_key))
3903 		__fire_sched_in_preempt_notifiers(curr);
3904 }
3905 
3906 static void
3907 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3908 				   struct task_struct *next)
3909 {
3910 	struct preempt_notifier *notifier;
3911 
3912 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3913 		notifier->ops->sched_out(notifier, next);
3914 }
3915 
3916 static __always_inline void
3917 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3918 				 struct task_struct *next)
3919 {
3920 	if (static_branch_unlikely(&preempt_notifier_key))
3921 		__fire_sched_out_preempt_notifiers(curr, next);
3922 }
3923 
3924 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3925 
3926 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3927 {
3928 }
3929 
3930 static inline void
3931 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3932 				 struct task_struct *next)
3933 {
3934 }
3935 
3936 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3937 
3938 static inline void prepare_task(struct task_struct *next)
3939 {
3940 #ifdef CONFIG_SMP
3941 	/*
3942 	 * Claim the task as running, we do this before switching to it
3943 	 * such that any running task will have this set.
3944 	 *
3945 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3946 	 */
3947 	WRITE_ONCE(next->on_cpu, 1);
3948 #endif
3949 }
3950 
3951 static inline void finish_task(struct task_struct *prev)
3952 {
3953 #ifdef CONFIG_SMP
3954 	/*
3955 	 * This must be the very last reference to @prev from this CPU. After
3956 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3957 	 * must ensure this doesn't happen until the switch is completely
3958 	 * finished.
3959 	 *
3960 	 * In particular, the load of prev->state in finish_task_switch() must
3961 	 * happen before this.
3962 	 *
3963 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3964 	 */
3965 	smp_store_release(&prev->on_cpu, 0);
3966 #endif
3967 }
3968 
3969 #ifdef CONFIG_SMP
3970 
3971 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3972 {
3973 	void (*func)(struct rq *rq);
3974 	struct callback_head *next;
3975 
3976 	lockdep_assert_held(&rq->lock);
3977 
3978 	while (head) {
3979 		func = (void (*)(struct rq *))head->func;
3980 		next = head->next;
3981 		head->next = NULL;
3982 		head = next;
3983 
3984 		func(rq);
3985 	}
3986 }
3987 
3988 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
3989 {
3990 	struct callback_head *head = rq->balance_callback;
3991 
3992 	lockdep_assert_held(&rq->lock);
3993 	if (head) {
3994 		rq->balance_callback = NULL;
3995 		rq->balance_flags &= ~BALANCE_WORK;
3996 	}
3997 
3998 	return head;
3999 }
4000 
4001 static void __balance_callbacks(struct rq *rq)
4002 {
4003 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4004 }
4005 
4006 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4007 {
4008 	unsigned long flags;
4009 
4010 	if (unlikely(head)) {
4011 		raw_spin_lock_irqsave(&rq->lock, flags);
4012 		do_balance_callbacks(rq, head);
4013 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4014 	}
4015 }
4016 
4017 static void balance_push(struct rq *rq);
4018 
4019 static inline void balance_switch(struct rq *rq)
4020 {
4021 	if (likely(!rq->balance_flags))
4022 		return;
4023 
4024 	if (rq->balance_flags & BALANCE_PUSH) {
4025 		balance_push(rq);
4026 		return;
4027 	}
4028 
4029 	__balance_callbacks(rq);
4030 }
4031 
4032 #else
4033 
4034 static inline void __balance_callbacks(struct rq *rq)
4035 {
4036 }
4037 
4038 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4039 {
4040 	return NULL;
4041 }
4042 
4043 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4044 {
4045 }
4046 
4047 static inline void balance_switch(struct rq *rq)
4048 {
4049 }
4050 
4051 #endif
4052 
4053 static inline void
4054 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4055 {
4056 	/*
4057 	 * Since the runqueue lock will be released by the next
4058 	 * task (which is an invalid locking op but in the case
4059 	 * of the scheduler it's an obvious special-case), so we
4060 	 * do an early lockdep release here:
4061 	 */
4062 	rq_unpin_lock(rq, rf);
4063 	spin_release(&rq->lock.dep_map, _THIS_IP_);
4064 #ifdef CONFIG_DEBUG_SPINLOCK
4065 	/* this is a valid case when another task releases the spinlock */
4066 	rq->lock.owner = next;
4067 #endif
4068 }
4069 
4070 static inline void finish_lock_switch(struct rq *rq)
4071 {
4072 	/*
4073 	 * If we are tracking spinlock dependencies then we have to
4074 	 * fix up the runqueue lock - which gets 'carried over' from
4075 	 * prev into current:
4076 	 */
4077 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4078 	balance_switch(rq);
4079 	raw_spin_unlock_irq(&rq->lock);
4080 }
4081 
4082 /*
4083  * NOP if the arch has not defined these:
4084  */
4085 
4086 #ifndef prepare_arch_switch
4087 # define prepare_arch_switch(next)	do { } while (0)
4088 #endif
4089 
4090 #ifndef finish_arch_post_lock_switch
4091 # define finish_arch_post_lock_switch()	do { } while (0)
4092 #endif
4093 
4094 static inline void kmap_local_sched_out(void)
4095 {
4096 #ifdef CONFIG_KMAP_LOCAL
4097 	if (unlikely(current->kmap_ctrl.idx))
4098 		__kmap_local_sched_out();
4099 #endif
4100 }
4101 
4102 static inline void kmap_local_sched_in(void)
4103 {
4104 #ifdef CONFIG_KMAP_LOCAL
4105 	if (unlikely(current->kmap_ctrl.idx))
4106 		__kmap_local_sched_in();
4107 #endif
4108 }
4109 
4110 /**
4111  * prepare_task_switch - prepare to switch tasks
4112  * @rq: the runqueue preparing to switch
4113  * @prev: the current task that is being switched out
4114  * @next: the task we are going to switch to.
4115  *
4116  * This is called with the rq lock held and interrupts off. It must
4117  * be paired with a subsequent finish_task_switch after the context
4118  * switch.
4119  *
4120  * prepare_task_switch sets up locking and calls architecture specific
4121  * hooks.
4122  */
4123 static inline void
4124 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4125 		    struct task_struct *next)
4126 {
4127 	kcov_prepare_switch(prev);
4128 	sched_info_switch(rq, prev, next);
4129 	perf_event_task_sched_out(prev, next);
4130 	rseq_preempt(prev);
4131 	fire_sched_out_preempt_notifiers(prev, next);
4132 	kmap_local_sched_out();
4133 	prepare_task(next);
4134 	prepare_arch_switch(next);
4135 }
4136 
4137 /**
4138  * finish_task_switch - clean up after a task-switch
4139  * @prev: the thread we just switched away from.
4140  *
4141  * finish_task_switch must be called after the context switch, paired
4142  * with a prepare_task_switch call before the context switch.
4143  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4144  * and do any other architecture-specific cleanup actions.
4145  *
4146  * Note that we may have delayed dropping an mm in context_switch(). If
4147  * so, we finish that here outside of the runqueue lock. (Doing it
4148  * with the lock held can cause deadlocks; see schedule() for
4149  * details.)
4150  *
4151  * The context switch have flipped the stack from under us and restored the
4152  * local variables which were saved when this task called schedule() in the
4153  * past. prev == current is still correct but we need to recalculate this_rq
4154  * because prev may have moved to another CPU.
4155  */
4156 static struct rq *finish_task_switch(struct task_struct *prev)
4157 	__releases(rq->lock)
4158 {
4159 	struct rq *rq = this_rq();
4160 	struct mm_struct *mm = rq->prev_mm;
4161 	long prev_state;
4162 
4163 	/*
4164 	 * The previous task will have left us with a preempt_count of 2
4165 	 * because it left us after:
4166 	 *
4167 	 *	schedule()
4168 	 *	  preempt_disable();			// 1
4169 	 *	  __schedule()
4170 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4171 	 *
4172 	 * Also, see FORK_PREEMPT_COUNT.
4173 	 */
4174 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4175 		      "corrupted preempt_count: %s/%d/0x%x\n",
4176 		      current->comm, current->pid, preempt_count()))
4177 		preempt_count_set(FORK_PREEMPT_COUNT);
4178 
4179 	rq->prev_mm = NULL;
4180 
4181 	/*
4182 	 * A task struct has one reference for the use as "current".
4183 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4184 	 * schedule one last time. The schedule call will never return, and
4185 	 * the scheduled task must drop that reference.
4186 	 *
4187 	 * We must observe prev->state before clearing prev->on_cpu (in
4188 	 * finish_task), otherwise a concurrent wakeup can get prev
4189 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4190 	 * transition, resulting in a double drop.
4191 	 */
4192 	prev_state = prev->state;
4193 	vtime_task_switch(prev);
4194 	perf_event_task_sched_in(prev, current);
4195 	finish_task(prev);
4196 	finish_lock_switch(rq);
4197 	finish_arch_post_lock_switch();
4198 	kcov_finish_switch(current);
4199 	/*
4200 	 * kmap_local_sched_out() is invoked with rq::lock held and
4201 	 * interrupts disabled. There is no requirement for that, but the
4202 	 * sched out code does not have an interrupt enabled section.
4203 	 * Restoring the maps on sched in does not require interrupts being
4204 	 * disabled either.
4205 	 */
4206 	kmap_local_sched_in();
4207 
4208 	fire_sched_in_preempt_notifiers(current);
4209 	/*
4210 	 * When switching through a kernel thread, the loop in
4211 	 * membarrier_{private,global}_expedited() may have observed that
4212 	 * kernel thread and not issued an IPI. It is therefore possible to
4213 	 * schedule between user->kernel->user threads without passing though
4214 	 * switch_mm(). Membarrier requires a barrier after storing to
4215 	 * rq->curr, before returning to userspace, so provide them here:
4216 	 *
4217 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4218 	 *   provided by mmdrop(),
4219 	 * - a sync_core for SYNC_CORE.
4220 	 */
4221 	if (mm) {
4222 		membarrier_mm_sync_core_before_usermode(mm);
4223 		mmdrop(mm);
4224 	}
4225 	if (unlikely(prev_state == TASK_DEAD)) {
4226 		if (prev->sched_class->task_dead)
4227 			prev->sched_class->task_dead(prev);
4228 
4229 		/*
4230 		 * Remove function-return probe instances associated with this
4231 		 * task and put them back on the free list.
4232 		 */
4233 		kprobe_flush_task(prev);
4234 
4235 		/* Task is done with its stack. */
4236 		put_task_stack(prev);
4237 
4238 		put_task_struct_rcu_user(prev);
4239 	}
4240 
4241 	tick_nohz_task_switch();
4242 	return rq;
4243 }
4244 
4245 /**
4246  * schedule_tail - first thing a freshly forked thread must call.
4247  * @prev: the thread we just switched away from.
4248  */
4249 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4250 	__releases(rq->lock)
4251 {
4252 	struct rq *rq;
4253 
4254 	/*
4255 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4256 	 * finish_task_switch() for details.
4257 	 *
4258 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4259 	 * and the preempt_enable() will end up enabling preemption (on
4260 	 * PREEMPT_COUNT kernels).
4261 	 */
4262 
4263 	rq = finish_task_switch(prev);
4264 	preempt_enable();
4265 
4266 	if (current->set_child_tid)
4267 		put_user(task_pid_vnr(current), current->set_child_tid);
4268 
4269 	calculate_sigpending();
4270 }
4271 
4272 /*
4273  * context_switch - switch to the new MM and the new thread's register state.
4274  */
4275 static __always_inline struct rq *
4276 context_switch(struct rq *rq, struct task_struct *prev,
4277 	       struct task_struct *next, struct rq_flags *rf)
4278 {
4279 	prepare_task_switch(rq, prev, next);
4280 
4281 	/*
4282 	 * For paravirt, this is coupled with an exit in switch_to to
4283 	 * combine the page table reload and the switch backend into
4284 	 * one hypercall.
4285 	 */
4286 	arch_start_context_switch(prev);
4287 
4288 	/*
4289 	 * kernel -> kernel   lazy + transfer active
4290 	 *   user -> kernel   lazy + mmgrab() active
4291 	 *
4292 	 * kernel ->   user   switch + mmdrop() active
4293 	 *   user ->   user   switch
4294 	 */
4295 	if (!next->mm) {                                // to kernel
4296 		enter_lazy_tlb(prev->active_mm, next);
4297 
4298 		next->active_mm = prev->active_mm;
4299 		if (prev->mm)                           // from user
4300 			mmgrab(prev->active_mm);
4301 		else
4302 			prev->active_mm = NULL;
4303 	} else {                                        // to user
4304 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4305 		/*
4306 		 * sys_membarrier() requires an smp_mb() between setting
4307 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4308 		 *
4309 		 * The below provides this either through switch_mm(), or in
4310 		 * case 'prev->active_mm == next->mm' through
4311 		 * finish_task_switch()'s mmdrop().
4312 		 */
4313 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4314 
4315 		if (!prev->mm) {                        // from kernel
4316 			/* will mmdrop() in finish_task_switch(). */
4317 			rq->prev_mm = prev->active_mm;
4318 			prev->active_mm = NULL;
4319 		}
4320 	}
4321 
4322 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4323 
4324 	prepare_lock_switch(rq, next, rf);
4325 
4326 	/* Here we just switch the register state and the stack. */
4327 	switch_to(prev, next, prev);
4328 	barrier();
4329 
4330 	return finish_task_switch(prev);
4331 }
4332 
4333 /*
4334  * nr_running and nr_context_switches:
4335  *
4336  * externally visible scheduler statistics: current number of runnable
4337  * threads, total number of context switches performed since bootup.
4338  */
4339 unsigned long nr_running(void)
4340 {
4341 	unsigned long i, sum = 0;
4342 
4343 	for_each_online_cpu(i)
4344 		sum += cpu_rq(i)->nr_running;
4345 
4346 	return sum;
4347 }
4348 
4349 /*
4350  * Check if only the current task is running on the CPU.
4351  *
4352  * Caution: this function does not check that the caller has disabled
4353  * preemption, thus the result might have a time-of-check-to-time-of-use
4354  * race.  The caller is responsible to use it correctly, for example:
4355  *
4356  * - from a non-preemptible section (of course)
4357  *
4358  * - from a thread that is bound to a single CPU
4359  *
4360  * - in a loop with very short iterations (e.g. a polling loop)
4361  */
4362 bool single_task_running(void)
4363 {
4364 	return raw_rq()->nr_running == 1;
4365 }
4366 EXPORT_SYMBOL(single_task_running);
4367 
4368 unsigned long long nr_context_switches(void)
4369 {
4370 	int i;
4371 	unsigned long long sum = 0;
4372 
4373 	for_each_possible_cpu(i)
4374 		sum += cpu_rq(i)->nr_switches;
4375 
4376 	return sum;
4377 }
4378 
4379 /*
4380  * Consumers of these two interfaces, like for example the cpuidle menu
4381  * governor, are using nonsensical data. Preferring shallow idle state selection
4382  * for a CPU that has IO-wait which might not even end up running the task when
4383  * it does become runnable.
4384  */
4385 
4386 unsigned long nr_iowait_cpu(int cpu)
4387 {
4388 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4389 }
4390 
4391 /*
4392  * IO-wait accounting, and how it's mostly bollocks (on SMP).
4393  *
4394  * The idea behind IO-wait account is to account the idle time that we could
4395  * have spend running if it were not for IO. That is, if we were to improve the
4396  * storage performance, we'd have a proportional reduction in IO-wait time.
4397  *
4398  * This all works nicely on UP, where, when a task blocks on IO, we account
4399  * idle time as IO-wait, because if the storage were faster, it could've been
4400  * running and we'd not be idle.
4401  *
4402  * This has been extended to SMP, by doing the same for each CPU. This however
4403  * is broken.
4404  *
4405  * Imagine for instance the case where two tasks block on one CPU, only the one
4406  * CPU will have IO-wait accounted, while the other has regular idle. Even
4407  * though, if the storage were faster, both could've ran at the same time,
4408  * utilising both CPUs.
4409  *
4410  * This means, that when looking globally, the current IO-wait accounting on
4411  * SMP is a lower bound, by reason of under accounting.
4412  *
4413  * Worse, since the numbers are provided per CPU, they are sometimes
4414  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4415  * associated with any one particular CPU, it can wake to another CPU than it
4416  * blocked on. This means the per CPU IO-wait number is meaningless.
4417  *
4418  * Task CPU affinities can make all that even more 'interesting'.
4419  */
4420 
4421 unsigned long nr_iowait(void)
4422 {
4423 	unsigned long i, sum = 0;
4424 
4425 	for_each_possible_cpu(i)
4426 		sum += nr_iowait_cpu(i);
4427 
4428 	return sum;
4429 }
4430 
4431 #ifdef CONFIG_SMP
4432 
4433 /*
4434  * sched_exec - execve() is a valuable balancing opportunity, because at
4435  * this point the task has the smallest effective memory and cache footprint.
4436  */
4437 void sched_exec(void)
4438 {
4439 	struct task_struct *p = current;
4440 	unsigned long flags;
4441 	int dest_cpu;
4442 
4443 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4444 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4445 	if (dest_cpu == smp_processor_id())
4446 		goto unlock;
4447 
4448 	if (likely(cpu_active(dest_cpu))) {
4449 		struct migration_arg arg = { p, dest_cpu };
4450 
4451 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4452 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4453 		return;
4454 	}
4455 unlock:
4456 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4457 }
4458 
4459 #endif
4460 
4461 DEFINE_PER_CPU(struct kernel_stat, kstat);
4462 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4463 
4464 EXPORT_PER_CPU_SYMBOL(kstat);
4465 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4466 
4467 /*
4468  * The function fair_sched_class.update_curr accesses the struct curr
4469  * and its field curr->exec_start; when called from task_sched_runtime(),
4470  * we observe a high rate of cache misses in practice.
4471  * Prefetching this data results in improved performance.
4472  */
4473 static inline void prefetch_curr_exec_start(struct task_struct *p)
4474 {
4475 #ifdef CONFIG_FAIR_GROUP_SCHED
4476 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4477 #else
4478 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4479 #endif
4480 	prefetch(curr);
4481 	prefetch(&curr->exec_start);
4482 }
4483 
4484 /*
4485  * Return accounted runtime for the task.
4486  * In case the task is currently running, return the runtime plus current's
4487  * pending runtime that have not been accounted yet.
4488  */
4489 unsigned long long task_sched_runtime(struct task_struct *p)
4490 {
4491 	struct rq_flags rf;
4492 	struct rq *rq;
4493 	u64 ns;
4494 
4495 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4496 	/*
4497 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4498 	 * So we have a optimization chance when the task's delta_exec is 0.
4499 	 * Reading ->on_cpu is racy, but this is ok.
4500 	 *
4501 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4502 	 * If we race with it entering CPU, unaccounted time is 0. This is
4503 	 * indistinguishable from the read occurring a few cycles earlier.
4504 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4505 	 * been accounted, so we're correct here as well.
4506 	 */
4507 	if (!p->on_cpu || !task_on_rq_queued(p))
4508 		return p->se.sum_exec_runtime;
4509 #endif
4510 
4511 	rq = task_rq_lock(p, &rf);
4512 	/*
4513 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4514 	 * project cycles that may never be accounted to this
4515 	 * thread, breaking clock_gettime().
4516 	 */
4517 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4518 		prefetch_curr_exec_start(p);
4519 		update_rq_clock(rq);
4520 		p->sched_class->update_curr(rq);
4521 	}
4522 	ns = p->se.sum_exec_runtime;
4523 	task_rq_unlock(rq, p, &rf);
4524 
4525 	return ns;
4526 }
4527 
4528 /*
4529  * This function gets called by the timer code, with HZ frequency.
4530  * We call it with interrupts disabled.
4531  */
4532 void scheduler_tick(void)
4533 {
4534 	int cpu = smp_processor_id();
4535 	struct rq *rq = cpu_rq(cpu);
4536 	struct task_struct *curr = rq->curr;
4537 	struct rq_flags rf;
4538 	unsigned long thermal_pressure;
4539 
4540 	arch_scale_freq_tick();
4541 	sched_clock_tick();
4542 
4543 	rq_lock(rq, &rf);
4544 
4545 	update_rq_clock(rq);
4546 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4547 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4548 	curr->sched_class->task_tick(rq, curr, 0);
4549 	calc_global_load_tick(rq);
4550 	psi_task_tick(rq);
4551 
4552 	rq_unlock(rq, &rf);
4553 
4554 	perf_event_task_tick();
4555 
4556 #ifdef CONFIG_SMP
4557 	rq->idle_balance = idle_cpu(cpu);
4558 	trigger_load_balance(rq);
4559 #endif
4560 }
4561 
4562 #ifdef CONFIG_NO_HZ_FULL
4563 
4564 struct tick_work {
4565 	int			cpu;
4566 	atomic_t		state;
4567 	struct delayed_work	work;
4568 };
4569 /* Values for ->state, see diagram below. */
4570 #define TICK_SCHED_REMOTE_OFFLINE	0
4571 #define TICK_SCHED_REMOTE_OFFLINING	1
4572 #define TICK_SCHED_REMOTE_RUNNING	2
4573 
4574 /*
4575  * State diagram for ->state:
4576  *
4577  *
4578  *          TICK_SCHED_REMOTE_OFFLINE
4579  *                    |   ^
4580  *                    |   |
4581  *                    |   | sched_tick_remote()
4582  *                    |   |
4583  *                    |   |
4584  *                    +--TICK_SCHED_REMOTE_OFFLINING
4585  *                    |   ^
4586  *                    |   |
4587  * sched_tick_start() |   | sched_tick_stop()
4588  *                    |   |
4589  *                    V   |
4590  *          TICK_SCHED_REMOTE_RUNNING
4591  *
4592  *
4593  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4594  * and sched_tick_start() are happy to leave the state in RUNNING.
4595  */
4596 
4597 static struct tick_work __percpu *tick_work_cpu;
4598 
4599 static void sched_tick_remote(struct work_struct *work)
4600 {
4601 	struct delayed_work *dwork = to_delayed_work(work);
4602 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4603 	int cpu = twork->cpu;
4604 	struct rq *rq = cpu_rq(cpu);
4605 	struct task_struct *curr;
4606 	struct rq_flags rf;
4607 	u64 delta;
4608 	int os;
4609 
4610 	/*
4611 	 * Handle the tick only if it appears the remote CPU is running in full
4612 	 * dynticks mode. The check is racy by nature, but missing a tick or
4613 	 * having one too much is no big deal because the scheduler tick updates
4614 	 * statistics and checks timeslices in a time-independent way, regardless
4615 	 * of when exactly it is running.
4616 	 */
4617 	if (!tick_nohz_tick_stopped_cpu(cpu))
4618 		goto out_requeue;
4619 
4620 	rq_lock_irq(rq, &rf);
4621 	curr = rq->curr;
4622 	if (cpu_is_offline(cpu))
4623 		goto out_unlock;
4624 
4625 	update_rq_clock(rq);
4626 
4627 	if (!is_idle_task(curr)) {
4628 		/*
4629 		 * Make sure the next tick runs within a reasonable
4630 		 * amount of time.
4631 		 */
4632 		delta = rq_clock_task(rq) - curr->se.exec_start;
4633 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4634 	}
4635 	curr->sched_class->task_tick(rq, curr, 0);
4636 
4637 	calc_load_nohz_remote(rq);
4638 out_unlock:
4639 	rq_unlock_irq(rq, &rf);
4640 out_requeue:
4641 
4642 	/*
4643 	 * Run the remote tick once per second (1Hz). This arbitrary
4644 	 * frequency is large enough to avoid overload but short enough
4645 	 * to keep scheduler internal stats reasonably up to date.  But
4646 	 * first update state to reflect hotplug activity if required.
4647 	 */
4648 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4649 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4650 	if (os == TICK_SCHED_REMOTE_RUNNING)
4651 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4652 }
4653 
4654 static void sched_tick_start(int cpu)
4655 {
4656 	int os;
4657 	struct tick_work *twork;
4658 
4659 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4660 		return;
4661 
4662 	WARN_ON_ONCE(!tick_work_cpu);
4663 
4664 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4665 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4666 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4667 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4668 		twork->cpu = cpu;
4669 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4670 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4671 	}
4672 }
4673 
4674 #ifdef CONFIG_HOTPLUG_CPU
4675 static void sched_tick_stop(int cpu)
4676 {
4677 	struct tick_work *twork;
4678 	int os;
4679 
4680 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4681 		return;
4682 
4683 	WARN_ON_ONCE(!tick_work_cpu);
4684 
4685 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4686 	/* There cannot be competing actions, but don't rely on stop-machine. */
4687 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4688 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4689 	/* Don't cancel, as this would mess up the state machine. */
4690 }
4691 #endif /* CONFIG_HOTPLUG_CPU */
4692 
4693 int __init sched_tick_offload_init(void)
4694 {
4695 	tick_work_cpu = alloc_percpu(struct tick_work);
4696 	BUG_ON(!tick_work_cpu);
4697 	return 0;
4698 }
4699 
4700 #else /* !CONFIG_NO_HZ_FULL */
4701 static inline void sched_tick_start(int cpu) { }
4702 static inline void sched_tick_stop(int cpu) { }
4703 #endif
4704 
4705 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4706 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4707 /*
4708  * If the value passed in is equal to the current preempt count
4709  * then we just disabled preemption. Start timing the latency.
4710  */
4711 static inline void preempt_latency_start(int val)
4712 {
4713 	if (preempt_count() == val) {
4714 		unsigned long ip = get_lock_parent_ip();
4715 #ifdef CONFIG_DEBUG_PREEMPT
4716 		current->preempt_disable_ip = ip;
4717 #endif
4718 		trace_preempt_off(CALLER_ADDR0, ip);
4719 	}
4720 }
4721 
4722 void preempt_count_add(int val)
4723 {
4724 #ifdef CONFIG_DEBUG_PREEMPT
4725 	/*
4726 	 * Underflow?
4727 	 */
4728 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4729 		return;
4730 #endif
4731 	__preempt_count_add(val);
4732 #ifdef CONFIG_DEBUG_PREEMPT
4733 	/*
4734 	 * Spinlock count overflowing soon?
4735 	 */
4736 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4737 				PREEMPT_MASK - 10);
4738 #endif
4739 	preempt_latency_start(val);
4740 }
4741 EXPORT_SYMBOL(preempt_count_add);
4742 NOKPROBE_SYMBOL(preempt_count_add);
4743 
4744 /*
4745  * If the value passed in equals to the current preempt count
4746  * then we just enabled preemption. Stop timing the latency.
4747  */
4748 static inline void preempt_latency_stop(int val)
4749 {
4750 	if (preempt_count() == val)
4751 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4752 }
4753 
4754 void preempt_count_sub(int val)
4755 {
4756 #ifdef CONFIG_DEBUG_PREEMPT
4757 	/*
4758 	 * Underflow?
4759 	 */
4760 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4761 		return;
4762 	/*
4763 	 * Is the spinlock portion underflowing?
4764 	 */
4765 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4766 			!(preempt_count() & PREEMPT_MASK)))
4767 		return;
4768 #endif
4769 
4770 	preempt_latency_stop(val);
4771 	__preempt_count_sub(val);
4772 }
4773 EXPORT_SYMBOL(preempt_count_sub);
4774 NOKPROBE_SYMBOL(preempt_count_sub);
4775 
4776 #else
4777 static inline void preempt_latency_start(int val) { }
4778 static inline void preempt_latency_stop(int val) { }
4779 #endif
4780 
4781 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4782 {
4783 #ifdef CONFIG_DEBUG_PREEMPT
4784 	return p->preempt_disable_ip;
4785 #else
4786 	return 0;
4787 #endif
4788 }
4789 
4790 /*
4791  * Print scheduling while atomic bug:
4792  */
4793 static noinline void __schedule_bug(struct task_struct *prev)
4794 {
4795 	/* Save this before calling printk(), since that will clobber it */
4796 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4797 
4798 	if (oops_in_progress)
4799 		return;
4800 
4801 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4802 		prev->comm, prev->pid, preempt_count());
4803 
4804 	debug_show_held_locks(prev);
4805 	print_modules();
4806 	if (irqs_disabled())
4807 		print_irqtrace_events(prev);
4808 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4809 	    && in_atomic_preempt_off()) {
4810 		pr_err("Preemption disabled at:");
4811 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4812 	}
4813 	if (panic_on_warn)
4814 		panic("scheduling while atomic\n");
4815 
4816 	dump_stack();
4817 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4818 }
4819 
4820 /*
4821  * Various schedule()-time debugging checks and statistics:
4822  */
4823 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4824 {
4825 #ifdef CONFIG_SCHED_STACK_END_CHECK
4826 	if (task_stack_end_corrupted(prev))
4827 		panic("corrupted stack end detected inside scheduler\n");
4828 
4829 	if (task_scs_end_corrupted(prev))
4830 		panic("corrupted shadow stack detected inside scheduler\n");
4831 #endif
4832 
4833 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4834 	if (!preempt && prev->state && prev->non_block_count) {
4835 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4836 			prev->comm, prev->pid, prev->non_block_count);
4837 		dump_stack();
4838 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4839 	}
4840 #endif
4841 
4842 	if (unlikely(in_atomic_preempt_off())) {
4843 		__schedule_bug(prev);
4844 		preempt_count_set(PREEMPT_DISABLED);
4845 	}
4846 	rcu_sleep_check();
4847 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4848 
4849 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4850 
4851 	schedstat_inc(this_rq()->sched_count);
4852 }
4853 
4854 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4855 				  struct rq_flags *rf)
4856 {
4857 #ifdef CONFIG_SMP
4858 	const struct sched_class *class;
4859 	/*
4860 	 * We must do the balancing pass before put_prev_task(), such
4861 	 * that when we release the rq->lock the task is in the same
4862 	 * state as before we took rq->lock.
4863 	 *
4864 	 * We can terminate the balance pass as soon as we know there is
4865 	 * a runnable task of @class priority or higher.
4866 	 */
4867 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4868 		if (class->balance(rq, prev, rf))
4869 			break;
4870 	}
4871 #endif
4872 
4873 	put_prev_task(rq, prev);
4874 }
4875 
4876 /*
4877  * Pick up the highest-prio task:
4878  */
4879 static inline struct task_struct *
4880 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4881 {
4882 	const struct sched_class *class;
4883 	struct task_struct *p;
4884 
4885 	/*
4886 	 * Optimization: we know that if all tasks are in the fair class we can
4887 	 * call that function directly, but only if the @prev task wasn't of a
4888 	 * higher scheduling class, because otherwise those lose the
4889 	 * opportunity to pull in more work from other CPUs.
4890 	 */
4891 	if (likely(prev->sched_class <= &fair_sched_class &&
4892 		   rq->nr_running == rq->cfs.h_nr_running)) {
4893 
4894 		p = pick_next_task_fair(rq, prev, rf);
4895 		if (unlikely(p == RETRY_TASK))
4896 			goto restart;
4897 
4898 		/* Assumes fair_sched_class->next == idle_sched_class */
4899 		if (!p) {
4900 			put_prev_task(rq, prev);
4901 			p = pick_next_task_idle(rq);
4902 		}
4903 
4904 		return p;
4905 	}
4906 
4907 restart:
4908 	put_prev_task_balance(rq, prev, rf);
4909 
4910 	for_each_class(class) {
4911 		p = class->pick_next_task(rq);
4912 		if (p)
4913 			return p;
4914 	}
4915 
4916 	/* The idle class should always have a runnable task: */
4917 	BUG();
4918 }
4919 
4920 /*
4921  * __schedule() is the main scheduler function.
4922  *
4923  * The main means of driving the scheduler and thus entering this function are:
4924  *
4925  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4926  *
4927  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4928  *      paths. For example, see arch/x86/entry_64.S.
4929  *
4930  *      To drive preemption between tasks, the scheduler sets the flag in timer
4931  *      interrupt handler scheduler_tick().
4932  *
4933  *   3. Wakeups don't really cause entry into schedule(). They add a
4934  *      task to the run-queue and that's it.
4935  *
4936  *      Now, if the new task added to the run-queue preempts the current
4937  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4938  *      called on the nearest possible occasion:
4939  *
4940  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4941  *
4942  *         - in syscall or exception context, at the next outmost
4943  *           preempt_enable(). (this might be as soon as the wake_up()'s
4944  *           spin_unlock()!)
4945  *
4946  *         - in IRQ context, return from interrupt-handler to
4947  *           preemptible context
4948  *
4949  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4950  *         then at the next:
4951  *
4952  *          - cond_resched() call
4953  *          - explicit schedule() call
4954  *          - return from syscall or exception to user-space
4955  *          - return from interrupt-handler to user-space
4956  *
4957  * WARNING: must be called with preemption disabled!
4958  */
4959 static void __sched notrace __schedule(bool preempt)
4960 {
4961 	struct task_struct *prev, *next;
4962 	unsigned long *switch_count;
4963 	unsigned long prev_state;
4964 	struct rq_flags rf;
4965 	struct rq *rq;
4966 	int cpu;
4967 
4968 	cpu = smp_processor_id();
4969 	rq = cpu_rq(cpu);
4970 	prev = rq->curr;
4971 
4972 	schedule_debug(prev, preempt);
4973 
4974 	if (sched_feat(HRTICK))
4975 		hrtick_clear(rq);
4976 
4977 	local_irq_disable();
4978 	rcu_note_context_switch(preempt);
4979 
4980 	/*
4981 	 * Make sure that signal_pending_state()->signal_pending() below
4982 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4983 	 * done by the caller to avoid the race with signal_wake_up():
4984 	 *
4985 	 * __set_current_state(@state)		signal_wake_up()
4986 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4987 	 *					  wake_up_state(p, state)
4988 	 *   LOCK rq->lock			    LOCK p->pi_state
4989 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4990 	 *     if (signal_pending_state())	    if (p->state & @state)
4991 	 *
4992 	 * Also, the membarrier system call requires a full memory barrier
4993 	 * after coming from user-space, before storing to rq->curr.
4994 	 */
4995 	rq_lock(rq, &rf);
4996 	smp_mb__after_spinlock();
4997 
4998 	/* Promote REQ to ACT */
4999 	rq->clock_update_flags <<= 1;
5000 	update_rq_clock(rq);
5001 
5002 	switch_count = &prev->nivcsw;
5003 
5004 	/*
5005 	 * We must load prev->state once (task_struct::state is volatile), such
5006 	 * that:
5007 	 *
5008 	 *  - we form a control dependency vs deactivate_task() below.
5009 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
5010 	 */
5011 	prev_state = prev->state;
5012 	if (!preempt && prev_state) {
5013 		if (signal_pending_state(prev_state, prev)) {
5014 			prev->state = TASK_RUNNING;
5015 		} else {
5016 			prev->sched_contributes_to_load =
5017 				(prev_state & TASK_UNINTERRUPTIBLE) &&
5018 				!(prev_state & TASK_NOLOAD) &&
5019 				!(prev->flags & PF_FROZEN);
5020 
5021 			if (prev->sched_contributes_to_load)
5022 				rq->nr_uninterruptible++;
5023 
5024 			/*
5025 			 * __schedule()			ttwu()
5026 			 *   prev_state = prev->state;    if (p->on_rq && ...)
5027 			 *   if (prev_state)		    goto out;
5028 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
5029 			 *				  p->state = TASK_WAKING
5030 			 *
5031 			 * Where __schedule() and ttwu() have matching control dependencies.
5032 			 *
5033 			 * After this, schedule() must not care about p->state any more.
5034 			 */
5035 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5036 
5037 			if (prev->in_iowait) {
5038 				atomic_inc(&rq->nr_iowait);
5039 				delayacct_blkio_start();
5040 			}
5041 		}
5042 		switch_count = &prev->nvcsw;
5043 	}
5044 
5045 	next = pick_next_task(rq, prev, &rf);
5046 	clear_tsk_need_resched(prev);
5047 	clear_preempt_need_resched();
5048 
5049 	if (likely(prev != next)) {
5050 		rq->nr_switches++;
5051 		/*
5052 		 * RCU users of rcu_dereference(rq->curr) may not see
5053 		 * changes to task_struct made by pick_next_task().
5054 		 */
5055 		RCU_INIT_POINTER(rq->curr, next);
5056 		/*
5057 		 * The membarrier system call requires each architecture
5058 		 * to have a full memory barrier after updating
5059 		 * rq->curr, before returning to user-space.
5060 		 *
5061 		 * Here are the schemes providing that barrier on the
5062 		 * various architectures:
5063 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5064 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5065 		 * - finish_lock_switch() for weakly-ordered
5066 		 *   architectures where spin_unlock is a full barrier,
5067 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5068 		 *   is a RELEASE barrier),
5069 		 */
5070 		++*switch_count;
5071 
5072 		migrate_disable_switch(rq, prev);
5073 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5074 
5075 		trace_sched_switch(preempt, prev, next);
5076 
5077 		/* Also unlocks the rq: */
5078 		rq = context_switch(rq, prev, next, &rf);
5079 	} else {
5080 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5081 
5082 		rq_unpin_lock(rq, &rf);
5083 		__balance_callbacks(rq);
5084 		raw_spin_unlock_irq(&rq->lock);
5085 	}
5086 }
5087 
5088 void __noreturn do_task_dead(void)
5089 {
5090 	/* Causes final put_task_struct in finish_task_switch(): */
5091 	set_special_state(TASK_DEAD);
5092 
5093 	/* Tell freezer to ignore us: */
5094 	current->flags |= PF_NOFREEZE;
5095 
5096 	__schedule(false);
5097 	BUG();
5098 
5099 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5100 	for (;;)
5101 		cpu_relax();
5102 }
5103 
5104 static inline void sched_submit_work(struct task_struct *tsk)
5105 {
5106 	unsigned int task_flags;
5107 
5108 	if (!tsk->state)
5109 		return;
5110 
5111 	task_flags = tsk->flags;
5112 	/*
5113 	 * If a worker went to sleep, notify and ask workqueue whether
5114 	 * it wants to wake up a task to maintain concurrency.
5115 	 * As this function is called inside the schedule() context,
5116 	 * we disable preemption to avoid it calling schedule() again
5117 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5118 	 * requires it.
5119 	 */
5120 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5121 		preempt_disable();
5122 		if (task_flags & PF_WQ_WORKER)
5123 			wq_worker_sleeping(tsk);
5124 		else
5125 			io_wq_worker_sleeping(tsk);
5126 		preempt_enable_no_resched();
5127 	}
5128 
5129 	if (tsk_is_pi_blocked(tsk))
5130 		return;
5131 
5132 	/*
5133 	 * If we are going to sleep and we have plugged IO queued,
5134 	 * make sure to submit it to avoid deadlocks.
5135 	 */
5136 	if (blk_needs_flush_plug(tsk))
5137 		blk_schedule_flush_plug(tsk);
5138 }
5139 
5140 static void sched_update_worker(struct task_struct *tsk)
5141 {
5142 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5143 		if (tsk->flags & PF_WQ_WORKER)
5144 			wq_worker_running(tsk);
5145 		else
5146 			io_wq_worker_running(tsk);
5147 	}
5148 }
5149 
5150 asmlinkage __visible void __sched schedule(void)
5151 {
5152 	struct task_struct *tsk = current;
5153 
5154 	sched_submit_work(tsk);
5155 	do {
5156 		preempt_disable();
5157 		__schedule(false);
5158 		sched_preempt_enable_no_resched();
5159 	} while (need_resched());
5160 	sched_update_worker(tsk);
5161 }
5162 EXPORT_SYMBOL(schedule);
5163 
5164 /*
5165  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5166  * state (have scheduled out non-voluntarily) by making sure that all
5167  * tasks have either left the run queue or have gone into user space.
5168  * As idle tasks do not do either, they must not ever be preempted
5169  * (schedule out non-voluntarily).
5170  *
5171  * schedule_idle() is similar to schedule_preempt_disable() except that it
5172  * never enables preemption because it does not call sched_submit_work().
5173  */
5174 void __sched schedule_idle(void)
5175 {
5176 	/*
5177 	 * As this skips calling sched_submit_work(), which the idle task does
5178 	 * regardless because that function is a nop when the task is in a
5179 	 * TASK_RUNNING state, make sure this isn't used someplace that the
5180 	 * current task can be in any other state. Note, idle is always in the
5181 	 * TASK_RUNNING state.
5182 	 */
5183 	WARN_ON_ONCE(current->state);
5184 	do {
5185 		__schedule(false);
5186 	} while (need_resched());
5187 }
5188 
5189 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5190 asmlinkage __visible void __sched schedule_user(void)
5191 {
5192 	/*
5193 	 * If we come here after a random call to set_need_resched(),
5194 	 * or we have been woken up remotely but the IPI has not yet arrived,
5195 	 * we haven't yet exited the RCU idle mode. Do it here manually until
5196 	 * we find a better solution.
5197 	 *
5198 	 * NB: There are buggy callers of this function.  Ideally we
5199 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
5200 	 * too frequently to make sense yet.
5201 	 */
5202 	enum ctx_state prev_state = exception_enter();
5203 	schedule();
5204 	exception_exit(prev_state);
5205 }
5206 #endif
5207 
5208 /**
5209  * schedule_preempt_disabled - called with preemption disabled
5210  *
5211  * Returns with preemption disabled. Note: preempt_count must be 1
5212  */
5213 void __sched schedule_preempt_disabled(void)
5214 {
5215 	sched_preempt_enable_no_resched();
5216 	schedule();
5217 	preempt_disable();
5218 }
5219 
5220 static void __sched notrace preempt_schedule_common(void)
5221 {
5222 	do {
5223 		/*
5224 		 * Because the function tracer can trace preempt_count_sub()
5225 		 * and it also uses preempt_enable/disable_notrace(), if
5226 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5227 		 * by the function tracer will call this function again and
5228 		 * cause infinite recursion.
5229 		 *
5230 		 * Preemption must be disabled here before the function
5231 		 * tracer can trace. Break up preempt_disable() into two
5232 		 * calls. One to disable preemption without fear of being
5233 		 * traced. The other to still record the preemption latency,
5234 		 * which can also be traced by the function tracer.
5235 		 */
5236 		preempt_disable_notrace();
5237 		preempt_latency_start(1);
5238 		__schedule(true);
5239 		preempt_latency_stop(1);
5240 		preempt_enable_no_resched_notrace();
5241 
5242 		/*
5243 		 * Check again in case we missed a preemption opportunity
5244 		 * between schedule and now.
5245 		 */
5246 	} while (need_resched());
5247 }
5248 
5249 #ifdef CONFIG_PREEMPTION
5250 /*
5251  * This is the entry point to schedule() from in-kernel preemption
5252  * off of preempt_enable.
5253  */
5254 asmlinkage __visible void __sched notrace preempt_schedule(void)
5255 {
5256 	/*
5257 	 * If there is a non-zero preempt_count or interrupts are disabled,
5258 	 * we do not want to preempt the current task. Just return..
5259 	 */
5260 	if (likely(!preemptible()))
5261 		return;
5262 
5263 	preempt_schedule_common();
5264 }
5265 NOKPROBE_SYMBOL(preempt_schedule);
5266 EXPORT_SYMBOL(preempt_schedule);
5267 
5268 /**
5269  * preempt_schedule_notrace - preempt_schedule called by tracing
5270  *
5271  * The tracing infrastructure uses preempt_enable_notrace to prevent
5272  * recursion and tracing preempt enabling caused by the tracing
5273  * infrastructure itself. But as tracing can happen in areas coming
5274  * from userspace or just about to enter userspace, a preempt enable
5275  * can occur before user_exit() is called. This will cause the scheduler
5276  * to be called when the system is still in usermode.
5277  *
5278  * To prevent this, the preempt_enable_notrace will use this function
5279  * instead of preempt_schedule() to exit user context if needed before
5280  * calling the scheduler.
5281  */
5282 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5283 {
5284 	enum ctx_state prev_ctx;
5285 
5286 	if (likely(!preemptible()))
5287 		return;
5288 
5289 	do {
5290 		/*
5291 		 * Because the function tracer can trace preempt_count_sub()
5292 		 * and it also uses preempt_enable/disable_notrace(), if
5293 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5294 		 * by the function tracer will call this function again and
5295 		 * cause infinite recursion.
5296 		 *
5297 		 * Preemption must be disabled here before the function
5298 		 * tracer can trace. Break up preempt_disable() into two
5299 		 * calls. One to disable preemption without fear of being
5300 		 * traced. The other to still record the preemption latency,
5301 		 * which can also be traced by the function tracer.
5302 		 */
5303 		preempt_disable_notrace();
5304 		preempt_latency_start(1);
5305 		/*
5306 		 * Needs preempt disabled in case user_exit() is traced
5307 		 * and the tracer calls preempt_enable_notrace() causing
5308 		 * an infinite recursion.
5309 		 */
5310 		prev_ctx = exception_enter();
5311 		__schedule(true);
5312 		exception_exit(prev_ctx);
5313 
5314 		preempt_latency_stop(1);
5315 		preempt_enable_no_resched_notrace();
5316 	} while (need_resched());
5317 }
5318 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5319 
5320 #endif /* CONFIG_PREEMPTION */
5321 
5322 /*
5323  * This is the entry point to schedule() from kernel preemption
5324  * off of irq context.
5325  * Note, that this is called and return with irqs disabled. This will
5326  * protect us against recursive calling from irq.
5327  */
5328 asmlinkage __visible void __sched preempt_schedule_irq(void)
5329 {
5330 	enum ctx_state prev_state;
5331 
5332 	/* Catch callers which need to be fixed */
5333 	BUG_ON(preempt_count() || !irqs_disabled());
5334 
5335 	prev_state = exception_enter();
5336 
5337 	do {
5338 		preempt_disable();
5339 		local_irq_enable();
5340 		__schedule(true);
5341 		local_irq_disable();
5342 		sched_preempt_enable_no_resched();
5343 	} while (need_resched());
5344 
5345 	exception_exit(prev_state);
5346 }
5347 
5348 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5349 			  void *key)
5350 {
5351 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5352 	return try_to_wake_up(curr->private, mode, wake_flags);
5353 }
5354 EXPORT_SYMBOL(default_wake_function);
5355 
5356 #ifdef CONFIG_RT_MUTEXES
5357 
5358 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5359 {
5360 	if (pi_task)
5361 		prio = min(prio, pi_task->prio);
5362 
5363 	return prio;
5364 }
5365 
5366 static inline int rt_effective_prio(struct task_struct *p, int prio)
5367 {
5368 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
5369 
5370 	return __rt_effective_prio(pi_task, prio);
5371 }
5372 
5373 /*
5374  * rt_mutex_setprio - set the current priority of a task
5375  * @p: task to boost
5376  * @pi_task: donor task
5377  *
5378  * This function changes the 'effective' priority of a task. It does
5379  * not touch ->normal_prio like __setscheduler().
5380  *
5381  * Used by the rt_mutex code to implement priority inheritance
5382  * logic. Call site only calls if the priority of the task changed.
5383  */
5384 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5385 {
5386 	int prio, oldprio, queued, running, queue_flag =
5387 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5388 	const struct sched_class *prev_class;
5389 	struct rq_flags rf;
5390 	struct rq *rq;
5391 
5392 	/* XXX used to be waiter->prio, not waiter->task->prio */
5393 	prio = __rt_effective_prio(pi_task, p->normal_prio);
5394 
5395 	/*
5396 	 * If nothing changed; bail early.
5397 	 */
5398 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5399 		return;
5400 
5401 	rq = __task_rq_lock(p, &rf);
5402 	update_rq_clock(rq);
5403 	/*
5404 	 * Set under pi_lock && rq->lock, such that the value can be used under
5405 	 * either lock.
5406 	 *
5407 	 * Note that there is loads of tricky to make this pointer cache work
5408 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5409 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
5410 	 * task is allowed to run again (and can exit). This ensures the pointer
5411 	 * points to a blocked task -- which guarantees the task is present.
5412 	 */
5413 	p->pi_top_task = pi_task;
5414 
5415 	/*
5416 	 * For FIFO/RR we only need to set prio, if that matches we're done.
5417 	 */
5418 	if (prio == p->prio && !dl_prio(prio))
5419 		goto out_unlock;
5420 
5421 	/*
5422 	 * Idle task boosting is a nono in general. There is one
5423 	 * exception, when PREEMPT_RT and NOHZ is active:
5424 	 *
5425 	 * The idle task calls get_next_timer_interrupt() and holds
5426 	 * the timer wheel base->lock on the CPU and another CPU wants
5427 	 * to access the timer (probably to cancel it). We can safely
5428 	 * ignore the boosting request, as the idle CPU runs this code
5429 	 * with interrupts disabled and will complete the lock
5430 	 * protected section without being interrupted. So there is no
5431 	 * real need to boost.
5432 	 */
5433 	if (unlikely(p == rq->idle)) {
5434 		WARN_ON(p != rq->curr);
5435 		WARN_ON(p->pi_blocked_on);
5436 		goto out_unlock;
5437 	}
5438 
5439 	trace_sched_pi_setprio(p, pi_task);
5440 	oldprio = p->prio;
5441 
5442 	if (oldprio == prio)
5443 		queue_flag &= ~DEQUEUE_MOVE;
5444 
5445 	prev_class = p->sched_class;
5446 	queued = task_on_rq_queued(p);
5447 	running = task_current(rq, p);
5448 	if (queued)
5449 		dequeue_task(rq, p, queue_flag);
5450 	if (running)
5451 		put_prev_task(rq, p);
5452 
5453 	/*
5454 	 * Boosting condition are:
5455 	 * 1. -rt task is running and holds mutex A
5456 	 *      --> -dl task blocks on mutex A
5457 	 *
5458 	 * 2. -dl task is running and holds mutex A
5459 	 *      --> -dl task blocks on mutex A and could preempt the
5460 	 *          running task
5461 	 */
5462 	if (dl_prio(prio)) {
5463 		if (!dl_prio(p->normal_prio) ||
5464 		    (pi_task && dl_prio(pi_task->prio) &&
5465 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
5466 			p->dl.pi_se = pi_task->dl.pi_se;
5467 			queue_flag |= ENQUEUE_REPLENISH;
5468 		} else {
5469 			p->dl.pi_se = &p->dl;
5470 		}
5471 		p->sched_class = &dl_sched_class;
5472 	} else if (rt_prio(prio)) {
5473 		if (dl_prio(oldprio))
5474 			p->dl.pi_se = &p->dl;
5475 		if (oldprio < prio)
5476 			queue_flag |= ENQUEUE_HEAD;
5477 		p->sched_class = &rt_sched_class;
5478 	} else {
5479 		if (dl_prio(oldprio))
5480 			p->dl.pi_se = &p->dl;
5481 		if (rt_prio(oldprio))
5482 			p->rt.timeout = 0;
5483 		p->sched_class = &fair_sched_class;
5484 	}
5485 
5486 	p->prio = prio;
5487 
5488 	if (queued)
5489 		enqueue_task(rq, p, queue_flag);
5490 	if (running)
5491 		set_next_task(rq, p);
5492 
5493 	check_class_changed(rq, p, prev_class, oldprio);
5494 out_unlock:
5495 	/* Avoid rq from going away on us: */
5496 	preempt_disable();
5497 
5498 	rq_unpin_lock(rq, &rf);
5499 	__balance_callbacks(rq);
5500 	raw_spin_unlock(&rq->lock);
5501 
5502 	preempt_enable();
5503 }
5504 #else
5505 static inline int rt_effective_prio(struct task_struct *p, int prio)
5506 {
5507 	return prio;
5508 }
5509 #endif
5510 
5511 void set_user_nice(struct task_struct *p, long nice)
5512 {
5513 	bool queued, running;
5514 	int old_prio;
5515 	struct rq_flags rf;
5516 	struct rq *rq;
5517 
5518 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5519 		return;
5520 	/*
5521 	 * We have to be careful, if called from sys_setpriority(),
5522 	 * the task might be in the middle of scheduling on another CPU.
5523 	 */
5524 	rq = task_rq_lock(p, &rf);
5525 	update_rq_clock(rq);
5526 
5527 	/*
5528 	 * The RT priorities are set via sched_setscheduler(), but we still
5529 	 * allow the 'normal' nice value to be set - but as expected
5530 	 * it won't have any effect on scheduling until the task is
5531 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5532 	 */
5533 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5534 		p->static_prio = NICE_TO_PRIO(nice);
5535 		goto out_unlock;
5536 	}
5537 	queued = task_on_rq_queued(p);
5538 	running = task_current(rq, p);
5539 	if (queued)
5540 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5541 	if (running)
5542 		put_prev_task(rq, p);
5543 
5544 	p->static_prio = NICE_TO_PRIO(nice);
5545 	set_load_weight(p, true);
5546 	old_prio = p->prio;
5547 	p->prio = effective_prio(p);
5548 
5549 	if (queued)
5550 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5551 	if (running)
5552 		set_next_task(rq, p);
5553 
5554 	/*
5555 	 * If the task increased its priority or is running and
5556 	 * lowered its priority, then reschedule its CPU:
5557 	 */
5558 	p->sched_class->prio_changed(rq, p, old_prio);
5559 
5560 out_unlock:
5561 	task_rq_unlock(rq, p, &rf);
5562 }
5563 EXPORT_SYMBOL(set_user_nice);
5564 
5565 /*
5566  * can_nice - check if a task can reduce its nice value
5567  * @p: task
5568  * @nice: nice value
5569  */
5570 int can_nice(const struct task_struct *p, const int nice)
5571 {
5572 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5573 	int nice_rlim = nice_to_rlimit(nice);
5574 
5575 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5576 		capable(CAP_SYS_NICE));
5577 }
5578 
5579 #ifdef __ARCH_WANT_SYS_NICE
5580 
5581 /*
5582  * sys_nice - change the priority of the current process.
5583  * @increment: priority increment
5584  *
5585  * sys_setpriority is a more generic, but much slower function that
5586  * does similar things.
5587  */
5588 SYSCALL_DEFINE1(nice, int, increment)
5589 {
5590 	long nice, retval;
5591 
5592 	/*
5593 	 * Setpriority might change our priority at the same moment.
5594 	 * We don't have to worry. Conceptually one call occurs first
5595 	 * and we have a single winner.
5596 	 */
5597 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5598 	nice = task_nice(current) + increment;
5599 
5600 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5601 	if (increment < 0 && !can_nice(current, nice))
5602 		return -EPERM;
5603 
5604 	retval = security_task_setnice(current, nice);
5605 	if (retval)
5606 		return retval;
5607 
5608 	set_user_nice(current, nice);
5609 	return 0;
5610 }
5611 
5612 #endif
5613 
5614 /**
5615  * task_prio - return the priority value of a given task.
5616  * @p: the task in question.
5617  *
5618  * Return: The priority value as seen by users in /proc.
5619  * RT tasks are offset by -200. Normal tasks are centered
5620  * around 0, value goes from -16 to +15.
5621  */
5622 int task_prio(const struct task_struct *p)
5623 {
5624 	return p->prio - MAX_RT_PRIO;
5625 }
5626 
5627 /**
5628  * idle_cpu - is a given CPU idle currently?
5629  * @cpu: the processor in question.
5630  *
5631  * Return: 1 if the CPU is currently idle. 0 otherwise.
5632  */
5633 int idle_cpu(int cpu)
5634 {
5635 	struct rq *rq = cpu_rq(cpu);
5636 
5637 	if (rq->curr != rq->idle)
5638 		return 0;
5639 
5640 	if (rq->nr_running)
5641 		return 0;
5642 
5643 #ifdef CONFIG_SMP
5644 	if (rq->ttwu_pending)
5645 		return 0;
5646 #endif
5647 
5648 	return 1;
5649 }
5650 
5651 /**
5652  * available_idle_cpu - is a given CPU idle for enqueuing work.
5653  * @cpu: the CPU in question.
5654  *
5655  * Return: 1 if the CPU is currently idle. 0 otherwise.
5656  */
5657 int available_idle_cpu(int cpu)
5658 {
5659 	if (!idle_cpu(cpu))
5660 		return 0;
5661 
5662 	if (vcpu_is_preempted(cpu))
5663 		return 0;
5664 
5665 	return 1;
5666 }
5667 
5668 /**
5669  * idle_task - return the idle task for a given CPU.
5670  * @cpu: the processor in question.
5671  *
5672  * Return: The idle task for the CPU @cpu.
5673  */
5674 struct task_struct *idle_task(int cpu)
5675 {
5676 	return cpu_rq(cpu)->idle;
5677 }
5678 
5679 /**
5680  * find_process_by_pid - find a process with a matching PID value.
5681  * @pid: the pid in question.
5682  *
5683  * The task of @pid, if found. %NULL otherwise.
5684  */
5685 static struct task_struct *find_process_by_pid(pid_t pid)
5686 {
5687 	return pid ? find_task_by_vpid(pid) : current;
5688 }
5689 
5690 /*
5691  * sched_setparam() passes in -1 for its policy, to let the functions
5692  * it calls know not to change it.
5693  */
5694 #define SETPARAM_POLICY	-1
5695 
5696 static void __setscheduler_params(struct task_struct *p,
5697 		const struct sched_attr *attr)
5698 {
5699 	int policy = attr->sched_policy;
5700 
5701 	if (policy == SETPARAM_POLICY)
5702 		policy = p->policy;
5703 
5704 	p->policy = policy;
5705 
5706 	if (dl_policy(policy))
5707 		__setparam_dl(p, attr);
5708 	else if (fair_policy(policy))
5709 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5710 
5711 	/*
5712 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5713 	 * !rt_policy. Always setting this ensures that things like
5714 	 * getparam()/getattr() don't report silly values for !rt tasks.
5715 	 */
5716 	p->rt_priority = attr->sched_priority;
5717 	p->normal_prio = normal_prio(p);
5718 	set_load_weight(p, true);
5719 }
5720 
5721 /* Actually do priority change: must hold pi & rq lock. */
5722 static void __setscheduler(struct rq *rq, struct task_struct *p,
5723 			   const struct sched_attr *attr, bool keep_boost)
5724 {
5725 	/*
5726 	 * If params can't change scheduling class changes aren't allowed
5727 	 * either.
5728 	 */
5729 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5730 		return;
5731 
5732 	__setscheduler_params(p, attr);
5733 
5734 	/*
5735 	 * Keep a potential priority boosting if called from
5736 	 * sched_setscheduler().
5737 	 */
5738 	p->prio = normal_prio(p);
5739 	if (keep_boost)
5740 		p->prio = rt_effective_prio(p, p->prio);
5741 
5742 	if (dl_prio(p->prio))
5743 		p->sched_class = &dl_sched_class;
5744 	else if (rt_prio(p->prio))
5745 		p->sched_class = &rt_sched_class;
5746 	else
5747 		p->sched_class = &fair_sched_class;
5748 }
5749 
5750 /*
5751  * Check the target process has a UID that matches the current process's:
5752  */
5753 static bool check_same_owner(struct task_struct *p)
5754 {
5755 	const struct cred *cred = current_cred(), *pcred;
5756 	bool match;
5757 
5758 	rcu_read_lock();
5759 	pcred = __task_cred(p);
5760 	match = (uid_eq(cred->euid, pcred->euid) ||
5761 		 uid_eq(cred->euid, pcred->uid));
5762 	rcu_read_unlock();
5763 	return match;
5764 }
5765 
5766 static int __sched_setscheduler(struct task_struct *p,
5767 				const struct sched_attr *attr,
5768 				bool user, bool pi)
5769 {
5770 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5771 		      MAX_RT_PRIO - 1 - attr->sched_priority;
5772 	int retval, oldprio, oldpolicy = -1, queued, running;
5773 	int new_effective_prio, policy = attr->sched_policy;
5774 	const struct sched_class *prev_class;
5775 	struct callback_head *head;
5776 	struct rq_flags rf;
5777 	int reset_on_fork;
5778 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5779 	struct rq *rq;
5780 
5781 	/* The pi code expects interrupts enabled */
5782 	BUG_ON(pi && in_interrupt());
5783 recheck:
5784 	/* Double check policy once rq lock held: */
5785 	if (policy < 0) {
5786 		reset_on_fork = p->sched_reset_on_fork;
5787 		policy = oldpolicy = p->policy;
5788 	} else {
5789 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5790 
5791 		if (!valid_policy(policy))
5792 			return -EINVAL;
5793 	}
5794 
5795 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5796 		return -EINVAL;
5797 
5798 	/*
5799 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
5800 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5801 	 * SCHED_BATCH and SCHED_IDLE is 0.
5802 	 */
5803 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5804 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5805 		return -EINVAL;
5806 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5807 	    (rt_policy(policy) != (attr->sched_priority != 0)))
5808 		return -EINVAL;
5809 
5810 	/*
5811 	 * Allow unprivileged RT tasks to decrease priority:
5812 	 */
5813 	if (user && !capable(CAP_SYS_NICE)) {
5814 		if (fair_policy(policy)) {
5815 			if (attr->sched_nice < task_nice(p) &&
5816 			    !can_nice(p, attr->sched_nice))
5817 				return -EPERM;
5818 		}
5819 
5820 		if (rt_policy(policy)) {
5821 			unsigned long rlim_rtprio =
5822 					task_rlimit(p, RLIMIT_RTPRIO);
5823 
5824 			/* Can't set/change the rt policy: */
5825 			if (policy != p->policy && !rlim_rtprio)
5826 				return -EPERM;
5827 
5828 			/* Can't increase priority: */
5829 			if (attr->sched_priority > p->rt_priority &&
5830 			    attr->sched_priority > rlim_rtprio)
5831 				return -EPERM;
5832 		}
5833 
5834 		 /*
5835 		  * Can't set/change SCHED_DEADLINE policy at all for now
5836 		  * (safest behavior); in the future we would like to allow
5837 		  * unprivileged DL tasks to increase their relative deadline
5838 		  * or reduce their runtime (both ways reducing utilization)
5839 		  */
5840 		if (dl_policy(policy))
5841 			return -EPERM;
5842 
5843 		/*
5844 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5845 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5846 		 */
5847 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
5848 			if (!can_nice(p, task_nice(p)))
5849 				return -EPERM;
5850 		}
5851 
5852 		/* Can't change other user's priorities: */
5853 		if (!check_same_owner(p))
5854 			return -EPERM;
5855 
5856 		/* Normal users shall not reset the sched_reset_on_fork flag: */
5857 		if (p->sched_reset_on_fork && !reset_on_fork)
5858 			return -EPERM;
5859 	}
5860 
5861 	if (user) {
5862 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
5863 			return -EINVAL;
5864 
5865 		retval = security_task_setscheduler(p);
5866 		if (retval)
5867 			return retval;
5868 	}
5869 
5870 	/* Update task specific "requested" clamps */
5871 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5872 		retval = uclamp_validate(p, attr);
5873 		if (retval)
5874 			return retval;
5875 	}
5876 
5877 	if (pi)
5878 		cpuset_read_lock();
5879 
5880 	/*
5881 	 * Make sure no PI-waiters arrive (or leave) while we are
5882 	 * changing the priority of the task:
5883 	 *
5884 	 * To be able to change p->policy safely, the appropriate
5885 	 * runqueue lock must be held.
5886 	 */
5887 	rq = task_rq_lock(p, &rf);
5888 	update_rq_clock(rq);
5889 
5890 	/*
5891 	 * Changing the policy of the stop threads its a very bad idea:
5892 	 */
5893 	if (p == rq->stop) {
5894 		retval = -EINVAL;
5895 		goto unlock;
5896 	}
5897 
5898 	/*
5899 	 * If not changing anything there's no need to proceed further,
5900 	 * but store a possible modification of reset_on_fork.
5901 	 */
5902 	if (unlikely(policy == p->policy)) {
5903 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5904 			goto change;
5905 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5906 			goto change;
5907 		if (dl_policy(policy) && dl_param_changed(p, attr))
5908 			goto change;
5909 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5910 			goto change;
5911 
5912 		p->sched_reset_on_fork = reset_on_fork;
5913 		retval = 0;
5914 		goto unlock;
5915 	}
5916 change:
5917 
5918 	if (user) {
5919 #ifdef CONFIG_RT_GROUP_SCHED
5920 		/*
5921 		 * Do not allow realtime tasks into groups that have no runtime
5922 		 * assigned.
5923 		 */
5924 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5925 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5926 				!task_group_is_autogroup(task_group(p))) {
5927 			retval = -EPERM;
5928 			goto unlock;
5929 		}
5930 #endif
5931 #ifdef CONFIG_SMP
5932 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5933 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5934 			cpumask_t *span = rq->rd->span;
5935 
5936 			/*
5937 			 * Don't allow tasks with an affinity mask smaller than
5938 			 * the entire root_domain to become SCHED_DEADLINE. We
5939 			 * will also fail if there's no bandwidth available.
5940 			 */
5941 			if (!cpumask_subset(span, p->cpus_ptr) ||
5942 			    rq->rd->dl_bw.bw == 0) {
5943 				retval = -EPERM;
5944 				goto unlock;
5945 			}
5946 		}
5947 #endif
5948 	}
5949 
5950 	/* Re-check policy now with rq lock held: */
5951 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5952 		policy = oldpolicy = -1;
5953 		task_rq_unlock(rq, p, &rf);
5954 		if (pi)
5955 			cpuset_read_unlock();
5956 		goto recheck;
5957 	}
5958 
5959 	/*
5960 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5961 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5962 	 * is available.
5963 	 */
5964 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5965 		retval = -EBUSY;
5966 		goto unlock;
5967 	}
5968 
5969 	p->sched_reset_on_fork = reset_on_fork;
5970 	oldprio = p->prio;
5971 
5972 	if (pi) {
5973 		/*
5974 		 * Take priority boosted tasks into account. If the new
5975 		 * effective priority is unchanged, we just store the new
5976 		 * normal parameters and do not touch the scheduler class and
5977 		 * the runqueue. This will be done when the task deboost
5978 		 * itself.
5979 		 */
5980 		new_effective_prio = rt_effective_prio(p, newprio);
5981 		if (new_effective_prio == oldprio)
5982 			queue_flags &= ~DEQUEUE_MOVE;
5983 	}
5984 
5985 	queued = task_on_rq_queued(p);
5986 	running = task_current(rq, p);
5987 	if (queued)
5988 		dequeue_task(rq, p, queue_flags);
5989 	if (running)
5990 		put_prev_task(rq, p);
5991 
5992 	prev_class = p->sched_class;
5993 
5994 	__setscheduler(rq, p, attr, pi);
5995 	__setscheduler_uclamp(p, attr);
5996 
5997 	if (queued) {
5998 		/*
5999 		 * We enqueue to tail when the priority of a task is
6000 		 * increased (user space view).
6001 		 */
6002 		if (oldprio < p->prio)
6003 			queue_flags |= ENQUEUE_HEAD;
6004 
6005 		enqueue_task(rq, p, queue_flags);
6006 	}
6007 	if (running)
6008 		set_next_task(rq, p);
6009 
6010 	check_class_changed(rq, p, prev_class, oldprio);
6011 
6012 	/* Avoid rq from going away on us: */
6013 	preempt_disable();
6014 	head = splice_balance_callbacks(rq);
6015 	task_rq_unlock(rq, p, &rf);
6016 
6017 	if (pi) {
6018 		cpuset_read_unlock();
6019 		rt_mutex_adjust_pi(p);
6020 	}
6021 
6022 	/* Run balance callbacks after we've adjusted the PI chain: */
6023 	balance_callbacks(rq, head);
6024 	preempt_enable();
6025 
6026 	return 0;
6027 
6028 unlock:
6029 	task_rq_unlock(rq, p, &rf);
6030 	if (pi)
6031 		cpuset_read_unlock();
6032 	return retval;
6033 }
6034 
6035 static int _sched_setscheduler(struct task_struct *p, int policy,
6036 			       const struct sched_param *param, bool check)
6037 {
6038 	struct sched_attr attr = {
6039 		.sched_policy   = policy,
6040 		.sched_priority = param->sched_priority,
6041 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
6042 	};
6043 
6044 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6045 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6046 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6047 		policy &= ~SCHED_RESET_ON_FORK;
6048 		attr.sched_policy = policy;
6049 	}
6050 
6051 	return __sched_setscheduler(p, &attr, check, true);
6052 }
6053 /**
6054  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6055  * @p: the task in question.
6056  * @policy: new policy.
6057  * @param: structure containing the new RT priority.
6058  *
6059  * Use sched_set_fifo(), read its comment.
6060  *
6061  * Return: 0 on success. An error code otherwise.
6062  *
6063  * NOTE that the task may be already dead.
6064  */
6065 int sched_setscheduler(struct task_struct *p, int policy,
6066 		       const struct sched_param *param)
6067 {
6068 	return _sched_setscheduler(p, policy, param, true);
6069 }
6070 
6071 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6072 {
6073 	return __sched_setscheduler(p, attr, true, true);
6074 }
6075 
6076 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6077 {
6078 	return __sched_setscheduler(p, attr, false, true);
6079 }
6080 
6081 /**
6082  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6083  * @p: the task in question.
6084  * @policy: new policy.
6085  * @param: structure containing the new RT priority.
6086  *
6087  * Just like sched_setscheduler, only don't bother checking if the
6088  * current context has permission.  For example, this is needed in
6089  * stop_machine(): we create temporary high priority worker threads,
6090  * but our caller might not have that capability.
6091  *
6092  * Return: 0 on success. An error code otherwise.
6093  */
6094 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6095 			       const struct sched_param *param)
6096 {
6097 	return _sched_setscheduler(p, policy, param, false);
6098 }
6099 
6100 /*
6101  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6102  * incapable of resource management, which is the one thing an OS really should
6103  * be doing.
6104  *
6105  * This is of course the reason it is limited to privileged users only.
6106  *
6107  * Worse still; it is fundamentally impossible to compose static priority
6108  * workloads. You cannot take two correctly working static prio workloads
6109  * and smash them together and still expect them to work.
6110  *
6111  * For this reason 'all' FIFO tasks the kernel creates are basically at:
6112  *
6113  *   MAX_RT_PRIO / 2
6114  *
6115  * The administrator _MUST_ configure the system, the kernel simply doesn't
6116  * know enough information to make a sensible choice.
6117  */
6118 void sched_set_fifo(struct task_struct *p)
6119 {
6120 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6121 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6122 }
6123 EXPORT_SYMBOL_GPL(sched_set_fifo);
6124 
6125 /*
6126  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6127  */
6128 void sched_set_fifo_low(struct task_struct *p)
6129 {
6130 	struct sched_param sp = { .sched_priority = 1 };
6131 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6132 }
6133 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6134 
6135 void sched_set_normal(struct task_struct *p, int nice)
6136 {
6137 	struct sched_attr attr = {
6138 		.sched_policy = SCHED_NORMAL,
6139 		.sched_nice = nice,
6140 	};
6141 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6142 }
6143 EXPORT_SYMBOL_GPL(sched_set_normal);
6144 
6145 static int
6146 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6147 {
6148 	struct sched_param lparam;
6149 	struct task_struct *p;
6150 	int retval;
6151 
6152 	if (!param || pid < 0)
6153 		return -EINVAL;
6154 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6155 		return -EFAULT;
6156 
6157 	rcu_read_lock();
6158 	retval = -ESRCH;
6159 	p = find_process_by_pid(pid);
6160 	if (likely(p))
6161 		get_task_struct(p);
6162 	rcu_read_unlock();
6163 
6164 	if (likely(p)) {
6165 		retval = sched_setscheduler(p, policy, &lparam);
6166 		put_task_struct(p);
6167 	}
6168 
6169 	return retval;
6170 }
6171 
6172 /*
6173  * Mimics kernel/events/core.c perf_copy_attr().
6174  */
6175 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6176 {
6177 	u32 size;
6178 	int ret;
6179 
6180 	/* Zero the full structure, so that a short copy will be nice: */
6181 	memset(attr, 0, sizeof(*attr));
6182 
6183 	ret = get_user(size, &uattr->size);
6184 	if (ret)
6185 		return ret;
6186 
6187 	/* ABI compatibility quirk: */
6188 	if (!size)
6189 		size = SCHED_ATTR_SIZE_VER0;
6190 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6191 		goto err_size;
6192 
6193 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6194 	if (ret) {
6195 		if (ret == -E2BIG)
6196 			goto err_size;
6197 		return ret;
6198 	}
6199 
6200 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6201 	    size < SCHED_ATTR_SIZE_VER1)
6202 		return -EINVAL;
6203 
6204 	/*
6205 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
6206 	 * to be strict and return an error on out-of-bounds values?
6207 	 */
6208 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6209 
6210 	return 0;
6211 
6212 err_size:
6213 	put_user(sizeof(*attr), &uattr->size);
6214 	return -E2BIG;
6215 }
6216 
6217 /**
6218  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6219  * @pid: the pid in question.
6220  * @policy: new policy.
6221  * @param: structure containing the new RT priority.
6222  *
6223  * Return: 0 on success. An error code otherwise.
6224  */
6225 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6226 {
6227 	if (policy < 0)
6228 		return -EINVAL;
6229 
6230 	return do_sched_setscheduler(pid, policy, param);
6231 }
6232 
6233 /**
6234  * sys_sched_setparam - set/change the RT priority of a thread
6235  * @pid: the pid in question.
6236  * @param: structure containing the new RT priority.
6237  *
6238  * Return: 0 on success. An error code otherwise.
6239  */
6240 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6241 {
6242 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6243 }
6244 
6245 /**
6246  * sys_sched_setattr - same as above, but with extended sched_attr
6247  * @pid: the pid in question.
6248  * @uattr: structure containing the extended parameters.
6249  * @flags: for future extension.
6250  */
6251 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6252 			       unsigned int, flags)
6253 {
6254 	struct sched_attr attr;
6255 	struct task_struct *p;
6256 	int retval;
6257 
6258 	if (!uattr || pid < 0 || flags)
6259 		return -EINVAL;
6260 
6261 	retval = sched_copy_attr(uattr, &attr);
6262 	if (retval)
6263 		return retval;
6264 
6265 	if ((int)attr.sched_policy < 0)
6266 		return -EINVAL;
6267 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6268 		attr.sched_policy = SETPARAM_POLICY;
6269 
6270 	rcu_read_lock();
6271 	retval = -ESRCH;
6272 	p = find_process_by_pid(pid);
6273 	if (likely(p))
6274 		get_task_struct(p);
6275 	rcu_read_unlock();
6276 
6277 	if (likely(p)) {
6278 		retval = sched_setattr(p, &attr);
6279 		put_task_struct(p);
6280 	}
6281 
6282 	return retval;
6283 }
6284 
6285 /**
6286  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6287  * @pid: the pid in question.
6288  *
6289  * Return: On success, the policy of the thread. Otherwise, a negative error
6290  * code.
6291  */
6292 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6293 {
6294 	struct task_struct *p;
6295 	int retval;
6296 
6297 	if (pid < 0)
6298 		return -EINVAL;
6299 
6300 	retval = -ESRCH;
6301 	rcu_read_lock();
6302 	p = find_process_by_pid(pid);
6303 	if (p) {
6304 		retval = security_task_getscheduler(p);
6305 		if (!retval)
6306 			retval = p->policy
6307 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6308 	}
6309 	rcu_read_unlock();
6310 	return retval;
6311 }
6312 
6313 /**
6314  * sys_sched_getparam - get the RT priority of a thread
6315  * @pid: the pid in question.
6316  * @param: structure containing the RT priority.
6317  *
6318  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6319  * code.
6320  */
6321 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6322 {
6323 	struct sched_param lp = { .sched_priority = 0 };
6324 	struct task_struct *p;
6325 	int retval;
6326 
6327 	if (!param || pid < 0)
6328 		return -EINVAL;
6329 
6330 	rcu_read_lock();
6331 	p = find_process_by_pid(pid);
6332 	retval = -ESRCH;
6333 	if (!p)
6334 		goto out_unlock;
6335 
6336 	retval = security_task_getscheduler(p);
6337 	if (retval)
6338 		goto out_unlock;
6339 
6340 	if (task_has_rt_policy(p))
6341 		lp.sched_priority = p->rt_priority;
6342 	rcu_read_unlock();
6343 
6344 	/*
6345 	 * This one might sleep, we cannot do it with a spinlock held ...
6346 	 */
6347 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6348 
6349 	return retval;
6350 
6351 out_unlock:
6352 	rcu_read_unlock();
6353 	return retval;
6354 }
6355 
6356 /*
6357  * Copy the kernel size attribute structure (which might be larger
6358  * than what user-space knows about) to user-space.
6359  *
6360  * Note that all cases are valid: user-space buffer can be larger or
6361  * smaller than the kernel-space buffer. The usual case is that both
6362  * have the same size.
6363  */
6364 static int
6365 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6366 			struct sched_attr *kattr,
6367 			unsigned int usize)
6368 {
6369 	unsigned int ksize = sizeof(*kattr);
6370 
6371 	if (!access_ok(uattr, usize))
6372 		return -EFAULT;
6373 
6374 	/*
6375 	 * sched_getattr() ABI forwards and backwards compatibility:
6376 	 *
6377 	 * If usize == ksize then we just copy everything to user-space and all is good.
6378 	 *
6379 	 * If usize < ksize then we only copy as much as user-space has space for,
6380 	 * this keeps ABI compatibility as well. We skip the rest.
6381 	 *
6382 	 * If usize > ksize then user-space is using a newer version of the ABI,
6383 	 * which part the kernel doesn't know about. Just ignore it - tooling can
6384 	 * detect the kernel's knowledge of attributes from the attr->size value
6385 	 * which is set to ksize in this case.
6386 	 */
6387 	kattr->size = min(usize, ksize);
6388 
6389 	if (copy_to_user(uattr, kattr, kattr->size))
6390 		return -EFAULT;
6391 
6392 	return 0;
6393 }
6394 
6395 /**
6396  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6397  * @pid: the pid in question.
6398  * @uattr: structure containing the extended parameters.
6399  * @usize: sizeof(attr) for fwd/bwd comp.
6400  * @flags: for future extension.
6401  */
6402 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6403 		unsigned int, usize, unsigned int, flags)
6404 {
6405 	struct sched_attr kattr = { };
6406 	struct task_struct *p;
6407 	int retval;
6408 
6409 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6410 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
6411 		return -EINVAL;
6412 
6413 	rcu_read_lock();
6414 	p = find_process_by_pid(pid);
6415 	retval = -ESRCH;
6416 	if (!p)
6417 		goto out_unlock;
6418 
6419 	retval = security_task_getscheduler(p);
6420 	if (retval)
6421 		goto out_unlock;
6422 
6423 	kattr.sched_policy = p->policy;
6424 	if (p->sched_reset_on_fork)
6425 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6426 	if (task_has_dl_policy(p))
6427 		__getparam_dl(p, &kattr);
6428 	else if (task_has_rt_policy(p))
6429 		kattr.sched_priority = p->rt_priority;
6430 	else
6431 		kattr.sched_nice = task_nice(p);
6432 
6433 #ifdef CONFIG_UCLAMP_TASK
6434 	/*
6435 	 * This could race with another potential updater, but this is fine
6436 	 * because it'll correctly read the old or the new value. We don't need
6437 	 * to guarantee who wins the race as long as it doesn't return garbage.
6438 	 */
6439 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6440 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6441 #endif
6442 
6443 	rcu_read_unlock();
6444 
6445 	return sched_attr_copy_to_user(uattr, &kattr, usize);
6446 
6447 out_unlock:
6448 	rcu_read_unlock();
6449 	return retval;
6450 }
6451 
6452 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6453 {
6454 	cpumask_var_t cpus_allowed, new_mask;
6455 	struct task_struct *p;
6456 	int retval;
6457 
6458 	rcu_read_lock();
6459 
6460 	p = find_process_by_pid(pid);
6461 	if (!p) {
6462 		rcu_read_unlock();
6463 		return -ESRCH;
6464 	}
6465 
6466 	/* Prevent p going away */
6467 	get_task_struct(p);
6468 	rcu_read_unlock();
6469 
6470 	if (p->flags & PF_NO_SETAFFINITY) {
6471 		retval = -EINVAL;
6472 		goto out_put_task;
6473 	}
6474 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6475 		retval = -ENOMEM;
6476 		goto out_put_task;
6477 	}
6478 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6479 		retval = -ENOMEM;
6480 		goto out_free_cpus_allowed;
6481 	}
6482 	retval = -EPERM;
6483 	if (!check_same_owner(p)) {
6484 		rcu_read_lock();
6485 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6486 			rcu_read_unlock();
6487 			goto out_free_new_mask;
6488 		}
6489 		rcu_read_unlock();
6490 	}
6491 
6492 	retval = security_task_setscheduler(p);
6493 	if (retval)
6494 		goto out_free_new_mask;
6495 
6496 
6497 	cpuset_cpus_allowed(p, cpus_allowed);
6498 	cpumask_and(new_mask, in_mask, cpus_allowed);
6499 
6500 	/*
6501 	 * Since bandwidth control happens on root_domain basis,
6502 	 * if admission test is enabled, we only admit -deadline
6503 	 * tasks allowed to run on all the CPUs in the task's
6504 	 * root_domain.
6505 	 */
6506 #ifdef CONFIG_SMP
6507 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6508 		rcu_read_lock();
6509 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6510 			retval = -EBUSY;
6511 			rcu_read_unlock();
6512 			goto out_free_new_mask;
6513 		}
6514 		rcu_read_unlock();
6515 	}
6516 #endif
6517 again:
6518 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6519 
6520 	if (!retval) {
6521 		cpuset_cpus_allowed(p, cpus_allowed);
6522 		if (!cpumask_subset(new_mask, cpus_allowed)) {
6523 			/*
6524 			 * We must have raced with a concurrent cpuset
6525 			 * update. Just reset the cpus_allowed to the
6526 			 * cpuset's cpus_allowed
6527 			 */
6528 			cpumask_copy(new_mask, cpus_allowed);
6529 			goto again;
6530 		}
6531 	}
6532 out_free_new_mask:
6533 	free_cpumask_var(new_mask);
6534 out_free_cpus_allowed:
6535 	free_cpumask_var(cpus_allowed);
6536 out_put_task:
6537 	put_task_struct(p);
6538 	return retval;
6539 }
6540 
6541 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6542 			     struct cpumask *new_mask)
6543 {
6544 	if (len < cpumask_size())
6545 		cpumask_clear(new_mask);
6546 	else if (len > cpumask_size())
6547 		len = cpumask_size();
6548 
6549 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6550 }
6551 
6552 /**
6553  * sys_sched_setaffinity - set the CPU affinity of a process
6554  * @pid: pid of the process
6555  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6556  * @user_mask_ptr: user-space pointer to the new CPU mask
6557  *
6558  * Return: 0 on success. An error code otherwise.
6559  */
6560 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6561 		unsigned long __user *, user_mask_ptr)
6562 {
6563 	cpumask_var_t new_mask;
6564 	int retval;
6565 
6566 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6567 		return -ENOMEM;
6568 
6569 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6570 	if (retval == 0)
6571 		retval = sched_setaffinity(pid, new_mask);
6572 	free_cpumask_var(new_mask);
6573 	return retval;
6574 }
6575 
6576 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6577 {
6578 	struct task_struct *p;
6579 	unsigned long flags;
6580 	int retval;
6581 
6582 	rcu_read_lock();
6583 
6584 	retval = -ESRCH;
6585 	p = find_process_by_pid(pid);
6586 	if (!p)
6587 		goto out_unlock;
6588 
6589 	retval = security_task_getscheduler(p);
6590 	if (retval)
6591 		goto out_unlock;
6592 
6593 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6594 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6595 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6596 
6597 out_unlock:
6598 	rcu_read_unlock();
6599 
6600 	return retval;
6601 }
6602 
6603 /**
6604  * sys_sched_getaffinity - get the CPU affinity of a process
6605  * @pid: pid of the process
6606  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6607  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6608  *
6609  * Return: size of CPU mask copied to user_mask_ptr on success. An
6610  * error code otherwise.
6611  */
6612 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6613 		unsigned long __user *, user_mask_ptr)
6614 {
6615 	int ret;
6616 	cpumask_var_t mask;
6617 
6618 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6619 		return -EINVAL;
6620 	if (len & (sizeof(unsigned long)-1))
6621 		return -EINVAL;
6622 
6623 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6624 		return -ENOMEM;
6625 
6626 	ret = sched_getaffinity(pid, mask);
6627 	if (ret == 0) {
6628 		unsigned int retlen = min(len, cpumask_size());
6629 
6630 		if (copy_to_user(user_mask_ptr, mask, retlen))
6631 			ret = -EFAULT;
6632 		else
6633 			ret = retlen;
6634 	}
6635 	free_cpumask_var(mask);
6636 
6637 	return ret;
6638 }
6639 
6640 static void do_sched_yield(void)
6641 {
6642 	struct rq_flags rf;
6643 	struct rq *rq;
6644 
6645 	rq = this_rq_lock_irq(&rf);
6646 
6647 	schedstat_inc(rq->yld_count);
6648 	current->sched_class->yield_task(rq);
6649 
6650 	preempt_disable();
6651 	rq_unlock_irq(rq, &rf);
6652 	sched_preempt_enable_no_resched();
6653 
6654 	schedule();
6655 }
6656 
6657 /**
6658  * sys_sched_yield - yield the current processor to other threads.
6659  *
6660  * This function yields the current CPU to other tasks. If there are no
6661  * other threads running on this CPU then this function will return.
6662  *
6663  * Return: 0.
6664  */
6665 SYSCALL_DEFINE0(sched_yield)
6666 {
6667 	do_sched_yield();
6668 	return 0;
6669 }
6670 
6671 #ifndef CONFIG_PREEMPTION
6672 int __sched _cond_resched(void)
6673 {
6674 	if (should_resched(0)) {
6675 		preempt_schedule_common();
6676 		return 1;
6677 	}
6678 	rcu_all_qs();
6679 	return 0;
6680 }
6681 EXPORT_SYMBOL(_cond_resched);
6682 #endif
6683 
6684 /*
6685  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6686  * call schedule, and on return reacquire the lock.
6687  *
6688  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6689  * operations here to prevent schedule() from being called twice (once via
6690  * spin_unlock(), once by hand).
6691  */
6692 int __cond_resched_lock(spinlock_t *lock)
6693 {
6694 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
6695 	int ret = 0;
6696 
6697 	lockdep_assert_held(lock);
6698 
6699 	if (spin_needbreak(lock) || resched) {
6700 		spin_unlock(lock);
6701 		if (resched)
6702 			preempt_schedule_common();
6703 		else
6704 			cpu_relax();
6705 		ret = 1;
6706 		spin_lock(lock);
6707 	}
6708 	return ret;
6709 }
6710 EXPORT_SYMBOL(__cond_resched_lock);
6711 
6712 /**
6713  * yield - yield the current processor to other threads.
6714  *
6715  * Do not ever use this function, there's a 99% chance you're doing it wrong.
6716  *
6717  * The scheduler is at all times free to pick the calling task as the most
6718  * eligible task to run, if removing the yield() call from your code breaks
6719  * it, it's already broken.
6720  *
6721  * Typical broken usage is:
6722  *
6723  * while (!event)
6724  *	yield();
6725  *
6726  * where one assumes that yield() will let 'the other' process run that will
6727  * make event true. If the current task is a SCHED_FIFO task that will never
6728  * happen. Never use yield() as a progress guarantee!!
6729  *
6730  * If you want to use yield() to wait for something, use wait_event().
6731  * If you want to use yield() to be 'nice' for others, use cond_resched().
6732  * If you still want to use yield(), do not!
6733  */
6734 void __sched yield(void)
6735 {
6736 	set_current_state(TASK_RUNNING);
6737 	do_sched_yield();
6738 }
6739 EXPORT_SYMBOL(yield);
6740 
6741 /**
6742  * yield_to - yield the current processor to another thread in
6743  * your thread group, or accelerate that thread toward the
6744  * processor it's on.
6745  * @p: target task
6746  * @preempt: whether task preemption is allowed or not
6747  *
6748  * It's the caller's job to ensure that the target task struct
6749  * can't go away on us before we can do any checks.
6750  *
6751  * Return:
6752  *	true (>0) if we indeed boosted the target task.
6753  *	false (0) if we failed to boost the target.
6754  *	-ESRCH if there's no task to yield to.
6755  */
6756 int __sched yield_to(struct task_struct *p, bool preempt)
6757 {
6758 	struct task_struct *curr = current;
6759 	struct rq *rq, *p_rq;
6760 	unsigned long flags;
6761 	int yielded = 0;
6762 
6763 	local_irq_save(flags);
6764 	rq = this_rq();
6765 
6766 again:
6767 	p_rq = task_rq(p);
6768 	/*
6769 	 * If we're the only runnable task on the rq and target rq also
6770 	 * has only one task, there's absolutely no point in yielding.
6771 	 */
6772 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6773 		yielded = -ESRCH;
6774 		goto out_irq;
6775 	}
6776 
6777 	double_rq_lock(rq, p_rq);
6778 	if (task_rq(p) != p_rq) {
6779 		double_rq_unlock(rq, p_rq);
6780 		goto again;
6781 	}
6782 
6783 	if (!curr->sched_class->yield_to_task)
6784 		goto out_unlock;
6785 
6786 	if (curr->sched_class != p->sched_class)
6787 		goto out_unlock;
6788 
6789 	if (task_running(p_rq, p) || p->state)
6790 		goto out_unlock;
6791 
6792 	yielded = curr->sched_class->yield_to_task(rq, p);
6793 	if (yielded) {
6794 		schedstat_inc(rq->yld_count);
6795 		/*
6796 		 * Make p's CPU reschedule; pick_next_entity takes care of
6797 		 * fairness.
6798 		 */
6799 		if (preempt && rq != p_rq)
6800 			resched_curr(p_rq);
6801 	}
6802 
6803 out_unlock:
6804 	double_rq_unlock(rq, p_rq);
6805 out_irq:
6806 	local_irq_restore(flags);
6807 
6808 	if (yielded > 0)
6809 		schedule();
6810 
6811 	return yielded;
6812 }
6813 EXPORT_SYMBOL_GPL(yield_to);
6814 
6815 int io_schedule_prepare(void)
6816 {
6817 	int old_iowait = current->in_iowait;
6818 
6819 	current->in_iowait = 1;
6820 	blk_schedule_flush_plug(current);
6821 
6822 	return old_iowait;
6823 }
6824 
6825 void io_schedule_finish(int token)
6826 {
6827 	current->in_iowait = token;
6828 }
6829 
6830 /*
6831  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6832  * that process accounting knows that this is a task in IO wait state.
6833  */
6834 long __sched io_schedule_timeout(long timeout)
6835 {
6836 	int token;
6837 	long ret;
6838 
6839 	token = io_schedule_prepare();
6840 	ret = schedule_timeout(timeout);
6841 	io_schedule_finish(token);
6842 
6843 	return ret;
6844 }
6845 EXPORT_SYMBOL(io_schedule_timeout);
6846 
6847 void __sched io_schedule(void)
6848 {
6849 	int token;
6850 
6851 	token = io_schedule_prepare();
6852 	schedule();
6853 	io_schedule_finish(token);
6854 }
6855 EXPORT_SYMBOL(io_schedule);
6856 
6857 /**
6858  * sys_sched_get_priority_max - return maximum RT priority.
6859  * @policy: scheduling class.
6860  *
6861  * Return: On success, this syscall returns the maximum
6862  * rt_priority that can be used by a given scheduling class.
6863  * On failure, a negative error code is returned.
6864  */
6865 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6866 {
6867 	int ret = -EINVAL;
6868 
6869 	switch (policy) {
6870 	case SCHED_FIFO:
6871 	case SCHED_RR:
6872 		ret = MAX_USER_RT_PRIO-1;
6873 		break;
6874 	case SCHED_DEADLINE:
6875 	case SCHED_NORMAL:
6876 	case SCHED_BATCH:
6877 	case SCHED_IDLE:
6878 		ret = 0;
6879 		break;
6880 	}
6881 	return ret;
6882 }
6883 
6884 /**
6885  * sys_sched_get_priority_min - return minimum RT priority.
6886  * @policy: scheduling class.
6887  *
6888  * Return: On success, this syscall returns the minimum
6889  * rt_priority that can be used by a given scheduling class.
6890  * On failure, a negative error code is returned.
6891  */
6892 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6893 {
6894 	int ret = -EINVAL;
6895 
6896 	switch (policy) {
6897 	case SCHED_FIFO:
6898 	case SCHED_RR:
6899 		ret = 1;
6900 		break;
6901 	case SCHED_DEADLINE:
6902 	case SCHED_NORMAL:
6903 	case SCHED_BATCH:
6904 	case SCHED_IDLE:
6905 		ret = 0;
6906 	}
6907 	return ret;
6908 }
6909 
6910 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6911 {
6912 	struct task_struct *p;
6913 	unsigned int time_slice;
6914 	struct rq_flags rf;
6915 	struct rq *rq;
6916 	int retval;
6917 
6918 	if (pid < 0)
6919 		return -EINVAL;
6920 
6921 	retval = -ESRCH;
6922 	rcu_read_lock();
6923 	p = find_process_by_pid(pid);
6924 	if (!p)
6925 		goto out_unlock;
6926 
6927 	retval = security_task_getscheduler(p);
6928 	if (retval)
6929 		goto out_unlock;
6930 
6931 	rq = task_rq_lock(p, &rf);
6932 	time_slice = 0;
6933 	if (p->sched_class->get_rr_interval)
6934 		time_slice = p->sched_class->get_rr_interval(rq, p);
6935 	task_rq_unlock(rq, p, &rf);
6936 
6937 	rcu_read_unlock();
6938 	jiffies_to_timespec64(time_slice, t);
6939 	return 0;
6940 
6941 out_unlock:
6942 	rcu_read_unlock();
6943 	return retval;
6944 }
6945 
6946 /**
6947  * sys_sched_rr_get_interval - return the default timeslice of a process.
6948  * @pid: pid of the process.
6949  * @interval: userspace pointer to the timeslice value.
6950  *
6951  * this syscall writes the default timeslice value of a given process
6952  * into the user-space timespec buffer. A value of '0' means infinity.
6953  *
6954  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6955  * an error code.
6956  */
6957 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6958 		struct __kernel_timespec __user *, interval)
6959 {
6960 	struct timespec64 t;
6961 	int retval = sched_rr_get_interval(pid, &t);
6962 
6963 	if (retval == 0)
6964 		retval = put_timespec64(&t, interval);
6965 
6966 	return retval;
6967 }
6968 
6969 #ifdef CONFIG_COMPAT_32BIT_TIME
6970 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6971 		struct old_timespec32 __user *, interval)
6972 {
6973 	struct timespec64 t;
6974 	int retval = sched_rr_get_interval(pid, &t);
6975 
6976 	if (retval == 0)
6977 		retval = put_old_timespec32(&t, interval);
6978 	return retval;
6979 }
6980 #endif
6981 
6982 void sched_show_task(struct task_struct *p)
6983 {
6984 	unsigned long free = 0;
6985 	int ppid;
6986 
6987 	if (!try_get_task_stack(p))
6988 		return;
6989 
6990 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6991 
6992 	if (p->state == TASK_RUNNING)
6993 		pr_cont("  running task    ");
6994 #ifdef CONFIG_DEBUG_STACK_USAGE
6995 	free = stack_not_used(p);
6996 #endif
6997 	ppid = 0;
6998 	rcu_read_lock();
6999 	if (pid_alive(p))
7000 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7001 	rcu_read_unlock();
7002 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7003 		free, task_pid_nr(p), ppid,
7004 		(unsigned long)task_thread_info(p)->flags);
7005 
7006 	print_worker_info(KERN_INFO, p);
7007 	print_stop_info(KERN_INFO, p);
7008 	show_stack(p, NULL, KERN_INFO);
7009 	put_task_stack(p);
7010 }
7011 EXPORT_SYMBOL_GPL(sched_show_task);
7012 
7013 static inline bool
7014 state_filter_match(unsigned long state_filter, struct task_struct *p)
7015 {
7016 	/* no filter, everything matches */
7017 	if (!state_filter)
7018 		return true;
7019 
7020 	/* filter, but doesn't match */
7021 	if (!(p->state & state_filter))
7022 		return false;
7023 
7024 	/*
7025 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7026 	 * TASK_KILLABLE).
7027 	 */
7028 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7029 		return false;
7030 
7031 	return true;
7032 }
7033 
7034 
7035 void show_state_filter(unsigned long state_filter)
7036 {
7037 	struct task_struct *g, *p;
7038 
7039 	rcu_read_lock();
7040 	for_each_process_thread(g, p) {
7041 		/*
7042 		 * reset the NMI-timeout, listing all files on a slow
7043 		 * console might take a lot of time:
7044 		 * Also, reset softlockup watchdogs on all CPUs, because
7045 		 * another CPU might be blocked waiting for us to process
7046 		 * an IPI.
7047 		 */
7048 		touch_nmi_watchdog();
7049 		touch_all_softlockup_watchdogs();
7050 		if (state_filter_match(state_filter, p))
7051 			sched_show_task(p);
7052 	}
7053 
7054 #ifdef CONFIG_SCHED_DEBUG
7055 	if (!state_filter)
7056 		sysrq_sched_debug_show();
7057 #endif
7058 	rcu_read_unlock();
7059 	/*
7060 	 * Only show locks if all tasks are dumped:
7061 	 */
7062 	if (!state_filter)
7063 		debug_show_all_locks();
7064 }
7065 
7066 /**
7067  * init_idle - set up an idle thread for a given CPU
7068  * @idle: task in question
7069  * @cpu: CPU the idle task belongs to
7070  *
7071  * NOTE: this function does not set the idle thread's NEED_RESCHED
7072  * flag, to make booting more robust.
7073  */
7074 void init_idle(struct task_struct *idle, int cpu)
7075 {
7076 	struct rq *rq = cpu_rq(cpu);
7077 	unsigned long flags;
7078 
7079 	__sched_fork(0, idle);
7080 
7081 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7082 	raw_spin_lock(&rq->lock);
7083 
7084 	idle->state = TASK_RUNNING;
7085 	idle->se.exec_start = sched_clock();
7086 	idle->flags |= PF_IDLE;
7087 
7088 	scs_task_reset(idle);
7089 	kasan_unpoison_task_stack(idle);
7090 
7091 #ifdef CONFIG_SMP
7092 	/*
7093 	 * It's possible that init_idle() gets called multiple times on a task,
7094 	 * in that case do_set_cpus_allowed() will not do the right thing.
7095 	 *
7096 	 * And since this is boot we can forgo the serialization.
7097 	 */
7098 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7099 #endif
7100 	/*
7101 	 * We're having a chicken and egg problem, even though we are
7102 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7103 	 * lockdep check in task_group() will fail.
7104 	 *
7105 	 * Similar case to sched_fork(). / Alternatively we could
7106 	 * use task_rq_lock() here and obtain the other rq->lock.
7107 	 *
7108 	 * Silence PROVE_RCU
7109 	 */
7110 	rcu_read_lock();
7111 	__set_task_cpu(idle, cpu);
7112 	rcu_read_unlock();
7113 
7114 	rq->idle = idle;
7115 	rcu_assign_pointer(rq->curr, idle);
7116 	idle->on_rq = TASK_ON_RQ_QUEUED;
7117 #ifdef CONFIG_SMP
7118 	idle->on_cpu = 1;
7119 #endif
7120 	raw_spin_unlock(&rq->lock);
7121 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7122 
7123 	/* Set the preempt count _outside_ the spinlocks! */
7124 	init_idle_preempt_count(idle, cpu);
7125 
7126 	/*
7127 	 * The idle tasks have their own, simple scheduling class:
7128 	 */
7129 	idle->sched_class = &idle_sched_class;
7130 	ftrace_graph_init_idle_task(idle, cpu);
7131 	vtime_init_idle(idle, cpu);
7132 #ifdef CONFIG_SMP
7133 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7134 #endif
7135 }
7136 
7137 #ifdef CONFIG_SMP
7138 
7139 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7140 			      const struct cpumask *trial)
7141 {
7142 	int ret = 1;
7143 
7144 	if (!cpumask_weight(cur))
7145 		return ret;
7146 
7147 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7148 
7149 	return ret;
7150 }
7151 
7152 int task_can_attach(struct task_struct *p,
7153 		    const struct cpumask *cs_cpus_allowed)
7154 {
7155 	int ret = 0;
7156 
7157 	/*
7158 	 * Kthreads which disallow setaffinity shouldn't be moved
7159 	 * to a new cpuset; we don't want to change their CPU
7160 	 * affinity and isolating such threads by their set of
7161 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7162 	 * applicable for such threads.  This prevents checking for
7163 	 * success of set_cpus_allowed_ptr() on all attached tasks
7164 	 * before cpus_mask may be changed.
7165 	 */
7166 	if (p->flags & PF_NO_SETAFFINITY) {
7167 		ret = -EINVAL;
7168 		goto out;
7169 	}
7170 
7171 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7172 					      cs_cpus_allowed))
7173 		ret = dl_task_can_attach(p, cs_cpus_allowed);
7174 
7175 out:
7176 	return ret;
7177 }
7178 
7179 bool sched_smp_initialized __read_mostly;
7180 
7181 #ifdef CONFIG_NUMA_BALANCING
7182 /* Migrate current task p to target_cpu */
7183 int migrate_task_to(struct task_struct *p, int target_cpu)
7184 {
7185 	struct migration_arg arg = { p, target_cpu };
7186 	int curr_cpu = task_cpu(p);
7187 
7188 	if (curr_cpu == target_cpu)
7189 		return 0;
7190 
7191 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7192 		return -EINVAL;
7193 
7194 	/* TODO: This is not properly updating schedstats */
7195 
7196 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7197 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7198 }
7199 
7200 /*
7201  * Requeue a task on a given node and accurately track the number of NUMA
7202  * tasks on the runqueues
7203  */
7204 void sched_setnuma(struct task_struct *p, int nid)
7205 {
7206 	bool queued, running;
7207 	struct rq_flags rf;
7208 	struct rq *rq;
7209 
7210 	rq = task_rq_lock(p, &rf);
7211 	queued = task_on_rq_queued(p);
7212 	running = task_current(rq, p);
7213 
7214 	if (queued)
7215 		dequeue_task(rq, p, DEQUEUE_SAVE);
7216 	if (running)
7217 		put_prev_task(rq, p);
7218 
7219 	p->numa_preferred_nid = nid;
7220 
7221 	if (queued)
7222 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7223 	if (running)
7224 		set_next_task(rq, p);
7225 	task_rq_unlock(rq, p, &rf);
7226 }
7227 #endif /* CONFIG_NUMA_BALANCING */
7228 
7229 #ifdef CONFIG_HOTPLUG_CPU
7230 /*
7231  * Ensure that the idle task is using init_mm right before its CPU goes
7232  * offline.
7233  */
7234 void idle_task_exit(void)
7235 {
7236 	struct mm_struct *mm = current->active_mm;
7237 
7238 	BUG_ON(cpu_online(smp_processor_id()));
7239 	BUG_ON(current != this_rq()->idle);
7240 
7241 	if (mm != &init_mm) {
7242 		switch_mm(mm, &init_mm, current);
7243 		finish_arch_post_lock_switch();
7244 	}
7245 
7246 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7247 }
7248 
7249 static int __balance_push_cpu_stop(void *arg)
7250 {
7251 	struct task_struct *p = arg;
7252 	struct rq *rq = this_rq();
7253 	struct rq_flags rf;
7254 	int cpu;
7255 
7256 	raw_spin_lock_irq(&p->pi_lock);
7257 	rq_lock(rq, &rf);
7258 
7259 	update_rq_clock(rq);
7260 
7261 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7262 		cpu = select_fallback_rq(rq->cpu, p);
7263 		rq = __migrate_task(rq, &rf, p, cpu);
7264 	}
7265 
7266 	rq_unlock(rq, &rf);
7267 	raw_spin_unlock_irq(&p->pi_lock);
7268 
7269 	put_task_struct(p);
7270 
7271 	return 0;
7272 }
7273 
7274 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7275 
7276 /*
7277  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7278  */
7279 static void balance_push(struct rq *rq)
7280 {
7281 	struct task_struct *push_task = rq->curr;
7282 
7283 	lockdep_assert_held(&rq->lock);
7284 	SCHED_WARN_ON(rq->cpu != smp_processor_id());
7285 
7286 	/*
7287 	 * Both the cpu-hotplug and stop task are in this case and are
7288 	 * required to complete the hotplug process.
7289 	 */
7290 	if (is_per_cpu_kthread(push_task) || is_migration_disabled(push_task)) {
7291 		/*
7292 		 * If this is the idle task on the outgoing CPU try to wake
7293 		 * up the hotplug control thread which might wait for the
7294 		 * last task to vanish. The rcuwait_active() check is
7295 		 * accurate here because the waiter is pinned on this CPU
7296 		 * and can't obviously be running in parallel.
7297 		 *
7298 		 * On RT kernels this also has to check whether there are
7299 		 * pinned and scheduled out tasks on the runqueue. They
7300 		 * need to leave the migrate disabled section first.
7301 		 */
7302 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7303 		    rcuwait_active(&rq->hotplug_wait)) {
7304 			raw_spin_unlock(&rq->lock);
7305 			rcuwait_wake_up(&rq->hotplug_wait);
7306 			raw_spin_lock(&rq->lock);
7307 		}
7308 		return;
7309 	}
7310 
7311 	get_task_struct(push_task);
7312 	/*
7313 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7314 	 * Both preemption and IRQs are still disabled.
7315 	 */
7316 	raw_spin_unlock(&rq->lock);
7317 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7318 			    this_cpu_ptr(&push_work));
7319 	/*
7320 	 * At this point need_resched() is true and we'll take the loop in
7321 	 * schedule(). The next pick is obviously going to be the stop task
7322 	 * which is_per_cpu_kthread() and will push this task away.
7323 	 */
7324 	raw_spin_lock(&rq->lock);
7325 }
7326 
7327 static void balance_push_set(int cpu, bool on)
7328 {
7329 	struct rq *rq = cpu_rq(cpu);
7330 	struct rq_flags rf;
7331 
7332 	rq_lock_irqsave(rq, &rf);
7333 	if (on)
7334 		rq->balance_flags |= BALANCE_PUSH;
7335 	else
7336 		rq->balance_flags &= ~BALANCE_PUSH;
7337 	rq_unlock_irqrestore(rq, &rf);
7338 }
7339 
7340 /*
7341  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7342  * inactive. All tasks which are not per CPU kernel threads are either
7343  * pushed off this CPU now via balance_push() or placed on a different CPU
7344  * during wakeup. Wait until the CPU is quiescent.
7345  */
7346 static void balance_hotplug_wait(void)
7347 {
7348 	struct rq *rq = this_rq();
7349 
7350 	rcuwait_wait_event(&rq->hotplug_wait,
7351 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7352 			   TASK_UNINTERRUPTIBLE);
7353 }
7354 
7355 #else
7356 
7357 static inline void balance_push(struct rq *rq)
7358 {
7359 }
7360 
7361 static inline void balance_push_set(int cpu, bool on)
7362 {
7363 }
7364 
7365 static inline void balance_hotplug_wait(void)
7366 {
7367 }
7368 
7369 #endif /* CONFIG_HOTPLUG_CPU */
7370 
7371 void set_rq_online(struct rq *rq)
7372 {
7373 	if (!rq->online) {
7374 		const struct sched_class *class;
7375 
7376 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7377 		rq->online = 1;
7378 
7379 		for_each_class(class) {
7380 			if (class->rq_online)
7381 				class->rq_online(rq);
7382 		}
7383 	}
7384 }
7385 
7386 void set_rq_offline(struct rq *rq)
7387 {
7388 	if (rq->online) {
7389 		const struct sched_class *class;
7390 
7391 		for_each_class(class) {
7392 			if (class->rq_offline)
7393 				class->rq_offline(rq);
7394 		}
7395 
7396 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7397 		rq->online = 0;
7398 	}
7399 }
7400 
7401 /*
7402  * used to mark begin/end of suspend/resume:
7403  */
7404 static int num_cpus_frozen;
7405 
7406 /*
7407  * Update cpusets according to cpu_active mask.  If cpusets are
7408  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7409  * around partition_sched_domains().
7410  *
7411  * If we come here as part of a suspend/resume, don't touch cpusets because we
7412  * want to restore it back to its original state upon resume anyway.
7413  */
7414 static void cpuset_cpu_active(void)
7415 {
7416 	if (cpuhp_tasks_frozen) {
7417 		/*
7418 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7419 		 * resume sequence. As long as this is not the last online
7420 		 * operation in the resume sequence, just build a single sched
7421 		 * domain, ignoring cpusets.
7422 		 */
7423 		partition_sched_domains(1, NULL, NULL);
7424 		if (--num_cpus_frozen)
7425 			return;
7426 		/*
7427 		 * This is the last CPU online operation. So fall through and
7428 		 * restore the original sched domains by considering the
7429 		 * cpuset configurations.
7430 		 */
7431 		cpuset_force_rebuild();
7432 	}
7433 	cpuset_update_active_cpus();
7434 }
7435 
7436 static int cpuset_cpu_inactive(unsigned int cpu)
7437 {
7438 	if (!cpuhp_tasks_frozen) {
7439 		if (dl_cpu_busy(cpu))
7440 			return -EBUSY;
7441 		cpuset_update_active_cpus();
7442 	} else {
7443 		num_cpus_frozen++;
7444 		partition_sched_domains(1, NULL, NULL);
7445 	}
7446 	return 0;
7447 }
7448 
7449 int sched_cpu_activate(unsigned int cpu)
7450 {
7451 	struct rq *rq = cpu_rq(cpu);
7452 	struct rq_flags rf;
7453 
7454 	balance_push_set(cpu, false);
7455 
7456 #ifdef CONFIG_SCHED_SMT
7457 	/*
7458 	 * When going up, increment the number of cores with SMT present.
7459 	 */
7460 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7461 		static_branch_inc_cpuslocked(&sched_smt_present);
7462 #endif
7463 	set_cpu_active(cpu, true);
7464 
7465 	if (sched_smp_initialized) {
7466 		sched_domains_numa_masks_set(cpu);
7467 		cpuset_cpu_active();
7468 	}
7469 
7470 	/*
7471 	 * Put the rq online, if not already. This happens:
7472 	 *
7473 	 * 1) In the early boot process, because we build the real domains
7474 	 *    after all CPUs have been brought up.
7475 	 *
7476 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7477 	 *    domains.
7478 	 */
7479 	rq_lock_irqsave(rq, &rf);
7480 	if (rq->rd) {
7481 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7482 		set_rq_online(rq);
7483 	}
7484 	rq_unlock_irqrestore(rq, &rf);
7485 
7486 	return 0;
7487 }
7488 
7489 int sched_cpu_deactivate(unsigned int cpu)
7490 {
7491 	struct rq *rq = cpu_rq(cpu);
7492 	struct rq_flags rf;
7493 	int ret;
7494 
7495 	set_cpu_active(cpu, false);
7496 	/*
7497 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7498 	 * users of this state to go away such that all new such users will
7499 	 * observe it.
7500 	 *
7501 	 * Do sync before park smpboot threads to take care the rcu boost case.
7502 	 */
7503 	synchronize_rcu();
7504 
7505 	balance_push_set(cpu, true);
7506 
7507 	rq_lock_irqsave(rq, &rf);
7508 	if (rq->rd) {
7509 		update_rq_clock(rq);
7510 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7511 		set_rq_offline(rq);
7512 	}
7513 	rq_unlock_irqrestore(rq, &rf);
7514 
7515 #ifdef CONFIG_SCHED_SMT
7516 	/*
7517 	 * When going down, decrement the number of cores with SMT present.
7518 	 */
7519 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7520 		static_branch_dec_cpuslocked(&sched_smt_present);
7521 #endif
7522 
7523 	if (!sched_smp_initialized)
7524 		return 0;
7525 
7526 	ret = cpuset_cpu_inactive(cpu);
7527 	if (ret) {
7528 		balance_push_set(cpu, false);
7529 		set_cpu_active(cpu, true);
7530 		return ret;
7531 	}
7532 	sched_domains_numa_masks_clear(cpu);
7533 	return 0;
7534 }
7535 
7536 static void sched_rq_cpu_starting(unsigned int cpu)
7537 {
7538 	struct rq *rq = cpu_rq(cpu);
7539 
7540 	rq->calc_load_update = calc_load_update;
7541 	update_max_interval();
7542 }
7543 
7544 int sched_cpu_starting(unsigned int cpu)
7545 {
7546 	sched_rq_cpu_starting(cpu);
7547 	sched_tick_start(cpu);
7548 	return 0;
7549 }
7550 
7551 #ifdef CONFIG_HOTPLUG_CPU
7552 
7553 /*
7554  * Invoked immediately before the stopper thread is invoked to bring the
7555  * CPU down completely. At this point all per CPU kthreads except the
7556  * hotplug thread (current) and the stopper thread (inactive) have been
7557  * either parked or have been unbound from the outgoing CPU. Ensure that
7558  * any of those which might be on the way out are gone.
7559  *
7560  * If after this point a bound task is being woken on this CPU then the
7561  * responsible hotplug callback has failed to do it's job.
7562  * sched_cpu_dying() will catch it with the appropriate fireworks.
7563  */
7564 int sched_cpu_wait_empty(unsigned int cpu)
7565 {
7566 	balance_hotplug_wait();
7567 	return 0;
7568 }
7569 
7570 /*
7571  * Since this CPU is going 'away' for a while, fold any nr_active delta we
7572  * might have. Called from the CPU stopper task after ensuring that the
7573  * stopper is the last running task on the CPU, so nr_active count is
7574  * stable. We need to take the teardown thread which is calling this into
7575  * account, so we hand in adjust = 1 to the load calculation.
7576  *
7577  * Also see the comment "Global load-average calculations".
7578  */
7579 static void calc_load_migrate(struct rq *rq)
7580 {
7581 	long delta = calc_load_fold_active(rq, 1);
7582 
7583 	if (delta)
7584 		atomic_long_add(delta, &calc_load_tasks);
7585 }
7586 
7587 int sched_cpu_dying(unsigned int cpu)
7588 {
7589 	struct rq *rq = cpu_rq(cpu);
7590 	struct rq_flags rf;
7591 
7592 	/* Handle pending wakeups and then migrate everything off */
7593 	sched_tick_stop(cpu);
7594 
7595 	rq_lock_irqsave(rq, &rf);
7596 	BUG_ON(rq->nr_running != 1 || rq_has_pinned_tasks(rq));
7597 	rq_unlock_irqrestore(rq, &rf);
7598 
7599 	calc_load_migrate(rq);
7600 	update_max_interval();
7601 	nohz_balance_exit_idle(rq);
7602 	hrtick_clear(rq);
7603 	return 0;
7604 }
7605 #endif
7606 
7607 void __init sched_init_smp(void)
7608 {
7609 	sched_init_numa();
7610 
7611 	/*
7612 	 * There's no userspace yet to cause hotplug operations; hence all the
7613 	 * CPU masks are stable and all blatant races in the below code cannot
7614 	 * happen.
7615 	 */
7616 	mutex_lock(&sched_domains_mutex);
7617 	sched_init_domains(cpu_active_mask);
7618 	mutex_unlock(&sched_domains_mutex);
7619 
7620 	/* Move init over to a non-isolated CPU */
7621 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7622 		BUG();
7623 	sched_init_granularity();
7624 
7625 	init_sched_rt_class();
7626 	init_sched_dl_class();
7627 
7628 	sched_smp_initialized = true;
7629 }
7630 
7631 static int __init migration_init(void)
7632 {
7633 	sched_cpu_starting(smp_processor_id());
7634 	return 0;
7635 }
7636 early_initcall(migration_init);
7637 
7638 #else
7639 void __init sched_init_smp(void)
7640 {
7641 	sched_init_granularity();
7642 }
7643 #endif /* CONFIG_SMP */
7644 
7645 int in_sched_functions(unsigned long addr)
7646 {
7647 	return in_lock_functions(addr) ||
7648 		(addr >= (unsigned long)__sched_text_start
7649 		&& addr < (unsigned long)__sched_text_end);
7650 }
7651 
7652 #ifdef CONFIG_CGROUP_SCHED
7653 /*
7654  * Default task group.
7655  * Every task in system belongs to this group at bootup.
7656  */
7657 struct task_group root_task_group;
7658 LIST_HEAD(task_groups);
7659 
7660 /* Cacheline aligned slab cache for task_group */
7661 static struct kmem_cache *task_group_cache __read_mostly;
7662 #endif
7663 
7664 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7665 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7666 
7667 void __init sched_init(void)
7668 {
7669 	unsigned long ptr = 0;
7670 	int i;
7671 
7672 	/* Make sure the linker didn't screw up */
7673 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7674 	       &fair_sched_class + 1 != &rt_sched_class ||
7675 	       &rt_sched_class + 1   != &dl_sched_class);
7676 #ifdef CONFIG_SMP
7677 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7678 #endif
7679 
7680 	wait_bit_init();
7681 
7682 #ifdef CONFIG_FAIR_GROUP_SCHED
7683 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7684 #endif
7685 #ifdef CONFIG_RT_GROUP_SCHED
7686 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7687 #endif
7688 	if (ptr) {
7689 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7690 
7691 #ifdef CONFIG_FAIR_GROUP_SCHED
7692 		root_task_group.se = (struct sched_entity **)ptr;
7693 		ptr += nr_cpu_ids * sizeof(void **);
7694 
7695 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7696 		ptr += nr_cpu_ids * sizeof(void **);
7697 
7698 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7699 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7700 #endif /* CONFIG_FAIR_GROUP_SCHED */
7701 #ifdef CONFIG_RT_GROUP_SCHED
7702 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7703 		ptr += nr_cpu_ids * sizeof(void **);
7704 
7705 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7706 		ptr += nr_cpu_ids * sizeof(void **);
7707 
7708 #endif /* CONFIG_RT_GROUP_SCHED */
7709 	}
7710 #ifdef CONFIG_CPUMASK_OFFSTACK
7711 	for_each_possible_cpu(i) {
7712 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7713 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7714 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7715 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7716 	}
7717 #endif /* CONFIG_CPUMASK_OFFSTACK */
7718 
7719 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7720 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7721 
7722 #ifdef CONFIG_SMP
7723 	init_defrootdomain();
7724 #endif
7725 
7726 #ifdef CONFIG_RT_GROUP_SCHED
7727 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7728 			global_rt_period(), global_rt_runtime());
7729 #endif /* CONFIG_RT_GROUP_SCHED */
7730 
7731 #ifdef CONFIG_CGROUP_SCHED
7732 	task_group_cache = KMEM_CACHE(task_group, 0);
7733 
7734 	list_add(&root_task_group.list, &task_groups);
7735 	INIT_LIST_HEAD(&root_task_group.children);
7736 	INIT_LIST_HEAD(&root_task_group.siblings);
7737 	autogroup_init(&init_task);
7738 #endif /* CONFIG_CGROUP_SCHED */
7739 
7740 	for_each_possible_cpu(i) {
7741 		struct rq *rq;
7742 
7743 		rq = cpu_rq(i);
7744 		raw_spin_lock_init(&rq->lock);
7745 		rq->nr_running = 0;
7746 		rq->calc_load_active = 0;
7747 		rq->calc_load_update = jiffies + LOAD_FREQ;
7748 		init_cfs_rq(&rq->cfs);
7749 		init_rt_rq(&rq->rt);
7750 		init_dl_rq(&rq->dl);
7751 #ifdef CONFIG_FAIR_GROUP_SCHED
7752 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7753 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7754 		/*
7755 		 * How much CPU bandwidth does root_task_group get?
7756 		 *
7757 		 * In case of task-groups formed thr' the cgroup filesystem, it
7758 		 * gets 100% of the CPU resources in the system. This overall
7759 		 * system CPU resource is divided among the tasks of
7760 		 * root_task_group and its child task-groups in a fair manner,
7761 		 * based on each entity's (task or task-group's) weight
7762 		 * (se->load.weight).
7763 		 *
7764 		 * In other words, if root_task_group has 10 tasks of weight
7765 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7766 		 * then A0's share of the CPU resource is:
7767 		 *
7768 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7769 		 *
7770 		 * We achieve this by letting root_task_group's tasks sit
7771 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7772 		 */
7773 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7774 #endif /* CONFIG_FAIR_GROUP_SCHED */
7775 
7776 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7777 #ifdef CONFIG_RT_GROUP_SCHED
7778 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7779 #endif
7780 #ifdef CONFIG_SMP
7781 		rq->sd = NULL;
7782 		rq->rd = NULL;
7783 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7784 		rq->balance_callback = NULL;
7785 		rq->active_balance = 0;
7786 		rq->next_balance = jiffies;
7787 		rq->push_cpu = 0;
7788 		rq->cpu = i;
7789 		rq->online = 0;
7790 		rq->idle_stamp = 0;
7791 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7792 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7793 
7794 		INIT_LIST_HEAD(&rq->cfs_tasks);
7795 
7796 		rq_attach_root(rq, &def_root_domain);
7797 #ifdef CONFIG_NO_HZ_COMMON
7798 		rq->last_blocked_load_update_tick = jiffies;
7799 		atomic_set(&rq->nohz_flags, 0);
7800 
7801 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
7802 #endif
7803 #ifdef CONFIG_HOTPLUG_CPU
7804 		rcuwait_init(&rq->hotplug_wait);
7805 #endif
7806 #endif /* CONFIG_SMP */
7807 		hrtick_rq_init(rq);
7808 		atomic_set(&rq->nr_iowait, 0);
7809 	}
7810 
7811 	set_load_weight(&init_task, false);
7812 
7813 	/*
7814 	 * The boot idle thread does lazy MMU switching as well:
7815 	 */
7816 	mmgrab(&init_mm);
7817 	enter_lazy_tlb(&init_mm, current);
7818 
7819 	/*
7820 	 * Make us the idle thread. Technically, schedule() should not be
7821 	 * called from this thread, however somewhere below it might be,
7822 	 * but because we are the idle thread, we just pick up running again
7823 	 * when this runqueue becomes "idle".
7824 	 */
7825 	init_idle(current, smp_processor_id());
7826 
7827 	calc_load_update = jiffies + LOAD_FREQ;
7828 
7829 #ifdef CONFIG_SMP
7830 	idle_thread_set_boot_cpu();
7831 #endif
7832 	init_sched_fair_class();
7833 
7834 	init_schedstats();
7835 
7836 	psi_init();
7837 
7838 	init_uclamp();
7839 
7840 	scheduler_running = 1;
7841 }
7842 
7843 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7844 static inline int preempt_count_equals(int preempt_offset)
7845 {
7846 	int nested = preempt_count() + rcu_preempt_depth();
7847 
7848 	return (nested == preempt_offset);
7849 }
7850 
7851 void __might_sleep(const char *file, int line, int preempt_offset)
7852 {
7853 	/*
7854 	 * Blocking primitives will set (and therefore destroy) current->state,
7855 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7856 	 * otherwise we will destroy state.
7857 	 */
7858 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7859 			"do not call blocking ops when !TASK_RUNNING; "
7860 			"state=%lx set at [<%p>] %pS\n",
7861 			current->state,
7862 			(void *)current->task_state_change,
7863 			(void *)current->task_state_change);
7864 
7865 	___might_sleep(file, line, preempt_offset);
7866 }
7867 EXPORT_SYMBOL(__might_sleep);
7868 
7869 void ___might_sleep(const char *file, int line, int preempt_offset)
7870 {
7871 	/* Ratelimiting timestamp: */
7872 	static unsigned long prev_jiffy;
7873 
7874 	unsigned long preempt_disable_ip;
7875 
7876 	/* WARN_ON_ONCE() by default, no rate limit required: */
7877 	rcu_sleep_check();
7878 
7879 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7880 	     !is_idle_task(current) && !current->non_block_count) ||
7881 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7882 	    oops_in_progress)
7883 		return;
7884 
7885 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7886 		return;
7887 	prev_jiffy = jiffies;
7888 
7889 	/* Save this before calling printk(), since that will clobber it: */
7890 	preempt_disable_ip = get_preempt_disable_ip(current);
7891 
7892 	printk(KERN_ERR
7893 		"BUG: sleeping function called from invalid context at %s:%d\n",
7894 			file, line);
7895 	printk(KERN_ERR
7896 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7897 			in_atomic(), irqs_disabled(), current->non_block_count,
7898 			current->pid, current->comm);
7899 
7900 	if (task_stack_end_corrupted(current))
7901 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7902 
7903 	debug_show_held_locks(current);
7904 	if (irqs_disabled())
7905 		print_irqtrace_events(current);
7906 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7907 	    && !preempt_count_equals(preempt_offset)) {
7908 		pr_err("Preemption disabled at:");
7909 		print_ip_sym(KERN_ERR, preempt_disable_ip);
7910 	}
7911 	dump_stack();
7912 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7913 }
7914 EXPORT_SYMBOL(___might_sleep);
7915 
7916 void __cant_sleep(const char *file, int line, int preempt_offset)
7917 {
7918 	static unsigned long prev_jiffy;
7919 
7920 	if (irqs_disabled())
7921 		return;
7922 
7923 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7924 		return;
7925 
7926 	if (preempt_count() > preempt_offset)
7927 		return;
7928 
7929 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7930 		return;
7931 	prev_jiffy = jiffies;
7932 
7933 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7934 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7935 			in_atomic(), irqs_disabled(),
7936 			current->pid, current->comm);
7937 
7938 	debug_show_held_locks(current);
7939 	dump_stack();
7940 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7941 }
7942 EXPORT_SYMBOL_GPL(__cant_sleep);
7943 
7944 #ifdef CONFIG_SMP
7945 void __cant_migrate(const char *file, int line)
7946 {
7947 	static unsigned long prev_jiffy;
7948 
7949 	if (irqs_disabled())
7950 		return;
7951 
7952 	if (is_migration_disabled(current))
7953 		return;
7954 
7955 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7956 		return;
7957 
7958 	if (preempt_count() > 0)
7959 		return;
7960 
7961 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7962 		return;
7963 	prev_jiffy = jiffies;
7964 
7965 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
7966 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
7967 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
7968 	       current->pid, current->comm);
7969 
7970 	debug_show_held_locks(current);
7971 	dump_stack();
7972 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7973 }
7974 EXPORT_SYMBOL_GPL(__cant_migrate);
7975 #endif
7976 #endif
7977 
7978 #ifdef CONFIG_MAGIC_SYSRQ
7979 void normalize_rt_tasks(void)
7980 {
7981 	struct task_struct *g, *p;
7982 	struct sched_attr attr = {
7983 		.sched_policy = SCHED_NORMAL,
7984 	};
7985 
7986 	read_lock(&tasklist_lock);
7987 	for_each_process_thread(g, p) {
7988 		/*
7989 		 * Only normalize user tasks:
7990 		 */
7991 		if (p->flags & PF_KTHREAD)
7992 			continue;
7993 
7994 		p->se.exec_start = 0;
7995 		schedstat_set(p->se.statistics.wait_start,  0);
7996 		schedstat_set(p->se.statistics.sleep_start, 0);
7997 		schedstat_set(p->se.statistics.block_start, 0);
7998 
7999 		if (!dl_task(p) && !rt_task(p)) {
8000 			/*
8001 			 * Renice negative nice level userspace
8002 			 * tasks back to 0:
8003 			 */
8004 			if (task_nice(p) < 0)
8005 				set_user_nice(p, 0);
8006 			continue;
8007 		}
8008 
8009 		__sched_setscheduler(p, &attr, false, false);
8010 	}
8011 	read_unlock(&tasklist_lock);
8012 }
8013 
8014 #endif /* CONFIG_MAGIC_SYSRQ */
8015 
8016 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8017 /*
8018  * These functions are only useful for the IA64 MCA handling, or kdb.
8019  *
8020  * They can only be called when the whole system has been
8021  * stopped - every CPU needs to be quiescent, and no scheduling
8022  * activity can take place. Using them for anything else would
8023  * be a serious bug, and as a result, they aren't even visible
8024  * under any other configuration.
8025  */
8026 
8027 /**
8028  * curr_task - return the current task for a given CPU.
8029  * @cpu: the processor in question.
8030  *
8031  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8032  *
8033  * Return: The current task for @cpu.
8034  */
8035 struct task_struct *curr_task(int cpu)
8036 {
8037 	return cpu_curr(cpu);
8038 }
8039 
8040 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8041 
8042 #ifdef CONFIG_IA64
8043 /**
8044  * ia64_set_curr_task - set the current task for a given CPU.
8045  * @cpu: the processor in question.
8046  * @p: the task pointer to set.
8047  *
8048  * Description: This function must only be used when non-maskable interrupts
8049  * are serviced on a separate stack. It allows the architecture to switch the
8050  * notion of the current task on a CPU in a non-blocking manner. This function
8051  * must be called with all CPU's synchronized, and interrupts disabled, the
8052  * and caller must save the original value of the current task (see
8053  * curr_task() above) and restore that value before reenabling interrupts and
8054  * re-starting the system.
8055  *
8056  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8057  */
8058 void ia64_set_curr_task(int cpu, struct task_struct *p)
8059 {
8060 	cpu_curr(cpu) = p;
8061 }
8062 
8063 #endif
8064 
8065 #ifdef CONFIG_CGROUP_SCHED
8066 /* task_group_lock serializes the addition/removal of task groups */
8067 static DEFINE_SPINLOCK(task_group_lock);
8068 
8069 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8070 					    struct task_group *parent)
8071 {
8072 #ifdef CONFIG_UCLAMP_TASK_GROUP
8073 	enum uclamp_id clamp_id;
8074 
8075 	for_each_clamp_id(clamp_id) {
8076 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8077 			      uclamp_none(clamp_id), false);
8078 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8079 	}
8080 #endif
8081 }
8082 
8083 static void sched_free_group(struct task_group *tg)
8084 {
8085 	free_fair_sched_group(tg);
8086 	free_rt_sched_group(tg);
8087 	autogroup_free(tg);
8088 	kmem_cache_free(task_group_cache, tg);
8089 }
8090 
8091 /* allocate runqueue etc for a new task group */
8092 struct task_group *sched_create_group(struct task_group *parent)
8093 {
8094 	struct task_group *tg;
8095 
8096 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8097 	if (!tg)
8098 		return ERR_PTR(-ENOMEM);
8099 
8100 	if (!alloc_fair_sched_group(tg, parent))
8101 		goto err;
8102 
8103 	if (!alloc_rt_sched_group(tg, parent))
8104 		goto err;
8105 
8106 	alloc_uclamp_sched_group(tg, parent);
8107 
8108 	return tg;
8109 
8110 err:
8111 	sched_free_group(tg);
8112 	return ERR_PTR(-ENOMEM);
8113 }
8114 
8115 void sched_online_group(struct task_group *tg, struct task_group *parent)
8116 {
8117 	unsigned long flags;
8118 
8119 	spin_lock_irqsave(&task_group_lock, flags);
8120 	list_add_rcu(&tg->list, &task_groups);
8121 
8122 	/* Root should already exist: */
8123 	WARN_ON(!parent);
8124 
8125 	tg->parent = parent;
8126 	INIT_LIST_HEAD(&tg->children);
8127 	list_add_rcu(&tg->siblings, &parent->children);
8128 	spin_unlock_irqrestore(&task_group_lock, flags);
8129 
8130 	online_fair_sched_group(tg);
8131 }
8132 
8133 /* rcu callback to free various structures associated with a task group */
8134 static void sched_free_group_rcu(struct rcu_head *rhp)
8135 {
8136 	/* Now it should be safe to free those cfs_rqs: */
8137 	sched_free_group(container_of(rhp, struct task_group, rcu));
8138 }
8139 
8140 void sched_destroy_group(struct task_group *tg)
8141 {
8142 	/* Wait for possible concurrent references to cfs_rqs complete: */
8143 	call_rcu(&tg->rcu, sched_free_group_rcu);
8144 }
8145 
8146 void sched_offline_group(struct task_group *tg)
8147 {
8148 	unsigned long flags;
8149 
8150 	/* End participation in shares distribution: */
8151 	unregister_fair_sched_group(tg);
8152 
8153 	spin_lock_irqsave(&task_group_lock, flags);
8154 	list_del_rcu(&tg->list);
8155 	list_del_rcu(&tg->siblings);
8156 	spin_unlock_irqrestore(&task_group_lock, flags);
8157 }
8158 
8159 static void sched_change_group(struct task_struct *tsk, int type)
8160 {
8161 	struct task_group *tg;
8162 
8163 	/*
8164 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8165 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8166 	 * to prevent lockdep warnings.
8167 	 */
8168 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8169 			  struct task_group, css);
8170 	tg = autogroup_task_group(tsk, tg);
8171 	tsk->sched_task_group = tg;
8172 
8173 #ifdef CONFIG_FAIR_GROUP_SCHED
8174 	if (tsk->sched_class->task_change_group)
8175 		tsk->sched_class->task_change_group(tsk, type);
8176 	else
8177 #endif
8178 		set_task_rq(tsk, task_cpu(tsk));
8179 }
8180 
8181 /*
8182  * Change task's runqueue when it moves between groups.
8183  *
8184  * The caller of this function should have put the task in its new group by
8185  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8186  * its new group.
8187  */
8188 void sched_move_task(struct task_struct *tsk)
8189 {
8190 	int queued, running, queue_flags =
8191 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8192 	struct rq_flags rf;
8193 	struct rq *rq;
8194 
8195 	rq = task_rq_lock(tsk, &rf);
8196 	update_rq_clock(rq);
8197 
8198 	running = task_current(rq, tsk);
8199 	queued = task_on_rq_queued(tsk);
8200 
8201 	if (queued)
8202 		dequeue_task(rq, tsk, queue_flags);
8203 	if (running)
8204 		put_prev_task(rq, tsk);
8205 
8206 	sched_change_group(tsk, TASK_MOVE_GROUP);
8207 
8208 	if (queued)
8209 		enqueue_task(rq, tsk, queue_flags);
8210 	if (running) {
8211 		set_next_task(rq, tsk);
8212 		/*
8213 		 * After changing group, the running task may have joined a
8214 		 * throttled one but it's still the running task. Trigger a
8215 		 * resched to make sure that task can still run.
8216 		 */
8217 		resched_curr(rq);
8218 	}
8219 
8220 	task_rq_unlock(rq, tsk, &rf);
8221 }
8222 
8223 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8224 {
8225 	return css ? container_of(css, struct task_group, css) : NULL;
8226 }
8227 
8228 static struct cgroup_subsys_state *
8229 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8230 {
8231 	struct task_group *parent = css_tg(parent_css);
8232 	struct task_group *tg;
8233 
8234 	if (!parent) {
8235 		/* This is early initialization for the top cgroup */
8236 		return &root_task_group.css;
8237 	}
8238 
8239 	tg = sched_create_group(parent);
8240 	if (IS_ERR(tg))
8241 		return ERR_PTR(-ENOMEM);
8242 
8243 	return &tg->css;
8244 }
8245 
8246 /* Expose task group only after completing cgroup initialization */
8247 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8248 {
8249 	struct task_group *tg = css_tg(css);
8250 	struct task_group *parent = css_tg(css->parent);
8251 
8252 	if (parent)
8253 		sched_online_group(tg, parent);
8254 
8255 #ifdef CONFIG_UCLAMP_TASK_GROUP
8256 	/* Propagate the effective uclamp value for the new group */
8257 	cpu_util_update_eff(css);
8258 #endif
8259 
8260 	return 0;
8261 }
8262 
8263 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8264 {
8265 	struct task_group *tg = css_tg(css);
8266 
8267 	sched_offline_group(tg);
8268 }
8269 
8270 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8271 {
8272 	struct task_group *tg = css_tg(css);
8273 
8274 	/*
8275 	 * Relies on the RCU grace period between css_released() and this.
8276 	 */
8277 	sched_free_group(tg);
8278 }
8279 
8280 /*
8281  * This is called before wake_up_new_task(), therefore we really only
8282  * have to set its group bits, all the other stuff does not apply.
8283  */
8284 static void cpu_cgroup_fork(struct task_struct *task)
8285 {
8286 	struct rq_flags rf;
8287 	struct rq *rq;
8288 
8289 	rq = task_rq_lock(task, &rf);
8290 
8291 	update_rq_clock(rq);
8292 	sched_change_group(task, TASK_SET_GROUP);
8293 
8294 	task_rq_unlock(rq, task, &rf);
8295 }
8296 
8297 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8298 {
8299 	struct task_struct *task;
8300 	struct cgroup_subsys_state *css;
8301 	int ret = 0;
8302 
8303 	cgroup_taskset_for_each(task, css, tset) {
8304 #ifdef CONFIG_RT_GROUP_SCHED
8305 		if (!sched_rt_can_attach(css_tg(css), task))
8306 			return -EINVAL;
8307 #endif
8308 		/*
8309 		 * Serialize against wake_up_new_task() such that if it's
8310 		 * running, we're sure to observe its full state.
8311 		 */
8312 		raw_spin_lock_irq(&task->pi_lock);
8313 		/*
8314 		 * Avoid calling sched_move_task() before wake_up_new_task()
8315 		 * has happened. This would lead to problems with PELT, due to
8316 		 * move wanting to detach+attach while we're not attached yet.
8317 		 */
8318 		if (task->state == TASK_NEW)
8319 			ret = -EINVAL;
8320 		raw_spin_unlock_irq(&task->pi_lock);
8321 
8322 		if (ret)
8323 			break;
8324 	}
8325 	return ret;
8326 }
8327 
8328 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8329 {
8330 	struct task_struct *task;
8331 	struct cgroup_subsys_state *css;
8332 
8333 	cgroup_taskset_for_each(task, css, tset)
8334 		sched_move_task(task);
8335 }
8336 
8337 #ifdef CONFIG_UCLAMP_TASK_GROUP
8338 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8339 {
8340 	struct cgroup_subsys_state *top_css = css;
8341 	struct uclamp_se *uc_parent = NULL;
8342 	struct uclamp_se *uc_se = NULL;
8343 	unsigned int eff[UCLAMP_CNT];
8344 	enum uclamp_id clamp_id;
8345 	unsigned int clamps;
8346 
8347 	css_for_each_descendant_pre(css, top_css) {
8348 		uc_parent = css_tg(css)->parent
8349 			? css_tg(css)->parent->uclamp : NULL;
8350 
8351 		for_each_clamp_id(clamp_id) {
8352 			/* Assume effective clamps matches requested clamps */
8353 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8354 			/* Cap effective clamps with parent's effective clamps */
8355 			if (uc_parent &&
8356 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8357 				eff[clamp_id] = uc_parent[clamp_id].value;
8358 			}
8359 		}
8360 		/* Ensure protection is always capped by limit */
8361 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8362 
8363 		/* Propagate most restrictive effective clamps */
8364 		clamps = 0x0;
8365 		uc_se = css_tg(css)->uclamp;
8366 		for_each_clamp_id(clamp_id) {
8367 			if (eff[clamp_id] == uc_se[clamp_id].value)
8368 				continue;
8369 			uc_se[clamp_id].value = eff[clamp_id];
8370 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8371 			clamps |= (0x1 << clamp_id);
8372 		}
8373 		if (!clamps) {
8374 			css = css_rightmost_descendant(css);
8375 			continue;
8376 		}
8377 
8378 		/* Immediately update descendants RUNNABLE tasks */
8379 		uclamp_update_active_tasks(css, clamps);
8380 	}
8381 }
8382 
8383 /*
8384  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8385  * C expression. Since there is no way to convert a macro argument (N) into a
8386  * character constant, use two levels of macros.
8387  */
8388 #define _POW10(exp) ((unsigned int)1e##exp)
8389 #define POW10(exp) _POW10(exp)
8390 
8391 struct uclamp_request {
8392 #define UCLAMP_PERCENT_SHIFT	2
8393 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8394 	s64 percent;
8395 	u64 util;
8396 	int ret;
8397 };
8398 
8399 static inline struct uclamp_request
8400 capacity_from_percent(char *buf)
8401 {
8402 	struct uclamp_request req = {
8403 		.percent = UCLAMP_PERCENT_SCALE,
8404 		.util = SCHED_CAPACITY_SCALE,
8405 		.ret = 0,
8406 	};
8407 
8408 	buf = strim(buf);
8409 	if (strcmp(buf, "max")) {
8410 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8411 					     &req.percent);
8412 		if (req.ret)
8413 			return req;
8414 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8415 			req.ret = -ERANGE;
8416 			return req;
8417 		}
8418 
8419 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8420 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8421 	}
8422 
8423 	return req;
8424 }
8425 
8426 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8427 				size_t nbytes, loff_t off,
8428 				enum uclamp_id clamp_id)
8429 {
8430 	struct uclamp_request req;
8431 	struct task_group *tg;
8432 
8433 	req = capacity_from_percent(buf);
8434 	if (req.ret)
8435 		return req.ret;
8436 
8437 	static_branch_enable(&sched_uclamp_used);
8438 
8439 	mutex_lock(&uclamp_mutex);
8440 	rcu_read_lock();
8441 
8442 	tg = css_tg(of_css(of));
8443 	if (tg->uclamp_req[clamp_id].value != req.util)
8444 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8445 
8446 	/*
8447 	 * Because of not recoverable conversion rounding we keep track of the
8448 	 * exact requested value
8449 	 */
8450 	tg->uclamp_pct[clamp_id] = req.percent;
8451 
8452 	/* Update effective clamps to track the most restrictive value */
8453 	cpu_util_update_eff(of_css(of));
8454 
8455 	rcu_read_unlock();
8456 	mutex_unlock(&uclamp_mutex);
8457 
8458 	return nbytes;
8459 }
8460 
8461 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8462 				    char *buf, size_t nbytes,
8463 				    loff_t off)
8464 {
8465 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8466 }
8467 
8468 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8469 				    char *buf, size_t nbytes,
8470 				    loff_t off)
8471 {
8472 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8473 }
8474 
8475 static inline void cpu_uclamp_print(struct seq_file *sf,
8476 				    enum uclamp_id clamp_id)
8477 {
8478 	struct task_group *tg;
8479 	u64 util_clamp;
8480 	u64 percent;
8481 	u32 rem;
8482 
8483 	rcu_read_lock();
8484 	tg = css_tg(seq_css(sf));
8485 	util_clamp = tg->uclamp_req[clamp_id].value;
8486 	rcu_read_unlock();
8487 
8488 	if (util_clamp == SCHED_CAPACITY_SCALE) {
8489 		seq_puts(sf, "max\n");
8490 		return;
8491 	}
8492 
8493 	percent = tg->uclamp_pct[clamp_id];
8494 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8495 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8496 }
8497 
8498 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8499 {
8500 	cpu_uclamp_print(sf, UCLAMP_MIN);
8501 	return 0;
8502 }
8503 
8504 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8505 {
8506 	cpu_uclamp_print(sf, UCLAMP_MAX);
8507 	return 0;
8508 }
8509 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8510 
8511 #ifdef CONFIG_FAIR_GROUP_SCHED
8512 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8513 				struct cftype *cftype, u64 shareval)
8514 {
8515 	if (shareval > scale_load_down(ULONG_MAX))
8516 		shareval = MAX_SHARES;
8517 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8518 }
8519 
8520 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8521 			       struct cftype *cft)
8522 {
8523 	struct task_group *tg = css_tg(css);
8524 
8525 	return (u64) scale_load_down(tg->shares);
8526 }
8527 
8528 #ifdef CONFIG_CFS_BANDWIDTH
8529 static DEFINE_MUTEX(cfs_constraints_mutex);
8530 
8531 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8532 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8533 /* More than 203 days if BW_SHIFT equals 20. */
8534 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8535 
8536 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8537 
8538 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8539 {
8540 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8541 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8542 
8543 	if (tg == &root_task_group)
8544 		return -EINVAL;
8545 
8546 	/*
8547 	 * Ensure we have at some amount of bandwidth every period.  This is
8548 	 * to prevent reaching a state of large arrears when throttled via
8549 	 * entity_tick() resulting in prolonged exit starvation.
8550 	 */
8551 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8552 		return -EINVAL;
8553 
8554 	/*
8555 	 * Likewise, bound things on the otherside by preventing insane quota
8556 	 * periods.  This also allows us to normalize in computing quota
8557 	 * feasibility.
8558 	 */
8559 	if (period > max_cfs_quota_period)
8560 		return -EINVAL;
8561 
8562 	/*
8563 	 * Bound quota to defend quota against overflow during bandwidth shift.
8564 	 */
8565 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8566 		return -EINVAL;
8567 
8568 	/*
8569 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8570 	 * unthrottle_offline_cfs_rqs().
8571 	 */
8572 	get_online_cpus();
8573 	mutex_lock(&cfs_constraints_mutex);
8574 	ret = __cfs_schedulable(tg, period, quota);
8575 	if (ret)
8576 		goto out_unlock;
8577 
8578 	runtime_enabled = quota != RUNTIME_INF;
8579 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8580 	/*
8581 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8582 	 * before making related changes, and on->off must occur afterwards
8583 	 */
8584 	if (runtime_enabled && !runtime_was_enabled)
8585 		cfs_bandwidth_usage_inc();
8586 	raw_spin_lock_irq(&cfs_b->lock);
8587 	cfs_b->period = ns_to_ktime(period);
8588 	cfs_b->quota = quota;
8589 
8590 	__refill_cfs_bandwidth_runtime(cfs_b);
8591 
8592 	/* Restart the period timer (if active) to handle new period expiry: */
8593 	if (runtime_enabled)
8594 		start_cfs_bandwidth(cfs_b);
8595 
8596 	raw_spin_unlock_irq(&cfs_b->lock);
8597 
8598 	for_each_online_cpu(i) {
8599 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8600 		struct rq *rq = cfs_rq->rq;
8601 		struct rq_flags rf;
8602 
8603 		rq_lock_irq(rq, &rf);
8604 		cfs_rq->runtime_enabled = runtime_enabled;
8605 		cfs_rq->runtime_remaining = 0;
8606 
8607 		if (cfs_rq->throttled)
8608 			unthrottle_cfs_rq(cfs_rq);
8609 		rq_unlock_irq(rq, &rf);
8610 	}
8611 	if (runtime_was_enabled && !runtime_enabled)
8612 		cfs_bandwidth_usage_dec();
8613 out_unlock:
8614 	mutex_unlock(&cfs_constraints_mutex);
8615 	put_online_cpus();
8616 
8617 	return ret;
8618 }
8619 
8620 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8621 {
8622 	u64 quota, period;
8623 
8624 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8625 	if (cfs_quota_us < 0)
8626 		quota = RUNTIME_INF;
8627 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8628 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8629 	else
8630 		return -EINVAL;
8631 
8632 	return tg_set_cfs_bandwidth(tg, period, quota);
8633 }
8634 
8635 static long tg_get_cfs_quota(struct task_group *tg)
8636 {
8637 	u64 quota_us;
8638 
8639 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8640 		return -1;
8641 
8642 	quota_us = tg->cfs_bandwidth.quota;
8643 	do_div(quota_us, NSEC_PER_USEC);
8644 
8645 	return quota_us;
8646 }
8647 
8648 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8649 {
8650 	u64 quota, period;
8651 
8652 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8653 		return -EINVAL;
8654 
8655 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8656 	quota = tg->cfs_bandwidth.quota;
8657 
8658 	return tg_set_cfs_bandwidth(tg, period, quota);
8659 }
8660 
8661 static long tg_get_cfs_period(struct task_group *tg)
8662 {
8663 	u64 cfs_period_us;
8664 
8665 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8666 	do_div(cfs_period_us, NSEC_PER_USEC);
8667 
8668 	return cfs_period_us;
8669 }
8670 
8671 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8672 				  struct cftype *cft)
8673 {
8674 	return tg_get_cfs_quota(css_tg(css));
8675 }
8676 
8677 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8678 				   struct cftype *cftype, s64 cfs_quota_us)
8679 {
8680 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8681 }
8682 
8683 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8684 				   struct cftype *cft)
8685 {
8686 	return tg_get_cfs_period(css_tg(css));
8687 }
8688 
8689 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8690 				    struct cftype *cftype, u64 cfs_period_us)
8691 {
8692 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8693 }
8694 
8695 struct cfs_schedulable_data {
8696 	struct task_group *tg;
8697 	u64 period, quota;
8698 };
8699 
8700 /*
8701  * normalize group quota/period to be quota/max_period
8702  * note: units are usecs
8703  */
8704 static u64 normalize_cfs_quota(struct task_group *tg,
8705 			       struct cfs_schedulable_data *d)
8706 {
8707 	u64 quota, period;
8708 
8709 	if (tg == d->tg) {
8710 		period = d->period;
8711 		quota = d->quota;
8712 	} else {
8713 		period = tg_get_cfs_period(tg);
8714 		quota = tg_get_cfs_quota(tg);
8715 	}
8716 
8717 	/* note: these should typically be equivalent */
8718 	if (quota == RUNTIME_INF || quota == -1)
8719 		return RUNTIME_INF;
8720 
8721 	return to_ratio(period, quota);
8722 }
8723 
8724 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8725 {
8726 	struct cfs_schedulable_data *d = data;
8727 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8728 	s64 quota = 0, parent_quota = -1;
8729 
8730 	if (!tg->parent) {
8731 		quota = RUNTIME_INF;
8732 	} else {
8733 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8734 
8735 		quota = normalize_cfs_quota(tg, d);
8736 		parent_quota = parent_b->hierarchical_quota;
8737 
8738 		/*
8739 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8740 		 * always take the min.  On cgroup1, only inherit when no
8741 		 * limit is set:
8742 		 */
8743 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8744 			quota = min(quota, parent_quota);
8745 		} else {
8746 			if (quota == RUNTIME_INF)
8747 				quota = parent_quota;
8748 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8749 				return -EINVAL;
8750 		}
8751 	}
8752 	cfs_b->hierarchical_quota = quota;
8753 
8754 	return 0;
8755 }
8756 
8757 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8758 {
8759 	int ret;
8760 	struct cfs_schedulable_data data = {
8761 		.tg = tg,
8762 		.period = period,
8763 		.quota = quota,
8764 	};
8765 
8766 	if (quota != RUNTIME_INF) {
8767 		do_div(data.period, NSEC_PER_USEC);
8768 		do_div(data.quota, NSEC_PER_USEC);
8769 	}
8770 
8771 	rcu_read_lock();
8772 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8773 	rcu_read_unlock();
8774 
8775 	return ret;
8776 }
8777 
8778 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8779 {
8780 	struct task_group *tg = css_tg(seq_css(sf));
8781 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8782 
8783 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8784 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8785 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8786 
8787 	if (schedstat_enabled() && tg != &root_task_group) {
8788 		u64 ws = 0;
8789 		int i;
8790 
8791 		for_each_possible_cpu(i)
8792 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8793 
8794 		seq_printf(sf, "wait_sum %llu\n", ws);
8795 	}
8796 
8797 	return 0;
8798 }
8799 #endif /* CONFIG_CFS_BANDWIDTH */
8800 #endif /* CONFIG_FAIR_GROUP_SCHED */
8801 
8802 #ifdef CONFIG_RT_GROUP_SCHED
8803 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8804 				struct cftype *cft, s64 val)
8805 {
8806 	return sched_group_set_rt_runtime(css_tg(css), val);
8807 }
8808 
8809 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8810 			       struct cftype *cft)
8811 {
8812 	return sched_group_rt_runtime(css_tg(css));
8813 }
8814 
8815 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8816 				    struct cftype *cftype, u64 rt_period_us)
8817 {
8818 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8819 }
8820 
8821 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8822 				   struct cftype *cft)
8823 {
8824 	return sched_group_rt_period(css_tg(css));
8825 }
8826 #endif /* CONFIG_RT_GROUP_SCHED */
8827 
8828 static struct cftype cpu_legacy_files[] = {
8829 #ifdef CONFIG_FAIR_GROUP_SCHED
8830 	{
8831 		.name = "shares",
8832 		.read_u64 = cpu_shares_read_u64,
8833 		.write_u64 = cpu_shares_write_u64,
8834 	},
8835 #endif
8836 #ifdef CONFIG_CFS_BANDWIDTH
8837 	{
8838 		.name = "cfs_quota_us",
8839 		.read_s64 = cpu_cfs_quota_read_s64,
8840 		.write_s64 = cpu_cfs_quota_write_s64,
8841 	},
8842 	{
8843 		.name = "cfs_period_us",
8844 		.read_u64 = cpu_cfs_period_read_u64,
8845 		.write_u64 = cpu_cfs_period_write_u64,
8846 	},
8847 	{
8848 		.name = "stat",
8849 		.seq_show = cpu_cfs_stat_show,
8850 	},
8851 #endif
8852 #ifdef CONFIG_RT_GROUP_SCHED
8853 	{
8854 		.name = "rt_runtime_us",
8855 		.read_s64 = cpu_rt_runtime_read,
8856 		.write_s64 = cpu_rt_runtime_write,
8857 	},
8858 	{
8859 		.name = "rt_period_us",
8860 		.read_u64 = cpu_rt_period_read_uint,
8861 		.write_u64 = cpu_rt_period_write_uint,
8862 	},
8863 #endif
8864 #ifdef CONFIG_UCLAMP_TASK_GROUP
8865 	{
8866 		.name = "uclamp.min",
8867 		.flags = CFTYPE_NOT_ON_ROOT,
8868 		.seq_show = cpu_uclamp_min_show,
8869 		.write = cpu_uclamp_min_write,
8870 	},
8871 	{
8872 		.name = "uclamp.max",
8873 		.flags = CFTYPE_NOT_ON_ROOT,
8874 		.seq_show = cpu_uclamp_max_show,
8875 		.write = cpu_uclamp_max_write,
8876 	},
8877 #endif
8878 	{ }	/* Terminate */
8879 };
8880 
8881 static int cpu_extra_stat_show(struct seq_file *sf,
8882 			       struct cgroup_subsys_state *css)
8883 {
8884 #ifdef CONFIG_CFS_BANDWIDTH
8885 	{
8886 		struct task_group *tg = css_tg(css);
8887 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8888 		u64 throttled_usec;
8889 
8890 		throttled_usec = cfs_b->throttled_time;
8891 		do_div(throttled_usec, NSEC_PER_USEC);
8892 
8893 		seq_printf(sf, "nr_periods %d\n"
8894 			   "nr_throttled %d\n"
8895 			   "throttled_usec %llu\n",
8896 			   cfs_b->nr_periods, cfs_b->nr_throttled,
8897 			   throttled_usec);
8898 	}
8899 #endif
8900 	return 0;
8901 }
8902 
8903 #ifdef CONFIG_FAIR_GROUP_SCHED
8904 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8905 			       struct cftype *cft)
8906 {
8907 	struct task_group *tg = css_tg(css);
8908 	u64 weight = scale_load_down(tg->shares);
8909 
8910 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8911 }
8912 
8913 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8914 				struct cftype *cft, u64 weight)
8915 {
8916 	/*
8917 	 * cgroup weight knobs should use the common MIN, DFL and MAX
8918 	 * values which are 1, 100 and 10000 respectively.  While it loses
8919 	 * a bit of range on both ends, it maps pretty well onto the shares
8920 	 * value used by scheduler and the round-trip conversions preserve
8921 	 * the original value over the entire range.
8922 	 */
8923 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8924 		return -ERANGE;
8925 
8926 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8927 
8928 	return sched_group_set_shares(css_tg(css), scale_load(weight));
8929 }
8930 
8931 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8932 				    struct cftype *cft)
8933 {
8934 	unsigned long weight = scale_load_down(css_tg(css)->shares);
8935 	int last_delta = INT_MAX;
8936 	int prio, delta;
8937 
8938 	/* find the closest nice value to the current weight */
8939 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8940 		delta = abs(sched_prio_to_weight[prio] - weight);
8941 		if (delta >= last_delta)
8942 			break;
8943 		last_delta = delta;
8944 	}
8945 
8946 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8947 }
8948 
8949 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8950 				     struct cftype *cft, s64 nice)
8951 {
8952 	unsigned long weight;
8953 	int idx;
8954 
8955 	if (nice < MIN_NICE || nice > MAX_NICE)
8956 		return -ERANGE;
8957 
8958 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8959 	idx = array_index_nospec(idx, 40);
8960 	weight = sched_prio_to_weight[idx];
8961 
8962 	return sched_group_set_shares(css_tg(css), scale_load(weight));
8963 }
8964 #endif
8965 
8966 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8967 						  long period, long quota)
8968 {
8969 	if (quota < 0)
8970 		seq_puts(sf, "max");
8971 	else
8972 		seq_printf(sf, "%ld", quota);
8973 
8974 	seq_printf(sf, " %ld\n", period);
8975 }
8976 
8977 /* caller should put the current value in *@periodp before calling */
8978 static int __maybe_unused cpu_period_quota_parse(char *buf,
8979 						 u64 *periodp, u64 *quotap)
8980 {
8981 	char tok[21];	/* U64_MAX */
8982 
8983 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8984 		return -EINVAL;
8985 
8986 	*periodp *= NSEC_PER_USEC;
8987 
8988 	if (sscanf(tok, "%llu", quotap))
8989 		*quotap *= NSEC_PER_USEC;
8990 	else if (!strcmp(tok, "max"))
8991 		*quotap = RUNTIME_INF;
8992 	else
8993 		return -EINVAL;
8994 
8995 	return 0;
8996 }
8997 
8998 #ifdef CONFIG_CFS_BANDWIDTH
8999 static int cpu_max_show(struct seq_file *sf, void *v)
9000 {
9001 	struct task_group *tg = css_tg(seq_css(sf));
9002 
9003 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9004 	return 0;
9005 }
9006 
9007 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9008 			     char *buf, size_t nbytes, loff_t off)
9009 {
9010 	struct task_group *tg = css_tg(of_css(of));
9011 	u64 period = tg_get_cfs_period(tg);
9012 	u64 quota;
9013 	int ret;
9014 
9015 	ret = cpu_period_quota_parse(buf, &period, &quota);
9016 	if (!ret)
9017 		ret = tg_set_cfs_bandwidth(tg, period, quota);
9018 	return ret ?: nbytes;
9019 }
9020 #endif
9021 
9022 static struct cftype cpu_files[] = {
9023 #ifdef CONFIG_FAIR_GROUP_SCHED
9024 	{
9025 		.name = "weight",
9026 		.flags = CFTYPE_NOT_ON_ROOT,
9027 		.read_u64 = cpu_weight_read_u64,
9028 		.write_u64 = cpu_weight_write_u64,
9029 	},
9030 	{
9031 		.name = "weight.nice",
9032 		.flags = CFTYPE_NOT_ON_ROOT,
9033 		.read_s64 = cpu_weight_nice_read_s64,
9034 		.write_s64 = cpu_weight_nice_write_s64,
9035 	},
9036 #endif
9037 #ifdef CONFIG_CFS_BANDWIDTH
9038 	{
9039 		.name = "max",
9040 		.flags = CFTYPE_NOT_ON_ROOT,
9041 		.seq_show = cpu_max_show,
9042 		.write = cpu_max_write,
9043 	},
9044 #endif
9045 #ifdef CONFIG_UCLAMP_TASK_GROUP
9046 	{
9047 		.name = "uclamp.min",
9048 		.flags = CFTYPE_NOT_ON_ROOT,
9049 		.seq_show = cpu_uclamp_min_show,
9050 		.write = cpu_uclamp_min_write,
9051 	},
9052 	{
9053 		.name = "uclamp.max",
9054 		.flags = CFTYPE_NOT_ON_ROOT,
9055 		.seq_show = cpu_uclamp_max_show,
9056 		.write = cpu_uclamp_max_write,
9057 	},
9058 #endif
9059 	{ }	/* terminate */
9060 };
9061 
9062 struct cgroup_subsys cpu_cgrp_subsys = {
9063 	.css_alloc	= cpu_cgroup_css_alloc,
9064 	.css_online	= cpu_cgroup_css_online,
9065 	.css_released	= cpu_cgroup_css_released,
9066 	.css_free	= cpu_cgroup_css_free,
9067 	.css_extra_stat_show = cpu_extra_stat_show,
9068 	.fork		= cpu_cgroup_fork,
9069 	.can_attach	= cpu_cgroup_can_attach,
9070 	.attach		= cpu_cgroup_attach,
9071 	.legacy_cftypes	= cpu_legacy_files,
9072 	.dfl_cftypes	= cpu_files,
9073 	.early_init	= true,
9074 	.threaded	= true,
9075 };
9076 
9077 #endif	/* CONFIG_CGROUP_SCHED */
9078 
9079 void dump_cpu_task(int cpu)
9080 {
9081 	pr_info("Task dump for CPU %d:\n", cpu);
9082 	sched_show_task(cpu_curr(cpu));
9083 }
9084 
9085 /*
9086  * Nice levels are multiplicative, with a gentle 10% change for every
9087  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9088  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9089  * that remained on nice 0.
9090  *
9091  * The "10% effect" is relative and cumulative: from _any_ nice level,
9092  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9093  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9094  * If a task goes up by ~10% and another task goes down by ~10% then
9095  * the relative distance between them is ~25%.)
9096  */
9097 const int sched_prio_to_weight[40] = {
9098  /* -20 */     88761,     71755,     56483,     46273,     36291,
9099  /* -15 */     29154,     23254,     18705,     14949,     11916,
9100  /* -10 */      9548,      7620,      6100,      4904,      3906,
9101  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9102  /*   0 */      1024,       820,       655,       526,       423,
9103  /*   5 */       335,       272,       215,       172,       137,
9104  /*  10 */       110,        87,        70,        56,        45,
9105  /*  15 */        36,        29,        23,        18,        15,
9106 };
9107 
9108 /*
9109  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9110  *
9111  * In cases where the weight does not change often, we can use the
9112  * precalculated inverse to speed up arithmetics by turning divisions
9113  * into multiplications:
9114  */
9115 const u32 sched_prio_to_wmult[40] = {
9116  /* -20 */     48388,     59856,     76040,     92818,    118348,
9117  /* -15 */    147320,    184698,    229616,    287308,    360437,
9118  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9119  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9120  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9121  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9122  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9123  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9124 };
9125 
9126 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9127 {
9128         trace_sched_update_nr_running_tp(rq, count);
9129 }
9130