xref: /openbmc/linux/kernel/sched/core.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled)	\
129 	#name ,
130 
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134 
135 #undef SCHED_FEAT
136 
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 	int i;
140 
141 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 		if (!(sysctl_sched_features & (1UL << i)))
143 			seq_puts(m, "NO_");
144 		seq_printf(m, "%s ", sched_feat_names[i]);
145 	}
146 	seq_puts(m, "\n");
147 
148 	return 0;
149 }
150 
151 #ifdef HAVE_JUMP_LABEL
152 
153 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155 
156 #define SCHED_FEAT(name, enabled)	\
157 	jump_label_key__##enabled ,
158 
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162 
163 #undef SCHED_FEAT
164 
165 static void sched_feat_disable(int i)
166 {
167 	static_key_disable(&sched_feat_keys[i]);
168 }
169 
170 static void sched_feat_enable(int i)
171 {
172 	static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178 
179 static int sched_feat_set(char *cmp)
180 {
181 	int i;
182 	int neg = 0;
183 
184 	if (strncmp(cmp, "NO_", 3) == 0) {
185 		neg = 1;
186 		cmp += 3;
187 	}
188 
189 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 			if (neg) {
192 				sysctl_sched_features &= ~(1UL << i);
193 				sched_feat_disable(i);
194 			} else {
195 				sysctl_sched_features |= (1UL << i);
196 				sched_feat_enable(i);
197 			}
198 			break;
199 		}
200 	}
201 
202 	return i;
203 }
204 
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 		size_t cnt, loff_t *ppos)
208 {
209 	char buf[64];
210 	char *cmp;
211 	int i;
212 	struct inode *inode;
213 
214 	if (cnt > 63)
215 		cnt = 63;
216 
217 	if (copy_from_user(&buf, ubuf, cnt))
218 		return -EFAULT;
219 
220 	buf[cnt] = 0;
221 	cmp = strstrip(buf);
222 
223 	/* Ensure the static_key remains in a consistent state */
224 	inode = file_inode(filp);
225 	mutex_lock(&inode->i_mutex);
226 	i = sched_feat_set(cmp);
227 	mutex_unlock(&inode->i_mutex);
228 	if (i == __SCHED_FEAT_NR)
229 		return -EINVAL;
230 
231 	*ppos += cnt;
232 
233 	return cnt;
234 }
235 
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 	return single_open(filp, sched_feat_show, NULL);
239 }
240 
241 static const struct file_operations sched_feat_fops = {
242 	.open		= sched_feat_open,
243 	.write		= sched_feat_write,
244 	.read		= seq_read,
245 	.llseek		= seq_lseek,
246 	.release	= single_release,
247 };
248 
249 static __init int sched_init_debug(void)
250 {
251 	debugfs_create_file("sched_features", 0644, NULL, NULL,
252 			&sched_feat_fops);
253 
254 	return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258 
259 /*
260  * Number of tasks to iterate in a single balance run.
261  * Limited because this is done with IRQs disabled.
262  */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264 
265 /*
266  * period over which we average the RT time consumption, measured
267  * in ms.
268  *
269  * default: 1s
270  */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272 
273 /*
274  * period over which we measure -rt task cpu usage in us.
275  * default: 1s
276  */
277 unsigned int sysctl_sched_rt_period = 1000000;
278 
279 __read_mostly int scheduler_running;
280 
281 /*
282  * part of the period that we allow rt tasks to run in us.
283  * default: 0.95s
284  */
285 int sysctl_sched_rt_runtime = 950000;
286 
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289 
290 /*
291  * this_rq_lock - lock this runqueue and disable interrupts.
292  */
293 static struct rq *this_rq_lock(void)
294 	__acquires(rq->lock)
295 {
296 	struct rq *rq;
297 
298 	local_irq_disable();
299 	rq = this_rq();
300 	raw_spin_lock(&rq->lock);
301 
302 	return rq;
303 }
304 
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307  * Use HR-timers to deliver accurate preemption points.
308  */
309 
310 static void hrtick_clear(struct rq *rq)
311 {
312 	if (hrtimer_active(&rq->hrtick_timer))
313 		hrtimer_cancel(&rq->hrtick_timer);
314 }
315 
316 /*
317  * High-resolution timer tick.
318  * Runs from hardirq context with interrupts disabled.
319  */
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323 
324 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325 
326 	raw_spin_lock(&rq->lock);
327 	update_rq_clock(rq);
328 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 	raw_spin_unlock(&rq->lock);
330 
331 	return HRTIMER_NORESTART;
332 }
333 
334 #ifdef CONFIG_SMP
335 
336 static void __hrtick_restart(struct rq *rq)
337 {
338 	struct hrtimer *timer = &rq->hrtick_timer;
339 
340 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342 
343 /*
344  * called from hardirq (IPI) context
345  */
346 static void __hrtick_start(void *arg)
347 {
348 	struct rq *rq = arg;
349 
350 	raw_spin_lock(&rq->lock);
351 	__hrtick_restart(rq);
352 	rq->hrtick_csd_pending = 0;
353 	raw_spin_unlock(&rq->lock);
354 }
355 
356 /*
357  * Called to set the hrtick timer state.
358  *
359  * called with rq->lock held and irqs disabled
360  */
361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 	struct hrtimer *timer = &rq->hrtick_timer;
364 	ktime_t time;
365 	s64 delta;
366 
367 	/*
368 	 * Don't schedule slices shorter than 10000ns, that just
369 	 * doesn't make sense and can cause timer DoS.
370 	 */
371 	delta = max_t(s64, delay, 10000LL);
372 	time = ktime_add_ns(timer->base->get_time(), delta);
373 
374 	hrtimer_set_expires(timer, time);
375 
376 	if (rq == this_rq()) {
377 		__hrtick_restart(rq);
378 	} else if (!rq->hrtick_csd_pending) {
379 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 		rq->hrtick_csd_pending = 1;
381 	}
382 }
383 
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 	int cpu = (int)(long)hcpu;
388 
389 	switch (action) {
390 	case CPU_UP_CANCELED:
391 	case CPU_UP_CANCELED_FROZEN:
392 	case CPU_DOWN_PREPARE:
393 	case CPU_DOWN_PREPARE_FROZEN:
394 	case CPU_DEAD:
395 	case CPU_DEAD_FROZEN:
396 		hrtick_clear(cpu_rq(cpu));
397 		return NOTIFY_OK;
398 	}
399 
400 	return NOTIFY_DONE;
401 }
402 
403 static __init void init_hrtick(void)
404 {
405 	hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409  * Called to set the hrtick timer state.
410  *
411  * called with rq->lock held and irqs disabled
412  */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 	/*
416 	 * Don't schedule slices shorter than 10000ns, that just
417 	 * doesn't make sense. Rely on vruntime for fairness.
418 	 */
419 	delay = max_t(u64, delay, 10000LL);
420 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 		      HRTIMER_MODE_REL_PINNED);
422 }
423 
424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428 
429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 	rq->hrtick_csd_pending = 0;
433 
434 	rq->hrtick_csd.flags = 0;
435 	rq->hrtick_csd.func = __hrtick_start;
436 	rq->hrtick_csd.info = rq;
437 #endif
438 
439 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 	rq->hrtick_timer.function = hrtick;
441 }
442 #else	/* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446 
447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450 
451 static inline void init_hrtick(void)
452 {
453 }
454 #endif	/* CONFIG_SCHED_HRTICK */
455 
456 /*
457  * cmpxchg based fetch_or, macro so it works for different integer types
458  */
459 #define fetch_or(ptr, val)						\
460 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
461  	for (;;) {							\
462  		__old = cmpxchg((ptr), __val, __val | (val));		\
463  		if (__old == __val)					\
464  			break;						\
465  		__val = __old;						\
466  	}								\
467  	__old;								\
468 })
469 
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473  * this avoids any races wrt polling state changes and thereby avoids
474  * spurious IPIs.
475  */
476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 	struct thread_info *ti = task_thread_info(p);
479 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481 
482 /*
483  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484  *
485  * If this returns true, then the idle task promises to call
486  * sched_ttwu_pending() and reschedule soon.
487  */
488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 	struct thread_info *ti = task_thread_info(p);
491 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492 
493 	for (;;) {
494 		if (!(val & _TIF_POLLING_NRFLAG))
495 			return false;
496 		if (val & _TIF_NEED_RESCHED)
497 			return true;
498 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 		if (old == val)
500 			break;
501 		val = old;
502 	}
503 	return true;
504 }
505 
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 	set_tsk_need_resched(p);
510 	return true;
511 }
512 
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 	return false;
517 }
518 #endif
519 #endif
520 
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 	struct wake_q_node *node = &task->wake_q;
524 
525 	/*
526 	 * Atomically grab the task, if ->wake_q is !nil already it means
527 	 * its already queued (either by us or someone else) and will get the
528 	 * wakeup due to that.
529 	 *
530 	 * This cmpxchg() implies a full barrier, which pairs with the write
531 	 * barrier implied by the wakeup in wake_up_list().
532 	 */
533 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 		return;
535 
536 	get_task_struct(task);
537 
538 	/*
539 	 * The head is context local, there can be no concurrency.
540 	 */
541 	*head->lastp = node;
542 	head->lastp = &node->next;
543 }
544 
545 void wake_up_q(struct wake_q_head *head)
546 {
547 	struct wake_q_node *node = head->first;
548 
549 	while (node != WAKE_Q_TAIL) {
550 		struct task_struct *task;
551 
552 		task = container_of(node, struct task_struct, wake_q);
553 		BUG_ON(!task);
554 		/* task can safely be re-inserted now */
555 		node = node->next;
556 		task->wake_q.next = NULL;
557 
558 		/*
559 		 * wake_up_process() implies a wmb() to pair with the queueing
560 		 * in wake_q_add() so as not to miss wakeups.
561 		 */
562 		wake_up_process(task);
563 		put_task_struct(task);
564 	}
565 }
566 
567 /*
568  * resched_curr - mark rq's current task 'to be rescheduled now'.
569  *
570  * On UP this means the setting of the need_resched flag, on SMP it
571  * might also involve a cross-CPU call to trigger the scheduler on
572  * the target CPU.
573  */
574 void resched_curr(struct rq *rq)
575 {
576 	struct task_struct *curr = rq->curr;
577 	int cpu;
578 
579 	lockdep_assert_held(&rq->lock);
580 
581 	if (test_tsk_need_resched(curr))
582 		return;
583 
584 	cpu = cpu_of(rq);
585 
586 	if (cpu == smp_processor_id()) {
587 		set_tsk_need_resched(curr);
588 		set_preempt_need_resched();
589 		return;
590 	}
591 
592 	if (set_nr_and_not_polling(curr))
593 		smp_send_reschedule(cpu);
594 	else
595 		trace_sched_wake_idle_without_ipi(cpu);
596 }
597 
598 void resched_cpu(int cpu)
599 {
600 	struct rq *rq = cpu_rq(cpu);
601 	unsigned long flags;
602 
603 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 		return;
605 	resched_curr(rq);
606 	raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608 
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612  * In the semi idle case, use the nearest busy cpu for migrating timers
613  * from an idle cpu.  This is good for power-savings.
614  *
615  * We don't do similar optimization for completely idle system, as
616  * selecting an idle cpu will add more delays to the timers than intended
617  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618  */
619 int get_nohz_timer_target(void)
620 {
621 	int i, cpu = smp_processor_id();
622 	struct sched_domain *sd;
623 
624 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 		return cpu;
626 
627 	rcu_read_lock();
628 	for_each_domain(cpu, sd) {
629 		for_each_cpu(i, sched_domain_span(sd)) {
630 			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 				cpu = i;
632 				goto unlock;
633 			}
634 		}
635 	}
636 
637 	if (!is_housekeeping_cpu(cpu))
638 		cpu = housekeeping_any_cpu();
639 unlock:
640 	rcu_read_unlock();
641 	return cpu;
642 }
643 /*
644  * When add_timer_on() enqueues a timer into the timer wheel of an
645  * idle CPU then this timer might expire before the next timer event
646  * which is scheduled to wake up that CPU. In case of a completely
647  * idle system the next event might even be infinite time into the
648  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649  * leaves the inner idle loop so the newly added timer is taken into
650  * account when the CPU goes back to idle and evaluates the timer
651  * wheel for the next timer event.
652  */
653 static void wake_up_idle_cpu(int cpu)
654 {
655 	struct rq *rq = cpu_rq(cpu);
656 
657 	if (cpu == smp_processor_id())
658 		return;
659 
660 	if (set_nr_and_not_polling(rq->idle))
661 		smp_send_reschedule(cpu);
662 	else
663 		trace_sched_wake_idle_without_ipi(cpu);
664 }
665 
666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 	/*
669 	 * We just need the target to call irq_exit() and re-evaluate
670 	 * the next tick. The nohz full kick at least implies that.
671 	 * If needed we can still optimize that later with an
672 	 * empty IRQ.
673 	 */
674 	if (tick_nohz_full_cpu(cpu)) {
675 		if (cpu != smp_processor_id() ||
676 		    tick_nohz_tick_stopped())
677 			tick_nohz_full_kick_cpu(cpu);
678 		return true;
679 	}
680 
681 	return false;
682 }
683 
684 void wake_up_nohz_cpu(int cpu)
685 {
686 	if (!wake_up_full_nohz_cpu(cpu))
687 		wake_up_idle_cpu(cpu);
688 }
689 
690 static inline bool got_nohz_idle_kick(void)
691 {
692 	int cpu = smp_processor_id();
693 
694 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 		return false;
696 
697 	if (idle_cpu(cpu) && !need_resched())
698 		return true;
699 
700 	/*
701 	 * We can't run Idle Load Balance on this CPU for this time so we
702 	 * cancel it and clear NOHZ_BALANCE_KICK
703 	 */
704 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 	return false;
706 }
707 
708 #else /* CONFIG_NO_HZ_COMMON */
709 
710 static inline bool got_nohz_idle_kick(void)
711 {
712 	return false;
713 }
714 
715 #endif /* CONFIG_NO_HZ_COMMON */
716 
717 #ifdef CONFIG_NO_HZ_FULL
718 bool sched_can_stop_tick(void)
719 {
720 	/*
721 	 * FIFO realtime policy runs the highest priority task. Other runnable
722 	 * tasks are of a lower priority. The scheduler tick does nothing.
723 	 */
724 	if (current->policy == SCHED_FIFO)
725 		return true;
726 
727 	/*
728 	 * Round-robin realtime tasks time slice with other tasks at the same
729 	 * realtime priority. Is this task the only one at this priority?
730 	 */
731 	if (current->policy == SCHED_RR) {
732 		struct sched_rt_entity *rt_se = &current->rt;
733 
734 		return rt_se->run_list.prev == rt_se->run_list.next;
735 	}
736 
737 	/*
738 	 * More than one running task need preemption.
739 	 * nr_running update is assumed to be visible
740 	 * after IPI is sent from wakers.
741 	 */
742 	if (this_rq()->nr_running > 1)
743 		return false;
744 
745 	return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748 
749 void sched_avg_update(struct rq *rq)
750 {
751 	s64 period = sched_avg_period();
752 
753 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 		/*
755 		 * Inline assembly required to prevent the compiler
756 		 * optimising this loop into a divmod call.
757 		 * See __iter_div_u64_rem() for another example of this.
758 		 */
759 		asm("" : "+rm" (rq->age_stamp));
760 		rq->age_stamp += period;
761 		rq->rt_avg /= 2;
762 	}
763 }
764 
765 #endif /* CONFIG_SMP */
766 
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770  * Iterate task_group tree rooted at *from, calling @down when first entering a
771  * node and @up when leaving it for the final time.
772  *
773  * Caller must hold rcu_lock or sufficient equivalent.
774  */
775 int walk_tg_tree_from(struct task_group *from,
776 			     tg_visitor down, tg_visitor up, void *data)
777 {
778 	struct task_group *parent, *child;
779 	int ret;
780 
781 	parent = from;
782 
783 down:
784 	ret = (*down)(parent, data);
785 	if (ret)
786 		goto out;
787 	list_for_each_entry_rcu(child, &parent->children, siblings) {
788 		parent = child;
789 		goto down;
790 
791 up:
792 		continue;
793 	}
794 	ret = (*up)(parent, data);
795 	if (ret || parent == from)
796 		goto out;
797 
798 	child = parent;
799 	parent = parent->parent;
800 	if (parent)
801 		goto up;
802 out:
803 	return ret;
804 }
805 
806 int tg_nop(struct task_group *tg, void *data)
807 {
808 	return 0;
809 }
810 #endif
811 
812 static void set_load_weight(struct task_struct *p)
813 {
814 	int prio = p->static_prio - MAX_RT_PRIO;
815 	struct load_weight *load = &p->se.load;
816 
817 	/*
818 	 * SCHED_IDLE tasks get minimal weight:
819 	 */
820 	if (p->policy == SCHED_IDLE) {
821 		load->weight = scale_load(WEIGHT_IDLEPRIO);
822 		load->inv_weight = WMULT_IDLEPRIO;
823 		return;
824 	}
825 
826 	load->weight = scale_load(prio_to_weight[prio]);
827 	load->inv_weight = prio_to_wmult[prio];
828 }
829 
830 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 	update_rq_clock(rq);
833 	sched_info_queued(rq, p);
834 	p->sched_class->enqueue_task(rq, p, flags);
835 }
836 
837 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
838 {
839 	update_rq_clock(rq);
840 	sched_info_dequeued(rq, p);
841 	p->sched_class->dequeue_task(rq, p, flags);
842 }
843 
844 void activate_task(struct rq *rq, struct task_struct *p, int flags)
845 {
846 	if (task_contributes_to_load(p))
847 		rq->nr_uninterruptible--;
848 
849 	enqueue_task(rq, p, flags);
850 }
851 
852 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 	if (task_contributes_to_load(p))
855 		rq->nr_uninterruptible++;
856 
857 	dequeue_task(rq, p, flags);
858 }
859 
860 static void update_rq_clock_task(struct rq *rq, s64 delta)
861 {
862 /*
863  * In theory, the compile should just see 0 here, and optimize out the call
864  * to sched_rt_avg_update. But I don't trust it...
865  */
866 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 	s64 steal = 0, irq_delta = 0;
868 #endif
869 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
870 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
871 
872 	/*
873 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 	 * this case when a previous update_rq_clock() happened inside a
875 	 * {soft,}irq region.
876 	 *
877 	 * When this happens, we stop ->clock_task and only update the
878 	 * prev_irq_time stamp to account for the part that fit, so that a next
879 	 * update will consume the rest. This ensures ->clock_task is
880 	 * monotonic.
881 	 *
882 	 * It does however cause some slight miss-attribution of {soft,}irq
883 	 * time, a more accurate solution would be to update the irq_time using
884 	 * the current rq->clock timestamp, except that would require using
885 	 * atomic ops.
886 	 */
887 	if (irq_delta > delta)
888 		irq_delta = delta;
889 
890 	rq->prev_irq_time += irq_delta;
891 	delta -= irq_delta;
892 #endif
893 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
894 	if (static_key_false((&paravirt_steal_rq_enabled))) {
895 		steal = paravirt_steal_clock(cpu_of(rq));
896 		steal -= rq->prev_steal_time_rq;
897 
898 		if (unlikely(steal > delta))
899 			steal = delta;
900 
901 		rq->prev_steal_time_rq += steal;
902 		delta -= steal;
903 	}
904 #endif
905 
906 	rq->clock_task += delta;
907 
908 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
909 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
910 		sched_rt_avg_update(rq, irq_delta + steal);
911 #endif
912 }
913 
914 void sched_set_stop_task(int cpu, struct task_struct *stop)
915 {
916 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
918 
919 	if (stop) {
920 		/*
921 		 * Make it appear like a SCHED_FIFO task, its something
922 		 * userspace knows about and won't get confused about.
923 		 *
924 		 * Also, it will make PI more or less work without too
925 		 * much confusion -- but then, stop work should not
926 		 * rely on PI working anyway.
927 		 */
928 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929 
930 		stop->sched_class = &stop_sched_class;
931 	}
932 
933 	cpu_rq(cpu)->stop = stop;
934 
935 	if (old_stop) {
936 		/*
937 		 * Reset it back to a normal scheduling class so that
938 		 * it can die in pieces.
939 		 */
940 		old_stop->sched_class = &rt_sched_class;
941 	}
942 }
943 
944 /*
945  * __normal_prio - return the priority that is based on the static prio
946  */
947 static inline int __normal_prio(struct task_struct *p)
948 {
949 	return p->static_prio;
950 }
951 
952 /*
953  * Calculate the expected normal priority: i.e. priority
954  * without taking RT-inheritance into account. Might be
955  * boosted by interactivity modifiers. Changes upon fork,
956  * setprio syscalls, and whenever the interactivity
957  * estimator recalculates.
958  */
959 static inline int normal_prio(struct task_struct *p)
960 {
961 	int prio;
962 
963 	if (task_has_dl_policy(p))
964 		prio = MAX_DL_PRIO-1;
965 	else if (task_has_rt_policy(p))
966 		prio = MAX_RT_PRIO-1 - p->rt_priority;
967 	else
968 		prio = __normal_prio(p);
969 	return prio;
970 }
971 
972 /*
973  * Calculate the current priority, i.e. the priority
974  * taken into account by the scheduler. This value might
975  * be boosted by RT tasks, or might be boosted by
976  * interactivity modifiers. Will be RT if the task got
977  * RT-boosted. If not then it returns p->normal_prio.
978  */
979 static int effective_prio(struct task_struct *p)
980 {
981 	p->normal_prio = normal_prio(p);
982 	/*
983 	 * If we are RT tasks or we were boosted to RT priority,
984 	 * keep the priority unchanged. Otherwise, update priority
985 	 * to the normal priority:
986 	 */
987 	if (!rt_prio(p->prio))
988 		return p->normal_prio;
989 	return p->prio;
990 }
991 
992 /**
993  * task_curr - is this task currently executing on a CPU?
994  * @p: the task in question.
995  *
996  * Return: 1 if the task is currently executing. 0 otherwise.
997  */
998 inline int task_curr(const struct task_struct *p)
999 {
1000 	return cpu_curr(task_cpu(p)) == p;
1001 }
1002 
1003 /*
1004  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005  * use the balance_callback list if you want balancing.
1006  *
1007  * this means any call to check_class_changed() must be followed by a call to
1008  * balance_callback().
1009  */
1010 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 				       const struct sched_class *prev_class,
1012 				       int oldprio)
1013 {
1014 	if (prev_class != p->sched_class) {
1015 		if (prev_class->switched_from)
1016 			prev_class->switched_from(rq, p);
1017 
1018 		p->sched_class->switched_to(rq, p);
1019 	} else if (oldprio != p->prio || dl_task(p))
1020 		p->sched_class->prio_changed(rq, p, oldprio);
1021 }
1022 
1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 {
1025 	const struct sched_class *class;
1026 
1027 	if (p->sched_class == rq->curr->sched_class) {
1028 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 	} else {
1030 		for_each_class(class) {
1031 			if (class == rq->curr->sched_class)
1032 				break;
1033 			if (class == p->sched_class) {
1034 				resched_curr(rq);
1035 				break;
1036 			}
1037 		}
1038 	}
1039 
1040 	/*
1041 	 * A queue event has occurred, and we're going to schedule.  In
1042 	 * this case, we can save a useless back to back clock update.
1043 	 */
1044 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045 		rq_clock_skip_update(rq, true);
1046 }
1047 
1048 #ifdef CONFIG_SMP
1049 /*
1050  * This is how migration works:
1051  *
1052  * 1) we invoke migration_cpu_stop() on the target CPU using
1053  *    stop_one_cpu().
1054  * 2) stopper starts to run (implicitly forcing the migrated thread
1055  *    off the CPU)
1056  * 3) it checks whether the migrated task is still in the wrong runqueue.
1057  * 4) if it's in the wrong runqueue then the migration thread removes
1058  *    it and puts it into the right queue.
1059  * 5) stopper completes and stop_one_cpu() returns and the migration
1060  *    is done.
1061  */
1062 
1063 /*
1064  * move_queued_task - move a queued task to new rq.
1065  *
1066  * Returns (locked) new rq. Old rq's lock is released.
1067  */
1068 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1069 {
1070 	lockdep_assert_held(&rq->lock);
1071 
1072 	dequeue_task(rq, p, 0);
1073 	p->on_rq = TASK_ON_RQ_MIGRATING;
1074 	set_task_cpu(p, new_cpu);
1075 	raw_spin_unlock(&rq->lock);
1076 
1077 	rq = cpu_rq(new_cpu);
1078 
1079 	raw_spin_lock(&rq->lock);
1080 	BUG_ON(task_cpu(p) != new_cpu);
1081 	p->on_rq = TASK_ON_RQ_QUEUED;
1082 	enqueue_task(rq, p, 0);
1083 	check_preempt_curr(rq, p, 0);
1084 
1085 	return rq;
1086 }
1087 
1088 struct migration_arg {
1089 	struct task_struct *task;
1090 	int dest_cpu;
1091 };
1092 
1093 /*
1094  * Move (not current) task off this cpu, onto dest cpu. We're doing
1095  * this because either it can't run here any more (set_cpus_allowed()
1096  * away from this CPU, or CPU going down), or because we're
1097  * attempting to rebalance this task on exec (sched_exec).
1098  *
1099  * So we race with normal scheduler movements, but that's OK, as long
1100  * as the task is no longer on this CPU.
1101  */
1102 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1103 {
1104 	if (unlikely(!cpu_active(dest_cpu)))
1105 		return rq;
1106 
1107 	/* Affinity changed (again). */
1108 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1109 		return rq;
1110 
1111 	rq = move_queued_task(rq, p, dest_cpu);
1112 
1113 	return rq;
1114 }
1115 
1116 /*
1117  * migration_cpu_stop - this will be executed by a highprio stopper thread
1118  * and performs thread migration by bumping thread off CPU then
1119  * 'pushing' onto another runqueue.
1120  */
1121 static int migration_cpu_stop(void *data)
1122 {
1123 	struct migration_arg *arg = data;
1124 	struct task_struct *p = arg->task;
1125 	struct rq *rq = this_rq();
1126 
1127 	/*
1128 	 * The original target cpu might have gone down and we might
1129 	 * be on another cpu but it doesn't matter.
1130 	 */
1131 	local_irq_disable();
1132 	/*
1133 	 * We need to explicitly wake pending tasks before running
1134 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1135 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1136 	 */
1137 	sched_ttwu_pending();
1138 
1139 	raw_spin_lock(&p->pi_lock);
1140 	raw_spin_lock(&rq->lock);
1141 	/*
1142 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1143 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1144 	 * we're holding p->pi_lock.
1145 	 */
1146 	if (task_rq(p) == rq && task_on_rq_queued(p))
1147 		rq = __migrate_task(rq, p, arg->dest_cpu);
1148 	raw_spin_unlock(&rq->lock);
1149 	raw_spin_unlock(&p->pi_lock);
1150 
1151 	local_irq_enable();
1152 	return 0;
1153 }
1154 
1155 /*
1156  * sched_class::set_cpus_allowed must do the below, but is not required to
1157  * actually call this function.
1158  */
1159 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1160 {
1161 	cpumask_copy(&p->cpus_allowed, new_mask);
1162 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1163 }
1164 
1165 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1166 {
1167 	struct rq *rq = task_rq(p);
1168 	bool queued, running;
1169 
1170 	lockdep_assert_held(&p->pi_lock);
1171 
1172 	queued = task_on_rq_queued(p);
1173 	running = task_current(rq, p);
1174 
1175 	if (queued) {
1176 		/*
1177 		 * Because __kthread_bind() calls this on blocked tasks without
1178 		 * holding rq->lock.
1179 		 */
1180 		lockdep_assert_held(&rq->lock);
1181 		dequeue_task(rq, p, 0);
1182 	}
1183 	if (running)
1184 		put_prev_task(rq, p);
1185 
1186 	p->sched_class->set_cpus_allowed(p, new_mask);
1187 
1188 	if (running)
1189 		p->sched_class->set_curr_task(rq);
1190 	if (queued)
1191 		enqueue_task(rq, p, 0);
1192 }
1193 
1194 /*
1195  * Change a given task's CPU affinity. Migrate the thread to a
1196  * proper CPU and schedule it away if the CPU it's executing on
1197  * is removed from the allowed bitmask.
1198  *
1199  * NOTE: the caller must have a valid reference to the task, the
1200  * task must not exit() & deallocate itself prematurely. The
1201  * call is not atomic; no spinlocks may be held.
1202  */
1203 static int __set_cpus_allowed_ptr(struct task_struct *p,
1204 				  const struct cpumask *new_mask, bool check)
1205 {
1206 	unsigned long flags;
1207 	struct rq *rq;
1208 	unsigned int dest_cpu;
1209 	int ret = 0;
1210 
1211 	rq = task_rq_lock(p, &flags);
1212 
1213 	/*
1214 	 * Must re-check here, to close a race against __kthread_bind(),
1215 	 * sched_setaffinity() is not guaranteed to observe the flag.
1216 	 */
1217 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1218 		ret = -EINVAL;
1219 		goto out;
1220 	}
1221 
1222 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1223 		goto out;
1224 
1225 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1226 		ret = -EINVAL;
1227 		goto out;
1228 	}
1229 
1230 	do_set_cpus_allowed(p, new_mask);
1231 
1232 	/* Can the task run on the task's current CPU? If so, we're done */
1233 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1234 		goto out;
1235 
1236 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1237 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1238 		struct migration_arg arg = { p, dest_cpu };
1239 		/* Need help from migration thread: drop lock and wait. */
1240 		task_rq_unlock(rq, p, &flags);
1241 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1242 		tlb_migrate_finish(p->mm);
1243 		return 0;
1244 	} else if (task_on_rq_queued(p)) {
1245 		/*
1246 		 * OK, since we're going to drop the lock immediately
1247 		 * afterwards anyway.
1248 		 */
1249 		lockdep_unpin_lock(&rq->lock);
1250 		rq = move_queued_task(rq, p, dest_cpu);
1251 		lockdep_pin_lock(&rq->lock);
1252 	}
1253 out:
1254 	task_rq_unlock(rq, p, &flags);
1255 
1256 	return ret;
1257 }
1258 
1259 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1260 {
1261 	return __set_cpus_allowed_ptr(p, new_mask, false);
1262 }
1263 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1264 
1265 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1266 {
1267 #ifdef CONFIG_SCHED_DEBUG
1268 	/*
1269 	 * We should never call set_task_cpu() on a blocked task,
1270 	 * ttwu() will sort out the placement.
1271 	 */
1272 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1273 			!p->on_rq);
1274 
1275 #ifdef CONFIG_LOCKDEP
1276 	/*
1277 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1278 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1279 	 *
1280 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1281 	 * see task_group().
1282 	 *
1283 	 * Furthermore, all task_rq users should acquire both locks, see
1284 	 * task_rq_lock().
1285 	 */
1286 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1287 				      lockdep_is_held(&task_rq(p)->lock)));
1288 #endif
1289 #endif
1290 
1291 	trace_sched_migrate_task(p, new_cpu);
1292 
1293 	if (task_cpu(p) != new_cpu) {
1294 		if (p->sched_class->migrate_task_rq)
1295 			p->sched_class->migrate_task_rq(p, new_cpu);
1296 		p->se.nr_migrations++;
1297 		perf_event_task_migrate(p);
1298 	}
1299 
1300 	__set_task_cpu(p, new_cpu);
1301 }
1302 
1303 static void __migrate_swap_task(struct task_struct *p, int cpu)
1304 {
1305 	if (task_on_rq_queued(p)) {
1306 		struct rq *src_rq, *dst_rq;
1307 
1308 		src_rq = task_rq(p);
1309 		dst_rq = cpu_rq(cpu);
1310 
1311 		deactivate_task(src_rq, p, 0);
1312 		set_task_cpu(p, cpu);
1313 		activate_task(dst_rq, p, 0);
1314 		check_preempt_curr(dst_rq, p, 0);
1315 	} else {
1316 		/*
1317 		 * Task isn't running anymore; make it appear like we migrated
1318 		 * it before it went to sleep. This means on wakeup we make the
1319 		 * previous cpu our targer instead of where it really is.
1320 		 */
1321 		p->wake_cpu = cpu;
1322 	}
1323 }
1324 
1325 struct migration_swap_arg {
1326 	struct task_struct *src_task, *dst_task;
1327 	int src_cpu, dst_cpu;
1328 };
1329 
1330 static int migrate_swap_stop(void *data)
1331 {
1332 	struct migration_swap_arg *arg = data;
1333 	struct rq *src_rq, *dst_rq;
1334 	int ret = -EAGAIN;
1335 
1336 	src_rq = cpu_rq(arg->src_cpu);
1337 	dst_rq = cpu_rq(arg->dst_cpu);
1338 
1339 	double_raw_lock(&arg->src_task->pi_lock,
1340 			&arg->dst_task->pi_lock);
1341 	double_rq_lock(src_rq, dst_rq);
1342 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1343 		goto unlock;
1344 
1345 	if (task_cpu(arg->src_task) != arg->src_cpu)
1346 		goto unlock;
1347 
1348 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1349 		goto unlock;
1350 
1351 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1352 		goto unlock;
1353 
1354 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1355 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1356 
1357 	ret = 0;
1358 
1359 unlock:
1360 	double_rq_unlock(src_rq, dst_rq);
1361 	raw_spin_unlock(&arg->dst_task->pi_lock);
1362 	raw_spin_unlock(&arg->src_task->pi_lock);
1363 
1364 	return ret;
1365 }
1366 
1367 /*
1368  * Cross migrate two tasks
1369  */
1370 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1371 {
1372 	struct migration_swap_arg arg;
1373 	int ret = -EINVAL;
1374 
1375 	arg = (struct migration_swap_arg){
1376 		.src_task = cur,
1377 		.src_cpu = task_cpu(cur),
1378 		.dst_task = p,
1379 		.dst_cpu = task_cpu(p),
1380 	};
1381 
1382 	if (arg.src_cpu == arg.dst_cpu)
1383 		goto out;
1384 
1385 	/*
1386 	 * These three tests are all lockless; this is OK since all of them
1387 	 * will be re-checked with proper locks held further down the line.
1388 	 */
1389 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1390 		goto out;
1391 
1392 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1393 		goto out;
1394 
1395 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1396 		goto out;
1397 
1398 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1399 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1400 
1401 out:
1402 	return ret;
1403 }
1404 
1405 /*
1406  * wait_task_inactive - wait for a thread to unschedule.
1407  *
1408  * If @match_state is nonzero, it's the @p->state value just checked and
1409  * not expected to change.  If it changes, i.e. @p might have woken up,
1410  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1411  * we return a positive number (its total switch count).  If a second call
1412  * a short while later returns the same number, the caller can be sure that
1413  * @p has remained unscheduled the whole time.
1414  *
1415  * The caller must ensure that the task *will* unschedule sometime soon,
1416  * else this function might spin for a *long* time. This function can't
1417  * be called with interrupts off, or it may introduce deadlock with
1418  * smp_call_function() if an IPI is sent by the same process we are
1419  * waiting to become inactive.
1420  */
1421 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1422 {
1423 	unsigned long flags;
1424 	int running, queued;
1425 	unsigned long ncsw;
1426 	struct rq *rq;
1427 
1428 	for (;;) {
1429 		/*
1430 		 * We do the initial early heuristics without holding
1431 		 * any task-queue locks at all. We'll only try to get
1432 		 * the runqueue lock when things look like they will
1433 		 * work out!
1434 		 */
1435 		rq = task_rq(p);
1436 
1437 		/*
1438 		 * If the task is actively running on another CPU
1439 		 * still, just relax and busy-wait without holding
1440 		 * any locks.
1441 		 *
1442 		 * NOTE! Since we don't hold any locks, it's not
1443 		 * even sure that "rq" stays as the right runqueue!
1444 		 * But we don't care, since "task_running()" will
1445 		 * return false if the runqueue has changed and p
1446 		 * is actually now running somewhere else!
1447 		 */
1448 		while (task_running(rq, p)) {
1449 			if (match_state && unlikely(p->state != match_state))
1450 				return 0;
1451 			cpu_relax();
1452 		}
1453 
1454 		/*
1455 		 * Ok, time to look more closely! We need the rq
1456 		 * lock now, to be *sure*. If we're wrong, we'll
1457 		 * just go back and repeat.
1458 		 */
1459 		rq = task_rq_lock(p, &flags);
1460 		trace_sched_wait_task(p);
1461 		running = task_running(rq, p);
1462 		queued = task_on_rq_queued(p);
1463 		ncsw = 0;
1464 		if (!match_state || p->state == match_state)
1465 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1466 		task_rq_unlock(rq, p, &flags);
1467 
1468 		/*
1469 		 * If it changed from the expected state, bail out now.
1470 		 */
1471 		if (unlikely(!ncsw))
1472 			break;
1473 
1474 		/*
1475 		 * Was it really running after all now that we
1476 		 * checked with the proper locks actually held?
1477 		 *
1478 		 * Oops. Go back and try again..
1479 		 */
1480 		if (unlikely(running)) {
1481 			cpu_relax();
1482 			continue;
1483 		}
1484 
1485 		/*
1486 		 * It's not enough that it's not actively running,
1487 		 * it must be off the runqueue _entirely_, and not
1488 		 * preempted!
1489 		 *
1490 		 * So if it was still runnable (but just not actively
1491 		 * running right now), it's preempted, and we should
1492 		 * yield - it could be a while.
1493 		 */
1494 		if (unlikely(queued)) {
1495 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1496 
1497 			set_current_state(TASK_UNINTERRUPTIBLE);
1498 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1499 			continue;
1500 		}
1501 
1502 		/*
1503 		 * Ahh, all good. It wasn't running, and it wasn't
1504 		 * runnable, which means that it will never become
1505 		 * running in the future either. We're all done!
1506 		 */
1507 		break;
1508 	}
1509 
1510 	return ncsw;
1511 }
1512 
1513 /***
1514  * kick_process - kick a running thread to enter/exit the kernel
1515  * @p: the to-be-kicked thread
1516  *
1517  * Cause a process which is running on another CPU to enter
1518  * kernel-mode, without any delay. (to get signals handled.)
1519  *
1520  * NOTE: this function doesn't have to take the runqueue lock,
1521  * because all it wants to ensure is that the remote task enters
1522  * the kernel. If the IPI races and the task has been migrated
1523  * to another CPU then no harm is done and the purpose has been
1524  * achieved as well.
1525  */
1526 void kick_process(struct task_struct *p)
1527 {
1528 	int cpu;
1529 
1530 	preempt_disable();
1531 	cpu = task_cpu(p);
1532 	if ((cpu != smp_processor_id()) && task_curr(p))
1533 		smp_send_reschedule(cpu);
1534 	preempt_enable();
1535 }
1536 EXPORT_SYMBOL_GPL(kick_process);
1537 
1538 /*
1539  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1540  */
1541 static int select_fallback_rq(int cpu, struct task_struct *p)
1542 {
1543 	int nid = cpu_to_node(cpu);
1544 	const struct cpumask *nodemask = NULL;
1545 	enum { cpuset, possible, fail } state = cpuset;
1546 	int dest_cpu;
1547 
1548 	/*
1549 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1550 	 * will return -1. There is no cpu on the node, and we should
1551 	 * select the cpu on the other node.
1552 	 */
1553 	if (nid != -1) {
1554 		nodemask = cpumask_of_node(nid);
1555 
1556 		/* Look for allowed, online CPU in same node. */
1557 		for_each_cpu(dest_cpu, nodemask) {
1558 			if (!cpu_online(dest_cpu))
1559 				continue;
1560 			if (!cpu_active(dest_cpu))
1561 				continue;
1562 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1563 				return dest_cpu;
1564 		}
1565 	}
1566 
1567 	for (;;) {
1568 		/* Any allowed, online CPU? */
1569 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1570 			if (!cpu_online(dest_cpu))
1571 				continue;
1572 			if (!cpu_active(dest_cpu))
1573 				continue;
1574 			goto out;
1575 		}
1576 
1577 		switch (state) {
1578 		case cpuset:
1579 			/* No more Mr. Nice Guy. */
1580 			cpuset_cpus_allowed_fallback(p);
1581 			state = possible;
1582 			break;
1583 
1584 		case possible:
1585 			do_set_cpus_allowed(p, cpu_possible_mask);
1586 			state = fail;
1587 			break;
1588 
1589 		case fail:
1590 			BUG();
1591 			break;
1592 		}
1593 	}
1594 
1595 out:
1596 	if (state != cpuset) {
1597 		/*
1598 		 * Don't tell them about moving exiting tasks or
1599 		 * kernel threads (both mm NULL), since they never
1600 		 * leave kernel.
1601 		 */
1602 		if (p->mm && printk_ratelimit()) {
1603 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1604 					task_pid_nr(p), p->comm, cpu);
1605 		}
1606 	}
1607 
1608 	return dest_cpu;
1609 }
1610 
1611 /*
1612  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1613  */
1614 static inline
1615 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1616 {
1617 	lockdep_assert_held(&p->pi_lock);
1618 
1619 	if (p->nr_cpus_allowed > 1)
1620 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1621 
1622 	/*
1623 	 * In order not to call set_task_cpu() on a blocking task we need
1624 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1625 	 * cpu.
1626 	 *
1627 	 * Since this is common to all placement strategies, this lives here.
1628 	 *
1629 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1630 	 *   not worry about this generic constraint ]
1631 	 */
1632 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1633 		     !cpu_online(cpu)))
1634 		cpu = select_fallback_rq(task_cpu(p), p);
1635 
1636 	return cpu;
1637 }
1638 
1639 static void update_avg(u64 *avg, u64 sample)
1640 {
1641 	s64 diff = sample - *avg;
1642 	*avg += diff >> 3;
1643 }
1644 
1645 #else
1646 
1647 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1648 					 const struct cpumask *new_mask, bool check)
1649 {
1650 	return set_cpus_allowed_ptr(p, new_mask);
1651 }
1652 
1653 #endif /* CONFIG_SMP */
1654 
1655 static void
1656 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1657 {
1658 #ifdef CONFIG_SCHEDSTATS
1659 	struct rq *rq = this_rq();
1660 
1661 #ifdef CONFIG_SMP
1662 	int this_cpu = smp_processor_id();
1663 
1664 	if (cpu == this_cpu) {
1665 		schedstat_inc(rq, ttwu_local);
1666 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1667 	} else {
1668 		struct sched_domain *sd;
1669 
1670 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1671 		rcu_read_lock();
1672 		for_each_domain(this_cpu, sd) {
1673 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1674 				schedstat_inc(sd, ttwu_wake_remote);
1675 				break;
1676 			}
1677 		}
1678 		rcu_read_unlock();
1679 	}
1680 
1681 	if (wake_flags & WF_MIGRATED)
1682 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1683 
1684 #endif /* CONFIG_SMP */
1685 
1686 	schedstat_inc(rq, ttwu_count);
1687 	schedstat_inc(p, se.statistics.nr_wakeups);
1688 
1689 	if (wake_flags & WF_SYNC)
1690 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1691 
1692 #endif /* CONFIG_SCHEDSTATS */
1693 }
1694 
1695 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1696 {
1697 	activate_task(rq, p, en_flags);
1698 	p->on_rq = TASK_ON_RQ_QUEUED;
1699 
1700 	/* if a worker is waking up, notify workqueue */
1701 	if (p->flags & PF_WQ_WORKER)
1702 		wq_worker_waking_up(p, cpu_of(rq));
1703 }
1704 
1705 /*
1706  * Mark the task runnable and perform wakeup-preemption.
1707  */
1708 static void
1709 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1710 {
1711 	check_preempt_curr(rq, p, wake_flags);
1712 	p->state = TASK_RUNNING;
1713 	trace_sched_wakeup(p);
1714 
1715 #ifdef CONFIG_SMP
1716 	if (p->sched_class->task_woken) {
1717 		/*
1718 		 * Our task @p is fully woken up and running; so its safe to
1719 		 * drop the rq->lock, hereafter rq is only used for statistics.
1720 		 */
1721 		lockdep_unpin_lock(&rq->lock);
1722 		p->sched_class->task_woken(rq, p);
1723 		lockdep_pin_lock(&rq->lock);
1724 	}
1725 
1726 	if (rq->idle_stamp) {
1727 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1728 		u64 max = 2*rq->max_idle_balance_cost;
1729 
1730 		update_avg(&rq->avg_idle, delta);
1731 
1732 		if (rq->avg_idle > max)
1733 			rq->avg_idle = max;
1734 
1735 		rq->idle_stamp = 0;
1736 	}
1737 #endif
1738 }
1739 
1740 static void
1741 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1742 {
1743 	lockdep_assert_held(&rq->lock);
1744 
1745 #ifdef CONFIG_SMP
1746 	if (p->sched_contributes_to_load)
1747 		rq->nr_uninterruptible--;
1748 #endif
1749 
1750 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1751 	ttwu_do_wakeup(rq, p, wake_flags);
1752 }
1753 
1754 /*
1755  * Called in case the task @p isn't fully descheduled from its runqueue,
1756  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1757  * since all we need to do is flip p->state to TASK_RUNNING, since
1758  * the task is still ->on_rq.
1759  */
1760 static int ttwu_remote(struct task_struct *p, int wake_flags)
1761 {
1762 	struct rq *rq;
1763 	int ret = 0;
1764 
1765 	rq = __task_rq_lock(p);
1766 	if (task_on_rq_queued(p)) {
1767 		/* check_preempt_curr() may use rq clock */
1768 		update_rq_clock(rq);
1769 		ttwu_do_wakeup(rq, p, wake_flags);
1770 		ret = 1;
1771 	}
1772 	__task_rq_unlock(rq);
1773 
1774 	return ret;
1775 }
1776 
1777 #ifdef CONFIG_SMP
1778 void sched_ttwu_pending(void)
1779 {
1780 	struct rq *rq = this_rq();
1781 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1782 	struct task_struct *p;
1783 	unsigned long flags;
1784 
1785 	if (!llist)
1786 		return;
1787 
1788 	raw_spin_lock_irqsave(&rq->lock, flags);
1789 	lockdep_pin_lock(&rq->lock);
1790 
1791 	while (llist) {
1792 		p = llist_entry(llist, struct task_struct, wake_entry);
1793 		llist = llist_next(llist);
1794 		ttwu_do_activate(rq, p, 0);
1795 	}
1796 
1797 	lockdep_unpin_lock(&rq->lock);
1798 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1799 }
1800 
1801 void scheduler_ipi(void)
1802 {
1803 	/*
1804 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1805 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1806 	 * this IPI.
1807 	 */
1808 	preempt_fold_need_resched();
1809 
1810 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1811 		return;
1812 
1813 	/*
1814 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1815 	 * traditionally all their work was done from the interrupt return
1816 	 * path. Now that we actually do some work, we need to make sure
1817 	 * we do call them.
1818 	 *
1819 	 * Some archs already do call them, luckily irq_enter/exit nest
1820 	 * properly.
1821 	 *
1822 	 * Arguably we should visit all archs and update all handlers,
1823 	 * however a fair share of IPIs are still resched only so this would
1824 	 * somewhat pessimize the simple resched case.
1825 	 */
1826 	irq_enter();
1827 	sched_ttwu_pending();
1828 
1829 	/*
1830 	 * Check if someone kicked us for doing the nohz idle load balance.
1831 	 */
1832 	if (unlikely(got_nohz_idle_kick())) {
1833 		this_rq()->idle_balance = 1;
1834 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1835 	}
1836 	irq_exit();
1837 }
1838 
1839 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1840 {
1841 	struct rq *rq = cpu_rq(cpu);
1842 
1843 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 		if (!set_nr_if_polling(rq->idle))
1845 			smp_send_reschedule(cpu);
1846 		else
1847 			trace_sched_wake_idle_without_ipi(cpu);
1848 	}
1849 }
1850 
1851 void wake_up_if_idle(int cpu)
1852 {
1853 	struct rq *rq = cpu_rq(cpu);
1854 	unsigned long flags;
1855 
1856 	rcu_read_lock();
1857 
1858 	if (!is_idle_task(rcu_dereference(rq->curr)))
1859 		goto out;
1860 
1861 	if (set_nr_if_polling(rq->idle)) {
1862 		trace_sched_wake_idle_without_ipi(cpu);
1863 	} else {
1864 		raw_spin_lock_irqsave(&rq->lock, flags);
1865 		if (is_idle_task(rq->curr))
1866 			smp_send_reschedule(cpu);
1867 		/* Else cpu is not in idle, do nothing here */
1868 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 	}
1870 
1871 out:
1872 	rcu_read_unlock();
1873 }
1874 
1875 bool cpus_share_cache(int this_cpu, int that_cpu)
1876 {
1877 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878 }
1879 #endif /* CONFIG_SMP */
1880 
1881 static void ttwu_queue(struct task_struct *p, int cpu)
1882 {
1883 	struct rq *rq = cpu_rq(cpu);
1884 
1885 #if defined(CONFIG_SMP)
1886 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1887 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1888 		ttwu_queue_remote(p, cpu);
1889 		return;
1890 	}
1891 #endif
1892 
1893 	raw_spin_lock(&rq->lock);
1894 	lockdep_pin_lock(&rq->lock);
1895 	ttwu_do_activate(rq, p, 0);
1896 	lockdep_unpin_lock(&rq->lock);
1897 	raw_spin_unlock(&rq->lock);
1898 }
1899 
1900 /**
1901  * try_to_wake_up - wake up a thread
1902  * @p: the thread to be awakened
1903  * @state: the mask of task states that can be woken
1904  * @wake_flags: wake modifier flags (WF_*)
1905  *
1906  * Put it on the run-queue if it's not already there. The "current"
1907  * thread is always on the run-queue (except when the actual
1908  * re-schedule is in progress), and as such you're allowed to do
1909  * the simpler "current->state = TASK_RUNNING" to mark yourself
1910  * runnable without the overhead of this.
1911  *
1912  * Return: %true if @p was woken up, %false if it was already running.
1913  * or @state didn't match @p's state.
1914  */
1915 static int
1916 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1917 {
1918 	unsigned long flags;
1919 	int cpu, success = 0;
1920 
1921 	/*
1922 	 * If we are going to wake up a thread waiting for CONDITION we
1923 	 * need to ensure that CONDITION=1 done by the caller can not be
1924 	 * reordered with p->state check below. This pairs with mb() in
1925 	 * set_current_state() the waiting thread does.
1926 	 */
1927 	smp_mb__before_spinlock();
1928 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1929 	if (!(p->state & state))
1930 		goto out;
1931 
1932 	trace_sched_waking(p);
1933 
1934 	success = 1; /* we're going to change ->state */
1935 	cpu = task_cpu(p);
1936 
1937 	if (p->on_rq && ttwu_remote(p, wake_flags))
1938 		goto stat;
1939 
1940 #ifdef CONFIG_SMP
1941 	/*
1942 	 * If the owning (remote) cpu is still in the middle of schedule() with
1943 	 * this task as prev, wait until its done referencing the task.
1944 	 */
1945 	while (p->on_cpu)
1946 		cpu_relax();
1947 	/*
1948 	 * Pairs with the smp_wmb() in finish_lock_switch().
1949 	 */
1950 	smp_rmb();
1951 
1952 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1953 	p->state = TASK_WAKING;
1954 
1955 	if (p->sched_class->task_waking)
1956 		p->sched_class->task_waking(p);
1957 
1958 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1959 	if (task_cpu(p) != cpu) {
1960 		wake_flags |= WF_MIGRATED;
1961 		set_task_cpu(p, cpu);
1962 	}
1963 #endif /* CONFIG_SMP */
1964 
1965 	ttwu_queue(p, cpu);
1966 stat:
1967 	ttwu_stat(p, cpu, wake_flags);
1968 out:
1969 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1970 
1971 	return success;
1972 }
1973 
1974 /**
1975  * try_to_wake_up_local - try to wake up a local task with rq lock held
1976  * @p: the thread to be awakened
1977  *
1978  * Put @p on the run-queue if it's not already there. The caller must
1979  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1980  * the current task.
1981  */
1982 static void try_to_wake_up_local(struct task_struct *p)
1983 {
1984 	struct rq *rq = task_rq(p);
1985 
1986 	if (WARN_ON_ONCE(rq != this_rq()) ||
1987 	    WARN_ON_ONCE(p == current))
1988 		return;
1989 
1990 	lockdep_assert_held(&rq->lock);
1991 
1992 	if (!raw_spin_trylock(&p->pi_lock)) {
1993 		/*
1994 		 * This is OK, because current is on_cpu, which avoids it being
1995 		 * picked for load-balance and preemption/IRQs are still
1996 		 * disabled avoiding further scheduler activity on it and we've
1997 		 * not yet picked a replacement task.
1998 		 */
1999 		lockdep_unpin_lock(&rq->lock);
2000 		raw_spin_unlock(&rq->lock);
2001 		raw_spin_lock(&p->pi_lock);
2002 		raw_spin_lock(&rq->lock);
2003 		lockdep_pin_lock(&rq->lock);
2004 	}
2005 
2006 	if (!(p->state & TASK_NORMAL))
2007 		goto out;
2008 
2009 	trace_sched_waking(p);
2010 
2011 	if (!task_on_rq_queued(p))
2012 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2013 
2014 	ttwu_do_wakeup(rq, p, 0);
2015 	ttwu_stat(p, smp_processor_id(), 0);
2016 out:
2017 	raw_spin_unlock(&p->pi_lock);
2018 }
2019 
2020 /**
2021  * wake_up_process - Wake up a specific process
2022  * @p: The process to be woken up.
2023  *
2024  * Attempt to wake up the nominated process and move it to the set of runnable
2025  * processes.
2026  *
2027  * Return: 1 if the process was woken up, 0 if it was already running.
2028  *
2029  * It may be assumed that this function implies a write memory barrier before
2030  * changing the task state if and only if any tasks are woken up.
2031  */
2032 int wake_up_process(struct task_struct *p)
2033 {
2034 	WARN_ON(task_is_stopped_or_traced(p));
2035 	return try_to_wake_up(p, TASK_NORMAL, 0);
2036 }
2037 EXPORT_SYMBOL(wake_up_process);
2038 
2039 int wake_up_state(struct task_struct *p, unsigned int state)
2040 {
2041 	return try_to_wake_up(p, state, 0);
2042 }
2043 
2044 /*
2045  * This function clears the sched_dl_entity static params.
2046  */
2047 void __dl_clear_params(struct task_struct *p)
2048 {
2049 	struct sched_dl_entity *dl_se = &p->dl;
2050 
2051 	dl_se->dl_runtime = 0;
2052 	dl_se->dl_deadline = 0;
2053 	dl_se->dl_period = 0;
2054 	dl_se->flags = 0;
2055 	dl_se->dl_bw = 0;
2056 
2057 	dl_se->dl_throttled = 0;
2058 	dl_se->dl_new = 1;
2059 	dl_se->dl_yielded = 0;
2060 }
2061 
2062 /*
2063  * Perform scheduler related setup for a newly forked process p.
2064  * p is forked by current.
2065  *
2066  * __sched_fork() is basic setup used by init_idle() too:
2067  */
2068 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2069 {
2070 	p->on_rq			= 0;
2071 
2072 	p->se.on_rq			= 0;
2073 	p->se.exec_start		= 0;
2074 	p->se.sum_exec_runtime		= 0;
2075 	p->se.prev_sum_exec_runtime	= 0;
2076 	p->se.nr_migrations		= 0;
2077 	p->se.vruntime			= 0;
2078 	INIT_LIST_HEAD(&p->se.group_node);
2079 
2080 #ifdef CONFIG_SCHEDSTATS
2081 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2082 #endif
2083 
2084 	RB_CLEAR_NODE(&p->dl.rb_node);
2085 	init_dl_task_timer(&p->dl);
2086 	__dl_clear_params(p);
2087 
2088 	INIT_LIST_HEAD(&p->rt.run_list);
2089 
2090 #ifdef CONFIG_PREEMPT_NOTIFIERS
2091 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2092 #endif
2093 
2094 #ifdef CONFIG_NUMA_BALANCING
2095 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2096 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2097 		p->mm->numa_scan_seq = 0;
2098 	}
2099 
2100 	if (clone_flags & CLONE_VM)
2101 		p->numa_preferred_nid = current->numa_preferred_nid;
2102 	else
2103 		p->numa_preferred_nid = -1;
2104 
2105 	p->node_stamp = 0ULL;
2106 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2107 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2108 	p->numa_work.next = &p->numa_work;
2109 	p->numa_faults = NULL;
2110 	p->last_task_numa_placement = 0;
2111 	p->last_sum_exec_runtime = 0;
2112 
2113 	p->numa_group = NULL;
2114 #endif /* CONFIG_NUMA_BALANCING */
2115 }
2116 
2117 #ifdef CONFIG_NUMA_BALANCING
2118 #ifdef CONFIG_SCHED_DEBUG
2119 void set_numabalancing_state(bool enabled)
2120 {
2121 	if (enabled)
2122 		sched_feat_set("NUMA");
2123 	else
2124 		sched_feat_set("NO_NUMA");
2125 }
2126 #else
2127 __read_mostly bool numabalancing_enabled;
2128 
2129 void set_numabalancing_state(bool enabled)
2130 {
2131 	numabalancing_enabled = enabled;
2132 }
2133 #endif /* CONFIG_SCHED_DEBUG */
2134 
2135 #ifdef CONFIG_PROC_SYSCTL
2136 int sysctl_numa_balancing(struct ctl_table *table, int write,
2137 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2138 {
2139 	struct ctl_table t;
2140 	int err;
2141 	int state = numabalancing_enabled;
2142 
2143 	if (write && !capable(CAP_SYS_ADMIN))
2144 		return -EPERM;
2145 
2146 	t = *table;
2147 	t.data = &state;
2148 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2149 	if (err < 0)
2150 		return err;
2151 	if (write)
2152 		set_numabalancing_state(state);
2153 	return err;
2154 }
2155 #endif
2156 #endif
2157 
2158 /*
2159  * fork()/clone()-time setup:
2160  */
2161 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2162 {
2163 	unsigned long flags;
2164 	int cpu = get_cpu();
2165 
2166 	__sched_fork(clone_flags, p);
2167 	/*
2168 	 * We mark the process as running here. This guarantees that
2169 	 * nobody will actually run it, and a signal or other external
2170 	 * event cannot wake it up and insert it on the runqueue either.
2171 	 */
2172 	p->state = TASK_RUNNING;
2173 
2174 	/*
2175 	 * Make sure we do not leak PI boosting priority to the child.
2176 	 */
2177 	p->prio = current->normal_prio;
2178 
2179 	/*
2180 	 * Revert to default priority/policy on fork if requested.
2181 	 */
2182 	if (unlikely(p->sched_reset_on_fork)) {
2183 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2184 			p->policy = SCHED_NORMAL;
2185 			p->static_prio = NICE_TO_PRIO(0);
2186 			p->rt_priority = 0;
2187 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2188 			p->static_prio = NICE_TO_PRIO(0);
2189 
2190 		p->prio = p->normal_prio = __normal_prio(p);
2191 		set_load_weight(p);
2192 
2193 		/*
2194 		 * We don't need the reset flag anymore after the fork. It has
2195 		 * fulfilled its duty:
2196 		 */
2197 		p->sched_reset_on_fork = 0;
2198 	}
2199 
2200 	if (dl_prio(p->prio)) {
2201 		put_cpu();
2202 		return -EAGAIN;
2203 	} else if (rt_prio(p->prio)) {
2204 		p->sched_class = &rt_sched_class;
2205 	} else {
2206 		p->sched_class = &fair_sched_class;
2207 	}
2208 
2209 	if (p->sched_class->task_fork)
2210 		p->sched_class->task_fork(p);
2211 
2212 	/*
2213 	 * The child is not yet in the pid-hash so no cgroup attach races,
2214 	 * and the cgroup is pinned to this child due to cgroup_fork()
2215 	 * is ran before sched_fork().
2216 	 *
2217 	 * Silence PROVE_RCU.
2218 	 */
2219 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2220 	set_task_cpu(p, cpu);
2221 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2222 
2223 #ifdef CONFIG_SCHED_INFO
2224 	if (likely(sched_info_on()))
2225 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2226 #endif
2227 #if defined(CONFIG_SMP)
2228 	p->on_cpu = 0;
2229 #endif
2230 	init_task_preempt_count(p);
2231 #ifdef CONFIG_SMP
2232 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2233 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2234 #endif
2235 
2236 	put_cpu();
2237 	return 0;
2238 }
2239 
2240 unsigned long to_ratio(u64 period, u64 runtime)
2241 {
2242 	if (runtime == RUNTIME_INF)
2243 		return 1ULL << 20;
2244 
2245 	/*
2246 	 * Doing this here saves a lot of checks in all
2247 	 * the calling paths, and returning zero seems
2248 	 * safe for them anyway.
2249 	 */
2250 	if (period == 0)
2251 		return 0;
2252 
2253 	return div64_u64(runtime << 20, period);
2254 }
2255 
2256 #ifdef CONFIG_SMP
2257 inline struct dl_bw *dl_bw_of(int i)
2258 {
2259 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2260 			 "sched RCU must be held");
2261 	return &cpu_rq(i)->rd->dl_bw;
2262 }
2263 
2264 static inline int dl_bw_cpus(int i)
2265 {
2266 	struct root_domain *rd = cpu_rq(i)->rd;
2267 	int cpus = 0;
2268 
2269 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2270 			 "sched RCU must be held");
2271 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2272 		cpus++;
2273 
2274 	return cpus;
2275 }
2276 #else
2277 inline struct dl_bw *dl_bw_of(int i)
2278 {
2279 	return &cpu_rq(i)->dl.dl_bw;
2280 }
2281 
2282 static inline int dl_bw_cpus(int i)
2283 {
2284 	return 1;
2285 }
2286 #endif
2287 
2288 /*
2289  * We must be sure that accepting a new task (or allowing changing the
2290  * parameters of an existing one) is consistent with the bandwidth
2291  * constraints. If yes, this function also accordingly updates the currently
2292  * allocated bandwidth to reflect the new situation.
2293  *
2294  * This function is called while holding p's rq->lock.
2295  *
2296  * XXX we should delay bw change until the task's 0-lag point, see
2297  * __setparam_dl().
2298  */
2299 static int dl_overflow(struct task_struct *p, int policy,
2300 		       const struct sched_attr *attr)
2301 {
2302 
2303 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2304 	u64 period = attr->sched_period ?: attr->sched_deadline;
2305 	u64 runtime = attr->sched_runtime;
2306 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2307 	int cpus, err = -1;
2308 
2309 	if (new_bw == p->dl.dl_bw)
2310 		return 0;
2311 
2312 	/*
2313 	 * Either if a task, enters, leave, or stays -deadline but changes
2314 	 * its parameters, we may need to update accordingly the total
2315 	 * allocated bandwidth of the container.
2316 	 */
2317 	raw_spin_lock(&dl_b->lock);
2318 	cpus = dl_bw_cpus(task_cpu(p));
2319 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2320 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2321 		__dl_add(dl_b, new_bw);
2322 		err = 0;
2323 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2324 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2325 		__dl_clear(dl_b, p->dl.dl_bw);
2326 		__dl_add(dl_b, new_bw);
2327 		err = 0;
2328 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2329 		__dl_clear(dl_b, p->dl.dl_bw);
2330 		err = 0;
2331 	}
2332 	raw_spin_unlock(&dl_b->lock);
2333 
2334 	return err;
2335 }
2336 
2337 extern void init_dl_bw(struct dl_bw *dl_b);
2338 
2339 /*
2340  * wake_up_new_task - wake up a newly created task for the first time.
2341  *
2342  * This function will do some initial scheduler statistics housekeeping
2343  * that must be done for every newly created context, then puts the task
2344  * on the runqueue and wakes it.
2345  */
2346 void wake_up_new_task(struct task_struct *p)
2347 {
2348 	unsigned long flags;
2349 	struct rq *rq;
2350 
2351 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2352 #ifdef CONFIG_SMP
2353 	/*
2354 	 * Fork balancing, do it here and not earlier because:
2355 	 *  - cpus_allowed can change in the fork path
2356 	 *  - any previously selected cpu might disappear through hotplug
2357 	 */
2358 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2359 #endif
2360 
2361 	/* Initialize new task's runnable average */
2362 	init_entity_runnable_average(&p->se);
2363 	rq = __task_rq_lock(p);
2364 	activate_task(rq, p, 0);
2365 	p->on_rq = TASK_ON_RQ_QUEUED;
2366 	trace_sched_wakeup_new(p);
2367 	check_preempt_curr(rq, p, WF_FORK);
2368 #ifdef CONFIG_SMP
2369 	if (p->sched_class->task_woken)
2370 		p->sched_class->task_woken(rq, p);
2371 #endif
2372 	task_rq_unlock(rq, p, &flags);
2373 }
2374 
2375 #ifdef CONFIG_PREEMPT_NOTIFIERS
2376 
2377 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2378 
2379 void preempt_notifier_inc(void)
2380 {
2381 	static_key_slow_inc(&preempt_notifier_key);
2382 }
2383 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2384 
2385 void preempt_notifier_dec(void)
2386 {
2387 	static_key_slow_dec(&preempt_notifier_key);
2388 }
2389 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2390 
2391 /**
2392  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2393  * @notifier: notifier struct to register
2394  */
2395 void preempt_notifier_register(struct preempt_notifier *notifier)
2396 {
2397 	if (!static_key_false(&preempt_notifier_key))
2398 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2399 
2400 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2401 }
2402 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2403 
2404 /**
2405  * preempt_notifier_unregister - no longer interested in preemption notifications
2406  * @notifier: notifier struct to unregister
2407  *
2408  * This is *not* safe to call from within a preemption notifier.
2409  */
2410 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2411 {
2412 	hlist_del(&notifier->link);
2413 }
2414 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2415 
2416 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2417 {
2418 	struct preempt_notifier *notifier;
2419 
2420 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2421 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2422 }
2423 
2424 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2425 {
2426 	if (static_key_false(&preempt_notifier_key))
2427 		__fire_sched_in_preempt_notifiers(curr);
2428 }
2429 
2430 static void
2431 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2432 				   struct task_struct *next)
2433 {
2434 	struct preempt_notifier *notifier;
2435 
2436 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2437 		notifier->ops->sched_out(notifier, next);
2438 }
2439 
2440 static __always_inline void
2441 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2442 				 struct task_struct *next)
2443 {
2444 	if (static_key_false(&preempt_notifier_key))
2445 		__fire_sched_out_preempt_notifiers(curr, next);
2446 }
2447 
2448 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2449 
2450 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2451 {
2452 }
2453 
2454 static inline void
2455 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2456 				 struct task_struct *next)
2457 {
2458 }
2459 
2460 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2461 
2462 /**
2463  * prepare_task_switch - prepare to switch tasks
2464  * @rq: the runqueue preparing to switch
2465  * @prev: the current task that is being switched out
2466  * @next: the task we are going to switch to.
2467  *
2468  * This is called with the rq lock held and interrupts off. It must
2469  * be paired with a subsequent finish_task_switch after the context
2470  * switch.
2471  *
2472  * prepare_task_switch sets up locking and calls architecture specific
2473  * hooks.
2474  */
2475 static inline void
2476 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2477 		    struct task_struct *next)
2478 {
2479 	trace_sched_switch(prev, next);
2480 	sched_info_switch(rq, prev, next);
2481 	perf_event_task_sched_out(prev, next);
2482 	fire_sched_out_preempt_notifiers(prev, next);
2483 	prepare_lock_switch(rq, next);
2484 	prepare_arch_switch(next);
2485 }
2486 
2487 /**
2488  * finish_task_switch - clean up after a task-switch
2489  * @prev: the thread we just switched away from.
2490  *
2491  * finish_task_switch must be called after the context switch, paired
2492  * with a prepare_task_switch call before the context switch.
2493  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2494  * and do any other architecture-specific cleanup actions.
2495  *
2496  * Note that we may have delayed dropping an mm in context_switch(). If
2497  * so, we finish that here outside of the runqueue lock. (Doing it
2498  * with the lock held can cause deadlocks; see schedule() for
2499  * details.)
2500  *
2501  * The context switch have flipped the stack from under us and restored the
2502  * local variables which were saved when this task called schedule() in the
2503  * past. prev == current is still correct but we need to recalculate this_rq
2504  * because prev may have moved to another CPU.
2505  */
2506 static struct rq *finish_task_switch(struct task_struct *prev)
2507 	__releases(rq->lock)
2508 {
2509 	struct rq *rq = this_rq();
2510 	struct mm_struct *mm = rq->prev_mm;
2511 	long prev_state;
2512 
2513 	rq->prev_mm = NULL;
2514 
2515 	/*
2516 	 * A task struct has one reference for the use as "current".
2517 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2518 	 * schedule one last time. The schedule call will never return, and
2519 	 * the scheduled task must drop that reference.
2520 	 * The test for TASK_DEAD must occur while the runqueue locks are
2521 	 * still held, otherwise prev could be scheduled on another cpu, die
2522 	 * there before we look at prev->state, and then the reference would
2523 	 * be dropped twice.
2524 	 *		Manfred Spraul <manfred@colorfullife.com>
2525 	 */
2526 	prev_state = prev->state;
2527 	vtime_task_switch(prev);
2528 	perf_event_task_sched_in(prev, current);
2529 	finish_lock_switch(rq, prev);
2530 	finish_arch_post_lock_switch();
2531 
2532 	fire_sched_in_preempt_notifiers(current);
2533 	if (mm)
2534 		mmdrop(mm);
2535 	if (unlikely(prev_state == TASK_DEAD)) {
2536 		if (prev->sched_class->task_dead)
2537 			prev->sched_class->task_dead(prev);
2538 
2539 		/*
2540 		 * Remove function-return probe instances associated with this
2541 		 * task and put them back on the free list.
2542 		 */
2543 		kprobe_flush_task(prev);
2544 		put_task_struct(prev);
2545 	}
2546 
2547 	tick_nohz_task_switch();
2548 	return rq;
2549 }
2550 
2551 #ifdef CONFIG_SMP
2552 
2553 /* rq->lock is NOT held, but preemption is disabled */
2554 static void __balance_callback(struct rq *rq)
2555 {
2556 	struct callback_head *head, *next;
2557 	void (*func)(struct rq *rq);
2558 	unsigned long flags;
2559 
2560 	raw_spin_lock_irqsave(&rq->lock, flags);
2561 	head = rq->balance_callback;
2562 	rq->balance_callback = NULL;
2563 	while (head) {
2564 		func = (void (*)(struct rq *))head->func;
2565 		next = head->next;
2566 		head->next = NULL;
2567 		head = next;
2568 
2569 		func(rq);
2570 	}
2571 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2572 }
2573 
2574 static inline void balance_callback(struct rq *rq)
2575 {
2576 	if (unlikely(rq->balance_callback))
2577 		__balance_callback(rq);
2578 }
2579 
2580 #else
2581 
2582 static inline void balance_callback(struct rq *rq)
2583 {
2584 }
2585 
2586 #endif
2587 
2588 /**
2589  * schedule_tail - first thing a freshly forked thread must call.
2590  * @prev: the thread we just switched away from.
2591  */
2592 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2593 	__releases(rq->lock)
2594 {
2595 	struct rq *rq;
2596 
2597 	/* finish_task_switch() drops rq->lock and enables preemtion */
2598 	preempt_disable();
2599 	rq = finish_task_switch(prev);
2600 	balance_callback(rq);
2601 	preempt_enable();
2602 
2603 	if (current->set_child_tid)
2604 		put_user(task_pid_vnr(current), current->set_child_tid);
2605 }
2606 
2607 /*
2608  * context_switch - switch to the new MM and the new thread's register state.
2609  */
2610 static inline struct rq *
2611 context_switch(struct rq *rq, struct task_struct *prev,
2612 	       struct task_struct *next)
2613 {
2614 	struct mm_struct *mm, *oldmm;
2615 
2616 	prepare_task_switch(rq, prev, next);
2617 
2618 	mm = next->mm;
2619 	oldmm = prev->active_mm;
2620 	/*
2621 	 * For paravirt, this is coupled with an exit in switch_to to
2622 	 * combine the page table reload and the switch backend into
2623 	 * one hypercall.
2624 	 */
2625 	arch_start_context_switch(prev);
2626 
2627 	if (!mm) {
2628 		next->active_mm = oldmm;
2629 		atomic_inc(&oldmm->mm_count);
2630 		enter_lazy_tlb(oldmm, next);
2631 	} else
2632 		switch_mm(oldmm, mm, next);
2633 
2634 	if (!prev->mm) {
2635 		prev->active_mm = NULL;
2636 		rq->prev_mm = oldmm;
2637 	}
2638 	/*
2639 	 * Since the runqueue lock will be released by the next
2640 	 * task (which is an invalid locking op but in the case
2641 	 * of the scheduler it's an obvious special-case), so we
2642 	 * do an early lockdep release here:
2643 	 */
2644 	lockdep_unpin_lock(&rq->lock);
2645 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2646 
2647 	/* Here we just switch the register state and the stack. */
2648 	switch_to(prev, next, prev);
2649 	barrier();
2650 
2651 	return finish_task_switch(prev);
2652 }
2653 
2654 /*
2655  * nr_running and nr_context_switches:
2656  *
2657  * externally visible scheduler statistics: current number of runnable
2658  * threads, total number of context switches performed since bootup.
2659  */
2660 unsigned long nr_running(void)
2661 {
2662 	unsigned long i, sum = 0;
2663 
2664 	for_each_online_cpu(i)
2665 		sum += cpu_rq(i)->nr_running;
2666 
2667 	return sum;
2668 }
2669 
2670 /*
2671  * Check if only the current task is running on the cpu.
2672  *
2673  * Caution: this function does not check that the caller has disabled
2674  * preemption, thus the result might have a time-of-check-to-time-of-use
2675  * race.  The caller is responsible to use it correctly, for example:
2676  *
2677  * - from a non-preemptable section (of course)
2678  *
2679  * - from a thread that is bound to a single CPU
2680  *
2681  * - in a loop with very short iterations (e.g. a polling loop)
2682  */
2683 bool single_task_running(void)
2684 {
2685 	return raw_rq()->nr_running == 1;
2686 }
2687 EXPORT_SYMBOL(single_task_running);
2688 
2689 unsigned long long nr_context_switches(void)
2690 {
2691 	int i;
2692 	unsigned long long sum = 0;
2693 
2694 	for_each_possible_cpu(i)
2695 		sum += cpu_rq(i)->nr_switches;
2696 
2697 	return sum;
2698 }
2699 
2700 unsigned long nr_iowait(void)
2701 {
2702 	unsigned long i, sum = 0;
2703 
2704 	for_each_possible_cpu(i)
2705 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2706 
2707 	return sum;
2708 }
2709 
2710 unsigned long nr_iowait_cpu(int cpu)
2711 {
2712 	struct rq *this = cpu_rq(cpu);
2713 	return atomic_read(&this->nr_iowait);
2714 }
2715 
2716 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2717 {
2718 	struct rq *rq = this_rq();
2719 	*nr_waiters = atomic_read(&rq->nr_iowait);
2720 	*load = rq->load.weight;
2721 }
2722 
2723 #ifdef CONFIG_SMP
2724 
2725 /*
2726  * sched_exec - execve() is a valuable balancing opportunity, because at
2727  * this point the task has the smallest effective memory and cache footprint.
2728  */
2729 void sched_exec(void)
2730 {
2731 	struct task_struct *p = current;
2732 	unsigned long flags;
2733 	int dest_cpu;
2734 
2735 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2736 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2737 	if (dest_cpu == smp_processor_id())
2738 		goto unlock;
2739 
2740 	if (likely(cpu_active(dest_cpu))) {
2741 		struct migration_arg arg = { p, dest_cpu };
2742 
2743 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2744 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2745 		return;
2746 	}
2747 unlock:
2748 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2749 }
2750 
2751 #endif
2752 
2753 DEFINE_PER_CPU(struct kernel_stat, kstat);
2754 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2755 
2756 EXPORT_PER_CPU_SYMBOL(kstat);
2757 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2758 
2759 /*
2760  * Return accounted runtime for the task.
2761  * In case the task is currently running, return the runtime plus current's
2762  * pending runtime that have not been accounted yet.
2763  */
2764 unsigned long long task_sched_runtime(struct task_struct *p)
2765 {
2766 	unsigned long flags;
2767 	struct rq *rq;
2768 	u64 ns;
2769 
2770 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2771 	/*
2772 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2773 	 * So we have a optimization chance when the task's delta_exec is 0.
2774 	 * Reading ->on_cpu is racy, but this is ok.
2775 	 *
2776 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2777 	 * If we race with it entering cpu, unaccounted time is 0. This is
2778 	 * indistinguishable from the read occurring a few cycles earlier.
2779 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2780 	 * been accounted, so we're correct here as well.
2781 	 */
2782 	if (!p->on_cpu || !task_on_rq_queued(p))
2783 		return p->se.sum_exec_runtime;
2784 #endif
2785 
2786 	rq = task_rq_lock(p, &flags);
2787 	/*
2788 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2789 	 * project cycles that may never be accounted to this
2790 	 * thread, breaking clock_gettime().
2791 	 */
2792 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2793 		update_rq_clock(rq);
2794 		p->sched_class->update_curr(rq);
2795 	}
2796 	ns = p->se.sum_exec_runtime;
2797 	task_rq_unlock(rq, p, &flags);
2798 
2799 	return ns;
2800 }
2801 
2802 /*
2803  * This function gets called by the timer code, with HZ frequency.
2804  * We call it with interrupts disabled.
2805  */
2806 void scheduler_tick(void)
2807 {
2808 	int cpu = smp_processor_id();
2809 	struct rq *rq = cpu_rq(cpu);
2810 	struct task_struct *curr = rq->curr;
2811 
2812 	sched_clock_tick();
2813 
2814 	raw_spin_lock(&rq->lock);
2815 	update_rq_clock(rq);
2816 	curr->sched_class->task_tick(rq, curr, 0);
2817 	update_cpu_load_active(rq);
2818 	calc_global_load_tick(rq);
2819 	raw_spin_unlock(&rq->lock);
2820 
2821 	perf_event_task_tick();
2822 
2823 #ifdef CONFIG_SMP
2824 	rq->idle_balance = idle_cpu(cpu);
2825 	trigger_load_balance(rq);
2826 #endif
2827 	rq_last_tick_reset(rq);
2828 }
2829 
2830 #ifdef CONFIG_NO_HZ_FULL
2831 /**
2832  * scheduler_tick_max_deferment
2833  *
2834  * Keep at least one tick per second when a single
2835  * active task is running because the scheduler doesn't
2836  * yet completely support full dynticks environment.
2837  *
2838  * This makes sure that uptime, CFS vruntime, load
2839  * balancing, etc... continue to move forward, even
2840  * with a very low granularity.
2841  *
2842  * Return: Maximum deferment in nanoseconds.
2843  */
2844 u64 scheduler_tick_max_deferment(void)
2845 {
2846 	struct rq *rq = this_rq();
2847 	unsigned long next, now = READ_ONCE(jiffies);
2848 
2849 	next = rq->last_sched_tick + HZ;
2850 
2851 	if (time_before_eq(next, now))
2852 		return 0;
2853 
2854 	return jiffies_to_nsecs(next - now);
2855 }
2856 #endif
2857 
2858 notrace unsigned long get_parent_ip(unsigned long addr)
2859 {
2860 	if (in_lock_functions(addr)) {
2861 		addr = CALLER_ADDR2;
2862 		if (in_lock_functions(addr))
2863 			addr = CALLER_ADDR3;
2864 	}
2865 	return addr;
2866 }
2867 
2868 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2869 				defined(CONFIG_PREEMPT_TRACER))
2870 
2871 void preempt_count_add(int val)
2872 {
2873 #ifdef CONFIG_DEBUG_PREEMPT
2874 	/*
2875 	 * Underflow?
2876 	 */
2877 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2878 		return;
2879 #endif
2880 	__preempt_count_add(val);
2881 #ifdef CONFIG_DEBUG_PREEMPT
2882 	/*
2883 	 * Spinlock count overflowing soon?
2884 	 */
2885 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2886 				PREEMPT_MASK - 10);
2887 #endif
2888 	if (preempt_count() == val) {
2889 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2890 #ifdef CONFIG_DEBUG_PREEMPT
2891 		current->preempt_disable_ip = ip;
2892 #endif
2893 		trace_preempt_off(CALLER_ADDR0, ip);
2894 	}
2895 }
2896 EXPORT_SYMBOL(preempt_count_add);
2897 NOKPROBE_SYMBOL(preempt_count_add);
2898 
2899 void preempt_count_sub(int val)
2900 {
2901 #ifdef CONFIG_DEBUG_PREEMPT
2902 	/*
2903 	 * Underflow?
2904 	 */
2905 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2906 		return;
2907 	/*
2908 	 * Is the spinlock portion underflowing?
2909 	 */
2910 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2911 			!(preempt_count() & PREEMPT_MASK)))
2912 		return;
2913 #endif
2914 
2915 	if (preempt_count() == val)
2916 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2917 	__preempt_count_sub(val);
2918 }
2919 EXPORT_SYMBOL(preempt_count_sub);
2920 NOKPROBE_SYMBOL(preempt_count_sub);
2921 
2922 #endif
2923 
2924 /*
2925  * Print scheduling while atomic bug:
2926  */
2927 static noinline void __schedule_bug(struct task_struct *prev)
2928 {
2929 	if (oops_in_progress)
2930 		return;
2931 
2932 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2933 		prev->comm, prev->pid, preempt_count());
2934 
2935 	debug_show_held_locks(prev);
2936 	print_modules();
2937 	if (irqs_disabled())
2938 		print_irqtrace_events(prev);
2939 #ifdef CONFIG_DEBUG_PREEMPT
2940 	if (in_atomic_preempt_off()) {
2941 		pr_err("Preemption disabled at:");
2942 		print_ip_sym(current->preempt_disable_ip);
2943 		pr_cont("\n");
2944 	}
2945 #endif
2946 	dump_stack();
2947 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2948 }
2949 
2950 /*
2951  * Various schedule()-time debugging checks and statistics:
2952  */
2953 static inline void schedule_debug(struct task_struct *prev)
2954 {
2955 #ifdef CONFIG_SCHED_STACK_END_CHECK
2956 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2957 #endif
2958 	/*
2959 	 * Test if we are atomic. Since do_exit() needs to call into
2960 	 * schedule() atomically, we ignore that path. Otherwise whine
2961 	 * if we are scheduling when we should not.
2962 	 */
2963 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2964 		__schedule_bug(prev);
2965 	rcu_sleep_check();
2966 
2967 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2968 
2969 	schedstat_inc(this_rq(), sched_count);
2970 }
2971 
2972 /*
2973  * Pick up the highest-prio task:
2974  */
2975 static inline struct task_struct *
2976 pick_next_task(struct rq *rq, struct task_struct *prev)
2977 {
2978 	const struct sched_class *class = &fair_sched_class;
2979 	struct task_struct *p;
2980 
2981 	/*
2982 	 * Optimization: we know that if all tasks are in
2983 	 * the fair class we can call that function directly:
2984 	 */
2985 	if (likely(prev->sched_class == class &&
2986 		   rq->nr_running == rq->cfs.h_nr_running)) {
2987 		p = fair_sched_class.pick_next_task(rq, prev);
2988 		if (unlikely(p == RETRY_TASK))
2989 			goto again;
2990 
2991 		/* assumes fair_sched_class->next == idle_sched_class */
2992 		if (unlikely(!p))
2993 			p = idle_sched_class.pick_next_task(rq, prev);
2994 
2995 		return p;
2996 	}
2997 
2998 again:
2999 	for_each_class(class) {
3000 		p = class->pick_next_task(rq, prev);
3001 		if (p) {
3002 			if (unlikely(p == RETRY_TASK))
3003 				goto again;
3004 			return p;
3005 		}
3006 	}
3007 
3008 	BUG(); /* the idle class will always have a runnable task */
3009 }
3010 
3011 /*
3012  * __schedule() is the main scheduler function.
3013  *
3014  * The main means of driving the scheduler and thus entering this function are:
3015  *
3016  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3017  *
3018  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3019  *      paths. For example, see arch/x86/entry_64.S.
3020  *
3021  *      To drive preemption between tasks, the scheduler sets the flag in timer
3022  *      interrupt handler scheduler_tick().
3023  *
3024  *   3. Wakeups don't really cause entry into schedule(). They add a
3025  *      task to the run-queue and that's it.
3026  *
3027  *      Now, if the new task added to the run-queue preempts the current
3028  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3029  *      called on the nearest possible occasion:
3030  *
3031  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3032  *
3033  *         - in syscall or exception context, at the next outmost
3034  *           preempt_enable(). (this might be as soon as the wake_up()'s
3035  *           spin_unlock()!)
3036  *
3037  *         - in IRQ context, return from interrupt-handler to
3038  *           preemptible context
3039  *
3040  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3041  *         then at the next:
3042  *
3043  *          - cond_resched() call
3044  *          - explicit schedule() call
3045  *          - return from syscall or exception to user-space
3046  *          - return from interrupt-handler to user-space
3047  *
3048  * WARNING: must be called with preemption disabled!
3049  */
3050 static void __sched __schedule(void)
3051 {
3052 	struct task_struct *prev, *next;
3053 	unsigned long *switch_count;
3054 	struct rq *rq;
3055 	int cpu;
3056 
3057 	cpu = smp_processor_id();
3058 	rq = cpu_rq(cpu);
3059 	rcu_note_context_switch();
3060 	prev = rq->curr;
3061 
3062 	schedule_debug(prev);
3063 
3064 	if (sched_feat(HRTICK))
3065 		hrtick_clear(rq);
3066 
3067 	/*
3068 	 * Make sure that signal_pending_state()->signal_pending() below
3069 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3070 	 * done by the caller to avoid the race with signal_wake_up().
3071 	 */
3072 	smp_mb__before_spinlock();
3073 	raw_spin_lock_irq(&rq->lock);
3074 	lockdep_pin_lock(&rq->lock);
3075 
3076 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3077 
3078 	switch_count = &prev->nivcsw;
3079 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3080 		if (unlikely(signal_pending_state(prev->state, prev))) {
3081 			prev->state = TASK_RUNNING;
3082 		} else {
3083 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3084 			prev->on_rq = 0;
3085 
3086 			/*
3087 			 * If a worker went to sleep, notify and ask workqueue
3088 			 * whether it wants to wake up a task to maintain
3089 			 * concurrency.
3090 			 */
3091 			if (prev->flags & PF_WQ_WORKER) {
3092 				struct task_struct *to_wakeup;
3093 
3094 				to_wakeup = wq_worker_sleeping(prev, cpu);
3095 				if (to_wakeup)
3096 					try_to_wake_up_local(to_wakeup);
3097 			}
3098 		}
3099 		switch_count = &prev->nvcsw;
3100 	}
3101 
3102 	if (task_on_rq_queued(prev))
3103 		update_rq_clock(rq);
3104 
3105 	next = pick_next_task(rq, prev);
3106 	clear_tsk_need_resched(prev);
3107 	clear_preempt_need_resched();
3108 	rq->clock_skip_update = 0;
3109 
3110 	if (likely(prev != next)) {
3111 		rq->nr_switches++;
3112 		rq->curr = next;
3113 		++*switch_count;
3114 
3115 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3116 		cpu = cpu_of(rq);
3117 	} else {
3118 		lockdep_unpin_lock(&rq->lock);
3119 		raw_spin_unlock_irq(&rq->lock);
3120 	}
3121 
3122 	balance_callback(rq);
3123 }
3124 
3125 static inline void sched_submit_work(struct task_struct *tsk)
3126 {
3127 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3128 		return;
3129 	/*
3130 	 * If we are going to sleep and we have plugged IO queued,
3131 	 * make sure to submit it to avoid deadlocks.
3132 	 */
3133 	if (blk_needs_flush_plug(tsk))
3134 		blk_schedule_flush_plug(tsk);
3135 }
3136 
3137 asmlinkage __visible void __sched schedule(void)
3138 {
3139 	struct task_struct *tsk = current;
3140 
3141 	sched_submit_work(tsk);
3142 	do {
3143 		preempt_disable();
3144 		__schedule();
3145 		sched_preempt_enable_no_resched();
3146 	} while (need_resched());
3147 }
3148 EXPORT_SYMBOL(schedule);
3149 
3150 #ifdef CONFIG_CONTEXT_TRACKING
3151 asmlinkage __visible void __sched schedule_user(void)
3152 {
3153 	/*
3154 	 * If we come here after a random call to set_need_resched(),
3155 	 * or we have been woken up remotely but the IPI has not yet arrived,
3156 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3157 	 * we find a better solution.
3158 	 *
3159 	 * NB: There are buggy callers of this function.  Ideally we
3160 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3161 	 * too frequently to make sense yet.
3162 	 */
3163 	enum ctx_state prev_state = exception_enter();
3164 	schedule();
3165 	exception_exit(prev_state);
3166 }
3167 #endif
3168 
3169 /**
3170  * schedule_preempt_disabled - called with preemption disabled
3171  *
3172  * Returns with preemption disabled. Note: preempt_count must be 1
3173  */
3174 void __sched schedule_preempt_disabled(void)
3175 {
3176 	sched_preempt_enable_no_resched();
3177 	schedule();
3178 	preempt_disable();
3179 }
3180 
3181 static void __sched notrace preempt_schedule_common(void)
3182 {
3183 	do {
3184 		preempt_active_enter();
3185 		__schedule();
3186 		preempt_active_exit();
3187 
3188 		/*
3189 		 * Check again in case we missed a preemption opportunity
3190 		 * between schedule and now.
3191 		 */
3192 	} while (need_resched());
3193 }
3194 
3195 #ifdef CONFIG_PREEMPT
3196 /*
3197  * this is the entry point to schedule() from in-kernel preemption
3198  * off of preempt_enable. Kernel preemptions off return from interrupt
3199  * occur there and call schedule directly.
3200  */
3201 asmlinkage __visible void __sched notrace preempt_schedule(void)
3202 {
3203 	/*
3204 	 * If there is a non-zero preempt_count or interrupts are disabled,
3205 	 * we do not want to preempt the current task. Just return..
3206 	 */
3207 	if (likely(!preemptible()))
3208 		return;
3209 
3210 	preempt_schedule_common();
3211 }
3212 NOKPROBE_SYMBOL(preempt_schedule);
3213 EXPORT_SYMBOL(preempt_schedule);
3214 
3215 /**
3216  * preempt_schedule_notrace - preempt_schedule called by tracing
3217  *
3218  * The tracing infrastructure uses preempt_enable_notrace to prevent
3219  * recursion and tracing preempt enabling caused by the tracing
3220  * infrastructure itself. But as tracing can happen in areas coming
3221  * from userspace or just about to enter userspace, a preempt enable
3222  * can occur before user_exit() is called. This will cause the scheduler
3223  * to be called when the system is still in usermode.
3224  *
3225  * To prevent this, the preempt_enable_notrace will use this function
3226  * instead of preempt_schedule() to exit user context if needed before
3227  * calling the scheduler.
3228  */
3229 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3230 {
3231 	enum ctx_state prev_ctx;
3232 
3233 	if (likely(!preemptible()))
3234 		return;
3235 
3236 	do {
3237 		/*
3238 		 * Use raw __prempt_count() ops that don't call function.
3239 		 * We can't call functions before disabling preemption which
3240 		 * disarm preemption tracing recursions.
3241 		 */
3242 		__preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3243 		barrier();
3244 		/*
3245 		 * Needs preempt disabled in case user_exit() is traced
3246 		 * and the tracer calls preempt_enable_notrace() causing
3247 		 * an infinite recursion.
3248 		 */
3249 		prev_ctx = exception_enter();
3250 		__schedule();
3251 		exception_exit(prev_ctx);
3252 
3253 		barrier();
3254 		__preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3255 	} while (need_resched());
3256 }
3257 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3258 
3259 #endif /* CONFIG_PREEMPT */
3260 
3261 /*
3262  * this is the entry point to schedule() from kernel preemption
3263  * off of irq context.
3264  * Note, that this is called and return with irqs disabled. This will
3265  * protect us against recursive calling from irq.
3266  */
3267 asmlinkage __visible void __sched preempt_schedule_irq(void)
3268 {
3269 	enum ctx_state prev_state;
3270 
3271 	/* Catch callers which need to be fixed */
3272 	BUG_ON(preempt_count() || !irqs_disabled());
3273 
3274 	prev_state = exception_enter();
3275 
3276 	do {
3277 		preempt_active_enter();
3278 		local_irq_enable();
3279 		__schedule();
3280 		local_irq_disable();
3281 		preempt_active_exit();
3282 	} while (need_resched());
3283 
3284 	exception_exit(prev_state);
3285 }
3286 
3287 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3288 			  void *key)
3289 {
3290 	return try_to_wake_up(curr->private, mode, wake_flags);
3291 }
3292 EXPORT_SYMBOL(default_wake_function);
3293 
3294 #ifdef CONFIG_RT_MUTEXES
3295 
3296 /*
3297  * rt_mutex_setprio - set the current priority of a task
3298  * @p: task
3299  * @prio: prio value (kernel-internal form)
3300  *
3301  * This function changes the 'effective' priority of a task. It does
3302  * not touch ->normal_prio like __setscheduler().
3303  *
3304  * Used by the rt_mutex code to implement priority inheritance
3305  * logic. Call site only calls if the priority of the task changed.
3306  */
3307 void rt_mutex_setprio(struct task_struct *p, int prio)
3308 {
3309 	int oldprio, queued, running, enqueue_flag = 0;
3310 	struct rq *rq;
3311 	const struct sched_class *prev_class;
3312 
3313 	BUG_ON(prio > MAX_PRIO);
3314 
3315 	rq = __task_rq_lock(p);
3316 
3317 	/*
3318 	 * Idle task boosting is a nono in general. There is one
3319 	 * exception, when PREEMPT_RT and NOHZ is active:
3320 	 *
3321 	 * The idle task calls get_next_timer_interrupt() and holds
3322 	 * the timer wheel base->lock on the CPU and another CPU wants
3323 	 * to access the timer (probably to cancel it). We can safely
3324 	 * ignore the boosting request, as the idle CPU runs this code
3325 	 * with interrupts disabled and will complete the lock
3326 	 * protected section without being interrupted. So there is no
3327 	 * real need to boost.
3328 	 */
3329 	if (unlikely(p == rq->idle)) {
3330 		WARN_ON(p != rq->curr);
3331 		WARN_ON(p->pi_blocked_on);
3332 		goto out_unlock;
3333 	}
3334 
3335 	trace_sched_pi_setprio(p, prio);
3336 	oldprio = p->prio;
3337 	prev_class = p->sched_class;
3338 	queued = task_on_rq_queued(p);
3339 	running = task_current(rq, p);
3340 	if (queued)
3341 		dequeue_task(rq, p, 0);
3342 	if (running)
3343 		put_prev_task(rq, p);
3344 
3345 	/*
3346 	 * Boosting condition are:
3347 	 * 1. -rt task is running and holds mutex A
3348 	 *      --> -dl task blocks on mutex A
3349 	 *
3350 	 * 2. -dl task is running and holds mutex A
3351 	 *      --> -dl task blocks on mutex A and could preempt the
3352 	 *          running task
3353 	 */
3354 	if (dl_prio(prio)) {
3355 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3356 		if (!dl_prio(p->normal_prio) ||
3357 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3358 			p->dl.dl_boosted = 1;
3359 			enqueue_flag = ENQUEUE_REPLENISH;
3360 		} else
3361 			p->dl.dl_boosted = 0;
3362 		p->sched_class = &dl_sched_class;
3363 	} else if (rt_prio(prio)) {
3364 		if (dl_prio(oldprio))
3365 			p->dl.dl_boosted = 0;
3366 		if (oldprio < prio)
3367 			enqueue_flag = ENQUEUE_HEAD;
3368 		p->sched_class = &rt_sched_class;
3369 	} else {
3370 		if (dl_prio(oldprio))
3371 			p->dl.dl_boosted = 0;
3372 		if (rt_prio(oldprio))
3373 			p->rt.timeout = 0;
3374 		p->sched_class = &fair_sched_class;
3375 	}
3376 
3377 	p->prio = prio;
3378 
3379 	if (running)
3380 		p->sched_class->set_curr_task(rq);
3381 	if (queued)
3382 		enqueue_task(rq, p, enqueue_flag);
3383 
3384 	check_class_changed(rq, p, prev_class, oldprio);
3385 out_unlock:
3386 	preempt_disable(); /* avoid rq from going away on us */
3387 	__task_rq_unlock(rq);
3388 
3389 	balance_callback(rq);
3390 	preempt_enable();
3391 }
3392 #endif
3393 
3394 void set_user_nice(struct task_struct *p, long nice)
3395 {
3396 	int old_prio, delta, queued;
3397 	unsigned long flags;
3398 	struct rq *rq;
3399 
3400 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3401 		return;
3402 	/*
3403 	 * We have to be careful, if called from sys_setpriority(),
3404 	 * the task might be in the middle of scheduling on another CPU.
3405 	 */
3406 	rq = task_rq_lock(p, &flags);
3407 	/*
3408 	 * The RT priorities are set via sched_setscheduler(), but we still
3409 	 * allow the 'normal' nice value to be set - but as expected
3410 	 * it wont have any effect on scheduling until the task is
3411 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3412 	 */
3413 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3414 		p->static_prio = NICE_TO_PRIO(nice);
3415 		goto out_unlock;
3416 	}
3417 	queued = task_on_rq_queued(p);
3418 	if (queued)
3419 		dequeue_task(rq, p, 0);
3420 
3421 	p->static_prio = NICE_TO_PRIO(nice);
3422 	set_load_weight(p);
3423 	old_prio = p->prio;
3424 	p->prio = effective_prio(p);
3425 	delta = p->prio - old_prio;
3426 
3427 	if (queued) {
3428 		enqueue_task(rq, p, 0);
3429 		/*
3430 		 * If the task increased its priority or is running and
3431 		 * lowered its priority, then reschedule its CPU:
3432 		 */
3433 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3434 			resched_curr(rq);
3435 	}
3436 out_unlock:
3437 	task_rq_unlock(rq, p, &flags);
3438 }
3439 EXPORT_SYMBOL(set_user_nice);
3440 
3441 /*
3442  * can_nice - check if a task can reduce its nice value
3443  * @p: task
3444  * @nice: nice value
3445  */
3446 int can_nice(const struct task_struct *p, const int nice)
3447 {
3448 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3449 	int nice_rlim = nice_to_rlimit(nice);
3450 
3451 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3452 		capable(CAP_SYS_NICE));
3453 }
3454 
3455 #ifdef __ARCH_WANT_SYS_NICE
3456 
3457 /*
3458  * sys_nice - change the priority of the current process.
3459  * @increment: priority increment
3460  *
3461  * sys_setpriority is a more generic, but much slower function that
3462  * does similar things.
3463  */
3464 SYSCALL_DEFINE1(nice, int, increment)
3465 {
3466 	long nice, retval;
3467 
3468 	/*
3469 	 * Setpriority might change our priority at the same moment.
3470 	 * We don't have to worry. Conceptually one call occurs first
3471 	 * and we have a single winner.
3472 	 */
3473 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3474 	nice = task_nice(current) + increment;
3475 
3476 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3477 	if (increment < 0 && !can_nice(current, nice))
3478 		return -EPERM;
3479 
3480 	retval = security_task_setnice(current, nice);
3481 	if (retval)
3482 		return retval;
3483 
3484 	set_user_nice(current, nice);
3485 	return 0;
3486 }
3487 
3488 #endif
3489 
3490 /**
3491  * task_prio - return the priority value of a given task.
3492  * @p: the task in question.
3493  *
3494  * Return: The priority value as seen by users in /proc.
3495  * RT tasks are offset by -200. Normal tasks are centered
3496  * around 0, value goes from -16 to +15.
3497  */
3498 int task_prio(const struct task_struct *p)
3499 {
3500 	return p->prio - MAX_RT_PRIO;
3501 }
3502 
3503 /**
3504  * idle_cpu - is a given cpu idle currently?
3505  * @cpu: the processor in question.
3506  *
3507  * Return: 1 if the CPU is currently idle. 0 otherwise.
3508  */
3509 int idle_cpu(int cpu)
3510 {
3511 	struct rq *rq = cpu_rq(cpu);
3512 
3513 	if (rq->curr != rq->idle)
3514 		return 0;
3515 
3516 	if (rq->nr_running)
3517 		return 0;
3518 
3519 #ifdef CONFIG_SMP
3520 	if (!llist_empty(&rq->wake_list))
3521 		return 0;
3522 #endif
3523 
3524 	return 1;
3525 }
3526 
3527 /**
3528  * idle_task - return the idle task for a given cpu.
3529  * @cpu: the processor in question.
3530  *
3531  * Return: The idle task for the cpu @cpu.
3532  */
3533 struct task_struct *idle_task(int cpu)
3534 {
3535 	return cpu_rq(cpu)->idle;
3536 }
3537 
3538 /**
3539  * find_process_by_pid - find a process with a matching PID value.
3540  * @pid: the pid in question.
3541  *
3542  * The task of @pid, if found. %NULL otherwise.
3543  */
3544 static struct task_struct *find_process_by_pid(pid_t pid)
3545 {
3546 	return pid ? find_task_by_vpid(pid) : current;
3547 }
3548 
3549 /*
3550  * This function initializes the sched_dl_entity of a newly becoming
3551  * SCHED_DEADLINE task.
3552  *
3553  * Only the static values are considered here, the actual runtime and the
3554  * absolute deadline will be properly calculated when the task is enqueued
3555  * for the first time with its new policy.
3556  */
3557 static void
3558 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3559 {
3560 	struct sched_dl_entity *dl_se = &p->dl;
3561 
3562 	dl_se->dl_runtime = attr->sched_runtime;
3563 	dl_se->dl_deadline = attr->sched_deadline;
3564 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3565 	dl_se->flags = attr->sched_flags;
3566 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3567 
3568 	/*
3569 	 * Changing the parameters of a task is 'tricky' and we're not doing
3570 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3571 	 *
3572 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3573 	 * point. This would include retaining the task_struct until that time
3574 	 * and change dl_overflow() to not immediately decrement the current
3575 	 * amount.
3576 	 *
3577 	 * Instead we retain the current runtime/deadline and let the new
3578 	 * parameters take effect after the current reservation period lapses.
3579 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3580 	 * before the current scheduling deadline.
3581 	 *
3582 	 * We can still have temporary overloads because we do not delay the
3583 	 * change in bandwidth until that time; so admission control is
3584 	 * not on the safe side. It does however guarantee tasks will never
3585 	 * consume more than promised.
3586 	 */
3587 }
3588 
3589 /*
3590  * sched_setparam() passes in -1 for its policy, to let the functions
3591  * it calls know not to change it.
3592  */
3593 #define SETPARAM_POLICY	-1
3594 
3595 static void __setscheduler_params(struct task_struct *p,
3596 		const struct sched_attr *attr)
3597 {
3598 	int policy = attr->sched_policy;
3599 
3600 	if (policy == SETPARAM_POLICY)
3601 		policy = p->policy;
3602 
3603 	p->policy = policy;
3604 
3605 	if (dl_policy(policy))
3606 		__setparam_dl(p, attr);
3607 	else if (fair_policy(policy))
3608 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3609 
3610 	/*
3611 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3612 	 * !rt_policy. Always setting this ensures that things like
3613 	 * getparam()/getattr() don't report silly values for !rt tasks.
3614 	 */
3615 	p->rt_priority = attr->sched_priority;
3616 	p->normal_prio = normal_prio(p);
3617 	set_load_weight(p);
3618 }
3619 
3620 /* Actually do priority change: must hold pi & rq lock. */
3621 static void __setscheduler(struct rq *rq, struct task_struct *p,
3622 			   const struct sched_attr *attr, bool keep_boost)
3623 {
3624 	__setscheduler_params(p, attr);
3625 
3626 	/*
3627 	 * Keep a potential priority boosting if called from
3628 	 * sched_setscheduler().
3629 	 */
3630 	if (keep_boost)
3631 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3632 	else
3633 		p->prio = normal_prio(p);
3634 
3635 	if (dl_prio(p->prio))
3636 		p->sched_class = &dl_sched_class;
3637 	else if (rt_prio(p->prio))
3638 		p->sched_class = &rt_sched_class;
3639 	else
3640 		p->sched_class = &fair_sched_class;
3641 }
3642 
3643 static void
3644 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3645 {
3646 	struct sched_dl_entity *dl_se = &p->dl;
3647 
3648 	attr->sched_priority = p->rt_priority;
3649 	attr->sched_runtime = dl_se->dl_runtime;
3650 	attr->sched_deadline = dl_se->dl_deadline;
3651 	attr->sched_period = dl_se->dl_period;
3652 	attr->sched_flags = dl_se->flags;
3653 }
3654 
3655 /*
3656  * This function validates the new parameters of a -deadline task.
3657  * We ask for the deadline not being zero, and greater or equal
3658  * than the runtime, as well as the period of being zero or
3659  * greater than deadline. Furthermore, we have to be sure that
3660  * user parameters are above the internal resolution of 1us (we
3661  * check sched_runtime only since it is always the smaller one) and
3662  * below 2^63 ns (we have to check both sched_deadline and
3663  * sched_period, as the latter can be zero).
3664  */
3665 static bool
3666 __checkparam_dl(const struct sched_attr *attr)
3667 {
3668 	/* deadline != 0 */
3669 	if (attr->sched_deadline == 0)
3670 		return false;
3671 
3672 	/*
3673 	 * Since we truncate DL_SCALE bits, make sure we're at least
3674 	 * that big.
3675 	 */
3676 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3677 		return false;
3678 
3679 	/*
3680 	 * Since we use the MSB for wrap-around and sign issues, make
3681 	 * sure it's not set (mind that period can be equal to zero).
3682 	 */
3683 	if (attr->sched_deadline & (1ULL << 63) ||
3684 	    attr->sched_period & (1ULL << 63))
3685 		return false;
3686 
3687 	/* runtime <= deadline <= period (if period != 0) */
3688 	if ((attr->sched_period != 0 &&
3689 	     attr->sched_period < attr->sched_deadline) ||
3690 	    attr->sched_deadline < attr->sched_runtime)
3691 		return false;
3692 
3693 	return true;
3694 }
3695 
3696 /*
3697  * check the target process has a UID that matches the current process's
3698  */
3699 static bool check_same_owner(struct task_struct *p)
3700 {
3701 	const struct cred *cred = current_cred(), *pcred;
3702 	bool match;
3703 
3704 	rcu_read_lock();
3705 	pcred = __task_cred(p);
3706 	match = (uid_eq(cred->euid, pcred->euid) ||
3707 		 uid_eq(cred->euid, pcred->uid));
3708 	rcu_read_unlock();
3709 	return match;
3710 }
3711 
3712 static bool dl_param_changed(struct task_struct *p,
3713 		const struct sched_attr *attr)
3714 {
3715 	struct sched_dl_entity *dl_se = &p->dl;
3716 
3717 	if (dl_se->dl_runtime != attr->sched_runtime ||
3718 		dl_se->dl_deadline != attr->sched_deadline ||
3719 		dl_se->dl_period != attr->sched_period ||
3720 		dl_se->flags != attr->sched_flags)
3721 		return true;
3722 
3723 	return false;
3724 }
3725 
3726 static int __sched_setscheduler(struct task_struct *p,
3727 				const struct sched_attr *attr,
3728 				bool user, bool pi)
3729 {
3730 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3731 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3732 	int retval, oldprio, oldpolicy = -1, queued, running;
3733 	int new_effective_prio, policy = attr->sched_policy;
3734 	unsigned long flags;
3735 	const struct sched_class *prev_class;
3736 	struct rq *rq;
3737 	int reset_on_fork;
3738 
3739 	/* may grab non-irq protected spin_locks */
3740 	BUG_ON(in_interrupt());
3741 recheck:
3742 	/* double check policy once rq lock held */
3743 	if (policy < 0) {
3744 		reset_on_fork = p->sched_reset_on_fork;
3745 		policy = oldpolicy = p->policy;
3746 	} else {
3747 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3748 
3749 		if (policy != SCHED_DEADLINE &&
3750 				policy != SCHED_FIFO && policy != SCHED_RR &&
3751 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3752 				policy != SCHED_IDLE)
3753 			return -EINVAL;
3754 	}
3755 
3756 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3757 		return -EINVAL;
3758 
3759 	/*
3760 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3761 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3762 	 * SCHED_BATCH and SCHED_IDLE is 0.
3763 	 */
3764 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3765 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3766 		return -EINVAL;
3767 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3768 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3769 		return -EINVAL;
3770 
3771 	/*
3772 	 * Allow unprivileged RT tasks to decrease priority:
3773 	 */
3774 	if (user && !capable(CAP_SYS_NICE)) {
3775 		if (fair_policy(policy)) {
3776 			if (attr->sched_nice < task_nice(p) &&
3777 			    !can_nice(p, attr->sched_nice))
3778 				return -EPERM;
3779 		}
3780 
3781 		if (rt_policy(policy)) {
3782 			unsigned long rlim_rtprio =
3783 					task_rlimit(p, RLIMIT_RTPRIO);
3784 
3785 			/* can't set/change the rt policy */
3786 			if (policy != p->policy && !rlim_rtprio)
3787 				return -EPERM;
3788 
3789 			/* can't increase priority */
3790 			if (attr->sched_priority > p->rt_priority &&
3791 			    attr->sched_priority > rlim_rtprio)
3792 				return -EPERM;
3793 		}
3794 
3795 		 /*
3796 		  * Can't set/change SCHED_DEADLINE policy at all for now
3797 		  * (safest behavior); in the future we would like to allow
3798 		  * unprivileged DL tasks to increase their relative deadline
3799 		  * or reduce their runtime (both ways reducing utilization)
3800 		  */
3801 		if (dl_policy(policy))
3802 			return -EPERM;
3803 
3804 		/*
3805 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3806 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3807 		 */
3808 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3809 			if (!can_nice(p, task_nice(p)))
3810 				return -EPERM;
3811 		}
3812 
3813 		/* can't change other user's priorities */
3814 		if (!check_same_owner(p))
3815 			return -EPERM;
3816 
3817 		/* Normal users shall not reset the sched_reset_on_fork flag */
3818 		if (p->sched_reset_on_fork && !reset_on_fork)
3819 			return -EPERM;
3820 	}
3821 
3822 	if (user) {
3823 		retval = security_task_setscheduler(p);
3824 		if (retval)
3825 			return retval;
3826 	}
3827 
3828 	/*
3829 	 * make sure no PI-waiters arrive (or leave) while we are
3830 	 * changing the priority of the task:
3831 	 *
3832 	 * To be able to change p->policy safely, the appropriate
3833 	 * runqueue lock must be held.
3834 	 */
3835 	rq = task_rq_lock(p, &flags);
3836 
3837 	/*
3838 	 * Changing the policy of the stop threads its a very bad idea
3839 	 */
3840 	if (p == rq->stop) {
3841 		task_rq_unlock(rq, p, &flags);
3842 		return -EINVAL;
3843 	}
3844 
3845 	/*
3846 	 * If not changing anything there's no need to proceed further,
3847 	 * but store a possible modification of reset_on_fork.
3848 	 */
3849 	if (unlikely(policy == p->policy)) {
3850 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3851 			goto change;
3852 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3853 			goto change;
3854 		if (dl_policy(policy) && dl_param_changed(p, attr))
3855 			goto change;
3856 
3857 		p->sched_reset_on_fork = reset_on_fork;
3858 		task_rq_unlock(rq, p, &flags);
3859 		return 0;
3860 	}
3861 change:
3862 
3863 	if (user) {
3864 #ifdef CONFIG_RT_GROUP_SCHED
3865 		/*
3866 		 * Do not allow realtime tasks into groups that have no runtime
3867 		 * assigned.
3868 		 */
3869 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3870 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3871 				!task_group_is_autogroup(task_group(p))) {
3872 			task_rq_unlock(rq, p, &flags);
3873 			return -EPERM;
3874 		}
3875 #endif
3876 #ifdef CONFIG_SMP
3877 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3878 			cpumask_t *span = rq->rd->span;
3879 
3880 			/*
3881 			 * Don't allow tasks with an affinity mask smaller than
3882 			 * the entire root_domain to become SCHED_DEADLINE. We
3883 			 * will also fail if there's no bandwidth available.
3884 			 */
3885 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3886 			    rq->rd->dl_bw.bw == 0) {
3887 				task_rq_unlock(rq, p, &flags);
3888 				return -EPERM;
3889 			}
3890 		}
3891 #endif
3892 	}
3893 
3894 	/* recheck policy now with rq lock held */
3895 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3896 		policy = oldpolicy = -1;
3897 		task_rq_unlock(rq, p, &flags);
3898 		goto recheck;
3899 	}
3900 
3901 	/*
3902 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3903 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3904 	 * is available.
3905 	 */
3906 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3907 		task_rq_unlock(rq, p, &flags);
3908 		return -EBUSY;
3909 	}
3910 
3911 	p->sched_reset_on_fork = reset_on_fork;
3912 	oldprio = p->prio;
3913 
3914 	if (pi) {
3915 		/*
3916 		 * Take priority boosted tasks into account. If the new
3917 		 * effective priority is unchanged, we just store the new
3918 		 * normal parameters and do not touch the scheduler class and
3919 		 * the runqueue. This will be done when the task deboost
3920 		 * itself.
3921 		 */
3922 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3923 		if (new_effective_prio == oldprio) {
3924 			__setscheduler_params(p, attr);
3925 			task_rq_unlock(rq, p, &flags);
3926 			return 0;
3927 		}
3928 	}
3929 
3930 	queued = task_on_rq_queued(p);
3931 	running = task_current(rq, p);
3932 	if (queued)
3933 		dequeue_task(rq, p, 0);
3934 	if (running)
3935 		put_prev_task(rq, p);
3936 
3937 	prev_class = p->sched_class;
3938 	__setscheduler(rq, p, attr, pi);
3939 
3940 	if (running)
3941 		p->sched_class->set_curr_task(rq);
3942 	if (queued) {
3943 		/*
3944 		 * We enqueue to tail when the priority of a task is
3945 		 * increased (user space view).
3946 		 */
3947 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3948 	}
3949 
3950 	check_class_changed(rq, p, prev_class, oldprio);
3951 	preempt_disable(); /* avoid rq from going away on us */
3952 	task_rq_unlock(rq, p, &flags);
3953 
3954 	if (pi)
3955 		rt_mutex_adjust_pi(p);
3956 
3957 	/*
3958 	 * Run balance callbacks after we've adjusted the PI chain.
3959 	 */
3960 	balance_callback(rq);
3961 	preempt_enable();
3962 
3963 	return 0;
3964 }
3965 
3966 static int _sched_setscheduler(struct task_struct *p, int policy,
3967 			       const struct sched_param *param, bool check)
3968 {
3969 	struct sched_attr attr = {
3970 		.sched_policy   = policy,
3971 		.sched_priority = param->sched_priority,
3972 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3973 	};
3974 
3975 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3976 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3977 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3978 		policy &= ~SCHED_RESET_ON_FORK;
3979 		attr.sched_policy = policy;
3980 	}
3981 
3982 	return __sched_setscheduler(p, &attr, check, true);
3983 }
3984 /**
3985  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3986  * @p: the task in question.
3987  * @policy: new policy.
3988  * @param: structure containing the new RT priority.
3989  *
3990  * Return: 0 on success. An error code otherwise.
3991  *
3992  * NOTE that the task may be already dead.
3993  */
3994 int sched_setscheduler(struct task_struct *p, int policy,
3995 		       const struct sched_param *param)
3996 {
3997 	return _sched_setscheduler(p, policy, param, true);
3998 }
3999 EXPORT_SYMBOL_GPL(sched_setscheduler);
4000 
4001 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4002 {
4003 	return __sched_setscheduler(p, attr, true, true);
4004 }
4005 EXPORT_SYMBOL_GPL(sched_setattr);
4006 
4007 /**
4008  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4009  * @p: the task in question.
4010  * @policy: new policy.
4011  * @param: structure containing the new RT priority.
4012  *
4013  * Just like sched_setscheduler, only don't bother checking if the
4014  * current context has permission.  For example, this is needed in
4015  * stop_machine(): we create temporary high priority worker threads,
4016  * but our caller might not have that capability.
4017  *
4018  * Return: 0 on success. An error code otherwise.
4019  */
4020 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4021 			       const struct sched_param *param)
4022 {
4023 	return _sched_setscheduler(p, policy, param, false);
4024 }
4025 
4026 static int
4027 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4028 {
4029 	struct sched_param lparam;
4030 	struct task_struct *p;
4031 	int retval;
4032 
4033 	if (!param || pid < 0)
4034 		return -EINVAL;
4035 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4036 		return -EFAULT;
4037 
4038 	rcu_read_lock();
4039 	retval = -ESRCH;
4040 	p = find_process_by_pid(pid);
4041 	if (p != NULL)
4042 		retval = sched_setscheduler(p, policy, &lparam);
4043 	rcu_read_unlock();
4044 
4045 	return retval;
4046 }
4047 
4048 /*
4049  * Mimics kernel/events/core.c perf_copy_attr().
4050  */
4051 static int sched_copy_attr(struct sched_attr __user *uattr,
4052 			   struct sched_attr *attr)
4053 {
4054 	u32 size;
4055 	int ret;
4056 
4057 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4058 		return -EFAULT;
4059 
4060 	/*
4061 	 * zero the full structure, so that a short copy will be nice.
4062 	 */
4063 	memset(attr, 0, sizeof(*attr));
4064 
4065 	ret = get_user(size, &uattr->size);
4066 	if (ret)
4067 		return ret;
4068 
4069 	if (size > PAGE_SIZE)	/* silly large */
4070 		goto err_size;
4071 
4072 	if (!size)		/* abi compat */
4073 		size = SCHED_ATTR_SIZE_VER0;
4074 
4075 	if (size < SCHED_ATTR_SIZE_VER0)
4076 		goto err_size;
4077 
4078 	/*
4079 	 * If we're handed a bigger struct than we know of,
4080 	 * ensure all the unknown bits are 0 - i.e. new
4081 	 * user-space does not rely on any kernel feature
4082 	 * extensions we dont know about yet.
4083 	 */
4084 	if (size > sizeof(*attr)) {
4085 		unsigned char __user *addr;
4086 		unsigned char __user *end;
4087 		unsigned char val;
4088 
4089 		addr = (void __user *)uattr + sizeof(*attr);
4090 		end  = (void __user *)uattr + size;
4091 
4092 		for (; addr < end; addr++) {
4093 			ret = get_user(val, addr);
4094 			if (ret)
4095 				return ret;
4096 			if (val)
4097 				goto err_size;
4098 		}
4099 		size = sizeof(*attr);
4100 	}
4101 
4102 	ret = copy_from_user(attr, uattr, size);
4103 	if (ret)
4104 		return -EFAULT;
4105 
4106 	/*
4107 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4108 	 * to be strict and return an error on out-of-bounds values?
4109 	 */
4110 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4111 
4112 	return 0;
4113 
4114 err_size:
4115 	put_user(sizeof(*attr), &uattr->size);
4116 	return -E2BIG;
4117 }
4118 
4119 /**
4120  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4121  * @pid: the pid in question.
4122  * @policy: new policy.
4123  * @param: structure containing the new RT priority.
4124  *
4125  * Return: 0 on success. An error code otherwise.
4126  */
4127 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4128 		struct sched_param __user *, param)
4129 {
4130 	/* negative values for policy are not valid */
4131 	if (policy < 0)
4132 		return -EINVAL;
4133 
4134 	return do_sched_setscheduler(pid, policy, param);
4135 }
4136 
4137 /**
4138  * sys_sched_setparam - set/change the RT priority of a thread
4139  * @pid: the pid in question.
4140  * @param: structure containing the new RT priority.
4141  *
4142  * Return: 0 on success. An error code otherwise.
4143  */
4144 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4145 {
4146 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4147 }
4148 
4149 /**
4150  * sys_sched_setattr - same as above, but with extended sched_attr
4151  * @pid: the pid in question.
4152  * @uattr: structure containing the extended parameters.
4153  * @flags: for future extension.
4154  */
4155 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4156 			       unsigned int, flags)
4157 {
4158 	struct sched_attr attr;
4159 	struct task_struct *p;
4160 	int retval;
4161 
4162 	if (!uattr || pid < 0 || flags)
4163 		return -EINVAL;
4164 
4165 	retval = sched_copy_attr(uattr, &attr);
4166 	if (retval)
4167 		return retval;
4168 
4169 	if ((int)attr.sched_policy < 0)
4170 		return -EINVAL;
4171 
4172 	rcu_read_lock();
4173 	retval = -ESRCH;
4174 	p = find_process_by_pid(pid);
4175 	if (p != NULL)
4176 		retval = sched_setattr(p, &attr);
4177 	rcu_read_unlock();
4178 
4179 	return retval;
4180 }
4181 
4182 /**
4183  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4184  * @pid: the pid in question.
4185  *
4186  * Return: On success, the policy of the thread. Otherwise, a negative error
4187  * code.
4188  */
4189 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4190 {
4191 	struct task_struct *p;
4192 	int retval;
4193 
4194 	if (pid < 0)
4195 		return -EINVAL;
4196 
4197 	retval = -ESRCH;
4198 	rcu_read_lock();
4199 	p = find_process_by_pid(pid);
4200 	if (p) {
4201 		retval = security_task_getscheduler(p);
4202 		if (!retval)
4203 			retval = p->policy
4204 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4205 	}
4206 	rcu_read_unlock();
4207 	return retval;
4208 }
4209 
4210 /**
4211  * sys_sched_getparam - get the RT priority of a thread
4212  * @pid: the pid in question.
4213  * @param: structure containing the RT priority.
4214  *
4215  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4216  * code.
4217  */
4218 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4219 {
4220 	struct sched_param lp = { .sched_priority = 0 };
4221 	struct task_struct *p;
4222 	int retval;
4223 
4224 	if (!param || pid < 0)
4225 		return -EINVAL;
4226 
4227 	rcu_read_lock();
4228 	p = find_process_by_pid(pid);
4229 	retval = -ESRCH;
4230 	if (!p)
4231 		goto out_unlock;
4232 
4233 	retval = security_task_getscheduler(p);
4234 	if (retval)
4235 		goto out_unlock;
4236 
4237 	if (task_has_rt_policy(p))
4238 		lp.sched_priority = p->rt_priority;
4239 	rcu_read_unlock();
4240 
4241 	/*
4242 	 * This one might sleep, we cannot do it with a spinlock held ...
4243 	 */
4244 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4245 
4246 	return retval;
4247 
4248 out_unlock:
4249 	rcu_read_unlock();
4250 	return retval;
4251 }
4252 
4253 static int sched_read_attr(struct sched_attr __user *uattr,
4254 			   struct sched_attr *attr,
4255 			   unsigned int usize)
4256 {
4257 	int ret;
4258 
4259 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4260 		return -EFAULT;
4261 
4262 	/*
4263 	 * If we're handed a smaller struct than we know of,
4264 	 * ensure all the unknown bits are 0 - i.e. old
4265 	 * user-space does not get uncomplete information.
4266 	 */
4267 	if (usize < sizeof(*attr)) {
4268 		unsigned char *addr;
4269 		unsigned char *end;
4270 
4271 		addr = (void *)attr + usize;
4272 		end  = (void *)attr + sizeof(*attr);
4273 
4274 		for (; addr < end; addr++) {
4275 			if (*addr)
4276 				return -EFBIG;
4277 		}
4278 
4279 		attr->size = usize;
4280 	}
4281 
4282 	ret = copy_to_user(uattr, attr, attr->size);
4283 	if (ret)
4284 		return -EFAULT;
4285 
4286 	return 0;
4287 }
4288 
4289 /**
4290  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4291  * @pid: the pid in question.
4292  * @uattr: structure containing the extended parameters.
4293  * @size: sizeof(attr) for fwd/bwd comp.
4294  * @flags: for future extension.
4295  */
4296 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4297 		unsigned int, size, unsigned int, flags)
4298 {
4299 	struct sched_attr attr = {
4300 		.size = sizeof(struct sched_attr),
4301 	};
4302 	struct task_struct *p;
4303 	int retval;
4304 
4305 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4306 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4307 		return -EINVAL;
4308 
4309 	rcu_read_lock();
4310 	p = find_process_by_pid(pid);
4311 	retval = -ESRCH;
4312 	if (!p)
4313 		goto out_unlock;
4314 
4315 	retval = security_task_getscheduler(p);
4316 	if (retval)
4317 		goto out_unlock;
4318 
4319 	attr.sched_policy = p->policy;
4320 	if (p->sched_reset_on_fork)
4321 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4322 	if (task_has_dl_policy(p))
4323 		__getparam_dl(p, &attr);
4324 	else if (task_has_rt_policy(p))
4325 		attr.sched_priority = p->rt_priority;
4326 	else
4327 		attr.sched_nice = task_nice(p);
4328 
4329 	rcu_read_unlock();
4330 
4331 	retval = sched_read_attr(uattr, &attr, size);
4332 	return retval;
4333 
4334 out_unlock:
4335 	rcu_read_unlock();
4336 	return retval;
4337 }
4338 
4339 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4340 {
4341 	cpumask_var_t cpus_allowed, new_mask;
4342 	struct task_struct *p;
4343 	int retval;
4344 
4345 	rcu_read_lock();
4346 
4347 	p = find_process_by_pid(pid);
4348 	if (!p) {
4349 		rcu_read_unlock();
4350 		return -ESRCH;
4351 	}
4352 
4353 	/* Prevent p going away */
4354 	get_task_struct(p);
4355 	rcu_read_unlock();
4356 
4357 	if (p->flags & PF_NO_SETAFFINITY) {
4358 		retval = -EINVAL;
4359 		goto out_put_task;
4360 	}
4361 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4362 		retval = -ENOMEM;
4363 		goto out_put_task;
4364 	}
4365 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4366 		retval = -ENOMEM;
4367 		goto out_free_cpus_allowed;
4368 	}
4369 	retval = -EPERM;
4370 	if (!check_same_owner(p)) {
4371 		rcu_read_lock();
4372 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4373 			rcu_read_unlock();
4374 			goto out_free_new_mask;
4375 		}
4376 		rcu_read_unlock();
4377 	}
4378 
4379 	retval = security_task_setscheduler(p);
4380 	if (retval)
4381 		goto out_free_new_mask;
4382 
4383 
4384 	cpuset_cpus_allowed(p, cpus_allowed);
4385 	cpumask_and(new_mask, in_mask, cpus_allowed);
4386 
4387 	/*
4388 	 * Since bandwidth control happens on root_domain basis,
4389 	 * if admission test is enabled, we only admit -deadline
4390 	 * tasks allowed to run on all the CPUs in the task's
4391 	 * root_domain.
4392 	 */
4393 #ifdef CONFIG_SMP
4394 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4395 		rcu_read_lock();
4396 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4397 			retval = -EBUSY;
4398 			rcu_read_unlock();
4399 			goto out_free_new_mask;
4400 		}
4401 		rcu_read_unlock();
4402 	}
4403 #endif
4404 again:
4405 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4406 
4407 	if (!retval) {
4408 		cpuset_cpus_allowed(p, cpus_allowed);
4409 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4410 			/*
4411 			 * We must have raced with a concurrent cpuset
4412 			 * update. Just reset the cpus_allowed to the
4413 			 * cpuset's cpus_allowed
4414 			 */
4415 			cpumask_copy(new_mask, cpus_allowed);
4416 			goto again;
4417 		}
4418 	}
4419 out_free_new_mask:
4420 	free_cpumask_var(new_mask);
4421 out_free_cpus_allowed:
4422 	free_cpumask_var(cpus_allowed);
4423 out_put_task:
4424 	put_task_struct(p);
4425 	return retval;
4426 }
4427 
4428 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4429 			     struct cpumask *new_mask)
4430 {
4431 	if (len < cpumask_size())
4432 		cpumask_clear(new_mask);
4433 	else if (len > cpumask_size())
4434 		len = cpumask_size();
4435 
4436 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4437 }
4438 
4439 /**
4440  * sys_sched_setaffinity - set the cpu affinity of a process
4441  * @pid: pid of the process
4442  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4443  * @user_mask_ptr: user-space pointer to the new cpu mask
4444  *
4445  * Return: 0 on success. An error code otherwise.
4446  */
4447 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4448 		unsigned long __user *, user_mask_ptr)
4449 {
4450 	cpumask_var_t new_mask;
4451 	int retval;
4452 
4453 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4454 		return -ENOMEM;
4455 
4456 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4457 	if (retval == 0)
4458 		retval = sched_setaffinity(pid, new_mask);
4459 	free_cpumask_var(new_mask);
4460 	return retval;
4461 }
4462 
4463 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4464 {
4465 	struct task_struct *p;
4466 	unsigned long flags;
4467 	int retval;
4468 
4469 	rcu_read_lock();
4470 
4471 	retval = -ESRCH;
4472 	p = find_process_by_pid(pid);
4473 	if (!p)
4474 		goto out_unlock;
4475 
4476 	retval = security_task_getscheduler(p);
4477 	if (retval)
4478 		goto out_unlock;
4479 
4480 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4481 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4482 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4483 
4484 out_unlock:
4485 	rcu_read_unlock();
4486 
4487 	return retval;
4488 }
4489 
4490 /**
4491  * sys_sched_getaffinity - get the cpu affinity of a process
4492  * @pid: pid of the process
4493  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4494  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4495  *
4496  * Return: 0 on success. An error code otherwise.
4497  */
4498 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4499 		unsigned long __user *, user_mask_ptr)
4500 {
4501 	int ret;
4502 	cpumask_var_t mask;
4503 
4504 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4505 		return -EINVAL;
4506 	if (len & (sizeof(unsigned long)-1))
4507 		return -EINVAL;
4508 
4509 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4510 		return -ENOMEM;
4511 
4512 	ret = sched_getaffinity(pid, mask);
4513 	if (ret == 0) {
4514 		size_t retlen = min_t(size_t, len, cpumask_size());
4515 
4516 		if (copy_to_user(user_mask_ptr, mask, retlen))
4517 			ret = -EFAULT;
4518 		else
4519 			ret = retlen;
4520 	}
4521 	free_cpumask_var(mask);
4522 
4523 	return ret;
4524 }
4525 
4526 /**
4527  * sys_sched_yield - yield the current processor to other threads.
4528  *
4529  * This function yields the current CPU to other tasks. If there are no
4530  * other threads running on this CPU then this function will return.
4531  *
4532  * Return: 0.
4533  */
4534 SYSCALL_DEFINE0(sched_yield)
4535 {
4536 	struct rq *rq = this_rq_lock();
4537 
4538 	schedstat_inc(rq, yld_count);
4539 	current->sched_class->yield_task(rq);
4540 
4541 	/*
4542 	 * Since we are going to call schedule() anyway, there's
4543 	 * no need to preempt or enable interrupts:
4544 	 */
4545 	__release(rq->lock);
4546 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4547 	do_raw_spin_unlock(&rq->lock);
4548 	sched_preempt_enable_no_resched();
4549 
4550 	schedule();
4551 
4552 	return 0;
4553 }
4554 
4555 int __sched _cond_resched(void)
4556 {
4557 	if (should_resched(0)) {
4558 		preempt_schedule_common();
4559 		return 1;
4560 	}
4561 	return 0;
4562 }
4563 EXPORT_SYMBOL(_cond_resched);
4564 
4565 /*
4566  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4567  * call schedule, and on return reacquire the lock.
4568  *
4569  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4570  * operations here to prevent schedule() from being called twice (once via
4571  * spin_unlock(), once by hand).
4572  */
4573 int __cond_resched_lock(spinlock_t *lock)
4574 {
4575 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4576 	int ret = 0;
4577 
4578 	lockdep_assert_held(lock);
4579 
4580 	if (spin_needbreak(lock) || resched) {
4581 		spin_unlock(lock);
4582 		if (resched)
4583 			preempt_schedule_common();
4584 		else
4585 			cpu_relax();
4586 		ret = 1;
4587 		spin_lock(lock);
4588 	}
4589 	return ret;
4590 }
4591 EXPORT_SYMBOL(__cond_resched_lock);
4592 
4593 int __sched __cond_resched_softirq(void)
4594 {
4595 	BUG_ON(!in_softirq());
4596 
4597 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4598 		local_bh_enable();
4599 		preempt_schedule_common();
4600 		local_bh_disable();
4601 		return 1;
4602 	}
4603 	return 0;
4604 }
4605 EXPORT_SYMBOL(__cond_resched_softirq);
4606 
4607 /**
4608  * yield - yield the current processor to other threads.
4609  *
4610  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4611  *
4612  * The scheduler is at all times free to pick the calling task as the most
4613  * eligible task to run, if removing the yield() call from your code breaks
4614  * it, its already broken.
4615  *
4616  * Typical broken usage is:
4617  *
4618  * while (!event)
4619  * 	yield();
4620  *
4621  * where one assumes that yield() will let 'the other' process run that will
4622  * make event true. If the current task is a SCHED_FIFO task that will never
4623  * happen. Never use yield() as a progress guarantee!!
4624  *
4625  * If you want to use yield() to wait for something, use wait_event().
4626  * If you want to use yield() to be 'nice' for others, use cond_resched().
4627  * If you still want to use yield(), do not!
4628  */
4629 void __sched yield(void)
4630 {
4631 	set_current_state(TASK_RUNNING);
4632 	sys_sched_yield();
4633 }
4634 EXPORT_SYMBOL(yield);
4635 
4636 /**
4637  * yield_to - yield the current processor to another thread in
4638  * your thread group, or accelerate that thread toward the
4639  * processor it's on.
4640  * @p: target task
4641  * @preempt: whether task preemption is allowed or not
4642  *
4643  * It's the caller's job to ensure that the target task struct
4644  * can't go away on us before we can do any checks.
4645  *
4646  * Return:
4647  *	true (>0) if we indeed boosted the target task.
4648  *	false (0) if we failed to boost the target.
4649  *	-ESRCH if there's no task to yield to.
4650  */
4651 int __sched yield_to(struct task_struct *p, bool preempt)
4652 {
4653 	struct task_struct *curr = current;
4654 	struct rq *rq, *p_rq;
4655 	unsigned long flags;
4656 	int yielded = 0;
4657 
4658 	local_irq_save(flags);
4659 	rq = this_rq();
4660 
4661 again:
4662 	p_rq = task_rq(p);
4663 	/*
4664 	 * If we're the only runnable task on the rq and target rq also
4665 	 * has only one task, there's absolutely no point in yielding.
4666 	 */
4667 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4668 		yielded = -ESRCH;
4669 		goto out_irq;
4670 	}
4671 
4672 	double_rq_lock(rq, p_rq);
4673 	if (task_rq(p) != p_rq) {
4674 		double_rq_unlock(rq, p_rq);
4675 		goto again;
4676 	}
4677 
4678 	if (!curr->sched_class->yield_to_task)
4679 		goto out_unlock;
4680 
4681 	if (curr->sched_class != p->sched_class)
4682 		goto out_unlock;
4683 
4684 	if (task_running(p_rq, p) || p->state)
4685 		goto out_unlock;
4686 
4687 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4688 	if (yielded) {
4689 		schedstat_inc(rq, yld_count);
4690 		/*
4691 		 * Make p's CPU reschedule; pick_next_entity takes care of
4692 		 * fairness.
4693 		 */
4694 		if (preempt && rq != p_rq)
4695 			resched_curr(p_rq);
4696 	}
4697 
4698 out_unlock:
4699 	double_rq_unlock(rq, p_rq);
4700 out_irq:
4701 	local_irq_restore(flags);
4702 
4703 	if (yielded > 0)
4704 		schedule();
4705 
4706 	return yielded;
4707 }
4708 EXPORT_SYMBOL_GPL(yield_to);
4709 
4710 /*
4711  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4712  * that process accounting knows that this is a task in IO wait state.
4713  */
4714 long __sched io_schedule_timeout(long timeout)
4715 {
4716 	int old_iowait = current->in_iowait;
4717 	struct rq *rq;
4718 	long ret;
4719 
4720 	current->in_iowait = 1;
4721 	blk_schedule_flush_plug(current);
4722 
4723 	delayacct_blkio_start();
4724 	rq = raw_rq();
4725 	atomic_inc(&rq->nr_iowait);
4726 	ret = schedule_timeout(timeout);
4727 	current->in_iowait = old_iowait;
4728 	atomic_dec(&rq->nr_iowait);
4729 	delayacct_blkio_end();
4730 
4731 	return ret;
4732 }
4733 EXPORT_SYMBOL(io_schedule_timeout);
4734 
4735 /**
4736  * sys_sched_get_priority_max - return maximum RT priority.
4737  * @policy: scheduling class.
4738  *
4739  * Return: On success, this syscall returns the maximum
4740  * rt_priority that can be used by a given scheduling class.
4741  * On failure, a negative error code is returned.
4742  */
4743 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4744 {
4745 	int ret = -EINVAL;
4746 
4747 	switch (policy) {
4748 	case SCHED_FIFO:
4749 	case SCHED_RR:
4750 		ret = MAX_USER_RT_PRIO-1;
4751 		break;
4752 	case SCHED_DEADLINE:
4753 	case SCHED_NORMAL:
4754 	case SCHED_BATCH:
4755 	case SCHED_IDLE:
4756 		ret = 0;
4757 		break;
4758 	}
4759 	return ret;
4760 }
4761 
4762 /**
4763  * sys_sched_get_priority_min - return minimum RT priority.
4764  * @policy: scheduling class.
4765  *
4766  * Return: On success, this syscall returns the minimum
4767  * rt_priority that can be used by a given scheduling class.
4768  * On failure, a negative error code is returned.
4769  */
4770 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4771 {
4772 	int ret = -EINVAL;
4773 
4774 	switch (policy) {
4775 	case SCHED_FIFO:
4776 	case SCHED_RR:
4777 		ret = 1;
4778 		break;
4779 	case SCHED_DEADLINE:
4780 	case SCHED_NORMAL:
4781 	case SCHED_BATCH:
4782 	case SCHED_IDLE:
4783 		ret = 0;
4784 	}
4785 	return ret;
4786 }
4787 
4788 /**
4789  * sys_sched_rr_get_interval - return the default timeslice of a process.
4790  * @pid: pid of the process.
4791  * @interval: userspace pointer to the timeslice value.
4792  *
4793  * this syscall writes the default timeslice value of a given process
4794  * into the user-space timespec buffer. A value of '0' means infinity.
4795  *
4796  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4797  * an error code.
4798  */
4799 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4800 		struct timespec __user *, interval)
4801 {
4802 	struct task_struct *p;
4803 	unsigned int time_slice;
4804 	unsigned long flags;
4805 	struct rq *rq;
4806 	int retval;
4807 	struct timespec t;
4808 
4809 	if (pid < 0)
4810 		return -EINVAL;
4811 
4812 	retval = -ESRCH;
4813 	rcu_read_lock();
4814 	p = find_process_by_pid(pid);
4815 	if (!p)
4816 		goto out_unlock;
4817 
4818 	retval = security_task_getscheduler(p);
4819 	if (retval)
4820 		goto out_unlock;
4821 
4822 	rq = task_rq_lock(p, &flags);
4823 	time_slice = 0;
4824 	if (p->sched_class->get_rr_interval)
4825 		time_slice = p->sched_class->get_rr_interval(rq, p);
4826 	task_rq_unlock(rq, p, &flags);
4827 
4828 	rcu_read_unlock();
4829 	jiffies_to_timespec(time_slice, &t);
4830 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4831 	return retval;
4832 
4833 out_unlock:
4834 	rcu_read_unlock();
4835 	return retval;
4836 }
4837 
4838 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4839 
4840 void sched_show_task(struct task_struct *p)
4841 {
4842 	unsigned long free = 0;
4843 	int ppid;
4844 	unsigned long state = p->state;
4845 
4846 	if (state)
4847 		state = __ffs(state) + 1;
4848 	printk(KERN_INFO "%-15.15s %c", p->comm,
4849 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4850 #if BITS_PER_LONG == 32
4851 	if (state == TASK_RUNNING)
4852 		printk(KERN_CONT " running  ");
4853 	else
4854 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4855 #else
4856 	if (state == TASK_RUNNING)
4857 		printk(KERN_CONT "  running task    ");
4858 	else
4859 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4860 #endif
4861 #ifdef CONFIG_DEBUG_STACK_USAGE
4862 	free = stack_not_used(p);
4863 #endif
4864 	ppid = 0;
4865 	rcu_read_lock();
4866 	if (pid_alive(p))
4867 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4868 	rcu_read_unlock();
4869 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4870 		task_pid_nr(p), ppid,
4871 		(unsigned long)task_thread_info(p)->flags);
4872 
4873 	print_worker_info(KERN_INFO, p);
4874 	show_stack(p, NULL);
4875 }
4876 
4877 void show_state_filter(unsigned long state_filter)
4878 {
4879 	struct task_struct *g, *p;
4880 
4881 #if BITS_PER_LONG == 32
4882 	printk(KERN_INFO
4883 		"  task                PC stack   pid father\n");
4884 #else
4885 	printk(KERN_INFO
4886 		"  task                        PC stack   pid father\n");
4887 #endif
4888 	rcu_read_lock();
4889 	for_each_process_thread(g, p) {
4890 		/*
4891 		 * reset the NMI-timeout, listing all files on a slow
4892 		 * console might take a lot of time:
4893 		 */
4894 		touch_nmi_watchdog();
4895 		if (!state_filter || (p->state & state_filter))
4896 			sched_show_task(p);
4897 	}
4898 
4899 	touch_all_softlockup_watchdogs();
4900 
4901 #ifdef CONFIG_SCHED_DEBUG
4902 	sysrq_sched_debug_show();
4903 #endif
4904 	rcu_read_unlock();
4905 	/*
4906 	 * Only show locks if all tasks are dumped:
4907 	 */
4908 	if (!state_filter)
4909 		debug_show_all_locks();
4910 }
4911 
4912 void init_idle_bootup_task(struct task_struct *idle)
4913 {
4914 	idle->sched_class = &idle_sched_class;
4915 }
4916 
4917 /**
4918  * init_idle - set up an idle thread for a given CPU
4919  * @idle: task in question
4920  * @cpu: cpu the idle task belongs to
4921  *
4922  * NOTE: this function does not set the idle thread's NEED_RESCHED
4923  * flag, to make booting more robust.
4924  */
4925 void init_idle(struct task_struct *idle, int cpu)
4926 {
4927 	struct rq *rq = cpu_rq(cpu);
4928 	unsigned long flags;
4929 
4930 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
4931 	raw_spin_lock(&rq->lock);
4932 
4933 	__sched_fork(0, idle);
4934 	idle->state = TASK_RUNNING;
4935 	idle->se.exec_start = sched_clock();
4936 
4937 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4938 	/*
4939 	 * We're having a chicken and egg problem, even though we are
4940 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4941 	 * lockdep check in task_group() will fail.
4942 	 *
4943 	 * Similar case to sched_fork(). / Alternatively we could
4944 	 * use task_rq_lock() here and obtain the other rq->lock.
4945 	 *
4946 	 * Silence PROVE_RCU
4947 	 */
4948 	rcu_read_lock();
4949 	__set_task_cpu(idle, cpu);
4950 	rcu_read_unlock();
4951 
4952 	rq->curr = rq->idle = idle;
4953 	idle->on_rq = TASK_ON_RQ_QUEUED;
4954 #if defined(CONFIG_SMP)
4955 	idle->on_cpu = 1;
4956 #endif
4957 	raw_spin_unlock(&rq->lock);
4958 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
4959 
4960 	/* Set the preempt count _outside_ the spinlocks! */
4961 	init_idle_preempt_count(idle, cpu);
4962 
4963 	/*
4964 	 * The idle tasks have their own, simple scheduling class:
4965 	 */
4966 	idle->sched_class = &idle_sched_class;
4967 	ftrace_graph_init_idle_task(idle, cpu);
4968 	vtime_init_idle(idle, cpu);
4969 #if defined(CONFIG_SMP)
4970 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4971 #endif
4972 }
4973 
4974 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4975 			      const struct cpumask *trial)
4976 {
4977 	int ret = 1, trial_cpus;
4978 	struct dl_bw *cur_dl_b;
4979 	unsigned long flags;
4980 
4981 	if (!cpumask_weight(cur))
4982 		return ret;
4983 
4984 	rcu_read_lock_sched();
4985 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4986 	trial_cpus = cpumask_weight(trial);
4987 
4988 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4989 	if (cur_dl_b->bw != -1 &&
4990 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4991 		ret = 0;
4992 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4993 	rcu_read_unlock_sched();
4994 
4995 	return ret;
4996 }
4997 
4998 int task_can_attach(struct task_struct *p,
4999 		    const struct cpumask *cs_cpus_allowed)
5000 {
5001 	int ret = 0;
5002 
5003 	/*
5004 	 * Kthreads which disallow setaffinity shouldn't be moved
5005 	 * to a new cpuset; we don't want to change their cpu
5006 	 * affinity and isolating such threads by their set of
5007 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5008 	 * applicable for such threads.  This prevents checking for
5009 	 * success of set_cpus_allowed_ptr() on all attached tasks
5010 	 * before cpus_allowed may be changed.
5011 	 */
5012 	if (p->flags & PF_NO_SETAFFINITY) {
5013 		ret = -EINVAL;
5014 		goto out;
5015 	}
5016 
5017 #ifdef CONFIG_SMP
5018 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5019 					      cs_cpus_allowed)) {
5020 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5021 							cs_cpus_allowed);
5022 		struct dl_bw *dl_b;
5023 		bool overflow;
5024 		int cpus;
5025 		unsigned long flags;
5026 
5027 		rcu_read_lock_sched();
5028 		dl_b = dl_bw_of(dest_cpu);
5029 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5030 		cpus = dl_bw_cpus(dest_cpu);
5031 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5032 		if (overflow)
5033 			ret = -EBUSY;
5034 		else {
5035 			/*
5036 			 * We reserve space for this task in the destination
5037 			 * root_domain, as we can't fail after this point.
5038 			 * We will free resources in the source root_domain
5039 			 * later on (see set_cpus_allowed_dl()).
5040 			 */
5041 			__dl_add(dl_b, p->dl.dl_bw);
5042 		}
5043 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5044 		rcu_read_unlock_sched();
5045 
5046 	}
5047 #endif
5048 out:
5049 	return ret;
5050 }
5051 
5052 #ifdef CONFIG_SMP
5053 
5054 #ifdef CONFIG_NUMA_BALANCING
5055 /* Migrate current task p to target_cpu */
5056 int migrate_task_to(struct task_struct *p, int target_cpu)
5057 {
5058 	struct migration_arg arg = { p, target_cpu };
5059 	int curr_cpu = task_cpu(p);
5060 
5061 	if (curr_cpu == target_cpu)
5062 		return 0;
5063 
5064 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5065 		return -EINVAL;
5066 
5067 	/* TODO: This is not properly updating schedstats */
5068 
5069 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5070 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5071 }
5072 
5073 /*
5074  * Requeue a task on a given node and accurately track the number of NUMA
5075  * tasks on the runqueues
5076  */
5077 void sched_setnuma(struct task_struct *p, int nid)
5078 {
5079 	struct rq *rq;
5080 	unsigned long flags;
5081 	bool queued, running;
5082 
5083 	rq = task_rq_lock(p, &flags);
5084 	queued = task_on_rq_queued(p);
5085 	running = task_current(rq, p);
5086 
5087 	if (queued)
5088 		dequeue_task(rq, p, 0);
5089 	if (running)
5090 		put_prev_task(rq, p);
5091 
5092 	p->numa_preferred_nid = nid;
5093 
5094 	if (running)
5095 		p->sched_class->set_curr_task(rq);
5096 	if (queued)
5097 		enqueue_task(rq, p, 0);
5098 	task_rq_unlock(rq, p, &flags);
5099 }
5100 #endif /* CONFIG_NUMA_BALANCING */
5101 
5102 #ifdef CONFIG_HOTPLUG_CPU
5103 /*
5104  * Ensures that the idle task is using init_mm right before its cpu goes
5105  * offline.
5106  */
5107 void idle_task_exit(void)
5108 {
5109 	struct mm_struct *mm = current->active_mm;
5110 
5111 	BUG_ON(cpu_online(smp_processor_id()));
5112 
5113 	if (mm != &init_mm) {
5114 		switch_mm(mm, &init_mm, current);
5115 		finish_arch_post_lock_switch();
5116 	}
5117 	mmdrop(mm);
5118 }
5119 
5120 /*
5121  * Since this CPU is going 'away' for a while, fold any nr_active delta
5122  * we might have. Assumes we're called after migrate_tasks() so that the
5123  * nr_active count is stable.
5124  *
5125  * Also see the comment "Global load-average calculations".
5126  */
5127 static void calc_load_migrate(struct rq *rq)
5128 {
5129 	long delta = calc_load_fold_active(rq);
5130 	if (delta)
5131 		atomic_long_add(delta, &calc_load_tasks);
5132 }
5133 
5134 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5135 {
5136 }
5137 
5138 static const struct sched_class fake_sched_class = {
5139 	.put_prev_task = put_prev_task_fake,
5140 };
5141 
5142 static struct task_struct fake_task = {
5143 	/*
5144 	 * Avoid pull_{rt,dl}_task()
5145 	 */
5146 	.prio = MAX_PRIO + 1,
5147 	.sched_class = &fake_sched_class,
5148 };
5149 
5150 /*
5151  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5152  * try_to_wake_up()->select_task_rq().
5153  *
5154  * Called with rq->lock held even though we'er in stop_machine() and
5155  * there's no concurrency possible, we hold the required locks anyway
5156  * because of lock validation efforts.
5157  */
5158 static void migrate_tasks(struct rq *dead_rq)
5159 {
5160 	struct rq *rq = dead_rq;
5161 	struct task_struct *next, *stop = rq->stop;
5162 	int dest_cpu;
5163 
5164 	/*
5165 	 * Fudge the rq selection such that the below task selection loop
5166 	 * doesn't get stuck on the currently eligible stop task.
5167 	 *
5168 	 * We're currently inside stop_machine() and the rq is either stuck
5169 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5170 	 * either way we should never end up calling schedule() until we're
5171 	 * done here.
5172 	 */
5173 	rq->stop = NULL;
5174 
5175 	/*
5176 	 * put_prev_task() and pick_next_task() sched
5177 	 * class method both need to have an up-to-date
5178 	 * value of rq->clock[_task]
5179 	 */
5180 	update_rq_clock(rq);
5181 
5182 	for (;;) {
5183 		/*
5184 		 * There's this thread running, bail when that's the only
5185 		 * remaining thread.
5186 		 */
5187 		if (rq->nr_running == 1)
5188 			break;
5189 
5190 		/*
5191 		 * pick_next_task assumes pinned rq->lock.
5192 		 */
5193 		lockdep_pin_lock(&rq->lock);
5194 		next = pick_next_task(rq, &fake_task);
5195 		BUG_ON(!next);
5196 		next->sched_class->put_prev_task(rq, next);
5197 
5198 		/*
5199 		 * Rules for changing task_struct::cpus_allowed are holding
5200 		 * both pi_lock and rq->lock, such that holding either
5201 		 * stabilizes the mask.
5202 		 *
5203 		 * Drop rq->lock is not quite as disastrous as it usually is
5204 		 * because !cpu_active at this point, which means load-balance
5205 		 * will not interfere. Also, stop-machine.
5206 		 */
5207 		lockdep_unpin_lock(&rq->lock);
5208 		raw_spin_unlock(&rq->lock);
5209 		raw_spin_lock(&next->pi_lock);
5210 		raw_spin_lock(&rq->lock);
5211 
5212 		/*
5213 		 * Since we're inside stop-machine, _nothing_ should have
5214 		 * changed the task, WARN if weird stuff happened, because in
5215 		 * that case the above rq->lock drop is a fail too.
5216 		 */
5217 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5218 			raw_spin_unlock(&next->pi_lock);
5219 			continue;
5220 		}
5221 
5222 		/* Find suitable destination for @next, with force if needed. */
5223 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5224 
5225 		rq = __migrate_task(rq, next, dest_cpu);
5226 		if (rq != dead_rq) {
5227 			raw_spin_unlock(&rq->lock);
5228 			rq = dead_rq;
5229 			raw_spin_lock(&rq->lock);
5230 		}
5231 		raw_spin_unlock(&next->pi_lock);
5232 	}
5233 
5234 	rq->stop = stop;
5235 }
5236 #endif /* CONFIG_HOTPLUG_CPU */
5237 
5238 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5239 
5240 static struct ctl_table sd_ctl_dir[] = {
5241 	{
5242 		.procname	= "sched_domain",
5243 		.mode		= 0555,
5244 	},
5245 	{}
5246 };
5247 
5248 static struct ctl_table sd_ctl_root[] = {
5249 	{
5250 		.procname	= "kernel",
5251 		.mode		= 0555,
5252 		.child		= sd_ctl_dir,
5253 	},
5254 	{}
5255 };
5256 
5257 static struct ctl_table *sd_alloc_ctl_entry(int n)
5258 {
5259 	struct ctl_table *entry =
5260 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5261 
5262 	return entry;
5263 }
5264 
5265 static void sd_free_ctl_entry(struct ctl_table **tablep)
5266 {
5267 	struct ctl_table *entry;
5268 
5269 	/*
5270 	 * In the intermediate directories, both the child directory and
5271 	 * procname are dynamically allocated and could fail but the mode
5272 	 * will always be set. In the lowest directory the names are
5273 	 * static strings and all have proc handlers.
5274 	 */
5275 	for (entry = *tablep; entry->mode; entry++) {
5276 		if (entry->child)
5277 			sd_free_ctl_entry(&entry->child);
5278 		if (entry->proc_handler == NULL)
5279 			kfree(entry->procname);
5280 	}
5281 
5282 	kfree(*tablep);
5283 	*tablep = NULL;
5284 }
5285 
5286 static int min_load_idx = 0;
5287 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5288 
5289 static void
5290 set_table_entry(struct ctl_table *entry,
5291 		const char *procname, void *data, int maxlen,
5292 		umode_t mode, proc_handler *proc_handler,
5293 		bool load_idx)
5294 {
5295 	entry->procname = procname;
5296 	entry->data = data;
5297 	entry->maxlen = maxlen;
5298 	entry->mode = mode;
5299 	entry->proc_handler = proc_handler;
5300 
5301 	if (load_idx) {
5302 		entry->extra1 = &min_load_idx;
5303 		entry->extra2 = &max_load_idx;
5304 	}
5305 }
5306 
5307 static struct ctl_table *
5308 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5309 {
5310 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5311 
5312 	if (table == NULL)
5313 		return NULL;
5314 
5315 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5316 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5317 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5318 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5319 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5320 		sizeof(int), 0644, proc_dointvec_minmax, true);
5321 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5322 		sizeof(int), 0644, proc_dointvec_minmax, true);
5323 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5324 		sizeof(int), 0644, proc_dointvec_minmax, true);
5325 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5326 		sizeof(int), 0644, proc_dointvec_minmax, true);
5327 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5328 		sizeof(int), 0644, proc_dointvec_minmax, true);
5329 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5330 		sizeof(int), 0644, proc_dointvec_minmax, false);
5331 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5332 		sizeof(int), 0644, proc_dointvec_minmax, false);
5333 	set_table_entry(&table[9], "cache_nice_tries",
5334 		&sd->cache_nice_tries,
5335 		sizeof(int), 0644, proc_dointvec_minmax, false);
5336 	set_table_entry(&table[10], "flags", &sd->flags,
5337 		sizeof(int), 0644, proc_dointvec_minmax, false);
5338 	set_table_entry(&table[11], "max_newidle_lb_cost",
5339 		&sd->max_newidle_lb_cost,
5340 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5341 	set_table_entry(&table[12], "name", sd->name,
5342 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5343 	/* &table[13] is terminator */
5344 
5345 	return table;
5346 }
5347 
5348 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5349 {
5350 	struct ctl_table *entry, *table;
5351 	struct sched_domain *sd;
5352 	int domain_num = 0, i;
5353 	char buf[32];
5354 
5355 	for_each_domain(cpu, sd)
5356 		domain_num++;
5357 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5358 	if (table == NULL)
5359 		return NULL;
5360 
5361 	i = 0;
5362 	for_each_domain(cpu, sd) {
5363 		snprintf(buf, 32, "domain%d", i);
5364 		entry->procname = kstrdup(buf, GFP_KERNEL);
5365 		entry->mode = 0555;
5366 		entry->child = sd_alloc_ctl_domain_table(sd);
5367 		entry++;
5368 		i++;
5369 	}
5370 	return table;
5371 }
5372 
5373 static struct ctl_table_header *sd_sysctl_header;
5374 static void register_sched_domain_sysctl(void)
5375 {
5376 	int i, cpu_num = num_possible_cpus();
5377 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5378 	char buf[32];
5379 
5380 	WARN_ON(sd_ctl_dir[0].child);
5381 	sd_ctl_dir[0].child = entry;
5382 
5383 	if (entry == NULL)
5384 		return;
5385 
5386 	for_each_possible_cpu(i) {
5387 		snprintf(buf, 32, "cpu%d", i);
5388 		entry->procname = kstrdup(buf, GFP_KERNEL);
5389 		entry->mode = 0555;
5390 		entry->child = sd_alloc_ctl_cpu_table(i);
5391 		entry++;
5392 	}
5393 
5394 	WARN_ON(sd_sysctl_header);
5395 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5396 }
5397 
5398 /* may be called multiple times per register */
5399 static void unregister_sched_domain_sysctl(void)
5400 {
5401 	unregister_sysctl_table(sd_sysctl_header);
5402 	sd_sysctl_header = NULL;
5403 	if (sd_ctl_dir[0].child)
5404 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5405 }
5406 #else
5407 static void register_sched_domain_sysctl(void)
5408 {
5409 }
5410 static void unregister_sched_domain_sysctl(void)
5411 {
5412 }
5413 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5414 
5415 static void set_rq_online(struct rq *rq)
5416 {
5417 	if (!rq->online) {
5418 		const struct sched_class *class;
5419 
5420 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5421 		rq->online = 1;
5422 
5423 		for_each_class(class) {
5424 			if (class->rq_online)
5425 				class->rq_online(rq);
5426 		}
5427 	}
5428 }
5429 
5430 static void set_rq_offline(struct rq *rq)
5431 {
5432 	if (rq->online) {
5433 		const struct sched_class *class;
5434 
5435 		for_each_class(class) {
5436 			if (class->rq_offline)
5437 				class->rq_offline(rq);
5438 		}
5439 
5440 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5441 		rq->online = 0;
5442 	}
5443 }
5444 
5445 /*
5446  * migration_call - callback that gets triggered when a CPU is added.
5447  * Here we can start up the necessary migration thread for the new CPU.
5448  */
5449 static int
5450 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5451 {
5452 	int cpu = (long)hcpu;
5453 	unsigned long flags;
5454 	struct rq *rq = cpu_rq(cpu);
5455 
5456 	switch (action & ~CPU_TASKS_FROZEN) {
5457 
5458 	case CPU_UP_PREPARE:
5459 		rq->calc_load_update = calc_load_update;
5460 		break;
5461 
5462 	case CPU_ONLINE:
5463 		/* Update our root-domain */
5464 		raw_spin_lock_irqsave(&rq->lock, flags);
5465 		if (rq->rd) {
5466 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5467 
5468 			set_rq_online(rq);
5469 		}
5470 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5471 		break;
5472 
5473 #ifdef CONFIG_HOTPLUG_CPU
5474 	case CPU_DYING:
5475 		sched_ttwu_pending();
5476 		/* Update our root-domain */
5477 		raw_spin_lock_irqsave(&rq->lock, flags);
5478 		if (rq->rd) {
5479 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5480 			set_rq_offline(rq);
5481 		}
5482 		migrate_tasks(rq);
5483 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5484 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5485 		break;
5486 
5487 	case CPU_DEAD:
5488 		calc_load_migrate(rq);
5489 		break;
5490 #endif
5491 	}
5492 
5493 	update_max_interval();
5494 
5495 	return NOTIFY_OK;
5496 }
5497 
5498 /*
5499  * Register at high priority so that task migration (migrate_all_tasks)
5500  * happens before everything else.  This has to be lower priority than
5501  * the notifier in the perf_event subsystem, though.
5502  */
5503 static struct notifier_block migration_notifier = {
5504 	.notifier_call = migration_call,
5505 	.priority = CPU_PRI_MIGRATION,
5506 };
5507 
5508 static void set_cpu_rq_start_time(void)
5509 {
5510 	int cpu = smp_processor_id();
5511 	struct rq *rq = cpu_rq(cpu);
5512 	rq->age_stamp = sched_clock_cpu(cpu);
5513 }
5514 
5515 static int sched_cpu_active(struct notifier_block *nfb,
5516 				      unsigned long action, void *hcpu)
5517 {
5518 	switch (action & ~CPU_TASKS_FROZEN) {
5519 	case CPU_STARTING:
5520 		set_cpu_rq_start_time();
5521 		return NOTIFY_OK;
5522 	case CPU_ONLINE:
5523 		/*
5524 		 * At this point a starting CPU has marked itself as online via
5525 		 * set_cpu_online(). But it might not yet have marked itself
5526 		 * as active, which is essential from here on.
5527 		 *
5528 		 * Thus, fall-through and help the starting CPU along.
5529 		 */
5530 	case CPU_DOWN_FAILED:
5531 		set_cpu_active((long)hcpu, true);
5532 		return NOTIFY_OK;
5533 	default:
5534 		return NOTIFY_DONE;
5535 	}
5536 }
5537 
5538 static int sched_cpu_inactive(struct notifier_block *nfb,
5539 					unsigned long action, void *hcpu)
5540 {
5541 	switch (action & ~CPU_TASKS_FROZEN) {
5542 	case CPU_DOWN_PREPARE:
5543 		set_cpu_active((long)hcpu, false);
5544 		return NOTIFY_OK;
5545 	default:
5546 		return NOTIFY_DONE;
5547 	}
5548 }
5549 
5550 static int __init migration_init(void)
5551 {
5552 	void *cpu = (void *)(long)smp_processor_id();
5553 	int err;
5554 
5555 	/* Initialize migration for the boot CPU */
5556 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5557 	BUG_ON(err == NOTIFY_BAD);
5558 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5559 	register_cpu_notifier(&migration_notifier);
5560 
5561 	/* Register cpu active notifiers */
5562 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5563 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5564 
5565 	return 0;
5566 }
5567 early_initcall(migration_init);
5568 
5569 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5570 
5571 #ifdef CONFIG_SCHED_DEBUG
5572 
5573 static __read_mostly int sched_debug_enabled;
5574 
5575 static int __init sched_debug_setup(char *str)
5576 {
5577 	sched_debug_enabled = 1;
5578 
5579 	return 0;
5580 }
5581 early_param("sched_debug", sched_debug_setup);
5582 
5583 static inline bool sched_debug(void)
5584 {
5585 	return sched_debug_enabled;
5586 }
5587 
5588 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5589 				  struct cpumask *groupmask)
5590 {
5591 	struct sched_group *group = sd->groups;
5592 
5593 	cpumask_clear(groupmask);
5594 
5595 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5596 
5597 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5598 		printk("does not load-balance\n");
5599 		if (sd->parent)
5600 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5601 					" has parent");
5602 		return -1;
5603 	}
5604 
5605 	printk(KERN_CONT "span %*pbl level %s\n",
5606 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5607 
5608 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5609 		printk(KERN_ERR "ERROR: domain->span does not contain "
5610 				"CPU%d\n", cpu);
5611 	}
5612 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5613 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5614 				" CPU%d\n", cpu);
5615 	}
5616 
5617 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5618 	do {
5619 		if (!group) {
5620 			printk("\n");
5621 			printk(KERN_ERR "ERROR: group is NULL\n");
5622 			break;
5623 		}
5624 
5625 		if (!cpumask_weight(sched_group_cpus(group))) {
5626 			printk(KERN_CONT "\n");
5627 			printk(KERN_ERR "ERROR: empty group\n");
5628 			break;
5629 		}
5630 
5631 		if (!(sd->flags & SD_OVERLAP) &&
5632 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5633 			printk(KERN_CONT "\n");
5634 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5635 			break;
5636 		}
5637 
5638 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5639 
5640 		printk(KERN_CONT " %*pbl",
5641 		       cpumask_pr_args(sched_group_cpus(group)));
5642 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5643 			printk(KERN_CONT " (cpu_capacity = %d)",
5644 				group->sgc->capacity);
5645 		}
5646 
5647 		group = group->next;
5648 	} while (group != sd->groups);
5649 	printk(KERN_CONT "\n");
5650 
5651 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5652 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5653 
5654 	if (sd->parent &&
5655 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5656 		printk(KERN_ERR "ERROR: parent span is not a superset "
5657 			"of domain->span\n");
5658 	return 0;
5659 }
5660 
5661 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5662 {
5663 	int level = 0;
5664 
5665 	if (!sched_debug_enabled)
5666 		return;
5667 
5668 	if (!sd) {
5669 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5670 		return;
5671 	}
5672 
5673 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5674 
5675 	for (;;) {
5676 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5677 			break;
5678 		level++;
5679 		sd = sd->parent;
5680 		if (!sd)
5681 			break;
5682 	}
5683 }
5684 #else /* !CONFIG_SCHED_DEBUG */
5685 # define sched_domain_debug(sd, cpu) do { } while (0)
5686 static inline bool sched_debug(void)
5687 {
5688 	return false;
5689 }
5690 #endif /* CONFIG_SCHED_DEBUG */
5691 
5692 static int sd_degenerate(struct sched_domain *sd)
5693 {
5694 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5695 		return 1;
5696 
5697 	/* Following flags need at least 2 groups */
5698 	if (sd->flags & (SD_LOAD_BALANCE |
5699 			 SD_BALANCE_NEWIDLE |
5700 			 SD_BALANCE_FORK |
5701 			 SD_BALANCE_EXEC |
5702 			 SD_SHARE_CPUCAPACITY |
5703 			 SD_SHARE_PKG_RESOURCES |
5704 			 SD_SHARE_POWERDOMAIN)) {
5705 		if (sd->groups != sd->groups->next)
5706 			return 0;
5707 	}
5708 
5709 	/* Following flags don't use groups */
5710 	if (sd->flags & (SD_WAKE_AFFINE))
5711 		return 0;
5712 
5713 	return 1;
5714 }
5715 
5716 static int
5717 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5718 {
5719 	unsigned long cflags = sd->flags, pflags = parent->flags;
5720 
5721 	if (sd_degenerate(parent))
5722 		return 1;
5723 
5724 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5725 		return 0;
5726 
5727 	/* Flags needing groups don't count if only 1 group in parent */
5728 	if (parent->groups == parent->groups->next) {
5729 		pflags &= ~(SD_LOAD_BALANCE |
5730 				SD_BALANCE_NEWIDLE |
5731 				SD_BALANCE_FORK |
5732 				SD_BALANCE_EXEC |
5733 				SD_SHARE_CPUCAPACITY |
5734 				SD_SHARE_PKG_RESOURCES |
5735 				SD_PREFER_SIBLING |
5736 				SD_SHARE_POWERDOMAIN);
5737 		if (nr_node_ids == 1)
5738 			pflags &= ~SD_SERIALIZE;
5739 	}
5740 	if (~cflags & pflags)
5741 		return 0;
5742 
5743 	return 1;
5744 }
5745 
5746 static void free_rootdomain(struct rcu_head *rcu)
5747 {
5748 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5749 
5750 	cpupri_cleanup(&rd->cpupri);
5751 	cpudl_cleanup(&rd->cpudl);
5752 	free_cpumask_var(rd->dlo_mask);
5753 	free_cpumask_var(rd->rto_mask);
5754 	free_cpumask_var(rd->online);
5755 	free_cpumask_var(rd->span);
5756 	kfree(rd);
5757 }
5758 
5759 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5760 {
5761 	struct root_domain *old_rd = NULL;
5762 	unsigned long flags;
5763 
5764 	raw_spin_lock_irqsave(&rq->lock, flags);
5765 
5766 	if (rq->rd) {
5767 		old_rd = rq->rd;
5768 
5769 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5770 			set_rq_offline(rq);
5771 
5772 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5773 
5774 		/*
5775 		 * If we dont want to free the old_rd yet then
5776 		 * set old_rd to NULL to skip the freeing later
5777 		 * in this function:
5778 		 */
5779 		if (!atomic_dec_and_test(&old_rd->refcount))
5780 			old_rd = NULL;
5781 	}
5782 
5783 	atomic_inc(&rd->refcount);
5784 	rq->rd = rd;
5785 
5786 	cpumask_set_cpu(rq->cpu, rd->span);
5787 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5788 		set_rq_online(rq);
5789 
5790 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5791 
5792 	if (old_rd)
5793 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5794 }
5795 
5796 static int init_rootdomain(struct root_domain *rd)
5797 {
5798 	memset(rd, 0, sizeof(*rd));
5799 
5800 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5801 		goto out;
5802 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5803 		goto free_span;
5804 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5805 		goto free_online;
5806 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5807 		goto free_dlo_mask;
5808 
5809 	init_dl_bw(&rd->dl_bw);
5810 	if (cpudl_init(&rd->cpudl) != 0)
5811 		goto free_dlo_mask;
5812 
5813 	if (cpupri_init(&rd->cpupri) != 0)
5814 		goto free_rto_mask;
5815 	return 0;
5816 
5817 free_rto_mask:
5818 	free_cpumask_var(rd->rto_mask);
5819 free_dlo_mask:
5820 	free_cpumask_var(rd->dlo_mask);
5821 free_online:
5822 	free_cpumask_var(rd->online);
5823 free_span:
5824 	free_cpumask_var(rd->span);
5825 out:
5826 	return -ENOMEM;
5827 }
5828 
5829 /*
5830  * By default the system creates a single root-domain with all cpus as
5831  * members (mimicking the global state we have today).
5832  */
5833 struct root_domain def_root_domain;
5834 
5835 static void init_defrootdomain(void)
5836 {
5837 	init_rootdomain(&def_root_domain);
5838 
5839 	atomic_set(&def_root_domain.refcount, 1);
5840 }
5841 
5842 static struct root_domain *alloc_rootdomain(void)
5843 {
5844 	struct root_domain *rd;
5845 
5846 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5847 	if (!rd)
5848 		return NULL;
5849 
5850 	if (init_rootdomain(rd) != 0) {
5851 		kfree(rd);
5852 		return NULL;
5853 	}
5854 
5855 	return rd;
5856 }
5857 
5858 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5859 {
5860 	struct sched_group *tmp, *first;
5861 
5862 	if (!sg)
5863 		return;
5864 
5865 	first = sg;
5866 	do {
5867 		tmp = sg->next;
5868 
5869 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5870 			kfree(sg->sgc);
5871 
5872 		kfree(sg);
5873 		sg = tmp;
5874 	} while (sg != first);
5875 }
5876 
5877 static void free_sched_domain(struct rcu_head *rcu)
5878 {
5879 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5880 
5881 	/*
5882 	 * If its an overlapping domain it has private groups, iterate and
5883 	 * nuke them all.
5884 	 */
5885 	if (sd->flags & SD_OVERLAP) {
5886 		free_sched_groups(sd->groups, 1);
5887 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5888 		kfree(sd->groups->sgc);
5889 		kfree(sd->groups);
5890 	}
5891 	kfree(sd);
5892 }
5893 
5894 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5895 {
5896 	call_rcu(&sd->rcu, free_sched_domain);
5897 }
5898 
5899 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5900 {
5901 	for (; sd; sd = sd->parent)
5902 		destroy_sched_domain(sd, cpu);
5903 }
5904 
5905 /*
5906  * Keep a special pointer to the highest sched_domain that has
5907  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5908  * allows us to avoid some pointer chasing select_idle_sibling().
5909  *
5910  * Also keep a unique ID per domain (we use the first cpu number in
5911  * the cpumask of the domain), this allows us to quickly tell if
5912  * two cpus are in the same cache domain, see cpus_share_cache().
5913  */
5914 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5915 DEFINE_PER_CPU(int, sd_llc_size);
5916 DEFINE_PER_CPU(int, sd_llc_id);
5917 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5918 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5919 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5920 
5921 static void update_top_cache_domain(int cpu)
5922 {
5923 	struct sched_domain *sd;
5924 	struct sched_domain *busy_sd = NULL;
5925 	int id = cpu;
5926 	int size = 1;
5927 
5928 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5929 	if (sd) {
5930 		id = cpumask_first(sched_domain_span(sd));
5931 		size = cpumask_weight(sched_domain_span(sd));
5932 		busy_sd = sd->parent; /* sd_busy */
5933 	}
5934 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5935 
5936 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5937 	per_cpu(sd_llc_size, cpu) = size;
5938 	per_cpu(sd_llc_id, cpu) = id;
5939 
5940 	sd = lowest_flag_domain(cpu, SD_NUMA);
5941 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5942 
5943 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5944 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5945 }
5946 
5947 /*
5948  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5949  * hold the hotplug lock.
5950  */
5951 static void
5952 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5953 {
5954 	struct rq *rq = cpu_rq(cpu);
5955 	struct sched_domain *tmp;
5956 
5957 	/* Remove the sched domains which do not contribute to scheduling. */
5958 	for (tmp = sd; tmp; ) {
5959 		struct sched_domain *parent = tmp->parent;
5960 		if (!parent)
5961 			break;
5962 
5963 		if (sd_parent_degenerate(tmp, parent)) {
5964 			tmp->parent = parent->parent;
5965 			if (parent->parent)
5966 				parent->parent->child = tmp;
5967 			/*
5968 			 * Transfer SD_PREFER_SIBLING down in case of a
5969 			 * degenerate parent; the spans match for this
5970 			 * so the property transfers.
5971 			 */
5972 			if (parent->flags & SD_PREFER_SIBLING)
5973 				tmp->flags |= SD_PREFER_SIBLING;
5974 			destroy_sched_domain(parent, cpu);
5975 		} else
5976 			tmp = tmp->parent;
5977 	}
5978 
5979 	if (sd && sd_degenerate(sd)) {
5980 		tmp = sd;
5981 		sd = sd->parent;
5982 		destroy_sched_domain(tmp, cpu);
5983 		if (sd)
5984 			sd->child = NULL;
5985 	}
5986 
5987 	sched_domain_debug(sd, cpu);
5988 
5989 	rq_attach_root(rq, rd);
5990 	tmp = rq->sd;
5991 	rcu_assign_pointer(rq->sd, sd);
5992 	destroy_sched_domains(tmp, cpu);
5993 
5994 	update_top_cache_domain(cpu);
5995 }
5996 
5997 /* Setup the mask of cpus configured for isolated domains */
5998 static int __init isolated_cpu_setup(char *str)
5999 {
6000 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6001 	cpulist_parse(str, cpu_isolated_map);
6002 	return 1;
6003 }
6004 
6005 __setup("isolcpus=", isolated_cpu_setup);
6006 
6007 struct s_data {
6008 	struct sched_domain ** __percpu sd;
6009 	struct root_domain	*rd;
6010 };
6011 
6012 enum s_alloc {
6013 	sa_rootdomain,
6014 	sa_sd,
6015 	sa_sd_storage,
6016 	sa_none,
6017 };
6018 
6019 /*
6020  * Build an iteration mask that can exclude certain CPUs from the upwards
6021  * domain traversal.
6022  *
6023  * Asymmetric node setups can result in situations where the domain tree is of
6024  * unequal depth, make sure to skip domains that already cover the entire
6025  * range.
6026  *
6027  * In that case build_sched_domains() will have terminated the iteration early
6028  * and our sibling sd spans will be empty. Domains should always include the
6029  * cpu they're built on, so check that.
6030  *
6031  */
6032 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6033 {
6034 	const struct cpumask *span = sched_domain_span(sd);
6035 	struct sd_data *sdd = sd->private;
6036 	struct sched_domain *sibling;
6037 	int i;
6038 
6039 	for_each_cpu(i, span) {
6040 		sibling = *per_cpu_ptr(sdd->sd, i);
6041 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6042 			continue;
6043 
6044 		cpumask_set_cpu(i, sched_group_mask(sg));
6045 	}
6046 }
6047 
6048 /*
6049  * Return the canonical balance cpu for this group, this is the first cpu
6050  * of this group that's also in the iteration mask.
6051  */
6052 int group_balance_cpu(struct sched_group *sg)
6053 {
6054 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6055 }
6056 
6057 static int
6058 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6059 {
6060 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6061 	const struct cpumask *span = sched_domain_span(sd);
6062 	struct cpumask *covered = sched_domains_tmpmask;
6063 	struct sd_data *sdd = sd->private;
6064 	struct sched_domain *sibling;
6065 	int i;
6066 
6067 	cpumask_clear(covered);
6068 
6069 	for_each_cpu(i, span) {
6070 		struct cpumask *sg_span;
6071 
6072 		if (cpumask_test_cpu(i, covered))
6073 			continue;
6074 
6075 		sibling = *per_cpu_ptr(sdd->sd, i);
6076 
6077 		/* See the comment near build_group_mask(). */
6078 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6079 			continue;
6080 
6081 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6082 				GFP_KERNEL, cpu_to_node(cpu));
6083 
6084 		if (!sg)
6085 			goto fail;
6086 
6087 		sg_span = sched_group_cpus(sg);
6088 		if (sibling->child)
6089 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6090 		else
6091 			cpumask_set_cpu(i, sg_span);
6092 
6093 		cpumask_or(covered, covered, sg_span);
6094 
6095 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6096 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6097 			build_group_mask(sd, sg);
6098 
6099 		/*
6100 		 * Initialize sgc->capacity such that even if we mess up the
6101 		 * domains and no possible iteration will get us here, we won't
6102 		 * die on a /0 trap.
6103 		 */
6104 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6105 
6106 		/*
6107 		 * Make sure the first group of this domain contains the
6108 		 * canonical balance cpu. Otherwise the sched_domain iteration
6109 		 * breaks. See update_sg_lb_stats().
6110 		 */
6111 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6112 		    group_balance_cpu(sg) == cpu)
6113 			groups = sg;
6114 
6115 		if (!first)
6116 			first = sg;
6117 		if (last)
6118 			last->next = sg;
6119 		last = sg;
6120 		last->next = first;
6121 	}
6122 	sd->groups = groups;
6123 
6124 	return 0;
6125 
6126 fail:
6127 	free_sched_groups(first, 0);
6128 
6129 	return -ENOMEM;
6130 }
6131 
6132 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6133 {
6134 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6135 	struct sched_domain *child = sd->child;
6136 
6137 	if (child)
6138 		cpu = cpumask_first(sched_domain_span(child));
6139 
6140 	if (sg) {
6141 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6142 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6143 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6144 	}
6145 
6146 	return cpu;
6147 }
6148 
6149 /*
6150  * build_sched_groups will build a circular linked list of the groups
6151  * covered by the given span, and will set each group's ->cpumask correctly,
6152  * and ->cpu_capacity to 0.
6153  *
6154  * Assumes the sched_domain tree is fully constructed
6155  */
6156 static int
6157 build_sched_groups(struct sched_domain *sd, int cpu)
6158 {
6159 	struct sched_group *first = NULL, *last = NULL;
6160 	struct sd_data *sdd = sd->private;
6161 	const struct cpumask *span = sched_domain_span(sd);
6162 	struct cpumask *covered;
6163 	int i;
6164 
6165 	get_group(cpu, sdd, &sd->groups);
6166 	atomic_inc(&sd->groups->ref);
6167 
6168 	if (cpu != cpumask_first(span))
6169 		return 0;
6170 
6171 	lockdep_assert_held(&sched_domains_mutex);
6172 	covered = sched_domains_tmpmask;
6173 
6174 	cpumask_clear(covered);
6175 
6176 	for_each_cpu(i, span) {
6177 		struct sched_group *sg;
6178 		int group, j;
6179 
6180 		if (cpumask_test_cpu(i, covered))
6181 			continue;
6182 
6183 		group = get_group(i, sdd, &sg);
6184 		cpumask_setall(sched_group_mask(sg));
6185 
6186 		for_each_cpu(j, span) {
6187 			if (get_group(j, sdd, NULL) != group)
6188 				continue;
6189 
6190 			cpumask_set_cpu(j, covered);
6191 			cpumask_set_cpu(j, sched_group_cpus(sg));
6192 		}
6193 
6194 		if (!first)
6195 			first = sg;
6196 		if (last)
6197 			last->next = sg;
6198 		last = sg;
6199 	}
6200 	last->next = first;
6201 
6202 	return 0;
6203 }
6204 
6205 /*
6206  * Initialize sched groups cpu_capacity.
6207  *
6208  * cpu_capacity indicates the capacity of sched group, which is used while
6209  * distributing the load between different sched groups in a sched domain.
6210  * Typically cpu_capacity for all the groups in a sched domain will be same
6211  * unless there are asymmetries in the topology. If there are asymmetries,
6212  * group having more cpu_capacity will pickup more load compared to the
6213  * group having less cpu_capacity.
6214  */
6215 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6216 {
6217 	struct sched_group *sg = sd->groups;
6218 
6219 	WARN_ON(!sg);
6220 
6221 	do {
6222 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6223 		sg = sg->next;
6224 	} while (sg != sd->groups);
6225 
6226 	if (cpu != group_balance_cpu(sg))
6227 		return;
6228 
6229 	update_group_capacity(sd, cpu);
6230 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6231 }
6232 
6233 /*
6234  * Initializers for schedule domains
6235  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6236  */
6237 
6238 static int default_relax_domain_level = -1;
6239 int sched_domain_level_max;
6240 
6241 static int __init setup_relax_domain_level(char *str)
6242 {
6243 	if (kstrtoint(str, 0, &default_relax_domain_level))
6244 		pr_warn("Unable to set relax_domain_level\n");
6245 
6246 	return 1;
6247 }
6248 __setup("relax_domain_level=", setup_relax_domain_level);
6249 
6250 static void set_domain_attribute(struct sched_domain *sd,
6251 				 struct sched_domain_attr *attr)
6252 {
6253 	int request;
6254 
6255 	if (!attr || attr->relax_domain_level < 0) {
6256 		if (default_relax_domain_level < 0)
6257 			return;
6258 		else
6259 			request = default_relax_domain_level;
6260 	} else
6261 		request = attr->relax_domain_level;
6262 	if (request < sd->level) {
6263 		/* turn off idle balance on this domain */
6264 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6265 	} else {
6266 		/* turn on idle balance on this domain */
6267 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6268 	}
6269 }
6270 
6271 static void __sdt_free(const struct cpumask *cpu_map);
6272 static int __sdt_alloc(const struct cpumask *cpu_map);
6273 
6274 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6275 				 const struct cpumask *cpu_map)
6276 {
6277 	switch (what) {
6278 	case sa_rootdomain:
6279 		if (!atomic_read(&d->rd->refcount))
6280 			free_rootdomain(&d->rd->rcu); /* fall through */
6281 	case sa_sd:
6282 		free_percpu(d->sd); /* fall through */
6283 	case sa_sd_storage:
6284 		__sdt_free(cpu_map); /* fall through */
6285 	case sa_none:
6286 		break;
6287 	}
6288 }
6289 
6290 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6291 						   const struct cpumask *cpu_map)
6292 {
6293 	memset(d, 0, sizeof(*d));
6294 
6295 	if (__sdt_alloc(cpu_map))
6296 		return sa_sd_storage;
6297 	d->sd = alloc_percpu(struct sched_domain *);
6298 	if (!d->sd)
6299 		return sa_sd_storage;
6300 	d->rd = alloc_rootdomain();
6301 	if (!d->rd)
6302 		return sa_sd;
6303 	return sa_rootdomain;
6304 }
6305 
6306 /*
6307  * NULL the sd_data elements we've used to build the sched_domain and
6308  * sched_group structure so that the subsequent __free_domain_allocs()
6309  * will not free the data we're using.
6310  */
6311 static void claim_allocations(int cpu, struct sched_domain *sd)
6312 {
6313 	struct sd_data *sdd = sd->private;
6314 
6315 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6316 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6317 
6318 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6319 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6320 
6321 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6322 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6323 }
6324 
6325 #ifdef CONFIG_NUMA
6326 static int sched_domains_numa_levels;
6327 enum numa_topology_type sched_numa_topology_type;
6328 static int *sched_domains_numa_distance;
6329 int sched_max_numa_distance;
6330 static struct cpumask ***sched_domains_numa_masks;
6331 static int sched_domains_curr_level;
6332 #endif
6333 
6334 /*
6335  * SD_flags allowed in topology descriptions.
6336  *
6337  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6338  * SD_SHARE_PKG_RESOURCES - describes shared caches
6339  * SD_NUMA                - describes NUMA topologies
6340  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6341  *
6342  * Odd one out:
6343  * SD_ASYM_PACKING        - describes SMT quirks
6344  */
6345 #define TOPOLOGY_SD_FLAGS		\
6346 	(SD_SHARE_CPUCAPACITY |		\
6347 	 SD_SHARE_PKG_RESOURCES |	\
6348 	 SD_NUMA |			\
6349 	 SD_ASYM_PACKING |		\
6350 	 SD_SHARE_POWERDOMAIN)
6351 
6352 static struct sched_domain *
6353 sd_init(struct sched_domain_topology_level *tl, int cpu)
6354 {
6355 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6356 	int sd_weight, sd_flags = 0;
6357 
6358 #ifdef CONFIG_NUMA
6359 	/*
6360 	 * Ugly hack to pass state to sd_numa_mask()...
6361 	 */
6362 	sched_domains_curr_level = tl->numa_level;
6363 #endif
6364 
6365 	sd_weight = cpumask_weight(tl->mask(cpu));
6366 
6367 	if (tl->sd_flags)
6368 		sd_flags = (*tl->sd_flags)();
6369 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6370 			"wrong sd_flags in topology description\n"))
6371 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6372 
6373 	*sd = (struct sched_domain){
6374 		.min_interval		= sd_weight,
6375 		.max_interval		= 2*sd_weight,
6376 		.busy_factor		= 32,
6377 		.imbalance_pct		= 125,
6378 
6379 		.cache_nice_tries	= 0,
6380 		.busy_idx		= 0,
6381 		.idle_idx		= 0,
6382 		.newidle_idx		= 0,
6383 		.wake_idx		= 0,
6384 		.forkexec_idx		= 0,
6385 
6386 		.flags			= 1*SD_LOAD_BALANCE
6387 					| 1*SD_BALANCE_NEWIDLE
6388 					| 1*SD_BALANCE_EXEC
6389 					| 1*SD_BALANCE_FORK
6390 					| 0*SD_BALANCE_WAKE
6391 					| 1*SD_WAKE_AFFINE
6392 					| 0*SD_SHARE_CPUCAPACITY
6393 					| 0*SD_SHARE_PKG_RESOURCES
6394 					| 0*SD_SERIALIZE
6395 					| 0*SD_PREFER_SIBLING
6396 					| 0*SD_NUMA
6397 					| sd_flags
6398 					,
6399 
6400 		.last_balance		= jiffies,
6401 		.balance_interval	= sd_weight,
6402 		.smt_gain		= 0,
6403 		.max_newidle_lb_cost	= 0,
6404 		.next_decay_max_lb_cost	= jiffies,
6405 #ifdef CONFIG_SCHED_DEBUG
6406 		.name			= tl->name,
6407 #endif
6408 	};
6409 
6410 	/*
6411 	 * Convert topological properties into behaviour.
6412 	 */
6413 
6414 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6415 		sd->flags |= SD_PREFER_SIBLING;
6416 		sd->imbalance_pct = 110;
6417 		sd->smt_gain = 1178; /* ~15% */
6418 
6419 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6420 		sd->imbalance_pct = 117;
6421 		sd->cache_nice_tries = 1;
6422 		sd->busy_idx = 2;
6423 
6424 #ifdef CONFIG_NUMA
6425 	} else if (sd->flags & SD_NUMA) {
6426 		sd->cache_nice_tries = 2;
6427 		sd->busy_idx = 3;
6428 		sd->idle_idx = 2;
6429 
6430 		sd->flags |= SD_SERIALIZE;
6431 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6432 			sd->flags &= ~(SD_BALANCE_EXEC |
6433 				       SD_BALANCE_FORK |
6434 				       SD_WAKE_AFFINE);
6435 		}
6436 
6437 #endif
6438 	} else {
6439 		sd->flags |= SD_PREFER_SIBLING;
6440 		sd->cache_nice_tries = 1;
6441 		sd->busy_idx = 2;
6442 		sd->idle_idx = 1;
6443 	}
6444 
6445 	sd->private = &tl->data;
6446 
6447 	return sd;
6448 }
6449 
6450 /*
6451  * Topology list, bottom-up.
6452  */
6453 static struct sched_domain_topology_level default_topology[] = {
6454 #ifdef CONFIG_SCHED_SMT
6455 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6456 #endif
6457 #ifdef CONFIG_SCHED_MC
6458 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6459 #endif
6460 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6461 	{ NULL, },
6462 };
6463 
6464 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6465 
6466 #define for_each_sd_topology(tl)			\
6467 	for (tl = sched_domain_topology; tl->mask; tl++)
6468 
6469 void set_sched_topology(struct sched_domain_topology_level *tl)
6470 {
6471 	sched_domain_topology = tl;
6472 }
6473 
6474 #ifdef CONFIG_NUMA
6475 
6476 static const struct cpumask *sd_numa_mask(int cpu)
6477 {
6478 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6479 }
6480 
6481 static void sched_numa_warn(const char *str)
6482 {
6483 	static int done = false;
6484 	int i,j;
6485 
6486 	if (done)
6487 		return;
6488 
6489 	done = true;
6490 
6491 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6492 
6493 	for (i = 0; i < nr_node_ids; i++) {
6494 		printk(KERN_WARNING "  ");
6495 		for (j = 0; j < nr_node_ids; j++)
6496 			printk(KERN_CONT "%02d ", node_distance(i,j));
6497 		printk(KERN_CONT "\n");
6498 	}
6499 	printk(KERN_WARNING "\n");
6500 }
6501 
6502 bool find_numa_distance(int distance)
6503 {
6504 	int i;
6505 
6506 	if (distance == node_distance(0, 0))
6507 		return true;
6508 
6509 	for (i = 0; i < sched_domains_numa_levels; i++) {
6510 		if (sched_domains_numa_distance[i] == distance)
6511 			return true;
6512 	}
6513 
6514 	return false;
6515 }
6516 
6517 /*
6518  * A system can have three types of NUMA topology:
6519  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6520  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6521  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6522  *
6523  * The difference between a glueless mesh topology and a backplane
6524  * topology lies in whether communication between not directly
6525  * connected nodes goes through intermediary nodes (where programs
6526  * could run), or through backplane controllers. This affects
6527  * placement of programs.
6528  *
6529  * The type of topology can be discerned with the following tests:
6530  * - If the maximum distance between any nodes is 1 hop, the system
6531  *   is directly connected.
6532  * - If for two nodes A and B, located N > 1 hops away from each other,
6533  *   there is an intermediary node C, which is < N hops away from both
6534  *   nodes A and B, the system is a glueless mesh.
6535  */
6536 static void init_numa_topology_type(void)
6537 {
6538 	int a, b, c, n;
6539 
6540 	n = sched_max_numa_distance;
6541 
6542 	if (sched_domains_numa_levels <= 1) {
6543 		sched_numa_topology_type = NUMA_DIRECT;
6544 		return;
6545 	}
6546 
6547 	for_each_online_node(a) {
6548 		for_each_online_node(b) {
6549 			/* Find two nodes furthest removed from each other. */
6550 			if (node_distance(a, b) < n)
6551 				continue;
6552 
6553 			/* Is there an intermediary node between a and b? */
6554 			for_each_online_node(c) {
6555 				if (node_distance(a, c) < n &&
6556 				    node_distance(b, c) < n) {
6557 					sched_numa_topology_type =
6558 							NUMA_GLUELESS_MESH;
6559 					return;
6560 				}
6561 			}
6562 
6563 			sched_numa_topology_type = NUMA_BACKPLANE;
6564 			return;
6565 		}
6566 	}
6567 }
6568 
6569 static void sched_init_numa(void)
6570 {
6571 	int next_distance, curr_distance = node_distance(0, 0);
6572 	struct sched_domain_topology_level *tl;
6573 	int level = 0;
6574 	int i, j, k;
6575 
6576 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6577 	if (!sched_domains_numa_distance)
6578 		return;
6579 
6580 	/*
6581 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6582 	 * unique distances in the node_distance() table.
6583 	 *
6584 	 * Assumes node_distance(0,j) includes all distances in
6585 	 * node_distance(i,j) in order to avoid cubic time.
6586 	 */
6587 	next_distance = curr_distance;
6588 	for (i = 0; i < nr_node_ids; i++) {
6589 		for (j = 0; j < nr_node_ids; j++) {
6590 			for (k = 0; k < nr_node_ids; k++) {
6591 				int distance = node_distance(i, k);
6592 
6593 				if (distance > curr_distance &&
6594 				    (distance < next_distance ||
6595 				     next_distance == curr_distance))
6596 					next_distance = distance;
6597 
6598 				/*
6599 				 * While not a strong assumption it would be nice to know
6600 				 * about cases where if node A is connected to B, B is not
6601 				 * equally connected to A.
6602 				 */
6603 				if (sched_debug() && node_distance(k, i) != distance)
6604 					sched_numa_warn("Node-distance not symmetric");
6605 
6606 				if (sched_debug() && i && !find_numa_distance(distance))
6607 					sched_numa_warn("Node-0 not representative");
6608 			}
6609 			if (next_distance != curr_distance) {
6610 				sched_domains_numa_distance[level++] = next_distance;
6611 				sched_domains_numa_levels = level;
6612 				curr_distance = next_distance;
6613 			} else break;
6614 		}
6615 
6616 		/*
6617 		 * In case of sched_debug() we verify the above assumption.
6618 		 */
6619 		if (!sched_debug())
6620 			break;
6621 	}
6622 
6623 	if (!level)
6624 		return;
6625 
6626 	/*
6627 	 * 'level' contains the number of unique distances, excluding the
6628 	 * identity distance node_distance(i,i).
6629 	 *
6630 	 * The sched_domains_numa_distance[] array includes the actual distance
6631 	 * numbers.
6632 	 */
6633 
6634 	/*
6635 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6636 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6637 	 * the array will contain less then 'level' members. This could be
6638 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6639 	 * in other functions.
6640 	 *
6641 	 * We reset it to 'level' at the end of this function.
6642 	 */
6643 	sched_domains_numa_levels = 0;
6644 
6645 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6646 	if (!sched_domains_numa_masks)
6647 		return;
6648 
6649 	/*
6650 	 * Now for each level, construct a mask per node which contains all
6651 	 * cpus of nodes that are that many hops away from us.
6652 	 */
6653 	for (i = 0; i < level; i++) {
6654 		sched_domains_numa_masks[i] =
6655 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6656 		if (!sched_domains_numa_masks[i])
6657 			return;
6658 
6659 		for (j = 0; j < nr_node_ids; j++) {
6660 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6661 			if (!mask)
6662 				return;
6663 
6664 			sched_domains_numa_masks[i][j] = mask;
6665 
6666 			for (k = 0; k < nr_node_ids; k++) {
6667 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6668 					continue;
6669 
6670 				cpumask_or(mask, mask, cpumask_of_node(k));
6671 			}
6672 		}
6673 	}
6674 
6675 	/* Compute default topology size */
6676 	for (i = 0; sched_domain_topology[i].mask; i++);
6677 
6678 	tl = kzalloc((i + level + 1) *
6679 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6680 	if (!tl)
6681 		return;
6682 
6683 	/*
6684 	 * Copy the default topology bits..
6685 	 */
6686 	for (i = 0; sched_domain_topology[i].mask; i++)
6687 		tl[i] = sched_domain_topology[i];
6688 
6689 	/*
6690 	 * .. and append 'j' levels of NUMA goodness.
6691 	 */
6692 	for (j = 0; j < level; i++, j++) {
6693 		tl[i] = (struct sched_domain_topology_level){
6694 			.mask = sd_numa_mask,
6695 			.sd_flags = cpu_numa_flags,
6696 			.flags = SDTL_OVERLAP,
6697 			.numa_level = j,
6698 			SD_INIT_NAME(NUMA)
6699 		};
6700 	}
6701 
6702 	sched_domain_topology = tl;
6703 
6704 	sched_domains_numa_levels = level;
6705 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6706 
6707 	init_numa_topology_type();
6708 }
6709 
6710 static void sched_domains_numa_masks_set(int cpu)
6711 {
6712 	int i, j;
6713 	int node = cpu_to_node(cpu);
6714 
6715 	for (i = 0; i < sched_domains_numa_levels; i++) {
6716 		for (j = 0; j < nr_node_ids; j++) {
6717 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6718 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6719 		}
6720 	}
6721 }
6722 
6723 static void sched_domains_numa_masks_clear(int cpu)
6724 {
6725 	int i, j;
6726 	for (i = 0; i < sched_domains_numa_levels; i++) {
6727 		for (j = 0; j < nr_node_ids; j++)
6728 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6729 	}
6730 }
6731 
6732 /*
6733  * Update sched_domains_numa_masks[level][node] array when new cpus
6734  * are onlined.
6735  */
6736 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6737 					   unsigned long action,
6738 					   void *hcpu)
6739 {
6740 	int cpu = (long)hcpu;
6741 
6742 	switch (action & ~CPU_TASKS_FROZEN) {
6743 	case CPU_ONLINE:
6744 		sched_domains_numa_masks_set(cpu);
6745 		break;
6746 
6747 	case CPU_DEAD:
6748 		sched_domains_numa_masks_clear(cpu);
6749 		break;
6750 
6751 	default:
6752 		return NOTIFY_DONE;
6753 	}
6754 
6755 	return NOTIFY_OK;
6756 }
6757 #else
6758 static inline void sched_init_numa(void)
6759 {
6760 }
6761 
6762 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6763 					   unsigned long action,
6764 					   void *hcpu)
6765 {
6766 	return 0;
6767 }
6768 #endif /* CONFIG_NUMA */
6769 
6770 static int __sdt_alloc(const struct cpumask *cpu_map)
6771 {
6772 	struct sched_domain_topology_level *tl;
6773 	int j;
6774 
6775 	for_each_sd_topology(tl) {
6776 		struct sd_data *sdd = &tl->data;
6777 
6778 		sdd->sd = alloc_percpu(struct sched_domain *);
6779 		if (!sdd->sd)
6780 			return -ENOMEM;
6781 
6782 		sdd->sg = alloc_percpu(struct sched_group *);
6783 		if (!sdd->sg)
6784 			return -ENOMEM;
6785 
6786 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6787 		if (!sdd->sgc)
6788 			return -ENOMEM;
6789 
6790 		for_each_cpu(j, cpu_map) {
6791 			struct sched_domain *sd;
6792 			struct sched_group *sg;
6793 			struct sched_group_capacity *sgc;
6794 
6795 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6796 					GFP_KERNEL, cpu_to_node(j));
6797 			if (!sd)
6798 				return -ENOMEM;
6799 
6800 			*per_cpu_ptr(sdd->sd, j) = sd;
6801 
6802 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6803 					GFP_KERNEL, cpu_to_node(j));
6804 			if (!sg)
6805 				return -ENOMEM;
6806 
6807 			sg->next = sg;
6808 
6809 			*per_cpu_ptr(sdd->sg, j) = sg;
6810 
6811 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6812 					GFP_KERNEL, cpu_to_node(j));
6813 			if (!sgc)
6814 				return -ENOMEM;
6815 
6816 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6817 		}
6818 	}
6819 
6820 	return 0;
6821 }
6822 
6823 static void __sdt_free(const struct cpumask *cpu_map)
6824 {
6825 	struct sched_domain_topology_level *tl;
6826 	int j;
6827 
6828 	for_each_sd_topology(tl) {
6829 		struct sd_data *sdd = &tl->data;
6830 
6831 		for_each_cpu(j, cpu_map) {
6832 			struct sched_domain *sd;
6833 
6834 			if (sdd->sd) {
6835 				sd = *per_cpu_ptr(sdd->sd, j);
6836 				if (sd && (sd->flags & SD_OVERLAP))
6837 					free_sched_groups(sd->groups, 0);
6838 				kfree(*per_cpu_ptr(sdd->sd, j));
6839 			}
6840 
6841 			if (sdd->sg)
6842 				kfree(*per_cpu_ptr(sdd->sg, j));
6843 			if (sdd->sgc)
6844 				kfree(*per_cpu_ptr(sdd->sgc, j));
6845 		}
6846 		free_percpu(sdd->sd);
6847 		sdd->sd = NULL;
6848 		free_percpu(sdd->sg);
6849 		sdd->sg = NULL;
6850 		free_percpu(sdd->sgc);
6851 		sdd->sgc = NULL;
6852 	}
6853 }
6854 
6855 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6856 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6857 		struct sched_domain *child, int cpu)
6858 {
6859 	struct sched_domain *sd = sd_init(tl, cpu);
6860 	if (!sd)
6861 		return child;
6862 
6863 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6864 	if (child) {
6865 		sd->level = child->level + 1;
6866 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6867 		child->parent = sd;
6868 		sd->child = child;
6869 
6870 		if (!cpumask_subset(sched_domain_span(child),
6871 				    sched_domain_span(sd))) {
6872 			pr_err("BUG: arch topology borken\n");
6873 #ifdef CONFIG_SCHED_DEBUG
6874 			pr_err("     the %s domain not a subset of the %s domain\n",
6875 					child->name, sd->name);
6876 #endif
6877 			/* Fixup, ensure @sd has at least @child cpus. */
6878 			cpumask_or(sched_domain_span(sd),
6879 				   sched_domain_span(sd),
6880 				   sched_domain_span(child));
6881 		}
6882 
6883 	}
6884 	set_domain_attribute(sd, attr);
6885 
6886 	return sd;
6887 }
6888 
6889 /*
6890  * Build sched domains for a given set of cpus and attach the sched domains
6891  * to the individual cpus
6892  */
6893 static int build_sched_domains(const struct cpumask *cpu_map,
6894 			       struct sched_domain_attr *attr)
6895 {
6896 	enum s_alloc alloc_state;
6897 	struct sched_domain *sd;
6898 	struct s_data d;
6899 	int i, ret = -ENOMEM;
6900 
6901 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6902 	if (alloc_state != sa_rootdomain)
6903 		goto error;
6904 
6905 	/* Set up domains for cpus specified by the cpu_map. */
6906 	for_each_cpu(i, cpu_map) {
6907 		struct sched_domain_topology_level *tl;
6908 
6909 		sd = NULL;
6910 		for_each_sd_topology(tl) {
6911 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6912 			if (tl == sched_domain_topology)
6913 				*per_cpu_ptr(d.sd, i) = sd;
6914 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6915 				sd->flags |= SD_OVERLAP;
6916 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6917 				break;
6918 		}
6919 	}
6920 
6921 	/* Build the groups for the domains */
6922 	for_each_cpu(i, cpu_map) {
6923 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6924 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6925 			if (sd->flags & SD_OVERLAP) {
6926 				if (build_overlap_sched_groups(sd, i))
6927 					goto error;
6928 			} else {
6929 				if (build_sched_groups(sd, i))
6930 					goto error;
6931 			}
6932 		}
6933 	}
6934 
6935 	/* Calculate CPU capacity for physical packages and nodes */
6936 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6937 		if (!cpumask_test_cpu(i, cpu_map))
6938 			continue;
6939 
6940 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6941 			claim_allocations(i, sd);
6942 			init_sched_groups_capacity(i, sd);
6943 		}
6944 	}
6945 
6946 	/* Attach the domains */
6947 	rcu_read_lock();
6948 	for_each_cpu(i, cpu_map) {
6949 		sd = *per_cpu_ptr(d.sd, i);
6950 		cpu_attach_domain(sd, d.rd, i);
6951 	}
6952 	rcu_read_unlock();
6953 
6954 	ret = 0;
6955 error:
6956 	__free_domain_allocs(&d, alloc_state, cpu_map);
6957 	return ret;
6958 }
6959 
6960 static cpumask_var_t *doms_cur;	/* current sched domains */
6961 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6962 static struct sched_domain_attr *dattr_cur;
6963 				/* attribues of custom domains in 'doms_cur' */
6964 
6965 /*
6966  * Special case: If a kmalloc of a doms_cur partition (array of
6967  * cpumask) fails, then fallback to a single sched domain,
6968  * as determined by the single cpumask fallback_doms.
6969  */
6970 static cpumask_var_t fallback_doms;
6971 
6972 /*
6973  * arch_update_cpu_topology lets virtualized architectures update the
6974  * cpu core maps. It is supposed to return 1 if the topology changed
6975  * or 0 if it stayed the same.
6976  */
6977 int __weak arch_update_cpu_topology(void)
6978 {
6979 	return 0;
6980 }
6981 
6982 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6983 {
6984 	int i;
6985 	cpumask_var_t *doms;
6986 
6987 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6988 	if (!doms)
6989 		return NULL;
6990 	for (i = 0; i < ndoms; i++) {
6991 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6992 			free_sched_domains(doms, i);
6993 			return NULL;
6994 		}
6995 	}
6996 	return doms;
6997 }
6998 
6999 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7000 {
7001 	unsigned int i;
7002 	for (i = 0; i < ndoms; i++)
7003 		free_cpumask_var(doms[i]);
7004 	kfree(doms);
7005 }
7006 
7007 /*
7008  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7009  * For now this just excludes isolated cpus, but could be used to
7010  * exclude other special cases in the future.
7011  */
7012 static int init_sched_domains(const struct cpumask *cpu_map)
7013 {
7014 	int err;
7015 
7016 	arch_update_cpu_topology();
7017 	ndoms_cur = 1;
7018 	doms_cur = alloc_sched_domains(ndoms_cur);
7019 	if (!doms_cur)
7020 		doms_cur = &fallback_doms;
7021 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7022 	err = build_sched_domains(doms_cur[0], NULL);
7023 	register_sched_domain_sysctl();
7024 
7025 	return err;
7026 }
7027 
7028 /*
7029  * Detach sched domains from a group of cpus specified in cpu_map
7030  * These cpus will now be attached to the NULL domain
7031  */
7032 static void detach_destroy_domains(const struct cpumask *cpu_map)
7033 {
7034 	int i;
7035 
7036 	rcu_read_lock();
7037 	for_each_cpu(i, cpu_map)
7038 		cpu_attach_domain(NULL, &def_root_domain, i);
7039 	rcu_read_unlock();
7040 }
7041 
7042 /* handle null as "default" */
7043 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7044 			struct sched_domain_attr *new, int idx_new)
7045 {
7046 	struct sched_domain_attr tmp;
7047 
7048 	/* fast path */
7049 	if (!new && !cur)
7050 		return 1;
7051 
7052 	tmp = SD_ATTR_INIT;
7053 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7054 			new ? (new + idx_new) : &tmp,
7055 			sizeof(struct sched_domain_attr));
7056 }
7057 
7058 /*
7059  * Partition sched domains as specified by the 'ndoms_new'
7060  * cpumasks in the array doms_new[] of cpumasks. This compares
7061  * doms_new[] to the current sched domain partitioning, doms_cur[].
7062  * It destroys each deleted domain and builds each new domain.
7063  *
7064  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7065  * The masks don't intersect (don't overlap.) We should setup one
7066  * sched domain for each mask. CPUs not in any of the cpumasks will
7067  * not be load balanced. If the same cpumask appears both in the
7068  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7069  * it as it is.
7070  *
7071  * The passed in 'doms_new' should be allocated using
7072  * alloc_sched_domains.  This routine takes ownership of it and will
7073  * free_sched_domains it when done with it. If the caller failed the
7074  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7075  * and partition_sched_domains() will fallback to the single partition
7076  * 'fallback_doms', it also forces the domains to be rebuilt.
7077  *
7078  * If doms_new == NULL it will be replaced with cpu_online_mask.
7079  * ndoms_new == 0 is a special case for destroying existing domains,
7080  * and it will not create the default domain.
7081  *
7082  * Call with hotplug lock held
7083  */
7084 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7085 			     struct sched_domain_attr *dattr_new)
7086 {
7087 	int i, j, n;
7088 	int new_topology;
7089 
7090 	mutex_lock(&sched_domains_mutex);
7091 
7092 	/* always unregister in case we don't destroy any domains */
7093 	unregister_sched_domain_sysctl();
7094 
7095 	/* Let architecture update cpu core mappings. */
7096 	new_topology = arch_update_cpu_topology();
7097 
7098 	n = doms_new ? ndoms_new : 0;
7099 
7100 	/* Destroy deleted domains */
7101 	for (i = 0; i < ndoms_cur; i++) {
7102 		for (j = 0; j < n && !new_topology; j++) {
7103 			if (cpumask_equal(doms_cur[i], doms_new[j])
7104 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7105 				goto match1;
7106 		}
7107 		/* no match - a current sched domain not in new doms_new[] */
7108 		detach_destroy_domains(doms_cur[i]);
7109 match1:
7110 		;
7111 	}
7112 
7113 	n = ndoms_cur;
7114 	if (doms_new == NULL) {
7115 		n = 0;
7116 		doms_new = &fallback_doms;
7117 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7118 		WARN_ON_ONCE(dattr_new);
7119 	}
7120 
7121 	/* Build new domains */
7122 	for (i = 0; i < ndoms_new; i++) {
7123 		for (j = 0; j < n && !new_topology; j++) {
7124 			if (cpumask_equal(doms_new[i], doms_cur[j])
7125 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7126 				goto match2;
7127 		}
7128 		/* no match - add a new doms_new */
7129 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7130 match2:
7131 		;
7132 	}
7133 
7134 	/* Remember the new sched domains */
7135 	if (doms_cur != &fallback_doms)
7136 		free_sched_domains(doms_cur, ndoms_cur);
7137 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7138 	doms_cur = doms_new;
7139 	dattr_cur = dattr_new;
7140 	ndoms_cur = ndoms_new;
7141 
7142 	register_sched_domain_sysctl();
7143 
7144 	mutex_unlock(&sched_domains_mutex);
7145 }
7146 
7147 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7148 
7149 /*
7150  * Update cpusets according to cpu_active mask.  If cpusets are
7151  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7152  * around partition_sched_domains().
7153  *
7154  * If we come here as part of a suspend/resume, don't touch cpusets because we
7155  * want to restore it back to its original state upon resume anyway.
7156  */
7157 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7158 			     void *hcpu)
7159 {
7160 	switch (action) {
7161 	case CPU_ONLINE_FROZEN:
7162 	case CPU_DOWN_FAILED_FROZEN:
7163 
7164 		/*
7165 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7166 		 * resume sequence. As long as this is not the last online
7167 		 * operation in the resume sequence, just build a single sched
7168 		 * domain, ignoring cpusets.
7169 		 */
7170 		num_cpus_frozen--;
7171 		if (likely(num_cpus_frozen)) {
7172 			partition_sched_domains(1, NULL, NULL);
7173 			break;
7174 		}
7175 
7176 		/*
7177 		 * This is the last CPU online operation. So fall through and
7178 		 * restore the original sched domains by considering the
7179 		 * cpuset configurations.
7180 		 */
7181 
7182 	case CPU_ONLINE:
7183 		cpuset_update_active_cpus(true);
7184 		break;
7185 	default:
7186 		return NOTIFY_DONE;
7187 	}
7188 	return NOTIFY_OK;
7189 }
7190 
7191 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7192 			       void *hcpu)
7193 {
7194 	unsigned long flags;
7195 	long cpu = (long)hcpu;
7196 	struct dl_bw *dl_b;
7197 	bool overflow;
7198 	int cpus;
7199 
7200 	switch (action) {
7201 	case CPU_DOWN_PREPARE:
7202 		rcu_read_lock_sched();
7203 		dl_b = dl_bw_of(cpu);
7204 
7205 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7206 		cpus = dl_bw_cpus(cpu);
7207 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7208 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7209 
7210 		rcu_read_unlock_sched();
7211 
7212 		if (overflow)
7213 			return notifier_from_errno(-EBUSY);
7214 		cpuset_update_active_cpus(false);
7215 		break;
7216 	case CPU_DOWN_PREPARE_FROZEN:
7217 		num_cpus_frozen++;
7218 		partition_sched_domains(1, NULL, NULL);
7219 		break;
7220 	default:
7221 		return NOTIFY_DONE;
7222 	}
7223 	return NOTIFY_OK;
7224 }
7225 
7226 void __init sched_init_smp(void)
7227 {
7228 	cpumask_var_t non_isolated_cpus;
7229 
7230 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7231 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7232 
7233 	/* nohz_full won't take effect without isolating the cpus. */
7234 	tick_nohz_full_add_cpus_to(cpu_isolated_map);
7235 
7236 	sched_init_numa();
7237 
7238 	/*
7239 	 * There's no userspace yet to cause hotplug operations; hence all the
7240 	 * cpu masks are stable and all blatant races in the below code cannot
7241 	 * happen.
7242 	 */
7243 	mutex_lock(&sched_domains_mutex);
7244 	init_sched_domains(cpu_active_mask);
7245 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7246 	if (cpumask_empty(non_isolated_cpus))
7247 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7248 	mutex_unlock(&sched_domains_mutex);
7249 
7250 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7251 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7252 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7253 
7254 	init_hrtick();
7255 
7256 	/* Move init over to a non-isolated CPU */
7257 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7258 		BUG();
7259 	sched_init_granularity();
7260 	free_cpumask_var(non_isolated_cpus);
7261 
7262 	init_sched_rt_class();
7263 	init_sched_dl_class();
7264 }
7265 #else
7266 void __init sched_init_smp(void)
7267 {
7268 	sched_init_granularity();
7269 }
7270 #endif /* CONFIG_SMP */
7271 
7272 int in_sched_functions(unsigned long addr)
7273 {
7274 	return in_lock_functions(addr) ||
7275 		(addr >= (unsigned long)__sched_text_start
7276 		&& addr < (unsigned long)__sched_text_end);
7277 }
7278 
7279 #ifdef CONFIG_CGROUP_SCHED
7280 /*
7281  * Default task group.
7282  * Every task in system belongs to this group at bootup.
7283  */
7284 struct task_group root_task_group;
7285 LIST_HEAD(task_groups);
7286 #endif
7287 
7288 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7289 
7290 void __init sched_init(void)
7291 {
7292 	int i, j;
7293 	unsigned long alloc_size = 0, ptr;
7294 
7295 #ifdef CONFIG_FAIR_GROUP_SCHED
7296 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7297 #endif
7298 #ifdef CONFIG_RT_GROUP_SCHED
7299 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7300 #endif
7301 	if (alloc_size) {
7302 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7303 
7304 #ifdef CONFIG_FAIR_GROUP_SCHED
7305 		root_task_group.se = (struct sched_entity **)ptr;
7306 		ptr += nr_cpu_ids * sizeof(void **);
7307 
7308 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7309 		ptr += nr_cpu_ids * sizeof(void **);
7310 
7311 #endif /* CONFIG_FAIR_GROUP_SCHED */
7312 #ifdef CONFIG_RT_GROUP_SCHED
7313 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7314 		ptr += nr_cpu_ids * sizeof(void **);
7315 
7316 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7317 		ptr += nr_cpu_ids * sizeof(void **);
7318 
7319 #endif /* CONFIG_RT_GROUP_SCHED */
7320 	}
7321 #ifdef CONFIG_CPUMASK_OFFSTACK
7322 	for_each_possible_cpu(i) {
7323 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7324 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7325 	}
7326 #endif /* CONFIG_CPUMASK_OFFSTACK */
7327 
7328 	init_rt_bandwidth(&def_rt_bandwidth,
7329 			global_rt_period(), global_rt_runtime());
7330 	init_dl_bandwidth(&def_dl_bandwidth,
7331 			global_rt_period(), global_rt_runtime());
7332 
7333 #ifdef CONFIG_SMP
7334 	init_defrootdomain();
7335 #endif
7336 
7337 #ifdef CONFIG_RT_GROUP_SCHED
7338 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7339 			global_rt_period(), global_rt_runtime());
7340 #endif /* CONFIG_RT_GROUP_SCHED */
7341 
7342 #ifdef CONFIG_CGROUP_SCHED
7343 	list_add(&root_task_group.list, &task_groups);
7344 	INIT_LIST_HEAD(&root_task_group.children);
7345 	INIT_LIST_HEAD(&root_task_group.siblings);
7346 	autogroup_init(&init_task);
7347 
7348 #endif /* CONFIG_CGROUP_SCHED */
7349 
7350 	for_each_possible_cpu(i) {
7351 		struct rq *rq;
7352 
7353 		rq = cpu_rq(i);
7354 		raw_spin_lock_init(&rq->lock);
7355 		rq->nr_running = 0;
7356 		rq->calc_load_active = 0;
7357 		rq->calc_load_update = jiffies + LOAD_FREQ;
7358 		init_cfs_rq(&rq->cfs);
7359 		init_rt_rq(&rq->rt);
7360 		init_dl_rq(&rq->dl);
7361 #ifdef CONFIG_FAIR_GROUP_SCHED
7362 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7363 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7364 		/*
7365 		 * How much cpu bandwidth does root_task_group get?
7366 		 *
7367 		 * In case of task-groups formed thr' the cgroup filesystem, it
7368 		 * gets 100% of the cpu resources in the system. This overall
7369 		 * system cpu resource is divided among the tasks of
7370 		 * root_task_group and its child task-groups in a fair manner,
7371 		 * based on each entity's (task or task-group's) weight
7372 		 * (se->load.weight).
7373 		 *
7374 		 * In other words, if root_task_group has 10 tasks of weight
7375 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7376 		 * then A0's share of the cpu resource is:
7377 		 *
7378 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7379 		 *
7380 		 * We achieve this by letting root_task_group's tasks sit
7381 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7382 		 */
7383 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7384 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7385 #endif /* CONFIG_FAIR_GROUP_SCHED */
7386 
7387 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7388 #ifdef CONFIG_RT_GROUP_SCHED
7389 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7390 #endif
7391 
7392 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7393 			rq->cpu_load[j] = 0;
7394 
7395 		rq->last_load_update_tick = jiffies;
7396 
7397 #ifdef CONFIG_SMP
7398 		rq->sd = NULL;
7399 		rq->rd = NULL;
7400 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7401 		rq->balance_callback = NULL;
7402 		rq->active_balance = 0;
7403 		rq->next_balance = jiffies;
7404 		rq->push_cpu = 0;
7405 		rq->cpu = i;
7406 		rq->online = 0;
7407 		rq->idle_stamp = 0;
7408 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7409 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7410 
7411 		INIT_LIST_HEAD(&rq->cfs_tasks);
7412 
7413 		rq_attach_root(rq, &def_root_domain);
7414 #ifdef CONFIG_NO_HZ_COMMON
7415 		rq->nohz_flags = 0;
7416 #endif
7417 #ifdef CONFIG_NO_HZ_FULL
7418 		rq->last_sched_tick = 0;
7419 #endif
7420 #endif
7421 		init_rq_hrtick(rq);
7422 		atomic_set(&rq->nr_iowait, 0);
7423 	}
7424 
7425 	set_load_weight(&init_task);
7426 
7427 #ifdef CONFIG_PREEMPT_NOTIFIERS
7428 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7429 #endif
7430 
7431 	/*
7432 	 * The boot idle thread does lazy MMU switching as well:
7433 	 */
7434 	atomic_inc(&init_mm.mm_count);
7435 	enter_lazy_tlb(&init_mm, current);
7436 
7437 	/*
7438 	 * During early bootup we pretend to be a normal task:
7439 	 */
7440 	current->sched_class = &fair_sched_class;
7441 
7442 	/*
7443 	 * Make us the idle thread. Technically, schedule() should not be
7444 	 * called from this thread, however somewhere below it might be,
7445 	 * but because we are the idle thread, we just pick up running again
7446 	 * when this runqueue becomes "idle".
7447 	 */
7448 	init_idle(current, smp_processor_id());
7449 
7450 	calc_load_update = jiffies + LOAD_FREQ;
7451 
7452 #ifdef CONFIG_SMP
7453 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7454 	/* May be allocated at isolcpus cmdline parse time */
7455 	if (cpu_isolated_map == NULL)
7456 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7457 	idle_thread_set_boot_cpu();
7458 	set_cpu_rq_start_time();
7459 #endif
7460 	init_sched_fair_class();
7461 
7462 	scheduler_running = 1;
7463 }
7464 
7465 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7466 static inline int preempt_count_equals(int preempt_offset)
7467 {
7468 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7469 
7470 	return (nested == preempt_offset);
7471 }
7472 
7473 void __might_sleep(const char *file, int line, int preempt_offset)
7474 {
7475 	/*
7476 	 * Blocking primitives will set (and therefore destroy) current->state,
7477 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7478 	 * otherwise we will destroy state.
7479 	 */
7480 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7481 			"do not call blocking ops when !TASK_RUNNING; "
7482 			"state=%lx set at [<%p>] %pS\n",
7483 			current->state,
7484 			(void *)current->task_state_change,
7485 			(void *)current->task_state_change);
7486 
7487 	___might_sleep(file, line, preempt_offset);
7488 }
7489 EXPORT_SYMBOL(__might_sleep);
7490 
7491 void ___might_sleep(const char *file, int line, int preempt_offset)
7492 {
7493 	static unsigned long prev_jiffy;	/* ratelimiting */
7494 
7495 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7496 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7497 	     !is_idle_task(current)) ||
7498 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7499 		return;
7500 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7501 		return;
7502 	prev_jiffy = jiffies;
7503 
7504 	printk(KERN_ERR
7505 		"BUG: sleeping function called from invalid context at %s:%d\n",
7506 			file, line);
7507 	printk(KERN_ERR
7508 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7509 			in_atomic(), irqs_disabled(),
7510 			current->pid, current->comm);
7511 
7512 	if (task_stack_end_corrupted(current))
7513 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7514 
7515 	debug_show_held_locks(current);
7516 	if (irqs_disabled())
7517 		print_irqtrace_events(current);
7518 #ifdef CONFIG_DEBUG_PREEMPT
7519 	if (!preempt_count_equals(preempt_offset)) {
7520 		pr_err("Preemption disabled at:");
7521 		print_ip_sym(current->preempt_disable_ip);
7522 		pr_cont("\n");
7523 	}
7524 #endif
7525 	dump_stack();
7526 }
7527 EXPORT_SYMBOL(___might_sleep);
7528 #endif
7529 
7530 #ifdef CONFIG_MAGIC_SYSRQ
7531 void normalize_rt_tasks(void)
7532 {
7533 	struct task_struct *g, *p;
7534 	struct sched_attr attr = {
7535 		.sched_policy = SCHED_NORMAL,
7536 	};
7537 
7538 	read_lock(&tasklist_lock);
7539 	for_each_process_thread(g, p) {
7540 		/*
7541 		 * Only normalize user tasks:
7542 		 */
7543 		if (p->flags & PF_KTHREAD)
7544 			continue;
7545 
7546 		p->se.exec_start		= 0;
7547 #ifdef CONFIG_SCHEDSTATS
7548 		p->se.statistics.wait_start	= 0;
7549 		p->se.statistics.sleep_start	= 0;
7550 		p->se.statistics.block_start	= 0;
7551 #endif
7552 
7553 		if (!dl_task(p) && !rt_task(p)) {
7554 			/*
7555 			 * Renice negative nice level userspace
7556 			 * tasks back to 0:
7557 			 */
7558 			if (task_nice(p) < 0)
7559 				set_user_nice(p, 0);
7560 			continue;
7561 		}
7562 
7563 		__sched_setscheduler(p, &attr, false, false);
7564 	}
7565 	read_unlock(&tasklist_lock);
7566 }
7567 
7568 #endif /* CONFIG_MAGIC_SYSRQ */
7569 
7570 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7571 /*
7572  * These functions are only useful for the IA64 MCA handling, or kdb.
7573  *
7574  * They can only be called when the whole system has been
7575  * stopped - every CPU needs to be quiescent, and no scheduling
7576  * activity can take place. Using them for anything else would
7577  * be a serious bug, and as a result, they aren't even visible
7578  * under any other configuration.
7579  */
7580 
7581 /**
7582  * curr_task - return the current task for a given cpu.
7583  * @cpu: the processor in question.
7584  *
7585  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7586  *
7587  * Return: The current task for @cpu.
7588  */
7589 struct task_struct *curr_task(int cpu)
7590 {
7591 	return cpu_curr(cpu);
7592 }
7593 
7594 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7595 
7596 #ifdef CONFIG_IA64
7597 /**
7598  * set_curr_task - set the current task for a given cpu.
7599  * @cpu: the processor in question.
7600  * @p: the task pointer to set.
7601  *
7602  * Description: This function must only be used when non-maskable interrupts
7603  * are serviced on a separate stack. It allows the architecture to switch the
7604  * notion of the current task on a cpu in a non-blocking manner. This function
7605  * must be called with all CPU's synchronized, and interrupts disabled, the
7606  * and caller must save the original value of the current task (see
7607  * curr_task() above) and restore that value before reenabling interrupts and
7608  * re-starting the system.
7609  *
7610  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7611  */
7612 void set_curr_task(int cpu, struct task_struct *p)
7613 {
7614 	cpu_curr(cpu) = p;
7615 }
7616 
7617 #endif
7618 
7619 #ifdef CONFIG_CGROUP_SCHED
7620 /* task_group_lock serializes the addition/removal of task groups */
7621 static DEFINE_SPINLOCK(task_group_lock);
7622 
7623 static void free_sched_group(struct task_group *tg)
7624 {
7625 	free_fair_sched_group(tg);
7626 	free_rt_sched_group(tg);
7627 	autogroup_free(tg);
7628 	kfree(tg);
7629 }
7630 
7631 /* allocate runqueue etc for a new task group */
7632 struct task_group *sched_create_group(struct task_group *parent)
7633 {
7634 	struct task_group *tg;
7635 
7636 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7637 	if (!tg)
7638 		return ERR_PTR(-ENOMEM);
7639 
7640 	if (!alloc_fair_sched_group(tg, parent))
7641 		goto err;
7642 
7643 	if (!alloc_rt_sched_group(tg, parent))
7644 		goto err;
7645 
7646 	return tg;
7647 
7648 err:
7649 	free_sched_group(tg);
7650 	return ERR_PTR(-ENOMEM);
7651 }
7652 
7653 void sched_online_group(struct task_group *tg, struct task_group *parent)
7654 {
7655 	unsigned long flags;
7656 
7657 	spin_lock_irqsave(&task_group_lock, flags);
7658 	list_add_rcu(&tg->list, &task_groups);
7659 
7660 	WARN_ON(!parent); /* root should already exist */
7661 
7662 	tg->parent = parent;
7663 	INIT_LIST_HEAD(&tg->children);
7664 	list_add_rcu(&tg->siblings, &parent->children);
7665 	spin_unlock_irqrestore(&task_group_lock, flags);
7666 }
7667 
7668 /* rcu callback to free various structures associated with a task group */
7669 static void free_sched_group_rcu(struct rcu_head *rhp)
7670 {
7671 	/* now it should be safe to free those cfs_rqs */
7672 	free_sched_group(container_of(rhp, struct task_group, rcu));
7673 }
7674 
7675 /* Destroy runqueue etc associated with a task group */
7676 void sched_destroy_group(struct task_group *tg)
7677 {
7678 	/* wait for possible concurrent references to cfs_rqs complete */
7679 	call_rcu(&tg->rcu, free_sched_group_rcu);
7680 }
7681 
7682 void sched_offline_group(struct task_group *tg)
7683 {
7684 	unsigned long flags;
7685 	int i;
7686 
7687 	/* end participation in shares distribution */
7688 	for_each_possible_cpu(i)
7689 		unregister_fair_sched_group(tg, i);
7690 
7691 	spin_lock_irqsave(&task_group_lock, flags);
7692 	list_del_rcu(&tg->list);
7693 	list_del_rcu(&tg->siblings);
7694 	spin_unlock_irqrestore(&task_group_lock, flags);
7695 }
7696 
7697 /* change task's runqueue when it moves between groups.
7698  *	The caller of this function should have put the task in its new group
7699  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7700  *	reflect its new group.
7701  */
7702 void sched_move_task(struct task_struct *tsk)
7703 {
7704 	struct task_group *tg;
7705 	int queued, running;
7706 	unsigned long flags;
7707 	struct rq *rq;
7708 
7709 	rq = task_rq_lock(tsk, &flags);
7710 
7711 	running = task_current(rq, tsk);
7712 	queued = task_on_rq_queued(tsk);
7713 
7714 	if (queued)
7715 		dequeue_task(rq, tsk, 0);
7716 	if (unlikely(running))
7717 		put_prev_task(rq, tsk);
7718 
7719 	/*
7720 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7721 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7722 	 * to prevent lockdep warnings.
7723 	 */
7724 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7725 			  struct task_group, css);
7726 	tg = autogroup_task_group(tsk, tg);
7727 	tsk->sched_task_group = tg;
7728 
7729 #ifdef CONFIG_FAIR_GROUP_SCHED
7730 	if (tsk->sched_class->task_move_group)
7731 		tsk->sched_class->task_move_group(tsk, queued);
7732 	else
7733 #endif
7734 		set_task_rq(tsk, task_cpu(tsk));
7735 
7736 	if (unlikely(running))
7737 		tsk->sched_class->set_curr_task(rq);
7738 	if (queued)
7739 		enqueue_task(rq, tsk, 0);
7740 
7741 	task_rq_unlock(rq, tsk, &flags);
7742 }
7743 #endif /* CONFIG_CGROUP_SCHED */
7744 
7745 #ifdef CONFIG_RT_GROUP_SCHED
7746 /*
7747  * Ensure that the real time constraints are schedulable.
7748  */
7749 static DEFINE_MUTEX(rt_constraints_mutex);
7750 
7751 /* Must be called with tasklist_lock held */
7752 static inline int tg_has_rt_tasks(struct task_group *tg)
7753 {
7754 	struct task_struct *g, *p;
7755 
7756 	/*
7757 	 * Autogroups do not have RT tasks; see autogroup_create().
7758 	 */
7759 	if (task_group_is_autogroup(tg))
7760 		return 0;
7761 
7762 	for_each_process_thread(g, p) {
7763 		if (rt_task(p) && task_group(p) == tg)
7764 			return 1;
7765 	}
7766 
7767 	return 0;
7768 }
7769 
7770 struct rt_schedulable_data {
7771 	struct task_group *tg;
7772 	u64 rt_period;
7773 	u64 rt_runtime;
7774 };
7775 
7776 static int tg_rt_schedulable(struct task_group *tg, void *data)
7777 {
7778 	struct rt_schedulable_data *d = data;
7779 	struct task_group *child;
7780 	unsigned long total, sum = 0;
7781 	u64 period, runtime;
7782 
7783 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7784 	runtime = tg->rt_bandwidth.rt_runtime;
7785 
7786 	if (tg == d->tg) {
7787 		period = d->rt_period;
7788 		runtime = d->rt_runtime;
7789 	}
7790 
7791 	/*
7792 	 * Cannot have more runtime than the period.
7793 	 */
7794 	if (runtime > period && runtime != RUNTIME_INF)
7795 		return -EINVAL;
7796 
7797 	/*
7798 	 * Ensure we don't starve existing RT tasks.
7799 	 */
7800 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7801 		return -EBUSY;
7802 
7803 	total = to_ratio(period, runtime);
7804 
7805 	/*
7806 	 * Nobody can have more than the global setting allows.
7807 	 */
7808 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7809 		return -EINVAL;
7810 
7811 	/*
7812 	 * The sum of our children's runtime should not exceed our own.
7813 	 */
7814 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7815 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7816 		runtime = child->rt_bandwidth.rt_runtime;
7817 
7818 		if (child == d->tg) {
7819 			period = d->rt_period;
7820 			runtime = d->rt_runtime;
7821 		}
7822 
7823 		sum += to_ratio(period, runtime);
7824 	}
7825 
7826 	if (sum > total)
7827 		return -EINVAL;
7828 
7829 	return 0;
7830 }
7831 
7832 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7833 {
7834 	int ret;
7835 
7836 	struct rt_schedulable_data data = {
7837 		.tg = tg,
7838 		.rt_period = period,
7839 		.rt_runtime = runtime,
7840 	};
7841 
7842 	rcu_read_lock();
7843 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7844 	rcu_read_unlock();
7845 
7846 	return ret;
7847 }
7848 
7849 static int tg_set_rt_bandwidth(struct task_group *tg,
7850 		u64 rt_period, u64 rt_runtime)
7851 {
7852 	int i, err = 0;
7853 
7854 	/*
7855 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7856 	 * kernel creating (and or operating) RT threads.
7857 	 */
7858 	if (tg == &root_task_group && rt_runtime == 0)
7859 		return -EINVAL;
7860 
7861 	/* No period doesn't make any sense. */
7862 	if (rt_period == 0)
7863 		return -EINVAL;
7864 
7865 	mutex_lock(&rt_constraints_mutex);
7866 	read_lock(&tasklist_lock);
7867 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7868 	if (err)
7869 		goto unlock;
7870 
7871 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7872 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7873 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7874 
7875 	for_each_possible_cpu(i) {
7876 		struct rt_rq *rt_rq = tg->rt_rq[i];
7877 
7878 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7879 		rt_rq->rt_runtime = rt_runtime;
7880 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7881 	}
7882 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7883 unlock:
7884 	read_unlock(&tasklist_lock);
7885 	mutex_unlock(&rt_constraints_mutex);
7886 
7887 	return err;
7888 }
7889 
7890 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7891 {
7892 	u64 rt_runtime, rt_period;
7893 
7894 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7895 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7896 	if (rt_runtime_us < 0)
7897 		rt_runtime = RUNTIME_INF;
7898 
7899 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7900 }
7901 
7902 static long sched_group_rt_runtime(struct task_group *tg)
7903 {
7904 	u64 rt_runtime_us;
7905 
7906 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7907 		return -1;
7908 
7909 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7910 	do_div(rt_runtime_us, NSEC_PER_USEC);
7911 	return rt_runtime_us;
7912 }
7913 
7914 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7915 {
7916 	u64 rt_runtime, rt_period;
7917 
7918 	rt_period = rt_period_us * NSEC_PER_USEC;
7919 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7920 
7921 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7922 }
7923 
7924 static long sched_group_rt_period(struct task_group *tg)
7925 {
7926 	u64 rt_period_us;
7927 
7928 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7929 	do_div(rt_period_us, NSEC_PER_USEC);
7930 	return rt_period_us;
7931 }
7932 #endif /* CONFIG_RT_GROUP_SCHED */
7933 
7934 #ifdef CONFIG_RT_GROUP_SCHED
7935 static int sched_rt_global_constraints(void)
7936 {
7937 	int ret = 0;
7938 
7939 	mutex_lock(&rt_constraints_mutex);
7940 	read_lock(&tasklist_lock);
7941 	ret = __rt_schedulable(NULL, 0, 0);
7942 	read_unlock(&tasklist_lock);
7943 	mutex_unlock(&rt_constraints_mutex);
7944 
7945 	return ret;
7946 }
7947 
7948 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7949 {
7950 	/* Don't accept realtime tasks when there is no way for them to run */
7951 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7952 		return 0;
7953 
7954 	return 1;
7955 }
7956 
7957 #else /* !CONFIG_RT_GROUP_SCHED */
7958 static int sched_rt_global_constraints(void)
7959 {
7960 	unsigned long flags;
7961 	int i, ret = 0;
7962 
7963 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7964 	for_each_possible_cpu(i) {
7965 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7966 
7967 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7968 		rt_rq->rt_runtime = global_rt_runtime();
7969 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7970 	}
7971 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7972 
7973 	return ret;
7974 }
7975 #endif /* CONFIG_RT_GROUP_SCHED */
7976 
7977 static int sched_dl_global_validate(void)
7978 {
7979 	u64 runtime = global_rt_runtime();
7980 	u64 period = global_rt_period();
7981 	u64 new_bw = to_ratio(period, runtime);
7982 	struct dl_bw *dl_b;
7983 	int cpu, ret = 0;
7984 	unsigned long flags;
7985 
7986 	/*
7987 	 * Here we want to check the bandwidth not being set to some
7988 	 * value smaller than the currently allocated bandwidth in
7989 	 * any of the root_domains.
7990 	 *
7991 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7992 	 * cycling on root_domains... Discussion on different/better
7993 	 * solutions is welcome!
7994 	 */
7995 	for_each_possible_cpu(cpu) {
7996 		rcu_read_lock_sched();
7997 		dl_b = dl_bw_of(cpu);
7998 
7999 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8000 		if (new_bw < dl_b->total_bw)
8001 			ret = -EBUSY;
8002 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8003 
8004 		rcu_read_unlock_sched();
8005 
8006 		if (ret)
8007 			break;
8008 	}
8009 
8010 	return ret;
8011 }
8012 
8013 static void sched_dl_do_global(void)
8014 {
8015 	u64 new_bw = -1;
8016 	struct dl_bw *dl_b;
8017 	int cpu;
8018 	unsigned long flags;
8019 
8020 	def_dl_bandwidth.dl_period = global_rt_period();
8021 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8022 
8023 	if (global_rt_runtime() != RUNTIME_INF)
8024 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8025 
8026 	/*
8027 	 * FIXME: As above...
8028 	 */
8029 	for_each_possible_cpu(cpu) {
8030 		rcu_read_lock_sched();
8031 		dl_b = dl_bw_of(cpu);
8032 
8033 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8034 		dl_b->bw = new_bw;
8035 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8036 
8037 		rcu_read_unlock_sched();
8038 	}
8039 }
8040 
8041 static int sched_rt_global_validate(void)
8042 {
8043 	if (sysctl_sched_rt_period <= 0)
8044 		return -EINVAL;
8045 
8046 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8047 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8048 		return -EINVAL;
8049 
8050 	return 0;
8051 }
8052 
8053 static void sched_rt_do_global(void)
8054 {
8055 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8056 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8057 }
8058 
8059 int sched_rt_handler(struct ctl_table *table, int write,
8060 		void __user *buffer, size_t *lenp,
8061 		loff_t *ppos)
8062 {
8063 	int old_period, old_runtime;
8064 	static DEFINE_MUTEX(mutex);
8065 	int ret;
8066 
8067 	mutex_lock(&mutex);
8068 	old_period = sysctl_sched_rt_period;
8069 	old_runtime = sysctl_sched_rt_runtime;
8070 
8071 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8072 
8073 	if (!ret && write) {
8074 		ret = sched_rt_global_validate();
8075 		if (ret)
8076 			goto undo;
8077 
8078 		ret = sched_dl_global_validate();
8079 		if (ret)
8080 			goto undo;
8081 
8082 		ret = sched_rt_global_constraints();
8083 		if (ret)
8084 			goto undo;
8085 
8086 		sched_rt_do_global();
8087 		sched_dl_do_global();
8088 	}
8089 	if (0) {
8090 undo:
8091 		sysctl_sched_rt_period = old_period;
8092 		sysctl_sched_rt_runtime = old_runtime;
8093 	}
8094 	mutex_unlock(&mutex);
8095 
8096 	return ret;
8097 }
8098 
8099 int sched_rr_handler(struct ctl_table *table, int write,
8100 		void __user *buffer, size_t *lenp,
8101 		loff_t *ppos)
8102 {
8103 	int ret;
8104 	static DEFINE_MUTEX(mutex);
8105 
8106 	mutex_lock(&mutex);
8107 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8108 	/* make sure that internally we keep jiffies */
8109 	/* also, writing zero resets timeslice to default */
8110 	if (!ret && write) {
8111 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8112 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8113 	}
8114 	mutex_unlock(&mutex);
8115 	return ret;
8116 }
8117 
8118 #ifdef CONFIG_CGROUP_SCHED
8119 
8120 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8121 {
8122 	return css ? container_of(css, struct task_group, css) : NULL;
8123 }
8124 
8125 static struct cgroup_subsys_state *
8126 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8127 {
8128 	struct task_group *parent = css_tg(parent_css);
8129 	struct task_group *tg;
8130 
8131 	if (!parent) {
8132 		/* This is early initialization for the top cgroup */
8133 		return &root_task_group.css;
8134 	}
8135 
8136 	tg = sched_create_group(parent);
8137 	if (IS_ERR(tg))
8138 		return ERR_PTR(-ENOMEM);
8139 
8140 	return &tg->css;
8141 }
8142 
8143 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8144 {
8145 	struct task_group *tg = css_tg(css);
8146 	struct task_group *parent = css_tg(css->parent);
8147 
8148 	if (parent)
8149 		sched_online_group(tg, parent);
8150 	return 0;
8151 }
8152 
8153 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8154 {
8155 	struct task_group *tg = css_tg(css);
8156 
8157 	sched_destroy_group(tg);
8158 }
8159 
8160 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8161 {
8162 	struct task_group *tg = css_tg(css);
8163 
8164 	sched_offline_group(tg);
8165 }
8166 
8167 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8168 {
8169 	sched_move_task(task);
8170 }
8171 
8172 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8173 				 struct cgroup_taskset *tset)
8174 {
8175 	struct task_struct *task;
8176 
8177 	cgroup_taskset_for_each(task, tset) {
8178 #ifdef CONFIG_RT_GROUP_SCHED
8179 		if (!sched_rt_can_attach(css_tg(css), task))
8180 			return -EINVAL;
8181 #else
8182 		/* We don't support RT-tasks being in separate groups */
8183 		if (task->sched_class != &fair_sched_class)
8184 			return -EINVAL;
8185 #endif
8186 	}
8187 	return 0;
8188 }
8189 
8190 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8191 			      struct cgroup_taskset *tset)
8192 {
8193 	struct task_struct *task;
8194 
8195 	cgroup_taskset_for_each(task, tset)
8196 		sched_move_task(task);
8197 }
8198 
8199 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8200 			    struct cgroup_subsys_state *old_css,
8201 			    struct task_struct *task)
8202 {
8203 	/*
8204 	 * cgroup_exit() is called in the copy_process() failure path.
8205 	 * Ignore this case since the task hasn't ran yet, this avoids
8206 	 * trying to poke a half freed task state from generic code.
8207 	 */
8208 	if (!(task->flags & PF_EXITING))
8209 		return;
8210 
8211 	sched_move_task(task);
8212 }
8213 
8214 #ifdef CONFIG_FAIR_GROUP_SCHED
8215 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8216 				struct cftype *cftype, u64 shareval)
8217 {
8218 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8219 }
8220 
8221 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8222 			       struct cftype *cft)
8223 {
8224 	struct task_group *tg = css_tg(css);
8225 
8226 	return (u64) scale_load_down(tg->shares);
8227 }
8228 
8229 #ifdef CONFIG_CFS_BANDWIDTH
8230 static DEFINE_MUTEX(cfs_constraints_mutex);
8231 
8232 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8233 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8234 
8235 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8236 
8237 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8238 {
8239 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8240 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8241 
8242 	if (tg == &root_task_group)
8243 		return -EINVAL;
8244 
8245 	/*
8246 	 * Ensure we have at some amount of bandwidth every period.  This is
8247 	 * to prevent reaching a state of large arrears when throttled via
8248 	 * entity_tick() resulting in prolonged exit starvation.
8249 	 */
8250 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8251 		return -EINVAL;
8252 
8253 	/*
8254 	 * Likewise, bound things on the otherside by preventing insane quota
8255 	 * periods.  This also allows us to normalize in computing quota
8256 	 * feasibility.
8257 	 */
8258 	if (period > max_cfs_quota_period)
8259 		return -EINVAL;
8260 
8261 	/*
8262 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8263 	 * unthrottle_offline_cfs_rqs().
8264 	 */
8265 	get_online_cpus();
8266 	mutex_lock(&cfs_constraints_mutex);
8267 	ret = __cfs_schedulable(tg, period, quota);
8268 	if (ret)
8269 		goto out_unlock;
8270 
8271 	runtime_enabled = quota != RUNTIME_INF;
8272 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8273 	/*
8274 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8275 	 * before making related changes, and on->off must occur afterwards
8276 	 */
8277 	if (runtime_enabled && !runtime_was_enabled)
8278 		cfs_bandwidth_usage_inc();
8279 	raw_spin_lock_irq(&cfs_b->lock);
8280 	cfs_b->period = ns_to_ktime(period);
8281 	cfs_b->quota = quota;
8282 
8283 	__refill_cfs_bandwidth_runtime(cfs_b);
8284 	/* restart the period timer (if active) to handle new period expiry */
8285 	if (runtime_enabled)
8286 		start_cfs_bandwidth(cfs_b);
8287 	raw_spin_unlock_irq(&cfs_b->lock);
8288 
8289 	for_each_online_cpu(i) {
8290 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8291 		struct rq *rq = cfs_rq->rq;
8292 
8293 		raw_spin_lock_irq(&rq->lock);
8294 		cfs_rq->runtime_enabled = runtime_enabled;
8295 		cfs_rq->runtime_remaining = 0;
8296 
8297 		if (cfs_rq->throttled)
8298 			unthrottle_cfs_rq(cfs_rq);
8299 		raw_spin_unlock_irq(&rq->lock);
8300 	}
8301 	if (runtime_was_enabled && !runtime_enabled)
8302 		cfs_bandwidth_usage_dec();
8303 out_unlock:
8304 	mutex_unlock(&cfs_constraints_mutex);
8305 	put_online_cpus();
8306 
8307 	return ret;
8308 }
8309 
8310 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8311 {
8312 	u64 quota, period;
8313 
8314 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8315 	if (cfs_quota_us < 0)
8316 		quota = RUNTIME_INF;
8317 	else
8318 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8319 
8320 	return tg_set_cfs_bandwidth(tg, period, quota);
8321 }
8322 
8323 long tg_get_cfs_quota(struct task_group *tg)
8324 {
8325 	u64 quota_us;
8326 
8327 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8328 		return -1;
8329 
8330 	quota_us = tg->cfs_bandwidth.quota;
8331 	do_div(quota_us, NSEC_PER_USEC);
8332 
8333 	return quota_us;
8334 }
8335 
8336 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8337 {
8338 	u64 quota, period;
8339 
8340 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8341 	quota = tg->cfs_bandwidth.quota;
8342 
8343 	return tg_set_cfs_bandwidth(tg, period, quota);
8344 }
8345 
8346 long tg_get_cfs_period(struct task_group *tg)
8347 {
8348 	u64 cfs_period_us;
8349 
8350 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8351 	do_div(cfs_period_us, NSEC_PER_USEC);
8352 
8353 	return cfs_period_us;
8354 }
8355 
8356 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8357 				  struct cftype *cft)
8358 {
8359 	return tg_get_cfs_quota(css_tg(css));
8360 }
8361 
8362 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8363 				   struct cftype *cftype, s64 cfs_quota_us)
8364 {
8365 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8366 }
8367 
8368 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8369 				   struct cftype *cft)
8370 {
8371 	return tg_get_cfs_period(css_tg(css));
8372 }
8373 
8374 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8375 				    struct cftype *cftype, u64 cfs_period_us)
8376 {
8377 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8378 }
8379 
8380 struct cfs_schedulable_data {
8381 	struct task_group *tg;
8382 	u64 period, quota;
8383 };
8384 
8385 /*
8386  * normalize group quota/period to be quota/max_period
8387  * note: units are usecs
8388  */
8389 static u64 normalize_cfs_quota(struct task_group *tg,
8390 			       struct cfs_schedulable_data *d)
8391 {
8392 	u64 quota, period;
8393 
8394 	if (tg == d->tg) {
8395 		period = d->period;
8396 		quota = d->quota;
8397 	} else {
8398 		period = tg_get_cfs_period(tg);
8399 		quota = tg_get_cfs_quota(tg);
8400 	}
8401 
8402 	/* note: these should typically be equivalent */
8403 	if (quota == RUNTIME_INF || quota == -1)
8404 		return RUNTIME_INF;
8405 
8406 	return to_ratio(period, quota);
8407 }
8408 
8409 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8410 {
8411 	struct cfs_schedulable_data *d = data;
8412 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8413 	s64 quota = 0, parent_quota = -1;
8414 
8415 	if (!tg->parent) {
8416 		quota = RUNTIME_INF;
8417 	} else {
8418 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8419 
8420 		quota = normalize_cfs_quota(tg, d);
8421 		parent_quota = parent_b->hierarchical_quota;
8422 
8423 		/*
8424 		 * ensure max(child_quota) <= parent_quota, inherit when no
8425 		 * limit is set
8426 		 */
8427 		if (quota == RUNTIME_INF)
8428 			quota = parent_quota;
8429 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8430 			return -EINVAL;
8431 	}
8432 	cfs_b->hierarchical_quota = quota;
8433 
8434 	return 0;
8435 }
8436 
8437 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8438 {
8439 	int ret;
8440 	struct cfs_schedulable_data data = {
8441 		.tg = tg,
8442 		.period = period,
8443 		.quota = quota,
8444 	};
8445 
8446 	if (quota != RUNTIME_INF) {
8447 		do_div(data.period, NSEC_PER_USEC);
8448 		do_div(data.quota, NSEC_PER_USEC);
8449 	}
8450 
8451 	rcu_read_lock();
8452 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8453 	rcu_read_unlock();
8454 
8455 	return ret;
8456 }
8457 
8458 static int cpu_stats_show(struct seq_file *sf, void *v)
8459 {
8460 	struct task_group *tg = css_tg(seq_css(sf));
8461 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8462 
8463 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8464 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8465 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8466 
8467 	return 0;
8468 }
8469 #endif /* CONFIG_CFS_BANDWIDTH */
8470 #endif /* CONFIG_FAIR_GROUP_SCHED */
8471 
8472 #ifdef CONFIG_RT_GROUP_SCHED
8473 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8474 				struct cftype *cft, s64 val)
8475 {
8476 	return sched_group_set_rt_runtime(css_tg(css), val);
8477 }
8478 
8479 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8480 			       struct cftype *cft)
8481 {
8482 	return sched_group_rt_runtime(css_tg(css));
8483 }
8484 
8485 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8486 				    struct cftype *cftype, u64 rt_period_us)
8487 {
8488 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8489 }
8490 
8491 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8492 				   struct cftype *cft)
8493 {
8494 	return sched_group_rt_period(css_tg(css));
8495 }
8496 #endif /* CONFIG_RT_GROUP_SCHED */
8497 
8498 static struct cftype cpu_files[] = {
8499 #ifdef CONFIG_FAIR_GROUP_SCHED
8500 	{
8501 		.name = "shares",
8502 		.read_u64 = cpu_shares_read_u64,
8503 		.write_u64 = cpu_shares_write_u64,
8504 	},
8505 #endif
8506 #ifdef CONFIG_CFS_BANDWIDTH
8507 	{
8508 		.name = "cfs_quota_us",
8509 		.read_s64 = cpu_cfs_quota_read_s64,
8510 		.write_s64 = cpu_cfs_quota_write_s64,
8511 	},
8512 	{
8513 		.name = "cfs_period_us",
8514 		.read_u64 = cpu_cfs_period_read_u64,
8515 		.write_u64 = cpu_cfs_period_write_u64,
8516 	},
8517 	{
8518 		.name = "stat",
8519 		.seq_show = cpu_stats_show,
8520 	},
8521 #endif
8522 #ifdef CONFIG_RT_GROUP_SCHED
8523 	{
8524 		.name = "rt_runtime_us",
8525 		.read_s64 = cpu_rt_runtime_read,
8526 		.write_s64 = cpu_rt_runtime_write,
8527 	},
8528 	{
8529 		.name = "rt_period_us",
8530 		.read_u64 = cpu_rt_period_read_uint,
8531 		.write_u64 = cpu_rt_period_write_uint,
8532 	},
8533 #endif
8534 	{ }	/* terminate */
8535 };
8536 
8537 struct cgroup_subsys cpu_cgrp_subsys = {
8538 	.css_alloc	= cpu_cgroup_css_alloc,
8539 	.css_free	= cpu_cgroup_css_free,
8540 	.css_online	= cpu_cgroup_css_online,
8541 	.css_offline	= cpu_cgroup_css_offline,
8542 	.fork		= cpu_cgroup_fork,
8543 	.can_attach	= cpu_cgroup_can_attach,
8544 	.attach		= cpu_cgroup_attach,
8545 	.exit		= cpu_cgroup_exit,
8546 	.legacy_cftypes	= cpu_files,
8547 	.early_init	= 1,
8548 };
8549 
8550 #endif	/* CONFIG_CGROUP_SCHED */
8551 
8552 void dump_cpu_task(int cpu)
8553 {
8554 	pr_info("Task dump for CPU %d:\n", cpu);
8555 	sched_show_task(cpu_curr(cpu));
8556 }
8557