xref: /openbmc/linux/kernel/sched/core.c (revision e82c878d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17 
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
21 
22 #include "pelt.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26 
27 /*
28  * Export tracepoints that act as a bare tracehook (ie: have no trace event
29  * associated with them) to allow external modules to probe them.
30  */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37 
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39 
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42  * Debugging: various feature bits
43  *
44  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45  * sysctl_sched_features, defined in sched.h, to allow constants propagation
46  * at compile time and compiler optimization based on features default.
47  */
48 #define SCHED_FEAT(name, enabled)	\
49 	(1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 	0;
53 #undef SCHED_FEAT
54 #endif
55 
56 /*
57  * Number of tasks to iterate in a single balance run.
58  * Limited because this is done with IRQs disabled.
59  */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61 
62 /*
63  * period over which we measure -rt task CPU usage in us.
64  * default: 1s
65  */
66 unsigned int sysctl_sched_rt_period = 1000000;
67 
68 __read_mostly int scheduler_running;
69 
70 /*
71  * part of the period that we allow rt tasks to run in us.
72  * default: 0.95s
73  */
74 int sysctl_sched_rt_runtime = 950000;
75 
76 /*
77  * __task_rq_lock - lock the rq @p resides on.
78  */
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 	__acquires(rq->lock)
81 {
82 	struct rq *rq;
83 
84 	lockdep_assert_held(&p->pi_lock);
85 
86 	for (;;) {
87 		rq = task_rq(p);
88 		raw_spin_lock(&rq->lock);
89 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 			rq_pin_lock(rq, rf);
91 			return rq;
92 		}
93 		raw_spin_unlock(&rq->lock);
94 
95 		while (unlikely(task_on_rq_migrating(p)))
96 			cpu_relax();
97 	}
98 }
99 
100 /*
101  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102  */
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 	__acquires(p->pi_lock)
105 	__acquires(rq->lock)
106 {
107 	struct rq *rq;
108 
109 	for (;;) {
110 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 		rq = task_rq(p);
112 		raw_spin_lock(&rq->lock);
113 		/*
114 		 *	move_queued_task()		task_rq_lock()
115 		 *
116 		 *	ACQUIRE (rq->lock)
117 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
118 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
119 		 *	[S] ->cpu = new_cpu		[L] task_rq()
120 		 *					[L] ->on_rq
121 		 *	RELEASE (rq->lock)
122 		 *
123 		 * If we observe the old CPU in task_rq_lock(), the acquire of
124 		 * the old rq->lock will fully serialize against the stores.
125 		 *
126 		 * If we observe the new CPU in task_rq_lock(), the address
127 		 * dependency headed by '[L] rq = task_rq()' and the acquire
128 		 * will pair with the WMB to ensure we then also see migrating.
129 		 */
130 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 			rq_pin_lock(rq, rf);
132 			return rq;
133 		}
134 		raw_spin_unlock(&rq->lock);
135 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136 
137 		while (unlikely(task_on_rq_migrating(p)))
138 			cpu_relax();
139 	}
140 }
141 
142 /*
143  * RQ-clock updating methods:
144  */
145 
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149  * In theory, the compile should just see 0 here, and optimize out the call
150  * to sched_rt_avg_update. But I don't trust it...
151  */
152 	s64 __maybe_unused steal = 0, irq_delta = 0;
153 
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156 
157 	/*
158 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 	 * this case when a previous update_rq_clock() happened inside a
160 	 * {soft,}irq region.
161 	 *
162 	 * When this happens, we stop ->clock_task and only update the
163 	 * prev_irq_time stamp to account for the part that fit, so that a next
164 	 * update will consume the rest. This ensures ->clock_task is
165 	 * monotonic.
166 	 *
167 	 * It does however cause some slight miss-attribution of {soft,}irq
168 	 * time, a more accurate solution would be to update the irq_time using
169 	 * the current rq->clock timestamp, except that would require using
170 	 * atomic ops.
171 	 */
172 	if (irq_delta > delta)
173 		irq_delta = delta;
174 
175 	rq->prev_irq_time += irq_delta;
176 	delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 	if (static_key_false((&paravirt_steal_rq_enabled))) {
180 		steal = paravirt_steal_clock(cpu_of(rq));
181 		steal -= rq->prev_steal_time_rq;
182 
183 		if (unlikely(steal > delta))
184 			steal = delta;
185 
186 		rq->prev_steal_time_rq += steal;
187 		delta -= steal;
188 	}
189 #endif
190 
191 	rq->clock_task += delta;
192 
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 		update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 	update_rq_clock_pelt(rq, delta);
198 }
199 
200 void update_rq_clock(struct rq *rq)
201 {
202 	s64 delta;
203 
204 	lockdep_assert_held(&rq->lock);
205 
206 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 		return;
208 
209 #ifdef CONFIG_SCHED_DEBUG
210 	if (sched_feat(WARN_DOUBLE_CLOCK))
211 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 	rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214 
215 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 	if (delta < 0)
217 		return;
218 	rq->clock += delta;
219 	update_rq_clock_task(rq, delta);
220 }
221 
222 
223 #ifdef CONFIG_SCHED_HRTICK
224 /*
225  * Use HR-timers to deliver accurate preemption points.
226  */
227 
228 static void hrtick_clear(struct rq *rq)
229 {
230 	if (hrtimer_active(&rq->hrtick_timer))
231 		hrtimer_cancel(&rq->hrtick_timer);
232 }
233 
234 /*
235  * High-resolution timer tick.
236  * Runs from hardirq context with interrupts disabled.
237  */
238 static enum hrtimer_restart hrtick(struct hrtimer *timer)
239 {
240 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
241 	struct rq_flags rf;
242 
243 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244 
245 	rq_lock(rq, &rf);
246 	update_rq_clock(rq);
247 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
248 	rq_unlock(rq, &rf);
249 
250 	return HRTIMER_NORESTART;
251 }
252 
253 #ifdef CONFIG_SMP
254 
255 static void __hrtick_restart(struct rq *rq)
256 {
257 	struct hrtimer *timer = &rq->hrtick_timer;
258 
259 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
260 }
261 
262 /*
263  * called from hardirq (IPI) context
264  */
265 static void __hrtick_start(void *arg)
266 {
267 	struct rq *rq = arg;
268 	struct rq_flags rf;
269 
270 	rq_lock(rq, &rf);
271 	__hrtick_restart(rq);
272 	rq_unlock(rq, &rf);
273 }
274 
275 /*
276  * Called to set the hrtick timer state.
277  *
278  * called with rq->lock held and irqs disabled
279  */
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 	struct hrtimer *timer = &rq->hrtick_timer;
283 	ktime_t time;
284 	s64 delta;
285 
286 	/*
287 	 * Don't schedule slices shorter than 10000ns, that just
288 	 * doesn't make sense and can cause timer DoS.
289 	 */
290 	delta = max_t(s64, delay, 10000LL);
291 	time = ktime_add_ns(timer->base->get_time(), delta);
292 
293 	hrtimer_set_expires(timer, time);
294 
295 	if (rq == this_rq())
296 		__hrtick_restart(rq);
297 	else
298 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 }
300 
301 #else
302 /*
303  * Called to set the hrtick timer state.
304  *
305  * called with rq->lock held and irqs disabled
306  */
307 void hrtick_start(struct rq *rq, u64 delay)
308 {
309 	/*
310 	 * Don't schedule slices shorter than 10000ns, that just
311 	 * doesn't make sense. Rely on vruntime for fairness.
312 	 */
313 	delay = max_t(u64, delay, 10000LL);
314 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
315 		      HRTIMER_MODE_REL_PINNED_HARD);
316 }
317 #endif /* CONFIG_SMP */
318 
319 static void hrtick_rq_init(struct rq *rq)
320 {
321 #ifdef CONFIG_SMP
322 	rq->hrtick_csd.flags = 0;
323 	rq->hrtick_csd.func = __hrtick_start;
324 	rq->hrtick_csd.info = rq;
325 #endif
326 
327 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
328 	rq->hrtick_timer.function = hrtick;
329 }
330 #else	/* CONFIG_SCHED_HRTICK */
331 static inline void hrtick_clear(struct rq *rq)
332 {
333 }
334 
335 static inline void hrtick_rq_init(struct rq *rq)
336 {
337 }
338 #endif	/* CONFIG_SCHED_HRTICK */
339 
340 /*
341  * cmpxchg based fetch_or, macro so it works for different integer types
342  */
343 #define fetch_or(ptr, mask)						\
344 	({								\
345 		typeof(ptr) _ptr = (ptr);				\
346 		typeof(mask) _mask = (mask);				\
347 		typeof(*_ptr) _old, _val = *_ptr;			\
348 									\
349 		for (;;) {						\
350 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
351 			if (_old == _val)				\
352 				break;					\
353 			_val = _old;					\
354 		}							\
355 	_old;								\
356 })
357 
358 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
359 /*
360  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
361  * this avoids any races wrt polling state changes and thereby avoids
362  * spurious IPIs.
363  */
364 static bool set_nr_and_not_polling(struct task_struct *p)
365 {
366 	struct thread_info *ti = task_thread_info(p);
367 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
368 }
369 
370 /*
371  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
372  *
373  * If this returns true, then the idle task promises to call
374  * sched_ttwu_pending() and reschedule soon.
375  */
376 static bool set_nr_if_polling(struct task_struct *p)
377 {
378 	struct thread_info *ti = task_thread_info(p);
379 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
380 
381 	for (;;) {
382 		if (!(val & _TIF_POLLING_NRFLAG))
383 			return false;
384 		if (val & _TIF_NEED_RESCHED)
385 			return true;
386 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
387 		if (old == val)
388 			break;
389 		val = old;
390 	}
391 	return true;
392 }
393 
394 #else
395 static bool set_nr_and_not_polling(struct task_struct *p)
396 {
397 	set_tsk_need_resched(p);
398 	return true;
399 }
400 
401 #ifdef CONFIG_SMP
402 static bool set_nr_if_polling(struct task_struct *p)
403 {
404 	return false;
405 }
406 #endif
407 #endif
408 
409 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
410 {
411 	struct wake_q_node *node = &task->wake_q;
412 
413 	/*
414 	 * Atomically grab the task, if ->wake_q is !nil already it means
415 	 * its already queued (either by us or someone else) and will get the
416 	 * wakeup due to that.
417 	 *
418 	 * In order to ensure that a pending wakeup will observe our pending
419 	 * state, even in the failed case, an explicit smp_mb() must be used.
420 	 */
421 	smp_mb__before_atomic();
422 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
423 		return false;
424 
425 	/*
426 	 * The head is context local, there can be no concurrency.
427 	 */
428 	*head->lastp = node;
429 	head->lastp = &node->next;
430 	return true;
431 }
432 
433 /**
434  * wake_q_add() - queue a wakeup for 'later' waking.
435  * @head: the wake_q_head to add @task to
436  * @task: the task to queue for 'later' wakeup
437  *
438  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
439  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
440  * instantly.
441  *
442  * This function must be used as-if it were wake_up_process(); IOW the task
443  * must be ready to be woken at this location.
444  */
445 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
446 {
447 	if (__wake_q_add(head, task))
448 		get_task_struct(task);
449 }
450 
451 /**
452  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
453  * @head: the wake_q_head to add @task to
454  * @task: the task to queue for 'later' wakeup
455  *
456  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
457  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
458  * instantly.
459  *
460  * This function must be used as-if it were wake_up_process(); IOW the task
461  * must be ready to be woken at this location.
462  *
463  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
464  * that already hold reference to @task can call the 'safe' version and trust
465  * wake_q to do the right thing depending whether or not the @task is already
466  * queued for wakeup.
467  */
468 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
469 {
470 	if (!__wake_q_add(head, task))
471 		put_task_struct(task);
472 }
473 
474 void wake_up_q(struct wake_q_head *head)
475 {
476 	struct wake_q_node *node = head->first;
477 
478 	while (node != WAKE_Q_TAIL) {
479 		struct task_struct *task;
480 
481 		task = container_of(node, struct task_struct, wake_q);
482 		BUG_ON(!task);
483 		/* Task can safely be re-inserted now: */
484 		node = node->next;
485 		task->wake_q.next = NULL;
486 
487 		/*
488 		 * wake_up_process() executes a full barrier, which pairs with
489 		 * the queueing in wake_q_add() so as not to miss wakeups.
490 		 */
491 		wake_up_process(task);
492 		put_task_struct(task);
493 	}
494 }
495 
496 /*
497  * resched_curr - mark rq's current task 'to be rescheduled now'.
498  *
499  * On UP this means the setting of the need_resched flag, on SMP it
500  * might also involve a cross-CPU call to trigger the scheduler on
501  * the target CPU.
502  */
503 void resched_curr(struct rq *rq)
504 {
505 	struct task_struct *curr = rq->curr;
506 	int cpu;
507 
508 	lockdep_assert_held(&rq->lock);
509 
510 	if (test_tsk_need_resched(curr))
511 		return;
512 
513 	cpu = cpu_of(rq);
514 
515 	if (cpu == smp_processor_id()) {
516 		set_tsk_need_resched(curr);
517 		set_preempt_need_resched();
518 		return;
519 	}
520 
521 	if (set_nr_and_not_polling(curr))
522 		smp_send_reschedule(cpu);
523 	else
524 		trace_sched_wake_idle_without_ipi(cpu);
525 }
526 
527 void resched_cpu(int cpu)
528 {
529 	struct rq *rq = cpu_rq(cpu);
530 	unsigned long flags;
531 
532 	raw_spin_lock_irqsave(&rq->lock, flags);
533 	if (cpu_online(cpu) || cpu == smp_processor_id())
534 		resched_curr(rq);
535 	raw_spin_unlock_irqrestore(&rq->lock, flags);
536 }
537 
538 #ifdef CONFIG_SMP
539 #ifdef CONFIG_NO_HZ_COMMON
540 /*
541  * In the semi idle case, use the nearest busy CPU for migrating timers
542  * from an idle CPU.  This is good for power-savings.
543  *
544  * We don't do similar optimization for completely idle system, as
545  * selecting an idle CPU will add more delays to the timers than intended
546  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
547  */
548 int get_nohz_timer_target(void)
549 {
550 	int i, cpu = smp_processor_id(), default_cpu = -1;
551 	struct sched_domain *sd;
552 
553 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
554 		if (!idle_cpu(cpu))
555 			return cpu;
556 		default_cpu = cpu;
557 	}
558 
559 	rcu_read_lock();
560 	for_each_domain(cpu, sd) {
561 		for_each_cpu_and(i, sched_domain_span(sd),
562 			housekeeping_cpumask(HK_FLAG_TIMER)) {
563 			if (cpu == i)
564 				continue;
565 
566 			if (!idle_cpu(i)) {
567 				cpu = i;
568 				goto unlock;
569 			}
570 		}
571 	}
572 
573 	if (default_cpu == -1)
574 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 	cpu = default_cpu;
576 unlock:
577 	rcu_read_unlock();
578 	return cpu;
579 }
580 
581 /*
582  * When add_timer_on() enqueues a timer into the timer wheel of an
583  * idle CPU then this timer might expire before the next timer event
584  * which is scheduled to wake up that CPU. In case of a completely
585  * idle system the next event might even be infinite time into the
586  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587  * leaves the inner idle loop so the newly added timer is taken into
588  * account when the CPU goes back to idle and evaluates the timer
589  * wheel for the next timer event.
590  */
591 static void wake_up_idle_cpu(int cpu)
592 {
593 	struct rq *rq = cpu_rq(cpu);
594 
595 	if (cpu == smp_processor_id())
596 		return;
597 
598 	if (set_nr_and_not_polling(rq->idle))
599 		smp_send_reschedule(cpu);
600 	else
601 		trace_sched_wake_idle_without_ipi(cpu);
602 }
603 
604 static bool wake_up_full_nohz_cpu(int cpu)
605 {
606 	/*
607 	 * We just need the target to call irq_exit() and re-evaluate
608 	 * the next tick. The nohz full kick at least implies that.
609 	 * If needed we can still optimize that later with an
610 	 * empty IRQ.
611 	 */
612 	if (cpu_is_offline(cpu))
613 		return true;  /* Don't try to wake offline CPUs. */
614 	if (tick_nohz_full_cpu(cpu)) {
615 		if (cpu != smp_processor_id() ||
616 		    tick_nohz_tick_stopped())
617 			tick_nohz_full_kick_cpu(cpu);
618 		return true;
619 	}
620 
621 	return false;
622 }
623 
624 /*
625  * Wake up the specified CPU.  If the CPU is going offline, it is the
626  * caller's responsibility to deal with the lost wakeup, for example,
627  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
628  */
629 void wake_up_nohz_cpu(int cpu)
630 {
631 	if (!wake_up_full_nohz_cpu(cpu))
632 		wake_up_idle_cpu(cpu);
633 }
634 
635 static inline bool got_nohz_idle_kick(void)
636 {
637 	int cpu = smp_processor_id();
638 
639 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
640 		return false;
641 
642 	if (idle_cpu(cpu) && !need_resched())
643 		return true;
644 
645 	/*
646 	 * We can't run Idle Load Balance on this CPU for this time so we
647 	 * cancel it and clear NOHZ_BALANCE_KICK
648 	 */
649 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
650 	return false;
651 }
652 
653 #else /* CONFIG_NO_HZ_COMMON */
654 
655 static inline bool got_nohz_idle_kick(void)
656 {
657 	return false;
658 }
659 
660 #endif /* CONFIG_NO_HZ_COMMON */
661 
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(struct rq *rq)
664 {
665 	int fifo_nr_running;
666 
667 	/* Deadline tasks, even if single, need the tick */
668 	if (rq->dl.dl_nr_running)
669 		return false;
670 
671 	/*
672 	 * If there are more than one RR tasks, we need the tick to effect the
673 	 * actual RR behaviour.
674 	 */
675 	if (rq->rt.rr_nr_running) {
676 		if (rq->rt.rr_nr_running == 1)
677 			return true;
678 		else
679 			return false;
680 	}
681 
682 	/*
683 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
684 	 * forced preemption between FIFO tasks.
685 	 */
686 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
687 	if (fifo_nr_running)
688 		return true;
689 
690 	/*
691 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
692 	 * if there's more than one we need the tick for involuntary
693 	 * preemption.
694 	 */
695 	if (rq->nr_running > 1)
696 		return false;
697 
698 	return true;
699 }
700 #endif /* CONFIG_NO_HZ_FULL */
701 #endif /* CONFIG_SMP */
702 
703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
704 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
705 /*
706  * Iterate task_group tree rooted at *from, calling @down when first entering a
707  * node and @up when leaving it for the final time.
708  *
709  * Caller must hold rcu_lock or sufficient equivalent.
710  */
711 int walk_tg_tree_from(struct task_group *from,
712 			     tg_visitor down, tg_visitor up, void *data)
713 {
714 	struct task_group *parent, *child;
715 	int ret;
716 
717 	parent = from;
718 
719 down:
720 	ret = (*down)(parent, data);
721 	if (ret)
722 		goto out;
723 	list_for_each_entry_rcu(child, &parent->children, siblings) {
724 		parent = child;
725 		goto down;
726 
727 up:
728 		continue;
729 	}
730 	ret = (*up)(parent, data);
731 	if (ret || parent == from)
732 		goto out;
733 
734 	child = parent;
735 	parent = parent->parent;
736 	if (parent)
737 		goto up;
738 out:
739 	return ret;
740 }
741 
742 int tg_nop(struct task_group *tg, void *data)
743 {
744 	return 0;
745 }
746 #endif
747 
748 static void set_load_weight(struct task_struct *p, bool update_load)
749 {
750 	int prio = p->static_prio - MAX_RT_PRIO;
751 	struct load_weight *load = &p->se.load;
752 
753 	/*
754 	 * SCHED_IDLE tasks get minimal weight:
755 	 */
756 	if (task_has_idle_policy(p)) {
757 		load->weight = scale_load(WEIGHT_IDLEPRIO);
758 		load->inv_weight = WMULT_IDLEPRIO;
759 		return;
760 	}
761 
762 	/*
763 	 * SCHED_OTHER tasks have to update their load when changing their
764 	 * weight
765 	 */
766 	if (update_load && p->sched_class == &fair_sched_class) {
767 		reweight_task(p, prio);
768 	} else {
769 		load->weight = scale_load(sched_prio_to_weight[prio]);
770 		load->inv_weight = sched_prio_to_wmult[prio];
771 	}
772 }
773 
774 #ifdef CONFIG_UCLAMP_TASK
775 /*
776  * Serializes updates of utilization clamp values
777  *
778  * The (slow-path) user-space triggers utilization clamp value updates which
779  * can require updates on (fast-path) scheduler's data structures used to
780  * support enqueue/dequeue operations.
781  * While the per-CPU rq lock protects fast-path update operations, user-space
782  * requests are serialized using a mutex to reduce the risk of conflicting
783  * updates or API abuses.
784  */
785 static DEFINE_MUTEX(uclamp_mutex);
786 
787 /* Max allowed minimum utilization */
788 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
789 
790 /* Max allowed maximum utilization */
791 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
792 
793 /* All clamps are required to be less or equal than these values */
794 static struct uclamp_se uclamp_default[UCLAMP_CNT];
795 
796 /* Integer rounded range for each bucket */
797 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
798 
799 #define for_each_clamp_id(clamp_id) \
800 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
801 
802 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
803 {
804 	return clamp_value / UCLAMP_BUCKET_DELTA;
805 }
806 
807 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
808 {
809 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
810 }
811 
812 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
813 {
814 	if (clamp_id == UCLAMP_MIN)
815 		return 0;
816 	return SCHED_CAPACITY_SCALE;
817 }
818 
819 static inline void uclamp_se_set(struct uclamp_se *uc_se,
820 				 unsigned int value, bool user_defined)
821 {
822 	uc_se->value = value;
823 	uc_se->bucket_id = uclamp_bucket_id(value);
824 	uc_se->user_defined = user_defined;
825 }
826 
827 static inline unsigned int
828 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
829 		  unsigned int clamp_value)
830 {
831 	/*
832 	 * Avoid blocked utilization pushing up the frequency when we go
833 	 * idle (which drops the max-clamp) by retaining the last known
834 	 * max-clamp.
835 	 */
836 	if (clamp_id == UCLAMP_MAX) {
837 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
838 		return clamp_value;
839 	}
840 
841 	return uclamp_none(UCLAMP_MIN);
842 }
843 
844 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
845 				     unsigned int clamp_value)
846 {
847 	/* Reset max-clamp retention only on idle exit */
848 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
849 		return;
850 
851 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
852 }
853 
854 static inline
855 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
856 				   unsigned int clamp_value)
857 {
858 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
859 	int bucket_id = UCLAMP_BUCKETS - 1;
860 
861 	/*
862 	 * Since both min and max clamps are max aggregated, find the
863 	 * top most bucket with tasks in.
864 	 */
865 	for ( ; bucket_id >= 0; bucket_id--) {
866 		if (!bucket[bucket_id].tasks)
867 			continue;
868 		return bucket[bucket_id].value;
869 	}
870 
871 	/* No tasks -- default clamp values */
872 	return uclamp_idle_value(rq, clamp_id, clamp_value);
873 }
874 
875 static inline struct uclamp_se
876 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
877 {
878 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
879 #ifdef CONFIG_UCLAMP_TASK_GROUP
880 	struct uclamp_se uc_max;
881 
882 	/*
883 	 * Tasks in autogroups or root task group will be
884 	 * restricted by system defaults.
885 	 */
886 	if (task_group_is_autogroup(task_group(p)))
887 		return uc_req;
888 	if (task_group(p) == &root_task_group)
889 		return uc_req;
890 
891 	uc_max = task_group(p)->uclamp[clamp_id];
892 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
893 		return uc_max;
894 #endif
895 
896 	return uc_req;
897 }
898 
899 /*
900  * The effective clamp bucket index of a task depends on, by increasing
901  * priority:
902  * - the task specific clamp value, when explicitly requested from userspace
903  * - the task group effective clamp value, for tasks not either in the root
904  *   group or in an autogroup
905  * - the system default clamp value, defined by the sysadmin
906  */
907 static inline struct uclamp_se
908 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
909 {
910 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
911 	struct uclamp_se uc_max = uclamp_default[clamp_id];
912 
913 	/* System default restrictions always apply */
914 	if (unlikely(uc_req.value > uc_max.value))
915 		return uc_max;
916 
917 	return uc_req;
918 }
919 
920 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
921 {
922 	struct uclamp_se uc_eff;
923 
924 	/* Task currently refcounted: use back-annotated (effective) value */
925 	if (p->uclamp[clamp_id].active)
926 		return (unsigned long)p->uclamp[clamp_id].value;
927 
928 	uc_eff = uclamp_eff_get(p, clamp_id);
929 
930 	return (unsigned long)uc_eff.value;
931 }
932 
933 /*
934  * When a task is enqueued on a rq, the clamp bucket currently defined by the
935  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
936  * updates the rq's clamp value if required.
937  *
938  * Tasks can have a task-specific value requested from user-space, track
939  * within each bucket the maximum value for tasks refcounted in it.
940  * This "local max aggregation" allows to track the exact "requested" value
941  * for each bucket when all its RUNNABLE tasks require the same clamp.
942  */
943 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
944 				    enum uclamp_id clamp_id)
945 {
946 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
947 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
948 	struct uclamp_bucket *bucket;
949 
950 	lockdep_assert_held(&rq->lock);
951 
952 	/* Update task effective clamp */
953 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
954 
955 	bucket = &uc_rq->bucket[uc_se->bucket_id];
956 	bucket->tasks++;
957 	uc_se->active = true;
958 
959 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
960 
961 	/*
962 	 * Local max aggregation: rq buckets always track the max
963 	 * "requested" clamp value of its RUNNABLE tasks.
964 	 */
965 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
966 		bucket->value = uc_se->value;
967 
968 	if (uc_se->value > READ_ONCE(uc_rq->value))
969 		WRITE_ONCE(uc_rq->value, uc_se->value);
970 }
971 
972 /*
973  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
974  * is released. If this is the last task reference counting the rq's max
975  * active clamp value, then the rq's clamp value is updated.
976  *
977  * Both refcounted tasks and rq's cached clamp values are expected to be
978  * always valid. If it's detected they are not, as defensive programming,
979  * enforce the expected state and warn.
980  */
981 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
982 				    enum uclamp_id clamp_id)
983 {
984 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
985 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
986 	struct uclamp_bucket *bucket;
987 	unsigned int bkt_clamp;
988 	unsigned int rq_clamp;
989 
990 	lockdep_assert_held(&rq->lock);
991 
992 	bucket = &uc_rq->bucket[uc_se->bucket_id];
993 	SCHED_WARN_ON(!bucket->tasks);
994 	if (likely(bucket->tasks))
995 		bucket->tasks--;
996 	uc_se->active = false;
997 
998 	/*
999 	 * Keep "local max aggregation" simple and accept to (possibly)
1000 	 * overboost some RUNNABLE tasks in the same bucket.
1001 	 * The rq clamp bucket value is reset to its base value whenever
1002 	 * there are no more RUNNABLE tasks refcounting it.
1003 	 */
1004 	if (likely(bucket->tasks))
1005 		return;
1006 
1007 	rq_clamp = READ_ONCE(uc_rq->value);
1008 	/*
1009 	 * Defensive programming: this should never happen. If it happens,
1010 	 * e.g. due to future modification, warn and fixup the expected value.
1011 	 */
1012 	SCHED_WARN_ON(bucket->value > rq_clamp);
1013 	if (bucket->value >= rq_clamp) {
1014 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1015 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1016 	}
1017 }
1018 
1019 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1020 {
1021 	enum uclamp_id clamp_id;
1022 
1023 	if (unlikely(!p->sched_class->uclamp_enabled))
1024 		return;
1025 
1026 	for_each_clamp_id(clamp_id)
1027 		uclamp_rq_inc_id(rq, p, clamp_id);
1028 
1029 	/* Reset clamp idle holding when there is one RUNNABLE task */
1030 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1031 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1032 }
1033 
1034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1035 {
1036 	enum uclamp_id clamp_id;
1037 
1038 	if (unlikely(!p->sched_class->uclamp_enabled))
1039 		return;
1040 
1041 	for_each_clamp_id(clamp_id)
1042 		uclamp_rq_dec_id(rq, p, clamp_id);
1043 }
1044 
1045 static inline void
1046 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1047 {
1048 	struct rq_flags rf;
1049 	struct rq *rq;
1050 
1051 	/*
1052 	 * Lock the task and the rq where the task is (or was) queued.
1053 	 *
1054 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1055 	 * price to pay to safely serialize util_{min,max} updates with
1056 	 * enqueues, dequeues and migration operations.
1057 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1058 	 */
1059 	rq = task_rq_lock(p, &rf);
1060 
1061 	/*
1062 	 * Setting the clamp bucket is serialized by task_rq_lock().
1063 	 * If the task is not yet RUNNABLE and its task_struct is not
1064 	 * affecting a valid clamp bucket, the next time it's enqueued,
1065 	 * it will already see the updated clamp bucket value.
1066 	 */
1067 	if (p->uclamp[clamp_id].active) {
1068 		uclamp_rq_dec_id(rq, p, clamp_id);
1069 		uclamp_rq_inc_id(rq, p, clamp_id);
1070 	}
1071 
1072 	task_rq_unlock(rq, p, &rf);
1073 }
1074 
1075 #ifdef CONFIG_UCLAMP_TASK_GROUP
1076 static inline void
1077 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1078 			   unsigned int clamps)
1079 {
1080 	enum uclamp_id clamp_id;
1081 	struct css_task_iter it;
1082 	struct task_struct *p;
1083 
1084 	css_task_iter_start(css, 0, &it);
1085 	while ((p = css_task_iter_next(&it))) {
1086 		for_each_clamp_id(clamp_id) {
1087 			if ((0x1 << clamp_id) & clamps)
1088 				uclamp_update_active(p, clamp_id);
1089 		}
1090 	}
1091 	css_task_iter_end(&it);
1092 }
1093 
1094 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1095 static void uclamp_update_root_tg(void)
1096 {
1097 	struct task_group *tg = &root_task_group;
1098 
1099 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1100 		      sysctl_sched_uclamp_util_min, false);
1101 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1102 		      sysctl_sched_uclamp_util_max, false);
1103 
1104 	rcu_read_lock();
1105 	cpu_util_update_eff(&root_task_group.css);
1106 	rcu_read_unlock();
1107 }
1108 #else
1109 static void uclamp_update_root_tg(void) { }
1110 #endif
1111 
1112 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1113 				void __user *buffer, size_t *lenp,
1114 				loff_t *ppos)
1115 {
1116 	bool update_root_tg = false;
1117 	int old_min, old_max;
1118 	int result;
1119 
1120 	mutex_lock(&uclamp_mutex);
1121 	old_min = sysctl_sched_uclamp_util_min;
1122 	old_max = sysctl_sched_uclamp_util_max;
1123 
1124 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 	if (result)
1126 		goto undo;
1127 	if (!write)
1128 		goto done;
1129 
1130 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 		result = -EINVAL;
1133 		goto undo;
1134 	}
1135 
1136 	if (old_min != sysctl_sched_uclamp_util_min) {
1137 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1138 			      sysctl_sched_uclamp_util_min, false);
1139 		update_root_tg = true;
1140 	}
1141 	if (old_max != sysctl_sched_uclamp_util_max) {
1142 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1143 			      sysctl_sched_uclamp_util_max, false);
1144 		update_root_tg = true;
1145 	}
1146 
1147 	if (update_root_tg)
1148 		uclamp_update_root_tg();
1149 
1150 	/*
1151 	 * We update all RUNNABLE tasks only when task groups are in use.
1152 	 * Otherwise, keep it simple and do just a lazy update at each next
1153 	 * task enqueue time.
1154 	 */
1155 
1156 	goto done;
1157 
1158 undo:
1159 	sysctl_sched_uclamp_util_min = old_min;
1160 	sysctl_sched_uclamp_util_max = old_max;
1161 done:
1162 	mutex_unlock(&uclamp_mutex);
1163 
1164 	return result;
1165 }
1166 
1167 static int uclamp_validate(struct task_struct *p,
1168 			   const struct sched_attr *attr)
1169 {
1170 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1172 
1173 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 		lower_bound = attr->sched_util_min;
1175 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 		upper_bound = attr->sched_util_max;
1177 
1178 	if (lower_bound > upper_bound)
1179 		return -EINVAL;
1180 	if (upper_bound > SCHED_CAPACITY_SCALE)
1181 		return -EINVAL;
1182 
1183 	return 0;
1184 }
1185 
1186 static void __setscheduler_uclamp(struct task_struct *p,
1187 				  const struct sched_attr *attr)
1188 {
1189 	enum uclamp_id clamp_id;
1190 
1191 	/*
1192 	 * On scheduling class change, reset to default clamps for tasks
1193 	 * without a task-specific value.
1194 	 */
1195 	for_each_clamp_id(clamp_id) {
1196 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 		unsigned int clamp_value = uclamp_none(clamp_id);
1198 
1199 		/* Keep using defined clamps across class changes */
1200 		if (uc_se->user_defined)
1201 			continue;
1202 
1203 		/* By default, RT tasks always get 100% boost */
1204 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 			clamp_value = uclamp_none(UCLAMP_MAX);
1206 
1207 		uclamp_se_set(uc_se, clamp_value, false);
1208 	}
1209 
1210 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 		return;
1212 
1213 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 			      attr->sched_util_min, true);
1216 	}
1217 
1218 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 			      attr->sched_util_max, true);
1221 	}
1222 }
1223 
1224 static void uclamp_fork(struct task_struct *p)
1225 {
1226 	enum uclamp_id clamp_id;
1227 
1228 	for_each_clamp_id(clamp_id)
1229 		p->uclamp[clamp_id].active = false;
1230 
1231 	if (likely(!p->sched_reset_on_fork))
1232 		return;
1233 
1234 	for_each_clamp_id(clamp_id) {
1235 		unsigned int clamp_value = uclamp_none(clamp_id);
1236 
1237 		/* By default, RT tasks always get 100% boost */
1238 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1239 			clamp_value = uclamp_none(UCLAMP_MAX);
1240 
1241 		uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1242 	}
1243 }
1244 
1245 static void __init init_uclamp(void)
1246 {
1247 	struct uclamp_se uc_max = {};
1248 	enum uclamp_id clamp_id;
1249 	int cpu;
1250 
1251 	mutex_init(&uclamp_mutex);
1252 
1253 	for_each_possible_cpu(cpu) {
1254 		memset(&cpu_rq(cpu)->uclamp, 0,
1255 				sizeof(struct uclamp_rq)*UCLAMP_CNT);
1256 		cpu_rq(cpu)->uclamp_flags = 0;
1257 	}
1258 
1259 	for_each_clamp_id(clamp_id) {
1260 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1261 			      uclamp_none(clamp_id), false);
1262 	}
1263 
1264 	/* System defaults allow max clamp values for both indexes */
1265 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1266 	for_each_clamp_id(clamp_id) {
1267 		uclamp_default[clamp_id] = uc_max;
1268 #ifdef CONFIG_UCLAMP_TASK_GROUP
1269 		root_task_group.uclamp_req[clamp_id] = uc_max;
1270 		root_task_group.uclamp[clamp_id] = uc_max;
1271 #endif
1272 	}
1273 }
1274 
1275 #else /* CONFIG_UCLAMP_TASK */
1276 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1277 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1278 static inline int uclamp_validate(struct task_struct *p,
1279 				  const struct sched_attr *attr)
1280 {
1281 	return -EOPNOTSUPP;
1282 }
1283 static void __setscheduler_uclamp(struct task_struct *p,
1284 				  const struct sched_attr *attr) { }
1285 static inline void uclamp_fork(struct task_struct *p) { }
1286 static inline void init_uclamp(void) { }
1287 #endif /* CONFIG_UCLAMP_TASK */
1288 
1289 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1290 {
1291 	if (!(flags & ENQUEUE_NOCLOCK))
1292 		update_rq_clock(rq);
1293 
1294 	if (!(flags & ENQUEUE_RESTORE)) {
1295 		sched_info_queued(rq, p);
1296 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1297 	}
1298 
1299 	uclamp_rq_inc(rq, p);
1300 	p->sched_class->enqueue_task(rq, p, flags);
1301 }
1302 
1303 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1304 {
1305 	if (!(flags & DEQUEUE_NOCLOCK))
1306 		update_rq_clock(rq);
1307 
1308 	if (!(flags & DEQUEUE_SAVE)) {
1309 		sched_info_dequeued(rq, p);
1310 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1311 	}
1312 
1313 	uclamp_rq_dec(rq, p);
1314 	p->sched_class->dequeue_task(rq, p, flags);
1315 }
1316 
1317 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1318 {
1319 	if (task_contributes_to_load(p))
1320 		rq->nr_uninterruptible--;
1321 
1322 	enqueue_task(rq, p, flags);
1323 
1324 	p->on_rq = TASK_ON_RQ_QUEUED;
1325 }
1326 
1327 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1328 {
1329 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1330 
1331 	if (task_contributes_to_load(p))
1332 		rq->nr_uninterruptible++;
1333 
1334 	dequeue_task(rq, p, flags);
1335 }
1336 
1337 /*
1338  * __normal_prio - return the priority that is based on the static prio
1339  */
1340 static inline int __normal_prio(struct task_struct *p)
1341 {
1342 	return p->static_prio;
1343 }
1344 
1345 /*
1346  * Calculate the expected normal priority: i.e. priority
1347  * without taking RT-inheritance into account. Might be
1348  * boosted by interactivity modifiers. Changes upon fork,
1349  * setprio syscalls, and whenever the interactivity
1350  * estimator recalculates.
1351  */
1352 static inline int normal_prio(struct task_struct *p)
1353 {
1354 	int prio;
1355 
1356 	if (task_has_dl_policy(p))
1357 		prio = MAX_DL_PRIO-1;
1358 	else if (task_has_rt_policy(p))
1359 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1360 	else
1361 		prio = __normal_prio(p);
1362 	return prio;
1363 }
1364 
1365 /*
1366  * Calculate the current priority, i.e. the priority
1367  * taken into account by the scheduler. This value might
1368  * be boosted by RT tasks, or might be boosted by
1369  * interactivity modifiers. Will be RT if the task got
1370  * RT-boosted. If not then it returns p->normal_prio.
1371  */
1372 static int effective_prio(struct task_struct *p)
1373 {
1374 	p->normal_prio = normal_prio(p);
1375 	/*
1376 	 * If we are RT tasks or we were boosted to RT priority,
1377 	 * keep the priority unchanged. Otherwise, update priority
1378 	 * to the normal priority:
1379 	 */
1380 	if (!rt_prio(p->prio))
1381 		return p->normal_prio;
1382 	return p->prio;
1383 }
1384 
1385 /**
1386  * task_curr - is this task currently executing on a CPU?
1387  * @p: the task in question.
1388  *
1389  * Return: 1 if the task is currently executing. 0 otherwise.
1390  */
1391 inline int task_curr(const struct task_struct *p)
1392 {
1393 	return cpu_curr(task_cpu(p)) == p;
1394 }
1395 
1396 /*
1397  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1398  * use the balance_callback list if you want balancing.
1399  *
1400  * this means any call to check_class_changed() must be followed by a call to
1401  * balance_callback().
1402  */
1403 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1404 				       const struct sched_class *prev_class,
1405 				       int oldprio)
1406 {
1407 	if (prev_class != p->sched_class) {
1408 		if (prev_class->switched_from)
1409 			prev_class->switched_from(rq, p);
1410 
1411 		p->sched_class->switched_to(rq, p);
1412 	} else if (oldprio != p->prio || dl_task(p))
1413 		p->sched_class->prio_changed(rq, p, oldprio);
1414 }
1415 
1416 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1417 {
1418 	const struct sched_class *class;
1419 
1420 	if (p->sched_class == rq->curr->sched_class) {
1421 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1422 	} else {
1423 		for_each_class(class) {
1424 			if (class == rq->curr->sched_class)
1425 				break;
1426 			if (class == p->sched_class) {
1427 				resched_curr(rq);
1428 				break;
1429 			}
1430 		}
1431 	}
1432 
1433 	/*
1434 	 * A queue event has occurred, and we're going to schedule.  In
1435 	 * this case, we can save a useless back to back clock update.
1436 	 */
1437 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1438 		rq_clock_skip_update(rq);
1439 }
1440 
1441 #ifdef CONFIG_SMP
1442 
1443 /*
1444  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1445  * __set_cpus_allowed_ptr() and select_fallback_rq().
1446  */
1447 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1448 {
1449 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1450 		return false;
1451 
1452 	if (is_per_cpu_kthread(p))
1453 		return cpu_online(cpu);
1454 
1455 	return cpu_active(cpu);
1456 }
1457 
1458 /*
1459  * This is how migration works:
1460  *
1461  * 1) we invoke migration_cpu_stop() on the target CPU using
1462  *    stop_one_cpu().
1463  * 2) stopper starts to run (implicitly forcing the migrated thread
1464  *    off the CPU)
1465  * 3) it checks whether the migrated task is still in the wrong runqueue.
1466  * 4) if it's in the wrong runqueue then the migration thread removes
1467  *    it and puts it into the right queue.
1468  * 5) stopper completes and stop_one_cpu() returns and the migration
1469  *    is done.
1470  */
1471 
1472 /*
1473  * move_queued_task - move a queued task to new rq.
1474  *
1475  * Returns (locked) new rq. Old rq's lock is released.
1476  */
1477 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1478 				   struct task_struct *p, int new_cpu)
1479 {
1480 	lockdep_assert_held(&rq->lock);
1481 
1482 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1483 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1484 	set_task_cpu(p, new_cpu);
1485 	rq_unlock(rq, rf);
1486 
1487 	rq = cpu_rq(new_cpu);
1488 
1489 	rq_lock(rq, rf);
1490 	BUG_ON(task_cpu(p) != new_cpu);
1491 	enqueue_task(rq, p, 0);
1492 	p->on_rq = TASK_ON_RQ_QUEUED;
1493 	check_preempt_curr(rq, p, 0);
1494 
1495 	return rq;
1496 }
1497 
1498 struct migration_arg {
1499 	struct task_struct *task;
1500 	int dest_cpu;
1501 };
1502 
1503 /*
1504  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1505  * this because either it can't run here any more (set_cpus_allowed()
1506  * away from this CPU, or CPU going down), or because we're
1507  * attempting to rebalance this task on exec (sched_exec).
1508  *
1509  * So we race with normal scheduler movements, but that's OK, as long
1510  * as the task is no longer on this CPU.
1511  */
1512 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1513 				 struct task_struct *p, int dest_cpu)
1514 {
1515 	/* Affinity changed (again). */
1516 	if (!is_cpu_allowed(p, dest_cpu))
1517 		return rq;
1518 
1519 	update_rq_clock(rq);
1520 	rq = move_queued_task(rq, rf, p, dest_cpu);
1521 
1522 	return rq;
1523 }
1524 
1525 /*
1526  * migration_cpu_stop - this will be executed by a highprio stopper thread
1527  * and performs thread migration by bumping thread off CPU then
1528  * 'pushing' onto another runqueue.
1529  */
1530 static int migration_cpu_stop(void *data)
1531 {
1532 	struct migration_arg *arg = data;
1533 	struct task_struct *p = arg->task;
1534 	struct rq *rq = this_rq();
1535 	struct rq_flags rf;
1536 
1537 	/*
1538 	 * The original target CPU might have gone down and we might
1539 	 * be on another CPU but it doesn't matter.
1540 	 */
1541 	local_irq_disable();
1542 	/*
1543 	 * We need to explicitly wake pending tasks before running
1544 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1545 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1546 	 */
1547 	sched_ttwu_pending();
1548 
1549 	raw_spin_lock(&p->pi_lock);
1550 	rq_lock(rq, &rf);
1551 	/*
1552 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1553 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1554 	 * we're holding p->pi_lock.
1555 	 */
1556 	if (task_rq(p) == rq) {
1557 		if (task_on_rq_queued(p))
1558 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1559 		else
1560 			p->wake_cpu = arg->dest_cpu;
1561 	}
1562 	rq_unlock(rq, &rf);
1563 	raw_spin_unlock(&p->pi_lock);
1564 
1565 	local_irq_enable();
1566 	return 0;
1567 }
1568 
1569 /*
1570  * sched_class::set_cpus_allowed must do the below, but is not required to
1571  * actually call this function.
1572  */
1573 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1574 {
1575 	cpumask_copy(&p->cpus_mask, new_mask);
1576 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1577 }
1578 
1579 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1580 {
1581 	struct rq *rq = task_rq(p);
1582 	bool queued, running;
1583 
1584 	lockdep_assert_held(&p->pi_lock);
1585 
1586 	queued = task_on_rq_queued(p);
1587 	running = task_current(rq, p);
1588 
1589 	if (queued) {
1590 		/*
1591 		 * Because __kthread_bind() calls this on blocked tasks without
1592 		 * holding rq->lock.
1593 		 */
1594 		lockdep_assert_held(&rq->lock);
1595 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1596 	}
1597 	if (running)
1598 		put_prev_task(rq, p);
1599 
1600 	p->sched_class->set_cpus_allowed(p, new_mask);
1601 
1602 	if (queued)
1603 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1604 	if (running)
1605 		set_next_task(rq, p);
1606 }
1607 
1608 /*
1609  * Change a given task's CPU affinity. Migrate the thread to a
1610  * proper CPU and schedule it away if the CPU it's executing on
1611  * is removed from the allowed bitmask.
1612  *
1613  * NOTE: the caller must have a valid reference to the task, the
1614  * task must not exit() & deallocate itself prematurely. The
1615  * call is not atomic; no spinlocks may be held.
1616  */
1617 static int __set_cpus_allowed_ptr(struct task_struct *p,
1618 				  const struct cpumask *new_mask, bool check)
1619 {
1620 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1621 	unsigned int dest_cpu;
1622 	struct rq_flags rf;
1623 	struct rq *rq;
1624 	int ret = 0;
1625 
1626 	rq = task_rq_lock(p, &rf);
1627 	update_rq_clock(rq);
1628 
1629 	if (p->flags & PF_KTHREAD) {
1630 		/*
1631 		 * Kernel threads are allowed on online && !active CPUs
1632 		 */
1633 		cpu_valid_mask = cpu_online_mask;
1634 	}
1635 
1636 	/*
1637 	 * Must re-check here, to close a race against __kthread_bind(),
1638 	 * sched_setaffinity() is not guaranteed to observe the flag.
1639 	 */
1640 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1641 		ret = -EINVAL;
1642 		goto out;
1643 	}
1644 
1645 	if (cpumask_equal(p->cpus_ptr, new_mask))
1646 		goto out;
1647 
1648 	/*
1649 	 * Picking a ~random cpu helps in cases where we are changing affinity
1650 	 * for groups of tasks (ie. cpuset), so that load balancing is not
1651 	 * immediately required to distribute the tasks within their new mask.
1652 	 */
1653 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1654 	if (dest_cpu >= nr_cpu_ids) {
1655 		ret = -EINVAL;
1656 		goto out;
1657 	}
1658 
1659 	do_set_cpus_allowed(p, new_mask);
1660 
1661 	if (p->flags & PF_KTHREAD) {
1662 		/*
1663 		 * For kernel threads that do indeed end up on online &&
1664 		 * !active we want to ensure they are strict per-CPU threads.
1665 		 */
1666 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1667 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1668 			p->nr_cpus_allowed != 1);
1669 	}
1670 
1671 	/* Can the task run on the task's current CPU? If so, we're done */
1672 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1673 		goto out;
1674 
1675 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1676 		struct migration_arg arg = { p, dest_cpu };
1677 		/* Need help from migration thread: drop lock and wait. */
1678 		task_rq_unlock(rq, p, &rf);
1679 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1680 		return 0;
1681 	} else if (task_on_rq_queued(p)) {
1682 		/*
1683 		 * OK, since we're going to drop the lock immediately
1684 		 * afterwards anyway.
1685 		 */
1686 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1687 	}
1688 out:
1689 	task_rq_unlock(rq, p, &rf);
1690 
1691 	return ret;
1692 }
1693 
1694 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1695 {
1696 	return __set_cpus_allowed_ptr(p, new_mask, false);
1697 }
1698 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1699 
1700 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1701 {
1702 #ifdef CONFIG_SCHED_DEBUG
1703 	/*
1704 	 * We should never call set_task_cpu() on a blocked task,
1705 	 * ttwu() will sort out the placement.
1706 	 */
1707 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1708 			!p->on_rq);
1709 
1710 	/*
1711 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1712 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1713 	 * time relying on p->on_rq.
1714 	 */
1715 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1716 		     p->sched_class == &fair_sched_class &&
1717 		     (p->on_rq && !task_on_rq_migrating(p)));
1718 
1719 #ifdef CONFIG_LOCKDEP
1720 	/*
1721 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1722 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1723 	 *
1724 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1725 	 * see task_group().
1726 	 *
1727 	 * Furthermore, all task_rq users should acquire both locks, see
1728 	 * task_rq_lock().
1729 	 */
1730 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1731 				      lockdep_is_held(&task_rq(p)->lock)));
1732 #endif
1733 	/*
1734 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1735 	 */
1736 	WARN_ON_ONCE(!cpu_online(new_cpu));
1737 #endif
1738 
1739 	trace_sched_migrate_task(p, new_cpu);
1740 
1741 	if (task_cpu(p) != new_cpu) {
1742 		if (p->sched_class->migrate_task_rq)
1743 			p->sched_class->migrate_task_rq(p, new_cpu);
1744 		p->se.nr_migrations++;
1745 		rseq_migrate(p);
1746 		perf_event_task_migrate(p);
1747 	}
1748 
1749 	__set_task_cpu(p, new_cpu);
1750 }
1751 
1752 #ifdef CONFIG_NUMA_BALANCING
1753 static void __migrate_swap_task(struct task_struct *p, int cpu)
1754 {
1755 	if (task_on_rq_queued(p)) {
1756 		struct rq *src_rq, *dst_rq;
1757 		struct rq_flags srf, drf;
1758 
1759 		src_rq = task_rq(p);
1760 		dst_rq = cpu_rq(cpu);
1761 
1762 		rq_pin_lock(src_rq, &srf);
1763 		rq_pin_lock(dst_rq, &drf);
1764 
1765 		deactivate_task(src_rq, p, 0);
1766 		set_task_cpu(p, cpu);
1767 		activate_task(dst_rq, p, 0);
1768 		check_preempt_curr(dst_rq, p, 0);
1769 
1770 		rq_unpin_lock(dst_rq, &drf);
1771 		rq_unpin_lock(src_rq, &srf);
1772 
1773 	} else {
1774 		/*
1775 		 * Task isn't running anymore; make it appear like we migrated
1776 		 * it before it went to sleep. This means on wakeup we make the
1777 		 * previous CPU our target instead of where it really is.
1778 		 */
1779 		p->wake_cpu = cpu;
1780 	}
1781 }
1782 
1783 struct migration_swap_arg {
1784 	struct task_struct *src_task, *dst_task;
1785 	int src_cpu, dst_cpu;
1786 };
1787 
1788 static int migrate_swap_stop(void *data)
1789 {
1790 	struct migration_swap_arg *arg = data;
1791 	struct rq *src_rq, *dst_rq;
1792 	int ret = -EAGAIN;
1793 
1794 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1795 		return -EAGAIN;
1796 
1797 	src_rq = cpu_rq(arg->src_cpu);
1798 	dst_rq = cpu_rq(arg->dst_cpu);
1799 
1800 	double_raw_lock(&arg->src_task->pi_lock,
1801 			&arg->dst_task->pi_lock);
1802 	double_rq_lock(src_rq, dst_rq);
1803 
1804 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1805 		goto unlock;
1806 
1807 	if (task_cpu(arg->src_task) != arg->src_cpu)
1808 		goto unlock;
1809 
1810 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1811 		goto unlock;
1812 
1813 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1814 		goto unlock;
1815 
1816 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1817 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1818 
1819 	ret = 0;
1820 
1821 unlock:
1822 	double_rq_unlock(src_rq, dst_rq);
1823 	raw_spin_unlock(&arg->dst_task->pi_lock);
1824 	raw_spin_unlock(&arg->src_task->pi_lock);
1825 
1826 	return ret;
1827 }
1828 
1829 /*
1830  * Cross migrate two tasks
1831  */
1832 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1833 		int target_cpu, int curr_cpu)
1834 {
1835 	struct migration_swap_arg arg;
1836 	int ret = -EINVAL;
1837 
1838 	arg = (struct migration_swap_arg){
1839 		.src_task = cur,
1840 		.src_cpu = curr_cpu,
1841 		.dst_task = p,
1842 		.dst_cpu = target_cpu,
1843 	};
1844 
1845 	if (arg.src_cpu == arg.dst_cpu)
1846 		goto out;
1847 
1848 	/*
1849 	 * These three tests are all lockless; this is OK since all of them
1850 	 * will be re-checked with proper locks held further down the line.
1851 	 */
1852 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1853 		goto out;
1854 
1855 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1856 		goto out;
1857 
1858 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1859 		goto out;
1860 
1861 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1862 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1863 
1864 out:
1865 	return ret;
1866 }
1867 #endif /* CONFIG_NUMA_BALANCING */
1868 
1869 /*
1870  * wait_task_inactive - wait for a thread to unschedule.
1871  *
1872  * If @match_state is nonzero, it's the @p->state value just checked and
1873  * not expected to change.  If it changes, i.e. @p might have woken up,
1874  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1875  * we return a positive number (its total switch count).  If a second call
1876  * a short while later returns the same number, the caller can be sure that
1877  * @p has remained unscheduled the whole time.
1878  *
1879  * The caller must ensure that the task *will* unschedule sometime soon,
1880  * else this function might spin for a *long* time. This function can't
1881  * be called with interrupts off, or it may introduce deadlock with
1882  * smp_call_function() if an IPI is sent by the same process we are
1883  * waiting to become inactive.
1884  */
1885 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1886 {
1887 	int running, queued;
1888 	struct rq_flags rf;
1889 	unsigned long ncsw;
1890 	struct rq *rq;
1891 
1892 	for (;;) {
1893 		/*
1894 		 * We do the initial early heuristics without holding
1895 		 * any task-queue locks at all. We'll only try to get
1896 		 * the runqueue lock when things look like they will
1897 		 * work out!
1898 		 */
1899 		rq = task_rq(p);
1900 
1901 		/*
1902 		 * If the task is actively running on another CPU
1903 		 * still, just relax and busy-wait without holding
1904 		 * any locks.
1905 		 *
1906 		 * NOTE! Since we don't hold any locks, it's not
1907 		 * even sure that "rq" stays as the right runqueue!
1908 		 * But we don't care, since "task_running()" will
1909 		 * return false if the runqueue has changed and p
1910 		 * is actually now running somewhere else!
1911 		 */
1912 		while (task_running(rq, p)) {
1913 			if (match_state && unlikely(p->state != match_state))
1914 				return 0;
1915 			cpu_relax();
1916 		}
1917 
1918 		/*
1919 		 * Ok, time to look more closely! We need the rq
1920 		 * lock now, to be *sure*. If we're wrong, we'll
1921 		 * just go back and repeat.
1922 		 */
1923 		rq = task_rq_lock(p, &rf);
1924 		trace_sched_wait_task(p);
1925 		running = task_running(rq, p);
1926 		queued = task_on_rq_queued(p);
1927 		ncsw = 0;
1928 		if (!match_state || p->state == match_state)
1929 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1930 		task_rq_unlock(rq, p, &rf);
1931 
1932 		/*
1933 		 * If it changed from the expected state, bail out now.
1934 		 */
1935 		if (unlikely(!ncsw))
1936 			break;
1937 
1938 		/*
1939 		 * Was it really running after all now that we
1940 		 * checked with the proper locks actually held?
1941 		 *
1942 		 * Oops. Go back and try again..
1943 		 */
1944 		if (unlikely(running)) {
1945 			cpu_relax();
1946 			continue;
1947 		}
1948 
1949 		/*
1950 		 * It's not enough that it's not actively running,
1951 		 * it must be off the runqueue _entirely_, and not
1952 		 * preempted!
1953 		 *
1954 		 * So if it was still runnable (but just not actively
1955 		 * running right now), it's preempted, and we should
1956 		 * yield - it could be a while.
1957 		 */
1958 		if (unlikely(queued)) {
1959 			ktime_t to = NSEC_PER_SEC / HZ;
1960 
1961 			set_current_state(TASK_UNINTERRUPTIBLE);
1962 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1963 			continue;
1964 		}
1965 
1966 		/*
1967 		 * Ahh, all good. It wasn't running, and it wasn't
1968 		 * runnable, which means that it will never become
1969 		 * running in the future either. We're all done!
1970 		 */
1971 		break;
1972 	}
1973 
1974 	return ncsw;
1975 }
1976 
1977 /***
1978  * kick_process - kick a running thread to enter/exit the kernel
1979  * @p: the to-be-kicked thread
1980  *
1981  * Cause a process which is running on another CPU to enter
1982  * kernel-mode, without any delay. (to get signals handled.)
1983  *
1984  * NOTE: this function doesn't have to take the runqueue lock,
1985  * because all it wants to ensure is that the remote task enters
1986  * the kernel. If the IPI races and the task has been migrated
1987  * to another CPU then no harm is done and the purpose has been
1988  * achieved as well.
1989  */
1990 void kick_process(struct task_struct *p)
1991 {
1992 	int cpu;
1993 
1994 	preempt_disable();
1995 	cpu = task_cpu(p);
1996 	if ((cpu != smp_processor_id()) && task_curr(p))
1997 		smp_send_reschedule(cpu);
1998 	preempt_enable();
1999 }
2000 EXPORT_SYMBOL_GPL(kick_process);
2001 
2002 /*
2003  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2004  *
2005  * A few notes on cpu_active vs cpu_online:
2006  *
2007  *  - cpu_active must be a subset of cpu_online
2008  *
2009  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2010  *    see __set_cpus_allowed_ptr(). At this point the newly online
2011  *    CPU isn't yet part of the sched domains, and balancing will not
2012  *    see it.
2013  *
2014  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2015  *    avoid the load balancer to place new tasks on the to be removed
2016  *    CPU. Existing tasks will remain running there and will be taken
2017  *    off.
2018  *
2019  * This means that fallback selection must not select !active CPUs.
2020  * And can assume that any active CPU must be online. Conversely
2021  * select_task_rq() below may allow selection of !active CPUs in order
2022  * to satisfy the above rules.
2023  */
2024 static int select_fallback_rq(int cpu, struct task_struct *p)
2025 {
2026 	int nid = cpu_to_node(cpu);
2027 	const struct cpumask *nodemask = NULL;
2028 	enum { cpuset, possible, fail } state = cpuset;
2029 	int dest_cpu;
2030 
2031 	/*
2032 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2033 	 * will return -1. There is no CPU on the node, and we should
2034 	 * select the CPU on the other node.
2035 	 */
2036 	if (nid != -1) {
2037 		nodemask = cpumask_of_node(nid);
2038 
2039 		/* Look for allowed, online CPU in same node. */
2040 		for_each_cpu(dest_cpu, nodemask) {
2041 			if (!cpu_active(dest_cpu))
2042 				continue;
2043 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2044 				return dest_cpu;
2045 		}
2046 	}
2047 
2048 	for (;;) {
2049 		/* Any allowed, online CPU? */
2050 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2051 			if (!is_cpu_allowed(p, dest_cpu))
2052 				continue;
2053 
2054 			goto out;
2055 		}
2056 
2057 		/* No more Mr. Nice Guy. */
2058 		switch (state) {
2059 		case cpuset:
2060 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2061 				cpuset_cpus_allowed_fallback(p);
2062 				state = possible;
2063 				break;
2064 			}
2065 			/* Fall-through */
2066 		case possible:
2067 			do_set_cpus_allowed(p, cpu_possible_mask);
2068 			state = fail;
2069 			break;
2070 
2071 		case fail:
2072 			BUG();
2073 			break;
2074 		}
2075 	}
2076 
2077 out:
2078 	if (state != cpuset) {
2079 		/*
2080 		 * Don't tell them about moving exiting tasks or
2081 		 * kernel threads (both mm NULL), since they never
2082 		 * leave kernel.
2083 		 */
2084 		if (p->mm && printk_ratelimit()) {
2085 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2086 					task_pid_nr(p), p->comm, cpu);
2087 		}
2088 	}
2089 
2090 	return dest_cpu;
2091 }
2092 
2093 /*
2094  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2095  */
2096 static inline
2097 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2098 {
2099 	lockdep_assert_held(&p->pi_lock);
2100 
2101 	if (p->nr_cpus_allowed > 1)
2102 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2103 	else
2104 		cpu = cpumask_any(p->cpus_ptr);
2105 
2106 	/*
2107 	 * In order not to call set_task_cpu() on a blocking task we need
2108 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2109 	 * CPU.
2110 	 *
2111 	 * Since this is common to all placement strategies, this lives here.
2112 	 *
2113 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2114 	 *   not worry about this generic constraint ]
2115 	 */
2116 	if (unlikely(!is_cpu_allowed(p, cpu)))
2117 		cpu = select_fallback_rq(task_cpu(p), p);
2118 
2119 	return cpu;
2120 }
2121 
2122 void sched_set_stop_task(int cpu, struct task_struct *stop)
2123 {
2124 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2125 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2126 
2127 	if (stop) {
2128 		/*
2129 		 * Make it appear like a SCHED_FIFO task, its something
2130 		 * userspace knows about and won't get confused about.
2131 		 *
2132 		 * Also, it will make PI more or less work without too
2133 		 * much confusion -- but then, stop work should not
2134 		 * rely on PI working anyway.
2135 		 */
2136 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2137 
2138 		stop->sched_class = &stop_sched_class;
2139 	}
2140 
2141 	cpu_rq(cpu)->stop = stop;
2142 
2143 	if (old_stop) {
2144 		/*
2145 		 * Reset it back to a normal scheduling class so that
2146 		 * it can die in pieces.
2147 		 */
2148 		old_stop->sched_class = &rt_sched_class;
2149 	}
2150 }
2151 
2152 #else
2153 
2154 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2155 					 const struct cpumask *new_mask, bool check)
2156 {
2157 	return set_cpus_allowed_ptr(p, new_mask);
2158 }
2159 
2160 #endif /* CONFIG_SMP */
2161 
2162 static void
2163 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2164 {
2165 	struct rq *rq;
2166 
2167 	if (!schedstat_enabled())
2168 		return;
2169 
2170 	rq = this_rq();
2171 
2172 #ifdef CONFIG_SMP
2173 	if (cpu == rq->cpu) {
2174 		__schedstat_inc(rq->ttwu_local);
2175 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2176 	} else {
2177 		struct sched_domain *sd;
2178 
2179 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2180 		rcu_read_lock();
2181 		for_each_domain(rq->cpu, sd) {
2182 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2183 				__schedstat_inc(sd->ttwu_wake_remote);
2184 				break;
2185 			}
2186 		}
2187 		rcu_read_unlock();
2188 	}
2189 
2190 	if (wake_flags & WF_MIGRATED)
2191 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2192 #endif /* CONFIG_SMP */
2193 
2194 	__schedstat_inc(rq->ttwu_count);
2195 	__schedstat_inc(p->se.statistics.nr_wakeups);
2196 
2197 	if (wake_flags & WF_SYNC)
2198 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2199 }
2200 
2201 /*
2202  * Mark the task runnable and perform wakeup-preemption.
2203  */
2204 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2205 			   struct rq_flags *rf)
2206 {
2207 	check_preempt_curr(rq, p, wake_flags);
2208 	p->state = TASK_RUNNING;
2209 	trace_sched_wakeup(p);
2210 
2211 #ifdef CONFIG_SMP
2212 	if (p->sched_class->task_woken) {
2213 		/*
2214 		 * Our task @p is fully woken up and running; so its safe to
2215 		 * drop the rq->lock, hereafter rq is only used for statistics.
2216 		 */
2217 		rq_unpin_lock(rq, rf);
2218 		p->sched_class->task_woken(rq, p);
2219 		rq_repin_lock(rq, rf);
2220 	}
2221 
2222 	if (rq->idle_stamp) {
2223 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2224 		u64 max = 2*rq->max_idle_balance_cost;
2225 
2226 		update_avg(&rq->avg_idle, delta);
2227 
2228 		if (rq->avg_idle > max)
2229 			rq->avg_idle = max;
2230 
2231 		rq->idle_stamp = 0;
2232 	}
2233 #endif
2234 }
2235 
2236 static void
2237 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2238 		 struct rq_flags *rf)
2239 {
2240 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2241 
2242 	lockdep_assert_held(&rq->lock);
2243 
2244 #ifdef CONFIG_SMP
2245 	if (p->sched_contributes_to_load)
2246 		rq->nr_uninterruptible--;
2247 
2248 	if (wake_flags & WF_MIGRATED)
2249 		en_flags |= ENQUEUE_MIGRATED;
2250 #endif
2251 
2252 	activate_task(rq, p, en_flags);
2253 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2254 }
2255 
2256 /*
2257  * Called in case the task @p isn't fully descheduled from its runqueue,
2258  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2259  * since all we need to do is flip p->state to TASK_RUNNING, since
2260  * the task is still ->on_rq.
2261  */
2262 static int ttwu_remote(struct task_struct *p, int wake_flags)
2263 {
2264 	struct rq_flags rf;
2265 	struct rq *rq;
2266 	int ret = 0;
2267 
2268 	rq = __task_rq_lock(p, &rf);
2269 	if (task_on_rq_queued(p)) {
2270 		/* check_preempt_curr() may use rq clock */
2271 		update_rq_clock(rq);
2272 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2273 		ret = 1;
2274 	}
2275 	__task_rq_unlock(rq, &rf);
2276 
2277 	return ret;
2278 }
2279 
2280 #ifdef CONFIG_SMP
2281 void sched_ttwu_pending(void)
2282 {
2283 	struct rq *rq = this_rq();
2284 	struct llist_node *llist = llist_del_all(&rq->wake_list);
2285 	struct task_struct *p, *t;
2286 	struct rq_flags rf;
2287 
2288 	if (!llist)
2289 		return;
2290 
2291 	rq_lock_irqsave(rq, &rf);
2292 	update_rq_clock(rq);
2293 
2294 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2295 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2296 
2297 	rq_unlock_irqrestore(rq, &rf);
2298 }
2299 
2300 void scheduler_ipi(void)
2301 {
2302 	/*
2303 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2304 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2305 	 * this IPI.
2306 	 */
2307 	preempt_fold_need_resched();
2308 
2309 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2310 		return;
2311 
2312 	/*
2313 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2314 	 * traditionally all their work was done from the interrupt return
2315 	 * path. Now that we actually do some work, we need to make sure
2316 	 * we do call them.
2317 	 *
2318 	 * Some archs already do call them, luckily irq_enter/exit nest
2319 	 * properly.
2320 	 *
2321 	 * Arguably we should visit all archs and update all handlers,
2322 	 * however a fair share of IPIs are still resched only so this would
2323 	 * somewhat pessimize the simple resched case.
2324 	 */
2325 	irq_enter();
2326 	sched_ttwu_pending();
2327 
2328 	/*
2329 	 * Check if someone kicked us for doing the nohz idle load balance.
2330 	 */
2331 	if (unlikely(got_nohz_idle_kick())) {
2332 		this_rq()->idle_balance = 1;
2333 		raise_softirq_irqoff(SCHED_SOFTIRQ);
2334 	}
2335 	irq_exit();
2336 }
2337 
2338 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2339 {
2340 	struct rq *rq = cpu_rq(cpu);
2341 
2342 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2343 
2344 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2345 		if (!set_nr_if_polling(rq->idle))
2346 			smp_send_reschedule(cpu);
2347 		else
2348 			trace_sched_wake_idle_without_ipi(cpu);
2349 	}
2350 }
2351 
2352 void wake_up_if_idle(int cpu)
2353 {
2354 	struct rq *rq = cpu_rq(cpu);
2355 	struct rq_flags rf;
2356 
2357 	rcu_read_lock();
2358 
2359 	if (!is_idle_task(rcu_dereference(rq->curr)))
2360 		goto out;
2361 
2362 	if (set_nr_if_polling(rq->idle)) {
2363 		trace_sched_wake_idle_without_ipi(cpu);
2364 	} else {
2365 		rq_lock_irqsave(rq, &rf);
2366 		if (is_idle_task(rq->curr))
2367 			smp_send_reschedule(cpu);
2368 		/* Else CPU is not idle, do nothing here: */
2369 		rq_unlock_irqrestore(rq, &rf);
2370 	}
2371 
2372 out:
2373 	rcu_read_unlock();
2374 }
2375 
2376 bool cpus_share_cache(int this_cpu, int that_cpu)
2377 {
2378 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2379 }
2380 #endif /* CONFIG_SMP */
2381 
2382 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2383 {
2384 	struct rq *rq = cpu_rq(cpu);
2385 	struct rq_flags rf;
2386 
2387 #if defined(CONFIG_SMP)
2388 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2389 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2390 		ttwu_queue_remote(p, cpu, wake_flags);
2391 		return;
2392 	}
2393 #endif
2394 
2395 	rq_lock(rq, &rf);
2396 	update_rq_clock(rq);
2397 	ttwu_do_activate(rq, p, wake_flags, &rf);
2398 	rq_unlock(rq, &rf);
2399 }
2400 
2401 /*
2402  * Notes on Program-Order guarantees on SMP systems.
2403  *
2404  *  MIGRATION
2405  *
2406  * The basic program-order guarantee on SMP systems is that when a task [t]
2407  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2408  * execution on its new CPU [c1].
2409  *
2410  * For migration (of runnable tasks) this is provided by the following means:
2411  *
2412  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2413  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2414  *     rq(c1)->lock (if not at the same time, then in that order).
2415  *  C) LOCK of the rq(c1)->lock scheduling in task
2416  *
2417  * Release/acquire chaining guarantees that B happens after A and C after B.
2418  * Note: the CPU doing B need not be c0 or c1
2419  *
2420  * Example:
2421  *
2422  *   CPU0            CPU1            CPU2
2423  *
2424  *   LOCK rq(0)->lock
2425  *   sched-out X
2426  *   sched-in Y
2427  *   UNLOCK rq(0)->lock
2428  *
2429  *                                   LOCK rq(0)->lock // orders against CPU0
2430  *                                   dequeue X
2431  *                                   UNLOCK rq(0)->lock
2432  *
2433  *                                   LOCK rq(1)->lock
2434  *                                   enqueue X
2435  *                                   UNLOCK rq(1)->lock
2436  *
2437  *                   LOCK rq(1)->lock // orders against CPU2
2438  *                   sched-out Z
2439  *                   sched-in X
2440  *                   UNLOCK rq(1)->lock
2441  *
2442  *
2443  *  BLOCKING -- aka. SLEEP + WAKEUP
2444  *
2445  * For blocking we (obviously) need to provide the same guarantee as for
2446  * migration. However the means are completely different as there is no lock
2447  * chain to provide order. Instead we do:
2448  *
2449  *   1) smp_store_release(X->on_cpu, 0)
2450  *   2) smp_cond_load_acquire(!X->on_cpu)
2451  *
2452  * Example:
2453  *
2454  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2455  *
2456  *   LOCK rq(0)->lock LOCK X->pi_lock
2457  *   dequeue X
2458  *   sched-out X
2459  *   smp_store_release(X->on_cpu, 0);
2460  *
2461  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2462  *                    X->state = WAKING
2463  *                    set_task_cpu(X,2)
2464  *
2465  *                    LOCK rq(2)->lock
2466  *                    enqueue X
2467  *                    X->state = RUNNING
2468  *                    UNLOCK rq(2)->lock
2469  *
2470  *                                          LOCK rq(2)->lock // orders against CPU1
2471  *                                          sched-out Z
2472  *                                          sched-in X
2473  *                                          UNLOCK rq(2)->lock
2474  *
2475  *                    UNLOCK X->pi_lock
2476  *   UNLOCK rq(0)->lock
2477  *
2478  *
2479  * However, for wakeups there is a second guarantee we must provide, namely we
2480  * must ensure that CONDITION=1 done by the caller can not be reordered with
2481  * accesses to the task state; see try_to_wake_up() and set_current_state().
2482  */
2483 
2484 /**
2485  * try_to_wake_up - wake up a thread
2486  * @p: the thread to be awakened
2487  * @state: the mask of task states that can be woken
2488  * @wake_flags: wake modifier flags (WF_*)
2489  *
2490  * If (@state & @p->state) @p->state = TASK_RUNNING.
2491  *
2492  * If the task was not queued/runnable, also place it back on a runqueue.
2493  *
2494  * Atomic against schedule() which would dequeue a task, also see
2495  * set_current_state().
2496  *
2497  * This function executes a full memory barrier before accessing the task
2498  * state; see set_current_state().
2499  *
2500  * Return: %true if @p->state changes (an actual wakeup was done),
2501  *	   %false otherwise.
2502  */
2503 static int
2504 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2505 {
2506 	unsigned long flags;
2507 	int cpu, success = 0;
2508 
2509 	preempt_disable();
2510 	if (p == current) {
2511 		/*
2512 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2513 		 * == smp_processor_id()'. Together this means we can special
2514 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2515 		 * without taking any locks.
2516 		 *
2517 		 * In particular:
2518 		 *  - we rely on Program-Order guarantees for all the ordering,
2519 		 *  - we're serialized against set_special_state() by virtue of
2520 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2521 		 */
2522 		if (!(p->state & state))
2523 			goto out;
2524 
2525 		success = 1;
2526 		cpu = task_cpu(p);
2527 		trace_sched_waking(p);
2528 		p->state = TASK_RUNNING;
2529 		trace_sched_wakeup(p);
2530 		goto out;
2531 	}
2532 
2533 	/*
2534 	 * If we are going to wake up a thread waiting for CONDITION we
2535 	 * need to ensure that CONDITION=1 done by the caller can not be
2536 	 * reordered with p->state check below. This pairs with mb() in
2537 	 * set_current_state() the waiting thread does.
2538 	 */
2539 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2540 	smp_mb__after_spinlock();
2541 	if (!(p->state & state))
2542 		goto unlock;
2543 
2544 	trace_sched_waking(p);
2545 
2546 	/* We're going to change ->state: */
2547 	success = 1;
2548 	cpu = task_cpu(p);
2549 
2550 	/*
2551 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2552 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2553 	 * in smp_cond_load_acquire() below.
2554 	 *
2555 	 * sched_ttwu_pending()			try_to_wake_up()
2556 	 *   STORE p->on_rq = 1			  LOAD p->state
2557 	 *   UNLOCK rq->lock
2558 	 *
2559 	 * __schedule() (switch to task 'p')
2560 	 *   LOCK rq->lock			  smp_rmb();
2561 	 *   smp_mb__after_spinlock();
2562 	 *   UNLOCK rq->lock
2563 	 *
2564 	 * [task p]
2565 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2566 	 *
2567 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2568 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2569 	 */
2570 	smp_rmb();
2571 	if (p->on_rq && ttwu_remote(p, wake_flags))
2572 		goto unlock;
2573 
2574 #ifdef CONFIG_SMP
2575 	/*
2576 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2577 	 * possible to, falsely, observe p->on_cpu == 0.
2578 	 *
2579 	 * One must be running (->on_cpu == 1) in order to remove oneself
2580 	 * from the runqueue.
2581 	 *
2582 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2583 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2584 	 *   UNLOCK rq->lock
2585 	 *
2586 	 * __schedule() (put 'p' to sleep)
2587 	 *   LOCK rq->lock			  smp_rmb();
2588 	 *   smp_mb__after_spinlock();
2589 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2590 	 *
2591 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2592 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2593 	 */
2594 	smp_rmb();
2595 
2596 	/*
2597 	 * If the owning (remote) CPU is still in the middle of schedule() with
2598 	 * this task as prev, wait until its done referencing the task.
2599 	 *
2600 	 * Pairs with the smp_store_release() in finish_task().
2601 	 *
2602 	 * This ensures that tasks getting woken will be fully ordered against
2603 	 * their previous state and preserve Program Order.
2604 	 */
2605 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2606 
2607 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2608 	p->state = TASK_WAKING;
2609 
2610 	if (p->in_iowait) {
2611 		delayacct_blkio_end(p);
2612 		atomic_dec(&task_rq(p)->nr_iowait);
2613 	}
2614 
2615 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2616 	if (task_cpu(p) != cpu) {
2617 		wake_flags |= WF_MIGRATED;
2618 		psi_ttwu_dequeue(p);
2619 		set_task_cpu(p, cpu);
2620 	}
2621 
2622 #else /* CONFIG_SMP */
2623 
2624 	if (p->in_iowait) {
2625 		delayacct_blkio_end(p);
2626 		atomic_dec(&task_rq(p)->nr_iowait);
2627 	}
2628 
2629 #endif /* CONFIG_SMP */
2630 
2631 	ttwu_queue(p, cpu, wake_flags);
2632 unlock:
2633 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2634 out:
2635 	if (success)
2636 		ttwu_stat(p, cpu, wake_flags);
2637 	preempt_enable();
2638 
2639 	return success;
2640 }
2641 
2642 /**
2643  * wake_up_process - Wake up a specific process
2644  * @p: The process to be woken up.
2645  *
2646  * Attempt to wake up the nominated process and move it to the set of runnable
2647  * processes.
2648  *
2649  * Return: 1 if the process was woken up, 0 if it was already running.
2650  *
2651  * This function executes a full memory barrier before accessing the task state.
2652  */
2653 int wake_up_process(struct task_struct *p)
2654 {
2655 	return try_to_wake_up(p, TASK_NORMAL, 0);
2656 }
2657 EXPORT_SYMBOL(wake_up_process);
2658 
2659 int wake_up_state(struct task_struct *p, unsigned int state)
2660 {
2661 	return try_to_wake_up(p, state, 0);
2662 }
2663 
2664 /*
2665  * Perform scheduler related setup for a newly forked process p.
2666  * p is forked by current.
2667  *
2668  * __sched_fork() is basic setup used by init_idle() too:
2669  */
2670 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2671 {
2672 	p->on_rq			= 0;
2673 
2674 	p->se.on_rq			= 0;
2675 	p->se.exec_start		= 0;
2676 	p->se.sum_exec_runtime		= 0;
2677 	p->se.prev_sum_exec_runtime	= 0;
2678 	p->se.nr_migrations		= 0;
2679 	p->se.vruntime			= 0;
2680 	INIT_LIST_HEAD(&p->se.group_node);
2681 
2682 #ifdef CONFIG_FAIR_GROUP_SCHED
2683 	p->se.cfs_rq			= NULL;
2684 #endif
2685 
2686 #ifdef CONFIG_SCHEDSTATS
2687 	/* Even if schedstat is disabled, there should not be garbage */
2688 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2689 #endif
2690 
2691 	RB_CLEAR_NODE(&p->dl.rb_node);
2692 	init_dl_task_timer(&p->dl);
2693 	init_dl_inactive_task_timer(&p->dl);
2694 	__dl_clear_params(p);
2695 
2696 	INIT_LIST_HEAD(&p->rt.run_list);
2697 	p->rt.timeout		= 0;
2698 	p->rt.time_slice	= sched_rr_timeslice;
2699 	p->rt.on_rq		= 0;
2700 	p->rt.on_list		= 0;
2701 
2702 #ifdef CONFIG_PREEMPT_NOTIFIERS
2703 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2704 #endif
2705 
2706 #ifdef CONFIG_COMPACTION
2707 	p->capture_control = NULL;
2708 #endif
2709 	init_numa_balancing(clone_flags, p);
2710 }
2711 
2712 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2713 
2714 #ifdef CONFIG_NUMA_BALANCING
2715 
2716 void set_numabalancing_state(bool enabled)
2717 {
2718 	if (enabled)
2719 		static_branch_enable(&sched_numa_balancing);
2720 	else
2721 		static_branch_disable(&sched_numa_balancing);
2722 }
2723 
2724 #ifdef CONFIG_PROC_SYSCTL
2725 int sysctl_numa_balancing(struct ctl_table *table, int write,
2726 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2727 {
2728 	struct ctl_table t;
2729 	int err;
2730 	int state = static_branch_likely(&sched_numa_balancing);
2731 
2732 	if (write && !capable(CAP_SYS_ADMIN))
2733 		return -EPERM;
2734 
2735 	t = *table;
2736 	t.data = &state;
2737 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2738 	if (err < 0)
2739 		return err;
2740 	if (write)
2741 		set_numabalancing_state(state);
2742 	return err;
2743 }
2744 #endif
2745 #endif
2746 
2747 #ifdef CONFIG_SCHEDSTATS
2748 
2749 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2750 static bool __initdata __sched_schedstats = false;
2751 
2752 static void set_schedstats(bool enabled)
2753 {
2754 	if (enabled)
2755 		static_branch_enable(&sched_schedstats);
2756 	else
2757 		static_branch_disable(&sched_schedstats);
2758 }
2759 
2760 void force_schedstat_enabled(void)
2761 {
2762 	if (!schedstat_enabled()) {
2763 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2764 		static_branch_enable(&sched_schedstats);
2765 	}
2766 }
2767 
2768 static int __init setup_schedstats(char *str)
2769 {
2770 	int ret = 0;
2771 	if (!str)
2772 		goto out;
2773 
2774 	/*
2775 	 * This code is called before jump labels have been set up, so we can't
2776 	 * change the static branch directly just yet.  Instead set a temporary
2777 	 * variable so init_schedstats() can do it later.
2778 	 */
2779 	if (!strcmp(str, "enable")) {
2780 		__sched_schedstats = true;
2781 		ret = 1;
2782 	} else if (!strcmp(str, "disable")) {
2783 		__sched_schedstats = false;
2784 		ret = 1;
2785 	}
2786 out:
2787 	if (!ret)
2788 		pr_warn("Unable to parse schedstats=\n");
2789 
2790 	return ret;
2791 }
2792 __setup("schedstats=", setup_schedstats);
2793 
2794 static void __init init_schedstats(void)
2795 {
2796 	set_schedstats(__sched_schedstats);
2797 }
2798 
2799 #ifdef CONFIG_PROC_SYSCTL
2800 int sysctl_schedstats(struct ctl_table *table, int write,
2801 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2802 {
2803 	struct ctl_table t;
2804 	int err;
2805 	int state = static_branch_likely(&sched_schedstats);
2806 
2807 	if (write && !capable(CAP_SYS_ADMIN))
2808 		return -EPERM;
2809 
2810 	t = *table;
2811 	t.data = &state;
2812 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2813 	if (err < 0)
2814 		return err;
2815 	if (write)
2816 		set_schedstats(state);
2817 	return err;
2818 }
2819 #endif /* CONFIG_PROC_SYSCTL */
2820 #else  /* !CONFIG_SCHEDSTATS */
2821 static inline void init_schedstats(void) {}
2822 #endif /* CONFIG_SCHEDSTATS */
2823 
2824 /*
2825  * fork()/clone()-time setup:
2826  */
2827 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2828 {
2829 	unsigned long flags;
2830 
2831 	__sched_fork(clone_flags, p);
2832 	/*
2833 	 * We mark the process as NEW here. This guarantees that
2834 	 * nobody will actually run it, and a signal or other external
2835 	 * event cannot wake it up and insert it on the runqueue either.
2836 	 */
2837 	p->state = TASK_NEW;
2838 
2839 	/*
2840 	 * Make sure we do not leak PI boosting priority to the child.
2841 	 */
2842 	p->prio = current->normal_prio;
2843 
2844 	uclamp_fork(p);
2845 
2846 	/*
2847 	 * Revert to default priority/policy on fork if requested.
2848 	 */
2849 	if (unlikely(p->sched_reset_on_fork)) {
2850 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2851 			p->policy = SCHED_NORMAL;
2852 			p->static_prio = NICE_TO_PRIO(0);
2853 			p->rt_priority = 0;
2854 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2855 			p->static_prio = NICE_TO_PRIO(0);
2856 
2857 		p->prio = p->normal_prio = __normal_prio(p);
2858 		set_load_weight(p, false);
2859 
2860 		/*
2861 		 * We don't need the reset flag anymore after the fork. It has
2862 		 * fulfilled its duty:
2863 		 */
2864 		p->sched_reset_on_fork = 0;
2865 	}
2866 
2867 	if (dl_prio(p->prio))
2868 		return -EAGAIN;
2869 	else if (rt_prio(p->prio))
2870 		p->sched_class = &rt_sched_class;
2871 	else
2872 		p->sched_class = &fair_sched_class;
2873 
2874 	init_entity_runnable_average(&p->se);
2875 
2876 	/*
2877 	 * The child is not yet in the pid-hash so no cgroup attach races,
2878 	 * and the cgroup is pinned to this child due to cgroup_fork()
2879 	 * is ran before sched_fork().
2880 	 *
2881 	 * Silence PROVE_RCU.
2882 	 */
2883 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2884 	/*
2885 	 * We're setting the CPU for the first time, we don't migrate,
2886 	 * so use __set_task_cpu().
2887 	 */
2888 	__set_task_cpu(p, smp_processor_id());
2889 	if (p->sched_class->task_fork)
2890 		p->sched_class->task_fork(p);
2891 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2892 
2893 #ifdef CONFIG_SCHED_INFO
2894 	if (likely(sched_info_on()))
2895 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2896 #endif
2897 #if defined(CONFIG_SMP)
2898 	p->on_cpu = 0;
2899 #endif
2900 	init_task_preempt_count(p);
2901 #ifdef CONFIG_SMP
2902 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2903 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2904 #endif
2905 	return 0;
2906 }
2907 
2908 unsigned long to_ratio(u64 period, u64 runtime)
2909 {
2910 	if (runtime == RUNTIME_INF)
2911 		return BW_UNIT;
2912 
2913 	/*
2914 	 * Doing this here saves a lot of checks in all
2915 	 * the calling paths, and returning zero seems
2916 	 * safe for them anyway.
2917 	 */
2918 	if (period == 0)
2919 		return 0;
2920 
2921 	return div64_u64(runtime << BW_SHIFT, period);
2922 }
2923 
2924 /*
2925  * wake_up_new_task - wake up a newly created task for the first time.
2926  *
2927  * This function will do some initial scheduler statistics housekeeping
2928  * that must be done for every newly created context, then puts the task
2929  * on the runqueue and wakes it.
2930  */
2931 void wake_up_new_task(struct task_struct *p)
2932 {
2933 	struct rq_flags rf;
2934 	struct rq *rq;
2935 
2936 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2937 	p->state = TASK_RUNNING;
2938 #ifdef CONFIG_SMP
2939 	/*
2940 	 * Fork balancing, do it here and not earlier because:
2941 	 *  - cpus_ptr can change in the fork path
2942 	 *  - any previously selected CPU might disappear through hotplug
2943 	 *
2944 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2945 	 * as we're not fully set-up yet.
2946 	 */
2947 	p->recent_used_cpu = task_cpu(p);
2948 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2949 #endif
2950 	rq = __task_rq_lock(p, &rf);
2951 	update_rq_clock(rq);
2952 	post_init_entity_util_avg(p);
2953 
2954 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2955 	trace_sched_wakeup_new(p);
2956 	check_preempt_curr(rq, p, WF_FORK);
2957 #ifdef CONFIG_SMP
2958 	if (p->sched_class->task_woken) {
2959 		/*
2960 		 * Nothing relies on rq->lock after this, so its fine to
2961 		 * drop it.
2962 		 */
2963 		rq_unpin_lock(rq, &rf);
2964 		p->sched_class->task_woken(rq, p);
2965 		rq_repin_lock(rq, &rf);
2966 	}
2967 #endif
2968 	task_rq_unlock(rq, p, &rf);
2969 }
2970 
2971 #ifdef CONFIG_PREEMPT_NOTIFIERS
2972 
2973 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2974 
2975 void preempt_notifier_inc(void)
2976 {
2977 	static_branch_inc(&preempt_notifier_key);
2978 }
2979 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2980 
2981 void preempt_notifier_dec(void)
2982 {
2983 	static_branch_dec(&preempt_notifier_key);
2984 }
2985 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2986 
2987 /**
2988  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2989  * @notifier: notifier struct to register
2990  */
2991 void preempt_notifier_register(struct preempt_notifier *notifier)
2992 {
2993 	if (!static_branch_unlikely(&preempt_notifier_key))
2994 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2995 
2996 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2997 }
2998 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2999 
3000 /**
3001  * preempt_notifier_unregister - no longer interested in preemption notifications
3002  * @notifier: notifier struct to unregister
3003  *
3004  * This is *not* safe to call from within a preemption notifier.
3005  */
3006 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3007 {
3008 	hlist_del(&notifier->link);
3009 }
3010 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3011 
3012 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3013 {
3014 	struct preempt_notifier *notifier;
3015 
3016 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3017 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3018 }
3019 
3020 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3021 {
3022 	if (static_branch_unlikely(&preempt_notifier_key))
3023 		__fire_sched_in_preempt_notifiers(curr);
3024 }
3025 
3026 static void
3027 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3028 				   struct task_struct *next)
3029 {
3030 	struct preempt_notifier *notifier;
3031 
3032 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3033 		notifier->ops->sched_out(notifier, next);
3034 }
3035 
3036 static __always_inline void
3037 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3038 				 struct task_struct *next)
3039 {
3040 	if (static_branch_unlikely(&preempt_notifier_key))
3041 		__fire_sched_out_preempt_notifiers(curr, next);
3042 }
3043 
3044 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3045 
3046 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3047 {
3048 }
3049 
3050 static inline void
3051 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3052 				 struct task_struct *next)
3053 {
3054 }
3055 
3056 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3057 
3058 static inline void prepare_task(struct task_struct *next)
3059 {
3060 #ifdef CONFIG_SMP
3061 	/*
3062 	 * Claim the task as running, we do this before switching to it
3063 	 * such that any running task will have this set.
3064 	 */
3065 	next->on_cpu = 1;
3066 #endif
3067 }
3068 
3069 static inline void finish_task(struct task_struct *prev)
3070 {
3071 #ifdef CONFIG_SMP
3072 	/*
3073 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3074 	 * We must ensure this doesn't happen until the switch is completely
3075 	 * finished.
3076 	 *
3077 	 * In particular, the load of prev->state in finish_task_switch() must
3078 	 * happen before this.
3079 	 *
3080 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3081 	 */
3082 	smp_store_release(&prev->on_cpu, 0);
3083 #endif
3084 }
3085 
3086 static inline void
3087 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3088 {
3089 	/*
3090 	 * Since the runqueue lock will be released by the next
3091 	 * task (which is an invalid locking op but in the case
3092 	 * of the scheduler it's an obvious special-case), so we
3093 	 * do an early lockdep release here:
3094 	 */
3095 	rq_unpin_lock(rq, rf);
3096 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3097 #ifdef CONFIG_DEBUG_SPINLOCK
3098 	/* this is a valid case when another task releases the spinlock */
3099 	rq->lock.owner = next;
3100 #endif
3101 }
3102 
3103 static inline void finish_lock_switch(struct rq *rq)
3104 {
3105 	/*
3106 	 * If we are tracking spinlock dependencies then we have to
3107 	 * fix up the runqueue lock - which gets 'carried over' from
3108 	 * prev into current:
3109 	 */
3110 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3111 	raw_spin_unlock_irq(&rq->lock);
3112 }
3113 
3114 /*
3115  * NOP if the arch has not defined these:
3116  */
3117 
3118 #ifndef prepare_arch_switch
3119 # define prepare_arch_switch(next)	do { } while (0)
3120 #endif
3121 
3122 #ifndef finish_arch_post_lock_switch
3123 # define finish_arch_post_lock_switch()	do { } while (0)
3124 #endif
3125 
3126 /**
3127  * prepare_task_switch - prepare to switch tasks
3128  * @rq: the runqueue preparing to switch
3129  * @prev: the current task that is being switched out
3130  * @next: the task we are going to switch to.
3131  *
3132  * This is called with the rq lock held and interrupts off. It must
3133  * be paired with a subsequent finish_task_switch after the context
3134  * switch.
3135  *
3136  * prepare_task_switch sets up locking and calls architecture specific
3137  * hooks.
3138  */
3139 static inline void
3140 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3141 		    struct task_struct *next)
3142 {
3143 	kcov_prepare_switch(prev);
3144 	sched_info_switch(rq, prev, next);
3145 	perf_event_task_sched_out(prev, next);
3146 	rseq_preempt(prev);
3147 	fire_sched_out_preempt_notifiers(prev, next);
3148 	prepare_task(next);
3149 	prepare_arch_switch(next);
3150 }
3151 
3152 /**
3153  * finish_task_switch - clean up after a task-switch
3154  * @prev: the thread we just switched away from.
3155  *
3156  * finish_task_switch must be called after the context switch, paired
3157  * with a prepare_task_switch call before the context switch.
3158  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3159  * and do any other architecture-specific cleanup actions.
3160  *
3161  * Note that we may have delayed dropping an mm in context_switch(). If
3162  * so, we finish that here outside of the runqueue lock. (Doing it
3163  * with the lock held can cause deadlocks; see schedule() for
3164  * details.)
3165  *
3166  * The context switch have flipped the stack from under us and restored the
3167  * local variables which were saved when this task called schedule() in the
3168  * past. prev == current is still correct but we need to recalculate this_rq
3169  * because prev may have moved to another CPU.
3170  */
3171 static struct rq *finish_task_switch(struct task_struct *prev)
3172 	__releases(rq->lock)
3173 {
3174 	struct rq *rq = this_rq();
3175 	struct mm_struct *mm = rq->prev_mm;
3176 	long prev_state;
3177 
3178 	/*
3179 	 * The previous task will have left us with a preempt_count of 2
3180 	 * because it left us after:
3181 	 *
3182 	 *	schedule()
3183 	 *	  preempt_disable();			// 1
3184 	 *	  __schedule()
3185 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3186 	 *
3187 	 * Also, see FORK_PREEMPT_COUNT.
3188 	 */
3189 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3190 		      "corrupted preempt_count: %s/%d/0x%x\n",
3191 		      current->comm, current->pid, preempt_count()))
3192 		preempt_count_set(FORK_PREEMPT_COUNT);
3193 
3194 	rq->prev_mm = NULL;
3195 
3196 	/*
3197 	 * A task struct has one reference for the use as "current".
3198 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3199 	 * schedule one last time. The schedule call will never return, and
3200 	 * the scheduled task must drop that reference.
3201 	 *
3202 	 * We must observe prev->state before clearing prev->on_cpu (in
3203 	 * finish_task), otherwise a concurrent wakeup can get prev
3204 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3205 	 * transition, resulting in a double drop.
3206 	 */
3207 	prev_state = prev->state;
3208 	vtime_task_switch(prev);
3209 	perf_event_task_sched_in(prev, current);
3210 	finish_task(prev);
3211 	finish_lock_switch(rq);
3212 	finish_arch_post_lock_switch();
3213 	kcov_finish_switch(current);
3214 
3215 	fire_sched_in_preempt_notifiers(current);
3216 	/*
3217 	 * When switching through a kernel thread, the loop in
3218 	 * membarrier_{private,global}_expedited() may have observed that
3219 	 * kernel thread and not issued an IPI. It is therefore possible to
3220 	 * schedule between user->kernel->user threads without passing though
3221 	 * switch_mm(). Membarrier requires a barrier after storing to
3222 	 * rq->curr, before returning to userspace, so provide them here:
3223 	 *
3224 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3225 	 *   provided by mmdrop(),
3226 	 * - a sync_core for SYNC_CORE.
3227 	 */
3228 	if (mm) {
3229 		membarrier_mm_sync_core_before_usermode(mm);
3230 		mmdrop(mm);
3231 	}
3232 	if (unlikely(prev_state == TASK_DEAD)) {
3233 		if (prev->sched_class->task_dead)
3234 			prev->sched_class->task_dead(prev);
3235 
3236 		/*
3237 		 * Remove function-return probe instances associated with this
3238 		 * task and put them back on the free list.
3239 		 */
3240 		kprobe_flush_task(prev);
3241 
3242 		/* Task is done with its stack. */
3243 		put_task_stack(prev);
3244 
3245 		put_task_struct_rcu_user(prev);
3246 	}
3247 
3248 	tick_nohz_task_switch();
3249 	return rq;
3250 }
3251 
3252 #ifdef CONFIG_SMP
3253 
3254 /* rq->lock is NOT held, but preemption is disabled */
3255 static void __balance_callback(struct rq *rq)
3256 {
3257 	struct callback_head *head, *next;
3258 	void (*func)(struct rq *rq);
3259 	unsigned long flags;
3260 
3261 	raw_spin_lock_irqsave(&rq->lock, flags);
3262 	head = rq->balance_callback;
3263 	rq->balance_callback = NULL;
3264 	while (head) {
3265 		func = (void (*)(struct rq *))head->func;
3266 		next = head->next;
3267 		head->next = NULL;
3268 		head = next;
3269 
3270 		func(rq);
3271 	}
3272 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3273 }
3274 
3275 static inline void balance_callback(struct rq *rq)
3276 {
3277 	if (unlikely(rq->balance_callback))
3278 		__balance_callback(rq);
3279 }
3280 
3281 #else
3282 
3283 static inline void balance_callback(struct rq *rq)
3284 {
3285 }
3286 
3287 #endif
3288 
3289 /**
3290  * schedule_tail - first thing a freshly forked thread must call.
3291  * @prev: the thread we just switched away from.
3292  */
3293 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3294 	__releases(rq->lock)
3295 {
3296 	struct rq *rq;
3297 
3298 	/*
3299 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3300 	 * finish_task_switch() for details.
3301 	 *
3302 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3303 	 * and the preempt_enable() will end up enabling preemption (on
3304 	 * PREEMPT_COUNT kernels).
3305 	 */
3306 
3307 	rq = finish_task_switch(prev);
3308 	balance_callback(rq);
3309 	preempt_enable();
3310 
3311 	if (current->set_child_tid)
3312 		put_user(task_pid_vnr(current), current->set_child_tid);
3313 
3314 	calculate_sigpending();
3315 }
3316 
3317 /*
3318  * context_switch - switch to the new MM and the new thread's register state.
3319  */
3320 static __always_inline struct rq *
3321 context_switch(struct rq *rq, struct task_struct *prev,
3322 	       struct task_struct *next, struct rq_flags *rf)
3323 {
3324 	prepare_task_switch(rq, prev, next);
3325 
3326 	/*
3327 	 * For paravirt, this is coupled with an exit in switch_to to
3328 	 * combine the page table reload and the switch backend into
3329 	 * one hypercall.
3330 	 */
3331 	arch_start_context_switch(prev);
3332 
3333 	/*
3334 	 * kernel -> kernel   lazy + transfer active
3335 	 *   user -> kernel   lazy + mmgrab() active
3336 	 *
3337 	 * kernel ->   user   switch + mmdrop() active
3338 	 *   user ->   user   switch
3339 	 */
3340 	if (!next->mm) {                                // to kernel
3341 		enter_lazy_tlb(prev->active_mm, next);
3342 
3343 		next->active_mm = prev->active_mm;
3344 		if (prev->mm)                           // from user
3345 			mmgrab(prev->active_mm);
3346 		else
3347 			prev->active_mm = NULL;
3348 	} else {                                        // to user
3349 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3350 		/*
3351 		 * sys_membarrier() requires an smp_mb() between setting
3352 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3353 		 *
3354 		 * The below provides this either through switch_mm(), or in
3355 		 * case 'prev->active_mm == next->mm' through
3356 		 * finish_task_switch()'s mmdrop().
3357 		 */
3358 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3359 
3360 		if (!prev->mm) {                        // from kernel
3361 			/* will mmdrop() in finish_task_switch(). */
3362 			rq->prev_mm = prev->active_mm;
3363 			prev->active_mm = NULL;
3364 		}
3365 	}
3366 
3367 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3368 
3369 	prepare_lock_switch(rq, next, rf);
3370 
3371 	/* Here we just switch the register state and the stack. */
3372 	switch_to(prev, next, prev);
3373 	barrier();
3374 
3375 	return finish_task_switch(prev);
3376 }
3377 
3378 /*
3379  * nr_running and nr_context_switches:
3380  *
3381  * externally visible scheduler statistics: current number of runnable
3382  * threads, total number of context switches performed since bootup.
3383  */
3384 unsigned long nr_running(void)
3385 {
3386 	unsigned long i, sum = 0;
3387 
3388 	for_each_online_cpu(i)
3389 		sum += cpu_rq(i)->nr_running;
3390 
3391 	return sum;
3392 }
3393 
3394 /*
3395  * Check if only the current task is running on the CPU.
3396  *
3397  * Caution: this function does not check that the caller has disabled
3398  * preemption, thus the result might have a time-of-check-to-time-of-use
3399  * race.  The caller is responsible to use it correctly, for example:
3400  *
3401  * - from a non-preemptible section (of course)
3402  *
3403  * - from a thread that is bound to a single CPU
3404  *
3405  * - in a loop with very short iterations (e.g. a polling loop)
3406  */
3407 bool single_task_running(void)
3408 {
3409 	return raw_rq()->nr_running == 1;
3410 }
3411 EXPORT_SYMBOL(single_task_running);
3412 
3413 unsigned long long nr_context_switches(void)
3414 {
3415 	int i;
3416 	unsigned long long sum = 0;
3417 
3418 	for_each_possible_cpu(i)
3419 		sum += cpu_rq(i)->nr_switches;
3420 
3421 	return sum;
3422 }
3423 
3424 /*
3425  * Consumers of these two interfaces, like for example the cpuidle menu
3426  * governor, are using nonsensical data. Preferring shallow idle state selection
3427  * for a CPU that has IO-wait which might not even end up running the task when
3428  * it does become runnable.
3429  */
3430 
3431 unsigned long nr_iowait_cpu(int cpu)
3432 {
3433 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3434 }
3435 
3436 /*
3437  * IO-wait accounting, and how its mostly bollocks (on SMP).
3438  *
3439  * The idea behind IO-wait account is to account the idle time that we could
3440  * have spend running if it were not for IO. That is, if we were to improve the
3441  * storage performance, we'd have a proportional reduction in IO-wait time.
3442  *
3443  * This all works nicely on UP, where, when a task blocks on IO, we account
3444  * idle time as IO-wait, because if the storage were faster, it could've been
3445  * running and we'd not be idle.
3446  *
3447  * This has been extended to SMP, by doing the same for each CPU. This however
3448  * is broken.
3449  *
3450  * Imagine for instance the case where two tasks block on one CPU, only the one
3451  * CPU will have IO-wait accounted, while the other has regular idle. Even
3452  * though, if the storage were faster, both could've ran at the same time,
3453  * utilising both CPUs.
3454  *
3455  * This means, that when looking globally, the current IO-wait accounting on
3456  * SMP is a lower bound, by reason of under accounting.
3457  *
3458  * Worse, since the numbers are provided per CPU, they are sometimes
3459  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3460  * associated with any one particular CPU, it can wake to another CPU than it
3461  * blocked on. This means the per CPU IO-wait number is meaningless.
3462  *
3463  * Task CPU affinities can make all that even more 'interesting'.
3464  */
3465 
3466 unsigned long nr_iowait(void)
3467 {
3468 	unsigned long i, sum = 0;
3469 
3470 	for_each_possible_cpu(i)
3471 		sum += nr_iowait_cpu(i);
3472 
3473 	return sum;
3474 }
3475 
3476 #ifdef CONFIG_SMP
3477 
3478 /*
3479  * sched_exec - execve() is a valuable balancing opportunity, because at
3480  * this point the task has the smallest effective memory and cache footprint.
3481  */
3482 void sched_exec(void)
3483 {
3484 	struct task_struct *p = current;
3485 	unsigned long flags;
3486 	int dest_cpu;
3487 
3488 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3489 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3490 	if (dest_cpu == smp_processor_id())
3491 		goto unlock;
3492 
3493 	if (likely(cpu_active(dest_cpu))) {
3494 		struct migration_arg arg = { p, dest_cpu };
3495 
3496 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3497 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3498 		return;
3499 	}
3500 unlock:
3501 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3502 }
3503 
3504 #endif
3505 
3506 DEFINE_PER_CPU(struct kernel_stat, kstat);
3507 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3508 
3509 EXPORT_PER_CPU_SYMBOL(kstat);
3510 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3511 
3512 /*
3513  * The function fair_sched_class.update_curr accesses the struct curr
3514  * and its field curr->exec_start; when called from task_sched_runtime(),
3515  * we observe a high rate of cache misses in practice.
3516  * Prefetching this data results in improved performance.
3517  */
3518 static inline void prefetch_curr_exec_start(struct task_struct *p)
3519 {
3520 #ifdef CONFIG_FAIR_GROUP_SCHED
3521 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3522 #else
3523 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3524 #endif
3525 	prefetch(curr);
3526 	prefetch(&curr->exec_start);
3527 }
3528 
3529 /*
3530  * Return accounted runtime for the task.
3531  * In case the task is currently running, return the runtime plus current's
3532  * pending runtime that have not been accounted yet.
3533  */
3534 unsigned long long task_sched_runtime(struct task_struct *p)
3535 {
3536 	struct rq_flags rf;
3537 	struct rq *rq;
3538 	u64 ns;
3539 
3540 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3541 	/*
3542 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3543 	 * So we have a optimization chance when the task's delta_exec is 0.
3544 	 * Reading ->on_cpu is racy, but this is ok.
3545 	 *
3546 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3547 	 * If we race with it entering CPU, unaccounted time is 0. This is
3548 	 * indistinguishable from the read occurring a few cycles earlier.
3549 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3550 	 * been accounted, so we're correct here as well.
3551 	 */
3552 	if (!p->on_cpu || !task_on_rq_queued(p))
3553 		return p->se.sum_exec_runtime;
3554 #endif
3555 
3556 	rq = task_rq_lock(p, &rf);
3557 	/*
3558 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3559 	 * project cycles that may never be accounted to this
3560 	 * thread, breaking clock_gettime().
3561 	 */
3562 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3563 		prefetch_curr_exec_start(p);
3564 		update_rq_clock(rq);
3565 		p->sched_class->update_curr(rq);
3566 	}
3567 	ns = p->se.sum_exec_runtime;
3568 	task_rq_unlock(rq, p, &rf);
3569 
3570 	return ns;
3571 }
3572 
3573 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3574 
3575 void arch_set_thermal_pressure(struct cpumask *cpus,
3576 			       unsigned long th_pressure)
3577 {
3578 	int cpu;
3579 
3580 	for_each_cpu(cpu, cpus)
3581 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3582 }
3583 
3584 /*
3585  * This function gets called by the timer code, with HZ frequency.
3586  * We call it with interrupts disabled.
3587  */
3588 void scheduler_tick(void)
3589 {
3590 	int cpu = smp_processor_id();
3591 	struct rq *rq = cpu_rq(cpu);
3592 	struct task_struct *curr = rq->curr;
3593 	struct rq_flags rf;
3594 	unsigned long thermal_pressure;
3595 
3596 	arch_scale_freq_tick();
3597 	sched_clock_tick();
3598 
3599 	rq_lock(rq, &rf);
3600 
3601 	update_rq_clock(rq);
3602 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3603 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3604 	curr->sched_class->task_tick(rq, curr, 0);
3605 	calc_global_load_tick(rq);
3606 	psi_task_tick(rq);
3607 
3608 	rq_unlock(rq, &rf);
3609 
3610 	perf_event_task_tick();
3611 
3612 #ifdef CONFIG_SMP
3613 	rq->idle_balance = idle_cpu(cpu);
3614 	trigger_load_balance(rq);
3615 #endif
3616 }
3617 
3618 #ifdef CONFIG_NO_HZ_FULL
3619 
3620 struct tick_work {
3621 	int			cpu;
3622 	atomic_t		state;
3623 	struct delayed_work	work;
3624 };
3625 /* Values for ->state, see diagram below. */
3626 #define TICK_SCHED_REMOTE_OFFLINE	0
3627 #define TICK_SCHED_REMOTE_OFFLINING	1
3628 #define TICK_SCHED_REMOTE_RUNNING	2
3629 
3630 /*
3631  * State diagram for ->state:
3632  *
3633  *
3634  *          TICK_SCHED_REMOTE_OFFLINE
3635  *                    |   ^
3636  *                    |   |
3637  *                    |   | sched_tick_remote()
3638  *                    |   |
3639  *                    |   |
3640  *                    +--TICK_SCHED_REMOTE_OFFLINING
3641  *                    |   ^
3642  *                    |   |
3643  * sched_tick_start() |   | sched_tick_stop()
3644  *                    |   |
3645  *                    V   |
3646  *          TICK_SCHED_REMOTE_RUNNING
3647  *
3648  *
3649  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3650  * and sched_tick_start() are happy to leave the state in RUNNING.
3651  */
3652 
3653 static struct tick_work __percpu *tick_work_cpu;
3654 
3655 static void sched_tick_remote(struct work_struct *work)
3656 {
3657 	struct delayed_work *dwork = to_delayed_work(work);
3658 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3659 	int cpu = twork->cpu;
3660 	struct rq *rq = cpu_rq(cpu);
3661 	struct task_struct *curr;
3662 	struct rq_flags rf;
3663 	u64 delta;
3664 	int os;
3665 
3666 	/*
3667 	 * Handle the tick only if it appears the remote CPU is running in full
3668 	 * dynticks mode. The check is racy by nature, but missing a tick or
3669 	 * having one too much is no big deal because the scheduler tick updates
3670 	 * statistics and checks timeslices in a time-independent way, regardless
3671 	 * of when exactly it is running.
3672 	 */
3673 	if (!tick_nohz_tick_stopped_cpu(cpu))
3674 		goto out_requeue;
3675 
3676 	rq_lock_irq(rq, &rf);
3677 	curr = rq->curr;
3678 	if (cpu_is_offline(cpu))
3679 		goto out_unlock;
3680 
3681 	update_rq_clock(rq);
3682 
3683 	if (!is_idle_task(curr)) {
3684 		/*
3685 		 * Make sure the next tick runs within a reasonable
3686 		 * amount of time.
3687 		 */
3688 		delta = rq_clock_task(rq) - curr->se.exec_start;
3689 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3690 	}
3691 	curr->sched_class->task_tick(rq, curr, 0);
3692 
3693 	calc_load_nohz_remote(rq);
3694 out_unlock:
3695 	rq_unlock_irq(rq, &rf);
3696 out_requeue:
3697 
3698 	/*
3699 	 * Run the remote tick once per second (1Hz). This arbitrary
3700 	 * frequency is large enough to avoid overload but short enough
3701 	 * to keep scheduler internal stats reasonably up to date.  But
3702 	 * first update state to reflect hotplug activity if required.
3703 	 */
3704 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3705 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3706 	if (os == TICK_SCHED_REMOTE_RUNNING)
3707 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3708 }
3709 
3710 static void sched_tick_start(int cpu)
3711 {
3712 	int os;
3713 	struct tick_work *twork;
3714 
3715 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3716 		return;
3717 
3718 	WARN_ON_ONCE(!tick_work_cpu);
3719 
3720 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3721 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3722 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3723 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3724 		twork->cpu = cpu;
3725 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3726 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3727 	}
3728 }
3729 
3730 #ifdef CONFIG_HOTPLUG_CPU
3731 static void sched_tick_stop(int cpu)
3732 {
3733 	struct tick_work *twork;
3734 	int os;
3735 
3736 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3737 		return;
3738 
3739 	WARN_ON_ONCE(!tick_work_cpu);
3740 
3741 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3742 	/* There cannot be competing actions, but don't rely on stop-machine. */
3743 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3744 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3745 	/* Don't cancel, as this would mess up the state machine. */
3746 }
3747 #endif /* CONFIG_HOTPLUG_CPU */
3748 
3749 int __init sched_tick_offload_init(void)
3750 {
3751 	tick_work_cpu = alloc_percpu(struct tick_work);
3752 	BUG_ON(!tick_work_cpu);
3753 	return 0;
3754 }
3755 
3756 #else /* !CONFIG_NO_HZ_FULL */
3757 static inline void sched_tick_start(int cpu) { }
3758 static inline void sched_tick_stop(int cpu) { }
3759 #endif
3760 
3761 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3762 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3763 /*
3764  * If the value passed in is equal to the current preempt count
3765  * then we just disabled preemption. Start timing the latency.
3766  */
3767 static inline void preempt_latency_start(int val)
3768 {
3769 	if (preempt_count() == val) {
3770 		unsigned long ip = get_lock_parent_ip();
3771 #ifdef CONFIG_DEBUG_PREEMPT
3772 		current->preempt_disable_ip = ip;
3773 #endif
3774 		trace_preempt_off(CALLER_ADDR0, ip);
3775 	}
3776 }
3777 
3778 void preempt_count_add(int val)
3779 {
3780 #ifdef CONFIG_DEBUG_PREEMPT
3781 	/*
3782 	 * Underflow?
3783 	 */
3784 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3785 		return;
3786 #endif
3787 	__preempt_count_add(val);
3788 #ifdef CONFIG_DEBUG_PREEMPT
3789 	/*
3790 	 * Spinlock count overflowing soon?
3791 	 */
3792 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3793 				PREEMPT_MASK - 10);
3794 #endif
3795 	preempt_latency_start(val);
3796 }
3797 EXPORT_SYMBOL(preempt_count_add);
3798 NOKPROBE_SYMBOL(preempt_count_add);
3799 
3800 /*
3801  * If the value passed in equals to the current preempt count
3802  * then we just enabled preemption. Stop timing the latency.
3803  */
3804 static inline void preempt_latency_stop(int val)
3805 {
3806 	if (preempt_count() == val)
3807 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3808 }
3809 
3810 void preempt_count_sub(int val)
3811 {
3812 #ifdef CONFIG_DEBUG_PREEMPT
3813 	/*
3814 	 * Underflow?
3815 	 */
3816 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3817 		return;
3818 	/*
3819 	 * Is the spinlock portion underflowing?
3820 	 */
3821 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3822 			!(preempt_count() & PREEMPT_MASK)))
3823 		return;
3824 #endif
3825 
3826 	preempt_latency_stop(val);
3827 	__preempt_count_sub(val);
3828 }
3829 EXPORT_SYMBOL(preempt_count_sub);
3830 NOKPROBE_SYMBOL(preempt_count_sub);
3831 
3832 #else
3833 static inline void preempt_latency_start(int val) { }
3834 static inline void preempt_latency_stop(int val) { }
3835 #endif
3836 
3837 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3838 {
3839 #ifdef CONFIG_DEBUG_PREEMPT
3840 	return p->preempt_disable_ip;
3841 #else
3842 	return 0;
3843 #endif
3844 }
3845 
3846 /*
3847  * Print scheduling while atomic bug:
3848  */
3849 static noinline void __schedule_bug(struct task_struct *prev)
3850 {
3851 	/* Save this before calling printk(), since that will clobber it */
3852 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3853 
3854 	if (oops_in_progress)
3855 		return;
3856 
3857 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3858 		prev->comm, prev->pid, preempt_count());
3859 
3860 	debug_show_held_locks(prev);
3861 	print_modules();
3862 	if (irqs_disabled())
3863 		print_irqtrace_events(prev);
3864 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3865 	    && in_atomic_preempt_off()) {
3866 		pr_err("Preemption disabled at:");
3867 		print_ip_sym(preempt_disable_ip);
3868 		pr_cont("\n");
3869 	}
3870 	if (panic_on_warn)
3871 		panic("scheduling while atomic\n");
3872 
3873 	dump_stack();
3874 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3875 }
3876 
3877 /*
3878  * Various schedule()-time debugging checks and statistics:
3879  */
3880 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3881 {
3882 #ifdef CONFIG_SCHED_STACK_END_CHECK
3883 	if (task_stack_end_corrupted(prev))
3884 		panic("corrupted stack end detected inside scheduler\n");
3885 #endif
3886 
3887 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3888 	if (!preempt && prev->state && prev->non_block_count) {
3889 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3890 			prev->comm, prev->pid, prev->non_block_count);
3891 		dump_stack();
3892 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3893 	}
3894 #endif
3895 
3896 	if (unlikely(in_atomic_preempt_off())) {
3897 		__schedule_bug(prev);
3898 		preempt_count_set(PREEMPT_DISABLED);
3899 	}
3900 	rcu_sleep_check();
3901 
3902 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3903 
3904 	schedstat_inc(this_rq()->sched_count);
3905 }
3906 
3907 /*
3908  * Pick up the highest-prio task:
3909  */
3910 static inline struct task_struct *
3911 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3912 {
3913 	const struct sched_class *class;
3914 	struct task_struct *p;
3915 
3916 	/*
3917 	 * Optimization: we know that if all tasks are in the fair class we can
3918 	 * call that function directly, but only if the @prev task wasn't of a
3919 	 * higher scheduling class, because otherwise those loose the
3920 	 * opportunity to pull in more work from other CPUs.
3921 	 */
3922 	if (likely((prev->sched_class == &idle_sched_class ||
3923 		    prev->sched_class == &fair_sched_class) &&
3924 		   rq->nr_running == rq->cfs.h_nr_running)) {
3925 
3926 		p = pick_next_task_fair(rq, prev, rf);
3927 		if (unlikely(p == RETRY_TASK))
3928 			goto restart;
3929 
3930 		/* Assumes fair_sched_class->next == idle_sched_class */
3931 		if (!p) {
3932 			put_prev_task(rq, prev);
3933 			p = pick_next_task_idle(rq);
3934 		}
3935 
3936 		return p;
3937 	}
3938 
3939 restart:
3940 #ifdef CONFIG_SMP
3941 	/*
3942 	 * We must do the balancing pass before put_next_task(), such
3943 	 * that when we release the rq->lock the task is in the same
3944 	 * state as before we took rq->lock.
3945 	 *
3946 	 * We can terminate the balance pass as soon as we know there is
3947 	 * a runnable task of @class priority or higher.
3948 	 */
3949 	for_class_range(class, prev->sched_class, &idle_sched_class) {
3950 		if (class->balance(rq, prev, rf))
3951 			break;
3952 	}
3953 #endif
3954 
3955 	put_prev_task(rq, prev);
3956 
3957 	for_each_class(class) {
3958 		p = class->pick_next_task(rq);
3959 		if (p)
3960 			return p;
3961 	}
3962 
3963 	/* The idle class should always have a runnable task: */
3964 	BUG();
3965 }
3966 
3967 /*
3968  * __schedule() is the main scheduler function.
3969  *
3970  * The main means of driving the scheduler and thus entering this function are:
3971  *
3972  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3973  *
3974  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3975  *      paths. For example, see arch/x86/entry_64.S.
3976  *
3977  *      To drive preemption between tasks, the scheduler sets the flag in timer
3978  *      interrupt handler scheduler_tick().
3979  *
3980  *   3. Wakeups don't really cause entry into schedule(). They add a
3981  *      task to the run-queue and that's it.
3982  *
3983  *      Now, if the new task added to the run-queue preempts the current
3984  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3985  *      called on the nearest possible occasion:
3986  *
3987  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3988  *
3989  *         - in syscall or exception context, at the next outmost
3990  *           preempt_enable(). (this might be as soon as the wake_up()'s
3991  *           spin_unlock()!)
3992  *
3993  *         - in IRQ context, return from interrupt-handler to
3994  *           preemptible context
3995  *
3996  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3997  *         then at the next:
3998  *
3999  *          - cond_resched() call
4000  *          - explicit schedule() call
4001  *          - return from syscall or exception to user-space
4002  *          - return from interrupt-handler to user-space
4003  *
4004  * WARNING: must be called with preemption disabled!
4005  */
4006 static void __sched notrace __schedule(bool preempt)
4007 {
4008 	struct task_struct *prev, *next;
4009 	unsigned long *switch_count;
4010 	struct rq_flags rf;
4011 	struct rq *rq;
4012 	int cpu;
4013 
4014 	cpu = smp_processor_id();
4015 	rq = cpu_rq(cpu);
4016 	prev = rq->curr;
4017 
4018 	schedule_debug(prev, preempt);
4019 
4020 	if (sched_feat(HRTICK))
4021 		hrtick_clear(rq);
4022 
4023 	local_irq_disable();
4024 	rcu_note_context_switch(preempt);
4025 
4026 	/*
4027 	 * Make sure that signal_pending_state()->signal_pending() below
4028 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4029 	 * done by the caller to avoid the race with signal_wake_up().
4030 	 *
4031 	 * The membarrier system call requires a full memory barrier
4032 	 * after coming from user-space, before storing to rq->curr.
4033 	 */
4034 	rq_lock(rq, &rf);
4035 	smp_mb__after_spinlock();
4036 
4037 	/* Promote REQ to ACT */
4038 	rq->clock_update_flags <<= 1;
4039 	update_rq_clock(rq);
4040 
4041 	switch_count = &prev->nivcsw;
4042 	if (!preempt && prev->state) {
4043 		if (signal_pending_state(prev->state, prev)) {
4044 			prev->state = TASK_RUNNING;
4045 		} else {
4046 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4047 
4048 			if (prev->in_iowait) {
4049 				atomic_inc(&rq->nr_iowait);
4050 				delayacct_blkio_start();
4051 			}
4052 		}
4053 		switch_count = &prev->nvcsw;
4054 	}
4055 
4056 	next = pick_next_task(rq, prev, &rf);
4057 	clear_tsk_need_resched(prev);
4058 	clear_preempt_need_resched();
4059 
4060 	if (likely(prev != next)) {
4061 		rq->nr_switches++;
4062 		/*
4063 		 * RCU users of rcu_dereference(rq->curr) may not see
4064 		 * changes to task_struct made by pick_next_task().
4065 		 */
4066 		RCU_INIT_POINTER(rq->curr, next);
4067 		/*
4068 		 * The membarrier system call requires each architecture
4069 		 * to have a full memory barrier after updating
4070 		 * rq->curr, before returning to user-space.
4071 		 *
4072 		 * Here are the schemes providing that barrier on the
4073 		 * various architectures:
4074 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4075 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4076 		 * - finish_lock_switch() for weakly-ordered
4077 		 *   architectures where spin_unlock is a full barrier,
4078 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4079 		 *   is a RELEASE barrier),
4080 		 */
4081 		++*switch_count;
4082 
4083 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4084 
4085 		trace_sched_switch(preempt, prev, next);
4086 
4087 		/* Also unlocks the rq: */
4088 		rq = context_switch(rq, prev, next, &rf);
4089 	} else {
4090 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4091 		rq_unlock_irq(rq, &rf);
4092 	}
4093 
4094 	balance_callback(rq);
4095 }
4096 
4097 void __noreturn do_task_dead(void)
4098 {
4099 	/* Causes final put_task_struct in finish_task_switch(): */
4100 	set_special_state(TASK_DEAD);
4101 
4102 	/* Tell freezer to ignore us: */
4103 	current->flags |= PF_NOFREEZE;
4104 
4105 	__schedule(false);
4106 	BUG();
4107 
4108 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4109 	for (;;)
4110 		cpu_relax();
4111 }
4112 
4113 static inline void sched_submit_work(struct task_struct *tsk)
4114 {
4115 	if (!tsk->state)
4116 		return;
4117 
4118 	/*
4119 	 * If a worker went to sleep, notify and ask workqueue whether
4120 	 * it wants to wake up a task to maintain concurrency.
4121 	 * As this function is called inside the schedule() context,
4122 	 * we disable preemption to avoid it calling schedule() again
4123 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4124 	 * requires it.
4125 	 */
4126 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4127 		preempt_disable();
4128 		if (tsk->flags & PF_WQ_WORKER)
4129 			wq_worker_sleeping(tsk);
4130 		else
4131 			io_wq_worker_sleeping(tsk);
4132 		preempt_enable_no_resched();
4133 	}
4134 
4135 	if (tsk_is_pi_blocked(tsk))
4136 		return;
4137 
4138 	/*
4139 	 * If we are going to sleep and we have plugged IO queued,
4140 	 * make sure to submit it to avoid deadlocks.
4141 	 */
4142 	if (blk_needs_flush_plug(tsk))
4143 		blk_schedule_flush_plug(tsk);
4144 }
4145 
4146 static void sched_update_worker(struct task_struct *tsk)
4147 {
4148 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4149 		if (tsk->flags & PF_WQ_WORKER)
4150 			wq_worker_running(tsk);
4151 		else
4152 			io_wq_worker_running(tsk);
4153 	}
4154 }
4155 
4156 asmlinkage __visible void __sched schedule(void)
4157 {
4158 	struct task_struct *tsk = current;
4159 
4160 	sched_submit_work(tsk);
4161 	do {
4162 		preempt_disable();
4163 		__schedule(false);
4164 		sched_preempt_enable_no_resched();
4165 	} while (need_resched());
4166 	sched_update_worker(tsk);
4167 }
4168 EXPORT_SYMBOL(schedule);
4169 
4170 /*
4171  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4172  * state (have scheduled out non-voluntarily) by making sure that all
4173  * tasks have either left the run queue or have gone into user space.
4174  * As idle tasks do not do either, they must not ever be preempted
4175  * (schedule out non-voluntarily).
4176  *
4177  * schedule_idle() is similar to schedule_preempt_disable() except that it
4178  * never enables preemption because it does not call sched_submit_work().
4179  */
4180 void __sched schedule_idle(void)
4181 {
4182 	/*
4183 	 * As this skips calling sched_submit_work(), which the idle task does
4184 	 * regardless because that function is a nop when the task is in a
4185 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4186 	 * current task can be in any other state. Note, idle is always in the
4187 	 * TASK_RUNNING state.
4188 	 */
4189 	WARN_ON_ONCE(current->state);
4190 	do {
4191 		__schedule(false);
4192 	} while (need_resched());
4193 }
4194 
4195 #ifdef CONFIG_CONTEXT_TRACKING
4196 asmlinkage __visible void __sched schedule_user(void)
4197 {
4198 	/*
4199 	 * If we come here after a random call to set_need_resched(),
4200 	 * or we have been woken up remotely but the IPI has not yet arrived,
4201 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4202 	 * we find a better solution.
4203 	 *
4204 	 * NB: There are buggy callers of this function.  Ideally we
4205 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4206 	 * too frequently to make sense yet.
4207 	 */
4208 	enum ctx_state prev_state = exception_enter();
4209 	schedule();
4210 	exception_exit(prev_state);
4211 }
4212 #endif
4213 
4214 /**
4215  * schedule_preempt_disabled - called with preemption disabled
4216  *
4217  * Returns with preemption disabled. Note: preempt_count must be 1
4218  */
4219 void __sched schedule_preempt_disabled(void)
4220 {
4221 	sched_preempt_enable_no_resched();
4222 	schedule();
4223 	preempt_disable();
4224 }
4225 
4226 static void __sched notrace preempt_schedule_common(void)
4227 {
4228 	do {
4229 		/*
4230 		 * Because the function tracer can trace preempt_count_sub()
4231 		 * and it also uses preempt_enable/disable_notrace(), if
4232 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4233 		 * by the function tracer will call this function again and
4234 		 * cause infinite recursion.
4235 		 *
4236 		 * Preemption must be disabled here before the function
4237 		 * tracer can trace. Break up preempt_disable() into two
4238 		 * calls. One to disable preemption without fear of being
4239 		 * traced. The other to still record the preemption latency,
4240 		 * which can also be traced by the function tracer.
4241 		 */
4242 		preempt_disable_notrace();
4243 		preempt_latency_start(1);
4244 		__schedule(true);
4245 		preempt_latency_stop(1);
4246 		preempt_enable_no_resched_notrace();
4247 
4248 		/*
4249 		 * Check again in case we missed a preemption opportunity
4250 		 * between schedule and now.
4251 		 */
4252 	} while (need_resched());
4253 }
4254 
4255 #ifdef CONFIG_PREEMPTION
4256 /*
4257  * This is the entry point to schedule() from in-kernel preemption
4258  * off of preempt_enable.
4259  */
4260 asmlinkage __visible void __sched notrace preempt_schedule(void)
4261 {
4262 	/*
4263 	 * If there is a non-zero preempt_count or interrupts are disabled,
4264 	 * we do not want to preempt the current task. Just return..
4265 	 */
4266 	if (likely(!preemptible()))
4267 		return;
4268 
4269 	preempt_schedule_common();
4270 }
4271 NOKPROBE_SYMBOL(preempt_schedule);
4272 EXPORT_SYMBOL(preempt_schedule);
4273 
4274 /**
4275  * preempt_schedule_notrace - preempt_schedule called by tracing
4276  *
4277  * The tracing infrastructure uses preempt_enable_notrace to prevent
4278  * recursion and tracing preempt enabling caused by the tracing
4279  * infrastructure itself. But as tracing can happen in areas coming
4280  * from userspace or just about to enter userspace, a preempt enable
4281  * can occur before user_exit() is called. This will cause the scheduler
4282  * to be called when the system is still in usermode.
4283  *
4284  * To prevent this, the preempt_enable_notrace will use this function
4285  * instead of preempt_schedule() to exit user context if needed before
4286  * calling the scheduler.
4287  */
4288 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4289 {
4290 	enum ctx_state prev_ctx;
4291 
4292 	if (likely(!preemptible()))
4293 		return;
4294 
4295 	do {
4296 		/*
4297 		 * Because the function tracer can trace preempt_count_sub()
4298 		 * and it also uses preempt_enable/disable_notrace(), if
4299 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4300 		 * by the function tracer will call this function again and
4301 		 * cause infinite recursion.
4302 		 *
4303 		 * Preemption must be disabled here before the function
4304 		 * tracer can trace. Break up preempt_disable() into two
4305 		 * calls. One to disable preemption without fear of being
4306 		 * traced. The other to still record the preemption latency,
4307 		 * which can also be traced by the function tracer.
4308 		 */
4309 		preempt_disable_notrace();
4310 		preempt_latency_start(1);
4311 		/*
4312 		 * Needs preempt disabled in case user_exit() is traced
4313 		 * and the tracer calls preempt_enable_notrace() causing
4314 		 * an infinite recursion.
4315 		 */
4316 		prev_ctx = exception_enter();
4317 		__schedule(true);
4318 		exception_exit(prev_ctx);
4319 
4320 		preempt_latency_stop(1);
4321 		preempt_enable_no_resched_notrace();
4322 	} while (need_resched());
4323 }
4324 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4325 
4326 #endif /* CONFIG_PREEMPTION */
4327 
4328 /*
4329  * This is the entry point to schedule() from kernel preemption
4330  * off of irq context.
4331  * Note, that this is called and return with irqs disabled. This will
4332  * protect us against recursive calling from irq.
4333  */
4334 asmlinkage __visible void __sched preempt_schedule_irq(void)
4335 {
4336 	enum ctx_state prev_state;
4337 
4338 	/* Catch callers which need to be fixed */
4339 	BUG_ON(preempt_count() || !irqs_disabled());
4340 
4341 	prev_state = exception_enter();
4342 
4343 	do {
4344 		preempt_disable();
4345 		local_irq_enable();
4346 		__schedule(true);
4347 		local_irq_disable();
4348 		sched_preempt_enable_no_resched();
4349 	} while (need_resched());
4350 
4351 	exception_exit(prev_state);
4352 }
4353 
4354 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4355 			  void *key)
4356 {
4357 	return try_to_wake_up(curr->private, mode, wake_flags);
4358 }
4359 EXPORT_SYMBOL(default_wake_function);
4360 
4361 #ifdef CONFIG_RT_MUTEXES
4362 
4363 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4364 {
4365 	if (pi_task)
4366 		prio = min(prio, pi_task->prio);
4367 
4368 	return prio;
4369 }
4370 
4371 static inline int rt_effective_prio(struct task_struct *p, int prio)
4372 {
4373 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4374 
4375 	return __rt_effective_prio(pi_task, prio);
4376 }
4377 
4378 /*
4379  * rt_mutex_setprio - set the current priority of a task
4380  * @p: task to boost
4381  * @pi_task: donor task
4382  *
4383  * This function changes the 'effective' priority of a task. It does
4384  * not touch ->normal_prio like __setscheduler().
4385  *
4386  * Used by the rt_mutex code to implement priority inheritance
4387  * logic. Call site only calls if the priority of the task changed.
4388  */
4389 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4390 {
4391 	int prio, oldprio, queued, running, queue_flag =
4392 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4393 	const struct sched_class *prev_class;
4394 	struct rq_flags rf;
4395 	struct rq *rq;
4396 
4397 	/* XXX used to be waiter->prio, not waiter->task->prio */
4398 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4399 
4400 	/*
4401 	 * If nothing changed; bail early.
4402 	 */
4403 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4404 		return;
4405 
4406 	rq = __task_rq_lock(p, &rf);
4407 	update_rq_clock(rq);
4408 	/*
4409 	 * Set under pi_lock && rq->lock, such that the value can be used under
4410 	 * either lock.
4411 	 *
4412 	 * Note that there is loads of tricky to make this pointer cache work
4413 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4414 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4415 	 * task is allowed to run again (and can exit). This ensures the pointer
4416 	 * points to a blocked task -- which guaratees the task is present.
4417 	 */
4418 	p->pi_top_task = pi_task;
4419 
4420 	/*
4421 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4422 	 */
4423 	if (prio == p->prio && !dl_prio(prio))
4424 		goto out_unlock;
4425 
4426 	/*
4427 	 * Idle task boosting is a nono in general. There is one
4428 	 * exception, when PREEMPT_RT and NOHZ is active:
4429 	 *
4430 	 * The idle task calls get_next_timer_interrupt() and holds
4431 	 * the timer wheel base->lock on the CPU and another CPU wants
4432 	 * to access the timer (probably to cancel it). We can safely
4433 	 * ignore the boosting request, as the idle CPU runs this code
4434 	 * with interrupts disabled and will complete the lock
4435 	 * protected section without being interrupted. So there is no
4436 	 * real need to boost.
4437 	 */
4438 	if (unlikely(p == rq->idle)) {
4439 		WARN_ON(p != rq->curr);
4440 		WARN_ON(p->pi_blocked_on);
4441 		goto out_unlock;
4442 	}
4443 
4444 	trace_sched_pi_setprio(p, pi_task);
4445 	oldprio = p->prio;
4446 
4447 	if (oldprio == prio)
4448 		queue_flag &= ~DEQUEUE_MOVE;
4449 
4450 	prev_class = p->sched_class;
4451 	queued = task_on_rq_queued(p);
4452 	running = task_current(rq, p);
4453 	if (queued)
4454 		dequeue_task(rq, p, queue_flag);
4455 	if (running)
4456 		put_prev_task(rq, p);
4457 
4458 	/*
4459 	 * Boosting condition are:
4460 	 * 1. -rt task is running and holds mutex A
4461 	 *      --> -dl task blocks on mutex A
4462 	 *
4463 	 * 2. -dl task is running and holds mutex A
4464 	 *      --> -dl task blocks on mutex A and could preempt the
4465 	 *          running task
4466 	 */
4467 	if (dl_prio(prio)) {
4468 		if (!dl_prio(p->normal_prio) ||
4469 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4470 			p->dl.dl_boosted = 1;
4471 			queue_flag |= ENQUEUE_REPLENISH;
4472 		} else
4473 			p->dl.dl_boosted = 0;
4474 		p->sched_class = &dl_sched_class;
4475 	} else if (rt_prio(prio)) {
4476 		if (dl_prio(oldprio))
4477 			p->dl.dl_boosted = 0;
4478 		if (oldprio < prio)
4479 			queue_flag |= ENQUEUE_HEAD;
4480 		p->sched_class = &rt_sched_class;
4481 	} else {
4482 		if (dl_prio(oldprio))
4483 			p->dl.dl_boosted = 0;
4484 		if (rt_prio(oldprio))
4485 			p->rt.timeout = 0;
4486 		p->sched_class = &fair_sched_class;
4487 	}
4488 
4489 	p->prio = prio;
4490 
4491 	if (queued)
4492 		enqueue_task(rq, p, queue_flag);
4493 	if (running)
4494 		set_next_task(rq, p);
4495 
4496 	check_class_changed(rq, p, prev_class, oldprio);
4497 out_unlock:
4498 	/* Avoid rq from going away on us: */
4499 	preempt_disable();
4500 	__task_rq_unlock(rq, &rf);
4501 
4502 	balance_callback(rq);
4503 	preempt_enable();
4504 }
4505 #else
4506 static inline int rt_effective_prio(struct task_struct *p, int prio)
4507 {
4508 	return prio;
4509 }
4510 #endif
4511 
4512 void set_user_nice(struct task_struct *p, long nice)
4513 {
4514 	bool queued, running;
4515 	int old_prio;
4516 	struct rq_flags rf;
4517 	struct rq *rq;
4518 
4519 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4520 		return;
4521 	/*
4522 	 * We have to be careful, if called from sys_setpriority(),
4523 	 * the task might be in the middle of scheduling on another CPU.
4524 	 */
4525 	rq = task_rq_lock(p, &rf);
4526 	update_rq_clock(rq);
4527 
4528 	/*
4529 	 * The RT priorities are set via sched_setscheduler(), but we still
4530 	 * allow the 'normal' nice value to be set - but as expected
4531 	 * it wont have any effect on scheduling until the task is
4532 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4533 	 */
4534 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4535 		p->static_prio = NICE_TO_PRIO(nice);
4536 		goto out_unlock;
4537 	}
4538 	queued = task_on_rq_queued(p);
4539 	running = task_current(rq, p);
4540 	if (queued)
4541 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4542 	if (running)
4543 		put_prev_task(rq, p);
4544 
4545 	p->static_prio = NICE_TO_PRIO(nice);
4546 	set_load_weight(p, true);
4547 	old_prio = p->prio;
4548 	p->prio = effective_prio(p);
4549 
4550 	if (queued)
4551 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4552 	if (running)
4553 		set_next_task(rq, p);
4554 
4555 	/*
4556 	 * If the task increased its priority or is running and
4557 	 * lowered its priority, then reschedule its CPU:
4558 	 */
4559 	p->sched_class->prio_changed(rq, p, old_prio);
4560 
4561 out_unlock:
4562 	task_rq_unlock(rq, p, &rf);
4563 }
4564 EXPORT_SYMBOL(set_user_nice);
4565 
4566 /*
4567  * can_nice - check if a task can reduce its nice value
4568  * @p: task
4569  * @nice: nice value
4570  */
4571 int can_nice(const struct task_struct *p, const int nice)
4572 {
4573 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4574 	int nice_rlim = nice_to_rlimit(nice);
4575 
4576 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4577 		capable(CAP_SYS_NICE));
4578 }
4579 
4580 #ifdef __ARCH_WANT_SYS_NICE
4581 
4582 /*
4583  * sys_nice - change the priority of the current process.
4584  * @increment: priority increment
4585  *
4586  * sys_setpriority is a more generic, but much slower function that
4587  * does similar things.
4588  */
4589 SYSCALL_DEFINE1(nice, int, increment)
4590 {
4591 	long nice, retval;
4592 
4593 	/*
4594 	 * Setpriority might change our priority at the same moment.
4595 	 * We don't have to worry. Conceptually one call occurs first
4596 	 * and we have a single winner.
4597 	 */
4598 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4599 	nice = task_nice(current) + increment;
4600 
4601 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4602 	if (increment < 0 && !can_nice(current, nice))
4603 		return -EPERM;
4604 
4605 	retval = security_task_setnice(current, nice);
4606 	if (retval)
4607 		return retval;
4608 
4609 	set_user_nice(current, nice);
4610 	return 0;
4611 }
4612 
4613 #endif
4614 
4615 /**
4616  * task_prio - return the priority value of a given task.
4617  * @p: the task in question.
4618  *
4619  * Return: The priority value as seen by users in /proc.
4620  * RT tasks are offset by -200. Normal tasks are centered
4621  * around 0, value goes from -16 to +15.
4622  */
4623 int task_prio(const struct task_struct *p)
4624 {
4625 	return p->prio - MAX_RT_PRIO;
4626 }
4627 
4628 /**
4629  * idle_cpu - is a given CPU idle currently?
4630  * @cpu: the processor in question.
4631  *
4632  * Return: 1 if the CPU is currently idle. 0 otherwise.
4633  */
4634 int idle_cpu(int cpu)
4635 {
4636 	struct rq *rq = cpu_rq(cpu);
4637 
4638 	if (rq->curr != rq->idle)
4639 		return 0;
4640 
4641 	if (rq->nr_running)
4642 		return 0;
4643 
4644 #ifdef CONFIG_SMP
4645 	if (!llist_empty(&rq->wake_list))
4646 		return 0;
4647 #endif
4648 
4649 	return 1;
4650 }
4651 
4652 /**
4653  * available_idle_cpu - is a given CPU idle for enqueuing work.
4654  * @cpu: the CPU in question.
4655  *
4656  * Return: 1 if the CPU is currently idle. 0 otherwise.
4657  */
4658 int available_idle_cpu(int cpu)
4659 {
4660 	if (!idle_cpu(cpu))
4661 		return 0;
4662 
4663 	if (vcpu_is_preempted(cpu))
4664 		return 0;
4665 
4666 	return 1;
4667 }
4668 
4669 /**
4670  * idle_task - return the idle task for a given CPU.
4671  * @cpu: the processor in question.
4672  *
4673  * Return: The idle task for the CPU @cpu.
4674  */
4675 struct task_struct *idle_task(int cpu)
4676 {
4677 	return cpu_rq(cpu)->idle;
4678 }
4679 
4680 /**
4681  * find_process_by_pid - find a process with a matching PID value.
4682  * @pid: the pid in question.
4683  *
4684  * The task of @pid, if found. %NULL otherwise.
4685  */
4686 static struct task_struct *find_process_by_pid(pid_t pid)
4687 {
4688 	return pid ? find_task_by_vpid(pid) : current;
4689 }
4690 
4691 /*
4692  * sched_setparam() passes in -1 for its policy, to let the functions
4693  * it calls know not to change it.
4694  */
4695 #define SETPARAM_POLICY	-1
4696 
4697 static void __setscheduler_params(struct task_struct *p,
4698 		const struct sched_attr *attr)
4699 {
4700 	int policy = attr->sched_policy;
4701 
4702 	if (policy == SETPARAM_POLICY)
4703 		policy = p->policy;
4704 
4705 	p->policy = policy;
4706 
4707 	if (dl_policy(policy))
4708 		__setparam_dl(p, attr);
4709 	else if (fair_policy(policy))
4710 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4711 
4712 	/*
4713 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4714 	 * !rt_policy. Always setting this ensures that things like
4715 	 * getparam()/getattr() don't report silly values for !rt tasks.
4716 	 */
4717 	p->rt_priority = attr->sched_priority;
4718 	p->normal_prio = normal_prio(p);
4719 	set_load_weight(p, true);
4720 }
4721 
4722 /* Actually do priority change: must hold pi & rq lock. */
4723 static void __setscheduler(struct rq *rq, struct task_struct *p,
4724 			   const struct sched_attr *attr, bool keep_boost)
4725 {
4726 	/*
4727 	 * If params can't change scheduling class changes aren't allowed
4728 	 * either.
4729 	 */
4730 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4731 		return;
4732 
4733 	__setscheduler_params(p, attr);
4734 
4735 	/*
4736 	 * Keep a potential priority boosting if called from
4737 	 * sched_setscheduler().
4738 	 */
4739 	p->prio = normal_prio(p);
4740 	if (keep_boost)
4741 		p->prio = rt_effective_prio(p, p->prio);
4742 
4743 	if (dl_prio(p->prio))
4744 		p->sched_class = &dl_sched_class;
4745 	else if (rt_prio(p->prio))
4746 		p->sched_class = &rt_sched_class;
4747 	else
4748 		p->sched_class = &fair_sched_class;
4749 }
4750 
4751 /*
4752  * Check the target process has a UID that matches the current process's:
4753  */
4754 static bool check_same_owner(struct task_struct *p)
4755 {
4756 	const struct cred *cred = current_cred(), *pcred;
4757 	bool match;
4758 
4759 	rcu_read_lock();
4760 	pcred = __task_cred(p);
4761 	match = (uid_eq(cred->euid, pcred->euid) ||
4762 		 uid_eq(cred->euid, pcred->uid));
4763 	rcu_read_unlock();
4764 	return match;
4765 }
4766 
4767 static int __sched_setscheduler(struct task_struct *p,
4768 				const struct sched_attr *attr,
4769 				bool user, bool pi)
4770 {
4771 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4772 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4773 	int retval, oldprio, oldpolicy = -1, queued, running;
4774 	int new_effective_prio, policy = attr->sched_policy;
4775 	const struct sched_class *prev_class;
4776 	struct rq_flags rf;
4777 	int reset_on_fork;
4778 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4779 	struct rq *rq;
4780 
4781 	/* The pi code expects interrupts enabled */
4782 	BUG_ON(pi && in_interrupt());
4783 recheck:
4784 	/* Double check policy once rq lock held: */
4785 	if (policy < 0) {
4786 		reset_on_fork = p->sched_reset_on_fork;
4787 		policy = oldpolicy = p->policy;
4788 	} else {
4789 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4790 
4791 		if (!valid_policy(policy))
4792 			return -EINVAL;
4793 	}
4794 
4795 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4796 		return -EINVAL;
4797 
4798 	/*
4799 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4800 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4801 	 * SCHED_BATCH and SCHED_IDLE is 0.
4802 	 */
4803 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4804 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4805 		return -EINVAL;
4806 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4807 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4808 		return -EINVAL;
4809 
4810 	/*
4811 	 * Allow unprivileged RT tasks to decrease priority:
4812 	 */
4813 	if (user && !capable(CAP_SYS_NICE)) {
4814 		if (fair_policy(policy)) {
4815 			if (attr->sched_nice < task_nice(p) &&
4816 			    !can_nice(p, attr->sched_nice))
4817 				return -EPERM;
4818 		}
4819 
4820 		if (rt_policy(policy)) {
4821 			unsigned long rlim_rtprio =
4822 					task_rlimit(p, RLIMIT_RTPRIO);
4823 
4824 			/* Can't set/change the rt policy: */
4825 			if (policy != p->policy && !rlim_rtprio)
4826 				return -EPERM;
4827 
4828 			/* Can't increase priority: */
4829 			if (attr->sched_priority > p->rt_priority &&
4830 			    attr->sched_priority > rlim_rtprio)
4831 				return -EPERM;
4832 		}
4833 
4834 		 /*
4835 		  * Can't set/change SCHED_DEADLINE policy at all for now
4836 		  * (safest behavior); in the future we would like to allow
4837 		  * unprivileged DL tasks to increase their relative deadline
4838 		  * or reduce their runtime (both ways reducing utilization)
4839 		  */
4840 		if (dl_policy(policy))
4841 			return -EPERM;
4842 
4843 		/*
4844 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4845 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4846 		 */
4847 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4848 			if (!can_nice(p, task_nice(p)))
4849 				return -EPERM;
4850 		}
4851 
4852 		/* Can't change other user's priorities: */
4853 		if (!check_same_owner(p))
4854 			return -EPERM;
4855 
4856 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4857 		if (p->sched_reset_on_fork && !reset_on_fork)
4858 			return -EPERM;
4859 	}
4860 
4861 	if (user) {
4862 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4863 			return -EINVAL;
4864 
4865 		retval = security_task_setscheduler(p);
4866 		if (retval)
4867 			return retval;
4868 	}
4869 
4870 	/* Update task specific "requested" clamps */
4871 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4872 		retval = uclamp_validate(p, attr);
4873 		if (retval)
4874 			return retval;
4875 	}
4876 
4877 	if (pi)
4878 		cpuset_read_lock();
4879 
4880 	/*
4881 	 * Make sure no PI-waiters arrive (or leave) while we are
4882 	 * changing the priority of the task:
4883 	 *
4884 	 * To be able to change p->policy safely, the appropriate
4885 	 * runqueue lock must be held.
4886 	 */
4887 	rq = task_rq_lock(p, &rf);
4888 	update_rq_clock(rq);
4889 
4890 	/*
4891 	 * Changing the policy of the stop threads its a very bad idea:
4892 	 */
4893 	if (p == rq->stop) {
4894 		retval = -EINVAL;
4895 		goto unlock;
4896 	}
4897 
4898 	/*
4899 	 * If not changing anything there's no need to proceed further,
4900 	 * but store a possible modification of reset_on_fork.
4901 	 */
4902 	if (unlikely(policy == p->policy)) {
4903 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4904 			goto change;
4905 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4906 			goto change;
4907 		if (dl_policy(policy) && dl_param_changed(p, attr))
4908 			goto change;
4909 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4910 			goto change;
4911 
4912 		p->sched_reset_on_fork = reset_on_fork;
4913 		retval = 0;
4914 		goto unlock;
4915 	}
4916 change:
4917 
4918 	if (user) {
4919 #ifdef CONFIG_RT_GROUP_SCHED
4920 		/*
4921 		 * Do not allow realtime tasks into groups that have no runtime
4922 		 * assigned.
4923 		 */
4924 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4925 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4926 				!task_group_is_autogroup(task_group(p))) {
4927 			retval = -EPERM;
4928 			goto unlock;
4929 		}
4930 #endif
4931 #ifdef CONFIG_SMP
4932 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4933 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4934 			cpumask_t *span = rq->rd->span;
4935 
4936 			/*
4937 			 * Don't allow tasks with an affinity mask smaller than
4938 			 * the entire root_domain to become SCHED_DEADLINE. We
4939 			 * will also fail if there's no bandwidth available.
4940 			 */
4941 			if (!cpumask_subset(span, p->cpus_ptr) ||
4942 			    rq->rd->dl_bw.bw == 0) {
4943 				retval = -EPERM;
4944 				goto unlock;
4945 			}
4946 		}
4947 #endif
4948 	}
4949 
4950 	/* Re-check policy now with rq lock held: */
4951 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4952 		policy = oldpolicy = -1;
4953 		task_rq_unlock(rq, p, &rf);
4954 		if (pi)
4955 			cpuset_read_unlock();
4956 		goto recheck;
4957 	}
4958 
4959 	/*
4960 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4961 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4962 	 * is available.
4963 	 */
4964 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4965 		retval = -EBUSY;
4966 		goto unlock;
4967 	}
4968 
4969 	p->sched_reset_on_fork = reset_on_fork;
4970 	oldprio = p->prio;
4971 
4972 	if (pi) {
4973 		/*
4974 		 * Take priority boosted tasks into account. If the new
4975 		 * effective priority is unchanged, we just store the new
4976 		 * normal parameters and do not touch the scheduler class and
4977 		 * the runqueue. This will be done when the task deboost
4978 		 * itself.
4979 		 */
4980 		new_effective_prio = rt_effective_prio(p, newprio);
4981 		if (new_effective_prio == oldprio)
4982 			queue_flags &= ~DEQUEUE_MOVE;
4983 	}
4984 
4985 	queued = task_on_rq_queued(p);
4986 	running = task_current(rq, p);
4987 	if (queued)
4988 		dequeue_task(rq, p, queue_flags);
4989 	if (running)
4990 		put_prev_task(rq, p);
4991 
4992 	prev_class = p->sched_class;
4993 
4994 	__setscheduler(rq, p, attr, pi);
4995 	__setscheduler_uclamp(p, attr);
4996 
4997 	if (queued) {
4998 		/*
4999 		 * We enqueue to tail when the priority of a task is
5000 		 * increased (user space view).
5001 		 */
5002 		if (oldprio < p->prio)
5003 			queue_flags |= ENQUEUE_HEAD;
5004 
5005 		enqueue_task(rq, p, queue_flags);
5006 	}
5007 	if (running)
5008 		set_next_task(rq, p);
5009 
5010 	check_class_changed(rq, p, prev_class, oldprio);
5011 
5012 	/* Avoid rq from going away on us: */
5013 	preempt_disable();
5014 	task_rq_unlock(rq, p, &rf);
5015 
5016 	if (pi) {
5017 		cpuset_read_unlock();
5018 		rt_mutex_adjust_pi(p);
5019 	}
5020 
5021 	/* Run balance callbacks after we've adjusted the PI chain: */
5022 	balance_callback(rq);
5023 	preempt_enable();
5024 
5025 	return 0;
5026 
5027 unlock:
5028 	task_rq_unlock(rq, p, &rf);
5029 	if (pi)
5030 		cpuset_read_unlock();
5031 	return retval;
5032 }
5033 
5034 static int _sched_setscheduler(struct task_struct *p, int policy,
5035 			       const struct sched_param *param, bool check)
5036 {
5037 	struct sched_attr attr = {
5038 		.sched_policy   = policy,
5039 		.sched_priority = param->sched_priority,
5040 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5041 	};
5042 
5043 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5044 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5045 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5046 		policy &= ~SCHED_RESET_ON_FORK;
5047 		attr.sched_policy = policy;
5048 	}
5049 
5050 	return __sched_setscheduler(p, &attr, check, true);
5051 }
5052 /**
5053  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5054  * @p: the task in question.
5055  * @policy: new policy.
5056  * @param: structure containing the new RT priority.
5057  *
5058  * Return: 0 on success. An error code otherwise.
5059  *
5060  * NOTE that the task may be already dead.
5061  */
5062 int sched_setscheduler(struct task_struct *p, int policy,
5063 		       const struct sched_param *param)
5064 {
5065 	return _sched_setscheduler(p, policy, param, true);
5066 }
5067 EXPORT_SYMBOL_GPL(sched_setscheduler);
5068 
5069 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5070 {
5071 	return __sched_setscheduler(p, attr, true, true);
5072 }
5073 EXPORT_SYMBOL_GPL(sched_setattr);
5074 
5075 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5076 {
5077 	return __sched_setscheduler(p, attr, false, true);
5078 }
5079 
5080 /**
5081  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5082  * @p: the task in question.
5083  * @policy: new policy.
5084  * @param: structure containing the new RT priority.
5085  *
5086  * Just like sched_setscheduler, only don't bother checking if the
5087  * current context has permission.  For example, this is needed in
5088  * stop_machine(): we create temporary high priority worker threads,
5089  * but our caller might not have that capability.
5090  *
5091  * Return: 0 on success. An error code otherwise.
5092  */
5093 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5094 			       const struct sched_param *param)
5095 {
5096 	return _sched_setscheduler(p, policy, param, false);
5097 }
5098 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5099 
5100 static int
5101 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5102 {
5103 	struct sched_param lparam;
5104 	struct task_struct *p;
5105 	int retval;
5106 
5107 	if (!param || pid < 0)
5108 		return -EINVAL;
5109 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5110 		return -EFAULT;
5111 
5112 	rcu_read_lock();
5113 	retval = -ESRCH;
5114 	p = find_process_by_pid(pid);
5115 	if (likely(p))
5116 		get_task_struct(p);
5117 	rcu_read_unlock();
5118 
5119 	if (likely(p)) {
5120 		retval = sched_setscheduler(p, policy, &lparam);
5121 		put_task_struct(p);
5122 	}
5123 
5124 	return retval;
5125 }
5126 
5127 /*
5128  * Mimics kernel/events/core.c perf_copy_attr().
5129  */
5130 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5131 {
5132 	u32 size;
5133 	int ret;
5134 
5135 	/* Zero the full structure, so that a short copy will be nice: */
5136 	memset(attr, 0, sizeof(*attr));
5137 
5138 	ret = get_user(size, &uattr->size);
5139 	if (ret)
5140 		return ret;
5141 
5142 	/* ABI compatibility quirk: */
5143 	if (!size)
5144 		size = SCHED_ATTR_SIZE_VER0;
5145 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5146 		goto err_size;
5147 
5148 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5149 	if (ret) {
5150 		if (ret == -E2BIG)
5151 			goto err_size;
5152 		return ret;
5153 	}
5154 
5155 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5156 	    size < SCHED_ATTR_SIZE_VER1)
5157 		return -EINVAL;
5158 
5159 	/*
5160 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5161 	 * to be strict and return an error on out-of-bounds values?
5162 	 */
5163 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5164 
5165 	return 0;
5166 
5167 err_size:
5168 	put_user(sizeof(*attr), &uattr->size);
5169 	return -E2BIG;
5170 }
5171 
5172 /**
5173  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5174  * @pid: the pid in question.
5175  * @policy: new policy.
5176  * @param: structure containing the new RT priority.
5177  *
5178  * Return: 0 on success. An error code otherwise.
5179  */
5180 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5181 {
5182 	if (policy < 0)
5183 		return -EINVAL;
5184 
5185 	return do_sched_setscheduler(pid, policy, param);
5186 }
5187 
5188 /**
5189  * sys_sched_setparam - set/change the RT priority of a thread
5190  * @pid: the pid in question.
5191  * @param: structure containing the new RT priority.
5192  *
5193  * Return: 0 on success. An error code otherwise.
5194  */
5195 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5196 {
5197 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5198 }
5199 
5200 /**
5201  * sys_sched_setattr - same as above, but with extended sched_attr
5202  * @pid: the pid in question.
5203  * @uattr: structure containing the extended parameters.
5204  * @flags: for future extension.
5205  */
5206 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5207 			       unsigned int, flags)
5208 {
5209 	struct sched_attr attr;
5210 	struct task_struct *p;
5211 	int retval;
5212 
5213 	if (!uattr || pid < 0 || flags)
5214 		return -EINVAL;
5215 
5216 	retval = sched_copy_attr(uattr, &attr);
5217 	if (retval)
5218 		return retval;
5219 
5220 	if ((int)attr.sched_policy < 0)
5221 		return -EINVAL;
5222 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5223 		attr.sched_policy = SETPARAM_POLICY;
5224 
5225 	rcu_read_lock();
5226 	retval = -ESRCH;
5227 	p = find_process_by_pid(pid);
5228 	if (likely(p))
5229 		get_task_struct(p);
5230 	rcu_read_unlock();
5231 
5232 	if (likely(p)) {
5233 		retval = sched_setattr(p, &attr);
5234 		put_task_struct(p);
5235 	}
5236 
5237 	return retval;
5238 }
5239 
5240 /**
5241  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5242  * @pid: the pid in question.
5243  *
5244  * Return: On success, the policy of the thread. Otherwise, a negative error
5245  * code.
5246  */
5247 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5248 {
5249 	struct task_struct *p;
5250 	int retval;
5251 
5252 	if (pid < 0)
5253 		return -EINVAL;
5254 
5255 	retval = -ESRCH;
5256 	rcu_read_lock();
5257 	p = find_process_by_pid(pid);
5258 	if (p) {
5259 		retval = security_task_getscheduler(p);
5260 		if (!retval)
5261 			retval = p->policy
5262 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5263 	}
5264 	rcu_read_unlock();
5265 	return retval;
5266 }
5267 
5268 /**
5269  * sys_sched_getparam - get the RT priority of a thread
5270  * @pid: the pid in question.
5271  * @param: structure containing the RT priority.
5272  *
5273  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5274  * code.
5275  */
5276 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5277 {
5278 	struct sched_param lp = { .sched_priority = 0 };
5279 	struct task_struct *p;
5280 	int retval;
5281 
5282 	if (!param || pid < 0)
5283 		return -EINVAL;
5284 
5285 	rcu_read_lock();
5286 	p = find_process_by_pid(pid);
5287 	retval = -ESRCH;
5288 	if (!p)
5289 		goto out_unlock;
5290 
5291 	retval = security_task_getscheduler(p);
5292 	if (retval)
5293 		goto out_unlock;
5294 
5295 	if (task_has_rt_policy(p))
5296 		lp.sched_priority = p->rt_priority;
5297 	rcu_read_unlock();
5298 
5299 	/*
5300 	 * This one might sleep, we cannot do it with a spinlock held ...
5301 	 */
5302 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5303 
5304 	return retval;
5305 
5306 out_unlock:
5307 	rcu_read_unlock();
5308 	return retval;
5309 }
5310 
5311 /*
5312  * Copy the kernel size attribute structure (which might be larger
5313  * than what user-space knows about) to user-space.
5314  *
5315  * Note that all cases are valid: user-space buffer can be larger or
5316  * smaller than the kernel-space buffer. The usual case is that both
5317  * have the same size.
5318  */
5319 static int
5320 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5321 			struct sched_attr *kattr,
5322 			unsigned int usize)
5323 {
5324 	unsigned int ksize = sizeof(*kattr);
5325 
5326 	if (!access_ok(uattr, usize))
5327 		return -EFAULT;
5328 
5329 	/*
5330 	 * sched_getattr() ABI forwards and backwards compatibility:
5331 	 *
5332 	 * If usize == ksize then we just copy everything to user-space and all is good.
5333 	 *
5334 	 * If usize < ksize then we only copy as much as user-space has space for,
5335 	 * this keeps ABI compatibility as well. We skip the rest.
5336 	 *
5337 	 * If usize > ksize then user-space is using a newer version of the ABI,
5338 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5339 	 * detect the kernel's knowledge of attributes from the attr->size value
5340 	 * which is set to ksize in this case.
5341 	 */
5342 	kattr->size = min(usize, ksize);
5343 
5344 	if (copy_to_user(uattr, kattr, kattr->size))
5345 		return -EFAULT;
5346 
5347 	return 0;
5348 }
5349 
5350 /**
5351  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5352  * @pid: the pid in question.
5353  * @uattr: structure containing the extended parameters.
5354  * @usize: sizeof(attr) for fwd/bwd comp.
5355  * @flags: for future extension.
5356  */
5357 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5358 		unsigned int, usize, unsigned int, flags)
5359 {
5360 	struct sched_attr kattr = { };
5361 	struct task_struct *p;
5362 	int retval;
5363 
5364 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5365 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5366 		return -EINVAL;
5367 
5368 	rcu_read_lock();
5369 	p = find_process_by_pid(pid);
5370 	retval = -ESRCH;
5371 	if (!p)
5372 		goto out_unlock;
5373 
5374 	retval = security_task_getscheduler(p);
5375 	if (retval)
5376 		goto out_unlock;
5377 
5378 	kattr.sched_policy = p->policy;
5379 	if (p->sched_reset_on_fork)
5380 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5381 	if (task_has_dl_policy(p))
5382 		__getparam_dl(p, &kattr);
5383 	else if (task_has_rt_policy(p))
5384 		kattr.sched_priority = p->rt_priority;
5385 	else
5386 		kattr.sched_nice = task_nice(p);
5387 
5388 #ifdef CONFIG_UCLAMP_TASK
5389 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5390 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5391 #endif
5392 
5393 	rcu_read_unlock();
5394 
5395 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5396 
5397 out_unlock:
5398 	rcu_read_unlock();
5399 	return retval;
5400 }
5401 
5402 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5403 {
5404 	cpumask_var_t cpus_allowed, new_mask;
5405 	struct task_struct *p;
5406 	int retval;
5407 
5408 	rcu_read_lock();
5409 
5410 	p = find_process_by_pid(pid);
5411 	if (!p) {
5412 		rcu_read_unlock();
5413 		return -ESRCH;
5414 	}
5415 
5416 	/* Prevent p going away */
5417 	get_task_struct(p);
5418 	rcu_read_unlock();
5419 
5420 	if (p->flags & PF_NO_SETAFFINITY) {
5421 		retval = -EINVAL;
5422 		goto out_put_task;
5423 	}
5424 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5425 		retval = -ENOMEM;
5426 		goto out_put_task;
5427 	}
5428 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5429 		retval = -ENOMEM;
5430 		goto out_free_cpus_allowed;
5431 	}
5432 	retval = -EPERM;
5433 	if (!check_same_owner(p)) {
5434 		rcu_read_lock();
5435 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5436 			rcu_read_unlock();
5437 			goto out_free_new_mask;
5438 		}
5439 		rcu_read_unlock();
5440 	}
5441 
5442 	retval = security_task_setscheduler(p);
5443 	if (retval)
5444 		goto out_free_new_mask;
5445 
5446 
5447 	cpuset_cpus_allowed(p, cpus_allowed);
5448 	cpumask_and(new_mask, in_mask, cpus_allowed);
5449 
5450 	/*
5451 	 * Since bandwidth control happens on root_domain basis,
5452 	 * if admission test is enabled, we only admit -deadline
5453 	 * tasks allowed to run on all the CPUs in the task's
5454 	 * root_domain.
5455 	 */
5456 #ifdef CONFIG_SMP
5457 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5458 		rcu_read_lock();
5459 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5460 			retval = -EBUSY;
5461 			rcu_read_unlock();
5462 			goto out_free_new_mask;
5463 		}
5464 		rcu_read_unlock();
5465 	}
5466 #endif
5467 again:
5468 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5469 
5470 	if (!retval) {
5471 		cpuset_cpus_allowed(p, cpus_allowed);
5472 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5473 			/*
5474 			 * We must have raced with a concurrent cpuset
5475 			 * update. Just reset the cpus_allowed to the
5476 			 * cpuset's cpus_allowed
5477 			 */
5478 			cpumask_copy(new_mask, cpus_allowed);
5479 			goto again;
5480 		}
5481 	}
5482 out_free_new_mask:
5483 	free_cpumask_var(new_mask);
5484 out_free_cpus_allowed:
5485 	free_cpumask_var(cpus_allowed);
5486 out_put_task:
5487 	put_task_struct(p);
5488 	return retval;
5489 }
5490 
5491 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5492 			     struct cpumask *new_mask)
5493 {
5494 	if (len < cpumask_size())
5495 		cpumask_clear(new_mask);
5496 	else if (len > cpumask_size())
5497 		len = cpumask_size();
5498 
5499 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5500 }
5501 
5502 /**
5503  * sys_sched_setaffinity - set the CPU affinity of a process
5504  * @pid: pid of the process
5505  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5506  * @user_mask_ptr: user-space pointer to the new CPU mask
5507  *
5508  * Return: 0 on success. An error code otherwise.
5509  */
5510 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5511 		unsigned long __user *, user_mask_ptr)
5512 {
5513 	cpumask_var_t new_mask;
5514 	int retval;
5515 
5516 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5517 		return -ENOMEM;
5518 
5519 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5520 	if (retval == 0)
5521 		retval = sched_setaffinity(pid, new_mask);
5522 	free_cpumask_var(new_mask);
5523 	return retval;
5524 }
5525 
5526 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5527 {
5528 	struct task_struct *p;
5529 	unsigned long flags;
5530 	int retval;
5531 
5532 	rcu_read_lock();
5533 
5534 	retval = -ESRCH;
5535 	p = find_process_by_pid(pid);
5536 	if (!p)
5537 		goto out_unlock;
5538 
5539 	retval = security_task_getscheduler(p);
5540 	if (retval)
5541 		goto out_unlock;
5542 
5543 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5544 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5545 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5546 
5547 out_unlock:
5548 	rcu_read_unlock();
5549 
5550 	return retval;
5551 }
5552 
5553 /**
5554  * sys_sched_getaffinity - get the CPU affinity of a process
5555  * @pid: pid of the process
5556  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5557  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5558  *
5559  * Return: size of CPU mask copied to user_mask_ptr on success. An
5560  * error code otherwise.
5561  */
5562 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5563 		unsigned long __user *, user_mask_ptr)
5564 {
5565 	int ret;
5566 	cpumask_var_t mask;
5567 
5568 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5569 		return -EINVAL;
5570 	if (len & (sizeof(unsigned long)-1))
5571 		return -EINVAL;
5572 
5573 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5574 		return -ENOMEM;
5575 
5576 	ret = sched_getaffinity(pid, mask);
5577 	if (ret == 0) {
5578 		unsigned int retlen = min(len, cpumask_size());
5579 
5580 		if (copy_to_user(user_mask_ptr, mask, retlen))
5581 			ret = -EFAULT;
5582 		else
5583 			ret = retlen;
5584 	}
5585 	free_cpumask_var(mask);
5586 
5587 	return ret;
5588 }
5589 
5590 /**
5591  * sys_sched_yield - yield the current processor to other threads.
5592  *
5593  * This function yields the current CPU to other tasks. If there are no
5594  * other threads running on this CPU then this function will return.
5595  *
5596  * Return: 0.
5597  */
5598 static void do_sched_yield(void)
5599 {
5600 	struct rq_flags rf;
5601 	struct rq *rq;
5602 
5603 	rq = this_rq_lock_irq(&rf);
5604 
5605 	schedstat_inc(rq->yld_count);
5606 	current->sched_class->yield_task(rq);
5607 
5608 	/*
5609 	 * Since we are going to call schedule() anyway, there's
5610 	 * no need to preempt or enable interrupts:
5611 	 */
5612 	preempt_disable();
5613 	rq_unlock(rq, &rf);
5614 	sched_preempt_enable_no_resched();
5615 
5616 	schedule();
5617 }
5618 
5619 SYSCALL_DEFINE0(sched_yield)
5620 {
5621 	do_sched_yield();
5622 	return 0;
5623 }
5624 
5625 #ifndef CONFIG_PREEMPTION
5626 int __sched _cond_resched(void)
5627 {
5628 	if (should_resched(0)) {
5629 		preempt_schedule_common();
5630 		return 1;
5631 	}
5632 	rcu_all_qs();
5633 	return 0;
5634 }
5635 EXPORT_SYMBOL(_cond_resched);
5636 #endif
5637 
5638 /*
5639  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5640  * call schedule, and on return reacquire the lock.
5641  *
5642  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5643  * operations here to prevent schedule() from being called twice (once via
5644  * spin_unlock(), once by hand).
5645  */
5646 int __cond_resched_lock(spinlock_t *lock)
5647 {
5648 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5649 	int ret = 0;
5650 
5651 	lockdep_assert_held(lock);
5652 
5653 	if (spin_needbreak(lock) || resched) {
5654 		spin_unlock(lock);
5655 		if (resched)
5656 			preempt_schedule_common();
5657 		else
5658 			cpu_relax();
5659 		ret = 1;
5660 		spin_lock(lock);
5661 	}
5662 	return ret;
5663 }
5664 EXPORT_SYMBOL(__cond_resched_lock);
5665 
5666 /**
5667  * yield - yield the current processor to other threads.
5668  *
5669  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5670  *
5671  * The scheduler is at all times free to pick the calling task as the most
5672  * eligible task to run, if removing the yield() call from your code breaks
5673  * it, its already broken.
5674  *
5675  * Typical broken usage is:
5676  *
5677  * while (!event)
5678  *	yield();
5679  *
5680  * where one assumes that yield() will let 'the other' process run that will
5681  * make event true. If the current task is a SCHED_FIFO task that will never
5682  * happen. Never use yield() as a progress guarantee!!
5683  *
5684  * If you want to use yield() to wait for something, use wait_event().
5685  * If you want to use yield() to be 'nice' for others, use cond_resched().
5686  * If you still want to use yield(), do not!
5687  */
5688 void __sched yield(void)
5689 {
5690 	set_current_state(TASK_RUNNING);
5691 	do_sched_yield();
5692 }
5693 EXPORT_SYMBOL(yield);
5694 
5695 /**
5696  * yield_to - yield the current processor to another thread in
5697  * your thread group, or accelerate that thread toward the
5698  * processor it's on.
5699  * @p: target task
5700  * @preempt: whether task preemption is allowed or not
5701  *
5702  * It's the caller's job to ensure that the target task struct
5703  * can't go away on us before we can do any checks.
5704  *
5705  * Return:
5706  *	true (>0) if we indeed boosted the target task.
5707  *	false (0) if we failed to boost the target.
5708  *	-ESRCH if there's no task to yield to.
5709  */
5710 int __sched yield_to(struct task_struct *p, bool preempt)
5711 {
5712 	struct task_struct *curr = current;
5713 	struct rq *rq, *p_rq;
5714 	unsigned long flags;
5715 	int yielded = 0;
5716 
5717 	local_irq_save(flags);
5718 	rq = this_rq();
5719 
5720 again:
5721 	p_rq = task_rq(p);
5722 	/*
5723 	 * If we're the only runnable task on the rq and target rq also
5724 	 * has only one task, there's absolutely no point in yielding.
5725 	 */
5726 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5727 		yielded = -ESRCH;
5728 		goto out_irq;
5729 	}
5730 
5731 	double_rq_lock(rq, p_rq);
5732 	if (task_rq(p) != p_rq) {
5733 		double_rq_unlock(rq, p_rq);
5734 		goto again;
5735 	}
5736 
5737 	if (!curr->sched_class->yield_to_task)
5738 		goto out_unlock;
5739 
5740 	if (curr->sched_class != p->sched_class)
5741 		goto out_unlock;
5742 
5743 	if (task_running(p_rq, p) || p->state)
5744 		goto out_unlock;
5745 
5746 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5747 	if (yielded) {
5748 		schedstat_inc(rq->yld_count);
5749 		/*
5750 		 * Make p's CPU reschedule; pick_next_entity takes care of
5751 		 * fairness.
5752 		 */
5753 		if (preempt && rq != p_rq)
5754 			resched_curr(p_rq);
5755 	}
5756 
5757 out_unlock:
5758 	double_rq_unlock(rq, p_rq);
5759 out_irq:
5760 	local_irq_restore(flags);
5761 
5762 	if (yielded > 0)
5763 		schedule();
5764 
5765 	return yielded;
5766 }
5767 EXPORT_SYMBOL_GPL(yield_to);
5768 
5769 int io_schedule_prepare(void)
5770 {
5771 	int old_iowait = current->in_iowait;
5772 
5773 	current->in_iowait = 1;
5774 	blk_schedule_flush_plug(current);
5775 
5776 	return old_iowait;
5777 }
5778 
5779 void io_schedule_finish(int token)
5780 {
5781 	current->in_iowait = token;
5782 }
5783 
5784 /*
5785  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5786  * that process accounting knows that this is a task in IO wait state.
5787  */
5788 long __sched io_schedule_timeout(long timeout)
5789 {
5790 	int token;
5791 	long ret;
5792 
5793 	token = io_schedule_prepare();
5794 	ret = schedule_timeout(timeout);
5795 	io_schedule_finish(token);
5796 
5797 	return ret;
5798 }
5799 EXPORT_SYMBOL(io_schedule_timeout);
5800 
5801 void __sched io_schedule(void)
5802 {
5803 	int token;
5804 
5805 	token = io_schedule_prepare();
5806 	schedule();
5807 	io_schedule_finish(token);
5808 }
5809 EXPORT_SYMBOL(io_schedule);
5810 
5811 /**
5812  * sys_sched_get_priority_max - return maximum RT priority.
5813  * @policy: scheduling class.
5814  *
5815  * Return: On success, this syscall returns the maximum
5816  * rt_priority that can be used by a given scheduling class.
5817  * On failure, a negative error code is returned.
5818  */
5819 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5820 {
5821 	int ret = -EINVAL;
5822 
5823 	switch (policy) {
5824 	case SCHED_FIFO:
5825 	case SCHED_RR:
5826 		ret = MAX_USER_RT_PRIO-1;
5827 		break;
5828 	case SCHED_DEADLINE:
5829 	case SCHED_NORMAL:
5830 	case SCHED_BATCH:
5831 	case SCHED_IDLE:
5832 		ret = 0;
5833 		break;
5834 	}
5835 	return ret;
5836 }
5837 
5838 /**
5839  * sys_sched_get_priority_min - return minimum RT priority.
5840  * @policy: scheduling class.
5841  *
5842  * Return: On success, this syscall returns the minimum
5843  * rt_priority that can be used by a given scheduling class.
5844  * On failure, a negative error code is returned.
5845  */
5846 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5847 {
5848 	int ret = -EINVAL;
5849 
5850 	switch (policy) {
5851 	case SCHED_FIFO:
5852 	case SCHED_RR:
5853 		ret = 1;
5854 		break;
5855 	case SCHED_DEADLINE:
5856 	case SCHED_NORMAL:
5857 	case SCHED_BATCH:
5858 	case SCHED_IDLE:
5859 		ret = 0;
5860 	}
5861 	return ret;
5862 }
5863 
5864 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5865 {
5866 	struct task_struct *p;
5867 	unsigned int time_slice;
5868 	struct rq_flags rf;
5869 	struct rq *rq;
5870 	int retval;
5871 
5872 	if (pid < 0)
5873 		return -EINVAL;
5874 
5875 	retval = -ESRCH;
5876 	rcu_read_lock();
5877 	p = find_process_by_pid(pid);
5878 	if (!p)
5879 		goto out_unlock;
5880 
5881 	retval = security_task_getscheduler(p);
5882 	if (retval)
5883 		goto out_unlock;
5884 
5885 	rq = task_rq_lock(p, &rf);
5886 	time_slice = 0;
5887 	if (p->sched_class->get_rr_interval)
5888 		time_slice = p->sched_class->get_rr_interval(rq, p);
5889 	task_rq_unlock(rq, p, &rf);
5890 
5891 	rcu_read_unlock();
5892 	jiffies_to_timespec64(time_slice, t);
5893 	return 0;
5894 
5895 out_unlock:
5896 	rcu_read_unlock();
5897 	return retval;
5898 }
5899 
5900 /**
5901  * sys_sched_rr_get_interval - return the default timeslice of a process.
5902  * @pid: pid of the process.
5903  * @interval: userspace pointer to the timeslice value.
5904  *
5905  * this syscall writes the default timeslice value of a given process
5906  * into the user-space timespec buffer. A value of '0' means infinity.
5907  *
5908  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5909  * an error code.
5910  */
5911 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5912 		struct __kernel_timespec __user *, interval)
5913 {
5914 	struct timespec64 t;
5915 	int retval = sched_rr_get_interval(pid, &t);
5916 
5917 	if (retval == 0)
5918 		retval = put_timespec64(&t, interval);
5919 
5920 	return retval;
5921 }
5922 
5923 #ifdef CONFIG_COMPAT_32BIT_TIME
5924 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5925 		struct old_timespec32 __user *, interval)
5926 {
5927 	struct timespec64 t;
5928 	int retval = sched_rr_get_interval(pid, &t);
5929 
5930 	if (retval == 0)
5931 		retval = put_old_timespec32(&t, interval);
5932 	return retval;
5933 }
5934 #endif
5935 
5936 void sched_show_task(struct task_struct *p)
5937 {
5938 	unsigned long free = 0;
5939 	int ppid;
5940 
5941 	if (!try_get_task_stack(p))
5942 		return;
5943 
5944 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5945 
5946 	if (p->state == TASK_RUNNING)
5947 		printk(KERN_CONT "  running task    ");
5948 #ifdef CONFIG_DEBUG_STACK_USAGE
5949 	free = stack_not_used(p);
5950 #endif
5951 	ppid = 0;
5952 	rcu_read_lock();
5953 	if (pid_alive(p))
5954 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5955 	rcu_read_unlock();
5956 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5957 		task_pid_nr(p), ppid,
5958 		(unsigned long)task_thread_info(p)->flags);
5959 
5960 	print_worker_info(KERN_INFO, p);
5961 	show_stack(p, NULL);
5962 	put_task_stack(p);
5963 }
5964 EXPORT_SYMBOL_GPL(sched_show_task);
5965 
5966 static inline bool
5967 state_filter_match(unsigned long state_filter, struct task_struct *p)
5968 {
5969 	/* no filter, everything matches */
5970 	if (!state_filter)
5971 		return true;
5972 
5973 	/* filter, but doesn't match */
5974 	if (!(p->state & state_filter))
5975 		return false;
5976 
5977 	/*
5978 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5979 	 * TASK_KILLABLE).
5980 	 */
5981 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5982 		return false;
5983 
5984 	return true;
5985 }
5986 
5987 
5988 void show_state_filter(unsigned long state_filter)
5989 {
5990 	struct task_struct *g, *p;
5991 
5992 #if BITS_PER_LONG == 32
5993 	printk(KERN_INFO
5994 		"  task                PC stack   pid father\n");
5995 #else
5996 	printk(KERN_INFO
5997 		"  task                        PC stack   pid father\n");
5998 #endif
5999 	rcu_read_lock();
6000 	for_each_process_thread(g, p) {
6001 		/*
6002 		 * reset the NMI-timeout, listing all files on a slow
6003 		 * console might take a lot of time:
6004 		 * Also, reset softlockup watchdogs on all CPUs, because
6005 		 * another CPU might be blocked waiting for us to process
6006 		 * an IPI.
6007 		 */
6008 		touch_nmi_watchdog();
6009 		touch_all_softlockup_watchdogs();
6010 		if (state_filter_match(state_filter, p))
6011 			sched_show_task(p);
6012 	}
6013 
6014 #ifdef CONFIG_SCHED_DEBUG
6015 	if (!state_filter)
6016 		sysrq_sched_debug_show();
6017 #endif
6018 	rcu_read_unlock();
6019 	/*
6020 	 * Only show locks if all tasks are dumped:
6021 	 */
6022 	if (!state_filter)
6023 		debug_show_all_locks();
6024 }
6025 
6026 /**
6027  * init_idle - set up an idle thread for a given CPU
6028  * @idle: task in question
6029  * @cpu: CPU the idle task belongs to
6030  *
6031  * NOTE: this function does not set the idle thread's NEED_RESCHED
6032  * flag, to make booting more robust.
6033  */
6034 void init_idle(struct task_struct *idle, int cpu)
6035 {
6036 	struct rq *rq = cpu_rq(cpu);
6037 	unsigned long flags;
6038 
6039 	__sched_fork(0, idle);
6040 
6041 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6042 	raw_spin_lock(&rq->lock);
6043 
6044 	idle->state = TASK_RUNNING;
6045 	idle->se.exec_start = sched_clock();
6046 	idle->flags |= PF_IDLE;
6047 
6048 	kasan_unpoison_task_stack(idle);
6049 
6050 #ifdef CONFIG_SMP
6051 	/*
6052 	 * Its possible that init_idle() gets called multiple times on a task,
6053 	 * in that case do_set_cpus_allowed() will not do the right thing.
6054 	 *
6055 	 * And since this is boot we can forgo the serialization.
6056 	 */
6057 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6058 #endif
6059 	/*
6060 	 * We're having a chicken and egg problem, even though we are
6061 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6062 	 * lockdep check in task_group() will fail.
6063 	 *
6064 	 * Similar case to sched_fork(). / Alternatively we could
6065 	 * use task_rq_lock() here and obtain the other rq->lock.
6066 	 *
6067 	 * Silence PROVE_RCU
6068 	 */
6069 	rcu_read_lock();
6070 	__set_task_cpu(idle, cpu);
6071 	rcu_read_unlock();
6072 
6073 	rq->idle = idle;
6074 	rcu_assign_pointer(rq->curr, idle);
6075 	idle->on_rq = TASK_ON_RQ_QUEUED;
6076 #ifdef CONFIG_SMP
6077 	idle->on_cpu = 1;
6078 #endif
6079 	raw_spin_unlock(&rq->lock);
6080 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6081 
6082 	/* Set the preempt count _outside_ the spinlocks! */
6083 	init_idle_preempt_count(idle, cpu);
6084 
6085 	/*
6086 	 * The idle tasks have their own, simple scheduling class:
6087 	 */
6088 	idle->sched_class = &idle_sched_class;
6089 	ftrace_graph_init_idle_task(idle, cpu);
6090 	vtime_init_idle(idle, cpu);
6091 #ifdef CONFIG_SMP
6092 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6093 #endif
6094 }
6095 
6096 #ifdef CONFIG_SMP
6097 
6098 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6099 			      const struct cpumask *trial)
6100 {
6101 	int ret = 1;
6102 
6103 	if (!cpumask_weight(cur))
6104 		return ret;
6105 
6106 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6107 
6108 	return ret;
6109 }
6110 
6111 int task_can_attach(struct task_struct *p,
6112 		    const struct cpumask *cs_cpus_allowed)
6113 {
6114 	int ret = 0;
6115 
6116 	/*
6117 	 * Kthreads which disallow setaffinity shouldn't be moved
6118 	 * to a new cpuset; we don't want to change their CPU
6119 	 * affinity and isolating such threads by their set of
6120 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6121 	 * applicable for such threads.  This prevents checking for
6122 	 * success of set_cpus_allowed_ptr() on all attached tasks
6123 	 * before cpus_mask may be changed.
6124 	 */
6125 	if (p->flags & PF_NO_SETAFFINITY) {
6126 		ret = -EINVAL;
6127 		goto out;
6128 	}
6129 
6130 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6131 					      cs_cpus_allowed))
6132 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6133 
6134 out:
6135 	return ret;
6136 }
6137 
6138 bool sched_smp_initialized __read_mostly;
6139 
6140 #ifdef CONFIG_NUMA_BALANCING
6141 /* Migrate current task p to target_cpu */
6142 int migrate_task_to(struct task_struct *p, int target_cpu)
6143 {
6144 	struct migration_arg arg = { p, target_cpu };
6145 	int curr_cpu = task_cpu(p);
6146 
6147 	if (curr_cpu == target_cpu)
6148 		return 0;
6149 
6150 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6151 		return -EINVAL;
6152 
6153 	/* TODO: This is not properly updating schedstats */
6154 
6155 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6156 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6157 }
6158 
6159 /*
6160  * Requeue a task on a given node and accurately track the number of NUMA
6161  * tasks on the runqueues
6162  */
6163 void sched_setnuma(struct task_struct *p, int nid)
6164 {
6165 	bool queued, running;
6166 	struct rq_flags rf;
6167 	struct rq *rq;
6168 
6169 	rq = task_rq_lock(p, &rf);
6170 	queued = task_on_rq_queued(p);
6171 	running = task_current(rq, p);
6172 
6173 	if (queued)
6174 		dequeue_task(rq, p, DEQUEUE_SAVE);
6175 	if (running)
6176 		put_prev_task(rq, p);
6177 
6178 	p->numa_preferred_nid = nid;
6179 
6180 	if (queued)
6181 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6182 	if (running)
6183 		set_next_task(rq, p);
6184 	task_rq_unlock(rq, p, &rf);
6185 }
6186 #endif /* CONFIG_NUMA_BALANCING */
6187 
6188 #ifdef CONFIG_HOTPLUG_CPU
6189 /*
6190  * Ensure that the idle task is using init_mm right before its CPU goes
6191  * offline.
6192  */
6193 void idle_task_exit(void)
6194 {
6195 	struct mm_struct *mm = current->active_mm;
6196 
6197 	BUG_ON(cpu_online(smp_processor_id()));
6198 
6199 	if (mm != &init_mm) {
6200 		switch_mm(mm, &init_mm, current);
6201 		current->active_mm = &init_mm;
6202 		finish_arch_post_lock_switch();
6203 	}
6204 	mmdrop(mm);
6205 }
6206 
6207 /*
6208  * Since this CPU is going 'away' for a while, fold any nr_active delta
6209  * we might have. Assumes we're called after migrate_tasks() so that the
6210  * nr_active count is stable. We need to take the teardown thread which
6211  * is calling this into account, so we hand in adjust = 1 to the load
6212  * calculation.
6213  *
6214  * Also see the comment "Global load-average calculations".
6215  */
6216 static void calc_load_migrate(struct rq *rq)
6217 {
6218 	long delta = calc_load_fold_active(rq, 1);
6219 	if (delta)
6220 		atomic_long_add(delta, &calc_load_tasks);
6221 }
6222 
6223 static struct task_struct *__pick_migrate_task(struct rq *rq)
6224 {
6225 	const struct sched_class *class;
6226 	struct task_struct *next;
6227 
6228 	for_each_class(class) {
6229 		next = class->pick_next_task(rq);
6230 		if (next) {
6231 			next->sched_class->put_prev_task(rq, next);
6232 			return next;
6233 		}
6234 	}
6235 
6236 	/* The idle class should always have a runnable task */
6237 	BUG();
6238 }
6239 
6240 /*
6241  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6242  * try_to_wake_up()->select_task_rq().
6243  *
6244  * Called with rq->lock held even though we'er in stop_machine() and
6245  * there's no concurrency possible, we hold the required locks anyway
6246  * because of lock validation efforts.
6247  */
6248 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6249 {
6250 	struct rq *rq = dead_rq;
6251 	struct task_struct *next, *stop = rq->stop;
6252 	struct rq_flags orf = *rf;
6253 	int dest_cpu;
6254 
6255 	/*
6256 	 * Fudge the rq selection such that the below task selection loop
6257 	 * doesn't get stuck on the currently eligible stop task.
6258 	 *
6259 	 * We're currently inside stop_machine() and the rq is either stuck
6260 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6261 	 * either way we should never end up calling schedule() until we're
6262 	 * done here.
6263 	 */
6264 	rq->stop = NULL;
6265 
6266 	/*
6267 	 * put_prev_task() and pick_next_task() sched
6268 	 * class method both need to have an up-to-date
6269 	 * value of rq->clock[_task]
6270 	 */
6271 	update_rq_clock(rq);
6272 
6273 	for (;;) {
6274 		/*
6275 		 * There's this thread running, bail when that's the only
6276 		 * remaining thread:
6277 		 */
6278 		if (rq->nr_running == 1)
6279 			break;
6280 
6281 		next = __pick_migrate_task(rq);
6282 
6283 		/*
6284 		 * Rules for changing task_struct::cpus_mask are holding
6285 		 * both pi_lock and rq->lock, such that holding either
6286 		 * stabilizes the mask.
6287 		 *
6288 		 * Drop rq->lock is not quite as disastrous as it usually is
6289 		 * because !cpu_active at this point, which means load-balance
6290 		 * will not interfere. Also, stop-machine.
6291 		 */
6292 		rq_unlock(rq, rf);
6293 		raw_spin_lock(&next->pi_lock);
6294 		rq_relock(rq, rf);
6295 
6296 		/*
6297 		 * Since we're inside stop-machine, _nothing_ should have
6298 		 * changed the task, WARN if weird stuff happened, because in
6299 		 * that case the above rq->lock drop is a fail too.
6300 		 */
6301 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6302 			raw_spin_unlock(&next->pi_lock);
6303 			continue;
6304 		}
6305 
6306 		/* Find suitable destination for @next, with force if needed. */
6307 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6308 		rq = __migrate_task(rq, rf, next, dest_cpu);
6309 		if (rq != dead_rq) {
6310 			rq_unlock(rq, rf);
6311 			rq = dead_rq;
6312 			*rf = orf;
6313 			rq_relock(rq, rf);
6314 		}
6315 		raw_spin_unlock(&next->pi_lock);
6316 	}
6317 
6318 	rq->stop = stop;
6319 }
6320 #endif /* CONFIG_HOTPLUG_CPU */
6321 
6322 void set_rq_online(struct rq *rq)
6323 {
6324 	if (!rq->online) {
6325 		const struct sched_class *class;
6326 
6327 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6328 		rq->online = 1;
6329 
6330 		for_each_class(class) {
6331 			if (class->rq_online)
6332 				class->rq_online(rq);
6333 		}
6334 	}
6335 }
6336 
6337 void set_rq_offline(struct rq *rq)
6338 {
6339 	if (rq->online) {
6340 		const struct sched_class *class;
6341 
6342 		for_each_class(class) {
6343 			if (class->rq_offline)
6344 				class->rq_offline(rq);
6345 		}
6346 
6347 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6348 		rq->online = 0;
6349 	}
6350 }
6351 
6352 /*
6353  * used to mark begin/end of suspend/resume:
6354  */
6355 static int num_cpus_frozen;
6356 
6357 /*
6358  * Update cpusets according to cpu_active mask.  If cpusets are
6359  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6360  * around partition_sched_domains().
6361  *
6362  * If we come here as part of a suspend/resume, don't touch cpusets because we
6363  * want to restore it back to its original state upon resume anyway.
6364  */
6365 static void cpuset_cpu_active(void)
6366 {
6367 	if (cpuhp_tasks_frozen) {
6368 		/*
6369 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6370 		 * resume sequence. As long as this is not the last online
6371 		 * operation in the resume sequence, just build a single sched
6372 		 * domain, ignoring cpusets.
6373 		 */
6374 		partition_sched_domains(1, NULL, NULL);
6375 		if (--num_cpus_frozen)
6376 			return;
6377 		/*
6378 		 * This is the last CPU online operation. So fall through and
6379 		 * restore the original sched domains by considering the
6380 		 * cpuset configurations.
6381 		 */
6382 		cpuset_force_rebuild();
6383 	}
6384 	cpuset_update_active_cpus();
6385 }
6386 
6387 static int cpuset_cpu_inactive(unsigned int cpu)
6388 {
6389 	if (!cpuhp_tasks_frozen) {
6390 		if (dl_cpu_busy(cpu))
6391 			return -EBUSY;
6392 		cpuset_update_active_cpus();
6393 	} else {
6394 		num_cpus_frozen++;
6395 		partition_sched_domains(1, NULL, NULL);
6396 	}
6397 	return 0;
6398 }
6399 
6400 int sched_cpu_activate(unsigned int cpu)
6401 {
6402 	struct rq *rq = cpu_rq(cpu);
6403 	struct rq_flags rf;
6404 
6405 #ifdef CONFIG_SCHED_SMT
6406 	/*
6407 	 * When going up, increment the number of cores with SMT present.
6408 	 */
6409 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6410 		static_branch_inc_cpuslocked(&sched_smt_present);
6411 #endif
6412 	set_cpu_active(cpu, true);
6413 
6414 	if (sched_smp_initialized) {
6415 		sched_domains_numa_masks_set(cpu);
6416 		cpuset_cpu_active();
6417 	}
6418 
6419 	/*
6420 	 * Put the rq online, if not already. This happens:
6421 	 *
6422 	 * 1) In the early boot process, because we build the real domains
6423 	 *    after all CPUs have been brought up.
6424 	 *
6425 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6426 	 *    domains.
6427 	 */
6428 	rq_lock_irqsave(rq, &rf);
6429 	if (rq->rd) {
6430 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6431 		set_rq_online(rq);
6432 	}
6433 	rq_unlock_irqrestore(rq, &rf);
6434 
6435 	return 0;
6436 }
6437 
6438 int sched_cpu_deactivate(unsigned int cpu)
6439 {
6440 	int ret;
6441 
6442 	set_cpu_active(cpu, false);
6443 	/*
6444 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6445 	 * users of this state to go away such that all new such users will
6446 	 * observe it.
6447 	 *
6448 	 * Do sync before park smpboot threads to take care the rcu boost case.
6449 	 */
6450 	synchronize_rcu();
6451 
6452 #ifdef CONFIG_SCHED_SMT
6453 	/*
6454 	 * When going down, decrement the number of cores with SMT present.
6455 	 */
6456 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6457 		static_branch_dec_cpuslocked(&sched_smt_present);
6458 #endif
6459 
6460 	if (!sched_smp_initialized)
6461 		return 0;
6462 
6463 	ret = cpuset_cpu_inactive(cpu);
6464 	if (ret) {
6465 		set_cpu_active(cpu, true);
6466 		return ret;
6467 	}
6468 	sched_domains_numa_masks_clear(cpu);
6469 	return 0;
6470 }
6471 
6472 static void sched_rq_cpu_starting(unsigned int cpu)
6473 {
6474 	struct rq *rq = cpu_rq(cpu);
6475 
6476 	rq->calc_load_update = calc_load_update;
6477 	update_max_interval();
6478 }
6479 
6480 int sched_cpu_starting(unsigned int cpu)
6481 {
6482 	sched_rq_cpu_starting(cpu);
6483 	sched_tick_start(cpu);
6484 	return 0;
6485 }
6486 
6487 #ifdef CONFIG_HOTPLUG_CPU
6488 int sched_cpu_dying(unsigned int cpu)
6489 {
6490 	struct rq *rq = cpu_rq(cpu);
6491 	struct rq_flags rf;
6492 
6493 	/* Handle pending wakeups and then migrate everything off */
6494 	sched_ttwu_pending();
6495 	sched_tick_stop(cpu);
6496 
6497 	rq_lock_irqsave(rq, &rf);
6498 	if (rq->rd) {
6499 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6500 		set_rq_offline(rq);
6501 	}
6502 	migrate_tasks(rq, &rf);
6503 	BUG_ON(rq->nr_running != 1);
6504 	rq_unlock_irqrestore(rq, &rf);
6505 
6506 	calc_load_migrate(rq);
6507 	update_max_interval();
6508 	nohz_balance_exit_idle(rq);
6509 	hrtick_clear(rq);
6510 	return 0;
6511 }
6512 #endif
6513 
6514 void __init sched_init_smp(void)
6515 {
6516 	sched_init_numa();
6517 
6518 	/*
6519 	 * There's no userspace yet to cause hotplug operations; hence all the
6520 	 * CPU masks are stable and all blatant races in the below code cannot
6521 	 * happen.
6522 	 */
6523 	mutex_lock(&sched_domains_mutex);
6524 	sched_init_domains(cpu_active_mask);
6525 	mutex_unlock(&sched_domains_mutex);
6526 
6527 	/* Move init over to a non-isolated CPU */
6528 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6529 		BUG();
6530 	sched_init_granularity();
6531 
6532 	init_sched_rt_class();
6533 	init_sched_dl_class();
6534 
6535 	sched_smp_initialized = true;
6536 }
6537 
6538 static int __init migration_init(void)
6539 {
6540 	sched_cpu_starting(smp_processor_id());
6541 	return 0;
6542 }
6543 early_initcall(migration_init);
6544 
6545 #else
6546 void __init sched_init_smp(void)
6547 {
6548 	sched_init_granularity();
6549 }
6550 #endif /* CONFIG_SMP */
6551 
6552 int in_sched_functions(unsigned long addr)
6553 {
6554 	return in_lock_functions(addr) ||
6555 		(addr >= (unsigned long)__sched_text_start
6556 		&& addr < (unsigned long)__sched_text_end);
6557 }
6558 
6559 #ifdef CONFIG_CGROUP_SCHED
6560 /*
6561  * Default task group.
6562  * Every task in system belongs to this group at bootup.
6563  */
6564 struct task_group root_task_group;
6565 LIST_HEAD(task_groups);
6566 
6567 /* Cacheline aligned slab cache for task_group */
6568 static struct kmem_cache *task_group_cache __read_mostly;
6569 #endif
6570 
6571 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6572 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6573 
6574 void __init sched_init(void)
6575 {
6576 	unsigned long ptr = 0;
6577 	int i;
6578 
6579 	wait_bit_init();
6580 
6581 #ifdef CONFIG_FAIR_GROUP_SCHED
6582 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6583 #endif
6584 #ifdef CONFIG_RT_GROUP_SCHED
6585 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6586 #endif
6587 	if (ptr) {
6588 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6589 
6590 #ifdef CONFIG_FAIR_GROUP_SCHED
6591 		root_task_group.se = (struct sched_entity **)ptr;
6592 		ptr += nr_cpu_ids * sizeof(void **);
6593 
6594 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6595 		ptr += nr_cpu_ids * sizeof(void **);
6596 
6597 #endif /* CONFIG_FAIR_GROUP_SCHED */
6598 #ifdef CONFIG_RT_GROUP_SCHED
6599 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6600 		ptr += nr_cpu_ids * sizeof(void **);
6601 
6602 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6603 		ptr += nr_cpu_ids * sizeof(void **);
6604 
6605 #endif /* CONFIG_RT_GROUP_SCHED */
6606 	}
6607 #ifdef CONFIG_CPUMASK_OFFSTACK
6608 	for_each_possible_cpu(i) {
6609 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6610 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6611 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6612 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6613 	}
6614 #endif /* CONFIG_CPUMASK_OFFSTACK */
6615 
6616 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6617 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6618 
6619 #ifdef CONFIG_SMP
6620 	init_defrootdomain();
6621 #endif
6622 
6623 #ifdef CONFIG_RT_GROUP_SCHED
6624 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6625 			global_rt_period(), global_rt_runtime());
6626 #endif /* CONFIG_RT_GROUP_SCHED */
6627 
6628 #ifdef CONFIG_CGROUP_SCHED
6629 	task_group_cache = KMEM_CACHE(task_group, 0);
6630 
6631 	list_add(&root_task_group.list, &task_groups);
6632 	INIT_LIST_HEAD(&root_task_group.children);
6633 	INIT_LIST_HEAD(&root_task_group.siblings);
6634 	autogroup_init(&init_task);
6635 #endif /* CONFIG_CGROUP_SCHED */
6636 
6637 	for_each_possible_cpu(i) {
6638 		struct rq *rq;
6639 
6640 		rq = cpu_rq(i);
6641 		raw_spin_lock_init(&rq->lock);
6642 		rq->nr_running = 0;
6643 		rq->calc_load_active = 0;
6644 		rq->calc_load_update = jiffies + LOAD_FREQ;
6645 		init_cfs_rq(&rq->cfs);
6646 		init_rt_rq(&rq->rt);
6647 		init_dl_rq(&rq->dl);
6648 #ifdef CONFIG_FAIR_GROUP_SCHED
6649 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6650 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6651 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6652 		/*
6653 		 * How much CPU bandwidth does root_task_group get?
6654 		 *
6655 		 * In case of task-groups formed thr' the cgroup filesystem, it
6656 		 * gets 100% of the CPU resources in the system. This overall
6657 		 * system CPU resource is divided among the tasks of
6658 		 * root_task_group and its child task-groups in a fair manner,
6659 		 * based on each entity's (task or task-group's) weight
6660 		 * (se->load.weight).
6661 		 *
6662 		 * In other words, if root_task_group has 10 tasks of weight
6663 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6664 		 * then A0's share of the CPU resource is:
6665 		 *
6666 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6667 		 *
6668 		 * We achieve this by letting root_task_group's tasks sit
6669 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6670 		 */
6671 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6672 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6673 #endif /* CONFIG_FAIR_GROUP_SCHED */
6674 
6675 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6676 #ifdef CONFIG_RT_GROUP_SCHED
6677 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6678 #endif
6679 #ifdef CONFIG_SMP
6680 		rq->sd = NULL;
6681 		rq->rd = NULL;
6682 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6683 		rq->balance_callback = NULL;
6684 		rq->active_balance = 0;
6685 		rq->next_balance = jiffies;
6686 		rq->push_cpu = 0;
6687 		rq->cpu = i;
6688 		rq->online = 0;
6689 		rq->idle_stamp = 0;
6690 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6691 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6692 
6693 		INIT_LIST_HEAD(&rq->cfs_tasks);
6694 
6695 		rq_attach_root(rq, &def_root_domain);
6696 #ifdef CONFIG_NO_HZ_COMMON
6697 		rq->last_blocked_load_update_tick = jiffies;
6698 		atomic_set(&rq->nohz_flags, 0);
6699 #endif
6700 #endif /* CONFIG_SMP */
6701 		hrtick_rq_init(rq);
6702 		atomic_set(&rq->nr_iowait, 0);
6703 	}
6704 
6705 	set_load_weight(&init_task, false);
6706 
6707 	/*
6708 	 * The boot idle thread does lazy MMU switching as well:
6709 	 */
6710 	mmgrab(&init_mm);
6711 	enter_lazy_tlb(&init_mm, current);
6712 
6713 	/*
6714 	 * Make us the idle thread. Technically, schedule() should not be
6715 	 * called from this thread, however somewhere below it might be,
6716 	 * but because we are the idle thread, we just pick up running again
6717 	 * when this runqueue becomes "idle".
6718 	 */
6719 	init_idle(current, smp_processor_id());
6720 
6721 	calc_load_update = jiffies + LOAD_FREQ;
6722 
6723 #ifdef CONFIG_SMP
6724 	idle_thread_set_boot_cpu();
6725 #endif
6726 	init_sched_fair_class();
6727 
6728 	init_schedstats();
6729 
6730 	psi_init();
6731 
6732 	init_uclamp();
6733 
6734 	scheduler_running = 1;
6735 }
6736 
6737 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6738 static inline int preempt_count_equals(int preempt_offset)
6739 {
6740 	int nested = preempt_count() + rcu_preempt_depth();
6741 
6742 	return (nested == preempt_offset);
6743 }
6744 
6745 void __might_sleep(const char *file, int line, int preempt_offset)
6746 {
6747 	/*
6748 	 * Blocking primitives will set (and therefore destroy) current->state,
6749 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6750 	 * otherwise we will destroy state.
6751 	 */
6752 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6753 			"do not call blocking ops when !TASK_RUNNING; "
6754 			"state=%lx set at [<%p>] %pS\n",
6755 			current->state,
6756 			(void *)current->task_state_change,
6757 			(void *)current->task_state_change);
6758 
6759 	___might_sleep(file, line, preempt_offset);
6760 }
6761 EXPORT_SYMBOL(__might_sleep);
6762 
6763 void ___might_sleep(const char *file, int line, int preempt_offset)
6764 {
6765 	/* Ratelimiting timestamp: */
6766 	static unsigned long prev_jiffy;
6767 
6768 	unsigned long preempt_disable_ip;
6769 
6770 	/* WARN_ON_ONCE() by default, no rate limit required: */
6771 	rcu_sleep_check();
6772 
6773 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6774 	     !is_idle_task(current) && !current->non_block_count) ||
6775 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6776 	    oops_in_progress)
6777 		return;
6778 
6779 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6780 		return;
6781 	prev_jiffy = jiffies;
6782 
6783 	/* Save this before calling printk(), since that will clobber it: */
6784 	preempt_disable_ip = get_preempt_disable_ip(current);
6785 
6786 	printk(KERN_ERR
6787 		"BUG: sleeping function called from invalid context at %s:%d\n",
6788 			file, line);
6789 	printk(KERN_ERR
6790 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6791 			in_atomic(), irqs_disabled(), current->non_block_count,
6792 			current->pid, current->comm);
6793 
6794 	if (task_stack_end_corrupted(current))
6795 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6796 
6797 	debug_show_held_locks(current);
6798 	if (irqs_disabled())
6799 		print_irqtrace_events(current);
6800 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6801 	    && !preempt_count_equals(preempt_offset)) {
6802 		pr_err("Preemption disabled at:");
6803 		print_ip_sym(preempt_disable_ip);
6804 		pr_cont("\n");
6805 	}
6806 	dump_stack();
6807 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6808 }
6809 EXPORT_SYMBOL(___might_sleep);
6810 
6811 void __cant_sleep(const char *file, int line, int preempt_offset)
6812 {
6813 	static unsigned long prev_jiffy;
6814 
6815 	if (irqs_disabled())
6816 		return;
6817 
6818 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6819 		return;
6820 
6821 	if (preempt_count() > preempt_offset)
6822 		return;
6823 
6824 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6825 		return;
6826 	prev_jiffy = jiffies;
6827 
6828 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6829 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6830 			in_atomic(), irqs_disabled(),
6831 			current->pid, current->comm);
6832 
6833 	debug_show_held_locks(current);
6834 	dump_stack();
6835 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6836 }
6837 EXPORT_SYMBOL_GPL(__cant_sleep);
6838 #endif
6839 
6840 #ifdef CONFIG_MAGIC_SYSRQ
6841 void normalize_rt_tasks(void)
6842 {
6843 	struct task_struct *g, *p;
6844 	struct sched_attr attr = {
6845 		.sched_policy = SCHED_NORMAL,
6846 	};
6847 
6848 	read_lock(&tasklist_lock);
6849 	for_each_process_thread(g, p) {
6850 		/*
6851 		 * Only normalize user tasks:
6852 		 */
6853 		if (p->flags & PF_KTHREAD)
6854 			continue;
6855 
6856 		p->se.exec_start = 0;
6857 		schedstat_set(p->se.statistics.wait_start,  0);
6858 		schedstat_set(p->se.statistics.sleep_start, 0);
6859 		schedstat_set(p->se.statistics.block_start, 0);
6860 
6861 		if (!dl_task(p) && !rt_task(p)) {
6862 			/*
6863 			 * Renice negative nice level userspace
6864 			 * tasks back to 0:
6865 			 */
6866 			if (task_nice(p) < 0)
6867 				set_user_nice(p, 0);
6868 			continue;
6869 		}
6870 
6871 		__sched_setscheduler(p, &attr, false, false);
6872 	}
6873 	read_unlock(&tasklist_lock);
6874 }
6875 
6876 #endif /* CONFIG_MAGIC_SYSRQ */
6877 
6878 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6879 /*
6880  * These functions are only useful for the IA64 MCA handling, or kdb.
6881  *
6882  * They can only be called when the whole system has been
6883  * stopped - every CPU needs to be quiescent, and no scheduling
6884  * activity can take place. Using them for anything else would
6885  * be a serious bug, and as a result, they aren't even visible
6886  * under any other configuration.
6887  */
6888 
6889 /**
6890  * curr_task - return the current task for a given CPU.
6891  * @cpu: the processor in question.
6892  *
6893  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6894  *
6895  * Return: The current task for @cpu.
6896  */
6897 struct task_struct *curr_task(int cpu)
6898 {
6899 	return cpu_curr(cpu);
6900 }
6901 
6902 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6903 
6904 #ifdef CONFIG_IA64
6905 /**
6906  * ia64_set_curr_task - set the current task for a given CPU.
6907  * @cpu: the processor in question.
6908  * @p: the task pointer to set.
6909  *
6910  * Description: This function must only be used when non-maskable interrupts
6911  * are serviced on a separate stack. It allows the architecture to switch the
6912  * notion of the current task on a CPU in a non-blocking manner. This function
6913  * must be called with all CPU's synchronized, and interrupts disabled, the
6914  * and caller must save the original value of the current task (see
6915  * curr_task() above) and restore that value before reenabling interrupts and
6916  * re-starting the system.
6917  *
6918  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6919  */
6920 void ia64_set_curr_task(int cpu, struct task_struct *p)
6921 {
6922 	cpu_curr(cpu) = p;
6923 }
6924 
6925 #endif
6926 
6927 #ifdef CONFIG_CGROUP_SCHED
6928 /* task_group_lock serializes the addition/removal of task groups */
6929 static DEFINE_SPINLOCK(task_group_lock);
6930 
6931 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6932 					    struct task_group *parent)
6933 {
6934 #ifdef CONFIG_UCLAMP_TASK_GROUP
6935 	enum uclamp_id clamp_id;
6936 
6937 	for_each_clamp_id(clamp_id) {
6938 		uclamp_se_set(&tg->uclamp_req[clamp_id],
6939 			      uclamp_none(clamp_id), false);
6940 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6941 	}
6942 #endif
6943 }
6944 
6945 static void sched_free_group(struct task_group *tg)
6946 {
6947 	free_fair_sched_group(tg);
6948 	free_rt_sched_group(tg);
6949 	autogroup_free(tg);
6950 	kmem_cache_free(task_group_cache, tg);
6951 }
6952 
6953 /* allocate runqueue etc for a new task group */
6954 struct task_group *sched_create_group(struct task_group *parent)
6955 {
6956 	struct task_group *tg;
6957 
6958 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6959 	if (!tg)
6960 		return ERR_PTR(-ENOMEM);
6961 
6962 	if (!alloc_fair_sched_group(tg, parent))
6963 		goto err;
6964 
6965 	if (!alloc_rt_sched_group(tg, parent))
6966 		goto err;
6967 
6968 	alloc_uclamp_sched_group(tg, parent);
6969 
6970 	return tg;
6971 
6972 err:
6973 	sched_free_group(tg);
6974 	return ERR_PTR(-ENOMEM);
6975 }
6976 
6977 void sched_online_group(struct task_group *tg, struct task_group *parent)
6978 {
6979 	unsigned long flags;
6980 
6981 	spin_lock_irqsave(&task_group_lock, flags);
6982 	list_add_rcu(&tg->list, &task_groups);
6983 
6984 	/* Root should already exist: */
6985 	WARN_ON(!parent);
6986 
6987 	tg->parent = parent;
6988 	INIT_LIST_HEAD(&tg->children);
6989 	list_add_rcu(&tg->siblings, &parent->children);
6990 	spin_unlock_irqrestore(&task_group_lock, flags);
6991 
6992 	online_fair_sched_group(tg);
6993 }
6994 
6995 /* rcu callback to free various structures associated with a task group */
6996 static void sched_free_group_rcu(struct rcu_head *rhp)
6997 {
6998 	/* Now it should be safe to free those cfs_rqs: */
6999 	sched_free_group(container_of(rhp, struct task_group, rcu));
7000 }
7001 
7002 void sched_destroy_group(struct task_group *tg)
7003 {
7004 	/* Wait for possible concurrent references to cfs_rqs complete: */
7005 	call_rcu(&tg->rcu, sched_free_group_rcu);
7006 }
7007 
7008 void sched_offline_group(struct task_group *tg)
7009 {
7010 	unsigned long flags;
7011 
7012 	/* End participation in shares distribution: */
7013 	unregister_fair_sched_group(tg);
7014 
7015 	spin_lock_irqsave(&task_group_lock, flags);
7016 	list_del_rcu(&tg->list);
7017 	list_del_rcu(&tg->siblings);
7018 	spin_unlock_irqrestore(&task_group_lock, flags);
7019 }
7020 
7021 static void sched_change_group(struct task_struct *tsk, int type)
7022 {
7023 	struct task_group *tg;
7024 
7025 	/*
7026 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7027 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7028 	 * to prevent lockdep warnings.
7029 	 */
7030 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7031 			  struct task_group, css);
7032 	tg = autogroup_task_group(tsk, tg);
7033 	tsk->sched_task_group = tg;
7034 
7035 #ifdef CONFIG_FAIR_GROUP_SCHED
7036 	if (tsk->sched_class->task_change_group)
7037 		tsk->sched_class->task_change_group(tsk, type);
7038 	else
7039 #endif
7040 		set_task_rq(tsk, task_cpu(tsk));
7041 }
7042 
7043 /*
7044  * Change task's runqueue when it moves between groups.
7045  *
7046  * The caller of this function should have put the task in its new group by
7047  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7048  * its new group.
7049  */
7050 void sched_move_task(struct task_struct *tsk)
7051 {
7052 	int queued, running, queue_flags =
7053 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7054 	struct rq_flags rf;
7055 	struct rq *rq;
7056 
7057 	rq = task_rq_lock(tsk, &rf);
7058 	update_rq_clock(rq);
7059 
7060 	running = task_current(rq, tsk);
7061 	queued = task_on_rq_queued(tsk);
7062 
7063 	if (queued)
7064 		dequeue_task(rq, tsk, queue_flags);
7065 	if (running)
7066 		put_prev_task(rq, tsk);
7067 
7068 	sched_change_group(tsk, TASK_MOVE_GROUP);
7069 
7070 	if (queued)
7071 		enqueue_task(rq, tsk, queue_flags);
7072 	if (running) {
7073 		set_next_task(rq, tsk);
7074 		/*
7075 		 * After changing group, the running task may have joined a
7076 		 * throttled one but it's still the running task. Trigger a
7077 		 * resched to make sure that task can still run.
7078 		 */
7079 		resched_curr(rq);
7080 	}
7081 
7082 	task_rq_unlock(rq, tsk, &rf);
7083 }
7084 
7085 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7086 {
7087 	return css ? container_of(css, struct task_group, css) : NULL;
7088 }
7089 
7090 static struct cgroup_subsys_state *
7091 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7092 {
7093 	struct task_group *parent = css_tg(parent_css);
7094 	struct task_group *tg;
7095 
7096 	if (!parent) {
7097 		/* This is early initialization for the top cgroup */
7098 		return &root_task_group.css;
7099 	}
7100 
7101 	tg = sched_create_group(parent);
7102 	if (IS_ERR(tg))
7103 		return ERR_PTR(-ENOMEM);
7104 
7105 	return &tg->css;
7106 }
7107 
7108 /* Expose task group only after completing cgroup initialization */
7109 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7110 {
7111 	struct task_group *tg = css_tg(css);
7112 	struct task_group *parent = css_tg(css->parent);
7113 
7114 	if (parent)
7115 		sched_online_group(tg, parent);
7116 
7117 #ifdef CONFIG_UCLAMP_TASK_GROUP
7118 	/* Propagate the effective uclamp value for the new group */
7119 	cpu_util_update_eff(css);
7120 #endif
7121 
7122 	return 0;
7123 }
7124 
7125 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7126 {
7127 	struct task_group *tg = css_tg(css);
7128 
7129 	sched_offline_group(tg);
7130 }
7131 
7132 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7133 {
7134 	struct task_group *tg = css_tg(css);
7135 
7136 	/*
7137 	 * Relies on the RCU grace period between css_released() and this.
7138 	 */
7139 	sched_free_group(tg);
7140 }
7141 
7142 /*
7143  * This is called before wake_up_new_task(), therefore we really only
7144  * have to set its group bits, all the other stuff does not apply.
7145  */
7146 static void cpu_cgroup_fork(struct task_struct *task)
7147 {
7148 	struct rq_flags rf;
7149 	struct rq *rq;
7150 
7151 	rq = task_rq_lock(task, &rf);
7152 
7153 	update_rq_clock(rq);
7154 	sched_change_group(task, TASK_SET_GROUP);
7155 
7156 	task_rq_unlock(rq, task, &rf);
7157 }
7158 
7159 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7160 {
7161 	struct task_struct *task;
7162 	struct cgroup_subsys_state *css;
7163 	int ret = 0;
7164 
7165 	cgroup_taskset_for_each(task, css, tset) {
7166 #ifdef CONFIG_RT_GROUP_SCHED
7167 		if (!sched_rt_can_attach(css_tg(css), task))
7168 			return -EINVAL;
7169 #endif
7170 		/*
7171 		 * Serialize against wake_up_new_task() such that if its
7172 		 * running, we're sure to observe its full state.
7173 		 */
7174 		raw_spin_lock_irq(&task->pi_lock);
7175 		/*
7176 		 * Avoid calling sched_move_task() before wake_up_new_task()
7177 		 * has happened. This would lead to problems with PELT, due to
7178 		 * move wanting to detach+attach while we're not attached yet.
7179 		 */
7180 		if (task->state == TASK_NEW)
7181 			ret = -EINVAL;
7182 		raw_spin_unlock_irq(&task->pi_lock);
7183 
7184 		if (ret)
7185 			break;
7186 	}
7187 	return ret;
7188 }
7189 
7190 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7191 {
7192 	struct task_struct *task;
7193 	struct cgroup_subsys_state *css;
7194 
7195 	cgroup_taskset_for_each(task, css, tset)
7196 		sched_move_task(task);
7197 }
7198 
7199 #ifdef CONFIG_UCLAMP_TASK_GROUP
7200 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7201 {
7202 	struct cgroup_subsys_state *top_css = css;
7203 	struct uclamp_se *uc_parent = NULL;
7204 	struct uclamp_se *uc_se = NULL;
7205 	unsigned int eff[UCLAMP_CNT];
7206 	enum uclamp_id clamp_id;
7207 	unsigned int clamps;
7208 
7209 	css_for_each_descendant_pre(css, top_css) {
7210 		uc_parent = css_tg(css)->parent
7211 			? css_tg(css)->parent->uclamp : NULL;
7212 
7213 		for_each_clamp_id(clamp_id) {
7214 			/* Assume effective clamps matches requested clamps */
7215 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7216 			/* Cap effective clamps with parent's effective clamps */
7217 			if (uc_parent &&
7218 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7219 				eff[clamp_id] = uc_parent[clamp_id].value;
7220 			}
7221 		}
7222 		/* Ensure protection is always capped by limit */
7223 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7224 
7225 		/* Propagate most restrictive effective clamps */
7226 		clamps = 0x0;
7227 		uc_se = css_tg(css)->uclamp;
7228 		for_each_clamp_id(clamp_id) {
7229 			if (eff[clamp_id] == uc_se[clamp_id].value)
7230 				continue;
7231 			uc_se[clamp_id].value = eff[clamp_id];
7232 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7233 			clamps |= (0x1 << clamp_id);
7234 		}
7235 		if (!clamps) {
7236 			css = css_rightmost_descendant(css);
7237 			continue;
7238 		}
7239 
7240 		/* Immediately update descendants RUNNABLE tasks */
7241 		uclamp_update_active_tasks(css, clamps);
7242 	}
7243 }
7244 
7245 /*
7246  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7247  * C expression. Since there is no way to convert a macro argument (N) into a
7248  * character constant, use two levels of macros.
7249  */
7250 #define _POW10(exp) ((unsigned int)1e##exp)
7251 #define POW10(exp) _POW10(exp)
7252 
7253 struct uclamp_request {
7254 #define UCLAMP_PERCENT_SHIFT	2
7255 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7256 	s64 percent;
7257 	u64 util;
7258 	int ret;
7259 };
7260 
7261 static inline struct uclamp_request
7262 capacity_from_percent(char *buf)
7263 {
7264 	struct uclamp_request req = {
7265 		.percent = UCLAMP_PERCENT_SCALE,
7266 		.util = SCHED_CAPACITY_SCALE,
7267 		.ret = 0,
7268 	};
7269 
7270 	buf = strim(buf);
7271 	if (strcmp(buf, "max")) {
7272 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7273 					     &req.percent);
7274 		if (req.ret)
7275 			return req;
7276 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7277 			req.ret = -ERANGE;
7278 			return req;
7279 		}
7280 
7281 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7282 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7283 	}
7284 
7285 	return req;
7286 }
7287 
7288 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7289 				size_t nbytes, loff_t off,
7290 				enum uclamp_id clamp_id)
7291 {
7292 	struct uclamp_request req;
7293 	struct task_group *tg;
7294 
7295 	req = capacity_from_percent(buf);
7296 	if (req.ret)
7297 		return req.ret;
7298 
7299 	mutex_lock(&uclamp_mutex);
7300 	rcu_read_lock();
7301 
7302 	tg = css_tg(of_css(of));
7303 	if (tg->uclamp_req[clamp_id].value != req.util)
7304 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7305 
7306 	/*
7307 	 * Because of not recoverable conversion rounding we keep track of the
7308 	 * exact requested value
7309 	 */
7310 	tg->uclamp_pct[clamp_id] = req.percent;
7311 
7312 	/* Update effective clamps to track the most restrictive value */
7313 	cpu_util_update_eff(of_css(of));
7314 
7315 	rcu_read_unlock();
7316 	mutex_unlock(&uclamp_mutex);
7317 
7318 	return nbytes;
7319 }
7320 
7321 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7322 				    char *buf, size_t nbytes,
7323 				    loff_t off)
7324 {
7325 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7326 }
7327 
7328 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7329 				    char *buf, size_t nbytes,
7330 				    loff_t off)
7331 {
7332 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7333 }
7334 
7335 static inline void cpu_uclamp_print(struct seq_file *sf,
7336 				    enum uclamp_id clamp_id)
7337 {
7338 	struct task_group *tg;
7339 	u64 util_clamp;
7340 	u64 percent;
7341 	u32 rem;
7342 
7343 	rcu_read_lock();
7344 	tg = css_tg(seq_css(sf));
7345 	util_clamp = tg->uclamp_req[clamp_id].value;
7346 	rcu_read_unlock();
7347 
7348 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7349 		seq_puts(sf, "max\n");
7350 		return;
7351 	}
7352 
7353 	percent = tg->uclamp_pct[clamp_id];
7354 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7355 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7356 }
7357 
7358 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7359 {
7360 	cpu_uclamp_print(sf, UCLAMP_MIN);
7361 	return 0;
7362 }
7363 
7364 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7365 {
7366 	cpu_uclamp_print(sf, UCLAMP_MAX);
7367 	return 0;
7368 }
7369 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7370 
7371 #ifdef CONFIG_FAIR_GROUP_SCHED
7372 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7373 				struct cftype *cftype, u64 shareval)
7374 {
7375 	if (shareval > scale_load_down(ULONG_MAX))
7376 		shareval = MAX_SHARES;
7377 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7378 }
7379 
7380 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7381 			       struct cftype *cft)
7382 {
7383 	struct task_group *tg = css_tg(css);
7384 
7385 	return (u64) scale_load_down(tg->shares);
7386 }
7387 
7388 #ifdef CONFIG_CFS_BANDWIDTH
7389 static DEFINE_MUTEX(cfs_constraints_mutex);
7390 
7391 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7392 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7393 
7394 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7395 
7396 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7397 {
7398 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7399 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7400 
7401 	if (tg == &root_task_group)
7402 		return -EINVAL;
7403 
7404 	/*
7405 	 * Ensure we have at some amount of bandwidth every period.  This is
7406 	 * to prevent reaching a state of large arrears when throttled via
7407 	 * entity_tick() resulting in prolonged exit starvation.
7408 	 */
7409 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7410 		return -EINVAL;
7411 
7412 	/*
7413 	 * Likewise, bound things on the otherside by preventing insane quota
7414 	 * periods.  This also allows us to normalize in computing quota
7415 	 * feasibility.
7416 	 */
7417 	if (period > max_cfs_quota_period)
7418 		return -EINVAL;
7419 
7420 	/*
7421 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7422 	 * unthrottle_offline_cfs_rqs().
7423 	 */
7424 	get_online_cpus();
7425 	mutex_lock(&cfs_constraints_mutex);
7426 	ret = __cfs_schedulable(tg, period, quota);
7427 	if (ret)
7428 		goto out_unlock;
7429 
7430 	runtime_enabled = quota != RUNTIME_INF;
7431 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7432 	/*
7433 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7434 	 * before making related changes, and on->off must occur afterwards
7435 	 */
7436 	if (runtime_enabled && !runtime_was_enabled)
7437 		cfs_bandwidth_usage_inc();
7438 	raw_spin_lock_irq(&cfs_b->lock);
7439 	cfs_b->period = ns_to_ktime(period);
7440 	cfs_b->quota = quota;
7441 
7442 	__refill_cfs_bandwidth_runtime(cfs_b);
7443 
7444 	/* Restart the period timer (if active) to handle new period expiry: */
7445 	if (runtime_enabled)
7446 		start_cfs_bandwidth(cfs_b);
7447 
7448 	raw_spin_unlock_irq(&cfs_b->lock);
7449 
7450 	for_each_online_cpu(i) {
7451 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7452 		struct rq *rq = cfs_rq->rq;
7453 		struct rq_flags rf;
7454 
7455 		rq_lock_irq(rq, &rf);
7456 		cfs_rq->runtime_enabled = runtime_enabled;
7457 		cfs_rq->runtime_remaining = 0;
7458 
7459 		if (cfs_rq->throttled)
7460 			unthrottle_cfs_rq(cfs_rq);
7461 		rq_unlock_irq(rq, &rf);
7462 	}
7463 	if (runtime_was_enabled && !runtime_enabled)
7464 		cfs_bandwidth_usage_dec();
7465 out_unlock:
7466 	mutex_unlock(&cfs_constraints_mutex);
7467 	put_online_cpus();
7468 
7469 	return ret;
7470 }
7471 
7472 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7473 {
7474 	u64 quota, period;
7475 
7476 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7477 	if (cfs_quota_us < 0)
7478 		quota = RUNTIME_INF;
7479 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7480 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7481 	else
7482 		return -EINVAL;
7483 
7484 	return tg_set_cfs_bandwidth(tg, period, quota);
7485 }
7486 
7487 static long tg_get_cfs_quota(struct task_group *tg)
7488 {
7489 	u64 quota_us;
7490 
7491 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7492 		return -1;
7493 
7494 	quota_us = tg->cfs_bandwidth.quota;
7495 	do_div(quota_us, NSEC_PER_USEC);
7496 
7497 	return quota_us;
7498 }
7499 
7500 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7501 {
7502 	u64 quota, period;
7503 
7504 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7505 		return -EINVAL;
7506 
7507 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7508 	quota = tg->cfs_bandwidth.quota;
7509 
7510 	return tg_set_cfs_bandwidth(tg, period, quota);
7511 }
7512 
7513 static long tg_get_cfs_period(struct task_group *tg)
7514 {
7515 	u64 cfs_period_us;
7516 
7517 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7518 	do_div(cfs_period_us, NSEC_PER_USEC);
7519 
7520 	return cfs_period_us;
7521 }
7522 
7523 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7524 				  struct cftype *cft)
7525 {
7526 	return tg_get_cfs_quota(css_tg(css));
7527 }
7528 
7529 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7530 				   struct cftype *cftype, s64 cfs_quota_us)
7531 {
7532 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7533 }
7534 
7535 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7536 				   struct cftype *cft)
7537 {
7538 	return tg_get_cfs_period(css_tg(css));
7539 }
7540 
7541 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7542 				    struct cftype *cftype, u64 cfs_period_us)
7543 {
7544 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7545 }
7546 
7547 struct cfs_schedulable_data {
7548 	struct task_group *tg;
7549 	u64 period, quota;
7550 };
7551 
7552 /*
7553  * normalize group quota/period to be quota/max_period
7554  * note: units are usecs
7555  */
7556 static u64 normalize_cfs_quota(struct task_group *tg,
7557 			       struct cfs_schedulable_data *d)
7558 {
7559 	u64 quota, period;
7560 
7561 	if (tg == d->tg) {
7562 		period = d->period;
7563 		quota = d->quota;
7564 	} else {
7565 		period = tg_get_cfs_period(tg);
7566 		quota = tg_get_cfs_quota(tg);
7567 	}
7568 
7569 	/* note: these should typically be equivalent */
7570 	if (quota == RUNTIME_INF || quota == -1)
7571 		return RUNTIME_INF;
7572 
7573 	return to_ratio(period, quota);
7574 }
7575 
7576 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7577 {
7578 	struct cfs_schedulable_data *d = data;
7579 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7580 	s64 quota = 0, parent_quota = -1;
7581 
7582 	if (!tg->parent) {
7583 		quota = RUNTIME_INF;
7584 	} else {
7585 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7586 
7587 		quota = normalize_cfs_quota(tg, d);
7588 		parent_quota = parent_b->hierarchical_quota;
7589 
7590 		/*
7591 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7592 		 * always take the min.  On cgroup1, only inherit when no
7593 		 * limit is set:
7594 		 */
7595 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7596 			quota = min(quota, parent_quota);
7597 		} else {
7598 			if (quota == RUNTIME_INF)
7599 				quota = parent_quota;
7600 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7601 				return -EINVAL;
7602 		}
7603 	}
7604 	cfs_b->hierarchical_quota = quota;
7605 
7606 	return 0;
7607 }
7608 
7609 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7610 {
7611 	int ret;
7612 	struct cfs_schedulable_data data = {
7613 		.tg = tg,
7614 		.period = period,
7615 		.quota = quota,
7616 	};
7617 
7618 	if (quota != RUNTIME_INF) {
7619 		do_div(data.period, NSEC_PER_USEC);
7620 		do_div(data.quota, NSEC_PER_USEC);
7621 	}
7622 
7623 	rcu_read_lock();
7624 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7625 	rcu_read_unlock();
7626 
7627 	return ret;
7628 }
7629 
7630 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7631 {
7632 	struct task_group *tg = css_tg(seq_css(sf));
7633 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7634 
7635 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7636 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7637 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7638 
7639 	if (schedstat_enabled() && tg != &root_task_group) {
7640 		u64 ws = 0;
7641 		int i;
7642 
7643 		for_each_possible_cpu(i)
7644 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7645 
7646 		seq_printf(sf, "wait_sum %llu\n", ws);
7647 	}
7648 
7649 	return 0;
7650 }
7651 #endif /* CONFIG_CFS_BANDWIDTH */
7652 #endif /* CONFIG_FAIR_GROUP_SCHED */
7653 
7654 #ifdef CONFIG_RT_GROUP_SCHED
7655 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7656 				struct cftype *cft, s64 val)
7657 {
7658 	return sched_group_set_rt_runtime(css_tg(css), val);
7659 }
7660 
7661 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7662 			       struct cftype *cft)
7663 {
7664 	return sched_group_rt_runtime(css_tg(css));
7665 }
7666 
7667 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7668 				    struct cftype *cftype, u64 rt_period_us)
7669 {
7670 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7671 }
7672 
7673 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7674 				   struct cftype *cft)
7675 {
7676 	return sched_group_rt_period(css_tg(css));
7677 }
7678 #endif /* CONFIG_RT_GROUP_SCHED */
7679 
7680 static struct cftype cpu_legacy_files[] = {
7681 #ifdef CONFIG_FAIR_GROUP_SCHED
7682 	{
7683 		.name = "shares",
7684 		.read_u64 = cpu_shares_read_u64,
7685 		.write_u64 = cpu_shares_write_u64,
7686 	},
7687 #endif
7688 #ifdef CONFIG_CFS_BANDWIDTH
7689 	{
7690 		.name = "cfs_quota_us",
7691 		.read_s64 = cpu_cfs_quota_read_s64,
7692 		.write_s64 = cpu_cfs_quota_write_s64,
7693 	},
7694 	{
7695 		.name = "cfs_period_us",
7696 		.read_u64 = cpu_cfs_period_read_u64,
7697 		.write_u64 = cpu_cfs_period_write_u64,
7698 	},
7699 	{
7700 		.name = "stat",
7701 		.seq_show = cpu_cfs_stat_show,
7702 	},
7703 #endif
7704 #ifdef CONFIG_RT_GROUP_SCHED
7705 	{
7706 		.name = "rt_runtime_us",
7707 		.read_s64 = cpu_rt_runtime_read,
7708 		.write_s64 = cpu_rt_runtime_write,
7709 	},
7710 	{
7711 		.name = "rt_period_us",
7712 		.read_u64 = cpu_rt_period_read_uint,
7713 		.write_u64 = cpu_rt_period_write_uint,
7714 	},
7715 #endif
7716 #ifdef CONFIG_UCLAMP_TASK_GROUP
7717 	{
7718 		.name = "uclamp.min",
7719 		.flags = CFTYPE_NOT_ON_ROOT,
7720 		.seq_show = cpu_uclamp_min_show,
7721 		.write = cpu_uclamp_min_write,
7722 	},
7723 	{
7724 		.name = "uclamp.max",
7725 		.flags = CFTYPE_NOT_ON_ROOT,
7726 		.seq_show = cpu_uclamp_max_show,
7727 		.write = cpu_uclamp_max_write,
7728 	},
7729 #endif
7730 	{ }	/* Terminate */
7731 };
7732 
7733 static int cpu_extra_stat_show(struct seq_file *sf,
7734 			       struct cgroup_subsys_state *css)
7735 {
7736 #ifdef CONFIG_CFS_BANDWIDTH
7737 	{
7738 		struct task_group *tg = css_tg(css);
7739 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7740 		u64 throttled_usec;
7741 
7742 		throttled_usec = cfs_b->throttled_time;
7743 		do_div(throttled_usec, NSEC_PER_USEC);
7744 
7745 		seq_printf(sf, "nr_periods %d\n"
7746 			   "nr_throttled %d\n"
7747 			   "throttled_usec %llu\n",
7748 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7749 			   throttled_usec);
7750 	}
7751 #endif
7752 	return 0;
7753 }
7754 
7755 #ifdef CONFIG_FAIR_GROUP_SCHED
7756 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7757 			       struct cftype *cft)
7758 {
7759 	struct task_group *tg = css_tg(css);
7760 	u64 weight = scale_load_down(tg->shares);
7761 
7762 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7763 }
7764 
7765 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7766 				struct cftype *cft, u64 weight)
7767 {
7768 	/*
7769 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7770 	 * values which are 1, 100 and 10000 respectively.  While it loses
7771 	 * a bit of range on both ends, it maps pretty well onto the shares
7772 	 * value used by scheduler and the round-trip conversions preserve
7773 	 * the original value over the entire range.
7774 	 */
7775 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7776 		return -ERANGE;
7777 
7778 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7779 
7780 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7781 }
7782 
7783 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7784 				    struct cftype *cft)
7785 {
7786 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7787 	int last_delta = INT_MAX;
7788 	int prio, delta;
7789 
7790 	/* find the closest nice value to the current weight */
7791 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7792 		delta = abs(sched_prio_to_weight[prio] - weight);
7793 		if (delta >= last_delta)
7794 			break;
7795 		last_delta = delta;
7796 	}
7797 
7798 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7799 }
7800 
7801 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7802 				     struct cftype *cft, s64 nice)
7803 {
7804 	unsigned long weight;
7805 	int idx;
7806 
7807 	if (nice < MIN_NICE || nice > MAX_NICE)
7808 		return -ERANGE;
7809 
7810 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7811 	idx = array_index_nospec(idx, 40);
7812 	weight = sched_prio_to_weight[idx];
7813 
7814 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7815 }
7816 #endif
7817 
7818 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7819 						  long period, long quota)
7820 {
7821 	if (quota < 0)
7822 		seq_puts(sf, "max");
7823 	else
7824 		seq_printf(sf, "%ld", quota);
7825 
7826 	seq_printf(sf, " %ld\n", period);
7827 }
7828 
7829 /* caller should put the current value in *@periodp before calling */
7830 static int __maybe_unused cpu_period_quota_parse(char *buf,
7831 						 u64 *periodp, u64 *quotap)
7832 {
7833 	char tok[21];	/* U64_MAX */
7834 
7835 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7836 		return -EINVAL;
7837 
7838 	*periodp *= NSEC_PER_USEC;
7839 
7840 	if (sscanf(tok, "%llu", quotap))
7841 		*quotap *= NSEC_PER_USEC;
7842 	else if (!strcmp(tok, "max"))
7843 		*quotap = RUNTIME_INF;
7844 	else
7845 		return -EINVAL;
7846 
7847 	return 0;
7848 }
7849 
7850 #ifdef CONFIG_CFS_BANDWIDTH
7851 static int cpu_max_show(struct seq_file *sf, void *v)
7852 {
7853 	struct task_group *tg = css_tg(seq_css(sf));
7854 
7855 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7856 	return 0;
7857 }
7858 
7859 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7860 			     char *buf, size_t nbytes, loff_t off)
7861 {
7862 	struct task_group *tg = css_tg(of_css(of));
7863 	u64 period = tg_get_cfs_period(tg);
7864 	u64 quota;
7865 	int ret;
7866 
7867 	ret = cpu_period_quota_parse(buf, &period, &quota);
7868 	if (!ret)
7869 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7870 	return ret ?: nbytes;
7871 }
7872 #endif
7873 
7874 static struct cftype cpu_files[] = {
7875 #ifdef CONFIG_FAIR_GROUP_SCHED
7876 	{
7877 		.name = "weight",
7878 		.flags = CFTYPE_NOT_ON_ROOT,
7879 		.read_u64 = cpu_weight_read_u64,
7880 		.write_u64 = cpu_weight_write_u64,
7881 	},
7882 	{
7883 		.name = "weight.nice",
7884 		.flags = CFTYPE_NOT_ON_ROOT,
7885 		.read_s64 = cpu_weight_nice_read_s64,
7886 		.write_s64 = cpu_weight_nice_write_s64,
7887 	},
7888 #endif
7889 #ifdef CONFIG_CFS_BANDWIDTH
7890 	{
7891 		.name = "max",
7892 		.flags = CFTYPE_NOT_ON_ROOT,
7893 		.seq_show = cpu_max_show,
7894 		.write = cpu_max_write,
7895 	},
7896 #endif
7897 #ifdef CONFIG_UCLAMP_TASK_GROUP
7898 	{
7899 		.name = "uclamp.min",
7900 		.flags = CFTYPE_NOT_ON_ROOT,
7901 		.seq_show = cpu_uclamp_min_show,
7902 		.write = cpu_uclamp_min_write,
7903 	},
7904 	{
7905 		.name = "uclamp.max",
7906 		.flags = CFTYPE_NOT_ON_ROOT,
7907 		.seq_show = cpu_uclamp_max_show,
7908 		.write = cpu_uclamp_max_write,
7909 	},
7910 #endif
7911 	{ }	/* terminate */
7912 };
7913 
7914 struct cgroup_subsys cpu_cgrp_subsys = {
7915 	.css_alloc	= cpu_cgroup_css_alloc,
7916 	.css_online	= cpu_cgroup_css_online,
7917 	.css_released	= cpu_cgroup_css_released,
7918 	.css_free	= cpu_cgroup_css_free,
7919 	.css_extra_stat_show = cpu_extra_stat_show,
7920 	.fork		= cpu_cgroup_fork,
7921 	.can_attach	= cpu_cgroup_can_attach,
7922 	.attach		= cpu_cgroup_attach,
7923 	.legacy_cftypes	= cpu_legacy_files,
7924 	.dfl_cftypes	= cpu_files,
7925 	.early_init	= true,
7926 	.threaded	= true,
7927 };
7928 
7929 #endif	/* CONFIG_CGROUP_SCHED */
7930 
7931 void dump_cpu_task(int cpu)
7932 {
7933 	pr_info("Task dump for CPU %d:\n", cpu);
7934 	sched_show_task(cpu_curr(cpu));
7935 }
7936 
7937 /*
7938  * Nice levels are multiplicative, with a gentle 10% change for every
7939  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7940  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7941  * that remained on nice 0.
7942  *
7943  * The "10% effect" is relative and cumulative: from _any_ nice level,
7944  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7945  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7946  * If a task goes up by ~10% and another task goes down by ~10% then
7947  * the relative distance between them is ~25%.)
7948  */
7949 const int sched_prio_to_weight[40] = {
7950  /* -20 */     88761,     71755,     56483,     46273,     36291,
7951  /* -15 */     29154,     23254,     18705,     14949,     11916,
7952  /* -10 */      9548,      7620,      6100,      4904,      3906,
7953  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7954  /*   0 */      1024,       820,       655,       526,       423,
7955  /*   5 */       335,       272,       215,       172,       137,
7956  /*  10 */       110,        87,        70,        56,        45,
7957  /*  15 */        36,        29,        23,        18,        15,
7958 };
7959 
7960 /*
7961  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7962  *
7963  * In cases where the weight does not change often, we can use the
7964  * precalculated inverse to speed up arithmetics by turning divisions
7965  * into multiplications:
7966  */
7967 const u32 sched_prio_to_wmult[40] = {
7968  /* -20 */     48388,     59856,     76040,     92818,    118348,
7969  /* -15 */    147320,    184698,    229616,    287308,    360437,
7970  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7971  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7972  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7973  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7974  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7975  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7976 };
7977 
7978 #undef CREATE_TRACE_POINTS
7979