1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include "sched.h" 10 11 #include <linux/nospec.h> 12 13 #include <linux/kcov.h> 14 15 #include <asm/switch_to.h> 16 #include <asm/tlb.h> 17 18 #include "../workqueue_internal.h" 19 #include "../../fs/io-wq.h" 20 #include "../smpboot.h" 21 22 #include "pelt.h" 23 24 #define CREATE_TRACE_POINTS 25 #include <trace/events/sched.h> 26 27 /* 28 * Export tracepoints that act as a bare tracehook (ie: have no trace event 29 * associated with them) to allow external modules to probe them. 30 */ 31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 37 38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 39 40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 41 /* 42 * Debugging: various feature bits 43 * 44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 45 * sysctl_sched_features, defined in sched.h, to allow constants propagation 46 * at compile time and compiler optimization based on features default. 47 */ 48 #define SCHED_FEAT(name, enabled) \ 49 (1UL << __SCHED_FEAT_##name) * enabled | 50 const_debug unsigned int sysctl_sched_features = 51 #include "features.h" 52 0; 53 #undef SCHED_FEAT 54 #endif 55 56 /* 57 * Number of tasks to iterate in a single balance run. 58 * Limited because this is done with IRQs disabled. 59 */ 60 const_debug unsigned int sysctl_sched_nr_migrate = 32; 61 62 /* 63 * period over which we measure -rt task CPU usage in us. 64 * default: 1s 65 */ 66 unsigned int sysctl_sched_rt_period = 1000000; 67 68 __read_mostly int scheduler_running; 69 70 /* 71 * part of the period that we allow rt tasks to run in us. 72 * default: 0.95s 73 */ 74 int sysctl_sched_rt_runtime = 950000; 75 76 /* 77 * __task_rq_lock - lock the rq @p resides on. 78 */ 79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 80 __acquires(rq->lock) 81 { 82 struct rq *rq; 83 84 lockdep_assert_held(&p->pi_lock); 85 86 for (;;) { 87 rq = task_rq(p); 88 raw_spin_lock(&rq->lock); 89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 90 rq_pin_lock(rq, rf); 91 return rq; 92 } 93 raw_spin_unlock(&rq->lock); 94 95 while (unlikely(task_on_rq_migrating(p))) 96 cpu_relax(); 97 } 98 } 99 100 /* 101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 102 */ 103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 104 __acquires(p->pi_lock) 105 __acquires(rq->lock) 106 { 107 struct rq *rq; 108 109 for (;;) { 110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 111 rq = task_rq(p); 112 raw_spin_lock(&rq->lock); 113 /* 114 * move_queued_task() task_rq_lock() 115 * 116 * ACQUIRE (rq->lock) 117 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 119 * [S] ->cpu = new_cpu [L] task_rq() 120 * [L] ->on_rq 121 * RELEASE (rq->lock) 122 * 123 * If we observe the old CPU in task_rq_lock(), the acquire of 124 * the old rq->lock will fully serialize against the stores. 125 * 126 * If we observe the new CPU in task_rq_lock(), the address 127 * dependency headed by '[L] rq = task_rq()' and the acquire 128 * will pair with the WMB to ensure we then also see migrating. 129 */ 130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 131 rq_pin_lock(rq, rf); 132 return rq; 133 } 134 raw_spin_unlock(&rq->lock); 135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 136 137 while (unlikely(task_on_rq_migrating(p))) 138 cpu_relax(); 139 } 140 } 141 142 /* 143 * RQ-clock updating methods: 144 */ 145 146 static void update_rq_clock_task(struct rq *rq, s64 delta) 147 { 148 /* 149 * In theory, the compile should just see 0 here, and optimize out the call 150 * to sched_rt_avg_update. But I don't trust it... 151 */ 152 s64 __maybe_unused steal = 0, irq_delta = 0; 153 154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 156 157 /* 158 * Since irq_time is only updated on {soft,}irq_exit, we might run into 159 * this case when a previous update_rq_clock() happened inside a 160 * {soft,}irq region. 161 * 162 * When this happens, we stop ->clock_task and only update the 163 * prev_irq_time stamp to account for the part that fit, so that a next 164 * update will consume the rest. This ensures ->clock_task is 165 * monotonic. 166 * 167 * It does however cause some slight miss-attribution of {soft,}irq 168 * time, a more accurate solution would be to update the irq_time using 169 * the current rq->clock timestamp, except that would require using 170 * atomic ops. 171 */ 172 if (irq_delta > delta) 173 irq_delta = delta; 174 175 rq->prev_irq_time += irq_delta; 176 delta -= irq_delta; 177 #endif 178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 179 if (static_key_false((¶virt_steal_rq_enabled))) { 180 steal = paravirt_steal_clock(cpu_of(rq)); 181 steal -= rq->prev_steal_time_rq; 182 183 if (unlikely(steal > delta)) 184 steal = delta; 185 186 rq->prev_steal_time_rq += steal; 187 delta -= steal; 188 } 189 #endif 190 191 rq->clock_task += delta; 192 193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 195 update_irq_load_avg(rq, irq_delta + steal); 196 #endif 197 update_rq_clock_pelt(rq, delta); 198 } 199 200 void update_rq_clock(struct rq *rq) 201 { 202 s64 delta; 203 204 lockdep_assert_held(&rq->lock); 205 206 if (rq->clock_update_flags & RQCF_ACT_SKIP) 207 return; 208 209 #ifdef CONFIG_SCHED_DEBUG 210 if (sched_feat(WARN_DOUBLE_CLOCK)) 211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 212 rq->clock_update_flags |= RQCF_UPDATED; 213 #endif 214 215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 216 if (delta < 0) 217 return; 218 rq->clock += delta; 219 update_rq_clock_task(rq, delta); 220 } 221 222 223 #ifdef CONFIG_SCHED_HRTICK 224 /* 225 * Use HR-timers to deliver accurate preemption points. 226 */ 227 228 static void hrtick_clear(struct rq *rq) 229 { 230 if (hrtimer_active(&rq->hrtick_timer)) 231 hrtimer_cancel(&rq->hrtick_timer); 232 } 233 234 /* 235 * High-resolution timer tick. 236 * Runs from hardirq context with interrupts disabled. 237 */ 238 static enum hrtimer_restart hrtick(struct hrtimer *timer) 239 { 240 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 241 struct rq_flags rf; 242 243 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 244 245 rq_lock(rq, &rf); 246 update_rq_clock(rq); 247 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 248 rq_unlock(rq, &rf); 249 250 return HRTIMER_NORESTART; 251 } 252 253 #ifdef CONFIG_SMP 254 255 static void __hrtick_restart(struct rq *rq) 256 { 257 struct hrtimer *timer = &rq->hrtick_timer; 258 259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 260 } 261 262 /* 263 * called from hardirq (IPI) context 264 */ 265 static void __hrtick_start(void *arg) 266 { 267 struct rq *rq = arg; 268 struct rq_flags rf; 269 270 rq_lock(rq, &rf); 271 __hrtick_restart(rq); 272 rq_unlock(rq, &rf); 273 } 274 275 /* 276 * Called to set the hrtick timer state. 277 * 278 * called with rq->lock held and irqs disabled 279 */ 280 void hrtick_start(struct rq *rq, u64 delay) 281 { 282 struct hrtimer *timer = &rq->hrtick_timer; 283 ktime_t time; 284 s64 delta; 285 286 /* 287 * Don't schedule slices shorter than 10000ns, that just 288 * doesn't make sense and can cause timer DoS. 289 */ 290 delta = max_t(s64, delay, 10000LL); 291 time = ktime_add_ns(timer->base->get_time(), delta); 292 293 hrtimer_set_expires(timer, time); 294 295 if (rq == this_rq()) 296 __hrtick_restart(rq); 297 else 298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 299 } 300 301 #else 302 /* 303 * Called to set the hrtick timer state. 304 * 305 * called with rq->lock held and irqs disabled 306 */ 307 void hrtick_start(struct rq *rq, u64 delay) 308 { 309 /* 310 * Don't schedule slices shorter than 10000ns, that just 311 * doesn't make sense. Rely on vruntime for fairness. 312 */ 313 delay = max_t(u64, delay, 10000LL); 314 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 315 HRTIMER_MODE_REL_PINNED_HARD); 316 } 317 #endif /* CONFIG_SMP */ 318 319 static void hrtick_rq_init(struct rq *rq) 320 { 321 #ifdef CONFIG_SMP 322 rq->hrtick_csd.flags = 0; 323 rq->hrtick_csd.func = __hrtick_start; 324 rq->hrtick_csd.info = rq; 325 #endif 326 327 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 328 rq->hrtick_timer.function = hrtick; 329 } 330 #else /* CONFIG_SCHED_HRTICK */ 331 static inline void hrtick_clear(struct rq *rq) 332 { 333 } 334 335 static inline void hrtick_rq_init(struct rq *rq) 336 { 337 } 338 #endif /* CONFIG_SCHED_HRTICK */ 339 340 /* 341 * cmpxchg based fetch_or, macro so it works for different integer types 342 */ 343 #define fetch_or(ptr, mask) \ 344 ({ \ 345 typeof(ptr) _ptr = (ptr); \ 346 typeof(mask) _mask = (mask); \ 347 typeof(*_ptr) _old, _val = *_ptr; \ 348 \ 349 for (;;) { \ 350 _old = cmpxchg(_ptr, _val, _val | _mask); \ 351 if (_old == _val) \ 352 break; \ 353 _val = _old; \ 354 } \ 355 _old; \ 356 }) 357 358 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 359 /* 360 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 361 * this avoids any races wrt polling state changes and thereby avoids 362 * spurious IPIs. 363 */ 364 static bool set_nr_and_not_polling(struct task_struct *p) 365 { 366 struct thread_info *ti = task_thread_info(p); 367 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 368 } 369 370 /* 371 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 372 * 373 * If this returns true, then the idle task promises to call 374 * sched_ttwu_pending() and reschedule soon. 375 */ 376 static bool set_nr_if_polling(struct task_struct *p) 377 { 378 struct thread_info *ti = task_thread_info(p); 379 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 380 381 for (;;) { 382 if (!(val & _TIF_POLLING_NRFLAG)) 383 return false; 384 if (val & _TIF_NEED_RESCHED) 385 return true; 386 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 387 if (old == val) 388 break; 389 val = old; 390 } 391 return true; 392 } 393 394 #else 395 static bool set_nr_and_not_polling(struct task_struct *p) 396 { 397 set_tsk_need_resched(p); 398 return true; 399 } 400 401 #ifdef CONFIG_SMP 402 static bool set_nr_if_polling(struct task_struct *p) 403 { 404 return false; 405 } 406 #endif 407 #endif 408 409 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 410 { 411 struct wake_q_node *node = &task->wake_q; 412 413 /* 414 * Atomically grab the task, if ->wake_q is !nil already it means 415 * its already queued (either by us or someone else) and will get the 416 * wakeup due to that. 417 * 418 * In order to ensure that a pending wakeup will observe our pending 419 * state, even in the failed case, an explicit smp_mb() must be used. 420 */ 421 smp_mb__before_atomic(); 422 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 423 return false; 424 425 /* 426 * The head is context local, there can be no concurrency. 427 */ 428 *head->lastp = node; 429 head->lastp = &node->next; 430 return true; 431 } 432 433 /** 434 * wake_q_add() - queue a wakeup for 'later' waking. 435 * @head: the wake_q_head to add @task to 436 * @task: the task to queue for 'later' wakeup 437 * 438 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 439 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 440 * instantly. 441 * 442 * This function must be used as-if it were wake_up_process(); IOW the task 443 * must be ready to be woken at this location. 444 */ 445 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 446 { 447 if (__wake_q_add(head, task)) 448 get_task_struct(task); 449 } 450 451 /** 452 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 453 * @head: the wake_q_head to add @task to 454 * @task: the task to queue for 'later' wakeup 455 * 456 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 457 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 458 * instantly. 459 * 460 * This function must be used as-if it were wake_up_process(); IOW the task 461 * must be ready to be woken at this location. 462 * 463 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 464 * that already hold reference to @task can call the 'safe' version and trust 465 * wake_q to do the right thing depending whether or not the @task is already 466 * queued for wakeup. 467 */ 468 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 469 { 470 if (!__wake_q_add(head, task)) 471 put_task_struct(task); 472 } 473 474 void wake_up_q(struct wake_q_head *head) 475 { 476 struct wake_q_node *node = head->first; 477 478 while (node != WAKE_Q_TAIL) { 479 struct task_struct *task; 480 481 task = container_of(node, struct task_struct, wake_q); 482 BUG_ON(!task); 483 /* Task can safely be re-inserted now: */ 484 node = node->next; 485 task->wake_q.next = NULL; 486 487 /* 488 * wake_up_process() executes a full barrier, which pairs with 489 * the queueing in wake_q_add() so as not to miss wakeups. 490 */ 491 wake_up_process(task); 492 put_task_struct(task); 493 } 494 } 495 496 /* 497 * resched_curr - mark rq's current task 'to be rescheduled now'. 498 * 499 * On UP this means the setting of the need_resched flag, on SMP it 500 * might also involve a cross-CPU call to trigger the scheduler on 501 * the target CPU. 502 */ 503 void resched_curr(struct rq *rq) 504 { 505 struct task_struct *curr = rq->curr; 506 int cpu; 507 508 lockdep_assert_held(&rq->lock); 509 510 if (test_tsk_need_resched(curr)) 511 return; 512 513 cpu = cpu_of(rq); 514 515 if (cpu == smp_processor_id()) { 516 set_tsk_need_resched(curr); 517 set_preempt_need_resched(); 518 return; 519 } 520 521 if (set_nr_and_not_polling(curr)) 522 smp_send_reschedule(cpu); 523 else 524 trace_sched_wake_idle_without_ipi(cpu); 525 } 526 527 void resched_cpu(int cpu) 528 { 529 struct rq *rq = cpu_rq(cpu); 530 unsigned long flags; 531 532 raw_spin_lock_irqsave(&rq->lock, flags); 533 if (cpu_online(cpu) || cpu == smp_processor_id()) 534 resched_curr(rq); 535 raw_spin_unlock_irqrestore(&rq->lock, flags); 536 } 537 538 #ifdef CONFIG_SMP 539 #ifdef CONFIG_NO_HZ_COMMON 540 /* 541 * In the semi idle case, use the nearest busy CPU for migrating timers 542 * from an idle CPU. This is good for power-savings. 543 * 544 * We don't do similar optimization for completely idle system, as 545 * selecting an idle CPU will add more delays to the timers than intended 546 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 547 */ 548 int get_nohz_timer_target(void) 549 { 550 int i, cpu = smp_processor_id(), default_cpu = -1; 551 struct sched_domain *sd; 552 553 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 554 if (!idle_cpu(cpu)) 555 return cpu; 556 default_cpu = cpu; 557 } 558 559 rcu_read_lock(); 560 for_each_domain(cpu, sd) { 561 for_each_cpu_and(i, sched_domain_span(sd), 562 housekeeping_cpumask(HK_FLAG_TIMER)) { 563 if (cpu == i) 564 continue; 565 566 if (!idle_cpu(i)) { 567 cpu = i; 568 goto unlock; 569 } 570 } 571 } 572 573 if (default_cpu == -1) 574 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 575 cpu = default_cpu; 576 unlock: 577 rcu_read_unlock(); 578 return cpu; 579 } 580 581 /* 582 * When add_timer_on() enqueues a timer into the timer wheel of an 583 * idle CPU then this timer might expire before the next timer event 584 * which is scheduled to wake up that CPU. In case of a completely 585 * idle system the next event might even be infinite time into the 586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 587 * leaves the inner idle loop so the newly added timer is taken into 588 * account when the CPU goes back to idle and evaluates the timer 589 * wheel for the next timer event. 590 */ 591 static void wake_up_idle_cpu(int cpu) 592 { 593 struct rq *rq = cpu_rq(cpu); 594 595 if (cpu == smp_processor_id()) 596 return; 597 598 if (set_nr_and_not_polling(rq->idle)) 599 smp_send_reschedule(cpu); 600 else 601 trace_sched_wake_idle_without_ipi(cpu); 602 } 603 604 static bool wake_up_full_nohz_cpu(int cpu) 605 { 606 /* 607 * We just need the target to call irq_exit() and re-evaluate 608 * the next tick. The nohz full kick at least implies that. 609 * If needed we can still optimize that later with an 610 * empty IRQ. 611 */ 612 if (cpu_is_offline(cpu)) 613 return true; /* Don't try to wake offline CPUs. */ 614 if (tick_nohz_full_cpu(cpu)) { 615 if (cpu != smp_processor_id() || 616 tick_nohz_tick_stopped()) 617 tick_nohz_full_kick_cpu(cpu); 618 return true; 619 } 620 621 return false; 622 } 623 624 /* 625 * Wake up the specified CPU. If the CPU is going offline, it is the 626 * caller's responsibility to deal with the lost wakeup, for example, 627 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 628 */ 629 void wake_up_nohz_cpu(int cpu) 630 { 631 if (!wake_up_full_nohz_cpu(cpu)) 632 wake_up_idle_cpu(cpu); 633 } 634 635 static inline bool got_nohz_idle_kick(void) 636 { 637 int cpu = smp_processor_id(); 638 639 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 640 return false; 641 642 if (idle_cpu(cpu) && !need_resched()) 643 return true; 644 645 /* 646 * We can't run Idle Load Balance on this CPU for this time so we 647 * cancel it and clear NOHZ_BALANCE_KICK 648 */ 649 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 650 return false; 651 } 652 653 #else /* CONFIG_NO_HZ_COMMON */ 654 655 static inline bool got_nohz_idle_kick(void) 656 { 657 return false; 658 } 659 660 #endif /* CONFIG_NO_HZ_COMMON */ 661 662 #ifdef CONFIG_NO_HZ_FULL 663 bool sched_can_stop_tick(struct rq *rq) 664 { 665 int fifo_nr_running; 666 667 /* Deadline tasks, even if single, need the tick */ 668 if (rq->dl.dl_nr_running) 669 return false; 670 671 /* 672 * If there are more than one RR tasks, we need the tick to effect the 673 * actual RR behaviour. 674 */ 675 if (rq->rt.rr_nr_running) { 676 if (rq->rt.rr_nr_running == 1) 677 return true; 678 else 679 return false; 680 } 681 682 /* 683 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 684 * forced preemption between FIFO tasks. 685 */ 686 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 687 if (fifo_nr_running) 688 return true; 689 690 /* 691 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 692 * if there's more than one we need the tick for involuntary 693 * preemption. 694 */ 695 if (rq->nr_running > 1) 696 return false; 697 698 return true; 699 } 700 #endif /* CONFIG_NO_HZ_FULL */ 701 #endif /* CONFIG_SMP */ 702 703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 704 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 705 /* 706 * Iterate task_group tree rooted at *from, calling @down when first entering a 707 * node and @up when leaving it for the final time. 708 * 709 * Caller must hold rcu_lock or sufficient equivalent. 710 */ 711 int walk_tg_tree_from(struct task_group *from, 712 tg_visitor down, tg_visitor up, void *data) 713 { 714 struct task_group *parent, *child; 715 int ret; 716 717 parent = from; 718 719 down: 720 ret = (*down)(parent, data); 721 if (ret) 722 goto out; 723 list_for_each_entry_rcu(child, &parent->children, siblings) { 724 parent = child; 725 goto down; 726 727 up: 728 continue; 729 } 730 ret = (*up)(parent, data); 731 if (ret || parent == from) 732 goto out; 733 734 child = parent; 735 parent = parent->parent; 736 if (parent) 737 goto up; 738 out: 739 return ret; 740 } 741 742 int tg_nop(struct task_group *tg, void *data) 743 { 744 return 0; 745 } 746 #endif 747 748 static void set_load_weight(struct task_struct *p, bool update_load) 749 { 750 int prio = p->static_prio - MAX_RT_PRIO; 751 struct load_weight *load = &p->se.load; 752 753 /* 754 * SCHED_IDLE tasks get minimal weight: 755 */ 756 if (task_has_idle_policy(p)) { 757 load->weight = scale_load(WEIGHT_IDLEPRIO); 758 load->inv_weight = WMULT_IDLEPRIO; 759 return; 760 } 761 762 /* 763 * SCHED_OTHER tasks have to update their load when changing their 764 * weight 765 */ 766 if (update_load && p->sched_class == &fair_sched_class) { 767 reweight_task(p, prio); 768 } else { 769 load->weight = scale_load(sched_prio_to_weight[prio]); 770 load->inv_weight = sched_prio_to_wmult[prio]; 771 } 772 } 773 774 #ifdef CONFIG_UCLAMP_TASK 775 /* 776 * Serializes updates of utilization clamp values 777 * 778 * The (slow-path) user-space triggers utilization clamp value updates which 779 * can require updates on (fast-path) scheduler's data structures used to 780 * support enqueue/dequeue operations. 781 * While the per-CPU rq lock protects fast-path update operations, user-space 782 * requests are serialized using a mutex to reduce the risk of conflicting 783 * updates or API abuses. 784 */ 785 static DEFINE_MUTEX(uclamp_mutex); 786 787 /* Max allowed minimum utilization */ 788 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 789 790 /* Max allowed maximum utilization */ 791 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 792 793 /* All clamps are required to be less or equal than these values */ 794 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 795 796 /* Integer rounded range for each bucket */ 797 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 798 799 #define for_each_clamp_id(clamp_id) \ 800 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 801 802 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 803 { 804 return clamp_value / UCLAMP_BUCKET_DELTA; 805 } 806 807 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value) 808 { 809 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value); 810 } 811 812 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 813 { 814 if (clamp_id == UCLAMP_MIN) 815 return 0; 816 return SCHED_CAPACITY_SCALE; 817 } 818 819 static inline void uclamp_se_set(struct uclamp_se *uc_se, 820 unsigned int value, bool user_defined) 821 { 822 uc_se->value = value; 823 uc_se->bucket_id = uclamp_bucket_id(value); 824 uc_se->user_defined = user_defined; 825 } 826 827 static inline unsigned int 828 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 829 unsigned int clamp_value) 830 { 831 /* 832 * Avoid blocked utilization pushing up the frequency when we go 833 * idle (which drops the max-clamp) by retaining the last known 834 * max-clamp. 835 */ 836 if (clamp_id == UCLAMP_MAX) { 837 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 838 return clamp_value; 839 } 840 841 return uclamp_none(UCLAMP_MIN); 842 } 843 844 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 845 unsigned int clamp_value) 846 { 847 /* Reset max-clamp retention only on idle exit */ 848 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 849 return; 850 851 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 852 } 853 854 static inline 855 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 856 unsigned int clamp_value) 857 { 858 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 859 int bucket_id = UCLAMP_BUCKETS - 1; 860 861 /* 862 * Since both min and max clamps are max aggregated, find the 863 * top most bucket with tasks in. 864 */ 865 for ( ; bucket_id >= 0; bucket_id--) { 866 if (!bucket[bucket_id].tasks) 867 continue; 868 return bucket[bucket_id].value; 869 } 870 871 /* No tasks -- default clamp values */ 872 return uclamp_idle_value(rq, clamp_id, clamp_value); 873 } 874 875 static inline struct uclamp_se 876 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 877 { 878 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 879 #ifdef CONFIG_UCLAMP_TASK_GROUP 880 struct uclamp_se uc_max; 881 882 /* 883 * Tasks in autogroups or root task group will be 884 * restricted by system defaults. 885 */ 886 if (task_group_is_autogroup(task_group(p))) 887 return uc_req; 888 if (task_group(p) == &root_task_group) 889 return uc_req; 890 891 uc_max = task_group(p)->uclamp[clamp_id]; 892 if (uc_req.value > uc_max.value || !uc_req.user_defined) 893 return uc_max; 894 #endif 895 896 return uc_req; 897 } 898 899 /* 900 * The effective clamp bucket index of a task depends on, by increasing 901 * priority: 902 * - the task specific clamp value, when explicitly requested from userspace 903 * - the task group effective clamp value, for tasks not either in the root 904 * group or in an autogroup 905 * - the system default clamp value, defined by the sysadmin 906 */ 907 static inline struct uclamp_se 908 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 909 { 910 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 911 struct uclamp_se uc_max = uclamp_default[clamp_id]; 912 913 /* System default restrictions always apply */ 914 if (unlikely(uc_req.value > uc_max.value)) 915 return uc_max; 916 917 return uc_req; 918 } 919 920 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 921 { 922 struct uclamp_se uc_eff; 923 924 /* Task currently refcounted: use back-annotated (effective) value */ 925 if (p->uclamp[clamp_id].active) 926 return (unsigned long)p->uclamp[clamp_id].value; 927 928 uc_eff = uclamp_eff_get(p, clamp_id); 929 930 return (unsigned long)uc_eff.value; 931 } 932 933 /* 934 * When a task is enqueued on a rq, the clamp bucket currently defined by the 935 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 936 * updates the rq's clamp value if required. 937 * 938 * Tasks can have a task-specific value requested from user-space, track 939 * within each bucket the maximum value for tasks refcounted in it. 940 * This "local max aggregation" allows to track the exact "requested" value 941 * for each bucket when all its RUNNABLE tasks require the same clamp. 942 */ 943 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 944 enum uclamp_id clamp_id) 945 { 946 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 947 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 948 struct uclamp_bucket *bucket; 949 950 lockdep_assert_held(&rq->lock); 951 952 /* Update task effective clamp */ 953 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 954 955 bucket = &uc_rq->bucket[uc_se->bucket_id]; 956 bucket->tasks++; 957 uc_se->active = true; 958 959 uclamp_idle_reset(rq, clamp_id, uc_se->value); 960 961 /* 962 * Local max aggregation: rq buckets always track the max 963 * "requested" clamp value of its RUNNABLE tasks. 964 */ 965 if (bucket->tasks == 1 || uc_se->value > bucket->value) 966 bucket->value = uc_se->value; 967 968 if (uc_se->value > READ_ONCE(uc_rq->value)) 969 WRITE_ONCE(uc_rq->value, uc_se->value); 970 } 971 972 /* 973 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 974 * is released. If this is the last task reference counting the rq's max 975 * active clamp value, then the rq's clamp value is updated. 976 * 977 * Both refcounted tasks and rq's cached clamp values are expected to be 978 * always valid. If it's detected they are not, as defensive programming, 979 * enforce the expected state and warn. 980 */ 981 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 982 enum uclamp_id clamp_id) 983 { 984 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 985 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 986 struct uclamp_bucket *bucket; 987 unsigned int bkt_clamp; 988 unsigned int rq_clamp; 989 990 lockdep_assert_held(&rq->lock); 991 992 bucket = &uc_rq->bucket[uc_se->bucket_id]; 993 SCHED_WARN_ON(!bucket->tasks); 994 if (likely(bucket->tasks)) 995 bucket->tasks--; 996 uc_se->active = false; 997 998 /* 999 * Keep "local max aggregation" simple and accept to (possibly) 1000 * overboost some RUNNABLE tasks in the same bucket. 1001 * The rq clamp bucket value is reset to its base value whenever 1002 * there are no more RUNNABLE tasks refcounting it. 1003 */ 1004 if (likely(bucket->tasks)) 1005 return; 1006 1007 rq_clamp = READ_ONCE(uc_rq->value); 1008 /* 1009 * Defensive programming: this should never happen. If it happens, 1010 * e.g. due to future modification, warn and fixup the expected value. 1011 */ 1012 SCHED_WARN_ON(bucket->value > rq_clamp); 1013 if (bucket->value >= rq_clamp) { 1014 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1015 WRITE_ONCE(uc_rq->value, bkt_clamp); 1016 } 1017 } 1018 1019 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1020 { 1021 enum uclamp_id clamp_id; 1022 1023 if (unlikely(!p->sched_class->uclamp_enabled)) 1024 return; 1025 1026 for_each_clamp_id(clamp_id) 1027 uclamp_rq_inc_id(rq, p, clamp_id); 1028 1029 /* Reset clamp idle holding when there is one RUNNABLE task */ 1030 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1031 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1032 } 1033 1034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1035 { 1036 enum uclamp_id clamp_id; 1037 1038 if (unlikely(!p->sched_class->uclamp_enabled)) 1039 return; 1040 1041 for_each_clamp_id(clamp_id) 1042 uclamp_rq_dec_id(rq, p, clamp_id); 1043 } 1044 1045 static inline void 1046 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1047 { 1048 struct rq_flags rf; 1049 struct rq *rq; 1050 1051 /* 1052 * Lock the task and the rq where the task is (or was) queued. 1053 * 1054 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1055 * price to pay to safely serialize util_{min,max} updates with 1056 * enqueues, dequeues and migration operations. 1057 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1058 */ 1059 rq = task_rq_lock(p, &rf); 1060 1061 /* 1062 * Setting the clamp bucket is serialized by task_rq_lock(). 1063 * If the task is not yet RUNNABLE and its task_struct is not 1064 * affecting a valid clamp bucket, the next time it's enqueued, 1065 * it will already see the updated clamp bucket value. 1066 */ 1067 if (p->uclamp[clamp_id].active) { 1068 uclamp_rq_dec_id(rq, p, clamp_id); 1069 uclamp_rq_inc_id(rq, p, clamp_id); 1070 } 1071 1072 task_rq_unlock(rq, p, &rf); 1073 } 1074 1075 #ifdef CONFIG_UCLAMP_TASK_GROUP 1076 static inline void 1077 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1078 unsigned int clamps) 1079 { 1080 enum uclamp_id clamp_id; 1081 struct css_task_iter it; 1082 struct task_struct *p; 1083 1084 css_task_iter_start(css, 0, &it); 1085 while ((p = css_task_iter_next(&it))) { 1086 for_each_clamp_id(clamp_id) { 1087 if ((0x1 << clamp_id) & clamps) 1088 uclamp_update_active(p, clamp_id); 1089 } 1090 } 1091 css_task_iter_end(&it); 1092 } 1093 1094 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1095 static void uclamp_update_root_tg(void) 1096 { 1097 struct task_group *tg = &root_task_group; 1098 1099 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1100 sysctl_sched_uclamp_util_min, false); 1101 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1102 sysctl_sched_uclamp_util_max, false); 1103 1104 rcu_read_lock(); 1105 cpu_util_update_eff(&root_task_group.css); 1106 rcu_read_unlock(); 1107 } 1108 #else 1109 static void uclamp_update_root_tg(void) { } 1110 #endif 1111 1112 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1113 void __user *buffer, size_t *lenp, 1114 loff_t *ppos) 1115 { 1116 bool update_root_tg = false; 1117 int old_min, old_max; 1118 int result; 1119 1120 mutex_lock(&uclamp_mutex); 1121 old_min = sysctl_sched_uclamp_util_min; 1122 old_max = sysctl_sched_uclamp_util_max; 1123 1124 result = proc_dointvec(table, write, buffer, lenp, ppos); 1125 if (result) 1126 goto undo; 1127 if (!write) 1128 goto done; 1129 1130 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1131 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) { 1132 result = -EINVAL; 1133 goto undo; 1134 } 1135 1136 if (old_min != sysctl_sched_uclamp_util_min) { 1137 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1138 sysctl_sched_uclamp_util_min, false); 1139 update_root_tg = true; 1140 } 1141 if (old_max != sysctl_sched_uclamp_util_max) { 1142 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1143 sysctl_sched_uclamp_util_max, false); 1144 update_root_tg = true; 1145 } 1146 1147 if (update_root_tg) 1148 uclamp_update_root_tg(); 1149 1150 /* 1151 * We update all RUNNABLE tasks only when task groups are in use. 1152 * Otherwise, keep it simple and do just a lazy update at each next 1153 * task enqueue time. 1154 */ 1155 1156 goto done; 1157 1158 undo: 1159 sysctl_sched_uclamp_util_min = old_min; 1160 sysctl_sched_uclamp_util_max = old_max; 1161 done: 1162 mutex_unlock(&uclamp_mutex); 1163 1164 return result; 1165 } 1166 1167 static int uclamp_validate(struct task_struct *p, 1168 const struct sched_attr *attr) 1169 { 1170 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value; 1171 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value; 1172 1173 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) 1174 lower_bound = attr->sched_util_min; 1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) 1176 upper_bound = attr->sched_util_max; 1177 1178 if (lower_bound > upper_bound) 1179 return -EINVAL; 1180 if (upper_bound > SCHED_CAPACITY_SCALE) 1181 return -EINVAL; 1182 1183 return 0; 1184 } 1185 1186 static void __setscheduler_uclamp(struct task_struct *p, 1187 const struct sched_attr *attr) 1188 { 1189 enum uclamp_id clamp_id; 1190 1191 /* 1192 * On scheduling class change, reset to default clamps for tasks 1193 * without a task-specific value. 1194 */ 1195 for_each_clamp_id(clamp_id) { 1196 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1197 unsigned int clamp_value = uclamp_none(clamp_id); 1198 1199 /* Keep using defined clamps across class changes */ 1200 if (uc_se->user_defined) 1201 continue; 1202 1203 /* By default, RT tasks always get 100% boost */ 1204 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1205 clamp_value = uclamp_none(UCLAMP_MAX); 1206 1207 uclamp_se_set(uc_se, clamp_value, false); 1208 } 1209 1210 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1211 return; 1212 1213 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1214 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1215 attr->sched_util_min, true); 1216 } 1217 1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1220 attr->sched_util_max, true); 1221 } 1222 } 1223 1224 static void uclamp_fork(struct task_struct *p) 1225 { 1226 enum uclamp_id clamp_id; 1227 1228 for_each_clamp_id(clamp_id) 1229 p->uclamp[clamp_id].active = false; 1230 1231 if (likely(!p->sched_reset_on_fork)) 1232 return; 1233 1234 for_each_clamp_id(clamp_id) { 1235 unsigned int clamp_value = uclamp_none(clamp_id); 1236 1237 /* By default, RT tasks always get 100% boost */ 1238 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1239 clamp_value = uclamp_none(UCLAMP_MAX); 1240 1241 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false); 1242 } 1243 } 1244 1245 static void __init init_uclamp(void) 1246 { 1247 struct uclamp_se uc_max = {}; 1248 enum uclamp_id clamp_id; 1249 int cpu; 1250 1251 mutex_init(&uclamp_mutex); 1252 1253 for_each_possible_cpu(cpu) { 1254 memset(&cpu_rq(cpu)->uclamp, 0, 1255 sizeof(struct uclamp_rq)*UCLAMP_CNT); 1256 cpu_rq(cpu)->uclamp_flags = 0; 1257 } 1258 1259 for_each_clamp_id(clamp_id) { 1260 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1261 uclamp_none(clamp_id), false); 1262 } 1263 1264 /* System defaults allow max clamp values for both indexes */ 1265 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1266 for_each_clamp_id(clamp_id) { 1267 uclamp_default[clamp_id] = uc_max; 1268 #ifdef CONFIG_UCLAMP_TASK_GROUP 1269 root_task_group.uclamp_req[clamp_id] = uc_max; 1270 root_task_group.uclamp[clamp_id] = uc_max; 1271 #endif 1272 } 1273 } 1274 1275 #else /* CONFIG_UCLAMP_TASK */ 1276 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1277 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1278 static inline int uclamp_validate(struct task_struct *p, 1279 const struct sched_attr *attr) 1280 { 1281 return -EOPNOTSUPP; 1282 } 1283 static void __setscheduler_uclamp(struct task_struct *p, 1284 const struct sched_attr *attr) { } 1285 static inline void uclamp_fork(struct task_struct *p) { } 1286 static inline void init_uclamp(void) { } 1287 #endif /* CONFIG_UCLAMP_TASK */ 1288 1289 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1290 { 1291 if (!(flags & ENQUEUE_NOCLOCK)) 1292 update_rq_clock(rq); 1293 1294 if (!(flags & ENQUEUE_RESTORE)) { 1295 sched_info_queued(rq, p); 1296 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1297 } 1298 1299 uclamp_rq_inc(rq, p); 1300 p->sched_class->enqueue_task(rq, p, flags); 1301 } 1302 1303 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1304 { 1305 if (!(flags & DEQUEUE_NOCLOCK)) 1306 update_rq_clock(rq); 1307 1308 if (!(flags & DEQUEUE_SAVE)) { 1309 sched_info_dequeued(rq, p); 1310 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1311 } 1312 1313 uclamp_rq_dec(rq, p); 1314 p->sched_class->dequeue_task(rq, p, flags); 1315 } 1316 1317 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1318 { 1319 if (task_contributes_to_load(p)) 1320 rq->nr_uninterruptible--; 1321 1322 enqueue_task(rq, p, flags); 1323 1324 p->on_rq = TASK_ON_RQ_QUEUED; 1325 } 1326 1327 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1328 { 1329 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1330 1331 if (task_contributes_to_load(p)) 1332 rq->nr_uninterruptible++; 1333 1334 dequeue_task(rq, p, flags); 1335 } 1336 1337 /* 1338 * __normal_prio - return the priority that is based on the static prio 1339 */ 1340 static inline int __normal_prio(struct task_struct *p) 1341 { 1342 return p->static_prio; 1343 } 1344 1345 /* 1346 * Calculate the expected normal priority: i.e. priority 1347 * without taking RT-inheritance into account. Might be 1348 * boosted by interactivity modifiers. Changes upon fork, 1349 * setprio syscalls, and whenever the interactivity 1350 * estimator recalculates. 1351 */ 1352 static inline int normal_prio(struct task_struct *p) 1353 { 1354 int prio; 1355 1356 if (task_has_dl_policy(p)) 1357 prio = MAX_DL_PRIO-1; 1358 else if (task_has_rt_policy(p)) 1359 prio = MAX_RT_PRIO-1 - p->rt_priority; 1360 else 1361 prio = __normal_prio(p); 1362 return prio; 1363 } 1364 1365 /* 1366 * Calculate the current priority, i.e. the priority 1367 * taken into account by the scheduler. This value might 1368 * be boosted by RT tasks, or might be boosted by 1369 * interactivity modifiers. Will be RT if the task got 1370 * RT-boosted. If not then it returns p->normal_prio. 1371 */ 1372 static int effective_prio(struct task_struct *p) 1373 { 1374 p->normal_prio = normal_prio(p); 1375 /* 1376 * If we are RT tasks or we were boosted to RT priority, 1377 * keep the priority unchanged. Otherwise, update priority 1378 * to the normal priority: 1379 */ 1380 if (!rt_prio(p->prio)) 1381 return p->normal_prio; 1382 return p->prio; 1383 } 1384 1385 /** 1386 * task_curr - is this task currently executing on a CPU? 1387 * @p: the task in question. 1388 * 1389 * Return: 1 if the task is currently executing. 0 otherwise. 1390 */ 1391 inline int task_curr(const struct task_struct *p) 1392 { 1393 return cpu_curr(task_cpu(p)) == p; 1394 } 1395 1396 /* 1397 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1398 * use the balance_callback list if you want balancing. 1399 * 1400 * this means any call to check_class_changed() must be followed by a call to 1401 * balance_callback(). 1402 */ 1403 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1404 const struct sched_class *prev_class, 1405 int oldprio) 1406 { 1407 if (prev_class != p->sched_class) { 1408 if (prev_class->switched_from) 1409 prev_class->switched_from(rq, p); 1410 1411 p->sched_class->switched_to(rq, p); 1412 } else if (oldprio != p->prio || dl_task(p)) 1413 p->sched_class->prio_changed(rq, p, oldprio); 1414 } 1415 1416 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1417 { 1418 const struct sched_class *class; 1419 1420 if (p->sched_class == rq->curr->sched_class) { 1421 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1422 } else { 1423 for_each_class(class) { 1424 if (class == rq->curr->sched_class) 1425 break; 1426 if (class == p->sched_class) { 1427 resched_curr(rq); 1428 break; 1429 } 1430 } 1431 } 1432 1433 /* 1434 * A queue event has occurred, and we're going to schedule. In 1435 * this case, we can save a useless back to back clock update. 1436 */ 1437 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1438 rq_clock_skip_update(rq); 1439 } 1440 1441 #ifdef CONFIG_SMP 1442 1443 /* 1444 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1445 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1446 */ 1447 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1448 { 1449 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1450 return false; 1451 1452 if (is_per_cpu_kthread(p)) 1453 return cpu_online(cpu); 1454 1455 return cpu_active(cpu); 1456 } 1457 1458 /* 1459 * This is how migration works: 1460 * 1461 * 1) we invoke migration_cpu_stop() on the target CPU using 1462 * stop_one_cpu(). 1463 * 2) stopper starts to run (implicitly forcing the migrated thread 1464 * off the CPU) 1465 * 3) it checks whether the migrated task is still in the wrong runqueue. 1466 * 4) if it's in the wrong runqueue then the migration thread removes 1467 * it and puts it into the right queue. 1468 * 5) stopper completes and stop_one_cpu() returns and the migration 1469 * is done. 1470 */ 1471 1472 /* 1473 * move_queued_task - move a queued task to new rq. 1474 * 1475 * Returns (locked) new rq. Old rq's lock is released. 1476 */ 1477 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1478 struct task_struct *p, int new_cpu) 1479 { 1480 lockdep_assert_held(&rq->lock); 1481 1482 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 1483 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 1484 set_task_cpu(p, new_cpu); 1485 rq_unlock(rq, rf); 1486 1487 rq = cpu_rq(new_cpu); 1488 1489 rq_lock(rq, rf); 1490 BUG_ON(task_cpu(p) != new_cpu); 1491 enqueue_task(rq, p, 0); 1492 p->on_rq = TASK_ON_RQ_QUEUED; 1493 check_preempt_curr(rq, p, 0); 1494 1495 return rq; 1496 } 1497 1498 struct migration_arg { 1499 struct task_struct *task; 1500 int dest_cpu; 1501 }; 1502 1503 /* 1504 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1505 * this because either it can't run here any more (set_cpus_allowed() 1506 * away from this CPU, or CPU going down), or because we're 1507 * attempting to rebalance this task on exec (sched_exec). 1508 * 1509 * So we race with normal scheduler movements, but that's OK, as long 1510 * as the task is no longer on this CPU. 1511 */ 1512 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1513 struct task_struct *p, int dest_cpu) 1514 { 1515 /* Affinity changed (again). */ 1516 if (!is_cpu_allowed(p, dest_cpu)) 1517 return rq; 1518 1519 update_rq_clock(rq); 1520 rq = move_queued_task(rq, rf, p, dest_cpu); 1521 1522 return rq; 1523 } 1524 1525 /* 1526 * migration_cpu_stop - this will be executed by a highprio stopper thread 1527 * and performs thread migration by bumping thread off CPU then 1528 * 'pushing' onto another runqueue. 1529 */ 1530 static int migration_cpu_stop(void *data) 1531 { 1532 struct migration_arg *arg = data; 1533 struct task_struct *p = arg->task; 1534 struct rq *rq = this_rq(); 1535 struct rq_flags rf; 1536 1537 /* 1538 * The original target CPU might have gone down and we might 1539 * be on another CPU but it doesn't matter. 1540 */ 1541 local_irq_disable(); 1542 /* 1543 * We need to explicitly wake pending tasks before running 1544 * __migrate_task() such that we will not miss enforcing cpus_ptr 1545 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1546 */ 1547 sched_ttwu_pending(); 1548 1549 raw_spin_lock(&p->pi_lock); 1550 rq_lock(rq, &rf); 1551 /* 1552 * If task_rq(p) != rq, it cannot be migrated here, because we're 1553 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1554 * we're holding p->pi_lock. 1555 */ 1556 if (task_rq(p) == rq) { 1557 if (task_on_rq_queued(p)) 1558 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1559 else 1560 p->wake_cpu = arg->dest_cpu; 1561 } 1562 rq_unlock(rq, &rf); 1563 raw_spin_unlock(&p->pi_lock); 1564 1565 local_irq_enable(); 1566 return 0; 1567 } 1568 1569 /* 1570 * sched_class::set_cpus_allowed must do the below, but is not required to 1571 * actually call this function. 1572 */ 1573 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1574 { 1575 cpumask_copy(&p->cpus_mask, new_mask); 1576 p->nr_cpus_allowed = cpumask_weight(new_mask); 1577 } 1578 1579 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1580 { 1581 struct rq *rq = task_rq(p); 1582 bool queued, running; 1583 1584 lockdep_assert_held(&p->pi_lock); 1585 1586 queued = task_on_rq_queued(p); 1587 running = task_current(rq, p); 1588 1589 if (queued) { 1590 /* 1591 * Because __kthread_bind() calls this on blocked tasks without 1592 * holding rq->lock. 1593 */ 1594 lockdep_assert_held(&rq->lock); 1595 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1596 } 1597 if (running) 1598 put_prev_task(rq, p); 1599 1600 p->sched_class->set_cpus_allowed(p, new_mask); 1601 1602 if (queued) 1603 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1604 if (running) 1605 set_next_task(rq, p); 1606 } 1607 1608 /* 1609 * Change a given task's CPU affinity. Migrate the thread to a 1610 * proper CPU and schedule it away if the CPU it's executing on 1611 * is removed from the allowed bitmask. 1612 * 1613 * NOTE: the caller must have a valid reference to the task, the 1614 * task must not exit() & deallocate itself prematurely. The 1615 * call is not atomic; no spinlocks may be held. 1616 */ 1617 static int __set_cpus_allowed_ptr(struct task_struct *p, 1618 const struct cpumask *new_mask, bool check) 1619 { 1620 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1621 unsigned int dest_cpu; 1622 struct rq_flags rf; 1623 struct rq *rq; 1624 int ret = 0; 1625 1626 rq = task_rq_lock(p, &rf); 1627 update_rq_clock(rq); 1628 1629 if (p->flags & PF_KTHREAD) { 1630 /* 1631 * Kernel threads are allowed on online && !active CPUs 1632 */ 1633 cpu_valid_mask = cpu_online_mask; 1634 } 1635 1636 /* 1637 * Must re-check here, to close a race against __kthread_bind(), 1638 * sched_setaffinity() is not guaranteed to observe the flag. 1639 */ 1640 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1641 ret = -EINVAL; 1642 goto out; 1643 } 1644 1645 if (cpumask_equal(p->cpus_ptr, new_mask)) 1646 goto out; 1647 1648 /* 1649 * Picking a ~random cpu helps in cases where we are changing affinity 1650 * for groups of tasks (ie. cpuset), so that load balancing is not 1651 * immediately required to distribute the tasks within their new mask. 1652 */ 1653 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 1654 if (dest_cpu >= nr_cpu_ids) { 1655 ret = -EINVAL; 1656 goto out; 1657 } 1658 1659 do_set_cpus_allowed(p, new_mask); 1660 1661 if (p->flags & PF_KTHREAD) { 1662 /* 1663 * For kernel threads that do indeed end up on online && 1664 * !active we want to ensure they are strict per-CPU threads. 1665 */ 1666 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1667 !cpumask_intersects(new_mask, cpu_active_mask) && 1668 p->nr_cpus_allowed != 1); 1669 } 1670 1671 /* Can the task run on the task's current CPU? If so, we're done */ 1672 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1673 goto out; 1674 1675 if (task_running(rq, p) || p->state == TASK_WAKING) { 1676 struct migration_arg arg = { p, dest_cpu }; 1677 /* Need help from migration thread: drop lock and wait. */ 1678 task_rq_unlock(rq, p, &rf); 1679 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1680 return 0; 1681 } else if (task_on_rq_queued(p)) { 1682 /* 1683 * OK, since we're going to drop the lock immediately 1684 * afterwards anyway. 1685 */ 1686 rq = move_queued_task(rq, &rf, p, dest_cpu); 1687 } 1688 out: 1689 task_rq_unlock(rq, p, &rf); 1690 1691 return ret; 1692 } 1693 1694 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1695 { 1696 return __set_cpus_allowed_ptr(p, new_mask, false); 1697 } 1698 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1699 1700 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1701 { 1702 #ifdef CONFIG_SCHED_DEBUG 1703 /* 1704 * We should never call set_task_cpu() on a blocked task, 1705 * ttwu() will sort out the placement. 1706 */ 1707 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1708 !p->on_rq); 1709 1710 /* 1711 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1712 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1713 * time relying on p->on_rq. 1714 */ 1715 WARN_ON_ONCE(p->state == TASK_RUNNING && 1716 p->sched_class == &fair_sched_class && 1717 (p->on_rq && !task_on_rq_migrating(p))); 1718 1719 #ifdef CONFIG_LOCKDEP 1720 /* 1721 * The caller should hold either p->pi_lock or rq->lock, when changing 1722 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1723 * 1724 * sched_move_task() holds both and thus holding either pins the cgroup, 1725 * see task_group(). 1726 * 1727 * Furthermore, all task_rq users should acquire both locks, see 1728 * task_rq_lock(). 1729 */ 1730 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1731 lockdep_is_held(&task_rq(p)->lock))); 1732 #endif 1733 /* 1734 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1735 */ 1736 WARN_ON_ONCE(!cpu_online(new_cpu)); 1737 #endif 1738 1739 trace_sched_migrate_task(p, new_cpu); 1740 1741 if (task_cpu(p) != new_cpu) { 1742 if (p->sched_class->migrate_task_rq) 1743 p->sched_class->migrate_task_rq(p, new_cpu); 1744 p->se.nr_migrations++; 1745 rseq_migrate(p); 1746 perf_event_task_migrate(p); 1747 } 1748 1749 __set_task_cpu(p, new_cpu); 1750 } 1751 1752 #ifdef CONFIG_NUMA_BALANCING 1753 static void __migrate_swap_task(struct task_struct *p, int cpu) 1754 { 1755 if (task_on_rq_queued(p)) { 1756 struct rq *src_rq, *dst_rq; 1757 struct rq_flags srf, drf; 1758 1759 src_rq = task_rq(p); 1760 dst_rq = cpu_rq(cpu); 1761 1762 rq_pin_lock(src_rq, &srf); 1763 rq_pin_lock(dst_rq, &drf); 1764 1765 deactivate_task(src_rq, p, 0); 1766 set_task_cpu(p, cpu); 1767 activate_task(dst_rq, p, 0); 1768 check_preempt_curr(dst_rq, p, 0); 1769 1770 rq_unpin_lock(dst_rq, &drf); 1771 rq_unpin_lock(src_rq, &srf); 1772 1773 } else { 1774 /* 1775 * Task isn't running anymore; make it appear like we migrated 1776 * it before it went to sleep. This means on wakeup we make the 1777 * previous CPU our target instead of where it really is. 1778 */ 1779 p->wake_cpu = cpu; 1780 } 1781 } 1782 1783 struct migration_swap_arg { 1784 struct task_struct *src_task, *dst_task; 1785 int src_cpu, dst_cpu; 1786 }; 1787 1788 static int migrate_swap_stop(void *data) 1789 { 1790 struct migration_swap_arg *arg = data; 1791 struct rq *src_rq, *dst_rq; 1792 int ret = -EAGAIN; 1793 1794 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1795 return -EAGAIN; 1796 1797 src_rq = cpu_rq(arg->src_cpu); 1798 dst_rq = cpu_rq(arg->dst_cpu); 1799 1800 double_raw_lock(&arg->src_task->pi_lock, 1801 &arg->dst_task->pi_lock); 1802 double_rq_lock(src_rq, dst_rq); 1803 1804 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1805 goto unlock; 1806 1807 if (task_cpu(arg->src_task) != arg->src_cpu) 1808 goto unlock; 1809 1810 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 1811 goto unlock; 1812 1813 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 1814 goto unlock; 1815 1816 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1817 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1818 1819 ret = 0; 1820 1821 unlock: 1822 double_rq_unlock(src_rq, dst_rq); 1823 raw_spin_unlock(&arg->dst_task->pi_lock); 1824 raw_spin_unlock(&arg->src_task->pi_lock); 1825 1826 return ret; 1827 } 1828 1829 /* 1830 * Cross migrate two tasks 1831 */ 1832 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1833 int target_cpu, int curr_cpu) 1834 { 1835 struct migration_swap_arg arg; 1836 int ret = -EINVAL; 1837 1838 arg = (struct migration_swap_arg){ 1839 .src_task = cur, 1840 .src_cpu = curr_cpu, 1841 .dst_task = p, 1842 .dst_cpu = target_cpu, 1843 }; 1844 1845 if (arg.src_cpu == arg.dst_cpu) 1846 goto out; 1847 1848 /* 1849 * These three tests are all lockless; this is OK since all of them 1850 * will be re-checked with proper locks held further down the line. 1851 */ 1852 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1853 goto out; 1854 1855 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 1856 goto out; 1857 1858 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 1859 goto out; 1860 1861 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1862 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1863 1864 out: 1865 return ret; 1866 } 1867 #endif /* CONFIG_NUMA_BALANCING */ 1868 1869 /* 1870 * wait_task_inactive - wait for a thread to unschedule. 1871 * 1872 * If @match_state is nonzero, it's the @p->state value just checked and 1873 * not expected to change. If it changes, i.e. @p might have woken up, 1874 * then return zero. When we succeed in waiting for @p to be off its CPU, 1875 * we return a positive number (its total switch count). If a second call 1876 * a short while later returns the same number, the caller can be sure that 1877 * @p has remained unscheduled the whole time. 1878 * 1879 * The caller must ensure that the task *will* unschedule sometime soon, 1880 * else this function might spin for a *long* time. This function can't 1881 * be called with interrupts off, or it may introduce deadlock with 1882 * smp_call_function() if an IPI is sent by the same process we are 1883 * waiting to become inactive. 1884 */ 1885 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1886 { 1887 int running, queued; 1888 struct rq_flags rf; 1889 unsigned long ncsw; 1890 struct rq *rq; 1891 1892 for (;;) { 1893 /* 1894 * We do the initial early heuristics without holding 1895 * any task-queue locks at all. We'll only try to get 1896 * the runqueue lock when things look like they will 1897 * work out! 1898 */ 1899 rq = task_rq(p); 1900 1901 /* 1902 * If the task is actively running on another CPU 1903 * still, just relax and busy-wait without holding 1904 * any locks. 1905 * 1906 * NOTE! Since we don't hold any locks, it's not 1907 * even sure that "rq" stays as the right runqueue! 1908 * But we don't care, since "task_running()" will 1909 * return false if the runqueue has changed and p 1910 * is actually now running somewhere else! 1911 */ 1912 while (task_running(rq, p)) { 1913 if (match_state && unlikely(p->state != match_state)) 1914 return 0; 1915 cpu_relax(); 1916 } 1917 1918 /* 1919 * Ok, time to look more closely! We need the rq 1920 * lock now, to be *sure*. If we're wrong, we'll 1921 * just go back and repeat. 1922 */ 1923 rq = task_rq_lock(p, &rf); 1924 trace_sched_wait_task(p); 1925 running = task_running(rq, p); 1926 queued = task_on_rq_queued(p); 1927 ncsw = 0; 1928 if (!match_state || p->state == match_state) 1929 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1930 task_rq_unlock(rq, p, &rf); 1931 1932 /* 1933 * If it changed from the expected state, bail out now. 1934 */ 1935 if (unlikely(!ncsw)) 1936 break; 1937 1938 /* 1939 * Was it really running after all now that we 1940 * checked with the proper locks actually held? 1941 * 1942 * Oops. Go back and try again.. 1943 */ 1944 if (unlikely(running)) { 1945 cpu_relax(); 1946 continue; 1947 } 1948 1949 /* 1950 * It's not enough that it's not actively running, 1951 * it must be off the runqueue _entirely_, and not 1952 * preempted! 1953 * 1954 * So if it was still runnable (but just not actively 1955 * running right now), it's preempted, and we should 1956 * yield - it could be a while. 1957 */ 1958 if (unlikely(queued)) { 1959 ktime_t to = NSEC_PER_SEC / HZ; 1960 1961 set_current_state(TASK_UNINTERRUPTIBLE); 1962 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1963 continue; 1964 } 1965 1966 /* 1967 * Ahh, all good. It wasn't running, and it wasn't 1968 * runnable, which means that it will never become 1969 * running in the future either. We're all done! 1970 */ 1971 break; 1972 } 1973 1974 return ncsw; 1975 } 1976 1977 /*** 1978 * kick_process - kick a running thread to enter/exit the kernel 1979 * @p: the to-be-kicked thread 1980 * 1981 * Cause a process which is running on another CPU to enter 1982 * kernel-mode, without any delay. (to get signals handled.) 1983 * 1984 * NOTE: this function doesn't have to take the runqueue lock, 1985 * because all it wants to ensure is that the remote task enters 1986 * the kernel. If the IPI races and the task has been migrated 1987 * to another CPU then no harm is done and the purpose has been 1988 * achieved as well. 1989 */ 1990 void kick_process(struct task_struct *p) 1991 { 1992 int cpu; 1993 1994 preempt_disable(); 1995 cpu = task_cpu(p); 1996 if ((cpu != smp_processor_id()) && task_curr(p)) 1997 smp_send_reschedule(cpu); 1998 preempt_enable(); 1999 } 2000 EXPORT_SYMBOL_GPL(kick_process); 2001 2002 /* 2003 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2004 * 2005 * A few notes on cpu_active vs cpu_online: 2006 * 2007 * - cpu_active must be a subset of cpu_online 2008 * 2009 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2010 * see __set_cpus_allowed_ptr(). At this point the newly online 2011 * CPU isn't yet part of the sched domains, and balancing will not 2012 * see it. 2013 * 2014 * - on CPU-down we clear cpu_active() to mask the sched domains and 2015 * avoid the load balancer to place new tasks on the to be removed 2016 * CPU. Existing tasks will remain running there and will be taken 2017 * off. 2018 * 2019 * This means that fallback selection must not select !active CPUs. 2020 * And can assume that any active CPU must be online. Conversely 2021 * select_task_rq() below may allow selection of !active CPUs in order 2022 * to satisfy the above rules. 2023 */ 2024 static int select_fallback_rq(int cpu, struct task_struct *p) 2025 { 2026 int nid = cpu_to_node(cpu); 2027 const struct cpumask *nodemask = NULL; 2028 enum { cpuset, possible, fail } state = cpuset; 2029 int dest_cpu; 2030 2031 /* 2032 * If the node that the CPU is on has been offlined, cpu_to_node() 2033 * will return -1. There is no CPU on the node, and we should 2034 * select the CPU on the other node. 2035 */ 2036 if (nid != -1) { 2037 nodemask = cpumask_of_node(nid); 2038 2039 /* Look for allowed, online CPU in same node. */ 2040 for_each_cpu(dest_cpu, nodemask) { 2041 if (!cpu_active(dest_cpu)) 2042 continue; 2043 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2044 return dest_cpu; 2045 } 2046 } 2047 2048 for (;;) { 2049 /* Any allowed, online CPU? */ 2050 for_each_cpu(dest_cpu, p->cpus_ptr) { 2051 if (!is_cpu_allowed(p, dest_cpu)) 2052 continue; 2053 2054 goto out; 2055 } 2056 2057 /* No more Mr. Nice Guy. */ 2058 switch (state) { 2059 case cpuset: 2060 if (IS_ENABLED(CONFIG_CPUSETS)) { 2061 cpuset_cpus_allowed_fallback(p); 2062 state = possible; 2063 break; 2064 } 2065 /* Fall-through */ 2066 case possible: 2067 do_set_cpus_allowed(p, cpu_possible_mask); 2068 state = fail; 2069 break; 2070 2071 case fail: 2072 BUG(); 2073 break; 2074 } 2075 } 2076 2077 out: 2078 if (state != cpuset) { 2079 /* 2080 * Don't tell them about moving exiting tasks or 2081 * kernel threads (both mm NULL), since they never 2082 * leave kernel. 2083 */ 2084 if (p->mm && printk_ratelimit()) { 2085 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2086 task_pid_nr(p), p->comm, cpu); 2087 } 2088 } 2089 2090 return dest_cpu; 2091 } 2092 2093 /* 2094 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2095 */ 2096 static inline 2097 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 2098 { 2099 lockdep_assert_held(&p->pi_lock); 2100 2101 if (p->nr_cpus_allowed > 1) 2102 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 2103 else 2104 cpu = cpumask_any(p->cpus_ptr); 2105 2106 /* 2107 * In order not to call set_task_cpu() on a blocking task we need 2108 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2109 * CPU. 2110 * 2111 * Since this is common to all placement strategies, this lives here. 2112 * 2113 * [ this allows ->select_task() to simply return task_cpu(p) and 2114 * not worry about this generic constraint ] 2115 */ 2116 if (unlikely(!is_cpu_allowed(p, cpu))) 2117 cpu = select_fallback_rq(task_cpu(p), p); 2118 2119 return cpu; 2120 } 2121 2122 void sched_set_stop_task(int cpu, struct task_struct *stop) 2123 { 2124 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2125 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2126 2127 if (stop) { 2128 /* 2129 * Make it appear like a SCHED_FIFO task, its something 2130 * userspace knows about and won't get confused about. 2131 * 2132 * Also, it will make PI more or less work without too 2133 * much confusion -- but then, stop work should not 2134 * rely on PI working anyway. 2135 */ 2136 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2137 2138 stop->sched_class = &stop_sched_class; 2139 } 2140 2141 cpu_rq(cpu)->stop = stop; 2142 2143 if (old_stop) { 2144 /* 2145 * Reset it back to a normal scheduling class so that 2146 * it can die in pieces. 2147 */ 2148 old_stop->sched_class = &rt_sched_class; 2149 } 2150 } 2151 2152 #else 2153 2154 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2155 const struct cpumask *new_mask, bool check) 2156 { 2157 return set_cpus_allowed_ptr(p, new_mask); 2158 } 2159 2160 #endif /* CONFIG_SMP */ 2161 2162 static void 2163 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2164 { 2165 struct rq *rq; 2166 2167 if (!schedstat_enabled()) 2168 return; 2169 2170 rq = this_rq(); 2171 2172 #ifdef CONFIG_SMP 2173 if (cpu == rq->cpu) { 2174 __schedstat_inc(rq->ttwu_local); 2175 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2176 } else { 2177 struct sched_domain *sd; 2178 2179 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2180 rcu_read_lock(); 2181 for_each_domain(rq->cpu, sd) { 2182 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2183 __schedstat_inc(sd->ttwu_wake_remote); 2184 break; 2185 } 2186 } 2187 rcu_read_unlock(); 2188 } 2189 2190 if (wake_flags & WF_MIGRATED) 2191 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2192 #endif /* CONFIG_SMP */ 2193 2194 __schedstat_inc(rq->ttwu_count); 2195 __schedstat_inc(p->se.statistics.nr_wakeups); 2196 2197 if (wake_flags & WF_SYNC) 2198 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2199 } 2200 2201 /* 2202 * Mark the task runnable and perform wakeup-preemption. 2203 */ 2204 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2205 struct rq_flags *rf) 2206 { 2207 check_preempt_curr(rq, p, wake_flags); 2208 p->state = TASK_RUNNING; 2209 trace_sched_wakeup(p); 2210 2211 #ifdef CONFIG_SMP 2212 if (p->sched_class->task_woken) { 2213 /* 2214 * Our task @p is fully woken up and running; so its safe to 2215 * drop the rq->lock, hereafter rq is only used for statistics. 2216 */ 2217 rq_unpin_lock(rq, rf); 2218 p->sched_class->task_woken(rq, p); 2219 rq_repin_lock(rq, rf); 2220 } 2221 2222 if (rq->idle_stamp) { 2223 u64 delta = rq_clock(rq) - rq->idle_stamp; 2224 u64 max = 2*rq->max_idle_balance_cost; 2225 2226 update_avg(&rq->avg_idle, delta); 2227 2228 if (rq->avg_idle > max) 2229 rq->avg_idle = max; 2230 2231 rq->idle_stamp = 0; 2232 } 2233 #endif 2234 } 2235 2236 static void 2237 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2238 struct rq_flags *rf) 2239 { 2240 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2241 2242 lockdep_assert_held(&rq->lock); 2243 2244 #ifdef CONFIG_SMP 2245 if (p->sched_contributes_to_load) 2246 rq->nr_uninterruptible--; 2247 2248 if (wake_flags & WF_MIGRATED) 2249 en_flags |= ENQUEUE_MIGRATED; 2250 #endif 2251 2252 activate_task(rq, p, en_flags); 2253 ttwu_do_wakeup(rq, p, wake_flags, rf); 2254 } 2255 2256 /* 2257 * Called in case the task @p isn't fully descheduled from its runqueue, 2258 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 2259 * since all we need to do is flip p->state to TASK_RUNNING, since 2260 * the task is still ->on_rq. 2261 */ 2262 static int ttwu_remote(struct task_struct *p, int wake_flags) 2263 { 2264 struct rq_flags rf; 2265 struct rq *rq; 2266 int ret = 0; 2267 2268 rq = __task_rq_lock(p, &rf); 2269 if (task_on_rq_queued(p)) { 2270 /* check_preempt_curr() may use rq clock */ 2271 update_rq_clock(rq); 2272 ttwu_do_wakeup(rq, p, wake_flags, &rf); 2273 ret = 1; 2274 } 2275 __task_rq_unlock(rq, &rf); 2276 2277 return ret; 2278 } 2279 2280 #ifdef CONFIG_SMP 2281 void sched_ttwu_pending(void) 2282 { 2283 struct rq *rq = this_rq(); 2284 struct llist_node *llist = llist_del_all(&rq->wake_list); 2285 struct task_struct *p, *t; 2286 struct rq_flags rf; 2287 2288 if (!llist) 2289 return; 2290 2291 rq_lock_irqsave(rq, &rf); 2292 update_rq_clock(rq); 2293 2294 llist_for_each_entry_safe(p, t, llist, wake_entry) 2295 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 2296 2297 rq_unlock_irqrestore(rq, &rf); 2298 } 2299 2300 void scheduler_ipi(void) 2301 { 2302 /* 2303 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 2304 * TIF_NEED_RESCHED remotely (for the first time) will also send 2305 * this IPI. 2306 */ 2307 preempt_fold_need_resched(); 2308 2309 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 2310 return; 2311 2312 /* 2313 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 2314 * traditionally all their work was done from the interrupt return 2315 * path. Now that we actually do some work, we need to make sure 2316 * we do call them. 2317 * 2318 * Some archs already do call them, luckily irq_enter/exit nest 2319 * properly. 2320 * 2321 * Arguably we should visit all archs and update all handlers, 2322 * however a fair share of IPIs are still resched only so this would 2323 * somewhat pessimize the simple resched case. 2324 */ 2325 irq_enter(); 2326 sched_ttwu_pending(); 2327 2328 /* 2329 * Check if someone kicked us for doing the nohz idle load balance. 2330 */ 2331 if (unlikely(got_nohz_idle_kick())) { 2332 this_rq()->idle_balance = 1; 2333 raise_softirq_irqoff(SCHED_SOFTIRQ); 2334 } 2335 irq_exit(); 2336 } 2337 2338 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 2339 { 2340 struct rq *rq = cpu_rq(cpu); 2341 2342 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 2343 2344 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 2345 if (!set_nr_if_polling(rq->idle)) 2346 smp_send_reschedule(cpu); 2347 else 2348 trace_sched_wake_idle_without_ipi(cpu); 2349 } 2350 } 2351 2352 void wake_up_if_idle(int cpu) 2353 { 2354 struct rq *rq = cpu_rq(cpu); 2355 struct rq_flags rf; 2356 2357 rcu_read_lock(); 2358 2359 if (!is_idle_task(rcu_dereference(rq->curr))) 2360 goto out; 2361 2362 if (set_nr_if_polling(rq->idle)) { 2363 trace_sched_wake_idle_without_ipi(cpu); 2364 } else { 2365 rq_lock_irqsave(rq, &rf); 2366 if (is_idle_task(rq->curr)) 2367 smp_send_reschedule(cpu); 2368 /* Else CPU is not idle, do nothing here: */ 2369 rq_unlock_irqrestore(rq, &rf); 2370 } 2371 2372 out: 2373 rcu_read_unlock(); 2374 } 2375 2376 bool cpus_share_cache(int this_cpu, int that_cpu) 2377 { 2378 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 2379 } 2380 #endif /* CONFIG_SMP */ 2381 2382 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 2383 { 2384 struct rq *rq = cpu_rq(cpu); 2385 struct rq_flags rf; 2386 2387 #if defined(CONFIG_SMP) 2388 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 2389 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 2390 ttwu_queue_remote(p, cpu, wake_flags); 2391 return; 2392 } 2393 #endif 2394 2395 rq_lock(rq, &rf); 2396 update_rq_clock(rq); 2397 ttwu_do_activate(rq, p, wake_flags, &rf); 2398 rq_unlock(rq, &rf); 2399 } 2400 2401 /* 2402 * Notes on Program-Order guarantees on SMP systems. 2403 * 2404 * MIGRATION 2405 * 2406 * The basic program-order guarantee on SMP systems is that when a task [t] 2407 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 2408 * execution on its new CPU [c1]. 2409 * 2410 * For migration (of runnable tasks) this is provided by the following means: 2411 * 2412 * A) UNLOCK of the rq(c0)->lock scheduling out task t 2413 * B) migration for t is required to synchronize *both* rq(c0)->lock and 2414 * rq(c1)->lock (if not at the same time, then in that order). 2415 * C) LOCK of the rq(c1)->lock scheduling in task 2416 * 2417 * Release/acquire chaining guarantees that B happens after A and C after B. 2418 * Note: the CPU doing B need not be c0 or c1 2419 * 2420 * Example: 2421 * 2422 * CPU0 CPU1 CPU2 2423 * 2424 * LOCK rq(0)->lock 2425 * sched-out X 2426 * sched-in Y 2427 * UNLOCK rq(0)->lock 2428 * 2429 * LOCK rq(0)->lock // orders against CPU0 2430 * dequeue X 2431 * UNLOCK rq(0)->lock 2432 * 2433 * LOCK rq(1)->lock 2434 * enqueue X 2435 * UNLOCK rq(1)->lock 2436 * 2437 * LOCK rq(1)->lock // orders against CPU2 2438 * sched-out Z 2439 * sched-in X 2440 * UNLOCK rq(1)->lock 2441 * 2442 * 2443 * BLOCKING -- aka. SLEEP + WAKEUP 2444 * 2445 * For blocking we (obviously) need to provide the same guarantee as for 2446 * migration. However the means are completely different as there is no lock 2447 * chain to provide order. Instead we do: 2448 * 2449 * 1) smp_store_release(X->on_cpu, 0) 2450 * 2) smp_cond_load_acquire(!X->on_cpu) 2451 * 2452 * Example: 2453 * 2454 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 2455 * 2456 * LOCK rq(0)->lock LOCK X->pi_lock 2457 * dequeue X 2458 * sched-out X 2459 * smp_store_release(X->on_cpu, 0); 2460 * 2461 * smp_cond_load_acquire(&X->on_cpu, !VAL); 2462 * X->state = WAKING 2463 * set_task_cpu(X,2) 2464 * 2465 * LOCK rq(2)->lock 2466 * enqueue X 2467 * X->state = RUNNING 2468 * UNLOCK rq(2)->lock 2469 * 2470 * LOCK rq(2)->lock // orders against CPU1 2471 * sched-out Z 2472 * sched-in X 2473 * UNLOCK rq(2)->lock 2474 * 2475 * UNLOCK X->pi_lock 2476 * UNLOCK rq(0)->lock 2477 * 2478 * 2479 * However, for wakeups there is a second guarantee we must provide, namely we 2480 * must ensure that CONDITION=1 done by the caller can not be reordered with 2481 * accesses to the task state; see try_to_wake_up() and set_current_state(). 2482 */ 2483 2484 /** 2485 * try_to_wake_up - wake up a thread 2486 * @p: the thread to be awakened 2487 * @state: the mask of task states that can be woken 2488 * @wake_flags: wake modifier flags (WF_*) 2489 * 2490 * If (@state & @p->state) @p->state = TASK_RUNNING. 2491 * 2492 * If the task was not queued/runnable, also place it back on a runqueue. 2493 * 2494 * Atomic against schedule() which would dequeue a task, also see 2495 * set_current_state(). 2496 * 2497 * This function executes a full memory barrier before accessing the task 2498 * state; see set_current_state(). 2499 * 2500 * Return: %true if @p->state changes (an actual wakeup was done), 2501 * %false otherwise. 2502 */ 2503 static int 2504 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2505 { 2506 unsigned long flags; 2507 int cpu, success = 0; 2508 2509 preempt_disable(); 2510 if (p == current) { 2511 /* 2512 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 2513 * == smp_processor_id()'. Together this means we can special 2514 * case the whole 'p->on_rq && ttwu_remote()' case below 2515 * without taking any locks. 2516 * 2517 * In particular: 2518 * - we rely on Program-Order guarantees for all the ordering, 2519 * - we're serialized against set_special_state() by virtue of 2520 * it disabling IRQs (this allows not taking ->pi_lock). 2521 */ 2522 if (!(p->state & state)) 2523 goto out; 2524 2525 success = 1; 2526 cpu = task_cpu(p); 2527 trace_sched_waking(p); 2528 p->state = TASK_RUNNING; 2529 trace_sched_wakeup(p); 2530 goto out; 2531 } 2532 2533 /* 2534 * If we are going to wake up a thread waiting for CONDITION we 2535 * need to ensure that CONDITION=1 done by the caller can not be 2536 * reordered with p->state check below. This pairs with mb() in 2537 * set_current_state() the waiting thread does. 2538 */ 2539 raw_spin_lock_irqsave(&p->pi_lock, flags); 2540 smp_mb__after_spinlock(); 2541 if (!(p->state & state)) 2542 goto unlock; 2543 2544 trace_sched_waking(p); 2545 2546 /* We're going to change ->state: */ 2547 success = 1; 2548 cpu = task_cpu(p); 2549 2550 /* 2551 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2552 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2553 * in smp_cond_load_acquire() below. 2554 * 2555 * sched_ttwu_pending() try_to_wake_up() 2556 * STORE p->on_rq = 1 LOAD p->state 2557 * UNLOCK rq->lock 2558 * 2559 * __schedule() (switch to task 'p') 2560 * LOCK rq->lock smp_rmb(); 2561 * smp_mb__after_spinlock(); 2562 * UNLOCK rq->lock 2563 * 2564 * [task p] 2565 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2566 * 2567 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2568 * __schedule(). See the comment for smp_mb__after_spinlock(). 2569 */ 2570 smp_rmb(); 2571 if (p->on_rq && ttwu_remote(p, wake_flags)) 2572 goto unlock; 2573 2574 #ifdef CONFIG_SMP 2575 /* 2576 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2577 * possible to, falsely, observe p->on_cpu == 0. 2578 * 2579 * One must be running (->on_cpu == 1) in order to remove oneself 2580 * from the runqueue. 2581 * 2582 * __schedule() (switch to task 'p') try_to_wake_up() 2583 * STORE p->on_cpu = 1 LOAD p->on_rq 2584 * UNLOCK rq->lock 2585 * 2586 * __schedule() (put 'p' to sleep) 2587 * LOCK rq->lock smp_rmb(); 2588 * smp_mb__after_spinlock(); 2589 * STORE p->on_rq = 0 LOAD p->on_cpu 2590 * 2591 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2592 * __schedule(). See the comment for smp_mb__after_spinlock(). 2593 */ 2594 smp_rmb(); 2595 2596 /* 2597 * If the owning (remote) CPU is still in the middle of schedule() with 2598 * this task as prev, wait until its done referencing the task. 2599 * 2600 * Pairs with the smp_store_release() in finish_task(). 2601 * 2602 * This ensures that tasks getting woken will be fully ordered against 2603 * their previous state and preserve Program Order. 2604 */ 2605 smp_cond_load_acquire(&p->on_cpu, !VAL); 2606 2607 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2608 p->state = TASK_WAKING; 2609 2610 if (p->in_iowait) { 2611 delayacct_blkio_end(p); 2612 atomic_dec(&task_rq(p)->nr_iowait); 2613 } 2614 2615 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2616 if (task_cpu(p) != cpu) { 2617 wake_flags |= WF_MIGRATED; 2618 psi_ttwu_dequeue(p); 2619 set_task_cpu(p, cpu); 2620 } 2621 2622 #else /* CONFIG_SMP */ 2623 2624 if (p->in_iowait) { 2625 delayacct_blkio_end(p); 2626 atomic_dec(&task_rq(p)->nr_iowait); 2627 } 2628 2629 #endif /* CONFIG_SMP */ 2630 2631 ttwu_queue(p, cpu, wake_flags); 2632 unlock: 2633 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2634 out: 2635 if (success) 2636 ttwu_stat(p, cpu, wake_flags); 2637 preempt_enable(); 2638 2639 return success; 2640 } 2641 2642 /** 2643 * wake_up_process - Wake up a specific process 2644 * @p: The process to be woken up. 2645 * 2646 * Attempt to wake up the nominated process and move it to the set of runnable 2647 * processes. 2648 * 2649 * Return: 1 if the process was woken up, 0 if it was already running. 2650 * 2651 * This function executes a full memory barrier before accessing the task state. 2652 */ 2653 int wake_up_process(struct task_struct *p) 2654 { 2655 return try_to_wake_up(p, TASK_NORMAL, 0); 2656 } 2657 EXPORT_SYMBOL(wake_up_process); 2658 2659 int wake_up_state(struct task_struct *p, unsigned int state) 2660 { 2661 return try_to_wake_up(p, state, 0); 2662 } 2663 2664 /* 2665 * Perform scheduler related setup for a newly forked process p. 2666 * p is forked by current. 2667 * 2668 * __sched_fork() is basic setup used by init_idle() too: 2669 */ 2670 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2671 { 2672 p->on_rq = 0; 2673 2674 p->se.on_rq = 0; 2675 p->se.exec_start = 0; 2676 p->se.sum_exec_runtime = 0; 2677 p->se.prev_sum_exec_runtime = 0; 2678 p->se.nr_migrations = 0; 2679 p->se.vruntime = 0; 2680 INIT_LIST_HEAD(&p->se.group_node); 2681 2682 #ifdef CONFIG_FAIR_GROUP_SCHED 2683 p->se.cfs_rq = NULL; 2684 #endif 2685 2686 #ifdef CONFIG_SCHEDSTATS 2687 /* Even if schedstat is disabled, there should not be garbage */ 2688 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2689 #endif 2690 2691 RB_CLEAR_NODE(&p->dl.rb_node); 2692 init_dl_task_timer(&p->dl); 2693 init_dl_inactive_task_timer(&p->dl); 2694 __dl_clear_params(p); 2695 2696 INIT_LIST_HEAD(&p->rt.run_list); 2697 p->rt.timeout = 0; 2698 p->rt.time_slice = sched_rr_timeslice; 2699 p->rt.on_rq = 0; 2700 p->rt.on_list = 0; 2701 2702 #ifdef CONFIG_PREEMPT_NOTIFIERS 2703 INIT_HLIST_HEAD(&p->preempt_notifiers); 2704 #endif 2705 2706 #ifdef CONFIG_COMPACTION 2707 p->capture_control = NULL; 2708 #endif 2709 init_numa_balancing(clone_flags, p); 2710 } 2711 2712 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2713 2714 #ifdef CONFIG_NUMA_BALANCING 2715 2716 void set_numabalancing_state(bool enabled) 2717 { 2718 if (enabled) 2719 static_branch_enable(&sched_numa_balancing); 2720 else 2721 static_branch_disable(&sched_numa_balancing); 2722 } 2723 2724 #ifdef CONFIG_PROC_SYSCTL 2725 int sysctl_numa_balancing(struct ctl_table *table, int write, 2726 void __user *buffer, size_t *lenp, loff_t *ppos) 2727 { 2728 struct ctl_table t; 2729 int err; 2730 int state = static_branch_likely(&sched_numa_balancing); 2731 2732 if (write && !capable(CAP_SYS_ADMIN)) 2733 return -EPERM; 2734 2735 t = *table; 2736 t.data = &state; 2737 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2738 if (err < 0) 2739 return err; 2740 if (write) 2741 set_numabalancing_state(state); 2742 return err; 2743 } 2744 #endif 2745 #endif 2746 2747 #ifdef CONFIG_SCHEDSTATS 2748 2749 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2750 static bool __initdata __sched_schedstats = false; 2751 2752 static void set_schedstats(bool enabled) 2753 { 2754 if (enabled) 2755 static_branch_enable(&sched_schedstats); 2756 else 2757 static_branch_disable(&sched_schedstats); 2758 } 2759 2760 void force_schedstat_enabled(void) 2761 { 2762 if (!schedstat_enabled()) { 2763 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2764 static_branch_enable(&sched_schedstats); 2765 } 2766 } 2767 2768 static int __init setup_schedstats(char *str) 2769 { 2770 int ret = 0; 2771 if (!str) 2772 goto out; 2773 2774 /* 2775 * This code is called before jump labels have been set up, so we can't 2776 * change the static branch directly just yet. Instead set a temporary 2777 * variable so init_schedstats() can do it later. 2778 */ 2779 if (!strcmp(str, "enable")) { 2780 __sched_schedstats = true; 2781 ret = 1; 2782 } else if (!strcmp(str, "disable")) { 2783 __sched_schedstats = false; 2784 ret = 1; 2785 } 2786 out: 2787 if (!ret) 2788 pr_warn("Unable to parse schedstats=\n"); 2789 2790 return ret; 2791 } 2792 __setup("schedstats=", setup_schedstats); 2793 2794 static void __init init_schedstats(void) 2795 { 2796 set_schedstats(__sched_schedstats); 2797 } 2798 2799 #ifdef CONFIG_PROC_SYSCTL 2800 int sysctl_schedstats(struct ctl_table *table, int write, 2801 void __user *buffer, size_t *lenp, loff_t *ppos) 2802 { 2803 struct ctl_table t; 2804 int err; 2805 int state = static_branch_likely(&sched_schedstats); 2806 2807 if (write && !capable(CAP_SYS_ADMIN)) 2808 return -EPERM; 2809 2810 t = *table; 2811 t.data = &state; 2812 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2813 if (err < 0) 2814 return err; 2815 if (write) 2816 set_schedstats(state); 2817 return err; 2818 } 2819 #endif /* CONFIG_PROC_SYSCTL */ 2820 #else /* !CONFIG_SCHEDSTATS */ 2821 static inline void init_schedstats(void) {} 2822 #endif /* CONFIG_SCHEDSTATS */ 2823 2824 /* 2825 * fork()/clone()-time setup: 2826 */ 2827 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2828 { 2829 unsigned long flags; 2830 2831 __sched_fork(clone_flags, p); 2832 /* 2833 * We mark the process as NEW here. This guarantees that 2834 * nobody will actually run it, and a signal or other external 2835 * event cannot wake it up and insert it on the runqueue either. 2836 */ 2837 p->state = TASK_NEW; 2838 2839 /* 2840 * Make sure we do not leak PI boosting priority to the child. 2841 */ 2842 p->prio = current->normal_prio; 2843 2844 uclamp_fork(p); 2845 2846 /* 2847 * Revert to default priority/policy on fork if requested. 2848 */ 2849 if (unlikely(p->sched_reset_on_fork)) { 2850 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2851 p->policy = SCHED_NORMAL; 2852 p->static_prio = NICE_TO_PRIO(0); 2853 p->rt_priority = 0; 2854 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2855 p->static_prio = NICE_TO_PRIO(0); 2856 2857 p->prio = p->normal_prio = __normal_prio(p); 2858 set_load_weight(p, false); 2859 2860 /* 2861 * We don't need the reset flag anymore after the fork. It has 2862 * fulfilled its duty: 2863 */ 2864 p->sched_reset_on_fork = 0; 2865 } 2866 2867 if (dl_prio(p->prio)) 2868 return -EAGAIN; 2869 else if (rt_prio(p->prio)) 2870 p->sched_class = &rt_sched_class; 2871 else 2872 p->sched_class = &fair_sched_class; 2873 2874 init_entity_runnable_average(&p->se); 2875 2876 /* 2877 * The child is not yet in the pid-hash so no cgroup attach races, 2878 * and the cgroup is pinned to this child due to cgroup_fork() 2879 * is ran before sched_fork(). 2880 * 2881 * Silence PROVE_RCU. 2882 */ 2883 raw_spin_lock_irqsave(&p->pi_lock, flags); 2884 /* 2885 * We're setting the CPU for the first time, we don't migrate, 2886 * so use __set_task_cpu(). 2887 */ 2888 __set_task_cpu(p, smp_processor_id()); 2889 if (p->sched_class->task_fork) 2890 p->sched_class->task_fork(p); 2891 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2892 2893 #ifdef CONFIG_SCHED_INFO 2894 if (likely(sched_info_on())) 2895 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2896 #endif 2897 #if defined(CONFIG_SMP) 2898 p->on_cpu = 0; 2899 #endif 2900 init_task_preempt_count(p); 2901 #ifdef CONFIG_SMP 2902 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2903 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2904 #endif 2905 return 0; 2906 } 2907 2908 unsigned long to_ratio(u64 period, u64 runtime) 2909 { 2910 if (runtime == RUNTIME_INF) 2911 return BW_UNIT; 2912 2913 /* 2914 * Doing this here saves a lot of checks in all 2915 * the calling paths, and returning zero seems 2916 * safe for them anyway. 2917 */ 2918 if (period == 0) 2919 return 0; 2920 2921 return div64_u64(runtime << BW_SHIFT, period); 2922 } 2923 2924 /* 2925 * wake_up_new_task - wake up a newly created task for the first time. 2926 * 2927 * This function will do some initial scheduler statistics housekeeping 2928 * that must be done for every newly created context, then puts the task 2929 * on the runqueue and wakes it. 2930 */ 2931 void wake_up_new_task(struct task_struct *p) 2932 { 2933 struct rq_flags rf; 2934 struct rq *rq; 2935 2936 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2937 p->state = TASK_RUNNING; 2938 #ifdef CONFIG_SMP 2939 /* 2940 * Fork balancing, do it here and not earlier because: 2941 * - cpus_ptr can change in the fork path 2942 * - any previously selected CPU might disappear through hotplug 2943 * 2944 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2945 * as we're not fully set-up yet. 2946 */ 2947 p->recent_used_cpu = task_cpu(p); 2948 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2949 #endif 2950 rq = __task_rq_lock(p, &rf); 2951 update_rq_clock(rq); 2952 post_init_entity_util_avg(p); 2953 2954 activate_task(rq, p, ENQUEUE_NOCLOCK); 2955 trace_sched_wakeup_new(p); 2956 check_preempt_curr(rq, p, WF_FORK); 2957 #ifdef CONFIG_SMP 2958 if (p->sched_class->task_woken) { 2959 /* 2960 * Nothing relies on rq->lock after this, so its fine to 2961 * drop it. 2962 */ 2963 rq_unpin_lock(rq, &rf); 2964 p->sched_class->task_woken(rq, p); 2965 rq_repin_lock(rq, &rf); 2966 } 2967 #endif 2968 task_rq_unlock(rq, p, &rf); 2969 } 2970 2971 #ifdef CONFIG_PREEMPT_NOTIFIERS 2972 2973 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2974 2975 void preempt_notifier_inc(void) 2976 { 2977 static_branch_inc(&preempt_notifier_key); 2978 } 2979 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2980 2981 void preempt_notifier_dec(void) 2982 { 2983 static_branch_dec(&preempt_notifier_key); 2984 } 2985 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2986 2987 /** 2988 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2989 * @notifier: notifier struct to register 2990 */ 2991 void preempt_notifier_register(struct preempt_notifier *notifier) 2992 { 2993 if (!static_branch_unlikely(&preempt_notifier_key)) 2994 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2995 2996 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2997 } 2998 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2999 3000 /** 3001 * preempt_notifier_unregister - no longer interested in preemption notifications 3002 * @notifier: notifier struct to unregister 3003 * 3004 * This is *not* safe to call from within a preemption notifier. 3005 */ 3006 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3007 { 3008 hlist_del(¬ifier->link); 3009 } 3010 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3011 3012 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3013 { 3014 struct preempt_notifier *notifier; 3015 3016 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3017 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3018 } 3019 3020 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3021 { 3022 if (static_branch_unlikely(&preempt_notifier_key)) 3023 __fire_sched_in_preempt_notifiers(curr); 3024 } 3025 3026 static void 3027 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3028 struct task_struct *next) 3029 { 3030 struct preempt_notifier *notifier; 3031 3032 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3033 notifier->ops->sched_out(notifier, next); 3034 } 3035 3036 static __always_inline void 3037 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3038 struct task_struct *next) 3039 { 3040 if (static_branch_unlikely(&preempt_notifier_key)) 3041 __fire_sched_out_preempt_notifiers(curr, next); 3042 } 3043 3044 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3045 3046 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3047 { 3048 } 3049 3050 static inline void 3051 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3052 struct task_struct *next) 3053 { 3054 } 3055 3056 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3057 3058 static inline void prepare_task(struct task_struct *next) 3059 { 3060 #ifdef CONFIG_SMP 3061 /* 3062 * Claim the task as running, we do this before switching to it 3063 * such that any running task will have this set. 3064 */ 3065 next->on_cpu = 1; 3066 #endif 3067 } 3068 3069 static inline void finish_task(struct task_struct *prev) 3070 { 3071 #ifdef CONFIG_SMP 3072 /* 3073 * After ->on_cpu is cleared, the task can be moved to a different CPU. 3074 * We must ensure this doesn't happen until the switch is completely 3075 * finished. 3076 * 3077 * In particular, the load of prev->state in finish_task_switch() must 3078 * happen before this. 3079 * 3080 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3081 */ 3082 smp_store_release(&prev->on_cpu, 0); 3083 #endif 3084 } 3085 3086 static inline void 3087 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 3088 { 3089 /* 3090 * Since the runqueue lock will be released by the next 3091 * task (which is an invalid locking op but in the case 3092 * of the scheduler it's an obvious special-case), so we 3093 * do an early lockdep release here: 3094 */ 3095 rq_unpin_lock(rq, rf); 3096 spin_release(&rq->lock.dep_map, _THIS_IP_); 3097 #ifdef CONFIG_DEBUG_SPINLOCK 3098 /* this is a valid case when another task releases the spinlock */ 3099 rq->lock.owner = next; 3100 #endif 3101 } 3102 3103 static inline void finish_lock_switch(struct rq *rq) 3104 { 3105 /* 3106 * If we are tracking spinlock dependencies then we have to 3107 * fix up the runqueue lock - which gets 'carried over' from 3108 * prev into current: 3109 */ 3110 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 3111 raw_spin_unlock_irq(&rq->lock); 3112 } 3113 3114 /* 3115 * NOP if the arch has not defined these: 3116 */ 3117 3118 #ifndef prepare_arch_switch 3119 # define prepare_arch_switch(next) do { } while (0) 3120 #endif 3121 3122 #ifndef finish_arch_post_lock_switch 3123 # define finish_arch_post_lock_switch() do { } while (0) 3124 #endif 3125 3126 /** 3127 * prepare_task_switch - prepare to switch tasks 3128 * @rq: the runqueue preparing to switch 3129 * @prev: the current task that is being switched out 3130 * @next: the task we are going to switch to. 3131 * 3132 * This is called with the rq lock held and interrupts off. It must 3133 * be paired with a subsequent finish_task_switch after the context 3134 * switch. 3135 * 3136 * prepare_task_switch sets up locking and calls architecture specific 3137 * hooks. 3138 */ 3139 static inline void 3140 prepare_task_switch(struct rq *rq, struct task_struct *prev, 3141 struct task_struct *next) 3142 { 3143 kcov_prepare_switch(prev); 3144 sched_info_switch(rq, prev, next); 3145 perf_event_task_sched_out(prev, next); 3146 rseq_preempt(prev); 3147 fire_sched_out_preempt_notifiers(prev, next); 3148 prepare_task(next); 3149 prepare_arch_switch(next); 3150 } 3151 3152 /** 3153 * finish_task_switch - clean up after a task-switch 3154 * @prev: the thread we just switched away from. 3155 * 3156 * finish_task_switch must be called after the context switch, paired 3157 * with a prepare_task_switch call before the context switch. 3158 * finish_task_switch will reconcile locking set up by prepare_task_switch, 3159 * and do any other architecture-specific cleanup actions. 3160 * 3161 * Note that we may have delayed dropping an mm in context_switch(). If 3162 * so, we finish that here outside of the runqueue lock. (Doing it 3163 * with the lock held can cause deadlocks; see schedule() for 3164 * details.) 3165 * 3166 * The context switch have flipped the stack from under us and restored the 3167 * local variables which were saved when this task called schedule() in the 3168 * past. prev == current is still correct but we need to recalculate this_rq 3169 * because prev may have moved to another CPU. 3170 */ 3171 static struct rq *finish_task_switch(struct task_struct *prev) 3172 __releases(rq->lock) 3173 { 3174 struct rq *rq = this_rq(); 3175 struct mm_struct *mm = rq->prev_mm; 3176 long prev_state; 3177 3178 /* 3179 * The previous task will have left us with a preempt_count of 2 3180 * because it left us after: 3181 * 3182 * schedule() 3183 * preempt_disable(); // 1 3184 * __schedule() 3185 * raw_spin_lock_irq(&rq->lock) // 2 3186 * 3187 * Also, see FORK_PREEMPT_COUNT. 3188 */ 3189 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 3190 "corrupted preempt_count: %s/%d/0x%x\n", 3191 current->comm, current->pid, preempt_count())) 3192 preempt_count_set(FORK_PREEMPT_COUNT); 3193 3194 rq->prev_mm = NULL; 3195 3196 /* 3197 * A task struct has one reference for the use as "current". 3198 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 3199 * schedule one last time. The schedule call will never return, and 3200 * the scheduled task must drop that reference. 3201 * 3202 * We must observe prev->state before clearing prev->on_cpu (in 3203 * finish_task), otherwise a concurrent wakeup can get prev 3204 * running on another CPU and we could rave with its RUNNING -> DEAD 3205 * transition, resulting in a double drop. 3206 */ 3207 prev_state = prev->state; 3208 vtime_task_switch(prev); 3209 perf_event_task_sched_in(prev, current); 3210 finish_task(prev); 3211 finish_lock_switch(rq); 3212 finish_arch_post_lock_switch(); 3213 kcov_finish_switch(current); 3214 3215 fire_sched_in_preempt_notifiers(current); 3216 /* 3217 * When switching through a kernel thread, the loop in 3218 * membarrier_{private,global}_expedited() may have observed that 3219 * kernel thread and not issued an IPI. It is therefore possible to 3220 * schedule between user->kernel->user threads without passing though 3221 * switch_mm(). Membarrier requires a barrier after storing to 3222 * rq->curr, before returning to userspace, so provide them here: 3223 * 3224 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 3225 * provided by mmdrop(), 3226 * - a sync_core for SYNC_CORE. 3227 */ 3228 if (mm) { 3229 membarrier_mm_sync_core_before_usermode(mm); 3230 mmdrop(mm); 3231 } 3232 if (unlikely(prev_state == TASK_DEAD)) { 3233 if (prev->sched_class->task_dead) 3234 prev->sched_class->task_dead(prev); 3235 3236 /* 3237 * Remove function-return probe instances associated with this 3238 * task and put them back on the free list. 3239 */ 3240 kprobe_flush_task(prev); 3241 3242 /* Task is done with its stack. */ 3243 put_task_stack(prev); 3244 3245 put_task_struct_rcu_user(prev); 3246 } 3247 3248 tick_nohz_task_switch(); 3249 return rq; 3250 } 3251 3252 #ifdef CONFIG_SMP 3253 3254 /* rq->lock is NOT held, but preemption is disabled */ 3255 static void __balance_callback(struct rq *rq) 3256 { 3257 struct callback_head *head, *next; 3258 void (*func)(struct rq *rq); 3259 unsigned long flags; 3260 3261 raw_spin_lock_irqsave(&rq->lock, flags); 3262 head = rq->balance_callback; 3263 rq->balance_callback = NULL; 3264 while (head) { 3265 func = (void (*)(struct rq *))head->func; 3266 next = head->next; 3267 head->next = NULL; 3268 head = next; 3269 3270 func(rq); 3271 } 3272 raw_spin_unlock_irqrestore(&rq->lock, flags); 3273 } 3274 3275 static inline void balance_callback(struct rq *rq) 3276 { 3277 if (unlikely(rq->balance_callback)) 3278 __balance_callback(rq); 3279 } 3280 3281 #else 3282 3283 static inline void balance_callback(struct rq *rq) 3284 { 3285 } 3286 3287 #endif 3288 3289 /** 3290 * schedule_tail - first thing a freshly forked thread must call. 3291 * @prev: the thread we just switched away from. 3292 */ 3293 asmlinkage __visible void schedule_tail(struct task_struct *prev) 3294 __releases(rq->lock) 3295 { 3296 struct rq *rq; 3297 3298 /* 3299 * New tasks start with FORK_PREEMPT_COUNT, see there and 3300 * finish_task_switch() for details. 3301 * 3302 * finish_task_switch() will drop rq->lock() and lower preempt_count 3303 * and the preempt_enable() will end up enabling preemption (on 3304 * PREEMPT_COUNT kernels). 3305 */ 3306 3307 rq = finish_task_switch(prev); 3308 balance_callback(rq); 3309 preempt_enable(); 3310 3311 if (current->set_child_tid) 3312 put_user(task_pid_vnr(current), current->set_child_tid); 3313 3314 calculate_sigpending(); 3315 } 3316 3317 /* 3318 * context_switch - switch to the new MM and the new thread's register state. 3319 */ 3320 static __always_inline struct rq * 3321 context_switch(struct rq *rq, struct task_struct *prev, 3322 struct task_struct *next, struct rq_flags *rf) 3323 { 3324 prepare_task_switch(rq, prev, next); 3325 3326 /* 3327 * For paravirt, this is coupled with an exit in switch_to to 3328 * combine the page table reload and the switch backend into 3329 * one hypercall. 3330 */ 3331 arch_start_context_switch(prev); 3332 3333 /* 3334 * kernel -> kernel lazy + transfer active 3335 * user -> kernel lazy + mmgrab() active 3336 * 3337 * kernel -> user switch + mmdrop() active 3338 * user -> user switch 3339 */ 3340 if (!next->mm) { // to kernel 3341 enter_lazy_tlb(prev->active_mm, next); 3342 3343 next->active_mm = prev->active_mm; 3344 if (prev->mm) // from user 3345 mmgrab(prev->active_mm); 3346 else 3347 prev->active_mm = NULL; 3348 } else { // to user 3349 membarrier_switch_mm(rq, prev->active_mm, next->mm); 3350 /* 3351 * sys_membarrier() requires an smp_mb() between setting 3352 * rq->curr / membarrier_switch_mm() and returning to userspace. 3353 * 3354 * The below provides this either through switch_mm(), or in 3355 * case 'prev->active_mm == next->mm' through 3356 * finish_task_switch()'s mmdrop(). 3357 */ 3358 switch_mm_irqs_off(prev->active_mm, next->mm, next); 3359 3360 if (!prev->mm) { // from kernel 3361 /* will mmdrop() in finish_task_switch(). */ 3362 rq->prev_mm = prev->active_mm; 3363 prev->active_mm = NULL; 3364 } 3365 } 3366 3367 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3368 3369 prepare_lock_switch(rq, next, rf); 3370 3371 /* Here we just switch the register state and the stack. */ 3372 switch_to(prev, next, prev); 3373 barrier(); 3374 3375 return finish_task_switch(prev); 3376 } 3377 3378 /* 3379 * nr_running and nr_context_switches: 3380 * 3381 * externally visible scheduler statistics: current number of runnable 3382 * threads, total number of context switches performed since bootup. 3383 */ 3384 unsigned long nr_running(void) 3385 { 3386 unsigned long i, sum = 0; 3387 3388 for_each_online_cpu(i) 3389 sum += cpu_rq(i)->nr_running; 3390 3391 return sum; 3392 } 3393 3394 /* 3395 * Check if only the current task is running on the CPU. 3396 * 3397 * Caution: this function does not check that the caller has disabled 3398 * preemption, thus the result might have a time-of-check-to-time-of-use 3399 * race. The caller is responsible to use it correctly, for example: 3400 * 3401 * - from a non-preemptible section (of course) 3402 * 3403 * - from a thread that is bound to a single CPU 3404 * 3405 * - in a loop with very short iterations (e.g. a polling loop) 3406 */ 3407 bool single_task_running(void) 3408 { 3409 return raw_rq()->nr_running == 1; 3410 } 3411 EXPORT_SYMBOL(single_task_running); 3412 3413 unsigned long long nr_context_switches(void) 3414 { 3415 int i; 3416 unsigned long long sum = 0; 3417 3418 for_each_possible_cpu(i) 3419 sum += cpu_rq(i)->nr_switches; 3420 3421 return sum; 3422 } 3423 3424 /* 3425 * Consumers of these two interfaces, like for example the cpuidle menu 3426 * governor, are using nonsensical data. Preferring shallow idle state selection 3427 * for a CPU that has IO-wait which might not even end up running the task when 3428 * it does become runnable. 3429 */ 3430 3431 unsigned long nr_iowait_cpu(int cpu) 3432 { 3433 return atomic_read(&cpu_rq(cpu)->nr_iowait); 3434 } 3435 3436 /* 3437 * IO-wait accounting, and how its mostly bollocks (on SMP). 3438 * 3439 * The idea behind IO-wait account is to account the idle time that we could 3440 * have spend running if it were not for IO. That is, if we were to improve the 3441 * storage performance, we'd have a proportional reduction in IO-wait time. 3442 * 3443 * This all works nicely on UP, where, when a task blocks on IO, we account 3444 * idle time as IO-wait, because if the storage were faster, it could've been 3445 * running and we'd not be idle. 3446 * 3447 * This has been extended to SMP, by doing the same for each CPU. This however 3448 * is broken. 3449 * 3450 * Imagine for instance the case where two tasks block on one CPU, only the one 3451 * CPU will have IO-wait accounted, while the other has regular idle. Even 3452 * though, if the storage were faster, both could've ran at the same time, 3453 * utilising both CPUs. 3454 * 3455 * This means, that when looking globally, the current IO-wait accounting on 3456 * SMP is a lower bound, by reason of under accounting. 3457 * 3458 * Worse, since the numbers are provided per CPU, they are sometimes 3459 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 3460 * associated with any one particular CPU, it can wake to another CPU than it 3461 * blocked on. This means the per CPU IO-wait number is meaningless. 3462 * 3463 * Task CPU affinities can make all that even more 'interesting'. 3464 */ 3465 3466 unsigned long nr_iowait(void) 3467 { 3468 unsigned long i, sum = 0; 3469 3470 for_each_possible_cpu(i) 3471 sum += nr_iowait_cpu(i); 3472 3473 return sum; 3474 } 3475 3476 #ifdef CONFIG_SMP 3477 3478 /* 3479 * sched_exec - execve() is a valuable balancing opportunity, because at 3480 * this point the task has the smallest effective memory and cache footprint. 3481 */ 3482 void sched_exec(void) 3483 { 3484 struct task_struct *p = current; 3485 unsigned long flags; 3486 int dest_cpu; 3487 3488 raw_spin_lock_irqsave(&p->pi_lock, flags); 3489 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3490 if (dest_cpu == smp_processor_id()) 3491 goto unlock; 3492 3493 if (likely(cpu_active(dest_cpu))) { 3494 struct migration_arg arg = { p, dest_cpu }; 3495 3496 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3497 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3498 return; 3499 } 3500 unlock: 3501 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3502 } 3503 3504 #endif 3505 3506 DEFINE_PER_CPU(struct kernel_stat, kstat); 3507 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3508 3509 EXPORT_PER_CPU_SYMBOL(kstat); 3510 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3511 3512 /* 3513 * The function fair_sched_class.update_curr accesses the struct curr 3514 * and its field curr->exec_start; when called from task_sched_runtime(), 3515 * we observe a high rate of cache misses in practice. 3516 * Prefetching this data results in improved performance. 3517 */ 3518 static inline void prefetch_curr_exec_start(struct task_struct *p) 3519 { 3520 #ifdef CONFIG_FAIR_GROUP_SCHED 3521 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3522 #else 3523 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3524 #endif 3525 prefetch(curr); 3526 prefetch(&curr->exec_start); 3527 } 3528 3529 /* 3530 * Return accounted runtime for the task. 3531 * In case the task is currently running, return the runtime plus current's 3532 * pending runtime that have not been accounted yet. 3533 */ 3534 unsigned long long task_sched_runtime(struct task_struct *p) 3535 { 3536 struct rq_flags rf; 3537 struct rq *rq; 3538 u64 ns; 3539 3540 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3541 /* 3542 * 64-bit doesn't need locks to atomically read a 64-bit value. 3543 * So we have a optimization chance when the task's delta_exec is 0. 3544 * Reading ->on_cpu is racy, but this is ok. 3545 * 3546 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3547 * If we race with it entering CPU, unaccounted time is 0. This is 3548 * indistinguishable from the read occurring a few cycles earlier. 3549 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3550 * been accounted, so we're correct here as well. 3551 */ 3552 if (!p->on_cpu || !task_on_rq_queued(p)) 3553 return p->se.sum_exec_runtime; 3554 #endif 3555 3556 rq = task_rq_lock(p, &rf); 3557 /* 3558 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3559 * project cycles that may never be accounted to this 3560 * thread, breaking clock_gettime(). 3561 */ 3562 if (task_current(rq, p) && task_on_rq_queued(p)) { 3563 prefetch_curr_exec_start(p); 3564 update_rq_clock(rq); 3565 p->sched_class->update_curr(rq); 3566 } 3567 ns = p->se.sum_exec_runtime; 3568 task_rq_unlock(rq, p, &rf); 3569 3570 return ns; 3571 } 3572 3573 DEFINE_PER_CPU(unsigned long, thermal_pressure); 3574 3575 void arch_set_thermal_pressure(struct cpumask *cpus, 3576 unsigned long th_pressure) 3577 { 3578 int cpu; 3579 3580 for_each_cpu(cpu, cpus) 3581 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); 3582 } 3583 3584 /* 3585 * This function gets called by the timer code, with HZ frequency. 3586 * We call it with interrupts disabled. 3587 */ 3588 void scheduler_tick(void) 3589 { 3590 int cpu = smp_processor_id(); 3591 struct rq *rq = cpu_rq(cpu); 3592 struct task_struct *curr = rq->curr; 3593 struct rq_flags rf; 3594 unsigned long thermal_pressure; 3595 3596 arch_scale_freq_tick(); 3597 sched_clock_tick(); 3598 3599 rq_lock(rq, &rf); 3600 3601 update_rq_clock(rq); 3602 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 3603 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 3604 curr->sched_class->task_tick(rq, curr, 0); 3605 calc_global_load_tick(rq); 3606 psi_task_tick(rq); 3607 3608 rq_unlock(rq, &rf); 3609 3610 perf_event_task_tick(); 3611 3612 #ifdef CONFIG_SMP 3613 rq->idle_balance = idle_cpu(cpu); 3614 trigger_load_balance(rq); 3615 #endif 3616 } 3617 3618 #ifdef CONFIG_NO_HZ_FULL 3619 3620 struct tick_work { 3621 int cpu; 3622 atomic_t state; 3623 struct delayed_work work; 3624 }; 3625 /* Values for ->state, see diagram below. */ 3626 #define TICK_SCHED_REMOTE_OFFLINE 0 3627 #define TICK_SCHED_REMOTE_OFFLINING 1 3628 #define TICK_SCHED_REMOTE_RUNNING 2 3629 3630 /* 3631 * State diagram for ->state: 3632 * 3633 * 3634 * TICK_SCHED_REMOTE_OFFLINE 3635 * | ^ 3636 * | | 3637 * | | sched_tick_remote() 3638 * | | 3639 * | | 3640 * +--TICK_SCHED_REMOTE_OFFLINING 3641 * | ^ 3642 * | | 3643 * sched_tick_start() | | sched_tick_stop() 3644 * | | 3645 * V | 3646 * TICK_SCHED_REMOTE_RUNNING 3647 * 3648 * 3649 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 3650 * and sched_tick_start() are happy to leave the state in RUNNING. 3651 */ 3652 3653 static struct tick_work __percpu *tick_work_cpu; 3654 3655 static void sched_tick_remote(struct work_struct *work) 3656 { 3657 struct delayed_work *dwork = to_delayed_work(work); 3658 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3659 int cpu = twork->cpu; 3660 struct rq *rq = cpu_rq(cpu); 3661 struct task_struct *curr; 3662 struct rq_flags rf; 3663 u64 delta; 3664 int os; 3665 3666 /* 3667 * Handle the tick only if it appears the remote CPU is running in full 3668 * dynticks mode. The check is racy by nature, but missing a tick or 3669 * having one too much is no big deal because the scheduler tick updates 3670 * statistics and checks timeslices in a time-independent way, regardless 3671 * of when exactly it is running. 3672 */ 3673 if (!tick_nohz_tick_stopped_cpu(cpu)) 3674 goto out_requeue; 3675 3676 rq_lock_irq(rq, &rf); 3677 curr = rq->curr; 3678 if (cpu_is_offline(cpu)) 3679 goto out_unlock; 3680 3681 update_rq_clock(rq); 3682 3683 if (!is_idle_task(curr)) { 3684 /* 3685 * Make sure the next tick runs within a reasonable 3686 * amount of time. 3687 */ 3688 delta = rq_clock_task(rq) - curr->se.exec_start; 3689 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3690 } 3691 curr->sched_class->task_tick(rq, curr, 0); 3692 3693 calc_load_nohz_remote(rq); 3694 out_unlock: 3695 rq_unlock_irq(rq, &rf); 3696 out_requeue: 3697 3698 /* 3699 * Run the remote tick once per second (1Hz). This arbitrary 3700 * frequency is large enough to avoid overload but short enough 3701 * to keep scheduler internal stats reasonably up to date. But 3702 * first update state to reflect hotplug activity if required. 3703 */ 3704 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 3705 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 3706 if (os == TICK_SCHED_REMOTE_RUNNING) 3707 queue_delayed_work(system_unbound_wq, dwork, HZ); 3708 } 3709 3710 static void sched_tick_start(int cpu) 3711 { 3712 int os; 3713 struct tick_work *twork; 3714 3715 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3716 return; 3717 3718 WARN_ON_ONCE(!tick_work_cpu); 3719 3720 twork = per_cpu_ptr(tick_work_cpu, cpu); 3721 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 3722 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 3723 if (os == TICK_SCHED_REMOTE_OFFLINE) { 3724 twork->cpu = cpu; 3725 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3726 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3727 } 3728 } 3729 3730 #ifdef CONFIG_HOTPLUG_CPU 3731 static void sched_tick_stop(int cpu) 3732 { 3733 struct tick_work *twork; 3734 int os; 3735 3736 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3737 return; 3738 3739 WARN_ON_ONCE(!tick_work_cpu); 3740 3741 twork = per_cpu_ptr(tick_work_cpu, cpu); 3742 /* There cannot be competing actions, but don't rely on stop-machine. */ 3743 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 3744 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 3745 /* Don't cancel, as this would mess up the state machine. */ 3746 } 3747 #endif /* CONFIG_HOTPLUG_CPU */ 3748 3749 int __init sched_tick_offload_init(void) 3750 { 3751 tick_work_cpu = alloc_percpu(struct tick_work); 3752 BUG_ON(!tick_work_cpu); 3753 return 0; 3754 } 3755 3756 #else /* !CONFIG_NO_HZ_FULL */ 3757 static inline void sched_tick_start(int cpu) { } 3758 static inline void sched_tick_stop(int cpu) { } 3759 #endif 3760 3761 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3762 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3763 /* 3764 * If the value passed in is equal to the current preempt count 3765 * then we just disabled preemption. Start timing the latency. 3766 */ 3767 static inline void preempt_latency_start(int val) 3768 { 3769 if (preempt_count() == val) { 3770 unsigned long ip = get_lock_parent_ip(); 3771 #ifdef CONFIG_DEBUG_PREEMPT 3772 current->preempt_disable_ip = ip; 3773 #endif 3774 trace_preempt_off(CALLER_ADDR0, ip); 3775 } 3776 } 3777 3778 void preempt_count_add(int val) 3779 { 3780 #ifdef CONFIG_DEBUG_PREEMPT 3781 /* 3782 * Underflow? 3783 */ 3784 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3785 return; 3786 #endif 3787 __preempt_count_add(val); 3788 #ifdef CONFIG_DEBUG_PREEMPT 3789 /* 3790 * Spinlock count overflowing soon? 3791 */ 3792 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3793 PREEMPT_MASK - 10); 3794 #endif 3795 preempt_latency_start(val); 3796 } 3797 EXPORT_SYMBOL(preempt_count_add); 3798 NOKPROBE_SYMBOL(preempt_count_add); 3799 3800 /* 3801 * If the value passed in equals to the current preempt count 3802 * then we just enabled preemption. Stop timing the latency. 3803 */ 3804 static inline void preempt_latency_stop(int val) 3805 { 3806 if (preempt_count() == val) 3807 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3808 } 3809 3810 void preempt_count_sub(int val) 3811 { 3812 #ifdef CONFIG_DEBUG_PREEMPT 3813 /* 3814 * Underflow? 3815 */ 3816 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3817 return; 3818 /* 3819 * Is the spinlock portion underflowing? 3820 */ 3821 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3822 !(preempt_count() & PREEMPT_MASK))) 3823 return; 3824 #endif 3825 3826 preempt_latency_stop(val); 3827 __preempt_count_sub(val); 3828 } 3829 EXPORT_SYMBOL(preempt_count_sub); 3830 NOKPROBE_SYMBOL(preempt_count_sub); 3831 3832 #else 3833 static inline void preempt_latency_start(int val) { } 3834 static inline void preempt_latency_stop(int val) { } 3835 #endif 3836 3837 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3838 { 3839 #ifdef CONFIG_DEBUG_PREEMPT 3840 return p->preempt_disable_ip; 3841 #else 3842 return 0; 3843 #endif 3844 } 3845 3846 /* 3847 * Print scheduling while atomic bug: 3848 */ 3849 static noinline void __schedule_bug(struct task_struct *prev) 3850 { 3851 /* Save this before calling printk(), since that will clobber it */ 3852 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3853 3854 if (oops_in_progress) 3855 return; 3856 3857 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3858 prev->comm, prev->pid, preempt_count()); 3859 3860 debug_show_held_locks(prev); 3861 print_modules(); 3862 if (irqs_disabled()) 3863 print_irqtrace_events(prev); 3864 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3865 && in_atomic_preempt_off()) { 3866 pr_err("Preemption disabled at:"); 3867 print_ip_sym(preempt_disable_ip); 3868 pr_cont("\n"); 3869 } 3870 if (panic_on_warn) 3871 panic("scheduling while atomic\n"); 3872 3873 dump_stack(); 3874 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3875 } 3876 3877 /* 3878 * Various schedule()-time debugging checks and statistics: 3879 */ 3880 static inline void schedule_debug(struct task_struct *prev, bool preempt) 3881 { 3882 #ifdef CONFIG_SCHED_STACK_END_CHECK 3883 if (task_stack_end_corrupted(prev)) 3884 panic("corrupted stack end detected inside scheduler\n"); 3885 #endif 3886 3887 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 3888 if (!preempt && prev->state && prev->non_block_count) { 3889 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 3890 prev->comm, prev->pid, prev->non_block_count); 3891 dump_stack(); 3892 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3893 } 3894 #endif 3895 3896 if (unlikely(in_atomic_preempt_off())) { 3897 __schedule_bug(prev); 3898 preempt_count_set(PREEMPT_DISABLED); 3899 } 3900 rcu_sleep_check(); 3901 3902 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3903 3904 schedstat_inc(this_rq()->sched_count); 3905 } 3906 3907 /* 3908 * Pick up the highest-prio task: 3909 */ 3910 static inline struct task_struct * 3911 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3912 { 3913 const struct sched_class *class; 3914 struct task_struct *p; 3915 3916 /* 3917 * Optimization: we know that if all tasks are in the fair class we can 3918 * call that function directly, but only if the @prev task wasn't of a 3919 * higher scheduling class, because otherwise those loose the 3920 * opportunity to pull in more work from other CPUs. 3921 */ 3922 if (likely((prev->sched_class == &idle_sched_class || 3923 prev->sched_class == &fair_sched_class) && 3924 rq->nr_running == rq->cfs.h_nr_running)) { 3925 3926 p = pick_next_task_fair(rq, prev, rf); 3927 if (unlikely(p == RETRY_TASK)) 3928 goto restart; 3929 3930 /* Assumes fair_sched_class->next == idle_sched_class */ 3931 if (!p) { 3932 put_prev_task(rq, prev); 3933 p = pick_next_task_idle(rq); 3934 } 3935 3936 return p; 3937 } 3938 3939 restart: 3940 #ifdef CONFIG_SMP 3941 /* 3942 * We must do the balancing pass before put_next_task(), such 3943 * that when we release the rq->lock the task is in the same 3944 * state as before we took rq->lock. 3945 * 3946 * We can terminate the balance pass as soon as we know there is 3947 * a runnable task of @class priority or higher. 3948 */ 3949 for_class_range(class, prev->sched_class, &idle_sched_class) { 3950 if (class->balance(rq, prev, rf)) 3951 break; 3952 } 3953 #endif 3954 3955 put_prev_task(rq, prev); 3956 3957 for_each_class(class) { 3958 p = class->pick_next_task(rq); 3959 if (p) 3960 return p; 3961 } 3962 3963 /* The idle class should always have a runnable task: */ 3964 BUG(); 3965 } 3966 3967 /* 3968 * __schedule() is the main scheduler function. 3969 * 3970 * The main means of driving the scheduler and thus entering this function are: 3971 * 3972 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3973 * 3974 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3975 * paths. For example, see arch/x86/entry_64.S. 3976 * 3977 * To drive preemption between tasks, the scheduler sets the flag in timer 3978 * interrupt handler scheduler_tick(). 3979 * 3980 * 3. Wakeups don't really cause entry into schedule(). They add a 3981 * task to the run-queue and that's it. 3982 * 3983 * Now, if the new task added to the run-queue preempts the current 3984 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3985 * called on the nearest possible occasion: 3986 * 3987 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 3988 * 3989 * - in syscall or exception context, at the next outmost 3990 * preempt_enable(). (this might be as soon as the wake_up()'s 3991 * spin_unlock()!) 3992 * 3993 * - in IRQ context, return from interrupt-handler to 3994 * preemptible context 3995 * 3996 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 3997 * then at the next: 3998 * 3999 * - cond_resched() call 4000 * - explicit schedule() call 4001 * - return from syscall or exception to user-space 4002 * - return from interrupt-handler to user-space 4003 * 4004 * WARNING: must be called with preemption disabled! 4005 */ 4006 static void __sched notrace __schedule(bool preempt) 4007 { 4008 struct task_struct *prev, *next; 4009 unsigned long *switch_count; 4010 struct rq_flags rf; 4011 struct rq *rq; 4012 int cpu; 4013 4014 cpu = smp_processor_id(); 4015 rq = cpu_rq(cpu); 4016 prev = rq->curr; 4017 4018 schedule_debug(prev, preempt); 4019 4020 if (sched_feat(HRTICK)) 4021 hrtick_clear(rq); 4022 4023 local_irq_disable(); 4024 rcu_note_context_switch(preempt); 4025 4026 /* 4027 * Make sure that signal_pending_state()->signal_pending() below 4028 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4029 * done by the caller to avoid the race with signal_wake_up(). 4030 * 4031 * The membarrier system call requires a full memory barrier 4032 * after coming from user-space, before storing to rq->curr. 4033 */ 4034 rq_lock(rq, &rf); 4035 smp_mb__after_spinlock(); 4036 4037 /* Promote REQ to ACT */ 4038 rq->clock_update_flags <<= 1; 4039 update_rq_clock(rq); 4040 4041 switch_count = &prev->nivcsw; 4042 if (!preempt && prev->state) { 4043 if (signal_pending_state(prev->state, prev)) { 4044 prev->state = TASK_RUNNING; 4045 } else { 4046 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 4047 4048 if (prev->in_iowait) { 4049 atomic_inc(&rq->nr_iowait); 4050 delayacct_blkio_start(); 4051 } 4052 } 4053 switch_count = &prev->nvcsw; 4054 } 4055 4056 next = pick_next_task(rq, prev, &rf); 4057 clear_tsk_need_resched(prev); 4058 clear_preempt_need_resched(); 4059 4060 if (likely(prev != next)) { 4061 rq->nr_switches++; 4062 /* 4063 * RCU users of rcu_dereference(rq->curr) may not see 4064 * changes to task_struct made by pick_next_task(). 4065 */ 4066 RCU_INIT_POINTER(rq->curr, next); 4067 /* 4068 * The membarrier system call requires each architecture 4069 * to have a full memory barrier after updating 4070 * rq->curr, before returning to user-space. 4071 * 4072 * Here are the schemes providing that barrier on the 4073 * various architectures: 4074 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 4075 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 4076 * - finish_lock_switch() for weakly-ordered 4077 * architectures where spin_unlock is a full barrier, 4078 * - switch_to() for arm64 (weakly-ordered, spin_unlock 4079 * is a RELEASE barrier), 4080 */ 4081 ++*switch_count; 4082 4083 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 4084 4085 trace_sched_switch(preempt, prev, next); 4086 4087 /* Also unlocks the rq: */ 4088 rq = context_switch(rq, prev, next, &rf); 4089 } else { 4090 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4091 rq_unlock_irq(rq, &rf); 4092 } 4093 4094 balance_callback(rq); 4095 } 4096 4097 void __noreturn do_task_dead(void) 4098 { 4099 /* Causes final put_task_struct in finish_task_switch(): */ 4100 set_special_state(TASK_DEAD); 4101 4102 /* Tell freezer to ignore us: */ 4103 current->flags |= PF_NOFREEZE; 4104 4105 __schedule(false); 4106 BUG(); 4107 4108 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 4109 for (;;) 4110 cpu_relax(); 4111 } 4112 4113 static inline void sched_submit_work(struct task_struct *tsk) 4114 { 4115 if (!tsk->state) 4116 return; 4117 4118 /* 4119 * If a worker went to sleep, notify and ask workqueue whether 4120 * it wants to wake up a task to maintain concurrency. 4121 * As this function is called inside the schedule() context, 4122 * we disable preemption to avoid it calling schedule() again 4123 * in the possible wakeup of a kworker and because wq_worker_sleeping() 4124 * requires it. 4125 */ 4126 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4127 preempt_disable(); 4128 if (tsk->flags & PF_WQ_WORKER) 4129 wq_worker_sleeping(tsk); 4130 else 4131 io_wq_worker_sleeping(tsk); 4132 preempt_enable_no_resched(); 4133 } 4134 4135 if (tsk_is_pi_blocked(tsk)) 4136 return; 4137 4138 /* 4139 * If we are going to sleep and we have plugged IO queued, 4140 * make sure to submit it to avoid deadlocks. 4141 */ 4142 if (blk_needs_flush_plug(tsk)) 4143 blk_schedule_flush_plug(tsk); 4144 } 4145 4146 static void sched_update_worker(struct task_struct *tsk) 4147 { 4148 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4149 if (tsk->flags & PF_WQ_WORKER) 4150 wq_worker_running(tsk); 4151 else 4152 io_wq_worker_running(tsk); 4153 } 4154 } 4155 4156 asmlinkage __visible void __sched schedule(void) 4157 { 4158 struct task_struct *tsk = current; 4159 4160 sched_submit_work(tsk); 4161 do { 4162 preempt_disable(); 4163 __schedule(false); 4164 sched_preempt_enable_no_resched(); 4165 } while (need_resched()); 4166 sched_update_worker(tsk); 4167 } 4168 EXPORT_SYMBOL(schedule); 4169 4170 /* 4171 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 4172 * state (have scheduled out non-voluntarily) by making sure that all 4173 * tasks have either left the run queue or have gone into user space. 4174 * As idle tasks do not do either, they must not ever be preempted 4175 * (schedule out non-voluntarily). 4176 * 4177 * schedule_idle() is similar to schedule_preempt_disable() except that it 4178 * never enables preemption because it does not call sched_submit_work(). 4179 */ 4180 void __sched schedule_idle(void) 4181 { 4182 /* 4183 * As this skips calling sched_submit_work(), which the idle task does 4184 * regardless because that function is a nop when the task is in a 4185 * TASK_RUNNING state, make sure this isn't used someplace that the 4186 * current task can be in any other state. Note, idle is always in the 4187 * TASK_RUNNING state. 4188 */ 4189 WARN_ON_ONCE(current->state); 4190 do { 4191 __schedule(false); 4192 } while (need_resched()); 4193 } 4194 4195 #ifdef CONFIG_CONTEXT_TRACKING 4196 asmlinkage __visible void __sched schedule_user(void) 4197 { 4198 /* 4199 * If we come here after a random call to set_need_resched(), 4200 * or we have been woken up remotely but the IPI has not yet arrived, 4201 * we haven't yet exited the RCU idle mode. Do it here manually until 4202 * we find a better solution. 4203 * 4204 * NB: There are buggy callers of this function. Ideally we 4205 * should warn if prev_state != CONTEXT_USER, but that will trigger 4206 * too frequently to make sense yet. 4207 */ 4208 enum ctx_state prev_state = exception_enter(); 4209 schedule(); 4210 exception_exit(prev_state); 4211 } 4212 #endif 4213 4214 /** 4215 * schedule_preempt_disabled - called with preemption disabled 4216 * 4217 * Returns with preemption disabled. Note: preempt_count must be 1 4218 */ 4219 void __sched schedule_preempt_disabled(void) 4220 { 4221 sched_preempt_enable_no_resched(); 4222 schedule(); 4223 preempt_disable(); 4224 } 4225 4226 static void __sched notrace preempt_schedule_common(void) 4227 { 4228 do { 4229 /* 4230 * Because the function tracer can trace preempt_count_sub() 4231 * and it also uses preempt_enable/disable_notrace(), if 4232 * NEED_RESCHED is set, the preempt_enable_notrace() called 4233 * by the function tracer will call this function again and 4234 * cause infinite recursion. 4235 * 4236 * Preemption must be disabled here before the function 4237 * tracer can trace. Break up preempt_disable() into two 4238 * calls. One to disable preemption without fear of being 4239 * traced. The other to still record the preemption latency, 4240 * which can also be traced by the function tracer. 4241 */ 4242 preempt_disable_notrace(); 4243 preempt_latency_start(1); 4244 __schedule(true); 4245 preempt_latency_stop(1); 4246 preempt_enable_no_resched_notrace(); 4247 4248 /* 4249 * Check again in case we missed a preemption opportunity 4250 * between schedule and now. 4251 */ 4252 } while (need_resched()); 4253 } 4254 4255 #ifdef CONFIG_PREEMPTION 4256 /* 4257 * This is the entry point to schedule() from in-kernel preemption 4258 * off of preempt_enable. 4259 */ 4260 asmlinkage __visible void __sched notrace preempt_schedule(void) 4261 { 4262 /* 4263 * If there is a non-zero preempt_count or interrupts are disabled, 4264 * we do not want to preempt the current task. Just return.. 4265 */ 4266 if (likely(!preemptible())) 4267 return; 4268 4269 preempt_schedule_common(); 4270 } 4271 NOKPROBE_SYMBOL(preempt_schedule); 4272 EXPORT_SYMBOL(preempt_schedule); 4273 4274 /** 4275 * preempt_schedule_notrace - preempt_schedule called by tracing 4276 * 4277 * The tracing infrastructure uses preempt_enable_notrace to prevent 4278 * recursion and tracing preempt enabling caused by the tracing 4279 * infrastructure itself. But as tracing can happen in areas coming 4280 * from userspace or just about to enter userspace, a preempt enable 4281 * can occur before user_exit() is called. This will cause the scheduler 4282 * to be called when the system is still in usermode. 4283 * 4284 * To prevent this, the preempt_enable_notrace will use this function 4285 * instead of preempt_schedule() to exit user context if needed before 4286 * calling the scheduler. 4287 */ 4288 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 4289 { 4290 enum ctx_state prev_ctx; 4291 4292 if (likely(!preemptible())) 4293 return; 4294 4295 do { 4296 /* 4297 * Because the function tracer can trace preempt_count_sub() 4298 * and it also uses preempt_enable/disable_notrace(), if 4299 * NEED_RESCHED is set, the preempt_enable_notrace() called 4300 * by the function tracer will call this function again and 4301 * cause infinite recursion. 4302 * 4303 * Preemption must be disabled here before the function 4304 * tracer can trace. Break up preempt_disable() into two 4305 * calls. One to disable preemption without fear of being 4306 * traced. The other to still record the preemption latency, 4307 * which can also be traced by the function tracer. 4308 */ 4309 preempt_disable_notrace(); 4310 preempt_latency_start(1); 4311 /* 4312 * Needs preempt disabled in case user_exit() is traced 4313 * and the tracer calls preempt_enable_notrace() causing 4314 * an infinite recursion. 4315 */ 4316 prev_ctx = exception_enter(); 4317 __schedule(true); 4318 exception_exit(prev_ctx); 4319 4320 preempt_latency_stop(1); 4321 preempt_enable_no_resched_notrace(); 4322 } while (need_resched()); 4323 } 4324 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 4325 4326 #endif /* CONFIG_PREEMPTION */ 4327 4328 /* 4329 * This is the entry point to schedule() from kernel preemption 4330 * off of irq context. 4331 * Note, that this is called and return with irqs disabled. This will 4332 * protect us against recursive calling from irq. 4333 */ 4334 asmlinkage __visible void __sched preempt_schedule_irq(void) 4335 { 4336 enum ctx_state prev_state; 4337 4338 /* Catch callers which need to be fixed */ 4339 BUG_ON(preempt_count() || !irqs_disabled()); 4340 4341 prev_state = exception_enter(); 4342 4343 do { 4344 preempt_disable(); 4345 local_irq_enable(); 4346 __schedule(true); 4347 local_irq_disable(); 4348 sched_preempt_enable_no_resched(); 4349 } while (need_resched()); 4350 4351 exception_exit(prev_state); 4352 } 4353 4354 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 4355 void *key) 4356 { 4357 return try_to_wake_up(curr->private, mode, wake_flags); 4358 } 4359 EXPORT_SYMBOL(default_wake_function); 4360 4361 #ifdef CONFIG_RT_MUTEXES 4362 4363 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 4364 { 4365 if (pi_task) 4366 prio = min(prio, pi_task->prio); 4367 4368 return prio; 4369 } 4370 4371 static inline int rt_effective_prio(struct task_struct *p, int prio) 4372 { 4373 struct task_struct *pi_task = rt_mutex_get_top_task(p); 4374 4375 return __rt_effective_prio(pi_task, prio); 4376 } 4377 4378 /* 4379 * rt_mutex_setprio - set the current priority of a task 4380 * @p: task to boost 4381 * @pi_task: donor task 4382 * 4383 * This function changes the 'effective' priority of a task. It does 4384 * not touch ->normal_prio like __setscheduler(). 4385 * 4386 * Used by the rt_mutex code to implement priority inheritance 4387 * logic. Call site only calls if the priority of the task changed. 4388 */ 4389 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 4390 { 4391 int prio, oldprio, queued, running, queue_flag = 4392 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4393 const struct sched_class *prev_class; 4394 struct rq_flags rf; 4395 struct rq *rq; 4396 4397 /* XXX used to be waiter->prio, not waiter->task->prio */ 4398 prio = __rt_effective_prio(pi_task, p->normal_prio); 4399 4400 /* 4401 * If nothing changed; bail early. 4402 */ 4403 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 4404 return; 4405 4406 rq = __task_rq_lock(p, &rf); 4407 update_rq_clock(rq); 4408 /* 4409 * Set under pi_lock && rq->lock, such that the value can be used under 4410 * either lock. 4411 * 4412 * Note that there is loads of tricky to make this pointer cache work 4413 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 4414 * ensure a task is de-boosted (pi_task is set to NULL) before the 4415 * task is allowed to run again (and can exit). This ensures the pointer 4416 * points to a blocked task -- which guaratees the task is present. 4417 */ 4418 p->pi_top_task = pi_task; 4419 4420 /* 4421 * For FIFO/RR we only need to set prio, if that matches we're done. 4422 */ 4423 if (prio == p->prio && !dl_prio(prio)) 4424 goto out_unlock; 4425 4426 /* 4427 * Idle task boosting is a nono in general. There is one 4428 * exception, when PREEMPT_RT and NOHZ is active: 4429 * 4430 * The idle task calls get_next_timer_interrupt() and holds 4431 * the timer wheel base->lock on the CPU and another CPU wants 4432 * to access the timer (probably to cancel it). We can safely 4433 * ignore the boosting request, as the idle CPU runs this code 4434 * with interrupts disabled and will complete the lock 4435 * protected section without being interrupted. So there is no 4436 * real need to boost. 4437 */ 4438 if (unlikely(p == rq->idle)) { 4439 WARN_ON(p != rq->curr); 4440 WARN_ON(p->pi_blocked_on); 4441 goto out_unlock; 4442 } 4443 4444 trace_sched_pi_setprio(p, pi_task); 4445 oldprio = p->prio; 4446 4447 if (oldprio == prio) 4448 queue_flag &= ~DEQUEUE_MOVE; 4449 4450 prev_class = p->sched_class; 4451 queued = task_on_rq_queued(p); 4452 running = task_current(rq, p); 4453 if (queued) 4454 dequeue_task(rq, p, queue_flag); 4455 if (running) 4456 put_prev_task(rq, p); 4457 4458 /* 4459 * Boosting condition are: 4460 * 1. -rt task is running and holds mutex A 4461 * --> -dl task blocks on mutex A 4462 * 4463 * 2. -dl task is running and holds mutex A 4464 * --> -dl task blocks on mutex A and could preempt the 4465 * running task 4466 */ 4467 if (dl_prio(prio)) { 4468 if (!dl_prio(p->normal_prio) || 4469 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 4470 p->dl.dl_boosted = 1; 4471 queue_flag |= ENQUEUE_REPLENISH; 4472 } else 4473 p->dl.dl_boosted = 0; 4474 p->sched_class = &dl_sched_class; 4475 } else if (rt_prio(prio)) { 4476 if (dl_prio(oldprio)) 4477 p->dl.dl_boosted = 0; 4478 if (oldprio < prio) 4479 queue_flag |= ENQUEUE_HEAD; 4480 p->sched_class = &rt_sched_class; 4481 } else { 4482 if (dl_prio(oldprio)) 4483 p->dl.dl_boosted = 0; 4484 if (rt_prio(oldprio)) 4485 p->rt.timeout = 0; 4486 p->sched_class = &fair_sched_class; 4487 } 4488 4489 p->prio = prio; 4490 4491 if (queued) 4492 enqueue_task(rq, p, queue_flag); 4493 if (running) 4494 set_next_task(rq, p); 4495 4496 check_class_changed(rq, p, prev_class, oldprio); 4497 out_unlock: 4498 /* Avoid rq from going away on us: */ 4499 preempt_disable(); 4500 __task_rq_unlock(rq, &rf); 4501 4502 balance_callback(rq); 4503 preempt_enable(); 4504 } 4505 #else 4506 static inline int rt_effective_prio(struct task_struct *p, int prio) 4507 { 4508 return prio; 4509 } 4510 #endif 4511 4512 void set_user_nice(struct task_struct *p, long nice) 4513 { 4514 bool queued, running; 4515 int old_prio; 4516 struct rq_flags rf; 4517 struct rq *rq; 4518 4519 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 4520 return; 4521 /* 4522 * We have to be careful, if called from sys_setpriority(), 4523 * the task might be in the middle of scheduling on another CPU. 4524 */ 4525 rq = task_rq_lock(p, &rf); 4526 update_rq_clock(rq); 4527 4528 /* 4529 * The RT priorities are set via sched_setscheduler(), but we still 4530 * allow the 'normal' nice value to be set - but as expected 4531 * it wont have any effect on scheduling until the task is 4532 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 4533 */ 4534 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4535 p->static_prio = NICE_TO_PRIO(nice); 4536 goto out_unlock; 4537 } 4538 queued = task_on_rq_queued(p); 4539 running = task_current(rq, p); 4540 if (queued) 4541 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 4542 if (running) 4543 put_prev_task(rq, p); 4544 4545 p->static_prio = NICE_TO_PRIO(nice); 4546 set_load_weight(p, true); 4547 old_prio = p->prio; 4548 p->prio = effective_prio(p); 4549 4550 if (queued) 4551 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 4552 if (running) 4553 set_next_task(rq, p); 4554 4555 /* 4556 * If the task increased its priority or is running and 4557 * lowered its priority, then reschedule its CPU: 4558 */ 4559 p->sched_class->prio_changed(rq, p, old_prio); 4560 4561 out_unlock: 4562 task_rq_unlock(rq, p, &rf); 4563 } 4564 EXPORT_SYMBOL(set_user_nice); 4565 4566 /* 4567 * can_nice - check if a task can reduce its nice value 4568 * @p: task 4569 * @nice: nice value 4570 */ 4571 int can_nice(const struct task_struct *p, const int nice) 4572 { 4573 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 4574 int nice_rlim = nice_to_rlimit(nice); 4575 4576 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 4577 capable(CAP_SYS_NICE)); 4578 } 4579 4580 #ifdef __ARCH_WANT_SYS_NICE 4581 4582 /* 4583 * sys_nice - change the priority of the current process. 4584 * @increment: priority increment 4585 * 4586 * sys_setpriority is a more generic, but much slower function that 4587 * does similar things. 4588 */ 4589 SYSCALL_DEFINE1(nice, int, increment) 4590 { 4591 long nice, retval; 4592 4593 /* 4594 * Setpriority might change our priority at the same moment. 4595 * We don't have to worry. Conceptually one call occurs first 4596 * and we have a single winner. 4597 */ 4598 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 4599 nice = task_nice(current) + increment; 4600 4601 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 4602 if (increment < 0 && !can_nice(current, nice)) 4603 return -EPERM; 4604 4605 retval = security_task_setnice(current, nice); 4606 if (retval) 4607 return retval; 4608 4609 set_user_nice(current, nice); 4610 return 0; 4611 } 4612 4613 #endif 4614 4615 /** 4616 * task_prio - return the priority value of a given task. 4617 * @p: the task in question. 4618 * 4619 * Return: The priority value as seen by users in /proc. 4620 * RT tasks are offset by -200. Normal tasks are centered 4621 * around 0, value goes from -16 to +15. 4622 */ 4623 int task_prio(const struct task_struct *p) 4624 { 4625 return p->prio - MAX_RT_PRIO; 4626 } 4627 4628 /** 4629 * idle_cpu - is a given CPU idle currently? 4630 * @cpu: the processor in question. 4631 * 4632 * Return: 1 if the CPU is currently idle. 0 otherwise. 4633 */ 4634 int idle_cpu(int cpu) 4635 { 4636 struct rq *rq = cpu_rq(cpu); 4637 4638 if (rq->curr != rq->idle) 4639 return 0; 4640 4641 if (rq->nr_running) 4642 return 0; 4643 4644 #ifdef CONFIG_SMP 4645 if (!llist_empty(&rq->wake_list)) 4646 return 0; 4647 #endif 4648 4649 return 1; 4650 } 4651 4652 /** 4653 * available_idle_cpu - is a given CPU idle for enqueuing work. 4654 * @cpu: the CPU in question. 4655 * 4656 * Return: 1 if the CPU is currently idle. 0 otherwise. 4657 */ 4658 int available_idle_cpu(int cpu) 4659 { 4660 if (!idle_cpu(cpu)) 4661 return 0; 4662 4663 if (vcpu_is_preempted(cpu)) 4664 return 0; 4665 4666 return 1; 4667 } 4668 4669 /** 4670 * idle_task - return the idle task for a given CPU. 4671 * @cpu: the processor in question. 4672 * 4673 * Return: The idle task for the CPU @cpu. 4674 */ 4675 struct task_struct *idle_task(int cpu) 4676 { 4677 return cpu_rq(cpu)->idle; 4678 } 4679 4680 /** 4681 * find_process_by_pid - find a process with a matching PID value. 4682 * @pid: the pid in question. 4683 * 4684 * The task of @pid, if found. %NULL otherwise. 4685 */ 4686 static struct task_struct *find_process_by_pid(pid_t pid) 4687 { 4688 return pid ? find_task_by_vpid(pid) : current; 4689 } 4690 4691 /* 4692 * sched_setparam() passes in -1 for its policy, to let the functions 4693 * it calls know not to change it. 4694 */ 4695 #define SETPARAM_POLICY -1 4696 4697 static void __setscheduler_params(struct task_struct *p, 4698 const struct sched_attr *attr) 4699 { 4700 int policy = attr->sched_policy; 4701 4702 if (policy == SETPARAM_POLICY) 4703 policy = p->policy; 4704 4705 p->policy = policy; 4706 4707 if (dl_policy(policy)) 4708 __setparam_dl(p, attr); 4709 else if (fair_policy(policy)) 4710 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4711 4712 /* 4713 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4714 * !rt_policy. Always setting this ensures that things like 4715 * getparam()/getattr() don't report silly values for !rt tasks. 4716 */ 4717 p->rt_priority = attr->sched_priority; 4718 p->normal_prio = normal_prio(p); 4719 set_load_weight(p, true); 4720 } 4721 4722 /* Actually do priority change: must hold pi & rq lock. */ 4723 static void __setscheduler(struct rq *rq, struct task_struct *p, 4724 const struct sched_attr *attr, bool keep_boost) 4725 { 4726 /* 4727 * If params can't change scheduling class changes aren't allowed 4728 * either. 4729 */ 4730 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 4731 return; 4732 4733 __setscheduler_params(p, attr); 4734 4735 /* 4736 * Keep a potential priority boosting if called from 4737 * sched_setscheduler(). 4738 */ 4739 p->prio = normal_prio(p); 4740 if (keep_boost) 4741 p->prio = rt_effective_prio(p, p->prio); 4742 4743 if (dl_prio(p->prio)) 4744 p->sched_class = &dl_sched_class; 4745 else if (rt_prio(p->prio)) 4746 p->sched_class = &rt_sched_class; 4747 else 4748 p->sched_class = &fair_sched_class; 4749 } 4750 4751 /* 4752 * Check the target process has a UID that matches the current process's: 4753 */ 4754 static bool check_same_owner(struct task_struct *p) 4755 { 4756 const struct cred *cred = current_cred(), *pcred; 4757 bool match; 4758 4759 rcu_read_lock(); 4760 pcred = __task_cred(p); 4761 match = (uid_eq(cred->euid, pcred->euid) || 4762 uid_eq(cred->euid, pcred->uid)); 4763 rcu_read_unlock(); 4764 return match; 4765 } 4766 4767 static int __sched_setscheduler(struct task_struct *p, 4768 const struct sched_attr *attr, 4769 bool user, bool pi) 4770 { 4771 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4772 MAX_RT_PRIO - 1 - attr->sched_priority; 4773 int retval, oldprio, oldpolicy = -1, queued, running; 4774 int new_effective_prio, policy = attr->sched_policy; 4775 const struct sched_class *prev_class; 4776 struct rq_flags rf; 4777 int reset_on_fork; 4778 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4779 struct rq *rq; 4780 4781 /* The pi code expects interrupts enabled */ 4782 BUG_ON(pi && in_interrupt()); 4783 recheck: 4784 /* Double check policy once rq lock held: */ 4785 if (policy < 0) { 4786 reset_on_fork = p->sched_reset_on_fork; 4787 policy = oldpolicy = p->policy; 4788 } else { 4789 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4790 4791 if (!valid_policy(policy)) 4792 return -EINVAL; 4793 } 4794 4795 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4796 return -EINVAL; 4797 4798 /* 4799 * Valid priorities for SCHED_FIFO and SCHED_RR are 4800 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4801 * SCHED_BATCH and SCHED_IDLE is 0. 4802 */ 4803 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4804 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4805 return -EINVAL; 4806 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4807 (rt_policy(policy) != (attr->sched_priority != 0))) 4808 return -EINVAL; 4809 4810 /* 4811 * Allow unprivileged RT tasks to decrease priority: 4812 */ 4813 if (user && !capable(CAP_SYS_NICE)) { 4814 if (fair_policy(policy)) { 4815 if (attr->sched_nice < task_nice(p) && 4816 !can_nice(p, attr->sched_nice)) 4817 return -EPERM; 4818 } 4819 4820 if (rt_policy(policy)) { 4821 unsigned long rlim_rtprio = 4822 task_rlimit(p, RLIMIT_RTPRIO); 4823 4824 /* Can't set/change the rt policy: */ 4825 if (policy != p->policy && !rlim_rtprio) 4826 return -EPERM; 4827 4828 /* Can't increase priority: */ 4829 if (attr->sched_priority > p->rt_priority && 4830 attr->sched_priority > rlim_rtprio) 4831 return -EPERM; 4832 } 4833 4834 /* 4835 * Can't set/change SCHED_DEADLINE policy at all for now 4836 * (safest behavior); in the future we would like to allow 4837 * unprivileged DL tasks to increase their relative deadline 4838 * or reduce their runtime (both ways reducing utilization) 4839 */ 4840 if (dl_policy(policy)) 4841 return -EPERM; 4842 4843 /* 4844 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4845 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4846 */ 4847 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4848 if (!can_nice(p, task_nice(p))) 4849 return -EPERM; 4850 } 4851 4852 /* Can't change other user's priorities: */ 4853 if (!check_same_owner(p)) 4854 return -EPERM; 4855 4856 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4857 if (p->sched_reset_on_fork && !reset_on_fork) 4858 return -EPERM; 4859 } 4860 4861 if (user) { 4862 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4863 return -EINVAL; 4864 4865 retval = security_task_setscheduler(p); 4866 if (retval) 4867 return retval; 4868 } 4869 4870 /* Update task specific "requested" clamps */ 4871 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 4872 retval = uclamp_validate(p, attr); 4873 if (retval) 4874 return retval; 4875 } 4876 4877 if (pi) 4878 cpuset_read_lock(); 4879 4880 /* 4881 * Make sure no PI-waiters arrive (or leave) while we are 4882 * changing the priority of the task: 4883 * 4884 * To be able to change p->policy safely, the appropriate 4885 * runqueue lock must be held. 4886 */ 4887 rq = task_rq_lock(p, &rf); 4888 update_rq_clock(rq); 4889 4890 /* 4891 * Changing the policy of the stop threads its a very bad idea: 4892 */ 4893 if (p == rq->stop) { 4894 retval = -EINVAL; 4895 goto unlock; 4896 } 4897 4898 /* 4899 * If not changing anything there's no need to proceed further, 4900 * but store a possible modification of reset_on_fork. 4901 */ 4902 if (unlikely(policy == p->policy)) { 4903 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4904 goto change; 4905 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4906 goto change; 4907 if (dl_policy(policy) && dl_param_changed(p, attr)) 4908 goto change; 4909 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 4910 goto change; 4911 4912 p->sched_reset_on_fork = reset_on_fork; 4913 retval = 0; 4914 goto unlock; 4915 } 4916 change: 4917 4918 if (user) { 4919 #ifdef CONFIG_RT_GROUP_SCHED 4920 /* 4921 * Do not allow realtime tasks into groups that have no runtime 4922 * assigned. 4923 */ 4924 if (rt_bandwidth_enabled() && rt_policy(policy) && 4925 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4926 !task_group_is_autogroup(task_group(p))) { 4927 retval = -EPERM; 4928 goto unlock; 4929 } 4930 #endif 4931 #ifdef CONFIG_SMP 4932 if (dl_bandwidth_enabled() && dl_policy(policy) && 4933 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4934 cpumask_t *span = rq->rd->span; 4935 4936 /* 4937 * Don't allow tasks with an affinity mask smaller than 4938 * the entire root_domain to become SCHED_DEADLINE. We 4939 * will also fail if there's no bandwidth available. 4940 */ 4941 if (!cpumask_subset(span, p->cpus_ptr) || 4942 rq->rd->dl_bw.bw == 0) { 4943 retval = -EPERM; 4944 goto unlock; 4945 } 4946 } 4947 #endif 4948 } 4949 4950 /* Re-check policy now with rq lock held: */ 4951 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4952 policy = oldpolicy = -1; 4953 task_rq_unlock(rq, p, &rf); 4954 if (pi) 4955 cpuset_read_unlock(); 4956 goto recheck; 4957 } 4958 4959 /* 4960 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4961 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4962 * is available. 4963 */ 4964 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4965 retval = -EBUSY; 4966 goto unlock; 4967 } 4968 4969 p->sched_reset_on_fork = reset_on_fork; 4970 oldprio = p->prio; 4971 4972 if (pi) { 4973 /* 4974 * Take priority boosted tasks into account. If the new 4975 * effective priority is unchanged, we just store the new 4976 * normal parameters and do not touch the scheduler class and 4977 * the runqueue. This will be done when the task deboost 4978 * itself. 4979 */ 4980 new_effective_prio = rt_effective_prio(p, newprio); 4981 if (new_effective_prio == oldprio) 4982 queue_flags &= ~DEQUEUE_MOVE; 4983 } 4984 4985 queued = task_on_rq_queued(p); 4986 running = task_current(rq, p); 4987 if (queued) 4988 dequeue_task(rq, p, queue_flags); 4989 if (running) 4990 put_prev_task(rq, p); 4991 4992 prev_class = p->sched_class; 4993 4994 __setscheduler(rq, p, attr, pi); 4995 __setscheduler_uclamp(p, attr); 4996 4997 if (queued) { 4998 /* 4999 * We enqueue to tail when the priority of a task is 5000 * increased (user space view). 5001 */ 5002 if (oldprio < p->prio) 5003 queue_flags |= ENQUEUE_HEAD; 5004 5005 enqueue_task(rq, p, queue_flags); 5006 } 5007 if (running) 5008 set_next_task(rq, p); 5009 5010 check_class_changed(rq, p, prev_class, oldprio); 5011 5012 /* Avoid rq from going away on us: */ 5013 preempt_disable(); 5014 task_rq_unlock(rq, p, &rf); 5015 5016 if (pi) { 5017 cpuset_read_unlock(); 5018 rt_mutex_adjust_pi(p); 5019 } 5020 5021 /* Run balance callbacks after we've adjusted the PI chain: */ 5022 balance_callback(rq); 5023 preempt_enable(); 5024 5025 return 0; 5026 5027 unlock: 5028 task_rq_unlock(rq, p, &rf); 5029 if (pi) 5030 cpuset_read_unlock(); 5031 return retval; 5032 } 5033 5034 static int _sched_setscheduler(struct task_struct *p, int policy, 5035 const struct sched_param *param, bool check) 5036 { 5037 struct sched_attr attr = { 5038 .sched_policy = policy, 5039 .sched_priority = param->sched_priority, 5040 .sched_nice = PRIO_TO_NICE(p->static_prio), 5041 }; 5042 5043 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 5044 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 5045 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5046 policy &= ~SCHED_RESET_ON_FORK; 5047 attr.sched_policy = policy; 5048 } 5049 5050 return __sched_setscheduler(p, &attr, check, true); 5051 } 5052 /** 5053 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 5054 * @p: the task in question. 5055 * @policy: new policy. 5056 * @param: structure containing the new RT priority. 5057 * 5058 * Return: 0 on success. An error code otherwise. 5059 * 5060 * NOTE that the task may be already dead. 5061 */ 5062 int sched_setscheduler(struct task_struct *p, int policy, 5063 const struct sched_param *param) 5064 { 5065 return _sched_setscheduler(p, policy, param, true); 5066 } 5067 EXPORT_SYMBOL_GPL(sched_setscheduler); 5068 5069 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 5070 { 5071 return __sched_setscheduler(p, attr, true, true); 5072 } 5073 EXPORT_SYMBOL_GPL(sched_setattr); 5074 5075 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 5076 { 5077 return __sched_setscheduler(p, attr, false, true); 5078 } 5079 5080 /** 5081 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 5082 * @p: the task in question. 5083 * @policy: new policy. 5084 * @param: structure containing the new RT priority. 5085 * 5086 * Just like sched_setscheduler, only don't bother checking if the 5087 * current context has permission. For example, this is needed in 5088 * stop_machine(): we create temporary high priority worker threads, 5089 * but our caller might not have that capability. 5090 * 5091 * Return: 0 on success. An error code otherwise. 5092 */ 5093 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 5094 const struct sched_param *param) 5095 { 5096 return _sched_setscheduler(p, policy, param, false); 5097 } 5098 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 5099 5100 static int 5101 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 5102 { 5103 struct sched_param lparam; 5104 struct task_struct *p; 5105 int retval; 5106 5107 if (!param || pid < 0) 5108 return -EINVAL; 5109 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 5110 return -EFAULT; 5111 5112 rcu_read_lock(); 5113 retval = -ESRCH; 5114 p = find_process_by_pid(pid); 5115 if (likely(p)) 5116 get_task_struct(p); 5117 rcu_read_unlock(); 5118 5119 if (likely(p)) { 5120 retval = sched_setscheduler(p, policy, &lparam); 5121 put_task_struct(p); 5122 } 5123 5124 return retval; 5125 } 5126 5127 /* 5128 * Mimics kernel/events/core.c perf_copy_attr(). 5129 */ 5130 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 5131 { 5132 u32 size; 5133 int ret; 5134 5135 /* Zero the full structure, so that a short copy will be nice: */ 5136 memset(attr, 0, sizeof(*attr)); 5137 5138 ret = get_user(size, &uattr->size); 5139 if (ret) 5140 return ret; 5141 5142 /* ABI compatibility quirk: */ 5143 if (!size) 5144 size = SCHED_ATTR_SIZE_VER0; 5145 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 5146 goto err_size; 5147 5148 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 5149 if (ret) { 5150 if (ret == -E2BIG) 5151 goto err_size; 5152 return ret; 5153 } 5154 5155 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 5156 size < SCHED_ATTR_SIZE_VER1) 5157 return -EINVAL; 5158 5159 /* 5160 * XXX: Do we want to be lenient like existing syscalls; or do we want 5161 * to be strict and return an error on out-of-bounds values? 5162 */ 5163 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 5164 5165 return 0; 5166 5167 err_size: 5168 put_user(sizeof(*attr), &uattr->size); 5169 return -E2BIG; 5170 } 5171 5172 /** 5173 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 5174 * @pid: the pid in question. 5175 * @policy: new policy. 5176 * @param: structure containing the new RT priority. 5177 * 5178 * Return: 0 on success. An error code otherwise. 5179 */ 5180 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 5181 { 5182 if (policy < 0) 5183 return -EINVAL; 5184 5185 return do_sched_setscheduler(pid, policy, param); 5186 } 5187 5188 /** 5189 * sys_sched_setparam - set/change the RT priority of a thread 5190 * @pid: the pid in question. 5191 * @param: structure containing the new RT priority. 5192 * 5193 * Return: 0 on success. An error code otherwise. 5194 */ 5195 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 5196 { 5197 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 5198 } 5199 5200 /** 5201 * sys_sched_setattr - same as above, but with extended sched_attr 5202 * @pid: the pid in question. 5203 * @uattr: structure containing the extended parameters. 5204 * @flags: for future extension. 5205 */ 5206 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 5207 unsigned int, flags) 5208 { 5209 struct sched_attr attr; 5210 struct task_struct *p; 5211 int retval; 5212 5213 if (!uattr || pid < 0 || flags) 5214 return -EINVAL; 5215 5216 retval = sched_copy_attr(uattr, &attr); 5217 if (retval) 5218 return retval; 5219 5220 if ((int)attr.sched_policy < 0) 5221 return -EINVAL; 5222 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 5223 attr.sched_policy = SETPARAM_POLICY; 5224 5225 rcu_read_lock(); 5226 retval = -ESRCH; 5227 p = find_process_by_pid(pid); 5228 if (likely(p)) 5229 get_task_struct(p); 5230 rcu_read_unlock(); 5231 5232 if (likely(p)) { 5233 retval = sched_setattr(p, &attr); 5234 put_task_struct(p); 5235 } 5236 5237 return retval; 5238 } 5239 5240 /** 5241 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 5242 * @pid: the pid in question. 5243 * 5244 * Return: On success, the policy of the thread. Otherwise, a negative error 5245 * code. 5246 */ 5247 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 5248 { 5249 struct task_struct *p; 5250 int retval; 5251 5252 if (pid < 0) 5253 return -EINVAL; 5254 5255 retval = -ESRCH; 5256 rcu_read_lock(); 5257 p = find_process_by_pid(pid); 5258 if (p) { 5259 retval = security_task_getscheduler(p); 5260 if (!retval) 5261 retval = p->policy 5262 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 5263 } 5264 rcu_read_unlock(); 5265 return retval; 5266 } 5267 5268 /** 5269 * sys_sched_getparam - get the RT priority of a thread 5270 * @pid: the pid in question. 5271 * @param: structure containing the RT priority. 5272 * 5273 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 5274 * code. 5275 */ 5276 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 5277 { 5278 struct sched_param lp = { .sched_priority = 0 }; 5279 struct task_struct *p; 5280 int retval; 5281 5282 if (!param || pid < 0) 5283 return -EINVAL; 5284 5285 rcu_read_lock(); 5286 p = find_process_by_pid(pid); 5287 retval = -ESRCH; 5288 if (!p) 5289 goto out_unlock; 5290 5291 retval = security_task_getscheduler(p); 5292 if (retval) 5293 goto out_unlock; 5294 5295 if (task_has_rt_policy(p)) 5296 lp.sched_priority = p->rt_priority; 5297 rcu_read_unlock(); 5298 5299 /* 5300 * This one might sleep, we cannot do it with a spinlock held ... 5301 */ 5302 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 5303 5304 return retval; 5305 5306 out_unlock: 5307 rcu_read_unlock(); 5308 return retval; 5309 } 5310 5311 /* 5312 * Copy the kernel size attribute structure (which might be larger 5313 * than what user-space knows about) to user-space. 5314 * 5315 * Note that all cases are valid: user-space buffer can be larger or 5316 * smaller than the kernel-space buffer. The usual case is that both 5317 * have the same size. 5318 */ 5319 static int 5320 sched_attr_copy_to_user(struct sched_attr __user *uattr, 5321 struct sched_attr *kattr, 5322 unsigned int usize) 5323 { 5324 unsigned int ksize = sizeof(*kattr); 5325 5326 if (!access_ok(uattr, usize)) 5327 return -EFAULT; 5328 5329 /* 5330 * sched_getattr() ABI forwards and backwards compatibility: 5331 * 5332 * If usize == ksize then we just copy everything to user-space and all is good. 5333 * 5334 * If usize < ksize then we only copy as much as user-space has space for, 5335 * this keeps ABI compatibility as well. We skip the rest. 5336 * 5337 * If usize > ksize then user-space is using a newer version of the ABI, 5338 * which part the kernel doesn't know about. Just ignore it - tooling can 5339 * detect the kernel's knowledge of attributes from the attr->size value 5340 * which is set to ksize in this case. 5341 */ 5342 kattr->size = min(usize, ksize); 5343 5344 if (copy_to_user(uattr, kattr, kattr->size)) 5345 return -EFAULT; 5346 5347 return 0; 5348 } 5349 5350 /** 5351 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 5352 * @pid: the pid in question. 5353 * @uattr: structure containing the extended parameters. 5354 * @usize: sizeof(attr) for fwd/bwd comp. 5355 * @flags: for future extension. 5356 */ 5357 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 5358 unsigned int, usize, unsigned int, flags) 5359 { 5360 struct sched_attr kattr = { }; 5361 struct task_struct *p; 5362 int retval; 5363 5364 if (!uattr || pid < 0 || usize > PAGE_SIZE || 5365 usize < SCHED_ATTR_SIZE_VER0 || flags) 5366 return -EINVAL; 5367 5368 rcu_read_lock(); 5369 p = find_process_by_pid(pid); 5370 retval = -ESRCH; 5371 if (!p) 5372 goto out_unlock; 5373 5374 retval = security_task_getscheduler(p); 5375 if (retval) 5376 goto out_unlock; 5377 5378 kattr.sched_policy = p->policy; 5379 if (p->sched_reset_on_fork) 5380 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5381 if (task_has_dl_policy(p)) 5382 __getparam_dl(p, &kattr); 5383 else if (task_has_rt_policy(p)) 5384 kattr.sched_priority = p->rt_priority; 5385 else 5386 kattr.sched_nice = task_nice(p); 5387 5388 #ifdef CONFIG_UCLAMP_TASK 5389 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 5390 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 5391 #endif 5392 5393 rcu_read_unlock(); 5394 5395 return sched_attr_copy_to_user(uattr, &kattr, usize); 5396 5397 out_unlock: 5398 rcu_read_unlock(); 5399 return retval; 5400 } 5401 5402 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 5403 { 5404 cpumask_var_t cpus_allowed, new_mask; 5405 struct task_struct *p; 5406 int retval; 5407 5408 rcu_read_lock(); 5409 5410 p = find_process_by_pid(pid); 5411 if (!p) { 5412 rcu_read_unlock(); 5413 return -ESRCH; 5414 } 5415 5416 /* Prevent p going away */ 5417 get_task_struct(p); 5418 rcu_read_unlock(); 5419 5420 if (p->flags & PF_NO_SETAFFINITY) { 5421 retval = -EINVAL; 5422 goto out_put_task; 5423 } 5424 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 5425 retval = -ENOMEM; 5426 goto out_put_task; 5427 } 5428 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 5429 retval = -ENOMEM; 5430 goto out_free_cpus_allowed; 5431 } 5432 retval = -EPERM; 5433 if (!check_same_owner(p)) { 5434 rcu_read_lock(); 5435 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 5436 rcu_read_unlock(); 5437 goto out_free_new_mask; 5438 } 5439 rcu_read_unlock(); 5440 } 5441 5442 retval = security_task_setscheduler(p); 5443 if (retval) 5444 goto out_free_new_mask; 5445 5446 5447 cpuset_cpus_allowed(p, cpus_allowed); 5448 cpumask_and(new_mask, in_mask, cpus_allowed); 5449 5450 /* 5451 * Since bandwidth control happens on root_domain basis, 5452 * if admission test is enabled, we only admit -deadline 5453 * tasks allowed to run on all the CPUs in the task's 5454 * root_domain. 5455 */ 5456 #ifdef CONFIG_SMP 5457 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 5458 rcu_read_lock(); 5459 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 5460 retval = -EBUSY; 5461 rcu_read_unlock(); 5462 goto out_free_new_mask; 5463 } 5464 rcu_read_unlock(); 5465 } 5466 #endif 5467 again: 5468 retval = __set_cpus_allowed_ptr(p, new_mask, true); 5469 5470 if (!retval) { 5471 cpuset_cpus_allowed(p, cpus_allowed); 5472 if (!cpumask_subset(new_mask, cpus_allowed)) { 5473 /* 5474 * We must have raced with a concurrent cpuset 5475 * update. Just reset the cpus_allowed to the 5476 * cpuset's cpus_allowed 5477 */ 5478 cpumask_copy(new_mask, cpus_allowed); 5479 goto again; 5480 } 5481 } 5482 out_free_new_mask: 5483 free_cpumask_var(new_mask); 5484 out_free_cpus_allowed: 5485 free_cpumask_var(cpus_allowed); 5486 out_put_task: 5487 put_task_struct(p); 5488 return retval; 5489 } 5490 5491 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5492 struct cpumask *new_mask) 5493 { 5494 if (len < cpumask_size()) 5495 cpumask_clear(new_mask); 5496 else if (len > cpumask_size()) 5497 len = cpumask_size(); 5498 5499 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5500 } 5501 5502 /** 5503 * sys_sched_setaffinity - set the CPU affinity of a process 5504 * @pid: pid of the process 5505 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5506 * @user_mask_ptr: user-space pointer to the new CPU mask 5507 * 5508 * Return: 0 on success. An error code otherwise. 5509 */ 5510 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 5511 unsigned long __user *, user_mask_ptr) 5512 { 5513 cpumask_var_t new_mask; 5514 int retval; 5515 5516 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 5517 return -ENOMEM; 5518 5519 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 5520 if (retval == 0) 5521 retval = sched_setaffinity(pid, new_mask); 5522 free_cpumask_var(new_mask); 5523 return retval; 5524 } 5525 5526 long sched_getaffinity(pid_t pid, struct cpumask *mask) 5527 { 5528 struct task_struct *p; 5529 unsigned long flags; 5530 int retval; 5531 5532 rcu_read_lock(); 5533 5534 retval = -ESRCH; 5535 p = find_process_by_pid(pid); 5536 if (!p) 5537 goto out_unlock; 5538 5539 retval = security_task_getscheduler(p); 5540 if (retval) 5541 goto out_unlock; 5542 5543 raw_spin_lock_irqsave(&p->pi_lock, flags); 5544 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 5545 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5546 5547 out_unlock: 5548 rcu_read_unlock(); 5549 5550 return retval; 5551 } 5552 5553 /** 5554 * sys_sched_getaffinity - get the CPU affinity of a process 5555 * @pid: pid of the process 5556 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5557 * @user_mask_ptr: user-space pointer to hold the current CPU mask 5558 * 5559 * Return: size of CPU mask copied to user_mask_ptr on success. An 5560 * error code otherwise. 5561 */ 5562 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 5563 unsigned long __user *, user_mask_ptr) 5564 { 5565 int ret; 5566 cpumask_var_t mask; 5567 5568 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 5569 return -EINVAL; 5570 if (len & (sizeof(unsigned long)-1)) 5571 return -EINVAL; 5572 5573 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 5574 return -ENOMEM; 5575 5576 ret = sched_getaffinity(pid, mask); 5577 if (ret == 0) { 5578 unsigned int retlen = min(len, cpumask_size()); 5579 5580 if (copy_to_user(user_mask_ptr, mask, retlen)) 5581 ret = -EFAULT; 5582 else 5583 ret = retlen; 5584 } 5585 free_cpumask_var(mask); 5586 5587 return ret; 5588 } 5589 5590 /** 5591 * sys_sched_yield - yield the current processor to other threads. 5592 * 5593 * This function yields the current CPU to other tasks. If there are no 5594 * other threads running on this CPU then this function will return. 5595 * 5596 * Return: 0. 5597 */ 5598 static void do_sched_yield(void) 5599 { 5600 struct rq_flags rf; 5601 struct rq *rq; 5602 5603 rq = this_rq_lock_irq(&rf); 5604 5605 schedstat_inc(rq->yld_count); 5606 current->sched_class->yield_task(rq); 5607 5608 /* 5609 * Since we are going to call schedule() anyway, there's 5610 * no need to preempt or enable interrupts: 5611 */ 5612 preempt_disable(); 5613 rq_unlock(rq, &rf); 5614 sched_preempt_enable_no_resched(); 5615 5616 schedule(); 5617 } 5618 5619 SYSCALL_DEFINE0(sched_yield) 5620 { 5621 do_sched_yield(); 5622 return 0; 5623 } 5624 5625 #ifndef CONFIG_PREEMPTION 5626 int __sched _cond_resched(void) 5627 { 5628 if (should_resched(0)) { 5629 preempt_schedule_common(); 5630 return 1; 5631 } 5632 rcu_all_qs(); 5633 return 0; 5634 } 5635 EXPORT_SYMBOL(_cond_resched); 5636 #endif 5637 5638 /* 5639 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5640 * call schedule, and on return reacquire the lock. 5641 * 5642 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 5643 * operations here to prevent schedule() from being called twice (once via 5644 * spin_unlock(), once by hand). 5645 */ 5646 int __cond_resched_lock(spinlock_t *lock) 5647 { 5648 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5649 int ret = 0; 5650 5651 lockdep_assert_held(lock); 5652 5653 if (spin_needbreak(lock) || resched) { 5654 spin_unlock(lock); 5655 if (resched) 5656 preempt_schedule_common(); 5657 else 5658 cpu_relax(); 5659 ret = 1; 5660 spin_lock(lock); 5661 } 5662 return ret; 5663 } 5664 EXPORT_SYMBOL(__cond_resched_lock); 5665 5666 /** 5667 * yield - yield the current processor to other threads. 5668 * 5669 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5670 * 5671 * The scheduler is at all times free to pick the calling task as the most 5672 * eligible task to run, if removing the yield() call from your code breaks 5673 * it, its already broken. 5674 * 5675 * Typical broken usage is: 5676 * 5677 * while (!event) 5678 * yield(); 5679 * 5680 * where one assumes that yield() will let 'the other' process run that will 5681 * make event true. If the current task is a SCHED_FIFO task that will never 5682 * happen. Never use yield() as a progress guarantee!! 5683 * 5684 * If you want to use yield() to wait for something, use wait_event(). 5685 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5686 * If you still want to use yield(), do not! 5687 */ 5688 void __sched yield(void) 5689 { 5690 set_current_state(TASK_RUNNING); 5691 do_sched_yield(); 5692 } 5693 EXPORT_SYMBOL(yield); 5694 5695 /** 5696 * yield_to - yield the current processor to another thread in 5697 * your thread group, or accelerate that thread toward the 5698 * processor it's on. 5699 * @p: target task 5700 * @preempt: whether task preemption is allowed or not 5701 * 5702 * It's the caller's job to ensure that the target task struct 5703 * can't go away on us before we can do any checks. 5704 * 5705 * Return: 5706 * true (>0) if we indeed boosted the target task. 5707 * false (0) if we failed to boost the target. 5708 * -ESRCH if there's no task to yield to. 5709 */ 5710 int __sched yield_to(struct task_struct *p, bool preempt) 5711 { 5712 struct task_struct *curr = current; 5713 struct rq *rq, *p_rq; 5714 unsigned long flags; 5715 int yielded = 0; 5716 5717 local_irq_save(flags); 5718 rq = this_rq(); 5719 5720 again: 5721 p_rq = task_rq(p); 5722 /* 5723 * If we're the only runnable task on the rq and target rq also 5724 * has only one task, there's absolutely no point in yielding. 5725 */ 5726 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5727 yielded = -ESRCH; 5728 goto out_irq; 5729 } 5730 5731 double_rq_lock(rq, p_rq); 5732 if (task_rq(p) != p_rq) { 5733 double_rq_unlock(rq, p_rq); 5734 goto again; 5735 } 5736 5737 if (!curr->sched_class->yield_to_task) 5738 goto out_unlock; 5739 5740 if (curr->sched_class != p->sched_class) 5741 goto out_unlock; 5742 5743 if (task_running(p_rq, p) || p->state) 5744 goto out_unlock; 5745 5746 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5747 if (yielded) { 5748 schedstat_inc(rq->yld_count); 5749 /* 5750 * Make p's CPU reschedule; pick_next_entity takes care of 5751 * fairness. 5752 */ 5753 if (preempt && rq != p_rq) 5754 resched_curr(p_rq); 5755 } 5756 5757 out_unlock: 5758 double_rq_unlock(rq, p_rq); 5759 out_irq: 5760 local_irq_restore(flags); 5761 5762 if (yielded > 0) 5763 schedule(); 5764 5765 return yielded; 5766 } 5767 EXPORT_SYMBOL_GPL(yield_to); 5768 5769 int io_schedule_prepare(void) 5770 { 5771 int old_iowait = current->in_iowait; 5772 5773 current->in_iowait = 1; 5774 blk_schedule_flush_plug(current); 5775 5776 return old_iowait; 5777 } 5778 5779 void io_schedule_finish(int token) 5780 { 5781 current->in_iowait = token; 5782 } 5783 5784 /* 5785 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5786 * that process accounting knows that this is a task in IO wait state. 5787 */ 5788 long __sched io_schedule_timeout(long timeout) 5789 { 5790 int token; 5791 long ret; 5792 5793 token = io_schedule_prepare(); 5794 ret = schedule_timeout(timeout); 5795 io_schedule_finish(token); 5796 5797 return ret; 5798 } 5799 EXPORT_SYMBOL(io_schedule_timeout); 5800 5801 void __sched io_schedule(void) 5802 { 5803 int token; 5804 5805 token = io_schedule_prepare(); 5806 schedule(); 5807 io_schedule_finish(token); 5808 } 5809 EXPORT_SYMBOL(io_schedule); 5810 5811 /** 5812 * sys_sched_get_priority_max - return maximum RT priority. 5813 * @policy: scheduling class. 5814 * 5815 * Return: On success, this syscall returns the maximum 5816 * rt_priority that can be used by a given scheduling class. 5817 * On failure, a negative error code is returned. 5818 */ 5819 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5820 { 5821 int ret = -EINVAL; 5822 5823 switch (policy) { 5824 case SCHED_FIFO: 5825 case SCHED_RR: 5826 ret = MAX_USER_RT_PRIO-1; 5827 break; 5828 case SCHED_DEADLINE: 5829 case SCHED_NORMAL: 5830 case SCHED_BATCH: 5831 case SCHED_IDLE: 5832 ret = 0; 5833 break; 5834 } 5835 return ret; 5836 } 5837 5838 /** 5839 * sys_sched_get_priority_min - return minimum RT priority. 5840 * @policy: scheduling class. 5841 * 5842 * Return: On success, this syscall returns the minimum 5843 * rt_priority that can be used by a given scheduling class. 5844 * On failure, a negative error code is returned. 5845 */ 5846 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5847 { 5848 int ret = -EINVAL; 5849 5850 switch (policy) { 5851 case SCHED_FIFO: 5852 case SCHED_RR: 5853 ret = 1; 5854 break; 5855 case SCHED_DEADLINE: 5856 case SCHED_NORMAL: 5857 case SCHED_BATCH: 5858 case SCHED_IDLE: 5859 ret = 0; 5860 } 5861 return ret; 5862 } 5863 5864 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5865 { 5866 struct task_struct *p; 5867 unsigned int time_slice; 5868 struct rq_flags rf; 5869 struct rq *rq; 5870 int retval; 5871 5872 if (pid < 0) 5873 return -EINVAL; 5874 5875 retval = -ESRCH; 5876 rcu_read_lock(); 5877 p = find_process_by_pid(pid); 5878 if (!p) 5879 goto out_unlock; 5880 5881 retval = security_task_getscheduler(p); 5882 if (retval) 5883 goto out_unlock; 5884 5885 rq = task_rq_lock(p, &rf); 5886 time_slice = 0; 5887 if (p->sched_class->get_rr_interval) 5888 time_slice = p->sched_class->get_rr_interval(rq, p); 5889 task_rq_unlock(rq, p, &rf); 5890 5891 rcu_read_unlock(); 5892 jiffies_to_timespec64(time_slice, t); 5893 return 0; 5894 5895 out_unlock: 5896 rcu_read_unlock(); 5897 return retval; 5898 } 5899 5900 /** 5901 * sys_sched_rr_get_interval - return the default timeslice of a process. 5902 * @pid: pid of the process. 5903 * @interval: userspace pointer to the timeslice value. 5904 * 5905 * this syscall writes the default timeslice value of a given process 5906 * into the user-space timespec buffer. A value of '0' means infinity. 5907 * 5908 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5909 * an error code. 5910 */ 5911 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5912 struct __kernel_timespec __user *, interval) 5913 { 5914 struct timespec64 t; 5915 int retval = sched_rr_get_interval(pid, &t); 5916 5917 if (retval == 0) 5918 retval = put_timespec64(&t, interval); 5919 5920 return retval; 5921 } 5922 5923 #ifdef CONFIG_COMPAT_32BIT_TIME 5924 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 5925 struct old_timespec32 __user *, interval) 5926 { 5927 struct timespec64 t; 5928 int retval = sched_rr_get_interval(pid, &t); 5929 5930 if (retval == 0) 5931 retval = put_old_timespec32(&t, interval); 5932 return retval; 5933 } 5934 #endif 5935 5936 void sched_show_task(struct task_struct *p) 5937 { 5938 unsigned long free = 0; 5939 int ppid; 5940 5941 if (!try_get_task_stack(p)) 5942 return; 5943 5944 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5945 5946 if (p->state == TASK_RUNNING) 5947 printk(KERN_CONT " running task "); 5948 #ifdef CONFIG_DEBUG_STACK_USAGE 5949 free = stack_not_used(p); 5950 #endif 5951 ppid = 0; 5952 rcu_read_lock(); 5953 if (pid_alive(p)) 5954 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5955 rcu_read_unlock(); 5956 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5957 task_pid_nr(p), ppid, 5958 (unsigned long)task_thread_info(p)->flags); 5959 5960 print_worker_info(KERN_INFO, p); 5961 show_stack(p, NULL); 5962 put_task_stack(p); 5963 } 5964 EXPORT_SYMBOL_GPL(sched_show_task); 5965 5966 static inline bool 5967 state_filter_match(unsigned long state_filter, struct task_struct *p) 5968 { 5969 /* no filter, everything matches */ 5970 if (!state_filter) 5971 return true; 5972 5973 /* filter, but doesn't match */ 5974 if (!(p->state & state_filter)) 5975 return false; 5976 5977 /* 5978 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5979 * TASK_KILLABLE). 5980 */ 5981 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5982 return false; 5983 5984 return true; 5985 } 5986 5987 5988 void show_state_filter(unsigned long state_filter) 5989 { 5990 struct task_struct *g, *p; 5991 5992 #if BITS_PER_LONG == 32 5993 printk(KERN_INFO 5994 " task PC stack pid father\n"); 5995 #else 5996 printk(KERN_INFO 5997 " task PC stack pid father\n"); 5998 #endif 5999 rcu_read_lock(); 6000 for_each_process_thread(g, p) { 6001 /* 6002 * reset the NMI-timeout, listing all files on a slow 6003 * console might take a lot of time: 6004 * Also, reset softlockup watchdogs on all CPUs, because 6005 * another CPU might be blocked waiting for us to process 6006 * an IPI. 6007 */ 6008 touch_nmi_watchdog(); 6009 touch_all_softlockup_watchdogs(); 6010 if (state_filter_match(state_filter, p)) 6011 sched_show_task(p); 6012 } 6013 6014 #ifdef CONFIG_SCHED_DEBUG 6015 if (!state_filter) 6016 sysrq_sched_debug_show(); 6017 #endif 6018 rcu_read_unlock(); 6019 /* 6020 * Only show locks if all tasks are dumped: 6021 */ 6022 if (!state_filter) 6023 debug_show_all_locks(); 6024 } 6025 6026 /** 6027 * init_idle - set up an idle thread for a given CPU 6028 * @idle: task in question 6029 * @cpu: CPU the idle task belongs to 6030 * 6031 * NOTE: this function does not set the idle thread's NEED_RESCHED 6032 * flag, to make booting more robust. 6033 */ 6034 void init_idle(struct task_struct *idle, int cpu) 6035 { 6036 struct rq *rq = cpu_rq(cpu); 6037 unsigned long flags; 6038 6039 __sched_fork(0, idle); 6040 6041 raw_spin_lock_irqsave(&idle->pi_lock, flags); 6042 raw_spin_lock(&rq->lock); 6043 6044 idle->state = TASK_RUNNING; 6045 idle->se.exec_start = sched_clock(); 6046 idle->flags |= PF_IDLE; 6047 6048 kasan_unpoison_task_stack(idle); 6049 6050 #ifdef CONFIG_SMP 6051 /* 6052 * Its possible that init_idle() gets called multiple times on a task, 6053 * in that case do_set_cpus_allowed() will not do the right thing. 6054 * 6055 * And since this is boot we can forgo the serialization. 6056 */ 6057 set_cpus_allowed_common(idle, cpumask_of(cpu)); 6058 #endif 6059 /* 6060 * We're having a chicken and egg problem, even though we are 6061 * holding rq->lock, the CPU isn't yet set to this CPU so the 6062 * lockdep check in task_group() will fail. 6063 * 6064 * Similar case to sched_fork(). / Alternatively we could 6065 * use task_rq_lock() here and obtain the other rq->lock. 6066 * 6067 * Silence PROVE_RCU 6068 */ 6069 rcu_read_lock(); 6070 __set_task_cpu(idle, cpu); 6071 rcu_read_unlock(); 6072 6073 rq->idle = idle; 6074 rcu_assign_pointer(rq->curr, idle); 6075 idle->on_rq = TASK_ON_RQ_QUEUED; 6076 #ifdef CONFIG_SMP 6077 idle->on_cpu = 1; 6078 #endif 6079 raw_spin_unlock(&rq->lock); 6080 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 6081 6082 /* Set the preempt count _outside_ the spinlocks! */ 6083 init_idle_preempt_count(idle, cpu); 6084 6085 /* 6086 * The idle tasks have their own, simple scheduling class: 6087 */ 6088 idle->sched_class = &idle_sched_class; 6089 ftrace_graph_init_idle_task(idle, cpu); 6090 vtime_init_idle(idle, cpu); 6091 #ifdef CONFIG_SMP 6092 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 6093 #endif 6094 } 6095 6096 #ifdef CONFIG_SMP 6097 6098 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 6099 const struct cpumask *trial) 6100 { 6101 int ret = 1; 6102 6103 if (!cpumask_weight(cur)) 6104 return ret; 6105 6106 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 6107 6108 return ret; 6109 } 6110 6111 int task_can_attach(struct task_struct *p, 6112 const struct cpumask *cs_cpus_allowed) 6113 { 6114 int ret = 0; 6115 6116 /* 6117 * Kthreads which disallow setaffinity shouldn't be moved 6118 * to a new cpuset; we don't want to change their CPU 6119 * affinity and isolating such threads by their set of 6120 * allowed nodes is unnecessary. Thus, cpusets are not 6121 * applicable for such threads. This prevents checking for 6122 * success of set_cpus_allowed_ptr() on all attached tasks 6123 * before cpus_mask may be changed. 6124 */ 6125 if (p->flags & PF_NO_SETAFFINITY) { 6126 ret = -EINVAL; 6127 goto out; 6128 } 6129 6130 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 6131 cs_cpus_allowed)) 6132 ret = dl_task_can_attach(p, cs_cpus_allowed); 6133 6134 out: 6135 return ret; 6136 } 6137 6138 bool sched_smp_initialized __read_mostly; 6139 6140 #ifdef CONFIG_NUMA_BALANCING 6141 /* Migrate current task p to target_cpu */ 6142 int migrate_task_to(struct task_struct *p, int target_cpu) 6143 { 6144 struct migration_arg arg = { p, target_cpu }; 6145 int curr_cpu = task_cpu(p); 6146 6147 if (curr_cpu == target_cpu) 6148 return 0; 6149 6150 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 6151 return -EINVAL; 6152 6153 /* TODO: This is not properly updating schedstats */ 6154 6155 trace_sched_move_numa(p, curr_cpu, target_cpu); 6156 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 6157 } 6158 6159 /* 6160 * Requeue a task on a given node and accurately track the number of NUMA 6161 * tasks on the runqueues 6162 */ 6163 void sched_setnuma(struct task_struct *p, int nid) 6164 { 6165 bool queued, running; 6166 struct rq_flags rf; 6167 struct rq *rq; 6168 6169 rq = task_rq_lock(p, &rf); 6170 queued = task_on_rq_queued(p); 6171 running = task_current(rq, p); 6172 6173 if (queued) 6174 dequeue_task(rq, p, DEQUEUE_SAVE); 6175 if (running) 6176 put_prev_task(rq, p); 6177 6178 p->numa_preferred_nid = nid; 6179 6180 if (queued) 6181 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6182 if (running) 6183 set_next_task(rq, p); 6184 task_rq_unlock(rq, p, &rf); 6185 } 6186 #endif /* CONFIG_NUMA_BALANCING */ 6187 6188 #ifdef CONFIG_HOTPLUG_CPU 6189 /* 6190 * Ensure that the idle task is using init_mm right before its CPU goes 6191 * offline. 6192 */ 6193 void idle_task_exit(void) 6194 { 6195 struct mm_struct *mm = current->active_mm; 6196 6197 BUG_ON(cpu_online(smp_processor_id())); 6198 6199 if (mm != &init_mm) { 6200 switch_mm(mm, &init_mm, current); 6201 current->active_mm = &init_mm; 6202 finish_arch_post_lock_switch(); 6203 } 6204 mmdrop(mm); 6205 } 6206 6207 /* 6208 * Since this CPU is going 'away' for a while, fold any nr_active delta 6209 * we might have. Assumes we're called after migrate_tasks() so that the 6210 * nr_active count is stable. We need to take the teardown thread which 6211 * is calling this into account, so we hand in adjust = 1 to the load 6212 * calculation. 6213 * 6214 * Also see the comment "Global load-average calculations". 6215 */ 6216 static void calc_load_migrate(struct rq *rq) 6217 { 6218 long delta = calc_load_fold_active(rq, 1); 6219 if (delta) 6220 atomic_long_add(delta, &calc_load_tasks); 6221 } 6222 6223 static struct task_struct *__pick_migrate_task(struct rq *rq) 6224 { 6225 const struct sched_class *class; 6226 struct task_struct *next; 6227 6228 for_each_class(class) { 6229 next = class->pick_next_task(rq); 6230 if (next) { 6231 next->sched_class->put_prev_task(rq, next); 6232 return next; 6233 } 6234 } 6235 6236 /* The idle class should always have a runnable task */ 6237 BUG(); 6238 } 6239 6240 /* 6241 * Migrate all tasks from the rq, sleeping tasks will be migrated by 6242 * try_to_wake_up()->select_task_rq(). 6243 * 6244 * Called with rq->lock held even though we'er in stop_machine() and 6245 * there's no concurrency possible, we hold the required locks anyway 6246 * because of lock validation efforts. 6247 */ 6248 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 6249 { 6250 struct rq *rq = dead_rq; 6251 struct task_struct *next, *stop = rq->stop; 6252 struct rq_flags orf = *rf; 6253 int dest_cpu; 6254 6255 /* 6256 * Fudge the rq selection such that the below task selection loop 6257 * doesn't get stuck on the currently eligible stop task. 6258 * 6259 * We're currently inside stop_machine() and the rq is either stuck 6260 * in the stop_machine_cpu_stop() loop, or we're executing this code, 6261 * either way we should never end up calling schedule() until we're 6262 * done here. 6263 */ 6264 rq->stop = NULL; 6265 6266 /* 6267 * put_prev_task() and pick_next_task() sched 6268 * class method both need to have an up-to-date 6269 * value of rq->clock[_task] 6270 */ 6271 update_rq_clock(rq); 6272 6273 for (;;) { 6274 /* 6275 * There's this thread running, bail when that's the only 6276 * remaining thread: 6277 */ 6278 if (rq->nr_running == 1) 6279 break; 6280 6281 next = __pick_migrate_task(rq); 6282 6283 /* 6284 * Rules for changing task_struct::cpus_mask are holding 6285 * both pi_lock and rq->lock, such that holding either 6286 * stabilizes the mask. 6287 * 6288 * Drop rq->lock is not quite as disastrous as it usually is 6289 * because !cpu_active at this point, which means load-balance 6290 * will not interfere. Also, stop-machine. 6291 */ 6292 rq_unlock(rq, rf); 6293 raw_spin_lock(&next->pi_lock); 6294 rq_relock(rq, rf); 6295 6296 /* 6297 * Since we're inside stop-machine, _nothing_ should have 6298 * changed the task, WARN if weird stuff happened, because in 6299 * that case the above rq->lock drop is a fail too. 6300 */ 6301 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 6302 raw_spin_unlock(&next->pi_lock); 6303 continue; 6304 } 6305 6306 /* Find suitable destination for @next, with force if needed. */ 6307 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 6308 rq = __migrate_task(rq, rf, next, dest_cpu); 6309 if (rq != dead_rq) { 6310 rq_unlock(rq, rf); 6311 rq = dead_rq; 6312 *rf = orf; 6313 rq_relock(rq, rf); 6314 } 6315 raw_spin_unlock(&next->pi_lock); 6316 } 6317 6318 rq->stop = stop; 6319 } 6320 #endif /* CONFIG_HOTPLUG_CPU */ 6321 6322 void set_rq_online(struct rq *rq) 6323 { 6324 if (!rq->online) { 6325 const struct sched_class *class; 6326 6327 cpumask_set_cpu(rq->cpu, rq->rd->online); 6328 rq->online = 1; 6329 6330 for_each_class(class) { 6331 if (class->rq_online) 6332 class->rq_online(rq); 6333 } 6334 } 6335 } 6336 6337 void set_rq_offline(struct rq *rq) 6338 { 6339 if (rq->online) { 6340 const struct sched_class *class; 6341 6342 for_each_class(class) { 6343 if (class->rq_offline) 6344 class->rq_offline(rq); 6345 } 6346 6347 cpumask_clear_cpu(rq->cpu, rq->rd->online); 6348 rq->online = 0; 6349 } 6350 } 6351 6352 /* 6353 * used to mark begin/end of suspend/resume: 6354 */ 6355 static int num_cpus_frozen; 6356 6357 /* 6358 * Update cpusets according to cpu_active mask. If cpusets are 6359 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6360 * around partition_sched_domains(). 6361 * 6362 * If we come here as part of a suspend/resume, don't touch cpusets because we 6363 * want to restore it back to its original state upon resume anyway. 6364 */ 6365 static void cpuset_cpu_active(void) 6366 { 6367 if (cpuhp_tasks_frozen) { 6368 /* 6369 * num_cpus_frozen tracks how many CPUs are involved in suspend 6370 * resume sequence. As long as this is not the last online 6371 * operation in the resume sequence, just build a single sched 6372 * domain, ignoring cpusets. 6373 */ 6374 partition_sched_domains(1, NULL, NULL); 6375 if (--num_cpus_frozen) 6376 return; 6377 /* 6378 * This is the last CPU online operation. So fall through and 6379 * restore the original sched domains by considering the 6380 * cpuset configurations. 6381 */ 6382 cpuset_force_rebuild(); 6383 } 6384 cpuset_update_active_cpus(); 6385 } 6386 6387 static int cpuset_cpu_inactive(unsigned int cpu) 6388 { 6389 if (!cpuhp_tasks_frozen) { 6390 if (dl_cpu_busy(cpu)) 6391 return -EBUSY; 6392 cpuset_update_active_cpus(); 6393 } else { 6394 num_cpus_frozen++; 6395 partition_sched_domains(1, NULL, NULL); 6396 } 6397 return 0; 6398 } 6399 6400 int sched_cpu_activate(unsigned int cpu) 6401 { 6402 struct rq *rq = cpu_rq(cpu); 6403 struct rq_flags rf; 6404 6405 #ifdef CONFIG_SCHED_SMT 6406 /* 6407 * When going up, increment the number of cores with SMT present. 6408 */ 6409 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6410 static_branch_inc_cpuslocked(&sched_smt_present); 6411 #endif 6412 set_cpu_active(cpu, true); 6413 6414 if (sched_smp_initialized) { 6415 sched_domains_numa_masks_set(cpu); 6416 cpuset_cpu_active(); 6417 } 6418 6419 /* 6420 * Put the rq online, if not already. This happens: 6421 * 6422 * 1) In the early boot process, because we build the real domains 6423 * after all CPUs have been brought up. 6424 * 6425 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 6426 * domains. 6427 */ 6428 rq_lock_irqsave(rq, &rf); 6429 if (rq->rd) { 6430 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6431 set_rq_online(rq); 6432 } 6433 rq_unlock_irqrestore(rq, &rf); 6434 6435 return 0; 6436 } 6437 6438 int sched_cpu_deactivate(unsigned int cpu) 6439 { 6440 int ret; 6441 6442 set_cpu_active(cpu, false); 6443 /* 6444 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 6445 * users of this state to go away such that all new such users will 6446 * observe it. 6447 * 6448 * Do sync before park smpboot threads to take care the rcu boost case. 6449 */ 6450 synchronize_rcu(); 6451 6452 #ifdef CONFIG_SCHED_SMT 6453 /* 6454 * When going down, decrement the number of cores with SMT present. 6455 */ 6456 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6457 static_branch_dec_cpuslocked(&sched_smt_present); 6458 #endif 6459 6460 if (!sched_smp_initialized) 6461 return 0; 6462 6463 ret = cpuset_cpu_inactive(cpu); 6464 if (ret) { 6465 set_cpu_active(cpu, true); 6466 return ret; 6467 } 6468 sched_domains_numa_masks_clear(cpu); 6469 return 0; 6470 } 6471 6472 static void sched_rq_cpu_starting(unsigned int cpu) 6473 { 6474 struct rq *rq = cpu_rq(cpu); 6475 6476 rq->calc_load_update = calc_load_update; 6477 update_max_interval(); 6478 } 6479 6480 int sched_cpu_starting(unsigned int cpu) 6481 { 6482 sched_rq_cpu_starting(cpu); 6483 sched_tick_start(cpu); 6484 return 0; 6485 } 6486 6487 #ifdef CONFIG_HOTPLUG_CPU 6488 int sched_cpu_dying(unsigned int cpu) 6489 { 6490 struct rq *rq = cpu_rq(cpu); 6491 struct rq_flags rf; 6492 6493 /* Handle pending wakeups and then migrate everything off */ 6494 sched_ttwu_pending(); 6495 sched_tick_stop(cpu); 6496 6497 rq_lock_irqsave(rq, &rf); 6498 if (rq->rd) { 6499 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6500 set_rq_offline(rq); 6501 } 6502 migrate_tasks(rq, &rf); 6503 BUG_ON(rq->nr_running != 1); 6504 rq_unlock_irqrestore(rq, &rf); 6505 6506 calc_load_migrate(rq); 6507 update_max_interval(); 6508 nohz_balance_exit_idle(rq); 6509 hrtick_clear(rq); 6510 return 0; 6511 } 6512 #endif 6513 6514 void __init sched_init_smp(void) 6515 { 6516 sched_init_numa(); 6517 6518 /* 6519 * There's no userspace yet to cause hotplug operations; hence all the 6520 * CPU masks are stable and all blatant races in the below code cannot 6521 * happen. 6522 */ 6523 mutex_lock(&sched_domains_mutex); 6524 sched_init_domains(cpu_active_mask); 6525 mutex_unlock(&sched_domains_mutex); 6526 6527 /* Move init over to a non-isolated CPU */ 6528 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 6529 BUG(); 6530 sched_init_granularity(); 6531 6532 init_sched_rt_class(); 6533 init_sched_dl_class(); 6534 6535 sched_smp_initialized = true; 6536 } 6537 6538 static int __init migration_init(void) 6539 { 6540 sched_cpu_starting(smp_processor_id()); 6541 return 0; 6542 } 6543 early_initcall(migration_init); 6544 6545 #else 6546 void __init sched_init_smp(void) 6547 { 6548 sched_init_granularity(); 6549 } 6550 #endif /* CONFIG_SMP */ 6551 6552 int in_sched_functions(unsigned long addr) 6553 { 6554 return in_lock_functions(addr) || 6555 (addr >= (unsigned long)__sched_text_start 6556 && addr < (unsigned long)__sched_text_end); 6557 } 6558 6559 #ifdef CONFIG_CGROUP_SCHED 6560 /* 6561 * Default task group. 6562 * Every task in system belongs to this group at bootup. 6563 */ 6564 struct task_group root_task_group; 6565 LIST_HEAD(task_groups); 6566 6567 /* Cacheline aligned slab cache for task_group */ 6568 static struct kmem_cache *task_group_cache __read_mostly; 6569 #endif 6570 6571 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6572 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 6573 6574 void __init sched_init(void) 6575 { 6576 unsigned long ptr = 0; 6577 int i; 6578 6579 wait_bit_init(); 6580 6581 #ifdef CONFIG_FAIR_GROUP_SCHED 6582 ptr += 2 * nr_cpu_ids * sizeof(void **); 6583 #endif 6584 #ifdef CONFIG_RT_GROUP_SCHED 6585 ptr += 2 * nr_cpu_ids * sizeof(void **); 6586 #endif 6587 if (ptr) { 6588 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 6589 6590 #ifdef CONFIG_FAIR_GROUP_SCHED 6591 root_task_group.se = (struct sched_entity **)ptr; 6592 ptr += nr_cpu_ids * sizeof(void **); 6593 6594 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6595 ptr += nr_cpu_ids * sizeof(void **); 6596 6597 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6598 #ifdef CONFIG_RT_GROUP_SCHED 6599 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6600 ptr += nr_cpu_ids * sizeof(void **); 6601 6602 root_task_group.rt_rq = (struct rt_rq **)ptr; 6603 ptr += nr_cpu_ids * sizeof(void **); 6604 6605 #endif /* CONFIG_RT_GROUP_SCHED */ 6606 } 6607 #ifdef CONFIG_CPUMASK_OFFSTACK 6608 for_each_possible_cpu(i) { 6609 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6610 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6611 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6612 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6613 } 6614 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6615 6616 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6617 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6618 6619 #ifdef CONFIG_SMP 6620 init_defrootdomain(); 6621 #endif 6622 6623 #ifdef CONFIG_RT_GROUP_SCHED 6624 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6625 global_rt_period(), global_rt_runtime()); 6626 #endif /* CONFIG_RT_GROUP_SCHED */ 6627 6628 #ifdef CONFIG_CGROUP_SCHED 6629 task_group_cache = KMEM_CACHE(task_group, 0); 6630 6631 list_add(&root_task_group.list, &task_groups); 6632 INIT_LIST_HEAD(&root_task_group.children); 6633 INIT_LIST_HEAD(&root_task_group.siblings); 6634 autogroup_init(&init_task); 6635 #endif /* CONFIG_CGROUP_SCHED */ 6636 6637 for_each_possible_cpu(i) { 6638 struct rq *rq; 6639 6640 rq = cpu_rq(i); 6641 raw_spin_lock_init(&rq->lock); 6642 rq->nr_running = 0; 6643 rq->calc_load_active = 0; 6644 rq->calc_load_update = jiffies + LOAD_FREQ; 6645 init_cfs_rq(&rq->cfs); 6646 init_rt_rq(&rq->rt); 6647 init_dl_rq(&rq->dl); 6648 #ifdef CONFIG_FAIR_GROUP_SCHED 6649 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6650 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6651 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6652 /* 6653 * How much CPU bandwidth does root_task_group get? 6654 * 6655 * In case of task-groups formed thr' the cgroup filesystem, it 6656 * gets 100% of the CPU resources in the system. This overall 6657 * system CPU resource is divided among the tasks of 6658 * root_task_group and its child task-groups in a fair manner, 6659 * based on each entity's (task or task-group's) weight 6660 * (se->load.weight). 6661 * 6662 * In other words, if root_task_group has 10 tasks of weight 6663 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6664 * then A0's share of the CPU resource is: 6665 * 6666 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6667 * 6668 * We achieve this by letting root_task_group's tasks sit 6669 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6670 */ 6671 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6672 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6673 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6674 6675 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6676 #ifdef CONFIG_RT_GROUP_SCHED 6677 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6678 #endif 6679 #ifdef CONFIG_SMP 6680 rq->sd = NULL; 6681 rq->rd = NULL; 6682 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6683 rq->balance_callback = NULL; 6684 rq->active_balance = 0; 6685 rq->next_balance = jiffies; 6686 rq->push_cpu = 0; 6687 rq->cpu = i; 6688 rq->online = 0; 6689 rq->idle_stamp = 0; 6690 rq->avg_idle = 2*sysctl_sched_migration_cost; 6691 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6692 6693 INIT_LIST_HEAD(&rq->cfs_tasks); 6694 6695 rq_attach_root(rq, &def_root_domain); 6696 #ifdef CONFIG_NO_HZ_COMMON 6697 rq->last_blocked_load_update_tick = jiffies; 6698 atomic_set(&rq->nohz_flags, 0); 6699 #endif 6700 #endif /* CONFIG_SMP */ 6701 hrtick_rq_init(rq); 6702 atomic_set(&rq->nr_iowait, 0); 6703 } 6704 6705 set_load_weight(&init_task, false); 6706 6707 /* 6708 * The boot idle thread does lazy MMU switching as well: 6709 */ 6710 mmgrab(&init_mm); 6711 enter_lazy_tlb(&init_mm, current); 6712 6713 /* 6714 * Make us the idle thread. Technically, schedule() should not be 6715 * called from this thread, however somewhere below it might be, 6716 * but because we are the idle thread, we just pick up running again 6717 * when this runqueue becomes "idle". 6718 */ 6719 init_idle(current, smp_processor_id()); 6720 6721 calc_load_update = jiffies + LOAD_FREQ; 6722 6723 #ifdef CONFIG_SMP 6724 idle_thread_set_boot_cpu(); 6725 #endif 6726 init_sched_fair_class(); 6727 6728 init_schedstats(); 6729 6730 psi_init(); 6731 6732 init_uclamp(); 6733 6734 scheduler_running = 1; 6735 } 6736 6737 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6738 static inline int preempt_count_equals(int preempt_offset) 6739 { 6740 int nested = preempt_count() + rcu_preempt_depth(); 6741 6742 return (nested == preempt_offset); 6743 } 6744 6745 void __might_sleep(const char *file, int line, int preempt_offset) 6746 { 6747 /* 6748 * Blocking primitives will set (and therefore destroy) current->state, 6749 * since we will exit with TASK_RUNNING make sure we enter with it, 6750 * otherwise we will destroy state. 6751 */ 6752 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6753 "do not call blocking ops when !TASK_RUNNING; " 6754 "state=%lx set at [<%p>] %pS\n", 6755 current->state, 6756 (void *)current->task_state_change, 6757 (void *)current->task_state_change); 6758 6759 ___might_sleep(file, line, preempt_offset); 6760 } 6761 EXPORT_SYMBOL(__might_sleep); 6762 6763 void ___might_sleep(const char *file, int line, int preempt_offset) 6764 { 6765 /* Ratelimiting timestamp: */ 6766 static unsigned long prev_jiffy; 6767 6768 unsigned long preempt_disable_ip; 6769 6770 /* WARN_ON_ONCE() by default, no rate limit required: */ 6771 rcu_sleep_check(); 6772 6773 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6774 !is_idle_task(current) && !current->non_block_count) || 6775 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6776 oops_in_progress) 6777 return; 6778 6779 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6780 return; 6781 prev_jiffy = jiffies; 6782 6783 /* Save this before calling printk(), since that will clobber it: */ 6784 preempt_disable_ip = get_preempt_disable_ip(current); 6785 6786 printk(KERN_ERR 6787 "BUG: sleeping function called from invalid context at %s:%d\n", 6788 file, line); 6789 printk(KERN_ERR 6790 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 6791 in_atomic(), irqs_disabled(), current->non_block_count, 6792 current->pid, current->comm); 6793 6794 if (task_stack_end_corrupted(current)) 6795 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6796 6797 debug_show_held_locks(current); 6798 if (irqs_disabled()) 6799 print_irqtrace_events(current); 6800 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6801 && !preempt_count_equals(preempt_offset)) { 6802 pr_err("Preemption disabled at:"); 6803 print_ip_sym(preempt_disable_ip); 6804 pr_cont("\n"); 6805 } 6806 dump_stack(); 6807 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6808 } 6809 EXPORT_SYMBOL(___might_sleep); 6810 6811 void __cant_sleep(const char *file, int line, int preempt_offset) 6812 { 6813 static unsigned long prev_jiffy; 6814 6815 if (irqs_disabled()) 6816 return; 6817 6818 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6819 return; 6820 6821 if (preempt_count() > preempt_offset) 6822 return; 6823 6824 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6825 return; 6826 prev_jiffy = jiffies; 6827 6828 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6829 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6830 in_atomic(), irqs_disabled(), 6831 current->pid, current->comm); 6832 6833 debug_show_held_locks(current); 6834 dump_stack(); 6835 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6836 } 6837 EXPORT_SYMBOL_GPL(__cant_sleep); 6838 #endif 6839 6840 #ifdef CONFIG_MAGIC_SYSRQ 6841 void normalize_rt_tasks(void) 6842 { 6843 struct task_struct *g, *p; 6844 struct sched_attr attr = { 6845 .sched_policy = SCHED_NORMAL, 6846 }; 6847 6848 read_lock(&tasklist_lock); 6849 for_each_process_thread(g, p) { 6850 /* 6851 * Only normalize user tasks: 6852 */ 6853 if (p->flags & PF_KTHREAD) 6854 continue; 6855 6856 p->se.exec_start = 0; 6857 schedstat_set(p->se.statistics.wait_start, 0); 6858 schedstat_set(p->se.statistics.sleep_start, 0); 6859 schedstat_set(p->se.statistics.block_start, 0); 6860 6861 if (!dl_task(p) && !rt_task(p)) { 6862 /* 6863 * Renice negative nice level userspace 6864 * tasks back to 0: 6865 */ 6866 if (task_nice(p) < 0) 6867 set_user_nice(p, 0); 6868 continue; 6869 } 6870 6871 __sched_setscheduler(p, &attr, false, false); 6872 } 6873 read_unlock(&tasklist_lock); 6874 } 6875 6876 #endif /* CONFIG_MAGIC_SYSRQ */ 6877 6878 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6879 /* 6880 * These functions are only useful for the IA64 MCA handling, or kdb. 6881 * 6882 * They can only be called when the whole system has been 6883 * stopped - every CPU needs to be quiescent, and no scheduling 6884 * activity can take place. Using them for anything else would 6885 * be a serious bug, and as a result, they aren't even visible 6886 * under any other configuration. 6887 */ 6888 6889 /** 6890 * curr_task - return the current task for a given CPU. 6891 * @cpu: the processor in question. 6892 * 6893 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6894 * 6895 * Return: The current task for @cpu. 6896 */ 6897 struct task_struct *curr_task(int cpu) 6898 { 6899 return cpu_curr(cpu); 6900 } 6901 6902 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6903 6904 #ifdef CONFIG_IA64 6905 /** 6906 * ia64_set_curr_task - set the current task for a given CPU. 6907 * @cpu: the processor in question. 6908 * @p: the task pointer to set. 6909 * 6910 * Description: This function must only be used when non-maskable interrupts 6911 * are serviced on a separate stack. It allows the architecture to switch the 6912 * notion of the current task on a CPU in a non-blocking manner. This function 6913 * must be called with all CPU's synchronized, and interrupts disabled, the 6914 * and caller must save the original value of the current task (see 6915 * curr_task() above) and restore that value before reenabling interrupts and 6916 * re-starting the system. 6917 * 6918 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6919 */ 6920 void ia64_set_curr_task(int cpu, struct task_struct *p) 6921 { 6922 cpu_curr(cpu) = p; 6923 } 6924 6925 #endif 6926 6927 #ifdef CONFIG_CGROUP_SCHED 6928 /* task_group_lock serializes the addition/removal of task groups */ 6929 static DEFINE_SPINLOCK(task_group_lock); 6930 6931 static inline void alloc_uclamp_sched_group(struct task_group *tg, 6932 struct task_group *parent) 6933 { 6934 #ifdef CONFIG_UCLAMP_TASK_GROUP 6935 enum uclamp_id clamp_id; 6936 6937 for_each_clamp_id(clamp_id) { 6938 uclamp_se_set(&tg->uclamp_req[clamp_id], 6939 uclamp_none(clamp_id), false); 6940 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 6941 } 6942 #endif 6943 } 6944 6945 static void sched_free_group(struct task_group *tg) 6946 { 6947 free_fair_sched_group(tg); 6948 free_rt_sched_group(tg); 6949 autogroup_free(tg); 6950 kmem_cache_free(task_group_cache, tg); 6951 } 6952 6953 /* allocate runqueue etc for a new task group */ 6954 struct task_group *sched_create_group(struct task_group *parent) 6955 { 6956 struct task_group *tg; 6957 6958 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6959 if (!tg) 6960 return ERR_PTR(-ENOMEM); 6961 6962 if (!alloc_fair_sched_group(tg, parent)) 6963 goto err; 6964 6965 if (!alloc_rt_sched_group(tg, parent)) 6966 goto err; 6967 6968 alloc_uclamp_sched_group(tg, parent); 6969 6970 return tg; 6971 6972 err: 6973 sched_free_group(tg); 6974 return ERR_PTR(-ENOMEM); 6975 } 6976 6977 void sched_online_group(struct task_group *tg, struct task_group *parent) 6978 { 6979 unsigned long flags; 6980 6981 spin_lock_irqsave(&task_group_lock, flags); 6982 list_add_rcu(&tg->list, &task_groups); 6983 6984 /* Root should already exist: */ 6985 WARN_ON(!parent); 6986 6987 tg->parent = parent; 6988 INIT_LIST_HEAD(&tg->children); 6989 list_add_rcu(&tg->siblings, &parent->children); 6990 spin_unlock_irqrestore(&task_group_lock, flags); 6991 6992 online_fair_sched_group(tg); 6993 } 6994 6995 /* rcu callback to free various structures associated with a task group */ 6996 static void sched_free_group_rcu(struct rcu_head *rhp) 6997 { 6998 /* Now it should be safe to free those cfs_rqs: */ 6999 sched_free_group(container_of(rhp, struct task_group, rcu)); 7000 } 7001 7002 void sched_destroy_group(struct task_group *tg) 7003 { 7004 /* Wait for possible concurrent references to cfs_rqs complete: */ 7005 call_rcu(&tg->rcu, sched_free_group_rcu); 7006 } 7007 7008 void sched_offline_group(struct task_group *tg) 7009 { 7010 unsigned long flags; 7011 7012 /* End participation in shares distribution: */ 7013 unregister_fair_sched_group(tg); 7014 7015 spin_lock_irqsave(&task_group_lock, flags); 7016 list_del_rcu(&tg->list); 7017 list_del_rcu(&tg->siblings); 7018 spin_unlock_irqrestore(&task_group_lock, flags); 7019 } 7020 7021 static void sched_change_group(struct task_struct *tsk, int type) 7022 { 7023 struct task_group *tg; 7024 7025 /* 7026 * All callers are synchronized by task_rq_lock(); we do not use RCU 7027 * which is pointless here. Thus, we pass "true" to task_css_check() 7028 * to prevent lockdep warnings. 7029 */ 7030 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7031 struct task_group, css); 7032 tg = autogroup_task_group(tsk, tg); 7033 tsk->sched_task_group = tg; 7034 7035 #ifdef CONFIG_FAIR_GROUP_SCHED 7036 if (tsk->sched_class->task_change_group) 7037 tsk->sched_class->task_change_group(tsk, type); 7038 else 7039 #endif 7040 set_task_rq(tsk, task_cpu(tsk)); 7041 } 7042 7043 /* 7044 * Change task's runqueue when it moves between groups. 7045 * 7046 * The caller of this function should have put the task in its new group by 7047 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7048 * its new group. 7049 */ 7050 void sched_move_task(struct task_struct *tsk) 7051 { 7052 int queued, running, queue_flags = 7053 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7054 struct rq_flags rf; 7055 struct rq *rq; 7056 7057 rq = task_rq_lock(tsk, &rf); 7058 update_rq_clock(rq); 7059 7060 running = task_current(rq, tsk); 7061 queued = task_on_rq_queued(tsk); 7062 7063 if (queued) 7064 dequeue_task(rq, tsk, queue_flags); 7065 if (running) 7066 put_prev_task(rq, tsk); 7067 7068 sched_change_group(tsk, TASK_MOVE_GROUP); 7069 7070 if (queued) 7071 enqueue_task(rq, tsk, queue_flags); 7072 if (running) { 7073 set_next_task(rq, tsk); 7074 /* 7075 * After changing group, the running task may have joined a 7076 * throttled one but it's still the running task. Trigger a 7077 * resched to make sure that task can still run. 7078 */ 7079 resched_curr(rq); 7080 } 7081 7082 task_rq_unlock(rq, tsk, &rf); 7083 } 7084 7085 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7086 { 7087 return css ? container_of(css, struct task_group, css) : NULL; 7088 } 7089 7090 static struct cgroup_subsys_state * 7091 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7092 { 7093 struct task_group *parent = css_tg(parent_css); 7094 struct task_group *tg; 7095 7096 if (!parent) { 7097 /* This is early initialization for the top cgroup */ 7098 return &root_task_group.css; 7099 } 7100 7101 tg = sched_create_group(parent); 7102 if (IS_ERR(tg)) 7103 return ERR_PTR(-ENOMEM); 7104 7105 return &tg->css; 7106 } 7107 7108 /* Expose task group only after completing cgroup initialization */ 7109 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7110 { 7111 struct task_group *tg = css_tg(css); 7112 struct task_group *parent = css_tg(css->parent); 7113 7114 if (parent) 7115 sched_online_group(tg, parent); 7116 7117 #ifdef CONFIG_UCLAMP_TASK_GROUP 7118 /* Propagate the effective uclamp value for the new group */ 7119 cpu_util_update_eff(css); 7120 #endif 7121 7122 return 0; 7123 } 7124 7125 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 7126 { 7127 struct task_group *tg = css_tg(css); 7128 7129 sched_offline_group(tg); 7130 } 7131 7132 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7133 { 7134 struct task_group *tg = css_tg(css); 7135 7136 /* 7137 * Relies on the RCU grace period between css_released() and this. 7138 */ 7139 sched_free_group(tg); 7140 } 7141 7142 /* 7143 * This is called before wake_up_new_task(), therefore we really only 7144 * have to set its group bits, all the other stuff does not apply. 7145 */ 7146 static void cpu_cgroup_fork(struct task_struct *task) 7147 { 7148 struct rq_flags rf; 7149 struct rq *rq; 7150 7151 rq = task_rq_lock(task, &rf); 7152 7153 update_rq_clock(rq); 7154 sched_change_group(task, TASK_SET_GROUP); 7155 7156 task_rq_unlock(rq, task, &rf); 7157 } 7158 7159 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 7160 { 7161 struct task_struct *task; 7162 struct cgroup_subsys_state *css; 7163 int ret = 0; 7164 7165 cgroup_taskset_for_each(task, css, tset) { 7166 #ifdef CONFIG_RT_GROUP_SCHED 7167 if (!sched_rt_can_attach(css_tg(css), task)) 7168 return -EINVAL; 7169 #endif 7170 /* 7171 * Serialize against wake_up_new_task() such that if its 7172 * running, we're sure to observe its full state. 7173 */ 7174 raw_spin_lock_irq(&task->pi_lock); 7175 /* 7176 * Avoid calling sched_move_task() before wake_up_new_task() 7177 * has happened. This would lead to problems with PELT, due to 7178 * move wanting to detach+attach while we're not attached yet. 7179 */ 7180 if (task->state == TASK_NEW) 7181 ret = -EINVAL; 7182 raw_spin_unlock_irq(&task->pi_lock); 7183 7184 if (ret) 7185 break; 7186 } 7187 return ret; 7188 } 7189 7190 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 7191 { 7192 struct task_struct *task; 7193 struct cgroup_subsys_state *css; 7194 7195 cgroup_taskset_for_each(task, css, tset) 7196 sched_move_task(task); 7197 } 7198 7199 #ifdef CONFIG_UCLAMP_TASK_GROUP 7200 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 7201 { 7202 struct cgroup_subsys_state *top_css = css; 7203 struct uclamp_se *uc_parent = NULL; 7204 struct uclamp_se *uc_se = NULL; 7205 unsigned int eff[UCLAMP_CNT]; 7206 enum uclamp_id clamp_id; 7207 unsigned int clamps; 7208 7209 css_for_each_descendant_pre(css, top_css) { 7210 uc_parent = css_tg(css)->parent 7211 ? css_tg(css)->parent->uclamp : NULL; 7212 7213 for_each_clamp_id(clamp_id) { 7214 /* Assume effective clamps matches requested clamps */ 7215 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 7216 /* Cap effective clamps with parent's effective clamps */ 7217 if (uc_parent && 7218 eff[clamp_id] > uc_parent[clamp_id].value) { 7219 eff[clamp_id] = uc_parent[clamp_id].value; 7220 } 7221 } 7222 /* Ensure protection is always capped by limit */ 7223 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 7224 7225 /* Propagate most restrictive effective clamps */ 7226 clamps = 0x0; 7227 uc_se = css_tg(css)->uclamp; 7228 for_each_clamp_id(clamp_id) { 7229 if (eff[clamp_id] == uc_se[clamp_id].value) 7230 continue; 7231 uc_se[clamp_id].value = eff[clamp_id]; 7232 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 7233 clamps |= (0x1 << clamp_id); 7234 } 7235 if (!clamps) { 7236 css = css_rightmost_descendant(css); 7237 continue; 7238 } 7239 7240 /* Immediately update descendants RUNNABLE tasks */ 7241 uclamp_update_active_tasks(css, clamps); 7242 } 7243 } 7244 7245 /* 7246 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 7247 * C expression. Since there is no way to convert a macro argument (N) into a 7248 * character constant, use two levels of macros. 7249 */ 7250 #define _POW10(exp) ((unsigned int)1e##exp) 7251 #define POW10(exp) _POW10(exp) 7252 7253 struct uclamp_request { 7254 #define UCLAMP_PERCENT_SHIFT 2 7255 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 7256 s64 percent; 7257 u64 util; 7258 int ret; 7259 }; 7260 7261 static inline struct uclamp_request 7262 capacity_from_percent(char *buf) 7263 { 7264 struct uclamp_request req = { 7265 .percent = UCLAMP_PERCENT_SCALE, 7266 .util = SCHED_CAPACITY_SCALE, 7267 .ret = 0, 7268 }; 7269 7270 buf = strim(buf); 7271 if (strcmp(buf, "max")) { 7272 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 7273 &req.percent); 7274 if (req.ret) 7275 return req; 7276 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 7277 req.ret = -ERANGE; 7278 return req; 7279 } 7280 7281 req.util = req.percent << SCHED_CAPACITY_SHIFT; 7282 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 7283 } 7284 7285 return req; 7286 } 7287 7288 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 7289 size_t nbytes, loff_t off, 7290 enum uclamp_id clamp_id) 7291 { 7292 struct uclamp_request req; 7293 struct task_group *tg; 7294 7295 req = capacity_from_percent(buf); 7296 if (req.ret) 7297 return req.ret; 7298 7299 mutex_lock(&uclamp_mutex); 7300 rcu_read_lock(); 7301 7302 tg = css_tg(of_css(of)); 7303 if (tg->uclamp_req[clamp_id].value != req.util) 7304 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 7305 7306 /* 7307 * Because of not recoverable conversion rounding we keep track of the 7308 * exact requested value 7309 */ 7310 tg->uclamp_pct[clamp_id] = req.percent; 7311 7312 /* Update effective clamps to track the most restrictive value */ 7313 cpu_util_update_eff(of_css(of)); 7314 7315 rcu_read_unlock(); 7316 mutex_unlock(&uclamp_mutex); 7317 7318 return nbytes; 7319 } 7320 7321 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 7322 char *buf, size_t nbytes, 7323 loff_t off) 7324 { 7325 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 7326 } 7327 7328 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 7329 char *buf, size_t nbytes, 7330 loff_t off) 7331 { 7332 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 7333 } 7334 7335 static inline void cpu_uclamp_print(struct seq_file *sf, 7336 enum uclamp_id clamp_id) 7337 { 7338 struct task_group *tg; 7339 u64 util_clamp; 7340 u64 percent; 7341 u32 rem; 7342 7343 rcu_read_lock(); 7344 tg = css_tg(seq_css(sf)); 7345 util_clamp = tg->uclamp_req[clamp_id].value; 7346 rcu_read_unlock(); 7347 7348 if (util_clamp == SCHED_CAPACITY_SCALE) { 7349 seq_puts(sf, "max\n"); 7350 return; 7351 } 7352 7353 percent = tg->uclamp_pct[clamp_id]; 7354 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 7355 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 7356 } 7357 7358 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 7359 { 7360 cpu_uclamp_print(sf, UCLAMP_MIN); 7361 return 0; 7362 } 7363 7364 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 7365 { 7366 cpu_uclamp_print(sf, UCLAMP_MAX); 7367 return 0; 7368 } 7369 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 7370 7371 #ifdef CONFIG_FAIR_GROUP_SCHED 7372 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7373 struct cftype *cftype, u64 shareval) 7374 { 7375 if (shareval > scale_load_down(ULONG_MAX)) 7376 shareval = MAX_SHARES; 7377 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7378 } 7379 7380 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7381 struct cftype *cft) 7382 { 7383 struct task_group *tg = css_tg(css); 7384 7385 return (u64) scale_load_down(tg->shares); 7386 } 7387 7388 #ifdef CONFIG_CFS_BANDWIDTH 7389 static DEFINE_MUTEX(cfs_constraints_mutex); 7390 7391 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7392 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7393 7394 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7395 7396 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7397 { 7398 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7399 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7400 7401 if (tg == &root_task_group) 7402 return -EINVAL; 7403 7404 /* 7405 * Ensure we have at some amount of bandwidth every period. This is 7406 * to prevent reaching a state of large arrears when throttled via 7407 * entity_tick() resulting in prolonged exit starvation. 7408 */ 7409 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7410 return -EINVAL; 7411 7412 /* 7413 * Likewise, bound things on the otherside by preventing insane quota 7414 * periods. This also allows us to normalize in computing quota 7415 * feasibility. 7416 */ 7417 if (period > max_cfs_quota_period) 7418 return -EINVAL; 7419 7420 /* 7421 * Prevent race between setting of cfs_rq->runtime_enabled and 7422 * unthrottle_offline_cfs_rqs(). 7423 */ 7424 get_online_cpus(); 7425 mutex_lock(&cfs_constraints_mutex); 7426 ret = __cfs_schedulable(tg, period, quota); 7427 if (ret) 7428 goto out_unlock; 7429 7430 runtime_enabled = quota != RUNTIME_INF; 7431 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7432 /* 7433 * If we need to toggle cfs_bandwidth_used, off->on must occur 7434 * before making related changes, and on->off must occur afterwards 7435 */ 7436 if (runtime_enabled && !runtime_was_enabled) 7437 cfs_bandwidth_usage_inc(); 7438 raw_spin_lock_irq(&cfs_b->lock); 7439 cfs_b->period = ns_to_ktime(period); 7440 cfs_b->quota = quota; 7441 7442 __refill_cfs_bandwidth_runtime(cfs_b); 7443 7444 /* Restart the period timer (if active) to handle new period expiry: */ 7445 if (runtime_enabled) 7446 start_cfs_bandwidth(cfs_b); 7447 7448 raw_spin_unlock_irq(&cfs_b->lock); 7449 7450 for_each_online_cpu(i) { 7451 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7452 struct rq *rq = cfs_rq->rq; 7453 struct rq_flags rf; 7454 7455 rq_lock_irq(rq, &rf); 7456 cfs_rq->runtime_enabled = runtime_enabled; 7457 cfs_rq->runtime_remaining = 0; 7458 7459 if (cfs_rq->throttled) 7460 unthrottle_cfs_rq(cfs_rq); 7461 rq_unlock_irq(rq, &rf); 7462 } 7463 if (runtime_was_enabled && !runtime_enabled) 7464 cfs_bandwidth_usage_dec(); 7465 out_unlock: 7466 mutex_unlock(&cfs_constraints_mutex); 7467 put_online_cpus(); 7468 7469 return ret; 7470 } 7471 7472 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7473 { 7474 u64 quota, period; 7475 7476 period = ktime_to_ns(tg->cfs_bandwidth.period); 7477 if (cfs_quota_us < 0) 7478 quota = RUNTIME_INF; 7479 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 7480 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7481 else 7482 return -EINVAL; 7483 7484 return tg_set_cfs_bandwidth(tg, period, quota); 7485 } 7486 7487 static long tg_get_cfs_quota(struct task_group *tg) 7488 { 7489 u64 quota_us; 7490 7491 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7492 return -1; 7493 7494 quota_us = tg->cfs_bandwidth.quota; 7495 do_div(quota_us, NSEC_PER_USEC); 7496 7497 return quota_us; 7498 } 7499 7500 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7501 { 7502 u64 quota, period; 7503 7504 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 7505 return -EINVAL; 7506 7507 period = (u64)cfs_period_us * NSEC_PER_USEC; 7508 quota = tg->cfs_bandwidth.quota; 7509 7510 return tg_set_cfs_bandwidth(tg, period, quota); 7511 } 7512 7513 static long tg_get_cfs_period(struct task_group *tg) 7514 { 7515 u64 cfs_period_us; 7516 7517 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7518 do_div(cfs_period_us, NSEC_PER_USEC); 7519 7520 return cfs_period_us; 7521 } 7522 7523 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7524 struct cftype *cft) 7525 { 7526 return tg_get_cfs_quota(css_tg(css)); 7527 } 7528 7529 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7530 struct cftype *cftype, s64 cfs_quota_us) 7531 { 7532 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7533 } 7534 7535 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7536 struct cftype *cft) 7537 { 7538 return tg_get_cfs_period(css_tg(css)); 7539 } 7540 7541 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7542 struct cftype *cftype, u64 cfs_period_us) 7543 { 7544 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7545 } 7546 7547 struct cfs_schedulable_data { 7548 struct task_group *tg; 7549 u64 period, quota; 7550 }; 7551 7552 /* 7553 * normalize group quota/period to be quota/max_period 7554 * note: units are usecs 7555 */ 7556 static u64 normalize_cfs_quota(struct task_group *tg, 7557 struct cfs_schedulable_data *d) 7558 { 7559 u64 quota, period; 7560 7561 if (tg == d->tg) { 7562 period = d->period; 7563 quota = d->quota; 7564 } else { 7565 period = tg_get_cfs_period(tg); 7566 quota = tg_get_cfs_quota(tg); 7567 } 7568 7569 /* note: these should typically be equivalent */ 7570 if (quota == RUNTIME_INF || quota == -1) 7571 return RUNTIME_INF; 7572 7573 return to_ratio(period, quota); 7574 } 7575 7576 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7577 { 7578 struct cfs_schedulable_data *d = data; 7579 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7580 s64 quota = 0, parent_quota = -1; 7581 7582 if (!tg->parent) { 7583 quota = RUNTIME_INF; 7584 } else { 7585 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7586 7587 quota = normalize_cfs_quota(tg, d); 7588 parent_quota = parent_b->hierarchical_quota; 7589 7590 /* 7591 * Ensure max(child_quota) <= parent_quota. On cgroup2, 7592 * always take the min. On cgroup1, only inherit when no 7593 * limit is set: 7594 */ 7595 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 7596 quota = min(quota, parent_quota); 7597 } else { 7598 if (quota == RUNTIME_INF) 7599 quota = parent_quota; 7600 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7601 return -EINVAL; 7602 } 7603 } 7604 cfs_b->hierarchical_quota = quota; 7605 7606 return 0; 7607 } 7608 7609 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7610 { 7611 int ret; 7612 struct cfs_schedulable_data data = { 7613 .tg = tg, 7614 .period = period, 7615 .quota = quota, 7616 }; 7617 7618 if (quota != RUNTIME_INF) { 7619 do_div(data.period, NSEC_PER_USEC); 7620 do_div(data.quota, NSEC_PER_USEC); 7621 } 7622 7623 rcu_read_lock(); 7624 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7625 rcu_read_unlock(); 7626 7627 return ret; 7628 } 7629 7630 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 7631 { 7632 struct task_group *tg = css_tg(seq_css(sf)); 7633 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7634 7635 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7636 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7637 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7638 7639 if (schedstat_enabled() && tg != &root_task_group) { 7640 u64 ws = 0; 7641 int i; 7642 7643 for_each_possible_cpu(i) 7644 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 7645 7646 seq_printf(sf, "wait_sum %llu\n", ws); 7647 } 7648 7649 return 0; 7650 } 7651 #endif /* CONFIG_CFS_BANDWIDTH */ 7652 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7653 7654 #ifdef CONFIG_RT_GROUP_SCHED 7655 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7656 struct cftype *cft, s64 val) 7657 { 7658 return sched_group_set_rt_runtime(css_tg(css), val); 7659 } 7660 7661 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7662 struct cftype *cft) 7663 { 7664 return sched_group_rt_runtime(css_tg(css)); 7665 } 7666 7667 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7668 struct cftype *cftype, u64 rt_period_us) 7669 { 7670 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7671 } 7672 7673 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7674 struct cftype *cft) 7675 { 7676 return sched_group_rt_period(css_tg(css)); 7677 } 7678 #endif /* CONFIG_RT_GROUP_SCHED */ 7679 7680 static struct cftype cpu_legacy_files[] = { 7681 #ifdef CONFIG_FAIR_GROUP_SCHED 7682 { 7683 .name = "shares", 7684 .read_u64 = cpu_shares_read_u64, 7685 .write_u64 = cpu_shares_write_u64, 7686 }, 7687 #endif 7688 #ifdef CONFIG_CFS_BANDWIDTH 7689 { 7690 .name = "cfs_quota_us", 7691 .read_s64 = cpu_cfs_quota_read_s64, 7692 .write_s64 = cpu_cfs_quota_write_s64, 7693 }, 7694 { 7695 .name = "cfs_period_us", 7696 .read_u64 = cpu_cfs_period_read_u64, 7697 .write_u64 = cpu_cfs_period_write_u64, 7698 }, 7699 { 7700 .name = "stat", 7701 .seq_show = cpu_cfs_stat_show, 7702 }, 7703 #endif 7704 #ifdef CONFIG_RT_GROUP_SCHED 7705 { 7706 .name = "rt_runtime_us", 7707 .read_s64 = cpu_rt_runtime_read, 7708 .write_s64 = cpu_rt_runtime_write, 7709 }, 7710 { 7711 .name = "rt_period_us", 7712 .read_u64 = cpu_rt_period_read_uint, 7713 .write_u64 = cpu_rt_period_write_uint, 7714 }, 7715 #endif 7716 #ifdef CONFIG_UCLAMP_TASK_GROUP 7717 { 7718 .name = "uclamp.min", 7719 .flags = CFTYPE_NOT_ON_ROOT, 7720 .seq_show = cpu_uclamp_min_show, 7721 .write = cpu_uclamp_min_write, 7722 }, 7723 { 7724 .name = "uclamp.max", 7725 .flags = CFTYPE_NOT_ON_ROOT, 7726 .seq_show = cpu_uclamp_max_show, 7727 .write = cpu_uclamp_max_write, 7728 }, 7729 #endif 7730 { } /* Terminate */ 7731 }; 7732 7733 static int cpu_extra_stat_show(struct seq_file *sf, 7734 struct cgroup_subsys_state *css) 7735 { 7736 #ifdef CONFIG_CFS_BANDWIDTH 7737 { 7738 struct task_group *tg = css_tg(css); 7739 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7740 u64 throttled_usec; 7741 7742 throttled_usec = cfs_b->throttled_time; 7743 do_div(throttled_usec, NSEC_PER_USEC); 7744 7745 seq_printf(sf, "nr_periods %d\n" 7746 "nr_throttled %d\n" 7747 "throttled_usec %llu\n", 7748 cfs_b->nr_periods, cfs_b->nr_throttled, 7749 throttled_usec); 7750 } 7751 #endif 7752 return 0; 7753 } 7754 7755 #ifdef CONFIG_FAIR_GROUP_SCHED 7756 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 7757 struct cftype *cft) 7758 { 7759 struct task_group *tg = css_tg(css); 7760 u64 weight = scale_load_down(tg->shares); 7761 7762 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 7763 } 7764 7765 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 7766 struct cftype *cft, u64 weight) 7767 { 7768 /* 7769 * cgroup weight knobs should use the common MIN, DFL and MAX 7770 * values which are 1, 100 and 10000 respectively. While it loses 7771 * a bit of range on both ends, it maps pretty well onto the shares 7772 * value used by scheduler and the round-trip conversions preserve 7773 * the original value over the entire range. 7774 */ 7775 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 7776 return -ERANGE; 7777 7778 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 7779 7780 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7781 } 7782 7783 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 7784 struct cftype *cft) 7785 { 7786 unsigned long weight = scale_load_down(css_tg(css)->shares); 7787 int last_delta = INT_MAX; 7788 int prio, delta; 7789 7790 /* find the closest nice value to the current weight */ 7791 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 7792 delta = abs(sched_prio_to_weight[prio] - weight); 7793 if (delta >= last_delta) 7794 break; 7795 last_delta = delta; 7796 } 7797 7798 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 7799 } 7800 7801 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 7802 struct cftype *cft, s64 nice) 7803 { 7804 unsigned long weight; 7805 int idx; 7806 7807 if (nice < MIN_NICE || nice > MAX_NICE) 7808 return -ERANGE; 7809 7810 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 7811 idx = array_index_nospec(idx, 40); 7812 weight = sched_prio_to_weight[idx]; 7813 7814 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7815 } 7816 #endif 7817 7818 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 7819 long period, long quota) 7820 { 7821 if (quota < 0) 7822 seq_puts(sf, "max"); 7823 else 7824 seq_printf(sf, "%ld", quota); 7825 7826 seq_printf(sf, " %ld\n", period); 7827 } 7828 7829 /* caller should put the current value in *@periodp before calling */ 7830 static int __maybe_unused cpu_period_quota_parse(char *buf, 7831 u64 *periodp, u64 *quotap) 7832 { 7833 char tok[21]; /* U64_MAX */ 7834 7835 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 7836 return -EINVAL; 7837 7838 *periodp *= NSEC_PER_USEC; 7839 7840 if (sscanf(tok, "%llu", quotap)) 7841 *quotap *= NSEC_PER_USEC; 7842 else if (!strcmp(tok, "max")) 7843 *quotap = RUNTIME_INF; 7844 else 7845 return -EINVAL; 7846 7847 return 0; 7848 } 7849 7850 #ifdef CONFIG_CFS_BANDWIDTH 7851 static int cpu_max_show(struct seq_file *sf, void *v) 7852 { 7853 struct task_group *tg = css_tg(seq_css(sf)); 7854 7855 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 7856 return 0; 7857 } 7858 7859 static ssize_t cpu_max_write(struct kernfs_open_file *of, 7860 char *buf, size_t nbytes, loff_t off) 7861 { 7862 struct task_group *tg = css_tg(of_css(of)); 7863 u64 period = tg_get_cfs_period(tg); 7864 u64 quota; 7865 int ret; 7866 7867 ret = cpu_period_quota_parse(buf, &period, "a); 7868 if (!ret) 7869 ret = tg_set_cfs_bandwidth(tg, period, quota); 7870 return ret ?: nbytes; 7871 } 7872 #endif 7873 7874 static struct cftype cpu_files[] = { 7875 #ifdef CONFIG_FAIR_GROUP_SCHED 7876 { 7877 .name = "weight", 7878 .flags = CFTYPE_NOT_ON_ROOT, 7879 .read_u64 = cpu_weight_read_u64, 7880 .write_u64 = cpu_weight_write_u64, 7881 }, 7882 { 7883 .name = "weight.nice", 7884 .flags = CFTYPE_NOT_ON_ROOT, 7885 .read_s64 = cpu_weight_nice_read_s64, 7886 .write_s64 = cpu_weight_nice_write_s64, 7887 }, 7888 #endif 7889 #ifdef CONFIG_CFS_BANDWIDTH 7890 { 7891 .name = "max", 7892 .flags = CFTYPE_NOT_ON_ROOT, 7893 .seq_show = cpu_max_show, 7894 .write = cpu_max_write, 7895 }, 7896 #endif 7897 #ifdef CONFIG_UCLAMP_TASK_GROUP 7898 { 7899 .name = "uclamp.min", 7900 .flags = CFTYPE_NOT_ON_ROOT, 7901 .seq_show = cpu_uclamp_min_show, 7902 .write = cpu_uclamp_min_write, 7903 }, 7904 { 7905 .name = "uclamp.max", 7906 .flags = CFTYPE_NOT_ON_ROOT, 7907 .seq_show = cpu_uclamp_max_show, 7908 .write = cpu_uclamp_max_write, 7909 }, 7910 #endif 7911 { } /* terminate */ 7912 }; 7913 7914 struct cgroup_subsys cpu_cgrp_subsys = { 7915 .css_alloc = cpu_cgroup_css_alloc, 7916 .css_online = cpu_cgroup_css_online, 7917 .css_released = cpu_cgroup_css_released, 7918 .css_free = cpu_cgroup_css_free, 7919 .css_extra_stat_show = cpu_extra_stat_show, 7920 .fork = cpu_cgroup_fork, 7921 .can_attach = cpu_cgroup_can_attach, 7922 .attach = cpu_cgroup_attach, 7923 .legacy_cftypes = cpu_legacy_files, 7924 .dfl_cftypes = cpu_files, 7925 .early_init = true, 7926 .threaded = true, 7927 }; 7928 7929 #endif /* CONFIG_CGROUP_SCHED */ 7930 7931 void dump_cpu_task(int cpu) 7932 { 7933 pr_info("Task dump for CPU %d:\n", cpu); 7934 sched_show_task(cpu_curr(cpu)); 7935 } 7936 7937 /* 7938 * Nice levels are multiplicative, with a gentle 10% change for every 7939 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7940 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7941 * that remained on nice 0. 7942 * 7943 * The "10% effect" is relative and cumulative: from _any_ nice level, 7944 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7945 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7946 * If a task goes up by ~10% and another task goes down by ~10% then 7947 * the relative distance between them is ~25%.) 7948 */ 7949 const int sched_prio_to_weight[40] = { 7950 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7951 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7952 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7953 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7954 /* 0 */ 1024, 820, 655, 526, 423, 7955 /* 5 */ 335, 272, 215, 172, 137, 7956 /* 10 */ 110, 87, 70, 56, 45, 7957 /* 15 */ 36, 29, 23, 18, 15, 7958 }; 7959 7960 /* 7961 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7962 * 7963 * In cases where the weight does not change often, we can use the 7964 * precalculated inverse to speed up arithmetics by turning divisions 7965 * into multiplications: 7966 */ 7967 const u32 sched_prio_to_wmult[40] = { 7968 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7969 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7970 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7971 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7972 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7973 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7974 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7975 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7976 }; 7977 7978 #undef CREATE_TRACE_POINTS 7979