1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #undef CREATE_TRACE_POINTS 84 85 #include "sched.h" 86 #include "stats.h" 87 #include "autogroup.h" 88 89 #include "autogroup.h" 90 #include "pelt.h" 91 #include "smp.h" 92 #include "stats.h" 93 94 #include "../workqueue_internal.h" 95 #include "../../io_uring/io-wq.h" 96 #include "../smpboot.h" 97 98 /* 99 * Export tracepoints that act as a bare tracehook (ie: have no trace event 100 * associated with them) to allow external modules to probe them. 101 */ 102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 113 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 #ifdef CONFIG_SCHED_DEBUG 117 /* 118 * Debugging: various feature bits 119 * 120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 121 * sysctl_sched_features, defined in sched.h, to allow constants propagation 122 * at compile time and compiler optimization based on features default. 123 */ 124 #define SCHED_FEAT(name, enabled) \ 125 (1UL << __SCHED_FEAT_##name) * enabled | 126 const_debug unsigned int sysctl_sched_features = 127 #include "features.h" 128 0; 129 #undef SCHED_FEAT 130 131 /* 132 * Print a warning if need_resched is set for the given duration (if 133 * LATENCY_WARN is enabled). 134 * 135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 136 * per boot. 137 */ 138 __read_mostly int sysctl_resched_latency_warn_ms = 100; 139 __read_mostly int sysctl_resched_latency_warn_once = 1; 140 #endif /* CONFIG_SCHED_DEBUG */ 141 142 /* 143 * Number of tasks to iterate in a single balance run. 144 * Limited because this is done with IRQs disabled. 145 */ 146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 147 148 __read_mostly int scheduler_running; 149 150 #ifdef CONFIG_SCHED_CORE 151 152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 153 154 /* kernel prio, less is more */ 155 static inline int __task_prio(struct task_struct *p) 156 { 157 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 158 return -2; 159 160 if (rt_prio(p->prio)) /* includes deadline */ 161 return p->prio; /* [-1, 99] */ 162 163 if (p->sched_class == &idle_sched_class) 164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 165 166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 167 } 168 169 /* 170 * l(a,b) 171 * le(a,b) := !l(b,a) 172 * g(a,b) := l(b,a) 173 * ge(a,b) := !l(a,b) 174 */ 175 176 /* real prio, less is less */ 177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 178 { 179 180 int pa = __task_prio(a), pb = __task_prio(b); 181 182 if (-pa < -pb) 183 return true; 184 185 if (-pb < -pa) 186 return false; 187 188 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 189 return !dl_time_before(a->dl.deadline, b->dl.deadline); 190 191 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 192 return cfs_prio_less(a, b, in_fi); 193 194 return false; 195 } 196 197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 198 { 199 if (a->core_cookie < b->core_cookie) 200 return true; 201 202 if (a->core_cookie > b->core_cookie) 203 return false; 204 205 /* flip prio, so high prio is leftmost */ 206 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 207 return true; 208 209 return false; 210 } 211 212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 213 214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 215 { 216 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 217 } 218 219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 220 { 221 const struct task_struct *p = __node_2_sc(node); 222 unsigned long cookie = (unsigned long)key; 223 224 if (cookie < p->core_cookie) 225 return -1; 226 227 if (cookie > p->core_cookie) 228 return 1; 229 230 return 0; 231 } 232 233 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 234 { 235 rq->core->core_task_seq++; 236 237 if (!p->core_cookie) 238 return; 239 240 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 241 } 242 243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 244 { 245 rq->core->core_task_seq++; 246 247 if (sched_core_enqueued(p)) { 248 rb_erase(&p->core_node, &rq->core_tree); 249 RB_CLEAR_NODE(&p->core_node); 250 } 251 252 /* 253 * Migrating the last task off the cpu, with the cpu in forced idle 254 * state. Reschedule to create an accounting edge for forced idle, 255 * and re-examine whether the core is still in forced idle state. 256 */ 257 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 258 rq->core->core_forceidle_count && rq->curr == rq->idle) 259 resched_curr(rq); 260 } 261 262 /* 263 * Find left-most (aka, highest priority) task matching @cookie. 264 */ 265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 266 { 267 struct rb_node *node; 268 269 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 270 /* 271 * The idle task always matches any cookie! 272 */ 273 if (!node) 274 return idle_sched_class.pick_task(rq); 275 276 return __node_2_sc(node); 277 } 278 279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 280 { 281 struct rb_node *node = &p->core_node; 282 283 node = rb_next(node); 284 if (!node) 285 return NULL; 286 287 p = container_of(node, struct task_struct, core_node); 288 if (p->core_cookie != cookie) 289 return NULL; 290 291 return p; 292 } 293 294 /* 295 * Magic required such that: 296 * 297 * raw_spin_rq_lock(rq); 298 * ... 299 * raw_spin_rq_unlock(rq); 300 * 301 * ends up locking and unlocking the _same_ lock, and all CPUs 302 * always agree on what rq has what lock. 303 * 304 * XXX entirely possible to selectively enable cores, don't bother for now. 305 */ 306 307 static DEFINE_MUTEX(sched_core_mutex); 308 static atomic_t sched_core_count; 309 static struct cpumask sched_core_mask; 310 311 static void sched_core_lock(int cpu, unsigned long *flags) 312 { 313 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 314 int t, i = 0; 315 316 local_irq_save(*flags); 317 for_each_cpu(t, smt_mask) 318 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 319 } 320 321 static void sched_core_unlock(int cpu, unsigned long *flags) 322 { 323 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 324 int t; 325 326 for_each_cpu(t, smt_mask) 327 raw_spin_unlock(&cpu_rq(t)->__lock); 328 local_irq_restore(*flags); 329 } 330 331 static void __sched_core_flip(bool enabled) 332 { 333 unsigned long flags; 334 int cpu, t; 335 336 cpus_read_lock(); 337 338 /* 339 * Toggle the online cores, one by one. 340 */ 341 cpumask_copy(&sched_core_mask, cpu_online_mask); 342 for_each_cpu(cpu, &sched_core_mask) { 343 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 344 345 sched_core_lock(cpu, &flags); 346 347 for_each_cpu(t, smt_mask) 348 cpu_rq(t)->core_enabled = enabled; 349 350 cpu_rq(cpu)->core->core_forceidle_start = 0; 351 352 sched_core_unlock(cpu, &flags); 353 354 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 355 } 356 357 /* 358 * Toggle the offline CPUs. 359 */ 360 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 361 cpu_rq(cpu)->core_enabled = enabled; 362 363 cpus_read_unlock(); 364 } 365 366 static void sched_core_assert_empty(void) 367 { 368 int cpu; 369 370 for_each_possible_cpu(cpu) 371 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 372 } 373 374 static void __sched_core_enable(void) 375 { 376 static_branch_enable(&__sched_core_enabled); 377 /* 378 * Ensure all previous instances of raw_spin_rq_*lock() have finished 379 * and future ones will observe !sched_core_disabled(). 380 */ 381 synchronize_rcu(); 382 __sched_core_flip(true); 383 sched_core_assert_empty(); 384 } 385 386 static void __sched_core_disable(void) 387 { 388 sched_core_assert_empty(); 389 __sched_core_flip(false); 390 static_branch_disable(&__sched_core_enabled); 391 } 392 393 void sched_core_get(void) 394 { 395 if (atomic_inc_not_zero(&sched_core_count)) 396 return; 397 398 mutex_lock(&sched_core_mutex); 399 if (!atomic_read(&sched_core_count)) 400 __sched_core_enable(); 401 402 smp_mb__before_atomic(); 403 atomic_inc(&sched_core_count); 404 mutex_unlock(&sched_core_mutex); 405 } 406 407 static void __sched_core_put(struct work_struct *work) 408 { 409 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 410 __sched_core_disable(); 411 mutex_unlock(&sched_core_mutex); 412 } 413 } 414 415 void sched_core_put(void) 416 { 417 static DECLARE_WORK(_work, __sched_core_put); 418 419 /* 420 * "There can be only one" 421 * 422 * Either this is the last one, or we don't actually need to do any 423 * 'work'. If it is the last *again*, we rely on 424 * WORK_STRUCT_PENDING_BIT. 425 */ 426 if (!atomic_add_unless(&sched_core_count, -1, 1)) 427 schedule_work(&_work); 428 } 429 430 #else /* !CONFIG_SCHED_CORE */ 431 432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 433 static inline void 434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 435 436 #endif /* CONFIG_SCHED_CORE */ 437 438 /* 439 * Serialization rules: 440 * 441 * Lock order: 442 * 443 * p->pi_lock 444 * rq->lock 445 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 446 * 447 * rq1->lock 448 * rq2->lock where: rq1 < rq2 449 * 450 * Regular state: 451 * 452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 453 * local CPU's rq->lock, it optionally removes the task from the runqueue and 454 * always looks at the local rq data structures to find the most eligible task 455 * to run next. 456 * 457 * Task enqueue is also under rq->lock, possibly taken from another CPU. 458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 459 * the local CPU to avoid bouncing the runqueue state around [ see 460 * ttwu_queue_wakelist() ] 461 * 462 * Task wakeup, specifically wakeups that involve migration, are horribly 463 * complicated to avoid having to take two rq->locks. 464 * 465 * Special state: 466 * 467 * System-calls and anything external will use task_rq_lock() which acquires 468 * both p->pi_lock and rq->lock. As a consequence the state they change is 469 * stable while holding either lock: 470 * 471 * - sched_setaffinity()/ 472 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 473 * - set_user_nice(): p->se.load, p->*prio 474 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 475 * p->se.load, p->rt_priority, 476 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 477 * - sched_setnuma(): p->numa_preferred_nid 478 * - sched_move_task(): p->sched_task_group 479 * - uclamp_update_active() p->uclamp* 480 * 481 * p->state <- TASK_*: 482 * 483 * is changed locklessly using set_current_state(), __set_current_state() or 484 * set_special_state(), see their respective comments, or by 485 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 486 * concurrent self. 487 * 488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 489 * 490 * is set by activate_task() and cleared by deactivate_task(), under 491 * rq->lock. Non-zero indicates the task is runnable, the special 492 * ON_RQ_MIGRATING state is used for migration without holding both 493 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 494 * 495 * p->on_cpu <- { 0, 1 }: 496 * 497 * is set by prepare_task() and cleared by finish_task() such that it will be 498 * set before p is scheduled-in and cleared after p is scheduled-out, both 499 * under rq->lock. Non-zero indicates the task is running on its CPU. 500 * 501 * [ The astute reader will observe that it is possible for two tasks on one 502 * CPU to have ->on_cpu = 1 at the same time. ] 503 * 504 * task_cpu(p): is changed by set_task_cpu(), the rules are: 505 * 506 * - Don't call set_task_cpu() on a blocked task: 507 * 508 * We don't care what CPU we're not running on, this simplifies hotplug, 509 * the CPU assignment of blocked tasks isn't required to be valid. 510 * 511 * - for try_to_wake_up(), called under p->pi_lock: 512 * 513 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 514 * 515 * - for migration called under rq->lock: 516 * [ see task_on_rq_migrating() in task_rq_lock() ] 517 * 518 * o move_queued_task() 519 * o detach_task() 520 * 521 * - for migration called under double_rq_lock(): 522 * 523 * o __migrate_swap_task() 524 * o push_rt_task() / pull_rt_task() 525 * o push_dl_task() / pull_dl_task() 526 * o dl_task_offline_migration() 527 * 528 */ 529 530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 531 { 532 raw_spinlock_t *lock; 533 534 /* Matches synchronize_rcu() in __sched_core_enable() */ 535 preempt_disable(); 536 if (sched_core_disabled()) { 537 raw_spin_lock_nested(&rq->__lock, subclass); 538 /* preempt_count *MUST* be > 1 */ 539 preempt_enable_no_resched(); 540 return; 541 } 542 543 for (;;) { 544 lock = __rq_lockp(rq); 545 raw_spin_lock_nested(lock, subclass); 546 if (likely(lock == __rq_lockp(rq))) { 547 /* preempt_count *MUST* be > 1 */ 548 preempt_enable_no_resched(); 549 return; 550 } 551 raw_spin_unlock(lock); 552 } 553 } 554 555 bool raw_spin_rq_trylock(struct rq *rq) 556 { 557 raw_spinlock_t *lock; 558 bool ret; 559 560 /* Matches synchronize_rcu() in __sched_core_enable() */ 561 preempt_disable(); 562 if (sched_core_disabled()) { 563 ret = raw_spin_trylock(&rq->__lock); 564 preempt_enable(); 565 return ret; 566 } 567 568 for (;;) { 569 lock = __rq_lockp(rq); 570 ret = raw_spin_trylock(lock); 571 if (!ret || (likely(lock == __rq_lockp(rq)))) { 572 preempt_enable(); 573 return ret; 574 } 575 raw_spin_unlock(lock); 576 } 577 } 578 579 void raw_spin_rq_unlock(struct rq *rq) 580 { 581 raw_spin_unlock(rq_lockp(rq)); 582 } 583 584 #ifdef CONFIG_SMP 585 /* 586 * double_rq_lock - safely lock two runqueues 587 */ 588 void double_rq_lock(struct rq *rq1, struct rq *rq2) 589 { 590 lockdep_assert_irqs_disabled(); 591 592 if (rq_order_less(rq2, rq1)) 593 swap(rq1, rq2); 594 595 raw_spin_rq_lock(rq1); 596 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 597 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 598 599 double_rq_clock_clear_update(rq1, rq2); 600 } 601 #endif 602 603 /* 604 * __task_rq_lock - lock the rq @p resides on. 605 */ 606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 607 __acquires(rq->lock) 608 { 609 struct rq *rq; 610 611 lockdep_assert_held(&p->pi_lock); 612 613 for (;;) { 614 rq = task_rq(p); 615 raw_spin_rq_lock(rq); 616 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 617 rq_pin_lock(rq, rf); 618 return rq; 619 } 620 raw_spin_rq_unlock(rq); 621 622 while (unlikely(task_on_rq_migrating(p))) 623 cpu_relax(); 624 } 625 } 626 627 /* 628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 629 */ 630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 631 __acquires(p->pi_lock) 632 __acquires(rq->lock) 633 { 634 struct rq *rq; 635 636 for (;;) { 637 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 638 rq = task_rq(p); 639 raw_spin_rq_lock(rq); 640 /* 641 * move_queued_task() task_rq_lock() 642 * 643 * ACQUIRE (rq->lock) 644 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 645 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 646 * [S] ->cpu = new_cpu [L] task_rq() 647 * [L] ->on_rq 648 * RELEASE (rq->lock) 649 * 650 * If we observe the old CPU in task_rq_lock(), the acquire of 651 * the old rq->lock will fully serialize against the stores. 652 * 653 * If we observe the new CPU in task_rq_lock(), the address 654 * dependency headed by '[L] rq = task_rq()' and the acquire 655 * will pair with the WMB to ensure we then also see migrating. 656 */ 657 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 658 rq_pin_lock(rq, rf); 659 return rq; 660 } 661 raw_spin_rq_unlock(rq); 662 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 663 664 while (unlikely(task_on_rq_migrating(p))) 665 cpu_relax(); 666 } 667 } 668 669 /* 670 * RQ-clock updating methods: 671 */ 672 673 static void update_rq_clock_task(struct rq *rq, s64 delta) 674 { 675 /* 676 * In theory, the compile should just see 0 here, and optimize out the call 677 * to sched_rt_avg_update. But I don't trust it... 678 */ 679 s64 __maybe_unused steal = 0, irq_delta = 0; 680 681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 682 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 683 684 /* 685 * Since irq_time is only updated on {soft,}irq_exit, we might run into 686 * this case when a previous update_rq_clock() happened inside a 687 * {soft,}irq region. 688 * 689 * When this happens, we stop ->clock_task and only update the 690 * prev_irq_time stamp to account for the part that fit, so that a next 691 * update will consume the rest. This ensures ->clock_task is 692 * monotonic. 693 * 694 * It does however cause some slight miss-attribution of {soft,}irq 695 * time, a more accurate solution would be to update the irq_time using 696 * the current rq->clock timestamp, except that would require using 697 * atomic ops. 698 */ 699 if (irq_delta > delta) 700 irq_delta = delta; 701 702 rq->prev_irq_time += irq_delta; 703 delta -= irq_delta; 704 psi_account_irqtime(rq->curr, irq_delta); 705 #endif 706 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 707 if (static_key_false((¶virt_steal_rq_enabled))) { 708 steal = paravirt_steal_clock(cpu_of(rq)); 709 steal -= rq->prev_steal_time_rq; 710 711 if (unlikely(steal > delta)) 712 steal = delta; 713 714 rq->prev_steal_time_rq += steal; 715 delta -= steal; 716 } 717 #endif 718 719 rq->clock_task += delta; 720 721 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 722 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 723 update_irq_load_avg(rq, irq_delta + steal); 724 #endif 725 update_rq_clock_pelt(rq, delta); 726 } 727 728 void update_rq_clock(struct rq *rq) 729 { 730 s64 delta; 731 732 lockdep_assert_rq_held(rq); 733 734 if (rq->clock_update_flags & RQCF_ACT_SKIP) 735 return; 736 737 #ifdef CONFIG_SCHED_DEBUG 738 if (sched_feat(WARN_DOUBLE_CLOCK)) 739 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 740 rq->clock_update_flags |= RQCF_UPDATED; 741 #endif 742 743 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 744 if (delta < 0) 745 return; 746 rq->clock += delta; 747 update_rq_clock_task(rq, delta); 748 } 749 750 #ifdef CONFIG_SCHED_HRTICK 751 /* 752 * Use HR-timers to deliver accurate preemption points. 753 */ 754 755 static void hrtick_clear(struct rq *rq) 756 { 757 if (hrtimer_active(&rq->hrtick_timer)) 758 hrtimer_cancel(&rq->hrtick_timer); 759 } 760 761 /* 762 * High-resolution timer tick. 763 * Runs from hardirq context with interrupts disabled. 764 */ 765 static enum hrtimer_restart hrtick(struct hrtimer *timer) 766 { 767 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 768 struct rq_flags rf; 769 770 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 771 772 rq_lock(rq, &rf); 773 update_rq_clock(rq); 774 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 775 rq_unlock(rq, &rf); 776 777 return HRTIMER_NORESTART; 778 } 779 780 #ifdef CONFIG_SMP 781 782 static void __hrtick_restart(struct rq *rq) 783 { 784 struct hrtimer *timer = &rq->hrtick_timer; 785 ktime_t time = rq->hrtick_time; 786 787 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 788 } 789 790 /* 791 * called from hardirq (IPI) context 792 */ 793 static void __hrtick_start(void *arg) 794 { 795 struct rq *rq = arg; 796 struct rq_flags rf; 797 798 rq_lock(rq, &rf); 799 __hrtick_restart(rq); 800 rq_unlock(rq, &rf); 801 } 802 803 /* 804 * Called to set the hrtick timer state. 805 * 806 * called with rq->lock held and irqs disabled 807 */ 808 void hrtick_start(struct rq *rq, u64 delay) 809 { 810 struct hrtimer *timer = &rq->hrtick_timer; 811 s64 delta; 812 813 /* 814 * Don't schedule slices shorter than 10000ns, that just 815 * doesn't make sense and can cause timer DoS. 816 */ 817 delta = max_t(s64, delay, 10000LL); 818 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 819 820 if (rq == this_rq()) 821 __hrtick_restart(rq); 822 else 823 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 824 } 825 826 #else 827 /* 828 * Called to set the hrtick timer state. 829 * 830 * called with rq->lock held and irqs disabled 831 */ 832 void hrtick_start(struct rq *rq, u64 delay) 833 { 834 /* 835 * Don't schedule slices shorter than 10000ns, that just 836 * doesn't make sense. Rely on vruntime for fairness. 837 */ 838 delay = max_t(u64, delay, 10000LL); 839 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 840 HRTIMER_MODE_REL_PINNED_HARD); 841 } 842 843 #endif /* CONFIG_SMP */ 844 845 static void hrtick_rq_init(struct rq *rq) 846 { 847 #ifdef CONFIG_SMP 848 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 849 #endif 850 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 851 rq->hrtick_timer.function = hrtick; 852 } 853 #else /* CONFIG_SCHED_HRTICK */ 854 static inline void hrtick_clear(struct rq *rq) 855 { 856 } 857 858 static inline void hrtick_rq_init(struct rq *rq) 859 { 860 } 861 #endif /* CONFIG_SCHED_HRTICK */ 862 863 /* 864 * cmpxchg based fetch_or, macro so it works for different integer types 865 */ 866 #define fetch_or(ptr, mask) \ 867 ({ \ 868 typeof(ptr) _ptr = (ptr); \ 869 typeof(mask) _mask = (mask); \ 870 typeof(*_ptr) _val = *_ptr; \ 871 \ 872 do { \ 873 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 874 _val; \ 875 }) 876 877 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 878 /* 879 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 880 * this avoids any races wrt polling state changes and thereby avoids 881 * spurious IPIs. 882 */ 883 static inline bool set_nr_and_not_polling(struct task_struct *p) 884 { 885 struct thread_info *ti = task_thread_info(p); 886 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 887 } 888 889 /* 890 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 891 * 892 * If this returns true, then the idle task promises to call 893 * sched_ttwu_pending() and reschedule soon. 894 */ 895 static bool set_nr_if_polling(struct task_struct *p) 896 { 897 struct thread_info *ti = task_thread_info(p); 898 typeof(ti->flags) val = READ_ONCE(ti->flags); 899 900 for (;;) { 901 if (!(val & _TIF_POLLING_NRFLAG)) 902 return false; 903 if (val & _TIF_NEED_RESCHED) 904 return true; 905 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 906 break; 907 } 908 return true; 909 } 910 911 #else 912 static inline bool set_nr_and_not_polling(struct task_struct *p) 913 { 914 set_tsk_need_resched(p); 915 return true; 916 } 917 918 #ifdef CONFIG_SMP 919 static inline bool set_nr_if_polling(struct task_struct *p) 920 { 921 return false; 922 } 923 #endif 924 #endif 925 926 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 927 { 928 struct wake_q_node *node = &task->wake_q; 929 930 /* 931 * Atomically grab the task, if ->wake_q is !nil already it means 932 * it's already queued (either by us or someone else) and will get the 933 * wakeup due to that. 934 * 935 * In order to ensure that a pending wakeup will observe our pending 936 * state, even in the failed case, an explicit smp_mb() must be used. 937 */ 938 smp_mb__before_atomic(); 939 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 940 return false; 941 942 /* 943 * The head is context local, there can be no concurrency. 944 */ 945 *head->lastp = node; 946 head->lastp = &node->next; 947 return true; 948 } 949 950 /** 951 * wake_q_add() - queue a wakeup for 'later' waking. 952 * @head: the wake_q_head to add @task to 953 * @task: the task to queue for 'later' wakeup 954 * 955 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 956 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 957 * instantly. 958 * 959 * This function must be used as-if it were wake_up_process(); IOW the task 960 * must be ready to be woken at this location. 961 */ 962 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 963 { 964 if (__wake_q_add(head, task)) 965 get_task_struct(task); 966 } 967 968 /** 969 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 970 * @head: the wake_q_head to add @task to 971 * @task: the task to queue for 'later' wakeup 972 * 973 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 974 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 975 * instantly. 976 * 977 * This function must be used as-if it were wake_up_process(); IOW the task 978 * must be ready to be woken at this location. 979 * 980 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 981 * that already hold reference to @task can call the 'safe' version and trust 982 * wake_q to do the right thing depending whether or not the @task is already 983 * queued for wakeup. 984 */ 985 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 986 { 987 if (!__wake_q_add(head, task)) 988 put_task_struct(task); 989 } 990 991 void wake_up_q(struct wake_q_head *head) 992 { 993 struct wake_q_node *node = head->first; 994 995 while (node != WAKE_Q_TAIL) { 996 struct task_struct *task; 997 998 task = container_of(node, struct task_struct, wake_q); 999 /* Task can safely be re-inserted now: */ 1000 node = node->next; 1001 task->wake_q.next = NULL; 1002 1003 /* 1004 * wake_up_process() executes a full barrier, which pairs with 1005 * the queueing in wake_q_add() so as not to miss wakeups. 1006 */ 1007 wake_up_process(task); 1008 put_task_struct(task); 1009 } 1010 } 1011 1012 /* 1013 * resched_curr - mark rq's current task 'to be rescheduled now'. 1014 * 1015 * On UP this means the setting of the need_resched flag, on SMP it 1016 * might also involve a cross-CPU call to trigger the scheduler on 1017 * the target CPU. 1018 */ 1019 void resched_curr(struct rq *rq) 1020 { 1021 struct task_struct *curr = rq->curr; 1022 int cpu; 1023 1024 lockdep_assert_rq_held(rq); 1025 1026 if (test_tsk_need_resched(curr)) 1027 return; 1028 1029 cpu = cpu_of(rq); 1030 1031 if (cpu == smp_processor_id()) { 1032 set_tsk_need_resched(curr); 1033 set_preempt_need_resched(); 1034 return; 1035 } 1036 1037 if (set_nr_and_not_polling(curr)) 1038 smp_send_reschedule(cpu); 1039 else 1040 trace_sched_wake_idle_without_ipi(cpu); 1041 } 1042 1043 void resched_cpu(int cpu) 1044 { 1045 struct rq *rq = cpu_rq(cpu); 1046 unsigned long flags; 1047 1048 raw_spin_rq_lock_irqsave(rq, flags); 1049 if (cpu_online(cpu) || cpu == smp_processor_id()) 1050 resched_curr(rq); 1051 raw_spin_rq_unlock_irqrestore(rq, flags); 1052 } 1053 1054 #ifdef CONFIG_SMP 1055 #ifdef CONFIG_NO_HZ_COMMON 1056 /* 1057 * In the semi idle case, use the nearest busy CPU for migrating timers 1058 * from an idle CPU. This is good for power-savings. 1059 * 1060 * We don't do similar optimization for completely idle system, as 1061 * selecting an idle CPU will add more delays to the timers than intended 1062 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1063 */ 1064 int get_nohz_timer_target(void) 1065 { 1066 int i, cpu = smp_processor_id(), default_cpu = -1; 1067 struct sched_domain *sd; 1068 const struct cpumask *hk_mask; 1069 1070 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1071 if (!idle_cpu(cpu)) 1072 return cpu; 1073 default_cpu = cpu; 1074 } 1075 1076 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1077 1078 rcu_read_lock(); 1079 for_each_domain(cpu, sd) { 1080 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1081 if (cpu == i) 1082 continue; 1083 1084 if (!idle_cpu(i)) { 1085 cpu = i; 1086 goto unlock; 1087 } 1088 } 1089 } 1090 1091 if (default_cpu == -1) 1092 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1093 cpu = default_cpu; 1094 unlock: 1095 rcu_read_unlock(); 1096 return cpu; 1097 } 1098 1099 /* 1100 * When add_timer_on() enqueues a timer into the timer wheel of an 1101 * idle CPU then this timer might expire before the next timer event 1102 * which is scheduled to wake up that CPU. In case of a completely 1103 * idle system the next event might even be infinite time into the 1104 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1105 * leaves the inner idle loop so the newly added timer is taken into 1106 * account when the CPU goes back to idle and evaluates the timer 1107 * wheel for the next timer event. 1108 */ 1109 static void wake_up_idle_cpu(int cpu) 1110 { 1111 struct rq *rq = cpu_rq(cpu); 1112 1113 if (cpu == smp_processor_id()) 1114 return; 1115 1116 if (set_nr_and_not_polling(rq->idle)) 1117 smp_send_reschedule(cpu); 1118 else 1119 trace_sched_wake_idle_without_ipi(cpu); 1120 } 1121 1122 static bool wake_up_full_nohz_cpu(int cpu) 1123 { 1124 /* 1125 * We just need the target to call irq_exit() and re-evaluate 1126 * the next tick. The nohz full kick at least implies that. 1127 * If needed we can still optimize that later with an 1128 * empty IRQ. 1129 */ 1130 if (cpu_is_offline(cpu)) 1131 return true; /* Don't try to wake offline CPUs. */ 1132 if (tick_nohz_full_cpu(cpu)) { 1133 if (cpu != smp_processor_id() || 1134 tick_nohz_tick_stopped()) 1135 tick_nohz_full_kick_cpu(cpu); 1136 return true; 1137 } 1138 1139 return false; 1140 } 1141 1142 /* 1143 * Wake up the specified CPU. If the CPU is going offline, it is the 1144 * caller's responsibility to deal with the lost wakeup, for example, 1145 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1146 */ 1147 void wake_up_nohz_cpu(int cpu) 1148 { 1149 if (!wake_up_full_nohz_cpu(cpu)) 1150 wake_up_idle_cpu(cpu); 1151 } 1152 1153 static void nohz_csd_func(void *info) 1154 { 1155 struct rq *rq = info; 1156 int cpu = cpu_of(rq); 1157 unsigned int flags; 1158 1159 /* 1160 * Release the rq::nohz_csd. 1161 */ 1162 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1163 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1164 1165 rq->idle_balance = idle_cpu(cpu); 1166 if (rq->idle_balance && !need_resched()) { 1167 rq->nohz_idle_balance = flags; 1168 raise_softirq_irqoff(SCHED_SOFTIRQ); 1169 } 1170 } 1171 1172 #endif /* CONFIG_NO_HZ_COMMON */ 1173 1174 #ifdef CONFIG_NO_HZ_FULL 1175 bool sched_can_stop_tick(struct rq *rq) 1176 { 1177 int fifo_nr_running; 1178 1179 /* Deadline tasks, even if single, need the tick */ 1180 if (rq->dl.dl_nr_running) 1181 return false; 1182 1183 /* 1184 * If there are more than one RR tasks, we need the tick to affect the 1185 * actual RR behaviour. 1186 */ 1187 if (rq->rt.rr_nr_running) { 1188 if (rq->rt.rr_nr_running == 1) 1189 return true; 1190 else 1191 return false; 1192 } 1193 1194 /* 1195 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1196 * forced preemption between FIFO tasks. 1197 */ 1198 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1199 if (fifo_nr_running) 1200 return true; 1201 1202 /* 1203 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1204 * if there's more than one we need the tick for involuntary 1205 * preemption. 1206 */ 1207 if (rq->nr_running > 1) 1208 return false; 1209 1210 return true; 1211 } 1212 #endif /* CONFIG_NO_HZ_FULL */ 1213 #endif /* CONFIG_SMP */ 1214 1215 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1216 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1217 /* 1218 * Iterate task_group tree rooted at *from, calling @down when first entering a 1219 * node and @up when leaving it for the final time. 1220 * 1221 * Caller must hold rcu_lock or sufficient equivalent. 1222 */ 1223 int walk_tg_tree_from(struct task_group *from, 1224 tg_visitor down, tg_visitor up, void *data) 1225 { 1226 struct task_group *parent, *child; 1227 int ret; 1228 1229 parent = from; 1230 1231 down: 1232 ret = (*down)(parent, data); 1233 if (ret) 1234 goto out; 1235 list_for_each_entry_rcu(child, &parent->children, siblings) { 1236 parent = child; 1237 goto down; 1238 1239 up: 1240 continue; 1241 } 1242 ret = (*up)(parent, data); 1243 if (ret || parent == from) 1244 goto out; 1245 1246 child = parent; 1247 parent = parent->parent; 1248 if (parent) 1249 goto up; 1250 out: 1251 return ret; 1252 } 1253 1254 int tg_nop(struct task_group *tg, void *data) 1255 { 1256 return 0; 1257 } 1258 #endif 1259 1260 static void set_load_weight(struct task_struct *p, bool update_load) 1261 { 1262 int prio = p->static_prio - MAX_RT_PRIO; 1263 struct load_weight *load = &p->se.load; 1264 1265 /* 1266 * SCHED_IDLE tasks get minimal weight: 1267 */ 1268 if (task_has_idle_policy(p)) { 1269 load->weight = scale_load(WEIGHT_IDLEPRIO); 1270 load->inv_weight = WMULT_IDLEPRIO; 1271 return; 1272 } 1273 1274 /* 1275 * SCHED_OTHER tasks have to update their load when changing their 1276 * weight 1277 */ 1278 if (update_load && p->sched_class == &fair_sched_class) { 1279 reweight_task(p, prio); 1280 } else { 1281 load->weight = scale_load(sched_prio_to_weight[prio]); 1282 load->inv_weight = sched_prio_to_wmult[prio]; 1283 } 1284 } 1285 1286 #ifdef CONFIG_UCLAMP_TASK 1287 /* 1288 * Serializes updates of utilization clamp values 1289 * 1290 * The (slow-path) user-space triggers utilization clamp value updates which 1291 * can require updates on (fast-path) scheduler's data structures used to 1292 * support enqueue/dequeue operations. 1293 * While the per-CPU rq lock protects fast-path update operations, user-space 1294 * requests are serialized using a mutex to reduce the risk of conflicting 1295 * updates or API abuses. 1296 */ 1297 static DEFINE_MUTEX(uclamp_mutex); 1298 1299 /* Max allowed minimum utilization */ 1300 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1301 1302 /* Max allowed maximum utilization */ 1303 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1304 1305 /* 1306 * By default RT tasks run at the maximum performance point/capacity of the 1307 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1308 * SCHED_CAPACITY_SCALE. 1309 * 1310 * This knob allows admins to change the default behavior when uclamp is being 1311 * used. In battery powered devices, particularly, running at the maximum 1312 * capacity and frequency will increase energy consumption and shorten the 1313 * battery life. 1314 * 1315 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1316 * 1317 * This knob will not override the system default sched_util_clamp_min defined 1318 * above. 1319 */ 1320 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1321 1322 /* All clamps are required to be less or equal than these values */ 1323 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1324 1325 /* 1326 * This static key is used to reduce the uclamp overhead in the fast path. It 1327 * primarily disables the call to uclamp_rq_{inc, dec}() in 1328 * enqueue/dequeue_task(). 1329 * 1330 * This allows users to continue to enable uclamp in their kernel config with 1331 * minimum uclamp overhead in the fast path. 1332 * 1333 * As soon as userspace modifies any of the uclamp knobs, the static key is 1334 * enabled, since we have an actual users that make use of uclamp 1335 * functionality. 1336 * 1337 * The knobs that would enable this static key are: 1338 * 1339 * * A task modifying its uclamp value with sched_setattr(). 1340 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1341 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1342 */ 1343 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1344 1345 /* Integer rounded range for each bucket */ 1346 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1347 1348 #define for_each_clamp_id(clamp_id) \ 1349 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1350 1351 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1352 { 1353 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1354 } 1355 1356 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1357 { 1358 if (clamp_id == UCLAMP_MIN) 1359 return 0; 1360 return SCHED_CAPACITY_SCALE; 1361 } 1362 1363 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1364 unsigned int value, bool user_defined) 1365 { 1366 uc_se->value = value; 1367 uc_se->bucket_id = uclamp_bucket_id(value); 1368 uc_se->user_defined = user_defined; 1369 } 1370 1371 static inline unsigned int 1372 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1373 unsigned int clamp_value) 1374 { 1375 /* 1376 * Avoid blocked utilization pushing up the frequency when we go 1377 * idle (which drops the max-clamp) by retaining the last known 1378 * max-clamp. 1379 */ 1380 if (clamp_id == UCLAMP_MAX) { 1381 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1382 return clamp_value; 1383 } 1384 1385 return uclamp_none(UCLAMP_MIN); 1386 } 1387 1388 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1389 unsigned int clamp_value) 1390 { 1391 /* Reset max-clamp retention only on idle exit */ 1392 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1393 return; 1394 1395 uclamp_rq_set(rq, clamp_id, clamp_value); 1396 } 1397 1398 static inline 1399 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1400 unsigned int clamp_value) 1401 { 1402 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1403 int bucket_id = UCLAMP_BUCKETS - 1; 1404 1405 /* 1406 * Since both min and max clamps are max aggregated, find the 1407 * top most bucket with tasks in. 1408 */ 1409 for ( ; bucket_id >= 0; bucket_id--) { 1410 if (!bucket[bucket_id].tasks) 1411 continue; 1412 return bucket[bucket_id].value; 1413 } 1414 1415 /* No tasks -- default clamp values */ 1416 return uclamp_idle_value(rq, clamp_id, clamp_value); 1417 } 1418 1419 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1420 { 1421 unsigned int default_util_min; 1422 struct uclamp_se *uc_se; 1423 1424 lockdep_assert_held(&p->pi_lock); 1425 1426 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1427 1428 /* Only sync if user didn't override the default */ 1429 if (uc_se->user_defined) 1430 return; 1431 1432 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1433 uclamp_se_set(uc_se, default_util_min, false); 1434 } 1435 1436 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1437 { 1438 struct rq_flags rf; 1439 struct rq *rq; 1440 1441 if (!rt_task(p)) 1442 return; 1443 1444 /* Protect updates to p->uclamp_* */ 1445 rq = task_rq_lock(p, &rf); 1446 __uclamp_update_util_min_rt_default(p); 1447 task_rq_unlock(rq, p, &rf); 1448 } 1449 1450 static inline struct uclamp_se 1451 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1452 { 1453 /* Copy by value as we could modify it */ 1454 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1455 #ifdef CONFIG_UCLAMP_TASK_GROUP 1456 unsigned int tg_min, tg_max, value; 1457 1458 /* 1459 * Tasks in autogroups or root task group will be 1460 * restricted by system defaults. 1461 */ 1462 if (task_group_is_autogroup(task_group(p))) 1463 return uc_req; 1464 if (task_group(p) == &root_task_group) 1465 return uc_req; 1466 1467 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1468 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1469 value = uc_req.value; 1470 value = clamp(value, tg_min, tg_max); 1471 uclamp_se_set(&uc_req, value, false); 1472 #endif 1473 1474 return uc_req; 1475 } 1476 1477 /* 1478 * The effective clamp bucket index of a task depends on, by increasing 1479 * priority: 1480 * - the task specific clamp value, when explicitly requested from userspace 1481 * - the task group effective clamp value, for tasks not either in the root 1482 * group or in an autogroup 1483 * - the system default clamp value, defined by the sysadmin 1484 */ 1485 static inline struct uclamp_se 1486 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1487 { 1488 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1489 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1490 1491 /* System default restrictions always apply */ 1492 if (unlikely(uc_req.value > uc_max.value)) 1493 return uc_max; 1494 1495 return uc_req; 1496 } 1497 1498 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1499 { 1500 struct uclamp_se uc_eff; 1501 1502 /* Task currently refcounted: use back-annotated (effective) value */ 1503 if (p->uclamp[clamp_id].active) 1504 return (unsigned long)p->uclamp[clamp_id].value; 1505 1506 uc_eff = uclamp_eff_get(p, clamp_id); 1507 1508 return (unsigned long)uc_eff.value; 1509 } 1510 1511 /* 1512 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1513 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1514 * updates the rq's clamp value if required. 1515 * 1516 * Tasks can have a task-specific value requested from user-space, track 1517 * within each bucket the maximum value for tasks refcounted in it. 1518 * This "local max aggregation" allows to track the exact "requested" value 1519 * for each bucket when all its RUNNABLE tasks require the same clamp. 1520 */ 1521 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1522 enum uclamp_id clamp_id) 1523 { 1524 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1525 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1526 struct uclamp_bucket *bucket; 1527 1528 lockdep_assert_rq_held(rq); 1529 1530 /* Update task effective clamp */ 1531 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1532 1533 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1534 bucket->tasks++; 1535 uc_se->active = true; 1536 1537 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1538 1539 /* 1540 * Local max aggregation: rq buckets always track the max 1541 * "requested" clamp value of its RUNNABLE tasks. 1542 */ 1543 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1544 bucket->value = uc_se->value; 1545 1546 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1547 uclamp_rq_set(rq, clamp_id, uc_se->value); 1548 } 1549 1550 /* 1551 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1552 * is released. If this is the last task reference counting the rq's max 1553 * active clamp value, then the rq's clamp value is updated. 1554 * 1555 * Both refcounted tasks and rq's cached clamp values are expected to be 1556 * always valid. If it's detected they are not, as defensive programming, 1557 * enforce the expected state and warn. 1558 */ 1559 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1560 enum uclamp_id clamp_id) 1561 { 1562 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1563 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1564 struct uclamp_bucket *bucket; 1565 unsigned int bkt_clamp; 1566 unsigned int rq_clamp; 1567 1568 lockdep_assert_rq_held(rq); 1569 1570 /* 1571 * If sched_uclamp_used was enabled after task @p was enqueued, 1572 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1573 * 1574 * In this case the uc_se->active flag should be false since no uclamp 1575 * accounting was performed at enqueue time and we can just return 1576 * here. 1577 * 1578 * Need to be careful of the following enqueue/dequeue ordering 1579 * problem too 1580 * 1581 * enqueue(taskA) 1582 * // sched_uclamp_used gets enabled 1583 * enqueue(taskB) 1584 * dequeue(taskA) 1585 * // Must not decrement bucket->tasks here 1586 * dequeue(taskB) 1587 * 1588 * where we could end up with stale data in uc_se and 1589 * bucket[uc_se->bucket_id]. 1590 * 1591 * The following check here eliminates the possibility of such race. 1592 */ 1593 if (unlikely(!uc_se->active)) 1594 return; 1595 1596 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1597 1598 SCHED_WARN_ON(!bucket->tasks); 1599 if (likely(bucket->tasks)) 1600 bucket->tasks--; 1601 1602 uc_se->active = false; 1603 1604 /* 1605 * Keep "local max aggregation" simple and accept to (possibly) 1606 * overboost some RUNNABLE tasks in the same bucket. 1607 * The rq clamp bucket value is reset to its base value whenever 1608 * there are no more RUNNABLE tasks refcounting it. 1609 */ 1610 if (likely(bucket->tasks)) 1611 return; 1612 1613 rq_clamp = uclamp_rq_get(rq, clamp_id); 1614 /* 1615 * Defensive programming: this should never happen. If it happens, 1616 * e.g. due to future modification, warn and fixup the expected value. 1617 */ 1618 SCHED_WARN_ON(bucket->value > rq_clamp); 1619 if (bucket->value >= rq_clamp) { 1620 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1621 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1622 } 1623 } 1624 1625 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1626 { 1627 enum uclamp_id clamp_id; 1628 1629 /* 1630 * Avoid any overhead until uclamp is actually used by the userspace. 1631 * 1632 * The condition is constructed such that a NOP is generated when 1633 * sched_uclamp_used is disabled. 1634 */ 1635 if (!static_branch_unlikely(&sched_uclamp_used)) 1636 return; 1637 1638 if (unlikely(!p->sched_class->uclamp_enabled)) 1639 return; 1640 1641 for_each_clamp_id(clamp_id) 1642 uclamp_rq_inc_id(rq, p, clamp_id); 1643 1644 /* Reset clamp idle holding when there is one RUNNABLE task */ 1645 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1646 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1647 } 1648 1649 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1650 { 1651 enum uclamp_id clamp_id; 1652 1653 /* 1654 * Avoid any overhead until uclamp is actually used by the userspace. 1655 * 1656 * The condition is constructed such that a NOP is generated when 1657 * sched_uclamp_used is disabled. 1658 */ 1659 if (!static_branch_unlikely(&sched_uclamp_used)) 1660 return; 1661 1662 if (unlikely(!p->sched_class->uclamp_enabled)) 1663 return; 1664 1665 for_each_clamp_id(clamp_id) 1666 uclamp_rq_dec_id(rq, p, clamp_id); 1667 } 1668 1669 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1670 enum uclamp_id clamp_id) 1671 { 1672 if (!p->uclamp[clamp_id].active) 1673 return; 1674 1675 uclamp_rq_dec_id(rq, p, clamp_id); 1676 uclamp_rq_inc_id(rq, p, clamp_id); 1677 1678 /* 1679 * Make sure to clear the idle flag if we've transiently reached 0 1680 * active tasks on rq. 1681 */ 1682 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1683 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1684 } 1685 1686 static inline void 1687 uclamp_update_active(struct task_struct *p) 1688 { 1689 enum uclamp_id clamp_id; 1690 struct rq_flags rf; 1691 struct rq *rq; 1692 1693 /* 1694 * Lock the task and the rq where the task is (or was) queued. 1695 * 1696 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1697 * price to pay to safely serialize util_{min,max} updates with 1698 * enqueues, dequeues and migration operations. 1699 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1700 */ 1701 rq = task_rq_lock(p, &rf); 1702 1703 /* 1704 * Setting the clamp bucket is serialized by task_rq_lock(). 1705 * If the task is not yet RUNNABLE and its task_struct is not 1706 * affecting a valid clamp bucket, the next time it's enqueued, 1707 * it will already see the updated clamp bucket value. 1708 */ 1709 for_each_clamp_id(clamp_id) 1710 uclamp_rq_reinc_id(rq, p, clamp_id); 1711 1712 task_rq_unlock(rq, p, &rf); 1713 } 1714 1715 #ifdef CONFIG_UCLAMP_TASK_GROUP 1716 static inline void 1717 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1718 { 1719 struct css_task_iter it; 1720 struct task_struct *p; 1721 1722 css_task_iter_start(css, 0, &it); 1723 while ((p = css_task_iter_next(&it))) 1724 uclamp_update_active(p); 1725 css_task_iter_end(&it); 1726 } 1727 1728 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1729 #endif 1730 1731 #ifdef CONFIG_SYSCTL 1732 #ifdef CONFIG_UCLAMP_TASK 1733 #ifdef CONFIG_UCLAMP_TASK_GROUP 1734 static void uclamp_update_root_tg(void) 1735 { 1736 struct task_group *tg = &root_task_group; 1737 1738 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1739 sysctl_sched_uclamp_util_min, false); 1740 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1741 sysctl_sched_uclamp_util_max, false); 1742 1743 rcu_read_lock(); 1744 cpu_util_update_eff(&root_task_group.css); 1745 rcu_read_unlock(); 1746 } 1747 #else 1748 static void uclamp_update_root_tg(void) { } 1749 #endif 1750 1751 static void uclamp_sync_util_min_rt_default(void) 1752 { 1753 struct task_struct *g, *p; 1754 1755 /* 1756 * copy_process() sysctl_uclamp 1757 * uclamp_min_rt = X; 1758 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1759 * // link thread smp_mb__after_spinlock() 1760 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1761 * sched_post_fork() for_each_process_thread() 1762 * __uclamp_sync_rt() __uclamp_sync_rt() 1763 * 1764 * Ensures that either sched_post_fork() will observe the new 1765 * uclamp_min_rt or for_each_process_thread() will observe the new 1766 * task. 1767 */ 1768 read_lock(&tasklist_lock); 1769 smp_mb__after_spinlock(); 1770 read_unlock(&tasklist_lock); 1771 1772 rcu_read_lock(); 1773 for_each_process_thread(g, p) 1774 uclamp_update_util_min_rt_default(p); 1775 rcu_read_unlock(); 1776 } 1777 1778 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1779 void *buffer, size_t *lenp, loff_t *ppos) 1780 { 1781 bool update_root_tg = false; 1782 int old_min, old_max, old_min_rt; 1783 int result; 1784 1785 mutex_lock(&uclamp_mutex); 1786 old_min = sysctl_sched_uclamp_util_min; 1787 old_max = sysctl_sched_uclamp_util_max; 1788 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1789 1790 result = proc_dointvec(table, write, buffer, lenp, ppos); 1791 if (result) 1792 goto undo; 1793 if (!write) 1794 goto done; 1795 1796 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1797 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1798 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1799 1800 result = -EINVAL; 1801 goto undo; 1802 } 1803 1804 if (old_min != sysctl_sched_uclamp_util_min) { 1805 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1806 sysctl_sched_uclamp_util_min, false); 1807 update_root_tg = true; 1808 } 1809 if (old_max != sysctl_sched_uclamp_util_max) { 1810 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1811 sysctl_sched_uclamp_util_max, false); 1812 update_root_tg = true; 1813 } 1814 1815 if (update_root_tg) { 1816 static_branch_enable(&sched_uclamp_used); 1817 uclamp_update_root_tg(); 1818 } 1819 1820 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1821 static_branch_enable(&sched_uclamp_used); 1822 uclamp_sync_util_min_rt_default(); 1823 } 1824 1825 /* 1826 * We update all RUNNABLE tasks only when task groups are in use. 1827 * Otherwise, keep it simple and do just a lazy update at each next 1828 * task enqueue time. 1829 */ 1830 1831 goto done; 1832 1833 undo: 1834 sysctl_sched_uclamp_util_min = old_min; 1835 sysctl_sched_uclamp_util_max = old_max; 1836 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1837 done: 1838 mutex_unlock(&uclamp_mutex); 1839 1840 return result; 1841 } 1842 #endif 1843 #endif 1844 1845 static int uclamp_validate(struct task_struct *p, 1846 const struct sched_attr *attr) 1847 { 1848 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1849 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1850 1851 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1852 util_min = attr->sched_util_min; 1853 1854 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1855 return -EINVAL; 1856 } 1857 1858 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1859 util_max = attr->sched_util_max; 1860 1861 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1862 return -EINVAL; 1863 } 1864 1865 if (util_min != -1 && util_max != -1 && util_min > util_max) 1866 return -EINVAL; 1867 1868 /* 1869 * We have valid uclamp attributes; make sure uclamp is enabled. 1870 * 1871 * We need to do that here, because enabling static branches is a 1872 * blocking operation which obviously cannot be done while holding 1873 * scheduler locks. 1874 */ 1875 static_branch_enable(&sched_uclamp_used); 1876 1877 return 0; 1878 } 1879 1880 static bool uclamp_reset(const struct sched_attr *attr, 1881 enum uclamp_id clamp_id, 1882 struct uclamp_se *uc_se) 1883 { 1884 /* Reset on sched class change for a non user-defined clamp value. */ 1885 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1886 !uc_se->user_defined) 1887 return true; 1888 1889 /* Reset on sched_util_{min,max} == -1. */ 1890 if (clamp_id == UCLAMP_MIN && 1891 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1892 attr->sched_util_min == -1) { 1893 return true; 1894 } 1895 1896 if (clamp_id == UCLAMP_MAX && 1897 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1898 attr->sched_util_max == -1) { 1899 return true; 1900 } 1901 1902 return false; 1903 } 1904 1905 static void __setscheduler_uclamp(struct task_struct *p, 1906 const struct sched_attr *attr) 1907 { 1908 enum uclamp_id clamp_id; 1909 1910 for_each_clamp_id(clamp_id) { 1911 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1912 unsigned int value; 1913 1914 if (!uclamp_reset(attr, clamp_id, uc_se)) 1915 continue; 1916 1917 /* 1918 * RT by default have a 100% boost value that could be modified 1919 * at runtime. 1920 */ 1921 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1922 value = sysctl_sched_uclamp_util_min_rt_default; 1923 else 1924 value = uclamp_none(clamp_id); 1925 1926 uclamp_se_set(uc_se, value, false); 1927 1928 } 1929 1930 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1931 return; 1932 1933 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1934 attr->sched_util_min != -1) { 1935 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1936 attr->sched_util_min, true); 1937 } 1938 1939 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1940 attr->sched_util_max != -1) { 1941 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1942 attr->sched_util_max, true); 1943 } 1944 } 1945 1946 static void uclamp_fork(struct task_struct *p) 1947 { 1948 enum uclamp_id clamp_id; 1949 1950 /* 1951 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1952 * as the task is still at its early fork stages. 1953 */ 1954 for_each_clamp_id(clamp_id) 1955 p->uclamp[clamp_id].active = false; 1956 1957 if (likely(!p->sched_reset_on_fork)) 1958 return; 1959 1960 for_each_clamp_id(clamp_id) { 1961 uclamp_se_set(&p->uclamp_req[clamp_id], 1962 uclamp_none(clamp_id), false); 1963 } 1964 } 1965 1966 static void uclamp_post_fork(struct task_struct *p) 1967 { 1968 uclamp_update_util_min_rt_default(p); 1969 } 1970 1971 static void __init init_uclamp_rq(struct rq *rq) 1972 { 1973 enum uclamp_id clamp_id; 1974 struct uclamp_rq *uc_rq = rq->uclamp; 1975 1976 for_each_clamp_id(clamp_id) { 1977 uc_rq[clamp_id] = (struct uclamp_rq) { 1978 .value = uclamp_none(clamp_id) 1979 }; 1980 } 1981 1982 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1983 } 1984 1985 static void __init init_uclamp(void) 1986 { 1987 struct uclamp_se uc_max = {}; 1988 enum uclamp_id clamp_id; 1989 int cpu; 1990 1991 for_each_possible_cpu(cpu) 1992 init_uclamp_rq(cpu_rq(cpu)); 1993 1994 for_each_clamp_id(clamp_id) { 1995 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1996 uclamp_none(clamp_id), false); 1997 } 1998 1999 /* System defaults allow max clamp values for both indexes */ 2000 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2001 for_each_clamp_id(clamp_id) { 2002 uclamp_default[clamp_id] = uc_max; 2003 #ifdef CONFIG_UCLAMP_TASK_GROUP 2004 root_task_group.uclamp_req[clamp_id] = uc_max; 2005 root_task_group.uclamp[clamp_id] = uc_max; 2006 #endif 2007 } 2008 } 2009 2010 #else /* CONFIG_UCLAMP_TASK */ 2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2013 static inline int uclamp_validate(struct task_struct *p, 2014 const struct sched_attr *attr) 2015 { 2016 return -EOPNOTSUPP; 2017 } 2018 static void __setscheduler_uclamp(struct task_struct *p, 2019 const struct sched_attr *attr) { } 2020 static inline void uclamp_fork(struct task_struct *p) { } 2021 static inline void uclamp_post_fork(struct task_struct *p) { } 2022 static inline void init_uclamp(void) { } 2023 #endif /* CONFIG_UCLAMP_TASK */ 2024 2025 bool sched_task_on_rq(struct task_struct *p) 2026 { 2027 return task_on_rq_queued(p); 2028 } 2029 2030 unsigned long get_wchan(struct task_struct *p) 2031 { 2032 unsigned long ip = 0; 2033 unsigned int state; 2034 2035 if (!p || p == current) 2036 return 0; 2037 2038 /* Only get wchan if task is blocked and we can keep it that way. */ 2039 raw_spin_lock_irq(&p->pi_lock); 2040 state = READ_ONCE(p->__state); 2041 smp_rmb(); /* see try_to_wake_up() */ 2042 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2043 ip = __get_wchan(p); 2044 raw_spin_unlock_irq(&p->pi_lock); 2045 2046 return ip; 2047 } 2048 2049 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2050 { 2051 if (!(flags & ENQUEUE_NOCLOCK)) 2052 update_rq_clock(rq); 2053 2054 if (!(flags & ENQUEUE_RESTORE)) { 2055 sched_info_enqueue(rq, p); 2056 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 2057 } 2058 2059 uclamp_rq_inc(rq, p); 2060 p->sched_class->enqueue_task(rq, p, flags); 2061 2062 if (sched_core_enabled(rq)) 2063 sched_core_enqueue(rq, p); 2064 } 2065 2066 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2067 { 2068 if (sched_core_enabled(rq)) 2069 sched_core_dequeue(rq, p, flags); 2070 2071 if (!(flags & DEQUEUE_NOCLOCK)) 2072 update_rq_clock(rq); 2073 2074 if (!(flags & DEQUEUE_SAVE)) { 2075 sched_info_dequeue(rq, p); 2076 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2077 } 2078 2079 uclamp_rq_dec(rq, p); 2080 p->sched_class->dequeue_task(rq, p, flags); 2081 } 2082 2083 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2084 { 2085 enqueue_task(rq, p, flags); 2086 2087 p->on_rq = TASK_ON_RQ_QUEUED; 2088 } 2089 2090 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2091 { 2092 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2093 2094 dequeue_task(rq, p, flags); 2095 } 2096 2097 static inline int __normal_prio(int policy, int rt_prio, int nice) 2098 { 2099 int prio; 2100 2101 if (dl_policy(policy)) 2102 prio = MAX_DL_PRIO - 1; 2103 else if (rt_policy(policy)) 2104 prio = MAX_RT_PRIO - 1 - rt_prio; 2105 else 2106 prio = NICE_TO_PRIO(nice); 2107 2108 return prio; 2109 } 2110 2111 /* 2112 * Calculate the expected normal priority: i.e. priority 2113 * without taking RT-inheritance into account. Might be 2114 * boosted by interactivity modifiers. Changes upon fork, 2115 * setprio syscalls, and whenever the interactivity 2116 * estimator recalculates. 2117 */ 2118 static inline int normal_prio(struct task_struct *p) 2119 { 2120 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2121 } 2122 2123 /* 2124 * Calculate the current priority, i.e. the priority 2125 * taken into account by the scheduler. This value might 2126 * be boosted by RT tasks, or might be boosted by 2127 * interactivity modifiers. Will be RT if the task got 2128 * RT-boosted. If not then it returns p->normal_prio. 2129 */ 2130 static int effective_prio(struct task_struct *p) 2131 { 2132 p->normal_prio = normal_prio(p); 2133 /* 2134 * If we are RT tasks or we were boosted to RT priority, 2135 * keep the priority unchanged. Otherwise, update priority 2136 * to the normal priority: 2137 */ 2138 if (!rt_prio(p->prio)) 2139 return p->normal_prio; 2140 return p->prio; 2141 } 2142 2143 /** 2144 * task_curr - is this task currently executing on a CPU? 2145 * @p: the task in question. 2146 * 2147 * Return: 1 if the task is currently executing. 0 otherwise. 2148 */ 2149 inline int task_curr(const struct task_struct *p) 2150 { 2151 return cpu_curr(task_cpu(p)) == p; 2152 } 2153 2154 /* 2155 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2156 * use the balance_callback list if you want balancing. 2157 * 2158 * this means any call to check_class_changed() must be followed by a call to 2159 * balance_callback(). 2160 */ 2161 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2162 const struct sched_class *prev_class, 2163 int oldprio) 2164 { 2165 if (prev_class != p->sched_class) { 2166 if (prev_class->switched_from) 2167 prev_class->switched_from(rq, p); 2168 2169 p->sched_class->switched_to(rq, p); 2170 } else if (oldprio != p->prio || dl_task(p)) 2171 p->sched_class->prio_changed(rq, p, oldprio); 2172 } 2173 2174 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2175 { 2176 if (p->sched_class == rq->curr->sched_class) 2177 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2178 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2179 resched_curr(rq); 2180 2181 /* 2182 * A queue event has occurred, and we're going to schedule. In 2183 * this case, we can save a useless back to back clock update. 2184 */ 2185 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2186 rq_clock_skip_update(rq); 2187 } 2188 2189 #ifdef CONFIG_SMP 2190 2191 static void 2192 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2193 2194 static int __set_cpus_allowed_ptr(struct task_struct *p, 2195 struct affinity_context *ctx); 2196 2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2198 { 2199 struct affinity_context ac = { 2200 .new_mask = cpumask_of(rq->cpu), 2201 .flags = SCA_MIGRATE_DISABLE, 2202 }; 2203 2204 if (likely(!p->migration_disabled)) 2205 return; 2206 2207 if (p->cpus_ptr != &p->cpus_mask) 2208 return; 2209 2210 /* 2211 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2212 */ 2213 __do_set_cpus_allowed(p, &ac); 2214 } 2215 2216 void migrate_disable(void) 2217 { 2218 struct task_struct *p = current; 2219 2220 if (p->migration_disabled) { 2221 p->migration_disabled++; 2222 return; 2223 } 2224 2225 preempt_disable(); 2226 this_rq()->nr_pinned++; 2227 p->migration_disabled = 1; 2228 preempt_enable(); 2229 } 2230 EXPORT_SYMBOL_GPL(migrate_disable); 2231 2232 void migrate_enable(void) 2233 { 2234 struct task_struct *p = current; 2235 struct affinity_context ac = { 2236 .new_mask = &p->cpus_mask, 2237 .flags = SCA_MIGRATE_ENABLE, 2238 }; 2239 2240 if (p->migration_disabled > 1) { 2241 p->migration_disabled--; 2242 return; 2243 } 2244 2245 if (WARN_ON_ONCE(!p->migration_disabled)) 2246 return; 2247 2248 /* 2249 * Ensure stop_task runs either before or after this, and that 2250 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2251 */ 2252 preempt_disable(); 2253 if (p->cpus_ptr != &p->cpus_mask) 2254 __set_cpus_allowed_ptr(p, &ac); 2255 /* 2256 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2257 * regular cpus_mask, otherwise things that race (eg. 2258 * select_fallback_rq) get confused. 2259 */ 2260 barrier(); 2261 p->migration_disabled = 0; 2262 this_rq()->nr_pinned--; 2263 preempt_enable(); 2264 } 2265 EXPORT_SYMBOL_GPL(migrate_enable); 2266 2267 static inline bool rq_has_pinned_tasks(struct rq *rq) 2268 { 2269 return rq->nr_pinned; 2270 } 2271 2272 /* 2273 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2274 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2275 */ 2276 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2277 { 2278 /* When not in the task's cpumask, no point in looking further. */ 2279 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2280 return false; 2281 2282 /* migrate_disabled() must be allowed to finish. */ 2283 if (is_migration_disabled(p)) 2284 return cpu_online(cpu); 2285 2286 /* Non kernel threads are not allowed during either online or offline. */ 2287 if (!(p->flags & PF_KTHREAD)) 2288 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2289 2290 /* KTHREAD_IS_PER_CPU is always allowed. */ 2291 if (kthread_is_per_cpu(p)) 2292 return cpu_online(cpu); 2293 2294 /* Regular kernel threads don't get to stay during offline. */ 2295 if (cpu_dying(cpu)) 2296 return false; 2297 2298 /* But are allowed during online. */ 2299 return cpu_online(cpu); 2300 } 2301 2302 /* 2303 * This is how migration works: 2304 * 2305 * 1) we invoke migration_cpu_stop() on the target CPU using 2306 * stop_one_cpu(). 2307 * 2) stopper starts to run (implicitly forcing the migrated thread 2308 * off the CPU) 2309 * 3) it checks whether the migrated task is still in the wrong runqueue. 2310 * 4) if it's in the wrong runqueue then the migration thread removes 2311 * it and puts it into the right queue. 2312 * 5) stopper completes and stop_one_cpu() returns and the migration 2313 * is done. 2314 */ 2315 2316 /* 2317 * move_queued_task - move a queued task to new rq. 2318 * 2319 * Returns (locked) new rq. Old rq's lock is released. 2320 */ 2321 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2322 struct task_struct *p, int new_cpu) 2323 { 2324 lockdep_assert_rq_held(rq); 2325 2326 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2327 set_task_cpu(p, new_cpu); 2328 rq_unlock(rq, rf); 2329 2330 rq = cpu_rq(new_cpu); 2331 2332 rq_lock(rq, rf); 2333 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2334 activate_task(rq, p, 0); 2335 check_preempt_curr(rq, p, 0); 2336 2337 return rq; 2338 } 2339 2340 struct migration_arg { 2341 struct task_struct *task; 2342 int dest_cpu; 2343 struct set_affinity_pending *pending; 2344 }; 2345 2346 /* 2347 * @refs: number of wait_for_completion() 2348 * @stop_pending: is @stop_work in use 2349 */ 2350 struct set_affinity_pending { 2351 refcount_t refs; 2352 unsigned int stop_pending; 2353 struct completion done; 2354 struct cpu_stop_work stop_work; 2355 struct migration_arg arg; 2356 }; 2357 2358 /* 2359 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2360 * this because either it can't run here any more (set_cpus_allowed() 2361 * away from this CPU, or CPU going down), or because we're 2362 * attempting to rebalance this task on exec (sched_exec). 2363 * 2364 * So we race with normal scheduler movements, but that's OK, as long 2365 * as the task is no longer on this CPU. 2366 */ 2367 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2368 struct task_struct *p, int dest_cpu) 2369 { 2370 /* Affinity changed (again). */ 2371 if (!is_cpu_allowed(p, dest_cpu)) 2372 return rq; 2373 2374 update_rq_clock(rq); 2375 rq = move_queued_task(rq, rf, p, dest_cpu); 2376 2377 return rq; 2378 } 2379 2380 /* 2381 * migration_cpu_stop - this will be executed by a highprio stopper thread 2382 * and performs thread migration by bumping thread off CPU then 2383 * 'pushing' onto another runqueue. 2384 */ 2385 static int migration_cpu_stop(void *data) 2386 { 2387 struct migration_arg *arg = data; 2388 struct set_affinity_pending *pending = arg->pending; 2389 struct task_struct *p = arg->task; 2390 struct rq *rq = this_rq(); 2391 bool complete = false; 2392 struct rq_flags rf; 2393 2394 /* 2395 * The original target CPU might have gone down and we might 2396 * be on another CPU but it doesn't matter. 2397 */ 2398 local_irq_save(rf.flags); 2399 /* 2400 * We need to explicitly wake pending tasks before running 2401 * __migrate_task() such that we will not miss enforcing cpus_ptr 2402 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2403 */ 2404 flush_smp_call_function_queue(); 2405 2406 raw_spin_lock(&p->pi_lock); 2407 rq_lock(rq, &rf); 2408 2409 /* 2410 * If we were passed a pending, then ->stop_pending was set, thus 2411 * p->migration_pending must have remained stable. 2412 */ 2413 WARN_ON_ONCE(pending && pending != p->migration_pending); 2414 2415 /* 2416 * If task_rq(p) != rq, it cannot be migrated here, because we're 2417 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2418 * we're holding p->pi_lock. 2419 */ 2420 if (task_rq(p) == rq) { 2421 if (is_migration_disabled(p)) 2422 goto out; 2423 2424 if (pending) { 2425 p->migration_pending = NULL; 2426 complete = true; 2427 2428 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2429 goto out; 2430 } 2431 2432 if (task_on_rq_queued(p)) 2433 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2434 else 2435 p->wake_cpu = arg->dest_cpu; 2436 2437 /* 2438 * XXX __migrate_task() can fail, at which point we might end 2439 * up running on a dodgy CPU, AFAICT this can only happen 2440 * during CPU hotplug, at which point we'll get pushed out 2441 * anyway, so it's probably not a big deal. 2442 */ 2443 2444 } else if (pending) { 2445 /* 2446 * This happens when we get migrated between migrate_enable()'s 2447 * preempt_enable() and scheduling the stopper task. At that 2448 * point we're a regular task again and not current anymore. 2449 * 2450 * A !PREEMPT kernel has a giant hole here, which makes it far 2451 * more likely. 2452 */ 2453 2454 /* 2455 * The task moved before the stopper got to run. We're holding 2456 * ->pi_lock, so the allowed mask is stable - if it got 2457 * somewhere allowed, we're done. 2458 */ 2459 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2460 p->migration_pending = NULL; 2461 complete = true; 2462 goto out; 2463 } 2464 2465 /* 2466 * When migrate_enable() hits a rq mis-match we can't reliably 2467 * determine is_migration_disabled() and so have to chase after 2468 * it. 2469 */ 2470 WARN_ON_ONCE(!pending->stop_pending); 2471 task_rq_unlock(rq, p, &rf); 2472 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2473 &pending->arg, &pending->stop_work); 2474 return 0; 2475 } 2476 out: 2477 if (pending) 2478 pending->stop_pending = false; 2479 task_rq_unlock(rq, p, &rf); 2480 2481 if (complete) 2482 complete_all(&pending->done); 2483 2484 return 0; 2485 } 2486 2487 int push_cpu_stop(void *arg) 2488 { 2489 struct rq *lowest_rq = NULL, *rq = this_rq(); 2490 struct task_struct *p = arg; 2491 2492 raw_spin_lock_irq(&p->pi_lock); 2493 raw_spin_rq_lock(rq); 2494 2495 if (task_rq(p) != rq) 2496 goto out_unlock; 2497 2498 if (is_migration_disabled(p)) { 2499 p->migration_flags |= MDF_PUSH; 2500 goto out_unlock; 2501 } 2502 2503 p->migration_flags &= ~MDF_PUSH; 2504 2505 if (p->sched_class->find_lock_rq) 2506 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2507 2508 if (!lowest_rq) 2509 goto out_unlock; 2510 2511 // XXX validate p is still the highest prio task 2512 if (task_rq(p) == rq) { 2513 deactivate_task(rq, p, 0); 2514 set_task_cpu(p, lowest_rq->cpu); 2515 activate_task(lowest_rq, p, 0); 2516 resched_curr(lowest_rq); 2517 } 2518 2519 double_unlock_balance(rq, lowest_rq); 2520 2521 out_unlock: 2522 rq->push_busy = false; 2523 raw_spin_rq_unlock(rq); 2524 raw_spin_unlock_irq(&p->pi_lock); 2525 2526 put_task_struct(p); 2527 return 0; 2528 } 2529 2530 /* 2531 * sched_class::set_cpus_allowed must do the below, but is not required to 2532 * actually call this function. 2533 */ 2534 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2535 { 2536 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2537 p->cpus_ptr = ctx->new_mask; 2538 return; 2539 } 2540 2541 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2542 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2543 2544 /* 2545 * Swap in a new user_cpus_ptr if SCA_USER flag set 2546 */ 2547 if (ctx->flags & SCA_USER) 2548 swap(p->user_cpus_ptr, ctx->user_mask); 2549 } 2550 2551 static void 2552 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2553 { 2554 struct rq *rq = task_rq(p); 2555 bool queued, running; 2556 2557 /* 2558 * This here violates the locking rules for affinity, since we're only 2559 * supposed to change these variables while holding both rq->lock and 2560 * p->pi_lock. 2561 * 2562 * HOWEVER, it magically works, because ttwu() is the only code that 2563 * accesses these variables under p->pi_lock and only does so after 2564 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2565 * before finish_task(). 2566 * 2567 * XXX do further audits, this smells like something putrid. 2568 */ 2569 if (ctx->flags & SCA_MIGRATE_DISABLE) 2570 SCHED_WARN_ON(!p->on_cpu); 2571 else 2572 lockdep_assert_held(&p->pi_lock); 2573 2574 queued = task_on_rq_queued(p); 2575 running = task_current(rq, p); 2576 2577 if (queued) { 2578 /* 2579 * Because __kthread_bind() calls this on blocked tasks without 2580 * holding rq->lock. 2581 */ 2582 lockdep_assert_rq_held(rq); 2583 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2584 } 2585 if (running) 2586 put_prev_task(rq, p); 2587 2588 p->sched_class->set_cpus_allowed(p, ctx); 2589 2590 if (queued) 2591 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2592 if (running) 2593 set_next_task(rq, p); 2594 } 2595 2596 /* 2597 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2598 * affinity (if any) should be destroyed too. 2599 */ 2600 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2601 { 2602 struct affinity_context ac = { 2603 .new_mask = new_mask, 2604 .user_mask = NULL, 2605 .flags = SCA_USER, /* clear the user requested mask */ 2606 }; 2607 2608 __do_set_cpus_allowed(p, &ac); 2609 kfree(ac.user_mask); 2610 } 2611 2612 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2613 int node) 2614 { 2615 unsigned long flags; 2616 2617 if (!src->user_cpus_ptr) 2618 return 0; 2619 2620 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2621 if (!dst->user_cpus_ptr) 2622 return -ENOMEM; 2623 2624 /* Use pi_lock to protect content of user_cpus_ptr */ 2625 raw_spin_lock_irqsave(&src->pi_lock, flags); 2626 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2627 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2628 return 0; 2629 } 2630 2631 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2632 { 2633 struct cpumask *user_mask = NULL; 2634 2635 swap(p->user_cpus_ptr, user_mask); 2636 2637 return user_mask; 2638 } 2639 2640 void release_user_cpus_ptr(struct task_struct *p) 2641 { 2642 kfree(clear_user_cpus_ptr(p)); 2643 } 2644 2645 /* 2646 * This function is wildly self concurrent; here be dragons. 2647 * 2648 * 2649 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2650 * designated task is enqueued on an allowed CPU. If that task is currently 2651 * running, we have to kick it out using the CPU stopper. 2652 * 2653 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2654 * Consider: 2655 * 2656 * Initial conditions: P0->cpus_mask = [0, 1] 2657 * 2658 * P0@CPU0 P1 2659 * 2660 * migrate_disable(); 2661 * <preempted> 2662 * set_cpus_allowed_ptr(P0, [1]); 2663 * 2664 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2665 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2666 * This means we need the following scheme: 2667 * 2668 * P0@CPU0 P1 2669 * 2670 * migrate_disable(); 2671 * <preempted> 2672 * set_cpus_allowed_ptr(P0, [1]); 2673 * <blocks> 2674 * <resumes> 2675 * migrate_enable(); 2676 * __set_cpus_allowed_ptr(); 2677 * <wakes local stopper> 2678 * `--> <woken on migration completion> 2679 * 2680 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2681 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2682 * task p are serialized by p->pi_lock, which we can leverage: the one that 2683 * should come into effect at the end of the Migrate-Disable region is the last 2684 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2685 * but we still need to properly signal those waiting tasks at the appropriate 2686 * moment. 2687 * 2688 * This is implemented using struct set_affinity_pending. The first 2689 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2690 * setup an instance of that struct and install it on the targeted task_struct. 2691 * Any and all further callers will reuse that instance. Those then wait for 2692 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2693 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2694 * 2695 * 2696 * (1) In the cases covered above. There is one more where the completion is 2697 * signaled within affine_move_task() itself: when a subsequent affinity request 2698 * occurs after the stopper bailed out due to the targeted task still being 2699 * Migrate-Disable. Consider: 2700 * 2701 * Initial conditions: P0->cpus_mask = [0, 1] 2702 * 2703 * CPU0 P1 P2 2704 * <P0> 2705 * migrate_disable(); 2706 * <preempted> 2707 * set_cpus_allowed_ptr(P0, [1]); 2708 * <blocks> 2709 * <migration/0> 2710 * migration_cpu_stop() 2711 * is_migration_disabled() 2712 * <bails> 2713 * set_cpus_allowed_ptr(P0, [0, 1]); 2714 * <signal completion> 2715 * <awakes> 2716 * 2717 * Note that the above is safe vs a concurrent migrate_enable(), as any 2718 * pending affinity completion is preceded by an uninstallation of 2719 * p->migration_pending done with p->pi_lock held. 2720 */ 2721 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2722 int dest_cpu, unsigned int flags) 2723 __releases(rq->lock) 2724 __releases(p->pi_lock) 2725 { 2726 struct set_affinity_pending my_pending = { }, *pending = NULL; 2727 bool stop_pending, complete = false; 2728 2729 /* Can the task run on the task's current CPU? If so, we're done */ 2730 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2731 struct task_struct *push_task = NULL; 2732 2733 if ((flags & SCA_MIGRATE_ENABLE) && 2734 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2735 rq->push_busy = true; 2736 push_task = get_task_struct(p); 2737 } 2738 2739 /* 2740 * If there are pending waiters, but no pending stop_work, 2741 * then complete now. 2742 */ 2743 pending = p->migration_pending; 2744 if (pending && !pending->stop_pending) { 2745 p->migration_pending = NULL; 2746 complete = true; 2747 } 2748 2749 task_rq_unlock(rq, p, rf); 2750 2751 if (push_task) { 2752 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2753 p, &rq->push_work); 2754 } 2755 2756 if (complete) 2757 complete_all(&pending->done); 2758 2759 return 0; 2760 } 2761 2762 if (!(flags & SCA_MIGRATE_ENABLE)) { 2763 /* serialized by p->pi_lock */ 2764 if (!p->migration_pending) { 2765 /* Install the request */ 2766 refcount_set(&my_pending.refs, 1); 2767 init_completion(&my_pending.done); 2768 my_pending.arg = (struct migration_arg) { 2769 .task = p, 2770 .dest_cpu = dest_cpu, 2771 .pending = &my_pending, 2772 }; 2773 2774 p->migration_pending = &my_pending; 2775 } else { 2776 pending = p->migration_pending; 2777 refcount_inc(&pending->refs); 2778 /* 2779 * Affinity has changed, but we've already installed a 2780 * pending. migration_cpu_stop() *must* see this, else 2781 * we risk a completion of the pending despite having a 2782 * task on a disallowed CPU. 2783 * 2784 * Serialized by p->pi_lock, so this is safe. 2785 */ 2786 pending->arg.dest_cpu = dest_cpu; 2787 } 2788 } 2789 pending = p->migration_pending; 2790 /* 2791 * - !MIGRATE_ENABLE: 2792 * we'll have installed a pending if there wasn't one already. 2793 * 2794 * - MIGRATE_ENABLE: 2795 * we're here because the current CPU isn't matching anymore, 2796 * the only way that can happen is because of a concurrent 2797 * set_cpus_allowed_ptr() call, which should then still be 2798 * pending completion. 2799 * 2800 * Either way, we really should have a @pending here. 2801 */ 2802 if (WARN_ON_ONCE(!pending)) { 2803 task_rq_unlock(rq, p, rf); 2804 return -EINVAL; 2805 } 2806 2807 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2808 /* 2809 * MIGRATE_ENABLE gets here because 'p == current', but for 2810 * anything else we cannot do is_migration_disabled(), punt 2811 * and have the stopper function handle it all race-free. 2812 */ 2813 stop_pending = pending->stop_pending; 2814 if (!stop_pending) 2815 pending->stop_pending = true; 2816 2817 if (flags & SCA_MIGRATE_ENABLE) 2818 p->migration_flags &= ~MDF_PUSH; 2819 2820 task_rq_unlock(rq, p, rf); 2821 2822 if (!stop_pending) { 2823 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2824 &pending->arg, &pending->stop_work); 2825 } 2826 2827 if (flags & SCA_MIGRATE_ENABLE) 2828 return 0; 2829 } else { 2830 2831 if (!is_migration_disabled(p)) { 2832 if (task_on_rq_queued(p)) 2833 rq = move_queued_task(rq, rf, p, dest_cpu); 2834 2835 if (!pending->stop_pending) { 2836 p->migration_pending = NULL; 2837 complete = true; 2838 } 2839 } 2840 task_rq_unlock(rq, p, rf); 2841 2842 if (complete) 2843 complete_all(&pending->done); 2844 } 2845 2846 wait_for_completion(&pending->done); 2847 2848 if (refcount_dec_and_test(&pending->refs)) 2849 wake_up_var(&pending->refs); /* No UaF, just an address */ 2850 2851 /* 2852 * Block the original owner of &pending until all subsequent callers 2853 * have seen the completion and decremented the refcount 2854 */ 2855 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2856 2857 /* ARGH */ 2858 WARN_ON_ONCE(my_pending.stop_pending); 2859 2860 return 0; 2861 } 2862 2863 /* 2864 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2865 */ 2866 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2867 struct affinity_context *ctx, 2868 struct rq *rq, 2869 struct rq_flags *rf) 2870 __releases(rq->lock) 2871 __releases(p->pi_lock) 2872 { 2873 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2874 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2875 bool kthread = p->flags & PF_KTHREAD; 2876 unsigned int dest_cpu; 2877 int ret = 0; 2878 2879 update_rq_clock(rq); 2880 2881 if (kthread || is_migration_disabled(p)) { 2882 /* 2883 * Kernel threads are allowed on online && !active CPUs, 2884 * however, during cpu-hot-unplug, even these might get pushed 2885 * away if not KTHREAD_IS_PER_CPU. 2886 * 2887 * Specifically, migration_disabled() tasks must not fail the 2888 * cpumask_any_and_distribute() pick below, esp. so on 2889 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2890 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2891 */ 2892 cpu_valid_mask = cpu_online_mask; 2893 } 2894 2895 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2896 ret = -EINVAL; 2897 goto out; 2898 } 2899 2900 /* 2901 * Must re-check here, to close a race against __kthread_bind(), 2902 * sched_setaffinity() is not guaranteed to observe the flag. 2903 */ 2904 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2905 ret = -EINVAL; 2906 goto out; 2907 } 2908 2909 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2910 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) 2911 goto out; 2912 2913 if (WARN_ON_ONCE(p == current && 2914 is_migration_disabled(p) && 2915 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2916 ret = -EBUSY; 2917 goto out; 2918 } 2919 } 2920 2921 /* 2922 * Picking a ~random cpu helps in cases where we are changing affinity 2923 * for groups of tasks (ie. cpuset), so that load balancing is not 2924 * immediately required to distribute the tasks within their new mask. 2925 */ 2926 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 2927 if (dest_cpu >= nr_cpu_ids) { 2928 ret = -EINVAL; 2929 goto out; 2930 } 2931 2932 __do_set_cpus_allowed(p, ctx); 2933 2934 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 2935 2936 out: 2937 task_rq_unlock(rq, p, rf); 2938 2939 return ret; 2940 } 2941 2942 /* 2943 * Change a given task's CPU affinity. Migrate the thread to a 2944 * proper CPU and schedule it away if the CPU it's executing on 2945 * is removed from the allowed bitmask. 2946 * 2947 * NOTE: the caller must have a valid reference to the task, the 2948 * task must not exit() & deallocate itself prematurely. The 2949 * call is not atomic; no spinlocks may be held. 2950 */ 2951 static int __set_cpus_allowed_ptr(struct task_struct *p, 2952 struct affinity_context *ctx) 2953 { 2954 struct rq_flags rf; 2955 struct rq *rq; 2956 2957 rq = task_rq_lock(p, &rf); 2958 /* 2959 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 2960 * flags are set. 2961 */ 2962 if (p->user_cpus_ptr && 2963 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 2964 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 2965 ctx->new_mask = rq->scratch_mask; 2966 2967 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 2968 } 2969 2970 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2971 { 2972 struct affinity_context ac = { 2973 .new_mask = new_mask, 2974 .flags = 0, 2975 }; 2976 2977 return __set_cpus_allowed_ptr(p, &ac); 2978 } 2979 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2980 2981 /* 2982 * Change a given task's CPU affinity to the intersection of its current 2983 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 2984 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 2985 * affinity or use cpu_online_mask instead. 2986 * 2987 * If the resulting mask is empty, leave the affinity unchanged and return 2988 * -EINVAL. 2989 */ 2990 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2991 struct cpumask *new_mask, 2992 const struct cpumask *subset_mask) 2993 { 2994 struct affinity_context ac = { 2995 .new_mask = new_mask, 2996 .flags = 0, 2997 }; 2998 struct rq_flags rf; 2999 struct rq *rq; 3000 int err; 3001 3002 rq = task_rq_lock(p, &rf); 3003 3004 /* 3005 * Forcefully restricting the affinity of a deadline task is 3006 * likely to cause problems, so fail and noisily override the 3007 * mask entirely. 3008 */ 3009 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3010 err = -EPERM; 3011 goto err_unlock; 3012 } 3013 3014 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3015 err = -EINVAL; 3016 goto err_unlock; 3017 } 3018 3019 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3020 3021 err_unlock: 3022 task_rq_unlock(rq, p, &rf); 3023 return err; 3024 } 3025 3026 /* 3027 * Restrict the CPU affinity of task @p so that it is a subset of 3028 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3029 * old affinity mask. If the resulting mask is empty, we warn and walk 3030 * up the cpuset hierarchy until we find a suitable mask. 3031 */ 3032 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3033 { 3034 cpumask_var_t new_mask; 3035 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3036 3037 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3038 3039 /* 3040 * __migrate_task() can fail silently in the face of concurrent 3041 * offlining of the chosen destination CPU, so take the hotplug 3042 * lock to ensure that the migration succeeds. 3043 */ 3044 cpus_read_lock(); 3045 if (!cpumask_available(new_mask)) 3046 goto out_set_mask; 3047 3048 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3049 goto out_free_mask; 3050 3051 /* 3052 * We failed to find a valid subset of the affinity mask for the 3053 * task, so override it based on its cpuset hierarchy. 3054 */ 3055 cpuset_cpus_allowed(p, new_mask); 3056 override_mask = new_mask; 3057 3058 out_set_mask: 3059 if (printk_ratelimit()) { 3060 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3061 task_pid_nr(p), p->comm, 3062 cpumask_pr_args(override_mask)); 3063 } 3064 3065 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3066 out_free_mask: 3067 cpus_read_unlock(); 3068 free_cpumask_var(new_mask); 3069 } 3070 3071 static int 3072 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3073 3074 /* 3075 * Restore the affinity of a task @p which was previously restricted by a 3076 * call to force_compatible_cpus_allowed_ptr(). 3077 * 3078 * It is the caller's responsibility to serialise this with any calls to 3079 * force_compatible_cpus_allowed_ptr(@p). 3080 */ 3081 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3082 { 3083 struct affinity_context ac = { 3084 .new_mask = task_user_cpus(p), 3085 .flags = 0, 3086 }; 3087 int ret; 3088 3089 /* 3090 * Try to restore the old affinity mask with __sched_setaffinity(). 3091 * Cpuset masking will be done there too. 3092 */ 3093 ret = __sched_setaffinity(p, &ac); 3094 WARN_ON_ONCE(ret); 3095 } 3096 3097 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3098 { 3099 #ifdef CONFIG_SCHED_DEBUG 3100 unsigned int state = READ_ONCE(p->__state); 3101 3102 /* 3103 * We should never call set_task_cpu() on a blocked task, 3104 * ttwu() will sort out the placement. 3105 */ 3106 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3107 3108 /* 3109 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3110 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3111 * time relying on p->on_rq. 3112 */ 3113 WARN_ON_ONCE(state == TASK_RUNNING && 3114 p->sched_class == &fair_sched_class && 3115 (p->on_rq && !task_on_rq_migrating(p))); 3116 3117 #ifdef CONFIG_LOCKDEP 3118 /* 3119 * The caller should hold either p->pi_lock or rq->lock, when changing 3120 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3121 * 3122 * sched_move_task() holds both and thus holding either pins the cgroup, 3123 * see task_group(). 3124 * 3125 * Furthermore, all task_rq users should acquire both locks, see 3126 * task_rq_lock(). 3127 */ 3128 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3129 lockdep_is_held(__rq_lockp(task_rq(p))))); 3130 #endif 3131 /* 3132 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3133 */ 3134 WARN_ON_ONCE(!cpu_online(new_cpu)); 3135 3136 WARN_ON_ONCE(is_migration_disabled(p)); 3137 #endif 3138 3139 trace_sched_migrate_task(p, new_cpu); 3140 3141 if (task_cpu(p) != new_cpu) { 3142 if (p->sched_class->migrate_task_rq) 3143 p->sched_class->migrate_task_rq(p, new_cpu); 3144 p->se.nr_migrations++; 3145 rseq_migrate(p); 3146 perf_event_task_migrate(p); 3147 } 3148 3149 __set_task_cpu(p, new_cpu); 3150 } 3151 3152 #ifdef CONFIG_NUMA_BALANCING 3153 static void __migrate_swap_task(struct task_struct *p, int cpu) 3154 { 3155 if (task_on_rq_queued(p)) { 3156 struct rq *src_rq, *dst_rq; 3157 struct rq_flags srf, drf; 3158 3159 src_rq = task_rq(p); 3160 dst_rq = cpu_rq(cpu); 3161 3162 rq_pin_lock(src_rq, &srf); 3163 rq_pin_lock(dst_rq, &drf); 3164 3165 deactivate_task(src_rq, p, 0); 3166 set_task_cpu(p, cpu); 3167 activate_task(dst_rq, p, 0); 3168 check_preempt_curr(dst_rq, p, 0); 3169 3170 rq_unpin_lock(dst_rq, &drf); 3171 rq_unpin_lock(src_rq, &srf); 3172 3173 } else { 3174 /* 3175 * Task isn't running anymore; make it appear like we migrated 3176 * it before it went to sleep. This means on wakeup we make the 3177 * previous CPU our target instead of where it really is. 3178 */ 3179 p->wake_cpu = cpu; 3180 } 3181 } 3182 3183 struct migration_swap_arg { 3184 struct task_struct *src_task, *dst_task; 3185 int src_cpu, dst_cpu; 3186 }; 3187 3188 static int migrate_swap_stop(void *data) 3189 { 3190 struct migration_swap_arg *arg = data; 3191 struct rq *src_rq, *dst_rq; 3192 int ret = -EAGAIN; 3193 3194 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3195 return -EAGAIN; 3196 3197 src_rq = cpu_rq(arg->src_cpu); 3198 dst_rq = cpu_rq(arg->dst_cpu); 3199 3200 double_raw_lock(&arg->src_task->pi_lock, 3201 &arg->dst_task->pi_lock); 3202 double_rq_lock(src_rq, dst_rq); 3203 3204 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3205 goto unlock; 3206 3207 if (task_cpu(arg->src_task) != arg->src_cpu) 3208 goto unlock; 3209 3210 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3211 goto unlock; 3212 3213 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3214 goto unlock; 3215 3216 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3217 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3218 3219 ret = 0; 3220 3221 unlock: 3222 double_rq_unlock(src_rq, dst_rq); 3223 raw_spin_unlock(&arg->dst_task->pi_lock); 3224 raw_spin_unlock(&arg->src_task->pi_lock); 3225 3226 return ret; 3227 } 3228 3229 /* 3230 * Cross migrate two tasks 3231 */ 3232 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3233 int target_cpu, int curr_cpu) 3234 { 3235 struct migration_swap_arg arg; 3236 int ret = -EINVAL; 3237 3238 arg = (struct migration_swap_arg){ 3239 .src_task = cur, 3240 .src_cpu = curr_cpu, 3241 .dst_task = p, 3242 .dst_cpu = target_cpu, 3243 }; 3244 3245 if (arg.src_cpu == arg.dst_cpu) 3246 goto out; 3247 3248 /* 3249 * These three tests are all lockless; this is OK since all of them 3250 * will be re-checked with proper locks held further down the line. 3251 */ 3252 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3253 goto out; 3254 3255 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3256 goto out; 3257 3258 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3259 goto out; 3260 3261 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3262 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3263 3264 out: 3265 return ret; 3266 } 3267 #endif /* CONFIG_NUMA_BALANCING */ 3268 3269 /* 3270 * wait_task_inactive - wait for a thread to unschedule. 3271 * 3272 * Wait for the thread to block in any of the states set in @match_state. 3273 * If it changes, i.e. @p might have woken up, then return zero. When we 3274 * succeed in waiting for @p to be off its CPU, we return a positive number 3275 * (its total switch count). If a second call a short while later returns the 3276 * same number, the caller can be sure that @p has remained unscheduled the 3277 * whole time. 3278 * 3279 * The caller must ensure that the task *will* unschedule sometime soon, 3280 * else this function might spin for a *long* time. This function can't 3281 * be called with interrupts off, or it may introduce deadlock with 3282 * smp_call_function() if an IPI is sent by the same process we are 3283 * waiting to become inactive. 3284 */ 3285 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3286 { 3287 int running, queued; 3288 struct rq_flags rf; 3289 unsigned long ncsw; 3290 struct rq *rq; 3291 3292 for (;;) { 3293 /* 3294 * We do the initial early heuristics without holding 3295 * any task-queue locks at all. We'll only try to get 3296 * the runqueue lock when things look like they will 3297 * work out! 3298 */ 3299 rq = task_rq(p); 3300 3301 /* 3302 * If the task is actively running on another CPU 3303 * still, just relax and busy-wait without holding 3304 * any locks. 3305 * 3306 * NOTE! Since we don't hold any locks, it's not 3307 * even sure that "rq" stays as the right runqueue! 3308 * But we don't care, since "task_on_cpu()" will 3309 * return false if the runqueue has changed and p 3310 * is actually now running somewhere else! 3311 */ 3312 while (task_on_cpu(rq, p)) { 3313 if (!(READ_ONCE(p->__state) & match_state)) 3314 return 0; 3315 cpu_relax(); 3316 } 3317 3318 /* 3319 * Ok, time to look more closely! We need the rq 3320 * lock now, to be *sure*. If we're wrong, we'll 3321 * just go back and repeat. 3322 */ 3323 rq = task_rq_lock(p, &rf); 3324 trace_sched_wait_task(p); 3325 running = task_on_cpu(rq, p); 3326 queued = task_on_rq_queued(p); 3327 ncsw = 0; 3328 if (READ_ONCE(p->__state) & match_state) 3329 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3330 task_rq_unlock(rq, p, &rf); 3331 3332 /* 3333 * If it changed from the expected state, bail out now. 3334 */ 3335 if (unlikely(!ncsw)) 3336 break; 3337 3338 /* 3339 * Was it really running after all now that we 3340 * checked with the proper locks actually held? 3341 * 3342 * Oops. Go back and try again.. 3343 */ 3344 if (unlikely(running)) { 3345 cpu_relax(); 3346 continue; 3347 } 3348 3349 /* 3350 * It's not enough that it's not actively running, 3351 * it must be off the runqueue _entirely_, and not 3352 * preempted! 3353 * 3354 * So if it was still runnable (but just not actively 3355 * running right now), it's preempted, and we should 3356 * yield - it could be a while. 3357 */ 3358 if (unlikely(queued)) { 3359 ktime_t to = NSEC_PER_SEC / HZ; 3360 3361 set_current_state(TASK_UNINTERRUPTIBLE); 3362 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3363 continue; 3364 } 3365 3366 /* 3367 * Ahh, all good. It wasn't running, and it wasn't 3368 * runnable, which means that it will never become 3369 * running in the future either. We're all done! 3370 */ 3371 break; 3372 } 3373 3374 return ncsw; 3375 } 3376 3377 /*** 3378 * kick_process - kick a running thread to enter/exit the kernel 3379 * @p: the to-be-kicked thread 3380 * 3381 * Cause a process which is running on another CPU to enter 3382 * kernel-mode, without any delay. (to get signals handled.) 3383 * 3384 * NOTE: this function doesn't have to take the runqueue lock, 3385 * because all it wants to ensure is that the remote task enters 3386 * the kernel. If the IPI races and the task has been migrated 3387 * to another CPU then no harm is done and the purpose has been 3388 * achieved as well. 3389 */ 3390 void kick_process(struct task_struct *p) 3391 { 3392 int cpu; 3393 3394 preempt_disable(); 3395 cpu = task_cpu(p); 3396 if ((cpu != smp_processor_id()) && task_curr(p)) 3397 smp_send_reschedule(cpu); 3398 preempt_enable(); 3399 } 3400 EXPORT_SYMBOL_GPL(kick_process); 3401 3402 /* 3403 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3404 * 3405 * A few notes on cpu_active vs cpu_online: 3406 * 3407 * - cpu_active must be a subset of cpu_online 3408 * 3409 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3410 * see __set_cpus_allowed_ptr(). At this point the newly online 3411 * CPU isn't yet part of the sched domains, and balancing will not 3412 * see it. 3413 * 3414 * - on CPU-down we clear cpu_active() to mask the sched domains and 3415 * avoid the load balancer to place new tasks on the to be removed 3416 * CPU. Existing tasks will remain running there and will be taken 3417 * off. 3418 * 3419 * This means that fallback selection must not select !active CPUs. 3420 * And can assume that any active CPU must be online. Conversely 3421 * select_task_rq() below may allow selection of !active CPUs in order 3422 * to satisfy the above rules. 3423 */ 3424 static int select_fallback_rq(int cpu, struct task_struct *p) 3425 { 3426 int nid = cpu_to_node(cpu); 3427 const struct cpumask *nodemask = NULL; 3428 enum { cpuset, possible, fail } state = cpuset; 3429 int dest_cpu; 3430 3431 /* 3432 * If the node that the CPU is on has been offlined, cpu_to_node() 3433 * will return -1. There is no CPU on the node, and we should 3434 * select the CPU on the other node. 3435 */ 3436 if (nid != -1) { 3437 nodemask = cpumask_of_node(nid); 3438 3439 /* Look for allowed, online CPU in same node. */ 3440 for_each_cpu(dest_cpu, nodemask) { 3441 if (is_cpu_allowed(p, dest_cpu)) 3442 return dest_cpu; 3443 } 3444 } 3445 3446 for (;;) { 3447 /* Any allowed, online CPU? */ 3448 for_each_cpu(dest_cpu, p->cpus_ptr) { 3449 if (!is_cpu_allowed(p, dest_cpu)) 3450 continue; 3451 3452 goto out; 3453 } 3454 3455 /* No more Mr. Nice Guy. */ 3456 switch (state) { 3457 case cpuset: 3458 if (cpuset_cpus_allowed_fallback(p)) { 3459 state = possible; 3460 break; 3461 } 3462 fallthrough; 3463 case possible: 3464 /* 3465 * XXX When called from select_task_rq() we only 3466 * hold p->pi_lock and again violate locking order. 3467 * 3468 * More yuck to audit. 3469 */ 3470 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3471 state = fail; 3472 break; 3473 case fail: 3474 BUG(); 3475 break; 3476 } 3477 } 3478 3479 out: 3480 if (state != cpuset) { 3481 /* 3482 * Don't tell them about moving exiting tasks or 3483 * kernel threads (both mm NULL), since they never 3484 * leave kernel. 3485 */ 3486 if (p->mm && printk_ratelimit()) { 3487 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3488 task_pid_nr(p), p->comm, cpu); 3489 } 3490 } 3491 3492 return dest_cpu; 3493 } 3494 3495 /* 3496 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3497 */ 3498 static inline 3499 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3500 { 3501 lockdep_assert_held(&p->pi_lock); 3502 3503 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3504 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3505 else 3506 cpu = cpumask_any(p->cpus_ptr); 3507 3508 /* 3509 * In order not to call set_task_cpu() on a blocking task we need 3510 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3511 * CPU. 3512 * 3513 * Since this is common to all placement strategies, this lives here. 3514 * 3515 * [ this allows ->select_task() to simply return task_cpu(p) and 3516 * not worry about this generic constraint ] 3517 */ 3518 if (unlikely(!is_cpu_allowed(p, cpu))) 3519 cpu = select_fallback_rq(task_cpu(p), p); 3520 3521 return cpu; 3522 } 3523 3524 void sched_set_stop_task(int cpu, struct task_struct *stop) 3525 { 3526 static struct lock_class_key stop_pi_lock; 3527 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3528 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3529 3530 if (stop) { 3531 /* 3532 * Make it appear like a SCHED_FIFO task, its something 3533 * userspace knows about and won't get confused about. 3534 * 3535 * Also, it will make PI more or less work without too 3536 * much confusion -- but then, stop work should not 3537 * rely on PI working anyway. 3538 */ 3539 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3540 3541 stop->sched_class = &stop_sched_class; 3542 3543 /* 3544 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3545 * adjust the effective priority of a task. As a result, 3546 * rt_mutex_setprio() can trigger (RT) balancing operations, 3547 * which can then trigger wakeups of the stop thread to push 3548 * around the current task. 3549 * 3550 * The stop task itself will never be part of the PI-chain, it 3551 * never blocks, therefore that ->pi_lock recursion is safe. 3552 * Tell lockdep about this by placing the stop->pi_lock in its 3553 * own class. 3554 */ 3555 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3556 } 3557 3558 cpu_rq(cpu)->stop = stop; 3559 3560 if (old_stop) { 3561 /* 3562 * Reset it back to a normal scheduling class so that 3563 * it can die in pieces. 3564 */ 3565 old_stop->sched_class = &rt_sched_class; 3566 } 3567 } 3568 3569 #else /* CONFIG_SMP */ 3570 3571 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3572 struct affinity_context *ctx) 3573 { 3574 return set_cpus_allowed_ptr(p, ctx->new_mask); 3575 } 3576 3577 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3578 3579 static inline bool rq_has_pinned_tasks(struct rq *rq) 3580 { 3581 return false; 3582 } 3583 3584 #endif /* !CONFIG_SMP */ 3585 3586 static void 3587 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3588 { 3589 struct rq *rq; 3590 3591 if (!schedstat_enabled()) 3592 return; 3593 3594 rq = this_rq(); 3595 3596 #ifdef CONFIG_SMP 3597 if (cpu == rq->cpu) { 3598 __schedstat_inc(rq->ttwu_local); 3599 __schedstat_inc(p->stats.nr_wakeups_local); 3600 } else { 3601 struct sched_domain *sd; 3602 3603 __schedstat_inc(p->stats.nr_wakeups_remote); 3604 rcu_read_lock(); 3605 for_each_domain(rq->cpu, sd) { 3606 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3607 __schedstat_inc(sd->ttwu_wake_remote); 3608 break; 3609 } 3610 } 3611 rcu_read_unlock(); 3612 } 3613 3614 if (wake_flags & WF_MIGRATED) 3615 __schedstat_inc(p->stats.nr_wakeups_migrate); 3616 #endif /* CONFIG_SMP */ 3617 3618 __schedstat_inc(rq->ttwu_count); 3619 __schedstat_inc(p->stats.nr_wakeups); 3620 3621 if (wake_flags & WF_SYNC) 3622 __schedstat_inc(p->stats.nr_wakeups_sync); 3623 } 3624 3625 /* 3626 * Mark the task runnable and perform wakeup-preemption. 3627 */ 3628 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3629 struct rq_flags *rf) 3630 { 3631 check_preempt_curr(rq, p, wake_flags); 3632 WRITE_ONCE(p->__state, TASK_RUNNING); 3633 trace_sched_wakeup(p); 3634 3635 #ifdef CONFIG_SMP 3636 if (p->sched_class->task_woken) { 3637 /* 3638 * Our task @p is fully woken up and running; so it's safe to 3639 * drop the rq->lock, hereafter rq is only used for statistics. 3640 */ 3641 rq_unpin_lock(rq, rf); 3642 p->sched_class->task_woken(rq, p); 3643 rq_repin_lock(rq, rf); 3644 } 3645 3646 if (rq->idle_stamp) { 3647 u64 delta = rq_clock(rq) - rq->idle_stamp; 3648 u64 max = 2*rq->max_idle_balance_cost; 3649 3650 update_avg(&rq->avg_idle, delta); 3651 3652 if (rq->avg_idle > max) 3653 rq->avg_idle = max; 3654 3655 rq->wake_stamp = jiffies; 3656 rq->wake_avg_idle = rq->avg_idle / 2; 3657 3658 rq->idle_stamp = 0; 3659 } 3660 #endif 3661 } 3662 3663 static void 3664 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3665 struct rq_flags *rf) 3666 { 3667 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3668 3669 lockdep_assert_rq_held(rq); 3670 3671 if (p->sched_contributes_to_load) 3672 rq->nr_uninterruptible--; 3673 3674 #ifdef CONFIG_SMP 3675 if (wake_flags & WF_MIGRATED) 3676 en_flags |= ENQUEUE_MIGRATED; 3677 else 3678 #endif 3679 if (p->in_iowait) { 3680 delayacct_blkio_end(p); 3681 atomic_dec(&task_rq(p)->nr_iowait); 3682 } 3683 3684 activate_task(rq, p, en_flags); 3685 ttwu_do_wakeup(rq, p, wake_flags, rf); 3686 } 3687 3688 /* 3689 * Consider @p being inside a wait loop: 3690 * 3691 * for (;;) { 3692 * set_current_state(TASK_UNINTERRUPTIBLE); 3693 * 3694 * if (CONDITION) 3695 * break; 3696 * 3697 * schedule(); 3698 * } 3699 * __set_current_state(TASK_RUNNING); 3700 * 3701 * between set_current_state() and schedule(). In this case @p is still 3702 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3703 * an atomic manner. 3704 * 3705 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3706 * then schedule() must still happen and p->state can be changed to 3707 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3708 * need to do a full wakeup with enqueue. 3709 * 3710 * Returns: %true when the wakeup is done, 3711 * %false otherwise. 3712 */ 3713 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3714 { 3715 struct rq_flags rf; 3716 struct rq *rq; 3717 int ret = 0; 3718 3719 rq = __task_rq_lock(p, &rf); 3720 if (task_on_rq_queued(p)) { 3721 /* check_preempt_curr() may use rq clock */ 3722 update_rq_clock(rq); 3723 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3724 ret = 1; 3725 } 3726 __task_rq_unlock(rq, &rf); 3727 3728 return ret; 3729 } 3730 3731 #ifdef CONFIG_SMP 3732 void sched_ttwu_pending(void *arg) 3733 { 3734 struct llist_node *llist = arg; 3735 struct rq *rq = this_rq(); 3736 struct task_struct *p, *t; 3737 struct rq_flags rf; 3738 3739 if (!llist) 3740 return; 3741 3742 rq_lock_irqsave(rq, &rf); 3743 update_rq_clock(rq); 3744 3745 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3746 if (WARN_ON_ONCE(p->on_cpu)) 3747 smp_cond_load_acquire(&p->on_cpu, !VAL); 3748 3749 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3750 set_task_cpu(p, cpu_of(rq)); 3751 3752 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3753 } 3754 3755 /* 3756 * Must be after enqueueing at least once task such that 3757 * idle_cpu() does not observe a false-negative -- if it does, 3758 * it is possible for select_idle_siblings() to stack a number 3759 * of tasks on this CPU during that window. 3760 * 3761 * It is ok to clear ttwu_pending when another task pending. 3762 * We will receive IPI after local irq enabled and then enqueue it. 3763 * Since now nr_running > 0, idle_cpu() will always get correct result. 3764 */ 3765 WRITE_ONCE(rq->ttwu_pending, 0); 3766 rq_unlock_irqrestore(rq, &rf); 3767 } 3768 3769 void send_call_function_single_ipi(int cpu) 3770 { 3771 struct rq *rq = cpu_rq(cpu); 3772 3773 if (!set_nr_if_polling(rq->idle)) 3774 arch_send_call_function_single_ipi(cpu); 3775 else 3776 trace_sched_wake_idle_without_ipi(cpu); 3777 } 3778 3779 /* 3780 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3781 * necessary. The wakee CPU on receipt of the IPI will queue the task 3782 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3783 * of the wakeup instead of the waker. 3784 */ 3785 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3786 { 3787 struct rq *rq = cpu_rq(cpu); 3788 3789 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3790 3791 WRITE_ONCE(rq->ttwu_pending, 1); 3792 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3793 } 3794 3795 void wake_up_if_idle(int cpu) 3796 { 3797 struct rq *rq = cpu_rq(cpu); 3798 struct rq_flags rf; 3799 3800 rcu_read_lock(); 3801 3802 if (!is_idle_task(rcu_dereference(rq->curr))) 3803 goto out; 3804 3805 rq_lock_irqsave(rq, &rf); 3806 if (is_idle_task(rq->curr)) 3807 resched_curr(rq); 3808 /* Else CPU is not idle, do nothing here: */ 3809 rq_unlock_irqrestore(rq, &rf); 3810 3811 out: 3812 rcu_read_unlock(); 3813 } 3814 3815 bool cpus_share_cache(int this_cpu, int that_cpu) 3816 { 3817 if (this_cpu == that_cpu) 3818 return true; 3819 3820 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3821 } 3822 3823 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3824 { 3825 /* 3826 * Do not complicate things with the async wake_list while the CPU is 3827 * in hotplug state. 3828 */ 3829 if (!cpu_active(cpu)) 3830 return false; 3831 3832 /* Ensure the task will still be allowed to run on the CPU. */ 3833 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3834 return false; 3835 3836 /* 3837 * If the CPU does not share cache, then queue the task on the 3838 * remote rqs wakelist to avoid accessing remote data. 3839 */ 3840 if (!cpus_share_cache(smp_processor_id(), cpu)) 3841 return true; 3842 3843 if (cpu == smp_processor_id()) 3844 return false; 3845 3846 /* 3847 * If the wakee cpu is idle, or the task is descheduling and the 3848 * only running task on the CPU, then use the wakelist to offload 3849 * the task activation to the idle (or soon-to-be-idle) CPU as 3850 * the current CPU is likely busy. nr_running is checked to 3851 * avoid unnecessary task stacking. 3852 * 3853 * Note that we can only get here with (wakee) p->on_rq=0, 3854 * p->on_cpu can be whatever, we've done the dequeue, so 3855 * the wakee has been accounted out of ->nr_running. 3856 */ 3857 if (!cpu_rq(cpu)->nr_running) 3858 return true; 3859 3860 return false; 3861 } 3862 3863 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3864 { 3865 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3866 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3867 __ttwu_queue_wakelist(p, cpu, wake_flags); 3868 return true; 3869 } 3870 3871 return false; 3872 } 3873 3874 #else /* !CONFIG_SMP */ 3875 3876 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3877 { 3878 return false; 3879 } 3880 3881 #endif /* CONFIG_SMP */ 3882 3883 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3884 { 3885 struct rq *rq = cpu_rq(cpu); 3886 struct rq_flags rf; 3887 3888 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3889 return; 3890 3891 rq_lock(rq, &rf); 3892 update_rq_clock(rq); 3893 ttwu_do_activate(rq, p, wake_flags, &rf); 3894 rq_unlock(rq, &rf); 3895 } 3896 3897 /* 3898 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3899 * 3900 * The caller holds p::pi_lock if p != current or has preemption 3901 * disabled when p == current. 3902 * 3903 * The rules of PREEMPT_RT saved_state: 3904 * 3905 * The related locking code always holds p::pi_lock when updating 3906 * p::saved_state, which means the code is fully serialized in both cases. 3907 * 3908 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3909 * bits set. This allows to distinguish all wakeup scenarios. 3910 */ 3911 static __always_inline 3912 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3913 { 3914 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3915 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3916 state != TASK_RTLOCK_WAIT); 3917 } 3918 3919 if (READ_ONCE(p->__state) & state) { 3920 *success = 1; 3921 return true; 3922 } 3923 3924 #ifdef CONFIG_PREEMPT_RT 3925 /* 3926 * Saved state preserves the task state across blocking on 3927 * an RT lock. If the state matches, set p::saved_state to 3928 * TASK_RUNNING, but do not wake the task because it waits 3929 * for a lock wakeup. Also indicate success because from 3930 * the regular waker's point of view this has succeeded. 3931 * 3932 * After acquiring the lock the task will restore p::__state 3933 * from p::saved_state which ensures that the regular 3934 * wakeup is not lost. The restore will also set 3935 * p::saved_state to TASK_RUNNING so any further tests will 3936 * not result in false positives vs. @success 3937 */ 3938 if (p->saved_state & state) { 3939 p->saved_state = TASK_RUNNING; 3940 *success = 1; 3941 } 3942 #endif 3943 return false; 3944 } 3945 3946 /* 3947 * Notes on Program-Order guarantees on SMP systems. 3948 * 3949 * MIGRATION 3950 * 3951 * The basic program-order guarantee on SMP systems is that when a task [t] 3952 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3953 * execution on its new CPU [c1]. 3954 * 3955 * For migration (of runnable tasks) this is provided by the following means: 3956 * 3957 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3958 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3959 * rq(c1)->lock (if not at the same time, then in that order). 3960 * C) LOCK of the rq(c1)->lock scheduling in task 3961 * 3962 * Release/acquire chaining guarantees that B happens after A and C after B. 3963 * Note: the CPU doing B need not be c0 or c1 3964 * 3965 * Example: 3966 * 3967 * CPU0 CPU1 CPU2 3968 * 3969 * LOCK rq(0)->lock 3970 * sched-out X 3971 * sched-in Y 3972 * UNLOCK rq(0)->lock 3973 * 3974 * LOCK rq(0)->lock // orders against CPU0 3975 * dequeue X 3976 * UNLOCK rq(0)->lock 3977 * 3978 * LOCK rq(1)->lock 3979 * enqueue X 3980 * UNLOCK rq(1)->lock 3981 * 3982 * LOCK rq(1)->lock // orders against CPU2 3983 * sched-out Z 3984 * sched-in X 3985 * UNLOCK rq(1)->lock 3986 * 3987 * 3988 * BLOCKING -- aka. SLEEP + WAKEUP 3989 * 3990 * For blocking we (obviously) need to provide the same guarantee as for 3991 * migration. However the means are completely different as there is no lock 3992 * chain to provide order. Instead we do: 3993 * 3994 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3995 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3996 * 3997 * Example: 3998 * 3999 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4000 * 4001 * LOCK rq(0)->lock LOCK X->pi_lock 4002 * dequeue X 4003 * sched-out X 4004 * smp_store_release(X->on_cpu, 0); 4005 * 4006 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4007 * X->state = WAKING 4008 * set_task_cpu(X,2) 4009 * 4010 * LOCK rq(2)->lock 4011 * enqueue X 4012 * X->state = RUNNING 4013 * UNLOCK rq(2)->lock 4014 * 4015 * LOCK rq(2)->lock // orders against CPU1 4016 * sched-out Z 4017 * sched-in X 4018 * UNLOCK rq(2)->lock 4019 * 4020 * UNLOCK X->pi_lock 4021 * UNLOCK rq(0)->lock 4022 * 4023 * 4024 * However, for wakeups there is a second guarantee we must provide, namely we 4025 * must ensure that CONDITION=1 done by the caller can not be reordered with 4026 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4027 */ 4028 4029 /** 4030 * try_to_wake_up - wake up a thread 4031 * @p: the thread to be awakened 4032 * @state: the mask of task states that can be woken 4033 * @wake_flags: wake modifier flags (WF_*) 4034 * 4035 * Conceptually does: 4036 * 4037 * If (@state & @p->state) @p->state = TASK_RUNNING. 4038 * 4039 * If the task was not queued/runnable, also place it back on a runqueue. 4040 * 4041 * This function is atomic against schedule() which would dequeue the task. 4042 * 4043 * It issues a full memory barrier before accessing @p->state, see the comment 4044 * with set_current_state(). 4045 * 4046 * Uses p->pi_lock to serialize against concurrent wake-ups. 4047 * 4048 * Relies on p->pi_lock stabilizing: 4049 * - p->sched_class 4050 * - p->cpus_ptr 4051 * - p->sched_task_group 4052 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4053 * 4054 * Tries really hard to only take one task_rq(p)->lock for performance. 4055 * Takes rq->lock in: 4056 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4057 * - ttwu_queue() -- new rq, for enqueue of the task; 4058 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4059 * 4060 * As a consequence we race really badly with just about everything. See the 4061 * many memory barriers and their comments for details. 4062 * 4063 * Return: %true if @p->state changes (an actual wakeup was done), 4064 * %false otherwise. 4065 */ 4066 static int 4067 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4068 { 4069 unsigned long flags; 4070 int cpu, success = 0; 4071 4072 preempt_disable(); 4073 if (p == current) { 4074 /* 4075 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4076 * == smp_processor_id()'. Together this means we can special 4077 * case the whole 'p->on_rq && ttwu_runnable()' case below 4078 * without taking any locks. 4079 * 4080 * In particular: 4081 * - we rely on Program-Order guarantees for all the ordering, 4082 * - we're serialized against set_special_state() by virtue of 4083 * it disabling IRQs (this allows not taking ->pi_lock). 4084 */ 4085 if (!ttwu_state_match(p, state, &success)) 4086 goto out; 4087 4088 trace_sched_waking(p); 4089 WRITE_ONCE(p->__state, TASK_RUNNING); 4090 trace_sched_wakeup(p); 4091 goto out; 4092 } 4093 4094 /* 4095 * If we are going to wake up a thread waiting for CONDITION we 4096 * need to ensure that CONDITION=1 done by the caller can not be 4097 * reordered with p->state check below. This pairs with smp_store_mb() 4098 * in set_current_state() that the waiting thread does. 4099 */ 4100 raw_spin_lock_irqsave(&p->pi_lock, flags); 4101 smp_mb__after_spinlock(); 4102 if (!ttwu_state_match(p, state, &success)) 4103 goto unlock; 4104 4105 trace_sched_waking(p); 4106 4107 /* 4108 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4109 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4110 * in smp_cond_load_acquire() below. 4111 * 4112 * sched_ttwu_pending() try_to_wake_up() 4113 * STORE p->on_rq = 1 LOAD p->state 4114 * UNLOCK rq->lock 4115 * 4116 * __schedule() (switch to task 'p') 4117 * LOCK rq->lock smp_rmb(); 4118 * smp_mb__after_spinlock(); 4119 * UNLOCK rq->lock 4120 * 4121 * [task p] 4122 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4123 * 4124 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4125 * __schedule(). See the comment for smp_mb__after_spinlock(). 4126 * 4127 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4128 */ 4129 smp_rmb(); 4130 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4131 goto unlock; 4132 4133 #ifdef CONFIG_SMP 4134 /* 4135 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4136 * possible to, falsely, observe p->on_cpu == 0. 4137 * 4138 * One must be running (->on_cpu == 1) in order to remove oneself 4139 * from the runqueue. 4140 * 4141 * __schedule() (switch to task 'p') try_to_wake_up() 4142 * STORE p->on_cpu = 1 LOAD p->on_rq 4143 * UNLOCK rq->lock 4144 * 4145 * __schedule() (put 'p' to sleep) 4146 * LOCK rq->lock smp_rmb(); 4147 * smp_mb__after_spinlock(); 4148 * STORE p->on_rq = 0 LOAD p->on_cpu 4149 * 4150 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4151 * __schedule(). See the comment for smp_mb__after_spinlock(). 4152 * 4153 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4154 * schedule()'s deactivate_task() has 'happened' and p will no longer 4155 * care about it's own p->state. See the comment in __schedule(). 4156 */ 4157 smp_acquire__after_ctrl_dep(); 4158 4159 /* 4160 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4161 * == 0), which means we need to do an enqueue, change p->state to 4162 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4163 * enqueue, such as ttwu_queue_wakelist(). 4164 */ 4165 WRITE_ONCE(p->__state, TASK_WAKING); 4166 4167 /* 4168 * If the owning (remote) CPU is still in the middle of schedule() with 4169 * this task as prev, considering queueing p on the remote CPUs wake_list 4170 * which potentially sends an IPI instead of spinning on p->on_cpu to 4171 * let the waker make forward progress. This is safe because IRQs are 4172 * disabled and the IPI will deliver after on_cpu is cleared. 4173 * 4174 * Ensure we load task_cpu(p) after p->on_cpu: 4175 * 4176 * set_task_cpu(p, cpu); 4177 * STORE p->cpu = @cpu 4178 * __schedule() (switch to task 'p') 4179 * LOCK rq->lock 4180 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4181 * STORE p->on_cpu = 1 LOAD p->cpu 4182 * 4183 * to ensure we observe the correct CPU on which the task is currently 4184 * scheduling. 4185 */ 4186 if (smp_load_acquire(&p->on_cpu) && 4187 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4188 goto unlock; 4189 4190 /* 4191 * If the owning (remote) CPU is still in the middle of schedule() with 4192 * this task as prev, wait until it's done referencing the task. 4193 * 4194 * Pairs with the smp_store_release() in finish_task(). 4195 * 4196 * This ensures that tasks getting woken will be fully ordered against 4197 * their previous state and preserve Program Order. 4198 */ 4199 smp_cond_load_acquire(&p->on_cpu, !VAL); 4200 4201 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4202 if (task_cpu(p) != cpu) { 4203 if (p->in_iowait) { 4204 delayacct_blkio_end(p); 4205 atomic_dec(&task_rq(p)->nr_iowait); 4206 } 4207 4208 wake_flags |= WF_MIGRATED; 4209 psi_ttwu_dequeue(p); 4210 set_task_cpu(p, cpu); 4211 } 4212 #else 4213 cpu = task_cpu(p); 4214 #endif /* CONFIG_SMP */ 4215 4216 ttwu_queue(p, cpu, wake_flags); 4217 unlock: 4218 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4219 out: 4220 if (success) 4221 ttwu_stat(p, task_cpu(p), wake_flags); 4222 preempt_enable(); 4223 4224 return success; 4225 } 4226 4227 static bool __task_needs_rq_lock(struct task_struct *p) 4228 { 4229 unsigned int state = READ_ONCE(p->__state); 4230 4231 /* 4232 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4233 * the task is blocked. Make sure to check @state since ttwu() can drop 4234 * locks at the end, see ttwu_queue_wakelist(). 4235 */ 4236 if (state == TASK_RUNNING || state == TASK_WAKING) 4237 return true; 4238 4239 /* 4240 * Ensure we load p->on_rq after p->__state, otherwise it would be 4241 * possible to, falsely, observe p->on_rq == 0. 4242 * 4243 * See try_to_wake_up() for a longer comment. 4244 */ 4245 smp_rmb(); 4246 if (p->on_rq) 4247 return true; 4248 4249 #ifdef CONFIG_SMP 4250 /* 4251 * Ensure the task has finished __schedule() and will not be referenced 4252 * anymore. Again, see try_to_wake_up() for a longer comment. 4253 */ 4254 smp_rmb(); 4255 smp_cond_load_acquire(&p->on_cpu, !VAL); 4256 #endif 4257 4258 return false; 4259 } 4260 4261 /** 4262 * task_call_func - Invoke a function on task in fixed state 4263 * @p: Process for which the function is to be invoked, can be @current. 4264 * @func: Function to invoke. 4265 * @arg: Argument to function. 4266 * 4267 * Fix the task in it's current state by avoiding wakeups and or rq operations 4268 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4269 * to work out what the state is, if required. Given that @func can be invoked 4270 * with a runqueue lock held, it had better be quite lightweight. 4271 * 4272 * Returns: 4273 * Whatever @func returns 4274 */ 4275 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4276 { 4277 struct rq *rq = NULL; 4278 struct rq_flags rf; 4279 int ret; 4280 4281 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4282 4283 if (__task_needs_rq_lock(p)) 4284 rq = __task_rq_lock(p, &rf); 4285 4286 /* 4287 * At this point the task is pinned; either: 4288 * - blocked and we're holding off wakeups (pi->lock) 4289 * - woken, and we're holding off enqueue (rq->lock) 4290 * - queued, and we're holding off schedule (rq->lock) 4291 * - running, and we're holding off de-schedule (rq->lock) 4292 * 4293 * The called function (@func) can use: task_curr(), p->on_rq and 4294 * p->__state to differentiate between these states. 4295 */ 4296 ret = func(p, arg); 4297 4298 if (rq) 4299 rq_unlock(rq, &rf); 4300 4301 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4302 return ret; 4303 } 4304 4305 /** 4306 * cpu_curr_snapshot - Return a snapshot of the currently running task 4307 * @cpu: The CPU on which to snapshot the task. 4308 * 4309 * Returns the task_struct pointer of the task "currently" running on 4310 * the specified CPU. If the same task is running on that CPU throughout, 4311 * the return value will be a pointer to that task's task_struct structure. 4312 * If the CPU did any context switches even vaguely concurrently with the 4313 * execution of this function, the return value will be a pointer to the 4314 * task_struct structure of a randomly chosen task that was running on 4315 * that CPU somewhere around the time that this function was executing. 4316 * 4317 * If the specified CPU was offline, the return value is whatever it 4318 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4319 * task, but there is no guarantee. Callers wishing a useful return 4320 * value must take some action to ensure that the specified CPU remains 4321 * online throughout. 4322 * 4323 * This function executes full memory barriers before and after fetching 4324 * the pointer, which permits the caller to confine this function's fetch 4325 * with respect to the caller's accesses to other shared variables. 4326 */ 4327 struct task_struct *cpu_curr_snapshot(int cpu) 4328 { 4329 struct task_struct *t; 4330 4331 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4332 t = rcu_dereference(cpu_curr(cpu)); 4333 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4334 return t; 4335 } 4336 4337 /** 4338 * wake_up_process - Wake up a specific process 4339 * @p: The process to be woken up. 4340 * 4341 * Attempt to wake up the nominated process and move it to the set of runnable 4342 * processes. 4343 * 4344 * Return: 1 if the process was woken up, 0 if it was already running. 4345 * 4346 * This function executes a full memory barrier before accessing the task state. 4347 */ 4348 int wake_up_process(struct task_struct *p) 4349 { 4350 return try_to_wake_up(p, TASK_NORMAL, 0); 4351 } 4352 EXPORT_SYMBOL(wake_up_process); 4353 4354 int wake_up_state(struct task_struct *p, unsigned int state) 4355 { 4356 return try_to_wake_up(p, state, 0); 4357 } 4358 4359 /* 4360 * Perform scheduler related setup for a newly forked process p. 4361 * p is forked by current. 4362 * 4363 * __sched_fork() is basic setup used by init_idle() too: 4364 */ 4365 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4366 { 4367 p->on_rq = 0; 4368 4369 p->se.on_rq = 0; 4370 p->se.exec_start = 0; 4371 p->se.sum_exec_runtime = 0; 4372 p->se.prev_sum_exec_runtime = 0; 4373 p->se.nr_migrations = 0; 4374 p->se.vruntime = 0; 4375 INIT_LIST_HEAD(&p->se.group_node); 4376 4377 #ifdef CONFIG_FAIR_GROUP_SCHED 4378 p->se.cfs_rq = NULL; 4379 #endif 4380 4381 #ifdef CONFIG_SCHEDSTATS 4382 /* Even if schedstat is disabled, there should not be garbage */ 4383 memset(&p->stats, 0, sizeof(p->stats)); 4384 #endif 4385 4386 RB_CLEAR_NODE(&p->dl.rb_node); 4387 init_dl_task_timer(&p->dl); 4388 init_dl_inactive_task_timer(&p->dl); 4389 __dl_clear_params(p); 4390 4391 INIT_LIST_HEAD(&p->rt.run_list); 4392 p->rt.timeout = 0; 4393 p->rt.time_slice = sched_rr_timeslice; 4394 p->rt.on_rq = 0; 4395 p->rt.on_list = 0; 4396 4397 #ifdef CONFIG_PREEMPT_NOTIFIERS 4398 INIT_HLIST_HEAD(&p->preempt_notifiers); 4399 #endif 4400 4401 #ifdef CONFIG_COMPACTION 4402 p->capture_control = NULL; 4403 #endif 4404 init_numa_balancing(clone_flags, p); 4405 #ifdef CONFIG_SMP 4406 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4407 p->migration_pending = NULL; 4408 #endif 4409 } 4410 4411 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4412 4413 #ifdef CONFIG_NUMA_BALANCING 4414 4415 int sysctl_numa_balancing_mode; 4416 4417 static void __set_numabalancing_state(bool enabled) 4418 { 4419 if (enabled) 4420 static_branch_enable(&sched_numa_balancing); 4421 else 4422 static_branch_disable(&sched_numa_balancing); 4423 } 4424 4425 void set_numabalancing_state(bool enabled) 4426 { 4427 if (enabled) 4428 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4429 else 4430 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4431 __set_numabalancing_state(enabled); 4432 } 4433 4434 #ifdef CONFIG_PROC_SYSCTL 4435 static void reset_memory_tiering(void) 4436 { 4437 struct pglist_data *pgdat; 4438 4439 for_each_online_pgdat(pgdat) { 4440 pgdat->nbp_threshold = 0; 4441 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4442 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4443 } 4444 } 4445 4446 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4447 void *buffer, size_t *lenp, loff_t *ppos) 4448 { 4449 struct ctl_table t; 4450 int err; 4451 int state = sysctl_numa_balancing_mode; 4452 4453 if (write && !capable(CAP_SYS_ADMIN)) 4454 return -EPERM; 4455 4456 t = *table; 4457 t.data = &state; 4458 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4459 if (err < 0) 4460 return err; 4461 if (write) { 4462 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4463 (state & NUMA_BALANCING_MEMORY_TIERING)) 4464 reset_memory_tiering(); 4465 sysctl_numa_balancing_mode = state; 4466 __set_numabalancing_state(state); 4467 } 4468 return err; 4469 } 4470 #endif 4471 #endif 4472 4473 #ifdef CONFIG_SCHEDSTATS 4474 4475 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4476 4477 static void set_schedstats(bool enabled) 4478 { 4479 if (enabled) 4480 static_branch_enable(&sched_schedstats); 4481 else 4482 static_branch_disable(&sched_schedstats); 4483 } 4484 4485 void force_schedstat_enabled(void) 4486 { 4487 if (!schedstat_enabled()) { 4488 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4489 static_branch_enable(&sched_schedstats); 4490 } 4491 } 4492 4493 static int __init setup_schedstats(char *str) 4494 { 4495 int ret = 0; 4496 if (!str) 4497 goto out; 4498 4499 if (!strcmp(str, "enable")) { 4500 set_schedstats(true); 4501 ret = 1; 4502 } else if (!strcmp(str, "disable")) { 4503 set_schedstats(false); 4504 ret = 1; 4505 } 4506 out: 4507 if (!ret) 4508 pr_warn("Unable to parse schedstats=\n"); 4509 4510 return ret; 4511 } 4512 __setup("schedstats=", setup_schedstats); 4513 4514 #ifdef CONFIG_PROC_SYSCTL 4515 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4516 size_t *lenp, loff_t *ppos) 4517 { 4518 struct ctl_table t; 4519 int err; 4520 int state = static_branch_likely(&sched_schedstats); 4521 4522 if (write && !capable(CAP_SYS_ADMIN)) 4523 return -EPERM; 4524 4525 t = *table; 4526 t.data = &state; 4527 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4528 if (err < 0) 4529 return err; 4530 if (write) 4531 set_schedstats(state); 4532 return err; 4533 } 4534 #endif /* CONFIG_PROC_SYSCTL */ 4535 #endif /* CONFIG_SCHEDSTATS */ 4536 4537 #ifdef CONFIG_SYSCTL 4538 static struct ctl_table sched_core_sysctls[] = { 4539 #ifdef CONFIG_SCHEDSTATS 4540 { 4541 .procname = "sched_schedstats", 4542 .data = NULL, 4543 .maxlen = sizeof(unsigned int), 4544 .mode = 0644, 4545 .proc_handler = sysctl_schedstats, 4546 .extra1 = SYSCTL_ZERO, 4547 .extra2 = SYSCTL_ONE, 4548 }, 4549 #endif /* CONFIG_SCHEDSTATS */ 4550 #ifdef CONFIG_UCLAMP_TASK 4551 { 4552 .procname = "sched_util_clamp_min", 4553 .data = &sysctl_sched_uclamp_util_min, 4554 .maxlen = sizeof(unsigned int), 4555 .mode = 0644, 4556 .proc_handler = sysctl_sched_uclamp_handler, 4557 }, 4558 { 4559 .procname = "sched_util_clamp_max", 4560 .data = &sysctl_sched_uclamp_util_max, 4561 .maxlen = sizeof(unsigned int), 4562 .mode = 0644, 4563 .proc_handler = sysctl_sched_uclamp_handler, 4564 }, 4565 { 4566 .procname = "sched_util_clamp_min_rt_default", 4567 .data = &sysctl_sched_uclamp_util_min_rt_default, 4568 .maxlen = sizeof(unsigned int), 4569 .mode = 0644, 4570 .proc_handler = sysctl_sched_uclamp_handler, 4571 }, 4572 #endif /* CONFIG_UCLAMP_TASK */ 4573 #ifdef CONFIG_NUMA_BALANCING 4574 { 4575 .procname = "numa_balancing", 4576 .data = NULL, /* filled in by handler */ 4577 .maxlen = sizeof(unsigned int), 4578 .mode = 0644, 4579 .proc_handler = sysctl_numa_balancing, 4580 .extra1 = SYSCTL_ZERO, 4581 .extra2 = SYSCTL_FOUR, 4582 }, 4583 #endif /* CONFIG_NUMA_BALANCING */ 4584 {} 4585 }; 4586 static int __init sched_core_sysctl_init(void) 4587 { 4588 register_sysctl_init("kernel", sched_core_sysctls); 4589 return 0; 4590 } 4591 late_initcall(sched_core_sysctl_init); 4592 #endif /* CONFIG_SYSCTL */ 4593 4594 /* 4595 * fork()/clone()-time setup: 4596 */ 4597 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4598 { 4599 __sched_fork(clone_flags, p); 4600 /* 4601 * We mark the process as NEW here. This guarantees that 4602 * nobody will actually run it, and a signal or other external 4603 * event cannot wake it up and insert it on the runqueue either. 4604 */ 4605 p->__state = TASK_NEW; 4606 4607 /* 4608 * Make sure we do not leak PI boosting priority to the child. 4609 */ 4610 p->prio = current->normal_prio; 4611 4612 uclamp_fork(p); 4613 4614 /* 4615 * Revert to default priority/policy on fork if requested. 4616 */ 4617 if (unlikely(p->sched_reset_on_fork)) { 4618 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4619 p->policy = SCHED_NORMAL; 4620 p->static_prio = NICE_TO_PRIO(0); 4621 p->rt_priority = 0; 4622 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4623 p->static_prio = NICE_TO_PRIO(0); 4624 4625 p->prio = p->normal_prio = p->static_prio; 4626 set_load_weight(p, false); 4627 4628 /* 4629 * We don't need the reset flag anymore after the fork. It has 4630 * fulfilled its duty: 4631 */ 4632 p->sched_reset_on_fork = 0; 4633 } 4634 4635 if (dl_prio(p->prio)) 4636 return -EAGAIN; 4637 else if (rt_prio(p->prio)) 4638 p->sched_class = &rt_sched_class; 4639 else 4640 p->sched_class = &fair_sched_class; 4641 4642 init_entity_runnable_average(&p->se); 4643 4644 4645 #ifdef CONFIG_SCHED_INFO 4646 if (likely(sched_info_on())) 4647 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4648 #endif 4649 #if defined(CONFIG_SMP) 4650 p->on_cpu = 0; 4651 #endif 4652 init_task_preempt_count(p); 4653 #ifdef CONFIG_SMP 4654 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4655 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4656 #endif 4657 return 0; 4658 } 4659 4660 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4661 { 4662 unsigned long flags; 4663 4664 /* 4665 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4666 * required yet, but lockdep gets upset if rules are violated. 4667 */ 4668 raw_spin_lock_irqsave(&p->pi_lock, flags); 4669 #ifdef CONFIG_CGROUP_SCHED 4670 if (1) { 4671 struct task_group *tg; 4672 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4673 struct task_group, css); 4674 tg = autogroup_task_group(p, tg); 4675 p->sched_task_group = tg; 4676 } 4677 #endif 4678 rseq_migrate(p); 4679 /* 4680 * We're setting the CPU for the first time, we don't migrate, 4681 * so use __set_task_cpu(). 4682 */ 4683 __set_task_cpu(p, smp_processor_id()); 4684 if (p->sched_class->task_fork) 4685 p->sched_class->task_fork(p); 4686 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4687 } 4688 4689 void sched_post_fork(struct task_struct *p) 4690 { 4691 uclamp_post_fork(p); 4692 } 4693 4694 unsigned long to_ratio(u64 period, u64 runtime) 4695 { 4696 if (runtime == RUNTIME_INF) 4697 return BW_UNIT; 4698 4699 /* 4700 * Doing this here saves a lot of checks in all 4701 * the calling paths, and returning zero seems 4702 * safe for them anyway. 4703 */ 4704 if (period == 0) 4705 return 0; 4706 4707 return div64_u64(runtime << BW_SHIFT, period); 4708 } 4709 4710 /* 4711 * wake_up_new_task - wake up a newly created task for the first time. 4712 * 4713 * This function will do some initial scheduler statistics housekeeping 4714 * that must be done for every newly created context, then puts the task 4715 * on the runqueue and wakes it. 4716 */ 4717 void wake_up_new_task(struct task_struct *p) 4718 { 4719 struct rq_flags rf; 4720 struct rq *rq; 4721 4722 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4723 WRITE_ONCE(p->__state, TASK_RUNNING); 4724 #ifdef CONFIG_SMP 4725 /* 4726 * Fork balancing, do it here and not earlier because: 4727 * - cpus_ptr can change in the fork path 4728 * - any previously selected CPU might disappear through hotplug 4729 * 4730 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4731 * as we're not fully set-up yet. 4732 */ 4733 p->recent_used_cpu = task_cpu(p); 4734 rseq_migrate(p); 4735 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4736 #endif 4737 rq = __task_rq_lock(p, &rf); 4738 update_rq_clock(rq); 4739 post_init_entity_util_avg(p); 4740 4741 activate_task(rq, p, ENQUEUE_NOCLOCK); 4742 trace_sched_wakeup_new(p); 4743 check_preempt_curr(rq, p, WF_FORK); 4744 #ifdef CONFIG_SMP 4745 if (p->sched_class->task_woken) { 4746 /* 4747 * Nothing relies on rq->lock after this, so it's fine to 4748 * drop it. 4749 */ 4750 rq_unpin_lock(rq, &rf); 4751 p->sched_class->task_woken(rq, p); 4752 rq_repin_lock(rq, &rf); 4753 } 4754 #endif 4755 task_rq_unlock(rq, p, &rf); 4756 } 4757 4758 #ifdef CONFIG_PREEMPT_NOTIFIERS 4759 4760 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4761 4762 void preempt_notifier_inc(void) 4763 { 4764 static_branch_inc(&preempt_notifier_key); 4765 } 4766 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4767 4768 void preempt_notifier_dec(void) 4769 { 4770 static_branch_dec(&preempt_notifier_key); 4771 } 4772 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4773 4774 /** 4775 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4776 * @notifier: notifier struct to register 4777 */ 4778 void preempt_notifier_register(struct preempt_notifier *notifier) 4779 { 4780 if (!static_branch_unlikely(&preempt_notifier_key)) 4781 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4782 4783 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4784 } 4785 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4786 4787 /** 4788 * preempt_notifier_unregister - no longer interested in preemption notifications 4789 * @notifier: notifier struct to unregister 4790 * 4791 * This is *not* safe to call from within a preemption notifier. 4792 */ 4793 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4794 { 4795 hlist_del(¬ifier->link); 4796 } 4797 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4798 4799 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4800 { 4801 struct preempt_notifier *notifier; 4802 4803 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4804 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4805 } 4806 4807 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4808 { 4809 if (static_branch_unlikely(&preempt_notifier_key)) 4810 __fire_sched_in_preempt_notifiers(curr); 4811 } 4812 4813 static void 4814 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4815 struct task_struct *next) 4816 { 4817 struct preempt_notifier *notifier; 4818 4819 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4820 notifier->ops->sched_out(notifier, next); 4821 } 4822 4823 static __always_inline void 4824 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4825 struct task_struct *next) 4826 { 4827 if (static_branch_unlikely(&preempt_notifier_key)) 4828 __fire_sched_out_preempt_notifiers(curr, next); 4829 } 4830 4831 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4832 4833 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4834 { 4835 } 4836 4837 static inline void 4838 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4839 struct task_struct *next) 4840 { 4841 } 4842 4843 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4844 4845 static inline void prepare_task(struct task_struct *next) 4846 { 4847 #ifdef CONFIG_SMP 4848 /* 4849 * Claim the task as running, we do this before switching to it 4850 * such that any running task will have this set. 4851 * 4852 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4853 * its ordering comment. 4854 */ 4855 WRITE_ONCE(next->on_cpu, 1); 4856 #endif 4857 } 4858 4859 static inline void finish_task(struct task_struct *prev) 4860 { 4861 #ifdef CONFIG_SMP 4862 /* 4863 * This must be the very last reference to @prev from this CPU. After 4864 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4865 * must ensure this doesn't happen until the switch is completely 4866 * finished. 4867 * 4868 * In particular, the load of prev->state in finish_task_switch() must 4869 * happen before this. 4870 * 4871 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4872 */ 4873 smp_store_release(&prev->on_cpu, 0); 4874 #endif 4875 } 4876 4877 #ifdef CONFIG_SMP 4878 4879 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4880 { 4881 void (*func)(struct rq *rq); 4882 struct balance_callback *next; 4883 4884 lockdep_assert_rq_held(rq); 4885 4886 while (head) { 4887 func = (void (*)(struct rq *))head->func; 4888 next = head->next; 4889 head->next = NULL; 4890 head = next; 4891 4892 func(rq); 4893 } 4894 } 4895 4896 static void balance_push(struct rq *rq); 4897 4898 /* 4899 * balance_push_callback is a right abuse of the callback interface and plays 4900 * by significantly different rules. 4901 * 4902 * Where the normal balance_callback's purpose is to be ran in the same context 4903 * that queued it (only later, when it's safe to drop rq->lock again), 4904 * balance_push_callback is specifically targeted at __schedule(). 4905 * 4906 * This abuse is tolerated because it places all the unlikely/odd cases behind 4907 * a single test, namely: rq->balance_callback == NULL. 4908 */ 4909 struct balance_callback balance_push_callback = { 4910 .next = NULL, 4911 .func = balance_push, 4912 }; 4913 4914 static inline struct balance_callback * 4915 __splice_balance_callbacks(struct rq *rq, bool split) 4916 { 4917 struct balance_callback *head = rq->balance_callback; 4918 4919 if (likely(!head)) 4920 return NULL; 4921 4922 lockdep_assert_rq_held(rq); 4923 /* 4924 * Must not take balance_push_callback off the list when 4925 * splice_balance_callbacks() and balance_callbacks() are not 4926 * in the same rq->lock section. 4927 * 4928 * In that case it would be possible for __schedule() to interleave 4929 * and observe the list empty. 4930 */ 4931 if (split && head == &balance_push_callback) 4932 head = NULL; 4933 else 4934 rq->balance_callback = NULL; 4935 4936 return head; 4937 } 4938 4939 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 4940 { 4941 return __splice_balance_callbacks(rq, true); 4942 } 4943 4944 static void __balance_callbacks(struct rq *rq) 4945 { 4946 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4947 } 4948 4949 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 4950 { 4951 unsigned long flags; 4952 4953 if (unlikely(head)) { 4954 raw_spin_rq_lock_irqsave(rq, flags); 4955 do_balance_callbacks(rq, head); 4956 raw_spin_rq_unlock_irqrestore(rq, flags); 4957 } 4958 } 4959 4960 #else 4961 4962 static inline void __balance_callbacks(struct rq *rq) 4963 { 4964 } 4965 4966 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 4967 { 4968 return NULL; 4969 } 4970 4971 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 4972 { 4973 } 4974 4975 #endif 4976 4977 static inline void 4978 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4979 { 4980 /* 4981 * Since the runqueue lock will be released by the next 4982 * task (which is an invalid locking op but in the case 4983 * of the scheduler it's an obvious special-case), so we 4984 * do an early lockdep release here: 4985 */ 4986 rq_unpin_lock(rq, rf); 4987 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4988 #ifdef CONFIG_DEBUG_SPINLOCK 4989 /* this is a valid case when another task releases the spinlock */ 4990 rq_lockp(rq)->owner = next; 4991 #endif 4992 } 4993 4994 static inline void finish_lock_switch(struct rq *rq) 4995 { 4996 /* 4997 * If we are tracking spinlock dependencies then we have to 4998 * fix up the runqueue lock - which gets 'carried over' from 4999 * prev into current: 5000 */ 5001 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5002 __balance_callbacks(rq); 5003 raw_spin_rq_unlock_irq(rq); 5004 } 5005 5006 /* 5007 * NOP if the arch has not defined these: 5008 */ 5009 5010 #ifndef prepare_arch_switch 5011 # define prepare_arch_switch(next) do { } while (0) 5012 #endif 5013 5014 #ifndef finish_arch_post_lock_switch 5015 # define finish_arch_post_lock_switch() do { } while (0) 5016 #endif 5017 5018 static inline void kmap_local_sched_out(void) 5019 { 5020 #ifdef CONFIG_KMAP_LOCAL 5021 if (unlikely(current->kmap_ctrl.idx)) 5022 __kmap_local_sched_out(); 5023 #endif 5024 } 5025 5026 static inline void kmap_local_sched_in(void) 5027 { 5028 #ifdef CONFIG_KMAP_LOCAL 5029 if (unlikely(current->kmap_ctrl.idx)) 5030 __kmap_local_sched_in(); 5031 #endif 5032 } 5033 5034 /** 5035 * prepare_task_switch - prepare to switch tasks 5036 * @rq: the runqueue preparing to switch 5037 * @prev: the current task that is being switched out 5038 * @next: the task we are going to switch to. 5039 * 5040 * This is called with the rq lock held and interrupts off. It must 5041 * be paired with a subsequent finish_task_switch after the context 5042 * switch. 5043 * 5044 * prepare_task_switch sets up locking and calls architecture specific 5045 * hooks. 5046 */ 5047 static inline void 5048 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5049 struct task_struct *next) 5050 { 5051 kcov_prepare_switch(prev); 5052 sched_info_switch(rq, prev, next); 5053 perf_event_task_sched_out(prev, next); 5054 rseq_preempt(prev); 5055 fire_sched_out_preempt_notifiers(prev, next); 5056 kmap_local_sched_out(); 5057 prepare_task(next); 5058 prepare_arch_switch(next); 5059 } 5060 5061 /** 5062 * finish_task_switch - clean up after a task-switch 5063 * @prev: the thread we just switched away from. 5064 * 5065 * finish_task_switch must be called after the context switch, paired 5066 * with a prepare_task_switch call before the context switch. 5067 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5068 * and do any other architecture-specific cleanup actions. 5069 * 5070 * Note that we may have delayed dropping an mm in context_switch(). If 5071 * so, we finish that here outside of the runqueue lock. (Doing it 5072 * with the lock held can cause deadlocks; see schedule() for 5073 * details.) 5074 * 5075 * The context switch have flipped the stack from under us and restored the 5076 * local variables which were saved when this task called schedule() in the 5077 * past. prev == current is still correct but we need to recalculate this_rq 5078 * because prev may have moved to another CPU. 5079 */ 5080 static struct rq *finish_task_switch(struct task_struct *prev) 5081 __releases(rq->lock) 5082 { 5083 struct rq *rq = this_rq(); 5084 struct mm_struct *mm = rq->prev_mm; 5085 unsigned int prev_state; 5086 5087 /* 5088 * The previous task will have left us with a preempt_count of 2 5089 * because it left us after: 5090 * 5091 * schedule() 5092 * preempt_disable(); // 1 5093 * __schedule() 5094 * raw_spin_lock_irq(&rq->lock) // 2 5095 * 5096 * Also, see FORK_PREEMPT_COUNT. 5097 */ 5098 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5099 "corrupted preempt_count: %s/%d/0x%x\n", 5100 current->comm, current->pid, preempt_count())) 5101 preempt_count_set(FORK_PREEMPT_COUNT); 5102 5103 rq->prev_mm = NULL; 5104 5105 /* 5106 * A task struct has one reference for the use as "current". 5107 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5108 * schedule one last time. The schedule call will never return, and 5109 * the scheduled task must drop that reference. 5110 * 5111 * We must observe prev->state before clearing prev->on_cpu (in 5112 * finish_task), otherwise a concurrent wakeup can get prev 5113 * running on another CPU and we could rave with its RUNNING -> DEAD 5114 * transition, resulting in a double drop. 5115 */ 5116 prev_state = READ_ONCE(prev->__state); 5117 vtime_task_switch(prev); 5118 perf_event_task_sched_in(prev, current); 5119 finish_task(prev); 5120 tick_nohz_task_switch(); 5121 finish_lock_switch(rq); 5122 finish_arch_post_lock_switch(); 5123 kcov_finish_switch(current); 5124 /* 5125 * kmap_local_sched_out() is invoked with rq::lock held and 5126 * interrupts disabled. There is no requirement for that, but the 5127 * sched out code does not have an interrupt enabled section. 5128 * Restoring the maps on sched in does not require interrupts being 5129 * disabled either. 5130 */ 5131 kmap_local_sched_in(); 5132 5133 fire_sched_in_preempt_notifiers(current); 5134 /* 5135 * When switching through a kernel thread, the loop in 5136 * membarrier_{private,global}_expedited() may have observed that 5137 * kernel thread and not issued an IPI. It is therefore possible to 5138 * schedule between user->kernel->user threads without passing though 5139 * switch_mm(). Membarrier requires a barrier after storing to 5140 * rq->curr, before returning to userspace, so provide them here: 5141 * 5142 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5143 * provided by mmdrop(), 5144 * - a sync_core for SYNC_CORE. 5145 */ 5146 if (mm) { 5147 membarrier_mm_sync_core_before_usermode(mm); 5148 mmdrop_sched(mm); 5149 } 5150 if (unlikely(prev_state == TASK_DEAD)) { 5151 if (prev->sched_class->task_dead) 5152 prev->sched_class->task_dead(prev); 5153 5154 /* Task is done with its stack. */ 5155 put_task_stack(prev); 5156 5157 put_task_struct_rcu_user(prev); 5158 } 5159 5160 return rq; 5161 } 5162 5163 /** 5164 * schedule_tail - first thing a freshly forked thread must call. 5165 * @prev: the thread we just switched away from. 5166 */ 5167 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5168 __releases(rq->lock) 5169 { 5170 /* 5171 * New tasks start with FORK_PREEMPT_COUNT, see there and 5172 * finish_task_switch() for details. 5173 * 5174 * finish_task_switch() will drop rq->lock() and lower preempt_count 5175 * and the preempt_enable() will end up enabling preemption (on 5176 * PREEMPT_COUNT kernels). 5177 */ 5178 5179 finish_task_switch(prev); 5180 preempt_enable(); 5181 5182 if (current->set_child_tid) 5183 put_user(task_pid_vnr(current), current->set_child_tid); 5184 5185 calculate_sigpending(); 5186 } 5187 5188 /* 5189 * context_switch - switch to the new MM and the new thread's register state. 5190 */ 5191 static __always_inline struct rq * 5192 context_switch(struct rq *rq, struct task_struct *prev, 5193 struct task_struct *next, struct rq_flags *rf) 5194 { 5195 prepare_task_switch(rq, prev, next); 5196 5197 /* 5198 * For paravirt, this is coupled with an exit in switch_to to 5199 * combine the page table reload and the switch backend into 5200 * one hypercall. 5201 */ 5202 arch_start_context_switch(prev); 5203 5204 /* 5205 * kernel -> kernel lazy + transfer active 5206 * user -> kernel lazy + mmgrab() active 5207 * 5208 * kernel -> user switch + mmdrop() active 5209 * user -> user switch 5210 */ 5211 if (!next->mm) { // to kernel 5212 enter_lazy_tlb(prev->active_mm, next); 5213 5214 next->active_mm = prev->active_mm; 5215 if (prev->mm) // from user 5216 mmgrab(prev->active_mm); 5217 else 5218 prev->active_mm = NULL; 5219 } else { // to user 5220 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5221 /* 5222 * sys_membarrier() requires an smp_mb() between setting 5223 * rq->curr / membarrier_switch_mm() and returning to userspace. 5224 * 5225 * The below provides this either through switch_mm(), or in 5226 * case 'prev->active_mm == next->mm' through 5227 * finish_task_switch()'s mmdrop(). 5228 */ 5229 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5230 lru_gen_use_mm(next->mm); 5231 5232 if (!prev->mm) { // from kernel 5233 /* will mmdrop() in finish_task_switch(). */ 5234 rq->prev_mm = prev->active_mm; 5235 prev->active_mm = NULL; 5236 } 5237 } 5238 5239 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5240 5241 prepare_lock_switch(rq, next, rf); 5242 5243 /* Here we just switch the register state and the stack. */ 5244 switch_to(prev, next, prev); 5245 barrier(); 5246 5247 return finish_task_switch(prev); 5248 } 5249 5250 /* 5251 * nr_running and nr_context_switches: 5252 * 5253 * externally visible scheduler statistics: current number of runnable 5254 * threads, total number of context switches performed since bootup. 5255 */ 5256 unsigned int nr_running(void) 5257 { 5258 unsigned int i, sum = 0; 5259 5260 for_each_online_cpu(i) 5261 sum += cpu_rq(i)->nr_running; 5262 5263 return sum; 5264 } 5265 5266 /* 5267 * Check if only the current task is running on the CPU. 5268 * 5269 * Caution: this function does not check that the caller has disabled 5270 * preemption, thus the result might have a time-of-check-to-time-of-use 5271 * race. The caller is responsible to use it correctly, for example: 5272 * 5273 * - from a non-preemptible section (of course) 5274 * 5275 * - from a thread that is bound to a single CPU 5276 * 5277 * - in a loop with very short iterations (e.g. a polling loop) 5278 */ 5279 bool single_task_running(void) 5280 { 5281 return raw_rq()->nr_running == 1; 5282 } 5283 EXPORT_SYMBOL(single_task_running); 5284 5285 unsigned long long nr_context_switches(void) 5286 { 5287 int i; 5288 unsigned long long sum = 0; 5289 5290 for_each_possible_cpu(i) 5291 sum += cpu_rq(i)->nr_switches; 5292 5293 return sum; 5294 } 5295 5296 /* 5297 * Consumers of these two interfaces, like for example the cpuidle menu 5298 * governor, are using nonsensical data. Preferring shallow idle state selection 5299 * for a CPU that has IO-wait which might not even end up running the task when 5300 * it does become runnable. 5301 */ 5302 5303 unsigned int nr_iowait_cpu(int cpu) 5304 { 5305 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5306 } 5307 5308 /* 5309 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5310 * 5311 * The idea behind IO-wait account is to account the idle time that we could 5312 * have spend running if it were not for IO. That is, if we were to improve the 5313 * storage performance, we'd have a proportional reduction in IO-wait time. 5314 * 5315 * This all works nicely on UP, where, when a task blocks on IO, we account 5316 * idle time as IO-wait, because if the storage were faster, it could've been 5317 * running and we'd not be idle. 5318 * 5319 * This has been extended to SMP, by doing the same for each CPU. This however 5320 * is broken. 5321 * 5322 * Imagine for instance the case where two tasks block on one CPU, only the one 5323 * CPU will have IO-wait accounted, while the other has regular idle. Even 5324 * though, if the storage were faster, both could've ran at the same time, 5325 * utilising both CPUs. 5326 * 5327 * This means, that when looking globally, the current IO-wait accounting on 5328 * SMP is a lower bound, by reason of under accounting. 5329 * 5330 * Worse, since the numbers are provided per CPU, they are sometimes 5331 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5332 * associated with any one particular CPU, it can wake to another CPU than it 5333 * blocked on. This means the per CPU IO-wait number is meaningless. 5334 * 5335 * Task CPU affinities can make all that even more 'interesting'. 5336 */ 5337 5338 unsigned int nr_iowait(void) 5339 { 5340 unsigned int i, sum = 0; 5341 5342 for_each_possible_cpu(i) 5343 sum += nr_iowait_cpu(i); 5344 5345 return sum; 5346 } 5347 5348 #ifdef CONFIG_SMP 5349 5350 /* 5351 * sched_exec - execve() is a valuable balancing opportunity, because at 5352 * this point the task has the smallest effective memory and cache footprint. 5353 */ 5354 void sched_exec(void) 5355 { 5356 struct task_struct *p = current; 5357 unsigned long flags; 5358 int dest_cpu; 5359 5360 raw_spin_lock_irqsave(&p->pi_lock, flags); 5361 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5362 if (dest_cpu == smp_processor_id()) 5363 goto unlock; 5364 5365 if (likely(cpu_active(dest_cpu))) { 5366 struct migration_arg arg = { p, dest_cpu }; 5367 5368 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5369 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5370 return; 5371 } 5372 unlock: 5373 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5374 } 5375 5376 #endif 5377 5378 DEFINE_PER_CPU(struct kernel_stat, kstat); 5379 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5380 5381 EXPORT_PER_CPU_SYMBOL(kstat); 5382 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5383 5384 /* 5385 * The function fair_sched_class.update_curr accesses the struct curr 5386 * and its field curr->exec_start; when called from task_sched_runtime(), 5387 * we observe a high rate of cache misses in practice. 5388 * Prefetching this data results in improved performance. 5389 */ 5390 static inline void prefetch_curr_exec_start(struct task_struct *p) 5391 { 5392 #ifdef CONFIG_FAIR_GROUP_SCHED 5393 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5394 #else 5395 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5396 #endif 5397 prefetch(curr); 5398 prefetch(&curr->exec_start); 5399 } 5400 5401 /* 5402 * Return accounted runtime for the task. 5403 * In case the task is currently running, return the runtime plus current's 5404 * pending runtime that have not been accounted yet. 5405 */ 5406 unsigned long long task_sched_runtime(struct task_struct *p) 5407 { 5408 struct rq_flags rf; 5409 struct rq *rq; 5410 u64 ns; 5411 5412 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5413 /* 5414 * 64-bit doesn't need locks to atomically read a 64-bit value. 5415 * So we have a optimization chance when the task's delta_exec is 0. 5416 * Reading ->on_cpu is racy, but this is ok. 5417 * 5418 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5419 * If we race with it entering CPU, unaccounted time is 0. This is 5420 * indistinguishable from the read occurring a few cycles earlier. 5421 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5422 * been accounted, so we're correct here as well. 5423 */ 5424 if (!p->on_cpu || !task_on_rq_queued(p)) 5425 return p->se.sum_exec_runtime; 5426 #endif 5427 5428 rq = task_rq_lock(p, &rf); 5429 /* 5430 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5431 * project cycles that may never be accounted to this 5432 * thread, breaking clock_gettime(). 5433 */ 5434 if (task_current(rq, p) && task_on_rq_queued(p)) { 5435 prefetch_curr_exec_start(p); 5436 update_rq_clock(rq); 5437 p->sched_class->update_curr(rq); 5438 } 5439 ns = p->se.sum_exec_runtime; 5440 task_rq_unlock(rq, p, &rf); 5441 5442 return ns; 5443 } 5444 5445 #ifdef CONFIG_SCHED_DEBUG 5446 static u64 cpu_resched_latency(struct rq *rq) 5447 { 5448 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5449 u64 resched_latency, now = rq_clock(rq); 5450 static bool warned_once; 5451 5452 if (sysctl_resched_latency_warn_once && warned_once) 5453 return 0; 5454 5455 if (!need_resched() || !latency_warn_ms) 5456 return 0; 5457 5458 if (system_state == SYSTEM_BOOTING) 5459 return 0; 5460 5461 if (!rq->last_seen_need_resched_ns) { 5462 rq->last_seen_need_resched_ns = now; 5463 rq->ticks_without_resched = 0; 5464 return 0; 5465 } 5466 5467 rq->ticks_without_resched++; 5468 resched_latency = now - rq->last_seen_need_resched_ns; 5469 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5470 return 0; 5471 5472 warned_once = true; 5473 5474 return resched_latency; 5475 } 5476 5477 static int __init setup_resched_latency_warn_ms(char *str) 5478 { 5479 long val; 5480 5481 if ((kstrtol(str, 0, &val))) { 5482 pr_warn("Unable to set resched_latency_warn_ms\n"); 5483 return 1; 5484 } 5485 5486 sysctl_resched_latency_warn_ms = val; 5487 return 1; 5488 } 5489 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5490 #else 5491 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5492 #endif /* CONFIG_SCHED_DEBUG */ 5493 5494 /* 5495 * This function gets called by the timer code, with HZ frequency. 5496 * We call it with interrupts disabled. 5497 */ 5498 void scheduler_tick(void) 5499 { 5500 int cpu = smp_processor_id(); 5501 struct rq *rq = cpu_rq(cpu); 5502 struct task_struct *curr = rq->curr; 5503 struct rq_flags rf; 5504 unsigned long thermal_pressure; 5505 u64 resched_latency; 5506 5507 arch_scale_freq_tick(); 5508 sched_clock_tick(); 5509 5510 rq_lock(rq, &rf); 5511 5512 update_rq_clock(rq); 5513 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5514 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5515 curr->sched_class->task_tick(rq, curr, 0); 5516 if (sched_feat(LATENCY_WARN)) 5517 resched_latency = cpu_resched_latency(rq); 5518 calc_global_load_tick(rq); 5519 sched_core_tick(rq); 5520 5521 rq_unlock(rq, &rf); 5522 5523 if (sched_feat(LATENCY_WARN) && resched_latency) 5524 resched_latency_warn(cpu, resched_latency); 5525 5526 perf_event_task_tick(); 5527 5528 #ifdef CONFIG_SMP 5529 rq->idle_balance = idle_cpu(cpu); 5530 trigger_load_balance(rq); 5531 #endif 5532 } 5533 5534 #ifdef CONFIG_NO_HZ_FULL 5535 5536 struct tick_work { 5537 int cpu; 5538 atomic_t state; 5539 struct delayed_work work; 5540 }; 5541 /* Values for ->state, see diagram below. */ 5542 #define TICK_SCHED_REMOTE_OFFLINE 0 5543 #define TICK_SCHED_REMOTE_OFFLINING 1 5544 #define TICK_SCHED_REMOTE_RUNNING 2 5545 5546 /* 5547 * State diagram for ->state: 5548 * 5549 * 5550 * TICK_SCHED_REMOTE_OFFLINE 5551 * | ^ 5552 * | | 5553 * | | sched_tick_remote() 5554 * | | 5555 * | | 5556 * +--TICK_SCHED_REMOTE_OFFLINING 5557 * | ^ 5558 * | | 5559 * sched_tick_start() | | sched_tick_stop() 5560 * | | 5561 * V | 5562 * TICK_SCHED_REMOTE_RUNNING 5563 * 5564 * 5565 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5566 * and sched_tick_start() are happy to leave the state in RUNNING. 5567 */ 5568 5569 static struct tick_work __percpu *tick_work_cpu; 5570 5571 static void sched_tick_remote(struct work_struct *work) 5572 { 5573 struct delayed_work *dwork = to_delayed_work(work); 5574 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5575 int cpu = twork->cpu; 5576 struct rq *rq = cpu_rq(cpu); 5577 struct task_struct *curr; 5578 struct rq_flags rf; 5579 u64 delta; 5580 int os; 5581 5582 /* 5583 * Handle the tick only if it appears the remote CPU is running in full 5584 * dynticks mode. The check is racy by nature, but missing a tick or 5585 * having one too much is no big deal because the scheduler tick updates 5586 * statistics and checks timeslices in a time-independent way, regardless 5587 * of when exactly it is running. 5588 */ 5589 if (!tick_nohz_tick_stopped_cpu(cpu)) 5590 goto out_requeue; 5591 5592 rq_lock_irq(rq, &rf); 5593 curr = rq->curr; 5594 if (cpu_is_offline(cpu)) 5595 goto out_unlock; 5596 5597 update_rq_clock(rq); 5598 5599 if (!is_idle_task(curr)) { 5600 /* 5601 * Make sure the next tick runs within a reasonable 5602 * amount of time. 5603 */ 5604 delta = rq_clock_task(rq) - curr->se.exec_start; 5605 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5606 } 5607 curr->sched_class->task_tick(rq, curr, 0); 5608 5609 calc_load_nohz_remote(rq); 5610 out_unlock: 5611 rq_unlock_irq(rq, &rf); 5612 out_requeue: 5613 5614 /* 5615 * Run the remote tick once per second (1Hz). This arbitrary 5616 * frequency is large enough to avoid overload but short enough 5617 * to keep scheduler internal stats reasonably up to date. But 5618 * first update state to reflect hotplug activity if required. 5619 */ 5620 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5621 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5622 if (os == TICK_SCHED_REMOTE_RUNNING) 5623 queue_delayed_work(system_unbound_wq, dwork, HZ); 5624 } 5625 5626 static void sched_tick_start(int cpu) 5627 { 5628 int os; 5629 struct tick_work *twork; 5630 5631 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5632 return; 5633 5634 WARN_ON_ONCE(!tick_work_cpu); 5635 5636 twork = per_cpu_ptr(tick_work_cpu, cpu); 5637 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5638 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5639 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5640 twork->cpu = cpu; 5641 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5642 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5643 } 5644 } 5645 5646 #ifdef CONFIG_HOTPLUG_CPU 5647 static void sched_tick_stop(int cpu) 5648 { 5649 struct tick_work *twork; 5650 int os; 5651 5652 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5653 return; 5654 5655 WARN_ON_ONCE(!tick_work_cpu); 5656 5657 twork = per_cpu_ptr(tick_work_cpu, cpu); 5658 /* There cannot be competing actions, but don't rely on stop-machine. */ 5659 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5660 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5661 /* Don't cancel, as this would mess up the state machine. */ 5662 } 5663 #endif /* CONFIG_HOTPLUG_CPU */ 5664 5665 int __init sched_tick_offload_init(void) 5666 { 5667 tick_work_cpu = alloc_percpu(struct tick_work); 5668 BUG_ON(!tick_work_cpu); 5669 return 0; 5670 } 5671 5672 #else /* !CONFIG_NO_HZ_FULL */ 5673 static inline void sched_tick_start(int cpu) { } 5674 static inline void sched_tick_stop(int cpu) { } 5675 #endif 5676 5677 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5678 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5679 /* 5680 * If the value passed in is equal to the current preempt count 5681 * then we just disabled preemption. Start timing the latency. 5682 */ 5683 static inline void preempt_latency_start(int val) 5684 { 5685 if (preempt_count() == val) { 5686 unsigned long ip = get_lock_parent_ip(); 5687 #ifdef CONFIG_DEBUG_PREEMPT 5688 current->preempt_disable_ip = ip; 5689 #endif 5690 trace_preempt_off(CALLER_ADDR0, ip); 5691 } 5692 } 5693 5694 void preempt_count_add(int val) 5695 { 5696 #ifdef CONFIG_DEBUG_PREEMPT 5697 /* 5698 * Underflow? 5699 */ 5700 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5701 return; 5702 #endif 5703 __preempt_count_add(val); 5704 #ifdef CONFIG_DEBUG_PREEMPT 5705 /* 5706 * Spinlock count overflowing soon? 5707 */ 5708 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5709 PREEMPT_MASK - 10); 5710 #endif 5711 preempt_latency_start(val); 5712 } 5713 EXPORT_SYMBOL(preempt_count_add); 5714 NOKPROBE_SYMBOL(preempt_count_add); 5715 5716 /* 5717 * If the value passed in equals to the current preempt count 5718 * then we just enabled preemption. Stop timing the latency. 5719 */ 5720 static inline void preempt_latency_stop(int val) 5721 { 5722 if (preempt_count() == val) 5723 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5724 } 5725 5726 void preempt_count_sub(int val) 5727 { 5728 #ifdef CONFIG_DEBUG_PREEMPT 5729 /* 5730 * Underflow? 5731 */ 5732 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5733 return; 5734 /* 5735 * Is the spinlock portion underflowing? 5736 */ 5737 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5738 !(preempt_count() & PREEMPT_MASK))) 5739 return; 5740 #endif 5741 5742 preempt_latency_stop(val); 5743 __preempt_count_sub(val); 5744 } 5745 EXPORT_SYMBOL(preempt_count_sub); 5746 NOKPROBE_SYMBOL(preempt_count_sub); 5747 5748 #else 5749 static inline void preempt_latency_start(int val) { } 5750 static inline void preempt_latency_stop(int val) { } 5751 #endif 5752 5753 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5754 { 5755 #ifdef CONFIG_DEBUG_PREEMPT 5756 return p->preempt_disable_ip; 5757 #else 5758 return 0; 5759 #endif 5760 } 5761 5762 /* 5763 * Print scheduling while atomic bug: 5764 */ 5765 static noinline void __schedule_bug(struct task_struct *prev) 5766 { 5767 /* Save this before calling printk(), since that will clobber it */ 5768 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5769 5770 if (oops_in_progress) 5771 return; 5772 5773 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5774 prev->comm, prev->pid, preempt_count()); 5775 5776 debug_show_held_locks(prev); 5777 print_modules(); 5778 if (irqs_disabled()) 5779 print_irqtrace_events(prev); 5780 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5781 && in_atomic_preempt_off()) { 5782 pr_err("Preemption disabled at:"); 5783 print_ip_sym(KERN_ERR, preempt_disable_ip); 5784 } 5785 check_panic_on_warn("scheduling while atomic"); 5786 5787 dump_stack(); 5788 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5789 } 5790 5791 /* 5792 * Various schedule()-time debugging checks and statistics: 5793 */ 5794 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5795 { 5796 #ifdef CONFIG_SCHED_STACK_END_CHECK 5797 if (task_stack_end_corrupted(prev)) 5798 panic("corrupted stack end detected inside scheduler\n"); 5799 5800 if (task_scs_end_corrupted(prev)) 5801 panic("corrupted shadow stack detected inside scheduler\n"); 5802 #endif 5803 5804 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5805 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5806 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5807 prev->comm, prev->pid, prev->non_block_count); 5808 dump_stack(); 5809 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5810 } 5811 #endif 5812 5813 if (unlikely(in_atomic_preempt_off())) { 5814 __schedule_bug(prev); 5815 preempt_count_set(PREEMPT_DISABLED); 5816 } 5817 rcu_sleep_check(); 5818 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5819 5820 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5821 5822 schedstat_inc(this_rq()->sched_count); 5823 } 5824 5825 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5826 struct rq_flags *rf) 5827 { 5828 #ifdef CONFIG_SMP 5829 const struct sched_class *class; 5830 /* 5831 * We must do the balancing pass before put_prev_task(), such 5832 * that when we release the rq->lock the task is in the same 5833 * state as before we took rq->lock. 5834 * 5835 * We can terminate the balance pass as soon as we know there is 5836 * a runnable task of @class priority or higher. 5837 */ 5838 for_class_range(class, prev->sched_class, &idle_sched_class) { 5839 if (class->balance(rq, prev, rf)) 5840 break; 5841 } 5842 #endif 5843 5844 put_prev_task(rq, prev); 5845 } 5846 5847 /* 5848 * Pick up the highest-prio task: 5849 */ 5850 static inline struct task_struct * 5851 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5852 { 5853 const struct sched_class *class; 5854 struct task_struct *p; 5855 5856 /* 5857 * Optimization: we know that if all tasks are in the fair class we can 5858 * call that function directly, but only if the @prev task wasn't of a 5859 * higher scheduling class, because otherwise those lose the 5860 * opportunity to pull in more work from other CPUs. 5861 */ 5862 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5863 rq->nr_running == rq->cfs.h_nr_running)) { 5864 5865 p = pick_next_task_fair(rq, prev, rf); 5866 if (unlikely(p == RETRY_TASK)) 5867 goto restart; 5868 5869 /* Assume the next prioritized class is idle_sched_class */ 5870 if (!p) { 5871 put_prev_task(rq, prev); 5872 p = pick_next_task_idle(rq); 5873 } 5874 5875 return p; 5876 } 5877 5878 restart: 5879 put_prev_task_balance(rq, prev, rf); 5880 5881 for_each_class(class) { 5882 p = class->pick_next_task(rq); 5883 if (p) 5884 return p; 5885 } 5886 5887 BUG(); /* The idle class should always have a runnable task. */ 5888 } 5889 5890 #ifdef CONFIG_SCHED_CORE 5891 static inline bool is_task_rq_idle(struct task_struct *t) 5892 { 5893 return (task_rq(t)->idle == t); 5894 } 5895 5896 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5897 { 5898 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5899 } 5900 5901 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5902 { 5903 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5904 return true; 5905 5906 return a->core_cookie == b->core_cookie; 5907 } 5908 5909 static inline struct task_struct *pick_task(struct rq *rq) 5910 { 5911 const struct sched_class *class; 5912 struct task_struct *p; 5913 5914 for_each_class(class) { 5915 p = class->pick_task(rq); 5916 if (p) 5917 return p; 5918 } 5919 5920 BUG(); /* The idle class should always have a runnable task. */ 5921 } 5922 5923 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5924 5925 static void queue_core_balance(struct rq *rq); 5926 5927 static struct task_struct * 5928 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5929 { 5930 struct task_struct *next, *p, *max = NULL; 5931 const struct cpumask *smt_mask; 5932 bool fi_before = false; 5933 bool core_clock_updated = (rq == rq->core); 5934 unsigned long cookie; 5935 int i, cpu, occ = 0; 5936 struct rq *rq_i; 5937 bool need_sync; 5938 5939 if (!sched_core_enabled(rq)) 5940 return __pick_next_task(rq, prev, rf); 5941 5942 cpu = cpu_of(rq); 5943 5944 /* Stopper task is switching into idle, no need core-wide selection. */ 5945 if (cpu_is_offline(cpu)) { 5946 /* 5947 * Reset core_pick so that we don't enter the fastpath when 5948 * coming online. core_pick would already be migrated to 5949 * another cpu during offline. 5950 */ 5951 rq->core_pick = NULL; 5952 return __pick_next_task(rq, prev, rf); 5953 } 5954 5955 /* 5956 * If there were no {en,de}queues since we picked (IOW, the task 5957 * pointers are all still valid), and we haven't scheduled the last 5958 * pick yet, do so now. 5959 * 5960 * rq->core_pick can be NULL if no selection was made for a CPU because 5961 * it was either offline or went offline during a sibling's core-wide 5962 * selection. In this case, do a core-wide selection. 5963 */ 5964 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5965 rq->core->core_pick_seq != rq->core_sched_seq && 5966 rq->core_pick) { 5967 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5968 5969 next = rq->core_pick; 5970 if (next != prev) { 5971 put_prev_task(rq, prev); 5972 set_next_task(rq, next); 5973 } 5974 5975 rq->core_pick = NULL; 5976 goto out; 5977 } 5978 5979 put_prev_task_balance(rq, prev, rf); 5980 5981 smt_mask = cpu_smt_mask(cpu); 5982 need_sync = !!rq->core->core_cookie; 5983 5984 /* reset state */ 5985 rq->core->core_cookie = 0UL; 5986 if (rq->core->core_forceidle_count) { 5987 if (!core_clock_updated) { 5988 update_rq_clock(rq->core); 5989 core_clock_updated = true; 5990 } 5991 sched_core_account_forceidle(rq); 5992 /* reset after accounting force idle */ 5993 rq->core->core_forceidle_start = 0; 5994 rq->core->core_forceidle_count = 0; 5995 rq->core->core_forceidle_occupation = 0; 5996 need_sync = true; 5997 fi_before = true; 5998 } 5999 6000 /* 6001 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6002 * 6003 * @task_seq guards the task state ({en,de}queues) 6004 * @pick_seq is the @task_seq we did a selection on 6005 * @sched_seq is the @pick_seq we scheduled 6006 * 6007 * However, preemptions can cause multiple picks on the same task set. 6008 * 'Fix' this by also increasing @task_seq for every pick. 6009 */ 6010 rq->core->core_task_seq++; 6011 6012 /* 6013 * Optimize for common case where this CPU has no cookies 6014 * and there are no cookied tasks running on siblings. 6015 */ 6016 if (!need_sync) { 6017 next = pick_task(rq); 6018 if (!next->core_cookie) { 6019 rq->core_pick = NULL; 6020 /* 6021 * For robustness, update the min_vruntime_fi for 6022 * unconstrained picks as well. 6023 */ 6024 WARN_ON_ONCE(fi_before); 6025 task_vruntime_update(rq, next, false); 6026 goto out_set_next; 6027 } 6028 } 6029 6030 /* 6031 * For each thread: do the regular task pick and find the max prio task 6032 * amongst them. 6033 * 6034 * Tie-break prio towards the current CPU 6035 */ 6036 for_each_cpu_wrap(i, smt_mask, cpu) { 6037 rq_i = cpu_rq(i); 6038 6039 /* 6040 * Current cpu always has its clock updated on entrance to 6041 * pick_next_task(). If the current cpu is not the core, 6042 * the core may also have been updated above. 6043 */ 6044 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6045 update_rq_clock(rq_i); 6046 6047 p = rq_i->core_pick = pick_task(rq_i); 6048 if (!max || prio_less(max, p, fi_before)) 6049 max = p; 6050 } 6051 6052 cookie = rq->core->core_cookie = max->core_cookie; 6053 6054 /* 6055 * For each thread: try and find a runnable task that matches @max or 6056 * force idle. 6057 */ 6058 for_each_cpu(i, smt_mask) { 6059 rq_i = cpu_rq(i); 6060 p = rq_i->core_pick; 6061 6062 if (!cookie_equals(p, cookie)) { 6063 p = NULL; 6064 if (cookie) 6065 p = sched_core_find(rq_i, cookie); 6066 if (!p) 6067 p = idle_sched_class.pick_task(rq_i); 6068 } 6069 6070 rq_i->core_pick = p; 6071 6072 if (p == rq_i->idle) { 6073 if (rq_i->nr_running) { 6074 rq->core->core_forceidle_count++; 6075 if (!fi_before) 6076 rq->core->core_forceidle_seq++; 6077 } 6078 } else { 6079 occ++; 6080 } 6081 } 6082 6083 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6084 rq->core->core_forceidle_start = rq_clock(rq->core); 6085 rq->core->core_forceidle_occupation = occ; 6086 } 6087 6088 rq->core->core_pick_seq = rq->core->core_task_seq; 6089 next = rq->core_pick; 6090 rq->core_sched_seq = rq->core->core_pick_seq; 6091 6092 /* Something should have been selected for current CPU */ 6093 WARN_ON_ONCE(!next); 6094 6095 /* 6096 * Reschedule siblings 6097 * 6098 * NOTE: L1TF -- at this point we're no longer running the old task and 6099 * sending an IPI (below) ensures the sibling will no longer be running 6100 * their task. This ensures there is no inter-sibling overlap between 6101 * non-matching user state. 6102 */ 6103 for_each_cpu(i, smt_mask) { 6104 rq_i = cpu_rq(i); 6105 6106 /* 6107 * An online sibling might have gone offline before a task 6108 * could be picked for it, or it might be offline but later 6109 * happen to come online, but its too late and nothing was 6110 * picked for it. That's Ok - it will pick tasks for itself, 6111 * so ignore it. 6112 */ 6113 if (!rq_i->core_pick) 6114 continue; 6115 6116 /* 6117 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6118 * fi_before fi update? 6119 * 0 0 1 6120 * 0 1 1 6121 * 1 0 1 6122 * 1 1 0 6123 */ 6124 if (!(fi_before && rq->core->core_forceidle_count)) 6125 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6126 6127 rq_i->core_pick->core_occupation = occ; 6128 6129 if (i == cpu) { 6130 rq_i->core_pick = NULL; 6131 continue; 6132 } 6133 6134 /* Did we break L1TF mitigation requirements? */ 6135 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6136 6137 if (rq_i->curr == rq_i->core_pick) { 6138 rq_i->core_pick = NULL; 6139 continue; 6140 } 6141 6142 resched_curr(rq_i); 6143 } 6144 6145 out_set_next: 6146 set_next_task(rq, next); 6147 out: 6148 if (rq->core->core_forceidle_count && next == rq->idle) 6149 queue_core_balance(rq); 6150 6151 return next; 6152 } 6153 6154 static bool try_steal_cookie(int this, int that) 6155 { 6156 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6157 struct task_struct *p; 6158 unsigned long cookie; 6159 bool success = false; 6160 6161 local_irq_disable(); 6162 double_rq_lock(dst, src); 6163 6164 cookie = dst->core->core_cookie; 6165 if (!cookie) 6166 goto unlock; 6167 6168 if (dst->curr != dst->idle) 6169 goto unlock; 6170 6171 p = sched_core_find(src, cookie); 6172 if (p == src->idle) 6173 goto unlock; 6174 6175 do { 6176 if (p == src->core_pick || p == src->curr) 6177 goto next; 6178 6179 if (!is_cpu_allowed(p, this)) 6180 goto next; 6181 6182 if (p->core_occupation > dst->idle->core_occupation) 6183 goto next; 6184 6185 deactivate_task(src, p, 0); 6186 set_task_cpu(p, this); 6187 activate_task(dst, p, 0); 6188 6189 resched_curr(dst); 6190 6191 success = true; 6192 break; 6193 6194 next: 6195 p = sched_core_next(p, cookie); 6196 } while (p); 6197 6198 unlock: 6199 double_rq_unlock(dst, src); 6200 local_irq_enable(); 6201 6202 return success; 6203 } 6204 6205 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6206 { 6207 int i; 6208 6209 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 6210 if (i == cpu) 6211 continue; 6212 6213 if (need_resched()) 6214 break; 6215 6216 if (try_steal_cookie(cpu, i)) 6217 return true; 6218 } 6219 6220 return false; 6221 } 6222 6223 static void sched_core_balance(struct rq *rq) 6224 { 6225 struct sched_domain *sd; 6226 int cpu = cpu_of(rq); 6227 6228 preempt_disable(); 6229 rcu_read_lock(); 6230 raw_spin_rq_unlock_irq(rq); 6231 for_each_domain(cpu, sd) { 6232 if (need_resched()) 6233 break; 6234 6235 if (steal_cookie_task(cpu, sd)) 6236 break; 6237 } 6238 raw_spin_rq_lock_irq(rq); 6239 rcu_read_unlock(); 6240 preempt_enable(); 6241 } 6242 6243 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6244 6245 static void queue_core_balance(struct rq *rq) 6246 { 6247 if (!sched_core_enabled(rq)) 6248 return; 6249 6250 if (!rq->core->core_cookie) 6251 return; 6252 6253 if (!rq->nr_running) /* not forced idle */ 6254 return; 6255 6256 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6257 } 6258 6259 static void sched_core_cpu_starting(unsigned int cpu) 6260 { 6261 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6262 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6263 unsigned long flags; 6264 int t; 6265 6266 sched_core_lock(cpu, &flags); 6267 6268 WARN_ON_ONCE(rq->core != rq); 6269 6270 /* if we're the first, we'll be our own leader */ 6271 if (cpumask_weight(smt_mask) == 1) 6272 goto unlock; 6273 6274 /* find the leader */ 6275 for_each_cpu(t, smt_mask) { 6276 if (t == cpu) 6277 continue; 6278 rq = cpu_rq(t); 6279 if (rq->core == rq) { 6280 core_rq = rq; 6281 break; 6282 } 6283 } 6284 6285 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6286 goto unlock; 6287 6288 /* install and validate core_rq */ 6289 for_each_cpu(t, smt_mask) { 6290 rq = cpu_rq(t); 6291 6292 if (t == cpu) 6293 rq->core = core_rq; 6294 6295 WARN_ON_ONCE(rq->core != core_rq); 6296 } 6297 6298 unlock: 6299 sched_core_unlock(cpu, &flags); 6300 } 6301 6302 static void sched_core_cpu_deactivate(unsigned int cpu) 6303 { 6304 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6305 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6306 unsigned long flags; 6307 int t; 6308 6309 sched_core_lock(cpu, &flags); 6310 6311 /* if we're the last man standing, nothing to do */ 6312 if (cpumask_weight(smt_mask) == 1) { 6313 WARN_ON_ONCE(rq->core != rq); 6314 goto unlock; 6315 } 6316 6317 /* if we're not the leader, nothing to do */ 6318 if (rq->core != rq) 6319 goto unlock; 6320 6321 /* find a new leader */ 6322 for_each_cpu(t, smt_mask) { 6323 if (t == cpu) 6324 continue; 6325 core_rq = cpu_rq(t); 6326 break; 6327 } 6328 6329 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6330 goto unlock; 6331 6332 /* copy the shared state to the new leader */ 6333 core_rq->core_task_seq = rq->core_task_seq; 6334 core_rq->core_pick_seq = rq->core_pick_seq; 6335 core_rq->core_cookie = rq->core_cookie; 6336 core_rq->core_forceidle_count = rq->core_forceidle_count; 6337 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6338 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6339 6340 /* 6341 * Accounting edge for forced idle is handled in pick_next_task(). 6342 * Don't need another one here, since the hotplug thread shouldn't 6343 * have a cookie. 6344 */ 6345 core_rq->core_forceidle_start = 0; 6346 6347 /* install new leader */ 6348 for_each_cpu(t, smt_mask) { 6349 rq = cpu_rq(t); 6350 rq->core = core_rq; 6351 } 6352 6353 unlock: 6354 sched_core_unlock(cpu, &flags); 6355 } 6356 6357 static inline void sched_core_cpu_dying(unsigned int cpu) 6358 { 6359 struct rq *rq = cpu_rq(cpu); 6360 6361 if (rq->core != rq) 6362 rq->core = rq; 6363 } 6364 6365 #else /* !CONFIG_SCHED_CORE */ 6366 6367 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6368 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6369 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6370 6371 static struct task_struct * 6372 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6373 { 6374 return __pick_next_task(rq, prev, rf); 6375 } 6376 6377 #endif /* CONFIG_SCHED_CORE */ 6378 6379 /* 6380 * Constants for the sched_mode argument of __schedule(). 6381 * 6382 * The mode argument allows RT enabled kernels to differentiate a 6383 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6384 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6385 * optimize the AND operation out and just check for zero. 6386 */ 6387 #define SM_NONE 0x0 6388 #define SM_PREEMPT 0x1 6389 #define SM_RTLOCK_WAIT 0x2 6390 6391 #ifndef CONFIG_PREEMPT_RT 6392 # define SM_MASK_PREEMPT (~0U) 6393 #else 6394 # define SM_MASK_PREEMPT SM_PREEMPT 6395 #endif 6396 6397 /* 6398 * __schedule() is the main scheduler function. 6399 * 6400 * The main means of driving the scheduler and thus entering this function are: 6401 * 6402 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6403 * 6404 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6405 * paths. For example, see arch/x86/entry_64.S. 6406 * 6407 * To drive preemption between tasks, the scheduler sets the flag in timer 6408 * interrupt handler scheduler_tick(). 6409 * 6410 * 3. Wakeups don't really cause entry into schedule(). They add a 6411 * task to the run-queue and that's it. 6412 * 6413 * Now, if the new task added to the run-queue preempts the current 6414 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6415 * called on the nearest possible occasion: 6416 * 6417 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6418 * 6419 * - in syscall or exception context, at the next outmost 6420 * preempt_enable(). (this might be as soon as the wake_up()'s 6421 * spin_unlock()!) 6422 * 6423 * - in IRQ context, return from interrupt-handler to 6424 * preemptible context 6425 * 6426 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6427 * then at the next: 6428 * 6429 * - cond_resched() call 6430 * - explicit schedule() call 6431 * - return from syscall or exception to user-space 6432 * - return from interrupt-handler to user-space 6433 * 6434 * WARNING: must be called with preemption disabled! 6435 */ 6436 static void __sched notrace __schedule(unsigned int sched_mode) 6437 { 6438 struct task_struct *prev, *next; 6439 unsigned long *switch_count; 6440 unsigned long prev_state; 6441 struct rq_flags rf; 6442 struct rq *rq; 6443 int cpu; 6444 6445 cpu = smp_processor_id(); 6446 rq = cpu_rq(cpu); 6447 prev = rq->curr; 6448 6449 schedule_debug(prev, !!sched_mode); 6450 6451 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6452 hrtick_clear(rq); 6453 6454 local_irq_disable(); 6455 rcu_note_context_switch(!!sched_mode); 6456 6457 /* 6458 * Make sure that signal_pending_state()->signal_pending() below 6459 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6460 * done by the caller to avoid the race with signal_wake_up(): 6461 * 6462 * __set_current_state(@state) signal_wake_up() 6463 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6464 * wake_up_state(p, state) 6465 * LOCK rq->lock LOCK p->pi_state 6466 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6467 * if (signal_pending_state()) if (p->state & @state) 6468 * 6469 * Also, the membarrier system call requires a full memory barrier 6470 * after coming from user-space, before storing to rq->curr. 6471 */ 6472 rq_lock(rq, &rf); 6473 smp_mb__after_spinlock(); 6474 6475 /* Promote REQ to ACT */ 6476 rq->clock_update_flags <<= 1; 6477 update_rq_clock(rq); 6478 6479 switch_count = &prev->nivcsw; 6480 6481 /* 6482 * We must load prev->state once (task_struct::state is volatile), such 6483 * that we form a control dependency vs deactivate_task() below. 6484 */ 6485 prev_state = READ_ONCE(prev->__state); 6486 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6487 if (signal_pending_state(prev_state, prev)) { 6488 WRITE_ONCE(prev->__state, TASK_RUNNING); 6489 } else { 6490 prev->sched_contributes_to_load = 6491 (prev_state & TASK_UNINTERRUPTIBLE) && 6492 !(prev_state & TASK_NOLOAD) && 6493 !(prev_state & TASK_FROZEN); 6494 6495 if (prev->sched_contributes_to_load) 6496 rq->nr_uninterruptible++; 6497 6498 /* 6499 * __schedule() ttwu() 6500 * prev_state = prev->state; if (p->on_rq && ...) 6501 * if (prev_state) goto out; 6502 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6503 * p->state = TASK_WAKING 6504 * 6505 * Where __schedule() and ttwu() have matching control dependencies. 6506 * 6507 * After this, schedule() must not care about p->state any more. 6508 */ 6509 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6510 6511 if (prev->in_iowait) { 6512 atomic_inc(&rq->nr_iowait); 6513 delayacct_blkio_start(); 6514 } 6515 } 6516 switch_count = &prev->nvcsw; 6517 } 6518 6519 next = pick_next_task(rq, prev, &rf); 6520 clear_tsk_need_resched(prev); 6521 clear_preempt_need_resched(); 6522 #ifdef CONFIG_SCHED_DEBUG 6523 rq->last_seen_need_resched_ns = 0; 6524 #endif 6525 6526 if (likely(prev != next)) { 6527 rq->nr_switches++; 6528 /* 6529 * RCU users of rcu_dereference(rq->curr) may not see 6530 * changes to task_struct made by pick_next_task(). 6531 */ 6532 RCU_INIT_POINTER(rq->curr, next); 6533 /* 6534 * The membarrier system call requires each architecture 6535 * to have a full memory barrier after updating 6536 * rq->curr, before returning to user-space. 6537 * 6538 * Here are the schemes providing that barrier on the 6539 * various architectures: 6540 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6541 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6542 * - finish_lock_switch() for weakly-ordered 6543 * architectures where spin_unlock is a full barrier, 6544 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6545 * is a RELEASE barrier), 6546 */ 6547 ++*switch_count; 6548 6549 migrate_disable_switch(rq, prev); 6550 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6551 6552 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6553 6554 /* Also unlocks the rq: */ 6555 rq = context_switch(rq, prev, next, &rf); 6556 } else { 6557 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6558 6559 rq_unpin_lock(rq, &rf); 6560 __balance_callbacks(rq); 6561 raw_spin_rq_unlock_irq(rq); 6562 } 6563 } 6564 6565 void __noreturn do_task_dead(void) 6566 { 6567 /* Causes final put_task_struct in finish_task_switch(): */ 6568 set_special_state(TASK_DEAD); 6569 6570 /* Tell freezer to ignore us: */ 6571 current->flags |= PF_NOFREEZE; 6572 6573 __schedule(SM_NONE); 6574 BUG(); 6575 6576 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6577 for (;;) 6578 cpu_relax(); 6579 } 6580 6581 static inline void sched_submit_work(struct task_struct *tsk) 6582 { 6583 unsigned int task_flags; 6584 6585 if (task_is_running(tsk)) 6586 return; 6587 6588 task_flags = tsk->flags; 6589 /* 6590 * If a worker goes to sleep, notify and ask workqueue whether it 6591 * wants to wake up a task to maintain concurrency. 6592 */ 6593 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6594 if (task_flags & PF_WQ_WORKER) 6595 wq_worker_sleeping(tsk); 6596 else 6597 io_wq_worker_sleeping(tsk); 6598 } 6599 6600 /* 6601 * spinlock and rwlock must not flush block requests. This will 6602 * deadlock if the callback attempts to acquire a lock which is 6603 * already acquired. 6604 */ 6605 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6606 6607 /* 6608 * If we are going to sleep and we have plugged IO queued, 6609 * make sure to submit it to avoid deadlocks. 6610 */ 6611 blk_flush_plug(tsk->plug, true); 6612 } 6613 6614 static void sched_update_worker(struct task_struct *tsk) 6615 { 6616 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6617 if (tsk->flags & PF_WQ_WORKER) 6618 wq_worker_running(tsk); 6619 else 6620 io_wq_worker_running(tsk); 6621 } 6622 } 6623 6624 asmlinkage __visible void __sched schedule(void) 6625 { 6626 struct task_struct *tsk = current; 6627 6628 sched_submit_work(tsk); 6629 do { 6630 preempt_disable(); 6631 __schedule(SM_NONE); 6632 sched_preempt_enable_no_resched(); 6633 } while (need_resched()); 6634 sched_update_worker(tsk); 6635 } 6636 EXPORT_SYMBOL(schedule); 6637 6638 /* 6639 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6640 * state (have scheduled out non-voluntarily) by making sure that all 6641 * tasks have either left the run queue or have gone into user space. 6642 * As idle tasks do not do either, they must not ever be preempted 6643 * (schedule out non-voluntarily). 6644 * 6645 * schedule_idle() is similar to schedule_preempt_disable() except that it 6646 * never enables preemption because it does not call sched_submit_work(). 6647 */ 6648 void __sched schedule_idle(void) 6649 { 6650 /* 6651 * As this skips calling sched_submit_work(), which the idle task does 6652 * regardless because that function is a nop when the task is in a 6653 * TASK_RUNNING state, make sure this isn't used someplace that the 6654 * current task can be in any other state. Note, idle is always in the 6655 * TASK_RUNNING state. 6656 */ 6657 WARN_ON_ONCE(current->__state); 6658 do { 6659 __schedule(SM_NONE); 6660 } while (need_resched()); 6661 } 6662 6663 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6664 asmlinkage __visible void __sched schedule_user(void) 6665 { 6666 /* 6667 * If we come here after a random call to set_need_resched(), 6668 * or we have been woken up remotely but the IPI has not yet arrived, 6669 * we haven't yet exited the RCU idle mode. Do it here manually until 6670 * we find a better solution. 6671 * 6672 * NB: There are buggy callers of this function. Ideally we 6673 * should warn if prev_state != CONTEXT_USER, but that will trigger 6674 * too frequently to make sense yet. 6675 */ 6676 enum ctx_state prev_state = exception_enter(); 6677 schedule(); 6678 exception_exit(prev_state); 6679 } 6680 #endif 6681 6682 /** 6683 * schedule_preempt_disabled - called with preemption disabled 6684 * 6685 * Returns with preemption disabled. Note: preempt_count must be 1 6686 */ 6687 void __sched schedule_preempt_disabled(void) 6688 { 6689 sched_preempt_enable_no_resched(); 6690 schedule(); 6691 preempt_disable(); 6692 } 6693 6694 #ifdef CONFIG_PREEMPT_RT 6695 void __sched notrace schedule_rtlock(void) 6696 { 6697 do { 6698 preempt_disable(); 6699 __schedule(SM_RTLOCK_WAIT); 6700 sched_preempt_enable_no_resched(); 6701 } while (need_resched()); 6702 } 6703 NOKPROBE_SYMBOL(schedule_rtlock); 6704 #endif 6705 6706 static void __sched notrace preempt_schedule_common(void) 6707 { 6708 do { 6709 /* 6710 * Because the function tracer can trace preempt_count_sub() 6711 * and it also uses preempt_enable/disable_notrace(), if 6712 * NEED_RESCHED is set, the preempt_enable_notrace() called 6713 * by the function tracer will call this function again and 6714 * cause infinite recursion. 6715 * 6716 * Preemption must be disabled here before the function 6717 * tracer can trace. Break up preempt_disable() into two 6718 * calls. One to disable preemption without fear of being 6719 * traced. The other to still record the preemption latency, 6720 * which can also be traced by the function tracer. 6721 */ 6722 preempt_disable_notrace(); 6723 preempt_latency_start(1); 6724 __schedule(SM_PREEMPT); 6725 preempt_latency_stop(1); 6726 preempt_enable_no_resched_notrace(); 6727 6728 /* 6729 * Check again in case we missed a preemption opportunity 6730 * between schedule and now. 6731 */ 6732 } while (need_resched()); 6733 } 6734 6735 #ifdef CONFIG_PREEMPTION 6736 /* 6737 * This is the entry point to schedule() from in-kernel preemption 6738 * off of preempt_enable. 6739 */ 6740 asmlinkage __visible void __sched notrace preempt_schedule(void) 6741 { 6742 /* 6743 * If there is a non-zero preempt_count or interrupts are disabled, 6744 * we do not want to preempt the current task. Just return.. 6745 */ 6746 if (likely(!preemptible())) 6747 return; 6748 preempt_schedule_common(); 6749 } 6750 NOKPROBE_SYMBOL(preempt_schedule); 6751 EXPORT_SYMBOL(preempt_schedule); 6752 6753 #ifdef CONFIG_PREEMPT_DYNAMIC 6754 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6755 #ifndef preempt_schedule_dynamic_enabled 6756 #define preempt_schedule_dynamic_enabled preempt_schedule 6757 #define preempt_schedule_dynamic_disabled NULL 6758 #endif 6759 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6760 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6761 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6762 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6763 void __sched notrace dynamic_preempt_schedule(void) 6764 { 6765 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6766 return; 6767 preempt_schedule(); 6768 } 6769 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6770 EXPORT_SYMBOL(dynamic_preempt_schedule); 6771 #endif 6772 #endif 6773 6774 /** 6775 * preempt_schedule_notrace - preempt_schedule called by tracing 6776 * 6777 * The tracing infrastructure uses preempt_enable_notrace to prevent 6778 * recursion and tracing preempt enabling caused by the tracing 6779 * infrastructure itself. But as tracing can happen in areas coming 6780 * from userspace or just about to enter userspace, a preempt enable 6781 * can occur before user_exit() is called. This will cause the scheduler 6782 * to be called when the system is still in usermode. 6783 * 6784 * To prevent this, the preempt_enable_notrace will use this function 6785 * instead of preempt_schedule() to exit user context if needed before 6786 * calling the scheduler. 6787 */ 6788 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6789 { 6790 enum ctx_state prev_ctx; 6791 6792 if (likely(!preemptible())) 6793 return; 6794 6795 do { 6796 /* 6797 * Because the function tracer can trace preempt_count_sub() 6798 * and it also uses preempt_enable/disable_notrace(), if 6799 * NEED_RESCHED is set, the preempt_enable_notrace() called 6800 * by the function tracer will call this function again and 6801 * cause infinite recursion. 6802 * 6803 * Preemption must be disabled here before the function 6804 * tracer can trace. Break up preempt_disable() into two 6805 * calls. One to disable preemption without fear of being 6806 * traced. The other to still record the preemption latency, 6807 * which can also be traced by the function tracer. 6808 */ 6809 preempt_disable_notrace(); 6810 preempt_latency_start(1); 6811 /* 6812 * Needs preempt disabled in case user_exit() is traced 6813 * and the tracer calls preempt_enable_notrace() causing 6814 * an infinite recursion. 6815 */ 6816 prev_ctx = exception_enter(); 6817 __schedule(SM_PREEMPT); 6818 exception_exit(prev_ctx); 6819 6820 preempt_latency_stop(1); 6821 preempt_enable_no_resched_notrace(); 6822 } while (need_resched()); 6823 } 6824 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6825 6826 #ifdef CONFIG_PREEMPT_DYNAMIC 6827 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6828 #ifndef preempt_schedule_notrace_dynamic_enabled 6829 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6830 #define preempt_schedule_notrace_dynamic_disabled NULL 6831 #endif 6832 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6833 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6834 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6835 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6836 void __sched notrace dynamic_preempt_schedule_notrace(void) 6837 { 6838 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6839 return; 6840 preempt_schedule_notrace(); 6841 } 6842 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6843 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6844 #endif 6845 #endif 6846 6847 #endif /* CONFIG_PREEMPTION */ 6848 6849 /* 6850 * This is the entry point to schedule() from kernel preemption 6851 * off of irq context. 6852 * Note, that this is called and return with irqs disabled. This will 6853 * protect us against recursive calling from irq. 6854 */ 6855 asmlinkage __visible void __sched preempt_schedule_irq(void) 6856 { 6857 enum ctx_state prev_state; 6858 6859 /* Catch callers which need to be fixed */ 6860 BUG_ON(preempt_count() || !irqs_disabled()); 6861 6862 prev_state = exception_enter(); 6863 6864 do { 6865 preempt_disable(); 6866 local_irq_enable(); 6867 __schedule(SM_PREEMPT); 6868 local_irq_disable(); 6869 sched_preempt_enable_no_resched(); 6870 } while (need_resched()); 6871 6872 exception_exit(prev_state); 6873 } 6874 6875 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6876 void *key) 6877 { 6878 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6879 return try_to_wake_up(curr->private, mode, wake_flags); 6880 } 6881 EXPORT_SYMBOL(default_wake_function); 6882 6883 static void __setscheduler_prio(struct task_struct *p, int prio) 6884 { 6885 if (dl_prio(prio)) 6886 p->sched_class = &dl_sched_class; 6887 else if (rt_prio(prio)) 6888 p->sched_class = &rt_sched_class; 6889 else 6890 p->sched_class = &fair_sched_class; 6891 6892 p->prio = prio; 6893 } 6894 6895 #ifdef CONFIG_RT_MUTEXES 6896 6897 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6898 { 6899 if (pi_task) 6900 prio = min(prio, pi_task->prio); 6901 6902 return prio; 6903 } 6904 6905 static inline int rt_effective_prio(struct task_struct *p, int prio) 6906 { 6907 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6908 6909 return __rt_effective_prio(pi_task, prio); 6910 } 6911 6912 /* 6913 * rt_mutex_setprio - set the current priority of a task 6914 * @p: task to boost 6915 * @pi_task: donor task 6916 * 6917 * This function changes the 'effective' priority of a task. It does 6918 * not touch ->normal_prio like __setscheduler(). 6919 * 6920 * Used by the rt_mutex code to implement priority inheritance 6921 * logic. Call site only calls if the priority of the task changed. 6922 */ 6923 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6924 { 6925 int prio, oldprio, queued, running, queue_flag = 6926 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6927 const struct sched_class *prev_class; 6928 struct rq_flags rf; 6929 struct rq *rq; 6930 6931 /* XXX used to be waiter->prio, not waiter->task->prio */ 6932 prio = __rt_effective_prio(pi_task, p->normal_prio); 6933 6934 /* 6935 * If nothing changed; bail early. 6936 */ 6937 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6938 return; 6939 6940 rq = __task_rq_lock(p, &rf); 6941 update_rq_clock(rq); 6942 /* 6943 * Set under pi_lock && rq->lock, such that the value can be used under 6944 * either lock. 6945 * 6946 * Note that there is loads of tricky to make this pointer cache work 6947 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6948 * ensure a task is de-boosted (pi_task is set to NULL) before the 6949 * task is allowed to run again (and can exit). This ensures the pointer 6950 * points to a blocked task -- which guarantees the task is present. 6951 */ 6952 p->pi_top_task = pi_task; 6953 6954 /* 6955 * For FIFO/RR we only need to set prio, if that matches we're done. 6956 */ 6957 if (prio == p->prio && !dl_prio(prio)) 6958 goto out_unlock; 6959 6960 /* 6961 * Idle task boosting is a nono in general. There is one 6962 * exception, when PREEMPT_RT and NOHZ is active: 6963 * 6964 * The idle task calls get_next_timer_interrupt() and holds 6965 * the timer wheel base->lock on the CPU and another CPU wants 6966 * to access the timer (probably to cancel it). We can safely 6967 * ignore the boosting request, as the idle CPU runs this code 6968 * with interrupts disabled and will complete the lock 6969 * protected section without being interrupted. So there is no 6970 * real need to boost. 6971 */ 6972 if (unlikely(p == rq->idle)) { 6973 WARN_ON(p != rq->curr); 6974 WARN_ON(p->pi_blocked_on); 6975 goto out_unlock; 6976 } 6977 6978 trace_sched_pi_setprio(p, pi_task); 6979 oldprio = p->prio; 6980 6981 if (oldprio == prio) 6982 queue_flag &= ~DEQUEUE_MOVE; 6983 6984 prev_class = p->sched_class; 6985 queued = task_on_rq_queued(p); 6986 running = task_current(rq, p); 6987 if (queued) 6988 dequeue_task(rq, p, queue_flag); 6989 if (running) 6990 put_prev_task(rq, p); 6991 6992 /* 6993 * Boosting condition are: 6994 * 1. -rt task is running and holds mutex A 6995 * --> -dl task blocks on mutex A 6996 * 6997 * 2. -dl task is running and holds mutex A 6998 * --> -dl task blocks on mutex A and could preempt the 6999 * running task 7000 */ 7001 if (dl_prio(prio)) { 7002 if (!dl_prio(p->normal_prio) || 7003 (pi_task && dl_prio(pi_task->prio) && 7004 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7005 p->dl.pi_se = pi_task->dl.pi_se; 7006 queue_flag |= ENQUEUE_REPLENISH; 7007 } else { 7008 p->dl.pi_se = &p->dl; 7009 } 7010 } else if (rt_prio(prio)) { 7011 if (dl_prio(oldprio)) 7012 p->dl.pi_se = &p->dl; 7013 if (oldprio < prio) 7014 queue_flag |= ENQUEUE_HEAD; 7015 } else { 7016 if (dl_prio(oldprio)) 7017 p->dl.pi_se = &p->dl; 7018 if (rt_prio(oldprio)) 7019 p->rt.timeout = 0; 7020 } 7021 7022 __setscheduler_prio(p, prio); 7023 7024 if (queued) 7025 enqueue_task(rq, p, queue_flag); 7026 if (running) 7027 set_next_task(rq, p); 7028 7029 check_class_changed(rq, p, prev_class, oldprio); 7030 out_unlock: 7031 /* Avoid rq from going away on us: */ 7032 preempt_disable(); 7033 7034 rq_unpin_lock(rq, &rf); 7035 __balance_callbacks(rq); 7036 raw_spin_rq_unlock(rq); 7037 7038 preempt_enable(); 7039 } 7040 #else 7041 static inline int rt_effective_prio(struct task_struct *p, int prio) 7042 { 7043 return prio; 7044 } 7045 #endif 7046 7047 void set_user_nice(struct task_struct *p, long nice) 7048 { 7049 bool queued, running; 7050 int old_prio; 7051 struct rq_flags rf; 7052 struct rq *rq; 7053 7054 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 7055 return; 7056 /* 7057 * We have to be careful, if called from sys_setpriority(), 7058 * the task might be in the middle of scheduling on another CPU. 7059 */ 7060 rq = task_rq_lock(p, &rf); 7061 update_rq_clock(rq); 7062 7063 /* 7064 * The RT priorities are set via sched_setscheduler(), but we still 7065 * allow the 'normal' nice value to be set - but as expected 7066 * it won't have any effect on scheduling until the task is 7067 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7068 */ 7069 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7070 p->static_prio = NICE_TO_PRIO(nice); 7071 goto out_unlock; 7072 } 7073 queued = task_on_rq_queued(p); 7074 running = task_current(rq, p); 7075 if (queued) 7076 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7077 if (running) 7078 put_prev_task(rq, p); 7079 7080 p->static_prio = NICE_TO_PRIO(nice); 7081 set_load_weight(p, true); 7082 old_prio = p->prio; 7083 p->prio = effective_prio(p); 7084 7085 if (queued) 7086 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7087 if (running) 7088 set_next_task(rq, p); 7089 7090 /* 7091 * If the task increased its priority or is running and 7092 * lowered its priority, then reschedule its CPU: 7093 */ 7094 p->sched_class->prio_changed(rq, p, old_prio); 7095 7096 out_unlock: 7097 task_rq_unlock(rq, p, &rf); 7098 } 7099 EXPORT_SYMBOL(set_user_nice); 7100 7101 /* 7102 * is_nice_reduction - check if nice value is an actual reduction 7103 * 7104 * Similar to can_nice() but does not perform a capability check. 7105 * 7106 * @p: task 7107 * @nice: nice value 7108 */ 7109 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7110 { 7111 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7112 int nice_rlim = nice_to_rlimit(nice); 7113 7114 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7115 } 7116 7117 /* 7118 * can_nice - check if a task can reduce its nice value 7119 * @p: task 7120 * @nice: nice value 7121 */ 7122 int can_nice(const struct task_struct *p, const int nice) 7123 { 7124 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7125 } 7126 7127 #ifdef __ARCH_WANT_SYS_NICE 7128 7129 /* 7130 * sys_nice - change the priority of the current process. 7131 * @increment: priority increment 7132 * 7133 * sys_setpriority is a more generic, but much slower function that 7134 * does similar things. 7135 */ 7136 SYSCALL_DEFINE1(nice, int, increment) 7137 { 7138 long nice, retval; 7139 7140 /* 7141 * Setpriority might change our priority at the same moment. 7142 * We don't have to worry. Conceptually one call occurs first 7143 * and we have a single winner. 7144 */ 7145 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7146 nice = task_nice(current) + increment; 7147 7148 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7149 if (increment < 0 && !can_nice(current, nice)) 7150 return -EPERM; 7151 7152 retval = security_task_setnice(current, nice); 7153 if (retval) 7154 return retval; 7155 7156 set_user_nice(current, nice); 7157 return 0; 7158 } 7159 7160 #endif 7161 7162 /** 7163 * task_prio - return the priority value of a given task. 7164 * @p: the task in question. 7165 * 7166 * Return: The priority value as seen by users in /proc. 7167 * 7168 * sched policy return value kernel prio user prio/nice 7169 * 7170 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7171 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7172 * deadline -101 -1 0 7173 */ 7174 int task_prio(const struct task_struct *p) 7175 { 7176 return p->prio - MAX_RT_PRIO; 7177 } 7178 7179 /** 7180 * idle_cpu - is a given CPU idle currently? 7181 * @cpu: the processor in question. 7182 * 7183 * Return: 1 if the CPU is currently idle. 0 otherwise. 7184 */ 7185 int idle_cpu(int cpu) 7186 { 7187 struct rq *rq = cpu_rq(cpu); 7188 7189 if (rq->curr != rq->idle) 7190 return 0; 7191 7192 if (rq->nr_running) 7193 return 0; 7194 7195 #ifdef CONFIG_SMP 7196 if (rq->ttwu_pending) 7197 return 0; 7198 #endif 7199 7200 return 1; 7201 } 7202 7203 /** 7204 * available_idle_cpu - is a given CPU idle for enqueuing work. 7205 * @cpu: the CPU in question. 7206 * 7207 * Return: 1 if the CPU is currently idle. 0 otherwise. 7208 */ 7209 int available_idle_cpu(int cpu) 7210 { 7211 if (!idle_cpu(cpu)) 7212 return 0; 7213 7214 if (vcpu_is_preempted(cpu)) 7215 return 0; 7216 7217 return 1; 7218 } 7219 7220 /** 7221 * idle_task - return the idle task for a given CPU. 7222 * @cpu: the processor in question. 7223 * 7224 * Return: The idle task for the CPU @cpu. 7225 */ 7226 struct task_struct *idle_task(int cpu) 7227 { 7228 return cpu_rq(cpu)->idle; 7229 } 7230 7231 #ifdef CONFIG_SMP 7232 /* 7233 * This function computes an effective utilization for the given CPU, to be 7234 * used for frequency selection given the linear relation: f = u * f_max. 7235 * 7236 * The scheduler tracks the following metrics: 7237 * 7238 * cpu_util_{cfs,rt,dl,irq}() 7239 * cpu_bw_dl() 7240 * 7241 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7242 * synchronized windows and are thus directly comparable. 7243 * 7244 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7245 * which excludes things like IRQ and steal-time. These latter are then accrued 7246 * in the irq utilization. 7247 * 7248 * The DL bandwidth number otoh is not a measured metric but a value computed 7249 * based on the task model parameters and gives the minimal utilization 7250 * required to meet deadlines. 7251 */ 7252 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7253 enum cpu_util_type type, 7254 struct task_struct *p) 7255 { 7256 unsigned long dl_util, util, irq, max; 7257 struct rq *rq = cpu_rq(cpu); 7258 7259 max = arch_scale_cpu_capacity(cpu); 7260 7261 if (!uclamp_is_used() && 7262 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7263 return max; 7264 } 7265 7266 /* 7267 * Early check to see if IRQ/steal time saturates the CPU, can be 7268 * because of inaccuracies in how we track these -- see 7269 * update_irq_load_avg(). 7270 */ 7271 irq = cpu_util_irq(rq); 7272 if (unlikely(irq >= max)) 7273 return max; 7274 7275 /* 7276 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7277 * CFS tasks and we use the same metric to track the effective 7278 * utilization (PELT windows are synchronized) we can directly add them 7279 * to obtain the CPU's actual utilization. 7280 * 7281 * CFS and RT utilization can be boosted or capped, depending on 7282 * utilization clamp constraints requested by currently RUNNABLE 7283 * tasks. 7284 * When there are no CFS RUNNABLE tasks, clamps are released and 7285 * frequency will be gracefully reduced with the utilization decay. 7286 */ 7287 util = util_cfs + cpu_util_rt(rq); 7288 if (type == FREQUENCY_UTIL) 7289 util = uclamp_rq_util_with(rq, util, p); 7290 7291 dl_util = cpu_util_dl(rq); 7292 7293 /* 7294 * For frequency selection we do not make cpu_util_dl() a permanent part 7295 * of this sum because we want to use cpu_bw_dl() later on, but we need 7296 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7297 * that we select f_max when there is no idle time. 7298 * 7299 * NOTE: numerical errors or stop class might cause us to not quite hit 7300 * saturation when we should -- something for later. 7301 */ 7302 if (util + dl_util >= max) 7303 return max; 7304 7305 /* 7306 * OTOH, for energy computation we need the estimated running time, so 7307 * include util_dl and ignore dl_bw. 7308 */ 7309 if (type == ENERGY_UTIL) 7310 util += dl_util; 7311 7312 /* 7313 * There is still idle time; further improve the number by using the 7314 * irq metric. Because IRQ/steal time is hidden from the task clock we 7315 * need to scale the task numbers: 7316 * 7317 * max - irq 7318 * U' = irq + --------- * U 7319 * max 7320 */ 7321 util = scale_irq_capacity(util, irq, max); 7322 util += irq; 7323 7324 /* 7325 * Bandwidth required by DEADLINE must always be granted while, for 7326 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7327 * to gracefully reduce the frequency when no tasks show up for longer 7328 * periods of time. 7329 * 7330 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7331 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7332 * an interface. So, we only do the latter for now. 7333 */ 7334 if (type == FREQUENCY_UTIL) 7335 util += cpu_bw_dl(rq); 7336 7337 return min(max, util); 7338 } 7339 7340 unsigned long sched_cpu_util(int cpu) 7341 { 7342 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7343 } 7344 #endif /* CONFIG_SMP */ 7345 7346 /** 7347 * find_process_by_pid - find a process with a matching PID value. 7348 * @pid: the pid in question. 7349 * 7350 * The task of @pid, if found. %NULL otherwise. 7351 */ 7352 static struct task_struct *find_process_by_pid(pid_t pid) 7353 { 7354 return pid ? find_task_by_vpid(pid) : current; 7355 } 7356 7357 /* 7358 * sched_setparam() passes in -1 for its policy, to let the functions 7359 * it calls know not to change it. 7360 */ 7361 #define SETPARAM_POLICY -1 7362 7363 static void __setscheduler_params(struct task_struct *p, 7364 const struct sched_attr *attr) 7365 { 7366 int policy = attr->sched_policy; 7367 7368 if (policy == SETPARAM_POLICY) 7369 policy = p->policy; 7370 7371 p->policy = policy; 7372 7373 if (dl_policy(policy)) 7374 __setparam_dl(p, attr); 7375 else if (fair_policy(policy)) 7376 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7377 7378 /* 7379 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7380 * !rt_policy. Always setting this ensures that things like 7381 * getparam()/getattr() don't report silly values for !rt tasks. 7382 */ 7383 p->rt_priority = attr->sched_priority; 7384 p->normal_prio = normal_prio(p); 7385 set_load_weight(p, true); 7386 } 7387 7388 /* 7389 * Check the target process has a UID that matches the current process's: 7390 */ 7391 static bool check_same_owner(struct task_struct *p) 7392 { 7393 const struct cred *cred = current_cred(), *pcred; 7394 bool match; 7395 7396 rcu_read_lock(); 7397 pcred = __task_cred(p); 7398 match = (uid_eq(cred->euid, pcred->euid) || 7399 uid_eq(cred->euid, pcred->uid)); 7400 rcu_read_unlock(); 7401 return match; 7402 } 7403 7404 /* 7405 * Allow unprivileged RT tasks to decrease priority. 7406 * Only issue a capable test if needed and only once to avoid an audit 7407 * event on permitted non-privileged operations: 7408 */ 7409 static int user_check_sched_setscheduler(struct task_struct *p, 7410 const struct sched_attr *attr, 7411 int policy, int reset_on_fork) 7412 { 7413 if (fair_policy(policy)) { 7414 if (attr->sched_nice < task_nice(p) && 7415 !is_nice_reduction(p, attr->sched_nice)) 7416 goto req_priv; 7417 } 7418 7419 if (rt_policy(policy)) { 7420 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7421 7422 /* Can't set/change the rt policy: */ 7423 if (policy != p->policy && !rlim_rtprio) 7424 goto req_priv; 7425 7426 /* Can't increase priority: */ 7427 if (attr->sched_priority > p->rt_priority && 7428 attr->sched_priority > rlim_rtprio) 7429 goto req_priv; 7430 } 7431 7432 /* 7433 * Can't set/change SCHED_DEADLINE policy at all for now 7434 * (safest behavior); in the future we would like to allow 7435 * unprivileged DL tasks to increase their relative deadline 7436 * or reduce their runtime (both ways reducing utilization) 7437 */ 7438 if (dl_policy(policy)) 7439 goto req_priv; 7440 7441 /* 7442 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7443 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7444 */ 7445 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7446 if (!is_nice_reduction(p, task_nice(p))) 7447 goto req_priv; 7448 } 7449 7450 /* Can't change other user's priorities: */ 7451 if (!check_same_owner(p)) 7452 goto req_priv; 7453 7454 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7455 if (p->sched_reset_on_fork && !reset_on_fork) 7456 goto req_priv; 7457 7458 return 0; 7459 7460 req_priv: 7461 if (!capable(CAP_SYS_NICE)) 7462 return -EPERM; 7463 7464 return 0; 7465 } 7466 7467 static int __sched_setscheduler(struct task_struct *p, 7468 const struct sched_attr *attr, 7469 bool user, bool pi) 7470 { 7471 int oldpolicy = -1, policy = attr->sched_policy; 7472 int retval, oldprio, newprio, queued, running; 7473 const struct sched_class *prev_class; 7474 struct balance_callback *head; 7475 struct rq_flags rf; 7476 int reset_on_fork; 7477 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7478 struct rq *rq; 7479 7480 /* The pi code expects interrupts enabled */ 7481 BUG_ON(pi && in_interrupt()); 7482 recheck: 7483 /* Double check policy once rq lock held: */ 7484 if (policy < 0) { 7485 reset_on_fork = p->sched_reset_on_fork; 7486 policy = oldpolicy = p->policy; 7487 } else { 7488 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7489 7490 if (!valid_policy(policy)) 7491 return -EINVAL; 7492 } 7493 7494 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7495 return -EINVAL; 7496 7497 /* 7498 * Valid priorities for SCHED_FIFO and SCHED_RR are 7499 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7500 * SCHED_BATCH and SCHED_IDLE is 0. 7501 */ 7502 if (attr->sched_priority > MAX_RT_PRIO-1) 7503 return -EINVAL; 7504 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7505 (rt_policy(policy) != (attr->sched_priority != 0))) 7506 return -EINVAL; 7507 7508 if (user) { 7509 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7510 if (retval) 7511 return retval; 7512 7513 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7514 return -EINVAL; 7515 7516 retval = security_task_setscheduler(p); 7517 if (retval) 7518 return retval; 7519 } 7520 7521 /* Update task specific "requested" clamps */ 7522 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7523 retval = uclamp_validate(p, attr); 7524 if (retval) 7525 return retval; 7526 } 7527 7528 if (pi) 7529 cpuset_read_lock(); 7530 7531 /* 7532 * Make sure no PI-waiters arrive (or leave) while we are 7533 * changing the priority of the task: 7534 * 7535 * To be able to change p->policy safely, the appropriate 7536 * runqueue lock must be held. 7537 */ 7538 rq = task_rq_lock(p, &rf); 7539 update_rq_clock(rq); 7540 7541 /* 7542 * Changing the policy of the stop threads its a very bad idea: 7543 */ 7544 if (p == rq->stop) { 7545 retval = -EINVAL; 7546 goto unlock; 7547 } 7548 7549 /* 7550 * If not changing anything there's no need to proceed further, 7551 * but store a possible modification of reset_on_fork. 7552 */ 7553 if (unlikely(policy == p->policy)) { 7554 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7555 goto change; 7556 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7557 goto change; 7558 if (dl_policy(policy) && dl_param_changed(p, attr)) 7559 goto change; 7560 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7561 goto change; 7562 7563 p->sched_reset_on_fork = reset_on_fork; 7564 retval = 0; 7565 goto unlock; 7566 } 7567 change: 7568 7569 if (user) { 7570 #ifdef CONFIG_RT_GROUP_SCHED 7571 /* 7572 * Do not allow realtime tasks into groups that have no runtime 7573 * assigned. 7574 */ 7575 if (rt_bandwidth_enabled() && rt_policy(policy) && 7576 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7577 !task_group_is_autogroup(task_group(p))) { 7578 retval = -EPERM; 7579 goto unlock; 7580 } 7581 #endif 7582 #ifdef CONFIG_SMP 7583 if (dl_bandwidth_enabled() && dl_policy(policy) && 7584 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7585 cpumask_t *span = rq->rd->span; 7586 7587 /* 7588 * Don't allow tasks with an affinity mask smaller than 7589 * the entire root_domain to become SCHED_DEADLINE. We 7590 * will also fail if there's no bandwidth available. 7591 */ 7592 if (!cpumask_subset(span, p->cpus_ptr) || 7593 rq->rd->dl_bw.bw == 0) { 7594 retval = -EPERM; 7595 goto unlock; 7596 } 7597 } 7598 #endif 7599 } 7600 7601 /* Re-check policy now with rq lock held: */ 7602 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7603 policy = oldpolicy = -1; 7604 task_rq_unlock(rq, p, &rf); 7605 if (pi) 7606 cpuset_read_unlock(); 7607 goto recheck; 7608 } 7609 7610 /* 7611 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7612 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7613 * is available. 7614 */ 7615 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7616 retval = -EBUSY; 7617 goto unlock; 7618 } 7619 7620 p->sched_reset_on_fork = reset_on_fork; 7621 oldprio = p->prio; 7622 7623 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7624 if (pi) { 7625 /* 7626 * Take priority boosted tasks into account. If the new 7627 * effective priority is unchanged, we just store the new 7628 * normal parameters and do not touch the scheduler class and 7629 * the runqueue. This will be done when the task deboost 7630 * itself. 7631 */ 7632 newprio = rt_effective_prio(p, newprio); 7633 if (newprio == oldprio) 7634 queue_flags &= ~DEQUEUE_MOVE; 7635 } 7636 7637 queued = task_on_rq_queued(p); 7638 running = task_current(rq, p); 7639 if (queued) 7640 dequeue_task(rq, p, queue_flags); 7641 if (running) 7642 put_prev_task(rq, p); 7643 7644 prev_class = p->sched_class; 7645 7646 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7647 __setscheduler_params(p, attr); 7648 __setscheduler_prio(p, newprio); 7649 } 7650 __setscheduler_uclamp(p, attr); 7651 7652 if (queued) { 7653 /* 7654 * We enqueue to tail when the priority of a task is 7655 * increased (user space view). 7656 */ 7657 if (oldprio < p->prio) 7658 queue_flags |= ENQUEUE_HEAD; 7659 7660 enqueue_task(rq, p, queue_flags); 7661 } 7662 if (running) 7663 set_next_task(rq, p); 7664 7665 check_class_changed(rq, p, prev_class, oldprio); 7666 7667 /* Avoid rq from going away on us: */ 7668 preempt_disable(); 7669 head = splice_balance_callbacks(rq); 7670 task_rq_unlock(rq, p, &rf); 7671 7672 if (pi) { 7673 cpuset_read_unlock(); 7674 rt_mutex_adjust_pi(p); 7675 } 7676 7677 /* Run balance callbacks after we've adjusted the PI chain: */ 7678 balance_callbacks(rq, head); 7679 preempt_enable(); 7680 7681 return 0; 7682 7683 unlock: 7684 task_rq_unlock(rq, p, &rf); 7685 if (pi) 7686 cpuset_read_unlock(); 7687 return retval; 7688 } 7689 7690 static int _sched_setscheduler(struct task_struct *p, int policy, 7691 const struct sched_param *param, bool check) 7692 { 7693 struct sched_attr attr = { 7694 .sched_policy = policy, 7695 .sched_priority = param->sched_priority, 7696 .sched_nice = PRIO_TO_NICE(p->static_prio), 7697 }; 7698 7699 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7700 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7701 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7702 policy &= ~SCHED_RESET_ON_FORK; 7703 attr.sched_policy = policy; 7704 } 7705 7706 return __sched_setscheduler(p, &attr, check, true); 7707 } 7708 /** 7709 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7710 * @p: the task in question. 7711 * @policy: new policy. 7712 * @param: structure containing the new RT priority. 7713 * 7714 * Use sched_set_fifo(), read its comment. 7715 * 7716 * Return: 0 on success. An error code otherwise. 7717 * 7718 * NOTE that the task may be already dead. 7719 */ 7720 int sched_setscheduler(struct task_struct *p, int policy, 7721 const struct sched_param *param) 7722 { 7723 return _sched_setscheduler(p, policy, param, true); 7724 } 7725 7726 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7727 { 7728 return __sched_setscheduler(p, attr, true, true); 7729 } 7730 7731 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7732 { 7733 return __sched_setscheduler(p, attr, false, true); 7734 } 7735 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7736 7737 /** 7738 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7739 * @p: the task in question. 7740 * @policy: new policy. 7741 * @param: structure containing the new RT priority. 7742 * 7743 * Just like sched_setscheduler, only don't bother checking if the 7744 * current context has permission. For example, this is needed in 7745 * stop_machine(): we create temporary high priority worker threads, 7746 * but our caller might not have that capability. 7747 * 7748 * Return: 0 on success. An error code otherwise. 7749 */ 7750 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7751 const struct sched_param *param) 7752 { 7753 return _sched_setscheduler(p, policy, param, false); 7754 } 7755 7756 /* 7757 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7758 * incapable of resource management, which is the one thing an OS really should 7759 * be doing. 7760 * 7761 * This is of course the reason it is limited to privileged users only. 7762 * 7763 * Worse still; it is fundamentally impossible to compose static priority 7764 * workloads. You cannot take two correctly working static prio workloads 7765 * and smash them together and still expect them to work. 7766 * 7767 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7768 * 7769 * MAX_RT_PRIO / 2 7770 * 7771 * The administrator _MUST_ configure the system, the kernel simply doesn't 7772 * know enough information to make a sensible choice. 7773 */ 7774 void sched_set_fifo(struct task_struct *p) 7775 { 7776 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7777 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7778 } 7779 EXPORT_SYMBOL_GPL(sched_set_fifo); 7780 7781 /* 7782 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7783 */ 7784 void sched_set_fifo_low(struct task_struct *p) 7785 { 7786 struct sched_param sp = { .sched_priority = 1 }; 7787 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7788 } 7789 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7790 7791 void sched_set_normal(struct task_struct *p, int nice) 7792 { 7793 struct sched_attr attr = { 7794 .sched_policy = SCHED_NORMAL, 7795 .sched_nice = nice, 7796 }; 7797 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7798 } 7799 EXPORT_SYMBOL_GPL(sched_set_normal); 7800 7801 static int 7802 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7803 { 7804 struct sched_param lparam; 7805 struct task_struct *p; 7806 int retval; 7807 7808 if (!param || pid < 0) 7809 return -EINVAL; 7810 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7811 return -EFAULT; 7812 7813 rcu_read_lock(); 7814 retval = -ESRCH; 7815 p = find_process_by_pid(pid); 7816 if (likely(p)) 7817 get_task_struct(p); 7818 rcu_read_unlock(); 7819 7820 if (likely(p)) { 7821 retval = sched_setscheduler(p, policy, &lparam); 7822 put_task_struct(p); 7823 } 7824 7825 return retval; 7826 } 7827 7828 /* 7829 * Mimics kernel/events/core.c perf_copy_attr(). 7830 */ 7831 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7832 { 7833 u32 size; 7834 int ret; 7835 7836 /* Zero the full structure, so that a short copy will be nice: */ 7837 memset(attr, 0, sizeof(*attr)); 7838 7839 ret = get_user(size, &uattr->size); 7840 if (ret) 7841 return ret; 7842 7843 /* ABI compatibility quirk: */ 7844 if (!size) 7845 size = SCHED_ATTR_SIZE_VER0; 7846 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7847 goto err_size; 7848 7849 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7850 if (ret) { 7851 if (ret == -E2BIG) 7852 goto err_size; 7853 return ret; 7854 } 7855 7856 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7857 size < SCHED_ATTR_SIZE_VER1) 7858 return -EINVAL; 7859 7860 /* 7861 * XXX: Do we want to be lenient like existing syscalls; or do we want 7862 * to be strict and return an error on out-of-bounds values? 7863 */ 7864 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7865 7866 return 0; 7867 7868 err_size: 7869 put_user(sizeof(*attr), &uattr->size); 7870 return -E2BIG; 7871 } 7872 7873 static void get_params(struct task_struct *p, struct sched_attr *attr) 7874 { 7875 if (task_has_dl_policy(p)) 7876 __getparam_dl(p, attr); 7877 else if (task_has_rt_policy(p)) 7878 attr->sched_priority = p->rt_priority; 7879 else 7880 attr->sched_nice = task_nice(p); 7881 } 7882 7883 /** 7884 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7885 * @pid: the pid in question. 7886 * @policy: new policy. 7887 * @param: structure containing the new RT priority. 7888 * 7889 * Return: 0 on success. An error code otherwise. 7890 */ 7891 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7892 { 7893 if (policy < 0) 7894 return -EINVAL; 7895 7896 return do_sched_setscheduler(pid, policy, param); 7897 } 7898 7899 /** 7900 * sys_sched_setparam - set/change the RT priority of a thread 7901 * @pid: the pid in question. 7902 * @param: structure containing the new RT priority. 7903 * 7904 * Return: 0 on success. An error code otherwise. 7905 */ 7906 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7907 { 7908 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7909 } 7910 7911 /** 7912 * sys_sched_setattr - same as above, but with extended sched_attr 7913 * @pid: the pid in question. 7914 * @uattr: structure containing the extended parameters. 7915 * @flags: for future extension. 7916 */ 7917 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7918 unsigned int, flags) 7919 { 7920 struct sched_attr attr; 7921 struct task_struct *p; 7922 int retval; 7923 7924 if (!uattr || pid < 0 || flags) 7925 return -EINVAL; 7926 7927 retval = sched_copy_attr(uattr, &attr); 7928 if (retval) 7929 return retval; 7930 7931 if ((int)attr.sched_policy < 0) 7932 return -EINVAL; 7933 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7934 attr.sched_policy = SETPARAM_POLICY; 7935 7936 rcu_read_lock(); 7937 retval = -ESRCH; 7938 p = find_process_by_pid(pid); 7939 if (likely(p)) 7940 get_task_struct(p); 7941 rcu_read_unlock(); 7942 7943 if (likely(p)) { 7944 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7945 get_params(p, &attr); 7946 retval = sched_setattr(p, &attr); 7947 put_task_struct(p); 7948 } 7949 7950 return retval; 7951 } 7952 7953 /** 7954 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7955 * @pid: the pid in question. 7956 * 7957 * Return: On success, the policy of the thread. Otherwise, a negative error 7958 * code. 7959 */ 7960 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7961 { 7962 struct task_struct *p; 7963 int retval; 7964 7965 if (pid < 0) 7966 return -EINVAL; 7967 7968 retval = -ESRCH; 7969 rcu_read_lock(); 7970 p = find_process_by_pid(pid); 7971 if (p) { 7972 retval = security_task_getscheduler(p); 7973 if (!retval) 7974 retval = p->policy 7975 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7976 } 7977 rcu_read_unlock(); 7978 return retval; 7979 } 7980 7981 /** 7982 * sys_sched_getparam - get the RT priority of a thread 7983 * @pid: the pid in question. 7984 * @param: structure containing the RT priority. 7985 * 7986 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7987 * code. 7988 */ 7989 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7990 { 7991 struct sched_param lp = { .sched_priority = 0 }; 7992 struct task_struct *p; 7993 int retval; 7994 7995 if (!param || pid < 0) 7996 return -EINVAL; 7997 7998 rcu_read_lock(); 7999 p = find_process_by_pid(pid); 8000 retval = -ESRCH; 8001 if (!p) 8002 goto out_unlock; 8003 8004 retval = security_task_getscheduler(p); 8005 if (retval) 8006 goto out_unlock; 8007 8008 if (task_has_rt_policy(p)) 8009 lp.sched_priority = p->rt_priority; 8010 rcu_read_unlock(); 8011 8012 /* 8013 * This one might sleep, we cannot do it with a spinlock held ... 8014 */ 8015 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 8016 8017 return retval; 8018 8019 out_unlock: 8020 rcu_read_unlock(); 8021 return retval; 8022 } 8023 8024 /* 8025 * Copy the kernel size attribute structure (which might be larger 8026 * than what user-space knows about) to user-space. 8027 * 8028 * Note that all cases are valid: user-space buffer can be larger or 8029 * smaller than the kernel-space buffer. The usual case is that both 8030 * have the same size. 8031 */ 8032 static int 8033 sched_attr_copy_to_user(struct sched_attr __user *uattr, 8034 struct sched_attr *kattr, 8035 unsigned int usize) 8036 { 8037 unsigned int ksize = sizeof(*kattr); 8038 8039 if (!access_ok(uattr, usize)) 8040 return -EFAULT; 8041 8042 /* 8043 * sched_getattr() ABI forwards and backwards compatibility: 8044 * 8045 * If usize == ksize then we just copy everything to user-space and all is good. 8046 * 8047 * If usize < ksize then we only copy as much as user-space has space for, 8048 * this keeps ABI compatibility as well. We skip the rest. 8049 * 8050 * If usize > ksize then user-space is using a newer version of the ABI, 8051 * which part the kernel doesn't know about. Just ignore it - tooling can 8052 * detect the kernel's knowledge of attributes from the attr->size value 8053 * which is set to ksize in this case. 8054 */ 8055 kattr->size = min(usize, ksize); 8056 8057 if (copy_to_user(uattr, kattr, kattr->size)) 8058 return -EFAULT; 8059 8060 return 0; 8061 } 8062 8063 /** 8064 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8065 * @pid: the pid in question. 8066 * @uattr: structure containing the extended parameters. 8067 * @usize: sizeof(attr) for fwd/bwd comp. 8068 * @flags: for future extension. 8069 */ 8070 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8071 unsigned int, usize, unsigned int, flags) 8072 { 8073 struct sched_attr kattr = { }; 8074 struct task_struct *p; 8075 int retval; 8076 8077 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8078 usize < SCHED_ATTR_SIZE_VER0 || flags) 8079 return -EINVAL; 8080 8081 rcu_read_lock(); 8082 p = find_process_by_pid(pid); 8083 retval = -ESRCH; 8084 if (!p) 8085 goto out_unlock; 8086 8087 retval = security_task_getscheduler(p); 8088 if (retval) 8089 goto out_unlock; 8090 8091 kattr.sched_policy = p->policy; 8092 if (p->sched_reset_on_fork) 8093 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8094 get_params(p, &kattr); 8095 kattr.sched_flags &= SCHED_FLAG_ALL; 8096 8097 #ifdef CONFIG_UCLAMP_TASK 8098 /* 8099 * This could race with another potential updater, but this is fine 8100 * because it'll correctly read the old or the new value. We don't need 8101 * to guarantee who wins the race as long as it doesn't return garbage. 8102 */ 8103 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8104 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8105 #endif 8106 8107 rcu_read_unlock(); 8108 8109 return sched_attr_copy_to_user(uattr, &kattr, usize); 8110 8111 out_unlock: 8112 rcu_read_unlock(); 8113 return retval; 8114 } 8115 8116 #ifdef CONFIG_SMP 8117 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8118 { 8119 int ret = 0; 8120 8121 /* 8122 * If the task isn't a deadline task or admission control is 8123 * disabled then we don't care about affinity changes. 8124 */ 8125 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8126 return 0; 8127 8128 /* 8129 * Since bandwidth control happens on root_domain basis, 8130 * if admission test is enabled, we only admit -deadline 8131 * tasks allowed to run on all the CPUs in the task's 8132 * root_domain. 8133 */ 8134 rcu_read_lock(); 8135 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8136 ret = -EBUSY; 8137 rcu_read_unlock(); 8138 return ret; 8139 } 8140 #endif 8141 8142 static int 8143 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 8144 { 8145 int retval; 8146 cpumask_var_t cpus_allowed, new_mask; 8147 8148 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8149 return -ENOMEM; 8150 8151 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8152 retval = -ENOMEM; 8153 goto out_free_cpus_allowed; 8154 } 8155 8156 cpuset_cpus_allowed(p, cpus_allowed); 8157 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 8158 8159 ctx->new_mask = new_mask; 8160 ctx->flags |= SCA_CHECK; 8161 8162 retval = dl_task_check_affinity(p, new_mask); 8163 if (retval) 8164 goto out_free_new_mask; 8165 8166 retval = __set_cpus_allowed_ptr(p, ctx); 8167 if (retval) 8168 goto out_free_new_mask; 8169 8170 cpuset_cpus_allowed(p, cpus_allowed); 8171 if (!cpumask_subset(new_mask, cpus_allowed)) { 8172 /* 8173 * We must have raced with a concurrent cpuset update. 8174 * Just reset the cpumask to the cpuset's cpus_allowed. 8175 */ 8176 cpumask_copy(new_mask, cpus_allowed); 8177 8178 /* 8179 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 8180 * will restore the previous user_cpus_ptr value. 8181 * 8182 * In the unlikely event a previous user_cpus_ptr exists, 8183 * we need to further restrict the mask to what is allowed 8184 * by that old user_cpus_ptr. 8185 */ 8186 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 8187 bool empty = !cpumask_and(new_mask, new_mask, 8188 ctx->user_mask); 8189 8190 if (WARN_ON_ONCE(empty)) 8191 cpumask_copy(new_mask, cpus_allowed); 8192 } 8193 __set_cpus_allowed_ptr(p, ctx); 8194 retval = -EINVAL; 8195 } 8196 8197 out_free_new_mask: 8198 free_cpumask_var(new_mask); 8199 out_free_cpus_allowed: 8200 free_cpumask_var(cpus_allowed); 8201 return retval; 8202 } 8203 8204 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8205 { 8206 struct affinity_context ac; 8207 struct cpumask *user_mask; 8208 struct task_struct *p; 8209 int retval; 8210 8211 rcu_read_lock(); 8212 8213 p = find_process_by_pid(pid); 8214 if (!p) { 8215 rcu_read_unlock(); 8216 return -ESRCH; 8217 } 8218 8219 /* Prevent p going away */ 8220 get_task_struct(p); 8221 rcu_read_unlock(); 8222 8223 if (p->flags & PF_NO_SETAFFINITY) { 8224 retval = -EINVAL; 8225 goto out_put_task; 8226 } 8227 8228 if (!check_same_owner(p)) { 8229 rcu_read_lock(); 8230 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8231 rcu_read_unlock(); 8232 retval = -EPERM; 8233 goto out_put_task; 8234 } 8235 rcu_read_unlock(); 8236 } 8237 8238 retval = security_task_setscheduler(p); 8239 if (retval) 8240 goto out_put_task; 8241 8242 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 8243 if (!user_mask) { 8244 retval = -ENOMEM; 8245 goto out_put_task; 8246 } 8247 cpumask_copy(user_mask, in_mask); 8248 ac = (struct affinity_context){ 8249 .new_mask = in_mask, 8250 .user_mask = user_mask, 8251 .flags = SCA_USER, 8252 }; 8253 8254 retval = __sched_setaffinity(p, &ac); 8255 kfree(ac.user_mask); 8256 8257 out_put_task: 8258 put_task_struct(p); 8259 return retval; 8260 } 8261 8262 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8263 struct cpumask *new_mask) 8264 { 8265 if (len < cpumask_size()) 8266 cpumask_clear(new_mask); 8267 else if (len > cpumask_size()) 8268 len = cpumask_size(); 8269 8270 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8271 } 8272 8273 /** 8274 * sys_sched_setaffinity - set the CPU affinity of a process 8275 * @pid: pid of the process 8276 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8277 * @user_mask_ptr: user-space pointer to the new CPU mask 8278 * 8279 * Return: 0 on success. An error code otherwise. 8280 */ 8281 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8282 unsigned long __user *, user_mask_ptr) 8283 { 8284 cpumask_var_t new_mask; 8285 int retval; 8286 8287 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8288 return -ENOMEM; 8289 8290 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8291 if (retval == 0) 8292 retval = sched_setaffinity(pid, new_mask); 8293 free_cpumask_var(new_mask); 8294 return retval; 8295 } 8296 8297 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8298 { 8299 struct task_struct *p; 8300 unsigned long flags; 8301 int retval; 8302 8303 rcu_read_lock(); 8304 8305 retval = -ESRCH; 8306 p = find_process_by_pid(pid); 8307 if (!p) 8308 goto out_unlock; 8309 8310 retval = security_task_getscheduler(p); 8311 if (retval) 8312 goto out_unlock; 8313 8314 raw_spin_lock_irqsave(&p->pi_lock, flags); 8315 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8316 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8317 8318 out_unlock: 8319 rcu_read_unlock(); 8320 8321 return retval; 8322 } 8323 8324 /** 8325 * sys_sched_getaffinity - get the CPU affinity of a process 8326 * @pid: pid of the process 8327 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8328 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8329 * 8330 * Return: size of CPU mask copied to user_mask_ptr on success. An 8331 * error code otherwise. 8332 */ 8333 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8334 unsigned long __user *, user_mask_ptr) 8335 { 8336 int ret; 8337 cpumask_var_t mask; 8338 8339 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8340 return -EINVAL; 8341 if (len & (sizeof(unsigned long)-1)) 8342 return -EINVAL; 8343 8344 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8345 return -ENOMEM; 8346 8347 ret = sched_getaffinity(pid, mask); 8348 if (ret == 0) { 8349 unsigned int retlen = min(len, cpumask_size()); 8350 8351 if (copy_to_user(user_mask_ptr, mask, retlen)) 8352 ret = -EFAULT; 8353 else 8354 ret = retlen; 8355 } 8356 free_cpumask_var(mask); 8357 8358 return ret; 8359 } 8360 8361 static void do_sched_yield(void) 8362 { 8363 struct rq_flags rf; 8364 struct rq *rq; 8365 8366 rq = this_rq_lock_irq(&rf); 8367 8368 schedstat_inc(rq->yld_count); 8369 current->sched_class->yield_task(rq); 8370 8371 preempt_disable(); 8372 rq_unlock_irq(rq, &rf); 8373 sched_preempt_enable_no_resched(); 8374 8375 schedule(); 8376 } 8377 8378 /** 8379 * sys_sched_yield - yield the current processor to other threads. 8380 * 8381 * This function yields the current CPU to other tasks. If there are no 8382 * other threads running on this CPU then this function will return. 8383 * 8384 * Return: 0. 8385 */ 8386 SYSCALL_DEFINE0(sched_yield) 8387 { 8388 do_sched_yield(); 8389 return 0; 8390 } 8391 8392 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8393 int __sched __cond_resched(void) 8394 { 8395 if (should_resched(0)) { 8396 preempt_schedule_common(); 8397 return 1; 8398 } 8399 /* 8400 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8401 * whether the current CPU is in an RCU read-side critical section, 8402 * so the tick can report quiescent states even for CPUs looping 8403 * in kernel context. In contrast, in non-preemptible kernels, 8404 * RCU readers leave no in-memory hints, which means that CPU-bound 8405 * processes executing in kernel context might never report an 8406 * RCU quiescent state. Therefore, the following code causes 8407 * cond_resched() to report a quiescent state, but only when RCU 8408 * is in urgent need of one. 8409 */ 8410 #ifndef CONFIG_PREEMPT_RCU 8411 rcu_all_qs(); 8412 #endif 8413 return 0; 8414 } 8415 EXPORT_SYMBOL(__cond_resched); 8416 #endif 8417 8418 #ifdef CONFIG_PREEMPT_DYNAMIC 8419 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8420 #define cond_resched_dynamic_enabled __cond_resched 8421 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8422 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8423 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8424 8425 #define might_resched_dynamic_enabled __cond_resched 8426 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8427 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8428 EXPORT_STATIC_CALL_TRAMP(might_resched); 8429 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8430 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8431 int __sched dynamic_cond_resched(void) 8432 { 8433 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8434 return 0; 8435 return __cond_resched(); 8436 } 8437 EXPORT_SYMBOL(dynamic_cond_resched); 8438 8439 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8440 int __sched dynamic_might_resched(void) 8441 { 8442 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8443 return 0; 8444 return __cond_resched(); 8445 } 8446 EXPORT_SYMBOL(dynamic_might_resched); 8447 #endif 8448 #endif 8449 8450 /* 8451 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8452 * call schedule, and on return reacquire the lock. 8453 * 8454 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8455 * operations here to prevent schedule() from being called twice (once via 8456 * spin_unlock(), once by hand). 8457 */ 8458 int __cond_resched_lock(spinlock_t *lock) 8459 { 8460 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8461 int ret = 0; 8462 8463 lockdep_assert_held(lock); 8464 8465 if (spin_needbreak(lock) || resched) { 8466 spin_unlock(lock); 8467 if (!_cond_resched()) 8468 cpu_relax(); 8469 ret = 1; 8470 spin_lock(lock); 8471 } 8472 return ret; 8473 } 8474 EXPORT_SYMBOL(__cond_resched_lock); 8475 8476 int __cond_resched_rwlock_read(rwlock_t *lock) 8477 { 8478 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8479 int ret = 0; 8480 8481 lockdep_assert_held_read(lock); 8482 8483 if (rwlock_needbreak(lock) || resched) { 8484 read_unlock(lock); 8485 if (!_cond_resched()) 8486 cpu_relax(); 8487 ret = 1; 8488 read_lock(lock); 8489 } 8490 return ret; 8491 } 8492 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8493 8494 int __cond_resched_rwlock_write(rwlock_t *lock) 8495 { 8496 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8497 int ret = 0; 8498 8499 lockdep_assert_held_write(lock); 8500 8501 if (rwlock_needbreak(lock) || resched) { 8502 write_unlock(lock); 8503 if (!_cond_resched()) 8504 cpu_relax(); 8505 ret = 1; 8506 write_lock(lock); 8507 } 8508 return ret; 8509 } 8510 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8511 8512 #ifdef CONFIG_PREEMPT_DYNAMIC 8513 8514 #ifdef CONFIG_GENERIC_ENTRY 8515 #include <linux/entry-common.h> 8516 #endif 8517 8518 /* 8519 * SC:cond_resched 8520 * SC:might_resched 8521 * SC:preempt_schedule 8522 * SC:preempt_schedule_notrace 8523 * SC:irqentry_exit_cond_resched 8524 * 8525 * 8526 * NONE: 8527 * cond_resched <- __cond_resched 8528 * might_resched <- RET0 8529 * preempt_schedule <- NOP 8530 * preempt_schedule_notrace <- NOP 8531 * irqentry_exit_cond_resched <- NOP 8532 * 8533 * VOLUNTARY: 8534 * cond_resched <- __cond_resched 8535 * might_resched <- __cond_resched 8536 * preempt_schedule <- NOP 8537 * preempt_schedule_notrace <- NOP 8538 * irqentry_exit_cond_resched <- NOP 8539 * 8540 * FULL: 8541 * cond_resched <- RET0 8542 * might_resched <- RET0 8543 * preempt_schedule <- preempt_schedule 8544 * preempt_schedule_notrace <- preempt_schedule_notrace 8545 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8546 */ 8547 8548 enum { 8549 preempt_dynamic_undefined = -1, 8550 preempt_dynamic_none, 8551 preempt_dynamic_voluntary, 8552 preempt_dynamic_full, 8553 }; 8554 8555 int preempt_dynamic_mode = preempt_dynamic_undefined; 8556 8557 int sched_dynamic_mode(const char *str) 8558 { 8559 if (!strcmp(str, "none")) 8560 return preempt_dynamic_none; 8561 8562 if (!strcmp(str, "voluntary")) 8563 return preempt_dynamic_voluntary; 8564 8565 if (!strcmp(str, "full")) 8566 return preempt_dynamic_full; 8567 8568 return -EINVAL; 8569 } 8570 8571 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8572 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8573 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8574 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8575 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8576 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8577 #else 8578 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8579 #endif 8580 8581 void sched_dynamic_update(int mode) 8582 { 8583 /* 8584 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8585 * the ZERO state, which is invalid. 8586 */ 8587 preempt_dynamic_enable(cond_resched); 8588 preempt_dynamic_enable(might_resched); 8589 preempt_dynamic_enable(preempt_schedule); 8590 preempt_dynamic_enable(preempt_schedule_notrace); 8591 preempt_dynamic_enable(irqentry_exit_cond_resched); 8592 8593 switch (mode) { 8594 case preempt_dynamic_none: 8595 preempt_dynamic_enable(cond_resched); 8596 preempt_dynamic_disable(might_resched); 8597 preempt_dynamic_disable(preempt_schedule); 8598 preempt_dynamic_disable(preempt_schedule_notrace); 8599 preempt_dynamic_disable(irqentry_exit_cond_resched); 8600 pr_info("Dynamic Preempt: none\n"); 8601 break; 8602 8603 case preempt_dynamic_voluntary: 8604 preempt_dynamic_enable(cond_resched); 8605 preempt_dynamic_enable(might_resched); 8606 preempt_dynamic_disable(preempt_schedule); 8607 preempt_dynamic_disable(preempt_schedule_notrace); 8608 preempt_dynamic_disable(irqentry_exit_cond_resched); 8609 pr_info("Dynamic Preempt: voluntary\n"); 8610 break; 8611 8612 case preempt_dynamic_full: 8613 preempt_dynamic_disable(cond_resched); 8614 preempt_dynamic_disable(might_resched); 8615 preempt_dynamic_enable(preempt_schedule); 8616 preempt_dynamic_enable(preempt_schedule_notrace); 8617 preempt_dynamic_enable(irqentry_exit_cond_resched); 8618 pr_info("Dynamic Preempt: full\n"); 8619 break; 8620 } 8621 8622 preempt_dynamic_mode = mode; 8623 } 8624 8625 static int __init setup_preempt_mode(char *str) 8626 { 8627 int mode = sched_dynamic_mode(str); 8628 if (mode < 0) { 8629 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8630 return 0; 8631 } 8632 8633 sched_dynamic_update(mode); 8634 return 1; 8635 } 8636 __setup("preempt=", setup_preempt_mode); 8637 8638 static void __init preempt_dynamic_init(void) 8639 { 8640 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8641 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8642 sched_dynamic_update(preempt_dynamic_none); 8643 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8644 sched_dynamic_update(preempt_dynamic_voluntary); 8645 } else { 8646 /* Default static call setting, nothing to do */ 8647 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8648 preempt_dynamic_mode = preempt_dynamic_full; 8649 pr_info("Dynamic Preempt: full\n"); 8650 } 8651 } 8652 } 8653 8654 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8655 bool preempt_model_##mode(void) \ 8656 { \ 8657 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8658 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8659 } \ 8660 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8661 8662 PREEMPT_MODEL_ACCESSOR(none); 8663 PREEMPT_MODEL_ACCESSOR(voluntary); 8664 PREEMPT_MODEL_ACCESSOR(full); 8665 8666 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8667 8668 static inline void preempt_dynamic_init(void) { } 8669 8670 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8671 8672 /** 8673 * yield - yield the current processor to other threads. 8674 * 8675 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8676 * 8677 * The scheduler is at all times free to pick the calling task as the most 8678 * eligible task to run, if removing the yield() call from your code breaks 8679 * it, it's already broken. 8680 * 8681 * Typical broken usage is: 8682 * 8683 * while (!event) 8684 * yield(); 8685 * 8686 * where one assumes that yield() will let 'the other' process run that will 8687 * make event true. If the current task is a SCHED_FIFO task that will never 8688 * happen. Never use yield() as a progress guarantee!! 8689 * 8690 * If you want to use yield() to wait for something, use wait_event(). 8691 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8692 * If you still want to use yield(), do not! 8693 */ 8694 void __sched yield(void) 8695 { 8696 set_current_state(TASK_RUNNING); 8697 do_sched_yield(); 8698 } 8699 EXPORT_SYMBOL(yield); 8700 8701 /** 8702 * yield_to - yield the current processor to another thread in 8703 * your thread group, or accelerate that thread toward the 8704 * processor it's on. 8705 * @p: target task 8706 * @preempt: whether task preemption is allowed or not 8707 * 8708 * It's the caller's job to ensure that the target task struct 8709 * can't go away on us before we can do any checks. 8710 * 8711 * Return: 8712 * true (>0) if we indeed boosted the target task. 8713 * false (0) if we failed to boost the target. 8714 * -ESRCH if there's no task to yield to. 8715 */ 8716 int __sched yield_to(struct task_struct *p, bool preempt) 8717 { 8718 struct task_struct *curr = current; 8719 struct rq *rq, *p_rq; 8720 unsigned long flags; 8721 int yielded = 0; 8722 8723 local_irq_save(flags); 8724 rq = this_rq(); 8725 8726 again: 8727 p_rq = task_rq(p); 8728 /* 8729 * If we're the only runnable task on the rq and target rq also 8730 * has only one task, there's absolutely no point in yielding. 8731 */ 8732 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8733 yielded = -ESRCH; 8734 goto out_irq; 8735 } 8736 8737 double_rq_lock(rq, p_rq); 8738 if (task_rq(p) != p_rq) { 8739 double_rq_unlock(rq, p_rq); 8740 goto again; 8741 } 8742 8743 if (!curr->sched_class->yield_to_task) 8744 goto out_unlock; 8745 8746 if (curr->sched_class != p->sched_class) 8747 goto out_unlock; 8748 8749 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8750 goto out_unlock; 8751 8752 yielded = curr->sched_class->yield_to_task(rq, p); 8753 if (yielded) { 8754 schedstat_inc(rq->yld_count); 8755 /* 8756 * Make p's CPU reschedule; pick_next_entity takes care of 8757 * fairness. 8758 */ 8759 if (preempt && rq != p_rq) 8760 resched_curr(p_rq); 8761 } 8762 8763 out_unlock: 8764 double_rq_unlock(rq, p_rq); 8765 out_irq: 8766 local_irq_restore(flags); 8767 8768 if (yielded > 0) 8769 schedule(); 8770 8771 return yielded; 8772 } 8773 EXPORT_SYMBOL_GPL(yield_to); 8774 8775 int io_schedule_prepare(void) 8776 { 8777 int old_iowait = current->in_iowait; 8778 8779 current->in_iowait = 1; 8780 blk_flush_plug(current->plug, true); 8781 return old_iowait; 8782 } 8783 8784 void io_schedule_finish(int token) 8785 { 8786 current->in_iowait = token; 8787 } 8788 8789 /* 8790 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8791 * that process accounting knows that this is a task in IO wait state. 8792 */ 8793 long __sched io_schedule_timeout(long timeout) 8794 { 8795 int token; 8796 long ret; 8797 8798 token = io_schedule_prepare(); 8799 ret = schedule_timeout(timeout); 8800 io_schedule_finish(token); 8801 8802 return ret; 8803 } 8804 EXPORT_SYMBOL(io_schedule_timeout); 8805 8806 void __sched io_schedule(void) 8807 { 8808 int token; 8809 8810 token = io_schedule_prepare(); 8811 schedule(); 8812 io_schedule_finish(token); 8813 } 8814 EXPORT_SYMBOL(io_schedule); 8815 8816 /** 8817 * sys_sched_get_priority_max - return maximum RT priority. 8818 * @policy: scheduling class. 8819 * 8820 * Return: On success, this syscall returns the maximum 8821 * rt_priority that can be used by a given scheduling class. 8822 * On failure, a negative error code is returned. 8823 */ 8824 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8825 { 8826 int ret = -EINVAL; 8827 8828 switch (policy) { 8829 case SCHED_FIFO: 8830 case SCHED_RR: 8831 ret = MAX_RT_PRIO-1; 8832 break; 8833 case SCHED_DEADLINE: 8834 case SCHED_NORMAL: 8835 case SCHED_BATCH: 8836 case SCHED_IDLE: 8837 ret = 0; 8838 break; 8839 } 8840 return ret; 8841 } 8842 8843 /** 8844 * sys_sched_get_priority_min - return minimum RT priority. 8845 * @policy: scheduling class. 8846 * 8847 * Return: On success, this syscall returns the minimum 8848 * rt_priority that can be used by a given scheduling class. 8849 * On failure, a negative error code is returned. 8850 */ 8851 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8852 { 8853 int ret = -EINVAL; 8854 8855 switch (policy) { 8856 case SCHED_FIFO: 8857 case SCHED_RR: 8858 ret = 1; 8859 break; 8860 case SCHED_DEADLINE: 8861 case SCHED_NORMAL: 8862 case SCHED_BATCH: 8863 case SCHED_IDLE: 8864 ret = 0; 8865 } 8866 return ret; 8867 } 8868 8869 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8870 { 8871 struct task_struct *p; 8872 unsigned int time_slice; 8873 struct rq_flags rf; 8874 struct rq *rq; 8875 int retval; 8876 8877 if (pid < 0) 8878 return -EINVAL; 8879 8880 retval = -ESRCH; 8881 rcu_read_lock(); 8882 p = find_process_by_pid(pid); 8883 if (!p) 8884 goto out_unlock; 8885 8886 retval = security_task_getscheduler(p); 8887 if (retval) 8888 goto out_unlock; 8889 8890 rq = task_rq_lock(p, &rf); 8891 time_slice = 0; 8892 if (p->sched_class->get_rr_interval) 8893 time_slice = p->sched_class->get_rr_interval(rq, p); 8894 task_rq_unlock(rq, p, &rf); 8895 8896 rcu_read_unlock(); 8897 jiffies_to_timespec64(time_slice, t); 8898 return 0; 8899 8900 out_unlock: 8901 rcu_read_unlock(); 8902 return retval; 8903 } 8904 8905 /** 8906 * sys_sched_rr_get_interval - return the default timeslice of a process. 8907 * @pid: pid of the process. 8908 * @interval: userspace pointer to the timeslice value. 8909 * 8910 * this syscall writes the default timeslice value of a given process 8911 * into the user-space timespec buffer. A value of '0' means infinity. 8912 * 8913 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8914 * an error code. 8915 */ 8916 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8917 struct __kernel_timespec __user *, interval) 8918 { 8919 struct timespec64 t; 8920 int retval = sched_rr_get_interval(pid, &t); 8921 8922 if (retval == 0) 8923 retval = put_timespec64(&t, interval); 8924 8925 return retval; 8926 } 8927 8928 #ifdef CONFIG_COMPAT_32BIT_TIME 8929 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8930 struct old_timespec32 __user *, interval) 8931 { 8932 struct timespec64 t; 8933 int retval = sched_rr_get_interval(pid, &t); 8934 8935 if (retval == 0) 8936 retval = put_old_timespec32(&t, interval); 8937 return retval; 8938 } 8939 #endif 8940 8941 void sched_show_task(struct task_struct *p) 8942 { 8943 unsigned long free = 0; 8944 int ppid; 8945 8946 if (!try_get_task_stack(p)) 8947 return; 8948 8949 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8950 8951 if (task_is_running(p)) 8952 pr_cont(" running task "); 8953 #ifdef CONFIG_DEBUG_STACK_USAGE 8954 free = stack_not_used(p); 8955 #endif 8956 ppid = 0; 8957 rcu_read_lock(); 8958 if (pid_alive(p)) 8959 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8960 rcu_read_unlock(); 8961 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", 8962 free, task_pid_nr(p), ppid, 8963 read_task_thread_flags(p)); 8964 8965 print_worker_info(KERN_INFO, p); 8966 print_stop_info(KERN_INFO, p); 8967 show_stack(p, NULL, KERN_INFO); 8968 put_task_stack(p); 8969 } 8970 EXPORT_SYMBOL_GPL(sched_show_task); 8971 8972 static inline bool 8973 state_filter_match(unsigned long state_filter, struct task_struct *p) 8974 { 8975 unsigned int state = READ_ONCE(p->__state); 8976 8977 /* no filter, everything matches */ 8978 if (!state_filter) 8979 return true; 8980 8981 /* filter, but doesn't match */ 8982 if (!(state & state_filter)) 8983 return false; 8984 8985 /* 8986 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8987 * TASK_KILLABLE). 8988 */ 8989 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 8990 return false; 8991 8992 return true; 8993 } 8994 8995 8996 void show_state_filter(unsigned int state_filter) 8997 { 8998 struct task_struct *g, *p; 8999 9000 rcu_read_lock(); 9001 for_each_process_thread(g, p) { 9002 /* 9003 * reset the NMI-timeout, listing all files on a slow 9004 * console might take a lot of time: 9005 * Also, reset softlockup watchdogs on all CPUs, because 9006 * another CPU might be blocked waiting for us to process 9007 * an IPI. 9008 */ 9009 touch_nmi_watchdog(); 9010 touch_all_softlockup_watchdogs(); 9011 if (state_filter_match(state_filter, p)) 9012 sched_show_task(p); 9013 } 9014 9015 #ifdef CONFIG_SCHED_DEBUG 9016 if (!state_filter) 9017 sysrq_sched_debug_show(); 9018 #endif 9019 rcu_read_unlock(); 9020 /* 9021 * Only show locks if all tasks are dumped: 9022 */ 9023 if (!state_filter) 9024 debug_show_all_locks(); 9025 } 9026 9027 /** 9028 * init_idle - set up an idle thread for a given CPU 9029 * @idle: task in question 9030 * @cpu: CPU the idle task belongs to 9031 * 9032 * NOTE: this function does not set the idle thread's NEED_RESCHED 9033 * flag, to make booting more robust. 9034 */ 9035 void __init init_idle(struct task_struct *idle, int cpu) 9036 { 9037 #ifdef CONFIG_SMP 9038 struct affinity_context ac = (struct affinity_context) { 9039 .new_mask = cpumask_of(cpu), 9040 .flags = 0, 9041 }; 9042 #endif 9043 struct rq *rq = cpu_rq(cpu); 9044 unsigned long flags; 9045 9046 __sched_fork(0, idle); 9047 9048 raw_spin_lock_irqsave(&idle->pi_lock, flags); 9049 raw_spin_rq_lock(rq); 9050 9051 idle->__state = TASK_RUNNING; 9052 idle->se.exec_start = sched_clock(); 9053 /* 9054 * PF_KTHREAD should already be set at this point; regardless, make it 9055 * look like a proper per-CPU kthread. 9056 */ 9057 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 9058 kthread_set_per_cpu(idle, cpu); 9059 9060 #ifdef CONFIG_SMP 9061 /* 9062 * It's possible that init_idle() gets called multiple times on a task, 9063 * in that case do_set_cpus_allowed() will not do the right thing. 9064 * 9065 * And since this is boot we can forgo the serialization. 9066 */ 9067 set_cpus_allowed_common(idle, &ac); 9068 #endif 9069 /* 9070 * We're having a chicken and egg problem, even though we are 9071 * holding rq->lock, the CPU isn't yet set to this CPU so the 9072 * lockdep check in task_group() will fail. 9073 * 9074 * Similar case to sched_fork(). / Alternatively we could 9075 * use task_rq_lock() here and obtain the other rq->lock. 9076 * 9077 * Silence PROVE_RCU 9078 */ 9079 rcu_read_lock(); 9080 __set_task_cpu(idle, cpu); 9081 rcu_read_unlock(); 9082 9083 rq->idle = idle; 9084 rcu_assign_pointer(rq->curr, idle); 9085 idle->on_rq = TASK_ON_RQ_QUEUED; 9086 #ifdef CONFIG_SMP 9087 idle->on_cpu = 1; 9088 #endif 9089 raw_spin_rq_unlock(rq); 9090 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 9091 9092 /* Set the preempt count _outside_ the spinlocks! */ 9093 init_idle_preempt_count(idle, cpu); 9094 9095 /* 9096 * The idle tasks have their own, simple scheduling class: 9097 */ 9098 idle->sched_class = &idle_sched_class; 9099 ftrace_graph_init_idle_task(idle, cpu); 9100 vtime_init_idle(idle, cpu); 9101 #ifdef CONFIG_SMP 9102 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9103 #endif 9104 } 9105 9106 #ifdef CONFIG_SMP 9107 9108 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9109 const struct cpumask *trial) 9110 { 9111 int ret = 1; 9112 9113 if (cpumask_empty(cur)) 9114 return ret; 9115 9116 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9117 9118 return ret; 9119 } 9120 9121 int task_can_attach(struct task_struct *p, 9122 const struct cpumask *cs_effective_cpus) 9123 { 9124 int ret = 0; 9125 9126 /* 9127 * Kthreads which disallow setaffinity shouldn't be moved 9128 * to a new cpuset; we don't want to change their CPU 9129 * affinity and isolating such threads by their set of 9130 * allowed nodes is unnecessary. Thus, cpusets are not 9131 * applicable for such threads. This prevents checking for 9132 * success of set_cpus_allowed_ptr() on all attached tasks 9133 * before cpus_mask may be changed. 9134 */ 9135 if (p->flags & PF_NO_SETAFFINITY) { 9136 ret = -EINVAL; 9137 goto out; 9138 } 9139 9140 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 9141 cs_effective_cpus)) { 9142 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus); 9143 9144 if (unlikely(cpu >= nr_cpu_ids)) 9145 return -EINVAL; 9146 ret = dl_cpu_busy(cpu, p); 9147 } 9148 9149 out: 9150 return ret; 9151 } 9152 9153 bool sched_smp_initialized __read_mostly; 9154 9155 #ifdef CONFIG_NUMA_BALANCING 9156 /* Migrate current task p to target_cpu */ 9157 int migrate_task_to(struct task_struct *p, int target_cpu) 9158 { 9159 struct migration_arg arg = { p, target_cpu }; 9160 int curr_cpu = task_cpu(p); 9161 9162 if (curr_cpu == target_cpu) 9163 return 0; 9164 9165 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9166 return -EINVAL; 9167 9168 /* TODO: This is not properly updating schedstats */ 9169 9170 trace_sched_move_numa(p, curr_cpu, target_cpu); 9171 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9172 } 9173 9174 /* 9175 * Requeue a task on a given node and accurately track the number of NUMA 9176 * tasks on the runqueues 9177 */ 9178 void sched_setnuma(struct task_struct *p, int nid) 9179 { 9180 bool queued, running; 9181 struct rq_flags rf; 9182 struct rq *rq; 9183 9184 rq = task_rq_lock(p, &rf); 9185 queued = task_on_rq_queued(p); 9186 running = task_current(rq, p); 9187 9188 if (queued) 9189 dequeue_task(rq, p, DEQUEUE_SAVE); 9190 if (running) 9191 put_prev_task(rq, p); 9192 9193 p->numa_preferred_nid = nid; 9194 9195 if (queued) 9196 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9197 if (running) 9198 set_next_task(rq, p); 9199 task_rq_unlock(rq, p, &rf); 9200 } 9201 #endif /* CONFIG_NUMA_BALANCING */ 9202 9203 #ifdef CONFIG_HOTPLUG_CPU 9204 /* 9205 * Ensure that the idle task is using init_mm right before its CPU goes 9206 * offline. 9207 */ 9208 void idle_task_exit(void) 9209 { 9210 struct mm_struct *mm = current->active_mm; 9211 9212 BUG_ON(cpu_online(smp_processor_id())); 9213 BUG_ON(current != this_rq()->idle); 9214 9215 if (mm != &init_mm) { 9216 switch_mm(mm, &init_mm, current); 9217 finish_arch_post_lock_switch(); 9218 } 9219 9220 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9221 } 9222 9223 static int __balance_push_cpu_stop(void *arg) 9224 { 9225 struct task_struct *p = arg; 9226 struct rq *rq = this_rq(); 9227 struct rq_flags rf; 9228 int cpu; 9229 9230 raw_spin_lock_irq(&p->pi_lock); 9231 rq_lock(rq, &rf); 9232 9233 update_rq_clock(rq); 9234 9235 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9236 cpu = select_fallback_rq(rq->cpu, p); 9237 rq = __migrate_task(rq, &rf, p, cpu); 9238 } 9239 9240 rq_unlock(rq, &rf); 9241 raw_spin_unlock_irq(&p->pi_lock); 9242 9243 put_task_struct(p); 9244 9245 return 0; 9246 } 9247 9248 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9249 9250 /* 9251 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9252 * 9253 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9254 * effective when the hotplug motion is down. 9255 */ 9256 static void balance_push(struct rq *rq) 9257 { 9258 struct task_struct *push_task = rq->curr; 9259 9260 lockdep_assert_rq_held(rq); 9261 9262 /* 9263 * Ensure the thing is persistent until balance_push_set(.on = false); 9264 */ 9265 rq->balance_callback = &balance_push_callback; 9266 9267 /* 9268 * Only active while going offline and when invoked on the outgoing 9269 * CPU. 9270 */ 9271 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9272 return; 9273 9274 /* 9275 * Both the cpu-hotplug and stop task are in this case and are 9276 * required to complete the hotplug process. 9277 */ 9278 if (kthread_is_per_cpu(push_task) || 9279 is_migration_disabled(push_task)) { 9280 9281 /* 9282 * If this is the idle task on the outgoing CPU try to wake 9283 * up the hotplug control thread which might wait for the 9284 * last task to vanish. The rcuwait_active() check is 9285 * accurate here because the waiter is pinned on this CPU 9286 * and can't obviously be running in parallel. 9287 * 9288 * On RT kernels this also has to check whether there are 9289 * pinned and scheduled out tasks on the runqueue. They 9290 * need to leave the migrate disabled section first. 9291 */ 9292 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9293 rcuwait_active(&rq->hotplug_wait)) { 9294 raw_spin_rq_unlock(rq); 9295 rcuwait_wake_up(&rq->hotplug_wait); 9296 raw_spin_rq_lock(rq); 9297 } 9298 return; 9299 } 9300 9301 get_task_struct(push_task); 9302 /* 9303 * Temporarily drop rq->lock such that we can wake-up the stop task. 9304 * Both preemption and IRQs are still disabled. 9305 */ 9306 raw_spin_rq_unlock(rq); 9307 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9308 this_cpu_ptr(&push_work)); 9309 /* 9310 * At this point need_resched() is true and we'll take the loop in 9311 * schedule(). The next pick is obviously going to be the stop task 9312 * which kthread_is_per_cpu() and will push this task away. 9313 */ 9314 raw_spin_rq_lock(rq); 9315 } 9316 9317 static void balance_push_set(int cpu, bool on) 9318 { 9319 struct rq *rq = cpu_rq(cpu); 9320 struct rq_flags rf; 9321 9322 rq_lock_irqsave(rq, &rf); 9323 if (on) { 9324 WARN_ON_ONCE(rq->balance_callback); 9325 rq->balance_callback = &balance_push_callback; 9326 } else if (rq->balance_callback == &balance_push_callback) { 9327 rq->balance_callback = NULL; 9328 } 9329 rq_unlock_irqrestore(rq, &rf); 9330 } 9331 9332 /* 9333 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9334 * inactive. All tasks which are not per CPU kernel threads are either 9335 * pushed off this CPU now via balance_push() or placed on a different CPU 9336 * during wakeup. Wait until the CPU is quiescent. 9337 */ 9338 static void balance_hotplug_wait(void) 9339 { 9340 struct rq *rq = this_rq(); 9341 9342 rcuwait_wait_event(&rq->hotplug_wait, 9343 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9344 TASK_UNINTERRUPTIBLE); 9345 } 9346 9347 #else 9348 9349 static inline void balance_push(struct rq *rq) 9350 { 9351 } 9352 9353 static inline void balance_push_set(int cpu, bool on) 9354 { 9355 } 9356 9357 static inline void balance_hotplug_wait(void) 9358 { 9359 } 9360 9361 #endif /* CONFIG_HOTPLUG_CPU */ 9362 9363 void set_rq_online(struct rq *rq) 9364 { 9365 if (!rq->online) { 9366 const struct sched_class *class; 9367 9368 cpumask_set_cpu(rq->cpu, rq->rd->online); 9369 rq->online = 1; 9370 9371 for_each_class(class) { 9372 if (class->rq_online) 9373 class->rq_online(rq); 9374 } 9375 } 9376 } 9377 9378 void set_rq_offline(struct rq *rq) 9379 { 9380 if (rq->online) { 9381 const struct sched_class *class; 9382 9383 for_each_class(class) { 9384 if (class->rq_offline) 9385 class->rq_offline(rq); 9386 } 9387 9388 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9389 rq->online = 0; 9390 } 9391 } 9392 9393 /* 9394 * used to mark begin/end of suspend/resume: 9395 */ 9396 static int num_cpus_frozen; 9397 9398 /* 9399 * Update cpusets according to cpu_active mask. If cpusets are 9400 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9401 * around partition_sched_domains(). 9402 * 9403 * If we come here as part of a suspend/resume, don't touch cpusets because we 9404 * want to restore it back to its original state upon resume anyway. 9405 */ 9406 static void cpuset_cpu_active(void) 9407 { 9408 if (cpuhp_tasks_frozen) { 9409 /* 9410 * num_cpus_frozen tracks how many CPUs are involved in suspend 9411 * resume sequence. As long as this is not the last online 9412 * operation in the resume sequence, just build a single sched 9413 * domain, ignoring cpusets. 9414 */ 9415 partition_sched_domains(1, NULL, NULL); 9416 if (--num_cpus_frozen) 9417 return; 9418 /* 9419 * This is the last CPU online operation. So fall through and 9420 * restore the original sched domains by considering the 9421 * cpuset configurations. 9422 */ 9423 cpuset_force_rebuild(); 9424 } 9425 cpuset_update_active_cpus(); 9426 } 9427 9428 static int cpuset_cpu_inactive(unsigned int cpu) 9429 { 9430 if (!cpuhp_tasks_frozen) { 9431 int ret = dl_cpu_busy(cpu, NULL); 9432 9433 if (ret) 9434 return ret; 9435 cpuset_update_active_cpus(); 9436 } else { 9437 num_cpus_frozen++; 9438 partition_sched_domains(1, NULL, NULL); 9439 } 9440 return 0; 9441 } 9442 9443 int sched_cpu_activate(unsigned int cpu) 9444 { 9445 struct rq *rq = cpu_rq(cpu); 9446 struct rq_flags rf; 9447 9448 /* 9449 * Clear the balance_push callback and prepare to schedule 9450 * regular tasks. 9451 */ 9452 balance_push_set(cpu, false); 9453 9454 #ifdef CONFIG_SCHED_SMT 9455 /* 9456 * When going up, increment the number of cores with SMT present. 9457 */ 9458 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9459 static_branch_inc_cpuslocked(&sched_smt_present); 9460 #endif 9461 set_cpu_active(cpu, true); 9462 9463 if (sched_smp_initialized) { 9464 sched_update_numa(cpu, true); 9465 sched_domains_numa_masks_set(cpu); 9466 cpuset_cpu_active(); 9467 } 9468 9469 /* 9470 * Put the rq online, if not already. This happens: 9471 * 9472 * 1) In the early boot process, because we build the real domains 9473 * after all CPUs have been brought up. 9474 * 9475 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9476 * domains. 9477 */ 9478 rq_lock_irqsave(rq, &rf); 9479 if (rq->rd) { 9480 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9481 set_rq_online(rq); 9482 } 9483 rq_unlock_irqrestore(rq, &rf); 9484 9485 return 0; 9486 } 9487 9488 int sched_cpu_deactivate(unsigned int cpu) 9489 { 9490 struct rq *rq = cpu_rq(cpu); 9491 struct rq_flags rf; 9492 int ret; 9493 9494 /* 9495 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9496 * load balancing when not active 9497 */ 9498 nohz_balance_exit_idle(rq); 9499 9500 set_cpu_active(cpu, false); 9501 9502 /* 9503 * From this point forward, this CPU will refuse to run any task that 9504 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9505 * push those tasks away until this gets cleared, see 9506 * sched_cpu_dying(). 9507 */ 9508 balance_push_set(cpu, true); 9509 9510 /* 9511 * We've cleared cpu_active_mask / set balance_push, wait for all 9512 * preempt-disabled and RCU users of this state to go away such that 9513 * all new such users will observe it. 9514 * 9515 * Specifically, we rely on ttwu to no longer target this CPU, see 9516 * ttwu_queue_cond() and is_cpu_allowed(). 9517 * 9518 * Do sync before park smpboot threads to take care the rcu boost case. 9519 */ 9520 synchronize_rcu(); 9521 9522 rq_lock_irqsave(rq, &rf); 9523 if (rq->rd) { 9524 update_rq_clock(rq); 9525 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9526 set_rq_offline(rq); 9527 } 9528 rq_unlock_irqrestore(rq, &rf); 9529 9530 #ifdef CONFIG_SCHED_SMT 9531 /* 9532 * When going down, decrement the number of cores with SMT present. 9533 */ 9534 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9535 static_branch_dec_cpuslocked(&sched_smt_present); 9536 9537 sched_core_cpu_deactivate(cpu); 9538 #endif 9539 9540 if (!sched_smp_initialized) 9541 return 0; 9542 9543 sched_update_numa(cpu, false); 9544 ret = cpuset_cpu_inactive(cpu); 9545 if (ret) { 9546 balance_push_set(cpu, false); 9547 set_cpu_active(cpu, true); 9548 sched_update_numa(cpu, true); 9549 return ret; 9550 } 9551 sched_domains_numa_masks_clear(cpu); 9552 return 0; 9553 } 9554 9555 static void sched_rq_cpu_starting(unsigned int cpu) 9556 { 9557 struct rq *rq = cpu_rq(cpu); 9558 9559 rq->calc_load_update = calc_load_update; 9560 update_max_interval(); 9561 } 9562 9563 int sched_cpu_starting(unsigned int cpu) 9564 { 9565 sched_core_cpu_starting(cpu); 9566 sched_rq_cpu_starting(cpu); 9567 sched_tick_start(cpu); 9568 return 0; 9569 } 9570 9571 #ifdef CONFIG_HOTPLUG_CPU 9572 9573 /* 9574 * Invoked immediately before the stopper thread is invoked to bring the 9575 * CPU down completely. At this point all per CPU kthreads except the 9576 * hotplug thread (current) and the stopper thread (inactive) have been 9577 * either parked or have been unbound from the outgoing CPU. Ensure that 9578 * any of those which might be on the way out are gone. 9579 * 9580 * If after this point a bound task is being woken on this CPU then the 9581 * responsible hotplug callback has failed to do it's job. 9582 * sched_cpu_dying() will catch it with the appropriate fireworks. 9583 */ 9584 int sched_cpu_wait_empty(unsigned int cpu) 9585 { 9586 balance_hotplug_wait(); 9587 return 0; 9588 } 9589 9590 /* 9591 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9592 * might have. Called from the CPU stopper task after ensuring that the 9593 * stopper is the last running task on the CPU, so nr_active count is 9594 * stable. We need to take the teardown thread which is calling this into 9595 * account, so we hand in adjust = 1 to the load calculation. 9596 * 9597 * Also see the comment "Global load-average calculations". 9598 */ 9599 static void calc_load_migrate(struct rq *rq) 9600 { 9601 long delta = calc_load_fold_active(rq, 1); 9602 9603 if (delta) 9604 atomic_long_add(delta, &calc_load_tasks); 9605 } 9606 9607 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9608 { 9609 struct task_struct *g, *p; 9610 int cpu = cpu_of(rq); 9611 9612 lockdep_assert_rq_held(rq); 9613 9614 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9615 for_each_process_thread(g, p) { 9616 if (task_cpu(p) != cpu) 9617 continue; 9618 9619 if (!task_on_rq_queued(p)) 9620 continue; 9621 9622 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9623 } 9624 } 9625 9626 int sched_cpu_dying(unsigned int cpu) 9627 { 9628 struct rq *rq = cpu_rq(cpu); 9629 struct rq_flags rf; 9630 9631 /* Handle pending wakeups and then migrate everything off */ 9632 sched_tick_stop(cpu); 9633 9634 rq_lock_irqsave(rq, &rf); 9635 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9636 WARN(true, "Dying CPU not properly vacated!"); 9637 dump_rq_tasks(rq, KERN_WARNING); 9638 } 9639 rq_unlock_irqrestore(rq, &rf); 9640 9641 calc_load_migrate(rq); 9642 update_max_interval(); 9643 hrtick_clear(rq); 9644 sched_core_cpu_dying(cpu); 9645 return 0; 9646 } 9647 #endif 9648 9649 void __init sched_init_smp(void) 9650 { 9651 sched_init_numa(NUMA_NO_NODE); 9652 9653 /* 9654 * There's no userspace yet to cause hotplug operations; hence all the 9655 * CPU masks are stable and all blatant races in the below code cannot 9656 * happen. 9657 */ 9658 mutex_lock(&sched_domains_mutex); 9659 sched_init_domains(cpu_active_mask); 9660 mutex_unlock(&sched_domains_mutex); 9661 9662 /* Move init over to a non-isolated CPU */ 9663 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9664 BUG(); 9665 current->flags &= ~PF_NO_SETAFFINITY; 9666 sched_init_granularity(); 9667 9668 init_sched_rt_class(); 9669 init_sched_dl_class(); 9670 9671 sched_smp_initialized = true; 9672 } 9673 9674 static int __init migration_init(void) 9675 { 9676 sched_cpu_starting(smp_processor_id()); 9677 return 0; 9678 } 9679 early_initcall(migration_init); 9680 9681 #else 9682 void __init sched_init_smp(void) 9683 { 9684 sched_init_granularity(); 9685 } 9686 #endif /* CONFIG_SMP */ 9687 9688 int in_sched_functions(unsigned long addr) 9689 { 9690 return in_lock_functions(addr) || 9691 (addr >= (unsigned long)__sched_text_start 9692 && addr < (unsigned long)__sched_text_end); 9693 } 9694 9695 #ifdef CONFIG_CGROUP_SCHED 9696 /* 9697 * Default task group. 9698 * Every task in system belongs to this group at bootup. 9699 */ 9700 struct task_group root_task_group; 9701 LIST_HEAD(task_groups); 9702 9703 /* Cacheline aligned slab cache for task_group */ 9704 static struct kmem_cache *task_group_cache __read_mostly; 9705 #endif 9706 9707 void __init sched_init(void) 9708 { 9709 unsigned long ptr = 0; 9710 int i; 9711 9712 /* Make sure the linker didn't screw up */ 9713 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9714 &fair_sched_class != &rt_sched_class + 1 || 9715 &rt_sched_class != &dl_sched_class + 1); 9716 #ifdef CONFIG_SMP 9717 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9718 #endif 9719 9720 wait_bit_init(); 9721 9722 #ifdef CONFIG_FAIR_GROUP_SCHED 9723 ptr += 2 * nr_cpu_ids * sizeof(void **); 9724 #endif 9725 #ifdef CONFIG_RT_GROUP_SCHED 9726 ptr += 2 * nr_cpu_ids * sizeof(void **); 9727 #endif 9728 if (ptr) { 9729 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9730 9731 #ifdef CONFIG_FAIR_GROUP_SCHED 9732 root_task_group.se = (struct sched_entity **)ptr; 9733 ptr += nr_cpu_ids * sizeof(void **); 9734 9735 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9736 ptr += nr_cpu_ids * sizeof(void **); 9737 9738 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9739 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9740 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9741 #ifdef CONFIG_RT_GROUP_SCHED 9742 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9743 ptr += nr_cpu_ids * sizeof(void **); 9744 9745 root_task_group.rt_rq = (struct rt_rq **)ptr; 9746 ptr += nr_cpu_ids * sizeof(void **); 9747 9748 #endif /* CONFIG_RT_GROUP_SCHED */ 9749 } 9750 9751 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9752 9753 #ifdef CONFIG_SMP 9754 init_defrootdomain(); 9755 #endif 9756 9757 #ifdef CONFIG_RT_GROUP_SCHED 9758 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9759 global_rt_period(), global_rt_runtime()); 9760 #endif /* CONFIG_RT_GROUP_SCHED */ 9761 9762 #ifdef CONFIG_CGROUP_SCHED 9763 task_group_cache = KMEM_CACHE(task_group, 0); 9764 9765 list_add(&root_task_group.list, &task_groups); 9766 INIT_LIST_HEAD(&root_task_group.children); 9767 INIT_LIST_HEAD(&root_task_group.siblings); 9768 autogroup_init(&init_task); 9769 #endif /* CONFIG_CGROUP_SCHED */ 9770 9771 for_each_possible_cpu(i) { 9772 struct rq *rq; 9773 9774 rq = cpu_rq(i); 9775 raw_spin_lock_init(&rq->__lock); 9776 rq->nr_running = 0; 9777 rq->calc_load_active = 0; 9778 rq->calc_load_update = jiffies + LOAD_FREQ; 9779 init_cfs_rq(&rq->cfs); 9780 init_rt_rq(&rq->rt); 9781 init_dl_rq(&rq->dl); 9782 #ifdef CONFIG_FAIR_GROUP_SCHED 9783 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9784 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9785 /* 9786 * How much CPU bandwidth does root_task_group get? 9787 * 9788 * In case of task-groups formed thr' the cgroup filesystem, it 9789 * gets 100% of the CPU resources in the system. This overall 9790 * system CPU resource is divided among the tasks of 9791 * root_task_group and its child task-groups in a fair manner, 9792 * based on each entity's (task or task-group's) weight 9793 * (se->load.weight). 9794 * 9795 * In other words, if root_task_group has 10 tasks of weight 9796 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9797 * then A0's share of the CPU resource is: 9798 * 9799 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9800 * 9801 * We achieve this by letting root_task_group's tasks sit 9802 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9803 */ 9804 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9805 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9806 9807 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9808 #ifdef CONFIG_RT_GROUP_SCHED 9809 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9810 #endif 9811 #ifdef CONFIG_SMP 9812 rq->sd = NULL; 9813 rq->rd = NULL; 9814 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9815 rq->balance_callback = &balance_push_callback; 9816 rq->active_balance = 0; 9817 rq->next_balance = jiffies; 9818 rq->push_cpu = 0; 9819 rq->cpu = i; 9820 rq->online = 0; 9821 rq->idle_stamp = 0; 9822 rq->avg_idle = 2*sysctl_sched_migration_cost; 9823 rq->wake_stamp = jiffies; 9824 rq->wake_avg_idle = rq->avg_idle; 9825 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9826 9827 INIT_LIST_HEAD(&rq->cfs_tasks); 9828 9829 rq_attach_root(rq, &def_root_domain); 9830 #ifdef CONFIG_NO_HZ_COMMON 9831 rq->last_blocked_load_update_tick = jiffies; 9832 atomic_set(&rq->nohz_flags, 0); 9833 9834 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9835 #endif 9836 #ifdef CONFIG_HOTPLUG_CPU 9837 rcuwait_init(&rq->hotplug_wait); 9838 #endif 9839 #endif /* CONFIG_SMP */ 9840 hrtick_rq_init(rq); 9841 atomic_set(&rq->nr_iowait, 0); 9842 9843 #ifdef CONFIG_SCHED_CORE 9844 rq->core = rq; 9845 rq->core_pick = NULL; 9846 rq->core_enabled = 0; 9847 rq->core_tree = RB_ROOT; 9848 rq->core_forceidle_count = 0; 9849 rq->core_forceidle_occupation = 0; 9850 rq->core_forceidle_start = 0; 9851 9852 rq->core_cookie = 0UL; 9853 #endif 9854 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 9855 } 9856 9857 set_load_weight(&init_task, false); 9858 9859 /* 9860 * The boot idle thread does lazy MMU switching as well: 9861 */ 9862 mmgrab(&init_mm); 9863 enter_lazy_tlb(&init_mm, current); 9864 9865 /* 9866 * The idle task doesn't need the kthread struct to function, but it 9867 * is dressed up as a per-CPU kthread and thus needs to play the part 9868 * if we want to avoid special-casing it in code that deals with per-CPU 9869 * kthreads. 9870 */ 9871 WARN_ON(!set_kthread_struct(current)); 9872 9873 /* 9874 * Make us the idle thread. Technically, schedule() should not be 9875 * called from this thread, however somewhere below it might be, 9876 * but because we are the idle thread, we just pick up running again 9877 * when this runqueue becomes "idle". 9878 */ 9879 init_idle(current, smp_processor_id()); 9880 9881 calc_load_update = jiffies + LOAD_FREQ; 9882 9883 #ifdef CONFIG_SMP 9884 idle_thread_set_boot_cpu(); 9885 balance_push_set(smp_processor_id(), false); 9886 #endif 9887 init_sched_fair_class(); 9888 9889 psi_init(); 9890 9891 init_uclamp(); 9892 9893 preempt_dynamic_init(); 9894 9895 scheduler_running = 1; 9896 } 9897 9898 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9899 9900 void __might_sleep(const char *file, int line) 9901 { 9902 unsigned int state = get_current_state(); 9903 /* 9904 * Blocking primitives will set (and therefore destroy) current->state, 9905 * since we will exit with TASK_RUNNING make sure we enter with it, 9906 * otherwise we will destroy state. 9907 */ 9908 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9909 "do not call blocking ops when !TASK_RUNNING; " 9910 "state=%x set at [<%p>] %pS\n", state, 9911 (void *)current->task_state_change, 9912 (void *)current->task_state_change); 9913 9914 __might_resched(file, line, 0); 9915 } 9916 EXPORT_SYMBOL(__might_sleep); 9917 9918 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9919 { 9920 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9921 return; 9922 9923 if (preempt_count() == preempt_offset) 9924 return; 9925 9926 pr_err("Preemption disabled at:"); 9927 print_ip_sym(KERN_ERR, ip); 9928 } 9929 9930 static inline bool resched_offsets_ok(unsigned int offsets) 9931 { 9932 unsigned int nested = preempt_count(); 9933 9934 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9935 9936 return nested == offsets; 9937 } 9938 9939 void __might_resched(const char *file, int line, unsigned int offsets) 9940 { 9941 /* Ratelimiting timestamp: */ 9942 static unsigned long prev_jiffy; 9943 9944 unsigned long preempt_disable_ip; 9945 9946 /* WARN_ON_ONCE() by default, no rate limit required: */ 9947 rcu_sleep_check(); 9948 9949 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 9950 !is_idle_task(current) && !current->non_block_count) || 9951 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9952 oops_in_progress) 9953 return; 9954 9955 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9956 return; 9957 prev_jiffy = jiffies; 9958 9959 /* Save this before calling printk(), since that will clobber it: */ 9960 preempt_disable_ip = get_preempt_disable_ip(current); 9961 9962 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 9963 file, line); 9964 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9965 in_atomic(), irqs_disabled(), current->non_block_count, 9966 current->pid, current->comm); 9967 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 9968 offsets & MIGHT_RESCHED_PREEMPT_MASK); 9969 9970 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 9971 pr_err("RCU nest depth: %d, expected: %u\n", 9972 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 9973 } 9974 9975 if (task_stack_end_corrupted(current)) 9976 pr_emerg("Thread overran stack, or stack corrupted\n"); 9977 9978 debug_show_held_locks(current); 9979 if (irqs_disabled()) 9980 print_irqtrace_events(current); 9981 9982 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 9983 preempt_disable_ip); 9984 9985 dump_stack(); 9986 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9987 } 9988 EXPORT_SYMBOL(__might_resched); 9989 9990 void __cant_sleep(const char *file, int line, int preempt_offset) 9991 { 9992 static unsigned long prev_jiffy; 9993 9994 if (irqs_disabled()) 9995 return; 9996 9997 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9998 return; 9999 10000 if (preempt_count() > preempt_offset) 10001 return; 10002 10003 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10004 return; 10005 prev_jiffy = jiffies; 10006 10007 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 10008 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 10009 in_atomic(), irqs_disabled(), 10010 current->pid, current->comm); 10011 10012 debug_show_held_locks(current); 10013 dump_stack(); 10014 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10015 } 10016 EXPORT_SYMBOL_GPL(__cant_sleep); 10017 10018 #ifdef CONFIG_SMP 10019 void __cant_migrate(const char *file, int line) 10020 { 10021 static unsigned long prev_jiffy; 10022 10023 if (irqs_disabled()) 10024 return; 10025 10026 if (is_migration_disabled(current)) 10027 return; 10028 10029 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10030 return; 10031 10032 if (preempt_count() > 0) 10033 return; 10034 10035 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10036 return; 10037 prev_jiffy = jiffies; 10038 10039 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 10040 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 10041 in_atomic(), irqs_disabled(), is_migration_disabled(current), 10042 current->pid, current->comm); 10043 10044 debug_show_held_locks(current); 10045 dump_stack(); 10046 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10047 } 10048 EXPORT_SYMBOL_GPL(__cant_migrate); 10049 #endif 10050 #endif 10051 10052 #ifdef CONFIG_MAGIC_SYSRQ 10053 void normalize_rt_tasks(void) 10054 { 10055 struct task_struct *g, *p; 10056 struct sched_attr attr = { 10057 .sched_policy = SCHED_NORMAL, 10058 }; 10059 10060 read_lock(&tasklist_lock); 10061 for_each_process_thread(g, p) { 10062 /* 10063 * Only normalize user tasks: 10064 */ 10065 if (p->flags & PF_KTHREAD) 10066 continue; 10067 10068 p->se.exec_start = 0; 10069 schedstat_set(p->stats.wait_start, 0); 10070 schedstat_set(p->stats.sleep_start, 0); 10071 schedstat_set(p->stats.block_start, 0); 10072 10073 if (!dl_task(p) && !rt_task(p)) { 10074 /* 10075 * Renice negative nice level userspace 10076 * tasks back to 0: 10077 */ 10078 if (task_nice(p) < 0) 10079 set_user_nice(p, 0); 10080 continue; 10081 } 10082 10083 __sched_setscheduler(p, &attr, false, false); 10084 } 10085 read_unlock(&tasklist_lock); 10086 } 10087 10088 #endif /* CONFIG_MAGIC_SYSRQ */ 10089 10090 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 10091 /* 10092 * These functions are only useful for the IA64 MCA handling, or kdb. 10093 * 10094 * They can only be called when the whole system has been 10095 * stopped - every CPU needs to be quiescent, and no scheduling 10096 * activity can take place. Using them for anything else would 10097 * be a serious bug, and as a result, they aren't even visible 10098 * under any other configuration. 10099 */ 10100 10101 /** 10102 * curr_task - return the current task for a given CPU. 10103 * @cpu: the processor in question. 10104 * 10105 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10106 * 10107 * Return: The current task for @cpu. 10108 */ 10109 struct task_struct *curr_task(int cpu) 10110 { 10111 return cpu_curr(cpu); 10112 } 10113 10114 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10115 10116 #ifdef CONFIG_IA64 10117 /** 10118 * ia64_set_curr_task - set the current task for a given CPU. 10119 * @cpu: the processor in question. 10120 * @p: the task pointer to set. 10121 * 10122 * Description: This function must only be used when non-maskable interrupts 10123 * are serviced on a separate stack. It allows the architecture to switch the 10124 * notion of the current task on a CPU in a non-blocking manner. This function 10125 * must be called with all CPU's synchronized, and interrupts disabled, the 10126 * and caller must save the original value of the current task (see 10127 * curr_task() above) and restore that value before reenabling interrupts and 10128 * re-starting the system. 10129 * 10130 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10131 */ 10132 void ia64_set_curr_task(int cpu, struct task_struct *p) 10133 { 10134 cpu_curr(cpu) = p; 10135 } 10136 10137 #endif 10138 10139 #ifdef CONFIG_CGROUP_SCHED 10140 /* task_group_lock serializes the addition/removal of task groups */ 10141 static DEFINE_SPINLOCK(task_group_lock); 10142 10143 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10144 struct task_group *parent) 10145 { 10146 #ifdef CONFIG_UCLAMP_TASK_GROUP 10147 enum uclamp_id clamp_id; 10148 10149 for_each_clamp_id(clamp_id) { 10150 uclamp_se_set(&tg->uclamp_req[clamp_id], 10151 uclamp_none(clamp_id), false); 10152 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10153 } 10154 #endif 10155 } 10156 10157 static void sched_free_group(struct task_group *tg) 10158 { 10159 free_fair_sched_group(tg); 10160 free_rt_sched_group(tg); 10161 autogroup_free(tg); 10162 kmem_cache_free(task_group_cache, tg); 10163 } 10164 10165 static void sched_free_group_rcu(struct rcu_head *rcu) 10166 { 10167 sched_free_group(container_of(rcu, struct task_group, rcu)); 10168 } 10169 10170 static void sched_unregister_group(struct task_group *tg) 10171 { 10172 unregister_fair_sched_group(tg); 10173 unregister_rt_sched_group(tg); 10174 /* 10175 * We have to wait for yet another RCU grace period to expire, as 10176 * print_cfs_stats() might run concurrently. 10177 */ 10178 call_rcu(&tg->rcu, sched_free_group_rcu); 10179 } 10180 10181 /* allocate runqueue etc for a new task group */ 10182 struct task_group *sched_create_group(struct task_group *parent) 10183 { 10184 struct task_group *tg; 10185 10186 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10187 if (!tg) 10188 return ERR_PTR(-ENOMEM); 10189 10190 if (!alloc_fair_sched_group(tg, parent)) 10191 goto err; 10192 10193 if (!alloc_rt_sched_group(tg, parent)) 10194 goto err; 10195 10196 alloc_uclamp_sched_group(tg, parent); 10197 10198 return tg; 10199 10200 err: 10201 sched_free_group(tg); 10202 return ERR_PTR(-ENOMEM); 10203 } 10204 10205 void sched_online_group(struct task_group *tg, struct task_group *parent) 10206 { 10207 unsigned long flags; 10208 10209 spin_lock_irqsave(&task_group_lock, flags); 10210 list_add_rcu(&tg->list, &task_groups); 10211 10212 /* Root should already exist: */ 10213 WARN_ON(!parent); 10214 10215 tg->parent = parent; 10216 INIT_LIST_HEAD(&tg->children); 10217 list_add_rcu(&tg->siblings, &parent->children); 10218 spin_unlock_irqrestore(&task_group_lock, flags); 10219 10220 online_fair_sched_group(tg); 10221 } 10222 10223 /* rcu callback to free various structures associated with a task group */ 10224 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10225 { 10226 /* Now it should be safe to free those cfs_rqs: */ 10227 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10228 } 10229 10230 void sched_destroy_group(struct task_group *tg) 10231 { 10232 /* Wait for possible concurrent references to cfs_rqs complete: */ 10233 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10234 } 10235 10236 void sched_release_group(struct task_group *tg) 10237 { 10238 unsigned long flags; 10239 10240 /* 10241 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10242 * sched_cfs_period_timer()). 10243 * 10244 * For this to be effective, we have to wait for all pending users of 10245 * this task group to leave their RCU critical section to ensure no new 10246 * user will see our dying task group any more. Specifically ensure 10247 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10248 * 10249 * We therefore defer calling unregister_fair_sched_group() to 10250 * sched_unregister_group() which is guarantied to get called only after the 10251 * current RCU grace period has expired. 10252 */ 10253 spin_lock_irqsave(&task_group_lock, flags); 10254 list_del_rcu(&tg->list); 10255 list_del_rcu(&tg->siblings); 10256 spin_unlock_irqrestore(&task_group_lock, flags); 10257 } 10258 10259 static void sched_change_group(struct task_struct *tsk) 10260 { 10261 struct task_group *tg; 10262 10263 /* 10264 * All callers are synchronized by task_rq_lock(); we do not use RCU 10265 * which is pointless here. Thus, we pass "true" to task_css_check() 10266 * to prevent lockdep warnings. 10267 */ 10268 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10269 struct task_group, css); 10270 tg = autogroup_task_group(tsk, tg); 10271 tsk->sched_task_group = tg; 10272 10273 #ifdef CONFIG_FAIR_GROUP_SCHED 10274 if (tsk->sched_class->task_change_group) 10275 tsk->sched_class->task_change_group(tsk); 10276 else 10277 #endif 10278 set_task_rq(tsk, task_cpu(tsk)); 10279 } 10280 10281 /* 10282 * Change task's runqueue when it moves between groups. 10283 * 10284 * The caller of this function should have put the task in its new group by 10285 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10286 * its new group. 10287 */ 10288 void sched_move_task(struct task_struct *tsk) 10289 { 10290 int queued, running, queue_flags = 10291 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10292 struct rq_flags rf; 10293 struct rq *rq; 10294 10295 rq = task_rq_lock(tsk, &rf); 10296 update_rq_clock(rq); 10297 10298 running = task_current(rq, tsk); 10299 queued = task_on_rq_queued(tsk); 10300 10301 if (queued) 10302 dequeue_task(rq, tsk, queue_flags); 10303 if (running) 10304 put_prev_task(rq, tsk); 10305 10306 sched_change_group(tsk); 10307 10308 if (queued) 10309 enqueue_task(rq, tsk, queue_flags); 10310 if (running) { 10311 set_next_task(rq, tsk); 10312 /* 10313 * After changing group, the running task may have joined a 10314 * throttled one but it's still the running task. Trigger a 10315 * resched to make sure that task can still run. 10316 */ 10317 resched_curr(rq); 10318 } 10319 10320 task_rq_unlock(rq, tsk, &rf); 10321 } 10322 10323 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10324 { 10325 return css ? container_of(css, struct task_group, css) : NULL; 10326 } 10327 10328 static struct cgroup_subsys_state * 10329 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10330 { 10331 struct task_group *parent = css_tg(parent_css); 10332 struct task_group *tg; 10333 10334 if (!parent) { 10335 /* This is early initialization for the top cgroup */ 10336 return &root_task_group.css; 10337 } 10338 10339 tg = sched_create_group(parent); 10340 if (IS_ERR(tg)) 10341 return ERR_PTR(-ENOMEM); 10342 10343 return &tg->css; 10344 } 10345 10346 /* Expose task group only after completing cgroup initialization */ 10347 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10348 { 10349 struct task_group *tg = css_tg(css); 10350 struct task_group *parent = css_tg(css->parent); 10351 10352 if (parent) 10353 sched_online_group(tg, parent); 10354 10355 #ifdef CONFIG_UCLAMP_TASK_GROUP 10356 /* Propagate the effective uclamp value for the new group */ 10357 mutex_lock(&uclamp_mutex); 10358 rcu_read_lock(); 10359 cpu_util_update_eff(css); 10360 rcu_read_unlock(); 10361 mutex_unlock(&uclamp_mutex); 10362 #endif 10363 10364 return 0; 10365 } 10366 10367 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10368 { 10369 struct task_group *tg = css_tg(css); 10370 10371 sched_release_group(tg); 10372 } 10373 10374 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10375 { 10376 struct task_group *tg = css_tg(css); 10377 10378 /* 10379 * Relies on the RCU grace period between css_released() and this. 10380 */ 10381 sched_unregister_group(tg); 10382 } 10383 10384 #ifdef CONFIG_RT_GROUP_SCHED 10385 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10386 { 10387 struct task_struct *task; 10388 struct cgroup_subsys_state *css; 10389 10390 cgroup_taskset_for_each(task, css, tset) { 10391 if (!sched_rt_can_attach(css_tg(css), task)) 10392 return -EINVAL; 10393 } 10394 return 0; 10395 } 10396 #endif 10397 10398 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10399 { 10400 struct task_struct *task; 10401 struct cgroup_subsys_state *css; 10402 10403 cgroup_taskset_for_each(task, css, tset) 10404 sched_move_task(task); 10405 } 10406 10407 #ifdef CONFIG_UCLAMP_TASK_GROUP 10408 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10409 { 10410 struct cgroup_subsys_state *top_css = css; 10411 struct uclamp_se *uc_parent = NULL; 10412 struct uclamp_se *uc_se = NULL; 10413 unsigned int eff[UCLAMP_CNT]; 10414 enum uclamp_id clamp_id; 10415 unsigned int clamps; 10416 10417 lockdep_assert_held(&uclamp_mutex); 10418 SCHED_WARN_ON(!rcu_read_lock_held()); 10419 10420 css_for_each_descendant_pre(css, top_css) { 10421 uc_parent = css_tg(css)->parent 10422 ? css_tg(css)->parent->uclamp : NULL; 10423 10424 for_each_clamp_id(clamp_id) { 10425 /* Assume effective clamps matches requested clamps */ 10426 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10427 /* Cap effective clamps with parent's effective clamps */ 10428 if (uc_parent && 10429 eff[clamp_id] > uc_parent[clamp_id].value) { 10430 eff[clamp_id] = uc_parent[clamp_id].value; 10431 } 10432 } 10433 /* Ensure protection is always capped by limit */ 10434 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10435 10436 /* Propagate most restrictive effective clamps */ 10437 clamps = 0x0; 10438 uc_se = css_tg(css)->uclamp; 10439 for_each_clamp_id(clamp_id) { 10440 if (eff[clamp_id] == uc_se[clamp_id].value) 10441 continue; 10442 uc_se[clamp_id].value = eff[clamp_id]; 10443 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10444 clamps |= (0x1 << clamp_id); 10445 } 10446 if (!clamps) { 10447 css = css_rightmost_descendant(css); 10448 continue; 10449 } 10450 10451 /* Immediately update descendants RUNNABLE tasks */ 10452 uclamp_update_active_tasks(css); 10453 } 10454 } 10455 10456 /* 10457 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10458 * C expression. Since there is no way to convert a macro argument (N) into a 10459 * character constant, use two levels of macros. 10460 */ 10461 #define _POW10(exp) ((unsigned int)1e##exp) 10462 #define POW10(exp) _POW10(exp) 10463 10464 struct uclamp_request { 10465 #define UCLAMP_PERCENT_SHIFT 2 10466 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10467 s64 percent; 10468 u64 util; 10469 int ret; 10470 }; 10471 10472 static inline struct uclamp_request 10473 capacity_from_percent(char *buf) 10474 { 10475 struct uclamp_request req = { 10476 .percent = UCLAMP_PERCENT_SCALE, 10477 .util = SCHED_CAPACITY_SCALE, 10478 .ret = 0, 10479 }; 10480 10481 buf = strim(buf); 10482 if (strcmp(buf, "max")) { 10483 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10484 &req.percent); 10485 if (req.ret) 10486 return req; 10487 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10488 req.ret = -ERANGE; 10489 return req; 10490 } 10491 10492 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10493 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10494 } 10495 10496 return req; 10497 } 10498 10499 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10500 size_t nbytes, loff_t off, 10501 enum uclamp_id clamp_id) 10502 { 10503 struct uclamp_request req; 10504 struct task_group *tg; 10505 10506 req = capacity_from_percent(buf); 10507 if (req.ret) 10508 return req.ret; 10509 10510 static_branch_enable(&sched_uclamp_used); 10511 10512 mutex_lock(&uclamp_mutex); 10513 rcu_read_lock(); 10514 10515 tg = css_tg(of_css(of)); 10516 if (tg->uclamp_req[clamp_id].value != req.util) 10517 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10518 10519 /* 10520 * Because of not recoverable conversion rounding we keep track of the 10521 * exact requested value 10522 */ 10523 tg->uclamp_pct[clamp_id] = req.percent; 10524 10525 /* Update effective clamps to track the most restrictive value */ 10526 cpu_util_update_eff(of_css(of)); 10527 10528 rcu_read_unlock(); 10529 mutex_unlock(&uclamp_mutex); 10530 10531 return nbytes; 10532 } 10533 10534 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10535 char *buf, size_t nbytes, 10536 loff_t off) 10537 { 10538 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10539 } 10540 10541 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10542 char *buf, size_t nbytes, 10543 loff_t off) 10544 { 10545 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10546 } 10547 10548 static inline void cpu_uclamp_print(struct seq_file *sf, 10549 enum uclamp_id clamp_id) 10550 { 10551 struct task_group *tg; 10552 u64 util_clamp; 10553 u64 percent; 10554 u32 rem; 10555 10556 rcu_read_lock(); 10557 tg = css_tg(seq_css(sf)); 10558 util_clamp = tg->uclamp_req[clamp_id].value; 10559 rcu_read_unlock(); 10560 10561 if (util_clamp == SCHED_CAPACITY_SCALE) { 10562 seq_puts(sf, "max\n"); 10563 return; 10564 } 10565 10566 percent = tg->uclamp_pct[clamp_id]; 10567 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10568 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10569 } 10570 10571 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10572 { 10573 cpu_uclamp_print(sf, UCLAMP_MIN); 10574 return 0; 10575 } 10576 10577 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10578 { 10579 cpu_uclamp_print(sf, UCLAMP_MAX); 10580 return 0; 10581 } 10582 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10583 10584 #ifdef CONFIG_FAIR_GROUP_SCHED 10585 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10586 struct cftype *cftype, u64 shareval) 10587 { 10588 if (shareval > scale_load_down(ULONG_MAX)) 10589 shareval = MAX_SHARES; 10590 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10591 } 10592 10593 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10594 struct cftype *cft) 10595 { 10596 struct task_group *tg = css_tg(css); 10597 10598 return (u64) scale_load_down(tg->shares); 10599 } 10600 10601 #ifdef CONFIG_CFS_BANDWIDTH 10602 static DEFINE_MUTEX(cfs_constraints_mutex); 10603 10604 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10605 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10606 /* More than 203 days if BW_SHIFT equals 20. */ 10607 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10608 10609 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10610 10611 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10612 u64 burst) 10613 { 10614 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10615 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10616 10617 if (tg == &root_task_group) 10618 return -EINVAL; 10619 10620 /* 10621 * Ensure we have at some amount of bandwidth every period. This is 10622 * to prevent reaching a state of large arrears when throttled via 10623 * entity_tick() resulting in prolonged exit starvation. 10624 */ 10625 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10626 return -EINVAL; 10627 10628 /* 10629 * Likewise, bound things on the other side by preventing insane quota 10630 * periods. This also allows us to normalize in computing quota 10631 * feasibility. 10632 */ 10633 if (period > max_cfs_quota_period) 10634 return -EINVAL; 10635 10636 /* 10637 * Bound quota to defend quota against overflow during bandwidth shift. 10638 */ 10639 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10640 return -EINVAL; 10641 10642 if (quota != RUNTIME_INF && (burst > quota || 10643 burst + quota > max_cfs_runtime)) 10644 return -EINVAL; 10645 10646 /* 10647 * Prevent race between setting of cfs_rq->runtime_enabled and 10648 * unthrottle_offline_cfs_rqs(). 10649 */ 10650 cpus_read_lock(); 10651 mutex_lock(&cfs_constraints_mutex); 10652 ret = __cfs_schedulable(tg, period, quota); 10653 if (ret) 10654 goto out_unlock; 10655 10656 runtime_enabled = quota != RUNTIME_INF; 10657 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10658 /* 10659 * If we need to toggle cfs_bandwidth_used, off->on must occur 10660 * before making related changes, and on->off must occur afterwards 10661 */ 10662 if (runtime_enabled && !runtime_was_enabled) 10663 cfs_bandwidth_usage_inc(); 10664 raw_spin_lock_irq(&cfs_b->lock); 10665 cfs_b->period = ns_to_ktime(period); 10666 cfs_b->quota = quota; 10667 cfs_b->burst = burst; 10668 10669 __refill_cfs_bandwidth_runtime(cfs_b); 10670 10671 /* Restart the period timer (if active) to handle new period expiry: */ 10672 if (runtime_enabled) 10673 start_cfs_bandwidth(cfs_b); 10674 10675 raw_spin_unlock_irq(&cfs_b->lock); 10676 10677 for_each_online_cpu(i) { 10678 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10679 struct rq *rq = cfs_rq->rq; 10680 struct rq_flags rf; 10681 10682 rq_lock_irq(rq, &rf); 10683 cfs_rq->runtime_enabled = runtime_enabled; 10684 cfs_rq->runtime_remaining = 0; 10685 10686 if (cfs_rq->throttled) 10687 unthrottle_cfs_rq(cfs_rq); 10688 rq_unlock_irq(rq, &rf); 10689 } 10690 if (runtime_was_enabled && !runtime_enabled) 10691 cfs_bandwidth_usage_dec(); 10692 out_unlock: 10693 mutex_unlock(&cfs_constraints_mutex); 10694 cpus_read_unlock(); 10695 10696 return ret; 10697 } 10698 10699 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10700 { 10701 u64 quota, period, burst; 10702 10703 period = ktime_to_ns(tg->cfs_bandwidth.period); 10704 burst = tg->cfs_bandwidth.burst; 10705 if (cfs_quota_us < 0) 10706 quota = RUNTIME_INF; 10707 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10708 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10709 else 10710 return -EINVAL; 10711 10712 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10713 } 10714 10715 static long tg_get_cfs_quota(struct task_group *tg) 10716 { 10717 u64 quota_us; 10718 10719 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10720 return -1; 10721 10722 quota_us = tg->cfs_bandwidth.quota; 10723 do_div(quota_us, NSEC_PER_USEC); 10724 10725 return quota_us; 10726 } 10727 10728 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10729 { 10730 u64 quota, period, burst; 10731 10732 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10733 return -EINVAL; 10734 10735 period = (u64)cfs_period_us * NSEC_PER_USEC; 10736 quota = tg->cfs_bandwidth.quota; 10737 burst = tg->cfs_bandwidth.burst; 10738 10739 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10740 } 10741 10742 static long tg_get_cfs_period(struct task_group *tg) 10743 { 10744 u64 cfs_period_us; 10745 10746 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10747 do_div(cfs_period_us, NSEC_PER_USEC); 10748 10749 return cfs_period_us; 10750 } 10751 10752 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10753 { 10754 u64 quota, period, burst; 10755 10756 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10757 return -EINVAL; 10758 10759 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10760 period = ktime_to_ns(tg->cfs_bandwidth.period); 10761 quota = tg->cfs_bandwidth.quota; 10762 10763 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10764 } 10765 10766 static long tg_get_cfs_burst(struct task_group *tg) 10767 { 10768 u64 burst_us; 10769 10770 burst_us = tg->cfs_bandwidth.burst; 10771 do_div(burst_us, NSEC_PER_USEC); 10772 10773 return burst_us; 10774 } 10775 10776 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10777 struct cftype *cft) 10778 { 10779 return tg_get_cfs_quota(css_tg(css)); 10780 } 10781 10782 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10783 struct cftype *cftype, s64 cfs_quota_us) 10784 { 10785 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10786 } 10787 10788 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10789 struct cftype *cft) 10790 { 10791 return tg_get_cfs_period(css_tg(css)); 10792 } 10793 10794 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10795 struct cftype *cftype, u64 cfs_period_us) 10796 { 10797 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10798 } 10799 10800 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10801 struct cftype *cft) 10802 { 10803 return tg_get_cfs_burst(css_tg(css)); 10804 } 10805 10806 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10807 struct cftype *cftype, u64 cfs_burst_us) 10808 { 10809 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10810 } 10811 10812 struct cfs_schedulable_data { 10813 struct task_group *tg; 10814 u64 period, quota; 10815 }; 10816 10817 /* 10818 * normalize group quota/period to be quota/max_period 10819 * note: units are usecs 10820 */ 10821 static u64 normalize_cfs_quota(struct task_group *tg, 10822 struct cfs_schedulable_data *d) 10823 { 10824 u64 quota, period; 10825 10826 if (tg == d->tg) { 10827 period = d->period; 10828 quota = d->quota; 10829 } else { 10830 period = tg_get_cfs_period(tg); 10831 quota = tg_get_cfs_quota(tg); 10832 } 10833 10834 /* note: these should typically be equivalent */ 10835 if (quota == RUNTIME_INF || quota == -1) 10836 return RUNTIME_INF; 10837 10838 return to_ratio(period, quota); 10839 } 10840 10841 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10842 { 10843 struct cfs_schedulable_data *d = data; 10844 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10845 s64 quota = 0, parent_quota = -1; 10846 10847 if (!tg->parent) { 10848 quota = RUNTIME_INF; 10849 } else { 10850 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10851 10852 quota = normalize_cfs_quota(tg, d); 10853 parent_quota = parent_b->hierarchical_quota; 10854 10855 /* 10856 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10857 * always take the min. On cgroup1, only inherit when no 10858 * limit is set: 10859 */ 10860 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10861 quota = min(quota, parent_quota); 10862 } else { 10863 if (quota == RUNTIME_INF) 10864 quota = parent_quota; 10865 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10866 return -EINVAL; 10867 } 10868 } 10869 cfs_b->hierarchical_quota = quota; 10870 10871 return 0; 10872 } 10873 10874 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10875 { 10876 int ret; 10877 struct cfs_schedulable_data data = { 10878 .tg = tg, 10879 .period = period, 10880 .quota = quota, 10881 }; 10882 10883 if (quota != RUNTIME_INF) { 10884 do_div(data.period, NSEC_PER_USEC); 10885 do_div(data.quota, NSEC_PER_USEC); 10886 } 10887 10888 rcu_read_lock(); 10889 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10890 rcu_read_unlock(); 10891 10892 return ret; 10893 } 10894 10895 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10896 { 10897 struct task_group *tg = css_tg(seq_css(sf)); 10898 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10899 10900 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10901 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10902 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10903 10904 if (schedstat_enabled() && tg != &root_task_group) { 10905 struct sched_statistics *stats; 10906 u64 ws = 0; 10907 int i; 10908 10909 for_each_possible_cpu(i) { 10910 stats = __schedstats_from_se(tg->se[i]); 10911 ws += schedstat_val(stats->wait_sum); 10912 } 10913 10914 seq_printf(sf, "wait_sum %llu\n", ws); 10915 } 10916 10917 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10918 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10919 10920 return 0; 10921 } 10922 #endif /* CONFIG_CFS_BANDWIDTH */ 10923 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10924 10925 #ifdef CONFIG_RT_GROUP_SCHED 10926 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10927 struct cftype *cft, s64 val) 10928 { 10929 return sched_group_set_rt_runtime(css_tg(css), val); 10930 } 10931 10932 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10933 struct cftype *cft) 10934 { 10935 return sched_group_rt_runtime(css_tg(css)); 10936 } 10937 10938 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10939 struct cftype *cftype, u64 rt_period_us) 10940 { 10941 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10942 } 10943 10944 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10945 struct cftype *cft) 10946 { 10947 return sched_group_rt_period(css_tg(css)); 10948 } 10949 #endif /* CONFIG_RT_GROUP_SCHED */ 10950 10951 #ifdef CONFIG_FAIR_GROUP_SCHED 10952 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10953 struct cftype *cft) 10954 { 10955 return css_tg(css)->idle; 10956 } 10957 10958 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10959 struct cftype *cft, s64 idle) 10960 { 10961 return sched_group_set_idle(css_tg(css), idle); 10962 } 10963 #endif 10964 10965 static struct cftype cpu_legacy_files[] = { 10966 #ifdef CONFIG_FAIR_GROUP_SCHED 10967 { 10968 .name = "shares", 10969 .read_u64 = cpu_shares_read_u64, 10970 .write_u64 = cpu_shares_write_u64, 10971 }, 10972 { 10973 .name = "idle", 10974 .read_s64 = cpu_idle_read_s64, 10975 .write_s64 = cpu_idle_write_s64, 10976 }, 10977 #endif 10978 #ifdef CONFIG_CFS_BANDWIDTH 10979 { 10980 .name = "cfs_quota_us", 10981 .read_s64 = cpu_cfs_quota_read_s64, 10982 .write_s64 = cpu_cfs_quota_write_s64, 10983 }, 10984 { 10985 .name = "cfs_period_us", 10986 .read_u64 = cpu_cfs_period_read_u64, 10987 .write_u64 = cpu_cfs_period_write_u64, 10988 }, 10989 { 10990 .name = "cfs_burst_us", 10991 .read_u64 = cpu_cfs_burst_read_u64, 10992 .write_u64 = cpu_cfs_burst_write_u64, 10993 }, 10994 { 10995 .name = "stat", 10996 .seq_show = cpu_cfs_stat_show, 10997 }, 10998 #endif 10999 #ifdef CONFIG_RT_GROUP_SCHED 11000 { 11001 .name = "rt_runtime_us", 11002 .read_s64 = cpu_rt_runtime_read, 11003 .write_s64 = cpu_rt_runtime_write, 11004 }, 11005 { 11006 .name = "rt_period_us", 11007 .read_u64 = cpu_rt_period_read_uint, 11008 .write_u64 = cpu_rt_period_write_uint, 11009 }, 11010 #endif 11011 #ifdef CONFIG_UCLAMP_TASK_GROUP 11012 { 11013 .name = "uclamp.min", 11014 .flags = CFTYPE_NOT_ON_ROOT, 11015 .seq_show = cpu_uclamp_min_show, 11016 .write = cpu_uclamp_min_write, 11017 }, 11018 { 11019 .name = "uclamp.max", 11020 .flags = CFTYPE_NOT_ON_ROOT, 11021 .seq_show = cpu_uclamp_max_show, 11022 .write = cpu_uclamp_max_write, 11023 }, 11024 #endif 11025 { } /* Terminate */ 11026 }; 11027 11028 static int cpu_extra_stat_show(struct seq_file *sf, 11029 struct cgroup_subsys_state *css) 11030 { 11031 #ifdef CONFIG_CFS_BANDWIDTH 11032 { 11033 struct task_group *tg = css_tg(css); 11034 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11035 u64 throttled_usec, burst_usec; 11036 11037 throttled_usec = cfs_b->throttled_time; 11038 do_div(throttled_usec, NSEC_PER_USEC); 11039 burst_usec = cfs_b->burst_time; 11040 do_div(burst_usec, NSEC_PER_USEC); 11041 11042 seq_printf(sf, "nr_periods %d\n" 11043 "nr_throttled %d\n" 11044 "throttled_usec %llu\n" 11045 "nr_bursts %d\n" 11046 "burst_usec %llu\n", 11047 cfs_b->nr_periods, cfs_b->nr_throttled, 11048 throttled_usec, cfs_b->nr_burst, burst_usec); 11049 } 11050 #endif 11051 return 0; 11052 } 11053 11054 #ifdef CONFIG_FAIR_GROUP_SCHED 11055 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 11056 struct cftype *cft) 11057 { 11058 struct task_group *tg = css_tg(css); 11059 u64 weight = scale_load_down(tg->shares); 11060 11061 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 11062 } 11063 11064 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 11065 struct cftype *cft, u64 weight) 11066 { 11067 /* 11068 * cgroup weight knobs should use the common MIN, DFL and MAX 11069 * values which are 1, 100 and 10000 respectively. While it loses 11070 * a bit of range on both ends, it maps pretty well onto the shares 11071 * value used by scheduler and the round-trip conversions preserve 11072 * the original value over the entire range. 11073 */ 11074 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 11075 return -ERANGE; 11076 11077 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 11078 11079 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11080 } 11081 11082 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 11083 struct cftype *cft) 11084 { 11085 unsigned long weight = scale_load_down(css_tg(css)->shares); 11086 int last_delta = INT_MAX; 11087 int prio, delta; 11088 11089 /* find the closest nice value to the current weight */ 11090 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 11091 delta = abs(sched_prio_to_weight[prio] - weight); 11092 if (delta >= last_delta) 11093 break; 11094 last_delta = delta; 11095 } 11096 11097 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11098 } 11099 11100 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11101 struct cftype *cft, s64 nice) 11102 { 11103 unsigned long weight; 11104 int idx; 11105 11106 if (nice < MIN_NICE || nice > MAX_NICE) 11107 return -ERANGE; 11108 11109 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11110 idx = array_index_nospec(idx, 40); 11111 weight = sched_prio_to_weight[idx]; 11112 11113 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11114 } 11115 #endif 11116 11117 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11118 long period, long quota) 11119 { 11120 if (quota < 0) 11121 seq_puts(sf, "max"); 11122 else 11123 seq_printf(sf, "%ld", quota); 11124 11125 seq_printf(sf, " %ld\n", period); 11126 } 11127 11128 /* caller should put the current value in *@periodp before calling */ 11129 static int __maybe_unused cpu_period_quota_parse(char *buf, 11130 u64 *periodp, u64 *quotap) 11131 { 11132 char tok[21]; /* U64_MAX */ 11133 11134 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11135 return -EINVAL; 11136 11137 *periodp *= NSEC_PER_USEC; 11138 11139 if (sscanf(tok, "%llu", quotap)) 11140 *quotap *= NSEC_PER_USEC; 11141 else if (!strcmp(tok, "max")) 11142 *quotap = RUNTIME_INF; 11143 else 11144 return -EINVAL; 11145 11146 return 0; 11147 } 11148 11149 #ifdef CONFIG_CFS_BANDWIDTH 11150 static int cpu_max_show(struct seq_file *sf, void *v) 11151 { 11152 struct task_group *tg = css_tg(seq_css(sf)); 11153 11154 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11155 return 0; 11156 } 11157 11158 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11159 char *buf, size_t nbytes, loff_t off) 11160 { 11161 struct task_group *tg = css_tg(of_css(of)); 11162 u64 period = tg_get_cfs_period(tg); 11163 u64 burst = tg_get_cfs_burst(tg); 11164 u64 quota; 11165 int ret; 11166 11167 ret = cpu_period_quota_parse(buf, &period, "a); 11168 if (!ret) 11169 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11170 return ret ?: nbytes; 11171 } 11172 #endif 11173 11174 static struct cftype cpu_files[] = { 11175 #ifdef CONFIG_FAIR_GROUP_SCHED 11176 { 11177 .name = "weight", 11178 .flags = CFTYPE_NOT_ON_ROOT, 11179 .read_u64 = cpu_weight_read_u64, 11180 .write_u64 = cpu_weight_write_u64, 11181 }, 11182 { 11183 .name = "weight.nice", 11184 .flags = CFTYPE_NOT_ON_ROOT, 11185 .read_s64 = cpu_weight_nice_read_s64, 11186 .write_s64 = cpu_weight_nice_write_s64, 11187 }, 11188 { 11189 .name = "idle", 11190 .flags = CFTYPE_NOT_ON_ROOT, 11191 .read_s64 = cpu_idle_read_s64, 11192 .write_s64 = cpu_idle_write_s64, 11193 }, 11194 #endif 11195 #ifdef CONFIG_CFS_BANDWIDTH 11196 { 11197 .name = "max", 11198 .flags = CFTYPE_NOT_ON_ROOT, 11199 .seq_show = cpu_max_show, 11200 .write = cpu_max_write, 11201 }, 11202 { 11203 .name = "max.burst", 11204 .flags = CFTYPE_NOT_ON_ROOT, 11205 .read_u64 = cpu_cfs_burst_read_u64, 11206 .write_u64 = cpu_cfs_burst_write_u64, 11207 }, 11208 #endif 11209 #ifdef CONFIG_UCLAMP_TASK_GROUP 11210 { 11211 .name = "uclamp.min", 11212 .flags = CFTYPE_NOT_ON_ROOT, 11213 .seq_show = cpu_uclamp_min_show, 11214 .write = cpu_uclamp_min_write, 11215 }, 11216 { 11217 .name = "uclamp.max", 11218 .flags = CFTYPE_NOT_ON_ROOT, 11219 .seq_show = cpu_uclamp_max_show, 11220 .write = cpu_uclamp_max_write, 11221 }, 11222 #endif 11223 { } /* terminate */ 11224 }; 11225 11226 struct cgroup_subsys cpu_cgrp_subsys = { 11227 .css_alloc = cpu_cgroup_css_alloc, 11228 .css_online = cpu_cgroup_css_online, 11229 .css_released = cpu_cgroup_css_released, 11230 .css_free = cpu_cgroup_css_free, 11231 .css_extra_stat_show = cpu_extra_stat_show, 11232 #ifdef CONFIG_RT_GROUP_SCHED 11233 .can_attach = cpu_cgroup_can_attach, 11234 #endif 11235 .attach = cpu_cgroup_attach, 11236 .legacy_cftypes = cpu_legacy_files, 11237 .dfl_cftypes = cpu_files, 11238 .early_init = true, 11239 .threaded = true, 11240 }; 11241 11242 #endif /* CONFIG_CGROUP_SCHED */ 11243 11244 void dump_cpu_task(int cpu) 11245 { 11246 if (cpu == smp_processor_id() && in_hardirq()) { 11247 struct pt_regs *regs; 11248 11249 regs = get_irq_regs(); 11250 if (regs) { 11251 show_regs(regs); 11252 return; 11253 } 11254 } 11255 11256 if (trigger_single_cpu_backtrace(cpu)) 11257 return; 11258 11259 pr_info("Task dump for CPU %d:\n", cpu); 11260 sched_show_task(cpu_curr(cpu)); 11261 } 11262 11263 /* 11264 * Nice levels are multiplicative, with a gentle 10% change for every 11265 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11266 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11267 * that remained on nice 0. 11268 * 11269 * The "10% effect" is relative and cumulative: from _any_ nice level, 11270 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11271 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11272 * If a task goes up by ~10% and another task goes down by ~10% then 11273 * the relative distance between them is ~25%.) 11274 */ 11275 const int sched_prio_to_weight[40] = { 11276 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11277 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11278 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11279 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11280 /* 0 */ 1024, 820, 655, 526, 423, 11281 /* 5 */ 335, 272, 215, 172, 137, 11282 /* 10 */ 110, 87, 70, 56, 45, 11283 /* 15 */ 36, 29, 23, 18, 15, 11284 }; 11285 11286 /* 11287 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11288 * 11289 * In cases where the weight does not change often, we can use the 11290 * precalculated inverse to speed up arithmetics by turning divisions 11291 * into multiplications: 11292 */ 11293 const u32 sched_prio_to_wmult[40] = { 11294 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11295 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11296 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11297 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11298 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11299 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11300 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11301 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11302 }; 11303 11304 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11305 { 11306 trace_sched_update_nr_running_tp(rq, count); 11307 } 11308